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Summary 

Cervical cancer is the second most common cancer among women worldwide. Infection with 

Human Papillomavirus (HPV) is essential but not the only contributing factor in cervical 

cancer development. HPV integration is reported to be present in over 80% of cervical 

cancers and disruption of HPV genome through integration leads to high levels of HPV 

oncogene expression. DNA damage and repair pathways are thought to induce HPV 

integration since HPV is detected at fragile sites in the human genome. There is controversy 

as to whether integration is an early or late event in cervical oncogenesis and there are no 

published studies to date that have investigated HPV integration using sensitive, DNA based, 

techniques at the nucleotide level in cervical precancers. This study aimed to test the 

hypothesis that integration is an early event in cervical neoplasia and episomal loss causes 

malignant transformation through transcription of integrated HPV. Also, this study served to 

pilot whether HPV integration can predict high-grade cervical disease in women with 

cytological abnormalities with an aim to improve current cervical screening methods. Assays 

to detect integration and E2 as a marker of episomal state were developed for HPV16, HPV18 

and HPV45 and applied to cervical smears and biopsies from women with varying disease 

grades. The data presented in this thesis highlight that integration may not be essential for 

cervical cancer progression and different modes of disease progression may exist between 

young women and older women. Integration was detected at chromosome fragile sites but was 

more prevalent at SINE or LINE repeat elements; this implies a role for retroelements in the 

mechanism of integration. Finally, the data here suggest that integration induces a unique 

selective process in each individual and clonal selection may arise due to altered HPV 

oncogene expression and/or disruption to human gene expression.
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1 Introduction 

Cervical cancer is the second most common cancer in women worldwide with 500,000 

women developing cancer and 274,000 women dying from cervical cancer each year (WHO 

2008). In the UK, 2851 women are diagnosed with cervical cancer and 957 women die from 

cervical cancer per annum (ONS 2010). Figure 1 shows the number of cancer deaths world-

wide in women in 2008 (Ferlay et al. 2010); cervical cancer accounts for the second highest 

incidence of cancer related deaths in women and the proportion of deaths due to cervical 

cancer is much higher in developing countries.  

 

The age at which women are most at risk from developing cervical cancer in the UK is 

between the ages 25 to 54 years, whereas cervical cancer is rare in women under 25 years of 

age (Figure 2) (Sasieni et al. 2003). Due to the age at which cervical cancer affects women, it 

has a profound effect on a woman’s family life, sexual health and career, thus cervical cancer 

is of great socioeconomic importance. 

 

The primary cause of cervical cancer is Human Papillomavirus (HPV) infection; over 99% of 

cervical cancers contain HPV DNA (zur Hausen 1976; Durst et al. 1983). A very early, 

historical study of cervical cancer in married women, widowed women, virgins, nuns, and 

prostitutes postulated that there was a higher occurrence of cervical cancer in those women 

with higher sexual promiscuity (Rigoni 1987), but it was not until the early 1960’s, during 

advances in bacteriology, that a connection between sexual infection and cervical cancer was 

made. In the 1970’s, breakthrough studies linked HPV and cervical cancer (zur Hausen et al. 

1974). 
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Figure 1 Deaths (thousand) due to cancer worldwide and in developed countries in the year 2008. Data 

taken from Ferlay et al. (2010). 

 

 

 

Figure 2 Number of newly diagnosed cervical cancer cases in the UK in 2000 and 2010, grouped by age, 

taken from ONS (2000; 2010). 

 

1.1 Human Papillomavirus 

1.1.1 Classification  

Papillomaviruses (PVs) comprise a group of epitheliotropic DNA viruses that induce benign 

lesions of the skin (warts) and mucous membranes (condylomas). PVs are divided into 12 
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genera each one coded by a letter from the Greek alphabet. Each PV genus is classified 

according to the host species it infects and the sites and disease with which it is associated 

(Howley and Lowy 2007).   

 

The PV phylogenetic classification is made according to the L1 Open Reading Frame (ORF). 

An ORF is a region of DNA, divided into exons that are spread throughout the genome that 

encode a specific polypeptide. The L1 ORF controls the expression of major structural viral 

proteins and is highly conserved between species of PV. Within a genus the L1 ORF DNA 

sequence is at least 60% similar in all members of that genus. A PV species is designated to 

members of a genus that share 60%-70% identity. A PV type is given to members of a 

species that share 71%-89% identity with other types in that species. Subtypes share 90%-

98% identity and variants share more than 98% DNA similarity (Howley and Lowy 2007). 
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Table 1 Association of HPV and clinical disease of genital tract and other lesions, adapted from Howley 

and Lowy (2007). 

 

HPV belongs to genera α, β, γ, µ and ν with the remainder of the genera being animal specific 

PVs (de Villiers et al. 2004). α HPV is the largest HPV genera and contains types that infect 

epithelial cells either of the skin or mucous membranes particularly of the anogenital tract 

and oropharynx. There are more than 30 α HPV types that infect cervical epithelia, a subset 

of which induce lesions that progress to malignancy (Table 1). The HPV types that are 

associated with malignant progression are known as high-risk HPV (HR-HPV) types: HPV 

16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82 (Munoz et al. 2003). α HPV 

types that are not typically associated with malignancy and are classed as low-risk (LR-HPV) 

depending on their prevalence in cancers. HPV types belonging to the β genera can cause 

latent infections, are predominantly associated with cutaneous infection in 

immunocompromised individuals, and are also associated with the development of non-

melanoma skin cancer in Epidermodysplasia Verruciformis (EV) sufferers who have an 

abnormal susceptibility to HPV infection (Harwood et al. 2004). The remaining HPV genera 

that cause cutaneous papillomas and verrucas are not generally oncogenic. 

 

1.1.2 Virion Structure 

HPV is a small (52-55nm in diameter) non-enveloped, icosahedral DNA virus that replicates 

in the nucleus of squamous epithelial cells (Figure 3). One particle consists of one molecule 

Clinical Association  HPV Type 

Genital tract   

Subclinical infection  All genital HPV 

Exophytic condyloma  HPV6, HPV11 

Flat condyloma   HPV6, HPV11, HPV16, HPV18 HPV31, others 

Bowenoid papulosis  HPV16 

Giant condyloma  HPV6, HPV11 

 

Cervical Cancer 

Strong Association   HPV16, HPV18, HPV31, HPV35, HPV45 

Moderate Association HPV33, HPV35, HPV39, HPV51, HPV52, HPV56, HPV58, 

HPV59, HPV68  

Weak or no Association HPV6, HPV11, HPV26, HPV42, HPV43, HPV44, HPV53, 

HPV54, HPV55, HPV62, HPV66 

Vulval Cancer   HPV16 

Penile Cancer   HPV16 

Respiratory papilloma  HPV6, HPV11 

Conjunctival papilloma HPV6, HPV11 

Oral and Tonsil cancer HPV16 
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of circular double stranded DNA. The double stranded DNA is approximately 8kbp long and 

is contained within a protein coat known as a capsid. There are 72 capsomeres that complete 

the virion structure. The capsid consists of 2 structural proteins that, as discussed later, also 

play an important role in mediating virus infectivity. The first capsid protein is encoded by 

the L1 ORF that encodes 80% of the HPV viral capsid; the second capsid protein is encoded 

by the L2 ORF that encodes the minor capsid protein.  

 

1.1.3 Genome 

The ORFs of HPV are located on one strand of DNA and only one strand of double stranded 

DNA acts as a template for transcription, this is the coding strand. Eight ORFs are present on 

the coding strand and these ORFs are classified as early or late because of the location on the 

coding strand (Figure 3) and the point in the viral life cycle in which they express proteins. 

Key functions of HPV Early and Late proteins will be discussed in section 1.1.4, discussing 

HPV infection and HPV life cycle.  

 

A region of the HPV genome, approximately 1Kbp in length contains no ORF. This region 

contains the origin of replication, transcription control elements and post-transcriptional 

control elements and is often referred to as the Long Control Region (LCR), Upstream 

Regulated Region (URR) and Non-Coding region.  
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Figure 3 The Human Papillomavirus genome. Taken from Raybould et al. (2011).  A) A representation of 

HPV16 episomal DNA contained within the HPV capsid, B) A schematic representation of HPV16 in episomal 

form, C) A schematic representation of linear HPV16.  

 

1.1.3.1 HPV ORF expression 

HPV has a small genome, the ORFs overlap and alternative splicing occurs to allow the 

differential expression of HPV proteins at different times in the HPV lifecycle (Figure 4). 

Table 2 summarises the function of the proteins produced by HPV16.  

 

HPV ORF expression is tightly regulated; promoter regions are located relative to early and 

late protein production. HPV promoter regions are classified according to their position in 

base pairs within the HPV genome and the point at which they are activated in the HPV life 

cycle. The promoter positions vary in position between different HPV types. There are a 

A 

B 

C 
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number of promoters that are active during the HPV life cycle but not all promoters are fully 

characterized for all HPV types; the two major early promoters are P97 and P105 for HPV16 

and HPV18, respectively; the major late promoter for HPV16 is P670. The P97 promoter lies 

upstream from the E6 ORF and is responsible for nearly all early ORF expression. The P670 

promoter lies within the E7 ORF and is responsible for late ORF expression (Zheng and 

Baker 2006). 

 

Polyadenylation is the addition of a string of adenine bases to the 3′ end of mRNA, known as 

a poly(A) tail. Polyadenylation is the maturation of mRNA for translation and plays an 

important role in the control of HPV gene expression by preventing mRNA from degradation 

in the cytoplasm and guiding mRNA out of the nucleus. Once transcription of a gene has 

ended, the 3′ end of the RNA is cleaved by a set of proteins and the proteins synthesise a 

poly(A) tail on the 3′ end of the RNA. Polyadenylation sites are coded regions within the 

genome where polyadenylation proteins act. Similar to regulation of HPV ORF expression 

from HPV promoters, mRNA polyadenylation is tightly regulated according to the HPV life 

cycle, the presence of polyadenylation sites, pAE (Early) and pAL(Late) are situated at the 3′ 

end of the Early and Late coding regions respectively.  
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Figure 4 HPV16 alternative splicing, adapted from Zheng and Baker (2006) and Milligan et al. (2007). At 

the top, in green and red bars, linear HPV16 is represented with nucleotide positions according to NC_001526.1 

shown above each ORF; HPV E4 spans 2 exons and requires splicing (dashed lines). Below linear HPV, each 

denoted by a letter, are the transcripts produced by HPV16; exons shown by grey bars linked by introns; coding 

potentials for each transcript are shown.  
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0
 

Protein Function/s Molecular Activity 

 

E1 

 

Maintains viral genome. 

Contributes to viral genome replication. 

 

E1 interacts with cellular DNA polymerase and replication proteins to initiate viral DNA 

replication. 

 

E2 

 

Maintains viral genome. 

Anchors episomes to mitotic chromosomes in 

basal cells. 

Controls transcription. 

 

 

E2 engages E1 to viral origin and binds E1 to cellular proteins essential for DNA replication. 

Low levels of E2 activate transcription and high levels of E2 inhibit transcription through 

interaction with viral early promoters. E2 represses hTERT promoter activity.  

 

 

E4 

 

Function unclear.  

E4 has potential roles in the late stage of viral 

lifecycle, apoptosis and cell cycle arrest. 

 

 

E4 may bind to keratins and lead to breakdown of the cytokeratin network. 

E4 may bind to cdk/cyclin complexes leading to arrest of the cell cycle in G2 phase. 

E4 may interact with E2 and mediate relocation of E2 from nucleus to cytoplasm. 

 

E5 

 

 

Transformation (Bovine PV) 

Immune evasion 

 

E5, with E6 and E7 enhances the transforming properties of HPV through interaction with 

epidermal growth factors and by interfering with cell cycling pathways. E5 may also inhibit 

apoptosis and cell-to-cell communication. E5 interacts directly with MHC/HLA class 1 and 

enhances immune evasion. 

 

 

E6 

 

 

Transformation 

 

E6 increases cellular stability by binding to p300 and CREB binding protein to block 

acetylation of p53. HR-HPV E6 mediates ubiquitination and degradation of p53. HR-HPV E6 

activates expression of hTERT.  

 

 

E7 

 

Transformation 

 

E7 disrupts association of pRB with E2F transcription factors, activates cyclin/CDK 

complexes involved in viral DNA replication and pushes the cell from G1 phase to S phase. 

E7 stimulates cell proliferation through interaction with histone deacetylases, AP1 

transcription complex, p21 and p27 cyclin-dependant kinase inhibitors. 

 

Table 2 Summary of HPV proteins and their functions; taken from Raybould et al. (2011).
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1.1.4 HPV Infection 

As mentioned above, HPV has a specific tropism for squamous epithelial cells. The HPV life 

cycle is divided into early and late stages and HPV proteins are differentially expressed 

temporally and spatially as the life cycle progresses. To replicate and survive HPV must be 

able to: 

1. Enter cell and translocate its genome to site of replication. 

2. Replicate its genome and produce mRNA. 

3. Generate viral proteins. 

4. Assemble progeny. 

5. Avoid host defences. 

6. Disperse and persist in the environment. 

 

1.1.4.1 Cell Entry 

The basal cell is the only cell in squamous epithelial cells capable of undergoing replication 

and the virus must infect the basal cell to establish a persistent lesion. Primary infection 

occurs most probably by wound or microabrasion however, in the cervix the primary site of 

HPV infection is the transformation zone where basal epithelial cells are exposed. To enter 

the host epithelial cell successfully, HPV must be able to bind to cell surface receptors. 

Heparan sulphate proteoglycans on the cell surface are considered the initial binding receptor 

for HPV L1 and L2 (Joyce et al. 1999). Once in a cell the viral capsid disassembles and L2 

viral genome then guides the HPV DNA through the cytoplasm into the nuclear domain (Day 

et al. 2004). 

 

1.1.4.2 HPV DNA Synthesis 

Following attachment and un-coating, the HPV genome is maintained in an episomal state in 

low copy numbers at approximately 10-200 copies per cell (Stanley et al. 1989). E1 and E2 

are required to maintain low copy numbers (Frattini et al. 1996; Stubenrauch et al. 1998) to 

avoid host immune cell detection. As mentioned above, basal cells are capable of replication 

and E2 is responsible for facilitating correct segregation of HPV episomes during host basal 

cell division (Hamid et al. 2009).     
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Prior to HPV genome amplification, expression of HPV Early proteins is initiated. All HPV 

Early proteins are needed for HPV genome replication; E1 and E2 are responsible for viral 

DNA replication. E2 plays a vital role in HPV replication: E2 binds to the URR and guides 

E1 to the viral origin of replication (Sarafi and McBride 1995; Moscufo et al. 1999). E2 has 

the ability to stimulate or repress the expression of early ORF proteins through binding at a 

number of sites with a consensus recognition sequence of ACCg NNNN cGGT throughout 

the HPV genome (Hines et al. 1998). E2 has a dose dependent manner of transcription 

regulation: in low concentrations, E2 stimulates the promoter of HPV to initiate transcription, 

whereas in high concentrations it has the opposite affect and represses transcription at the 

promoter (Steger and Corbach 1997).  

 

In an uninfected epithelial basal cell, once cell division has taken place, the cell exits the cell 

cycle, migrates to the suprabasal layers and host cell proteins are expressed that allow the cell 

to enter into a terminally differentiated state. Like many viruses, HPV relies on the host cell 

machinery to replicate its genome. HPV must trigger expression of the host cell DNA 

replication genes in differentiated epithelial cells. At this stage of the HPV life cycle, and 

epithelial cell life cycle, HPV E6 and E7 proteins are expressed. Both E6 and E7 target 

negative regulators of the cell cycle and have transforming properties (Figure 5). 
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Figure 5 HPV16 oncoproteins and the cell cycle. HPV16 E7 oncoprotein binds and degrades the tumour 

suppressor retinoblastoma binding protein (pRb) and family members p107 and p130. This leads to E2F 

transcription factor expression resulting in activated cyclin/CDK complexes. HPV16 E6 induces degradation of 

tumour suppressor p53 and increases the proportion of cells with DNA defects. Replication of cells with 

undetected DNA damage at the G2/M cell cycle checkpoint, increases risk of carcinogenesis. 

 

In HR-HPV and LR-HPV types, E7 is the protein primarily involved in inducing the 

expression of the host cell DNA replication genes. E7 interacts with members of the pocket 

protein family such as retinoblastoma protein (pRB) (Münger et al. 2001). pRB is a regulator 

of the cell cycle that interacts with external growth factor E2F; E7 binds to pRB, displaces 

E2F and initiates expression of host cell DNA replication genes. E7 also associates with other 

proteins involved in cell proliferation such as AP-1 transcription complex, histone 

deacetylases and cyclin dependant kinase inhibitors p21 and p27 (Zerfass-Thome et al. 1996; 

Funk et al. 1997; Jones et al. 1997; Münger et al. 2001). After cell replication, antigrowth 

signals maintain the cell in a quiescent state and prevent the cell from proliferating. pRB 

blocks proliferation by altering the function of E2F transcription factor and E7 inactivates 

pRB to drive quiescent cells back into their proliferative state, driving viral replication. E2F 

interacts with p14 and this leads to stabilisation of p53, a transcription factor that regulates 

cell cycle arrest, apoptosis, senescence, DNA repair and cell metabolism. p53 activity is 
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inhibited by ubiquitin ligase that ubiquitinates p53 to initiate p53 degradation. In HR-HPV, 

E6 regulates cell cycle activity through indirect interaction with p53: HR-HPV E6 binds to a 

cellular protein, known as the E6 Associated Protein (E6AP) that functions as an ubiquitin 

ligase. Ubiquitin-mediated degradation of p53 prevents premature apoptosis and allows the 

cell to proliferate (Scheffner et al. 1990; Scheffner et al. 1993; Scheffner 1998). Continued 

proliferation of differentiated cells allows the ends of chromosomes, telomeres to erode and 

chromosomal DNA becomes unprotected, chromosomes become fused and cell death occurs. 

To sustain cell viability, E6 also activates the expression of the human telomerase gene 

(hTERT) an enzyme that synthesises the telomeres (Klingelhutz et al. 1996); this in turn 

prevents apoptosis.   

 

The exact function of HPV E5 is poorly understood. E5 is not present in every HPV type thus 

it is not vital for HPV survival and reproduction. It is hypothesised that E5, with E6 and E7 

can enhance the transforming properties of HPV through interaction with epidermal growth 

factors and by interfering with cell cycling pathways (Venuti et al. 2011).   

 

1.1.4.3 HPV Virion Synthesis and release 

As mentioned above, L1 and L2 proteins constitute the HPV capsid. Expression of L1 and L2 

is in a time dependent manner in order to avoid host immune cell detection and infectious 

HPV particles assemble in the upper layers of the epithelium (Schwartz 2000). The HPV 

genome is amplified next to promyelocytic leukaemia bodies (PMLs) that are nuclear multi-

protein domains. The HPV DNA, recruited to PMLs by E2 (Day et al. 1998), is packaged into 

these sites upon virion synthesis. L2 gathers at PML bodies and recruits L1 to these domains. 

The viral DNA is packaged into the capsid in the upper epithelial layer and released. It is 

hypothesised that E4, as part of the E1^E4 transcript acts as a late protein, binds to keratins 

and leads to breakdown of the cytokeratin network and contributes to the release of the 

infectious particle from the epithelium by apoptosis (Doorbar et al. 1991; Wang et al. 2004; 

Nakahara et al. 2005).  
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1.1.4.4 Evasion of Host Defences 

 HPV has evolved pathways in which to evade destruction in order to replicate and some of 

these pathways are involved in malignant progression. In the majority of infections, HPV 

infection does not persist and infection is cleared. Persistent infection with HPV is a primary 

factor in the development of HPV related cancers. HPV has evolved to adapt its life cycle in 

order to avoid and interfere with the host immune system:  

 

Firstly, HPV infects non-antigen presenting epithelial cells, and HPV is maintained in low 

copy numbers in the basal epithelial cells that are not at levels sufficient for detection by the 

host immune system. Also, HPV genome reproduction occurs in more distal layers, in cells 

that are not in close proximity to antigen presenting cells that are present in the basal layers. 

 

HPV E5, E6 and E7 proteins have been reported to play a role in immune evasion. E5 

directly down regulates the Major Histocompatibility Complex class I protein (Venuti et al. 

2011). E6 binds to the Interferon Regulatory Transcription factor 3 and E7 binds to the 

Interferon Regulatory Transcription factor 1, p48 and membrane protein palmitoylated 3 

(Mpp3) leading to disruption of the antiviral response (Yim and Park 2005).  

 

Viral latency is the presence of viral DNA in the absence of differentiation dependent virion 

production (Stubenrauch and Laimins 1999) and is a means of host evasion allowing the virus 

to hide from the host immune response. Viral latency should not be confused with clinical 

latency where no symptoms are present because viral latency may produce symptoms (Moore 

and Chang 2010). After treatment for HPV infection there is a risk of infection recurrence 

due to latent infections (Lacey 2005). Studies of latent infections have reported that during 

latent infection, PV resides in a subset of basal cells and these cells may be epithelial stem 

cells that are capable of differentiation; PV E1, E2, E6 and E7 ORF expression can be present 

in latent infections too, with E1, E2, E6 and E7 transcription being essential for episome 

maintenance in a latent state (Maglennon et al. 2011).  
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1.1.4.5 Non-productive, transforming infection 

HPV has been identified as the cause of certain cancers, detailed in sections 1.1.1 and 1.3 

however, only a fraction of people that acquire HPV infection will go on to develop cancer. 

The major risk factor in the development of cancer is a persistent infection with a high risk 

type accompanied by disruption to the HPV genome and life cycle. In certain cancers HR-

HPV DNA is integrated into the human genome and the HPV life cycle becomes disrupted. 

The relationship between integration and cervical cancer has been the focus of a great amount 

of research. To further the understanding of the role of HPV integration in the progression of 

cervical cancer, the focus of this PhD is an exploration of integration in cervical neoplasia. 

 

1.2 Screening for Cervical Cancer  

1.2.1 Cytology 

The Papanicolaou test, also known as pap test or smear test, is the current method of 

screening and it is used to reduce the incidence and mortality of invasive cancer by 

identification and treatment of pre-invasive disease. Cervical screening in the UK has 

expanded and changed since its introduction in the 1960s. Early in the 1960s, women were 

screened when they attended family planning or when attending their GPs and the focus was 

on younger women. In 1985, a call-recall approach was initiated and all women in Wales 

between ages 20-64 were invited for screening every 3 years; in England all women aged 25-

9 were invited every 3 years and women over fifty were invited every 5 years. Cervical 

screening saves hundreds of lives each year in the UK and studies modelled on projections of 

future cervical cancer rates suggest that if the screening program had not been introduced 

then there would be 11,000 invasive cancers and 5,500 deaths due to cervical cancer by the 

year 2030 (Peto et al. 2004).  

 

Age Group (Years)   Frequency of Screening   

 

20    First invitation in Wales 

25    First invitation in England 

25-49    Three yearly 

50-64    Five yearly in England. Three yearly in Wales. 

65+ Only screen those that have not been screened since age 50 or 

who have recent abnormal tests. 

Table 3 Current screening intervals taken from NHSCSP (2010). 
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The age for first invitation to cervical screening is set at 25 years in England. This age limit is 

set due to reports that suggest cervical screening in women aged 20-24 has little or no impact 

on rates of invasive cervical cancer up to age 30 (Sasieni et al. 2009). Age of first screening 

has been under debate since the age was raised from 20-24 to 25 years in 2003 on the grounds 

that transient changes in the cervix could lead to unnecessary treatment with potentially 

negative consequences on child bearing (Sasieni et al. 2010) with these reports suggesting 

that screening in young women may do more harm than good (Sasieni et al. 2009). Screening 

is less effective in younger women (Sasieni et al. 2003) and models suggest that a change in 

the screening program for example, not screening women under the age of 25 years would 

have no effect on the life-time risk of cervical cancer (Canfell et al. 2004). Under the age of 

25 years, cervical cancer is rare (Figure 2) but cytological abnormalities are common (Sasieni 

et al. 2003) (Figure 6), probably representing the acquisition of HPV infection and a 

susceptible transformation zone in the cervix of young women.  However the incidence of 

cervical cancer in young women 25-29 years appears to be increasing compared to a decade 

ago and it is worrying that there may be insufficient time to initiate screening prior to 

development of invasive disease. Thus it could be argued that it would be more beneficial to 

improve the screening methods in young women, rather than cease screening those under 25 

years of age.  
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Figure 6 Percentage of cytology test results by age in Wales 2011/2012. Taken from Cervical Screening 

Wales Statistical report 2011/2012 (KC53/61/65 2012). 

 

When NHSCSP raised the age for screening from 20 to 25 years in 2003 Cervical Screening 

Wales sought advice from the Academic Department of Obstetrics and Gynaecology, Wales 

College of Medicine, Cardiff University for the age at which to commence cervical 

screening. In response, a review was conducted to assess evidence for benefit and harm of 

undertaking cervical screening in women aged 20-24 years (Rieck et al. 2006). The report did 

not identify any literature that investigated the effectiveness in young women but indicated 

that screening in young women reduced the incidence of cervical cancer and the report 

suggested that the Welsh Cervical Screening should continue to screen women from 20 years 

of age; thus the age of cervical screening in Wales commences at 20. The age that a woman 

exits the screening program throughout the UK is set at 65 years of age although it may be 

safe to withdraw well screened women over the age of 50; this is being kept under constant 

review by NHSCSP (NHSCSP 2010).  

  

Liquid based cytology (LBC) collection is the choice of cervical smear sampling. Liquid 

phase procedures frequently use a Cervex brush sampler (known as a broom) or an extended 

tip plastic spatula to collect cells from the cervix. Following sampling of the cervix, the 

broom or spatula is transferred to a vial containing a preservative fluid (a collection and 

transport medium), then sent to the laboratory for processing.  
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Cytological testing is the primary step in screening. The cells obtained from the cervix by 

LBC collection are observed under a microscope for cytological abnormalities. According to 

NSCCP guidelines (NHSCSP 2010), women who have dyskaryosis that infers invasive 

cancer or glandular neoplasia, are referred immediately to colposcopy as part of good clinical 

practice.  Women with a moderate or severe dyskaryosis are seen within 4 weeks of referral, 

women with borderline nuclear change and mild dyskaryosis are seen in colposcopy within 8 

weeks of referral and women that have provided inadequate samples in three consecutive 

smears are also referred to colposcopy because inadequate samples are associated with 

lesions that are not exfoliating. Under NHSCSP guidelines, women who have had 3 abnormal 

dyskaryosis results detected in a 10 year period should be referred to colposcopy as part of 

good clinical practice see Table 4.  

 

Cytology is an established method to prevent cervical cancer and without it a woman would 

have a lifetime risk of cervical cancer in the UK of 1.7% compared to 0.46% with cytological 

based screening (Canfell et al. 2004). Cytology has limitations: cytology is low in sensitivity 

in detecting pre-cancers and has to be repeated frequently to be effective. Cytological testing 

is subjective, has low reproducibility and poor positive predicting value: it can miss disease 

when present and detect cellular abnormalities that may regress naturally without the need for 

treatment; this may result in overtreatment of women. Additionally, cytology is labour 

intensive and although the materials are relatively low in cost the reality of repeat testing 

means that cytology may not be the most cost effective method of screening. Finally, as 

explained above, cytological testing is least effective in women under 25 years of age 

(Sasieni et al. 2003; Canfell et al. 2004) and, with improved screening methods, it may be 

possible to better detect cervical abnormalities improving cervical cancer prevention, 

especially in younger women.  
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Cytology Outcome  Clinical Management (NHSCSP 2010) 

Borderline dyskaryosis Referred to colposcopy after 3 abnormal smear results; 

colposcopy: see and treat basis; return to normal recall 

screening after 3 negative smears 6 months apart. 

 

Mild dyskaryosis Referred to colposcopy after 2 mild smear results; colposcopy: 

see and treat basis; return to normal recall screening after 3 

negative smears 6 months apart. 

 

Moderate dyskaryosis Referred to colposcopy after 1 abnormal smear result; 

colposcopy: see and treat basis; 62 day pathway to rule out 

cancer; then follow 18 week screening pathway. 

 

Severe dyskaryosis Referred to colposcopy after 1 abnormal smear result; 

colposcopy: see and treat basis; 62 day pathway to rule out 

cancer; then follow 18 week screening pathway. 

 

Invasive Referred to colposcopy after 1 abnormal smear result; GP 

referral to secondary care with a 2 week wait. 

Table 4 Colposcopy management; taken from guidelines for NHS screening programme (NHSCSP 2010). 

 

1.2.2 Colposcopy  

Colposcopy is a method of illumination and magnification to view and detect premalignant 

and malignant lesions of the cervix, vagina and vulva. The cervix is stained with acetic acid 

and the cervix is viewed for lesions. Table 4 lists the guidelines for colposcopic management 

of patients: if a lesion is observed, a colposcopically directed biopsy is taken for histological 

examination. Confirmed High grade CIN is then treated. Currently, the most popular mode of 

treatment is LEEP (Loop Electrosurgical Excision Procedure) or LLETZ (Local Loop 

Excision of Transformation Zone). Treatment is followed by follow-up cytology and 

colposcopy six months later and then annual cytological follow-up for 10 years. Lesions that 

are removed are sent for histological evaluation. Figure 7 shows the progression of a cervical 

lesion from HPV infection to cervical cancer. The histological classification of biopsies taken 

in colposcopy can be by a 2 tier Bethesda classification: grouped into low grade or high grade 

squamous intraepithelial lesions (LSIL and LSIL, respectively) (Solomon et al. 2002), or a 3 

tier system: grouped into cervical intraepithelial neoplasia 1, 2 and 3 (CIN1, CIN2 and CIN3, 

respectively) (Richart 1973). 
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Figure 7 Schematic diagram representing progression from mild dysplasia to invasive carcinoma adapted 

from Howley and Lowy (2007) and Schiffman et al. (2007). Infection with HPV initially induces benign 

cervical lesions with mild dysplasia of cervical intraepithelial neoplasia grade 1 (CIN1). Progression to cervical 

cancer can take years and; cancers and precancers can be diagnosed by histological examination. 

 

Cervical cancer usually takes many years to develop: the peak incidence of HPV infection 

being 20 years of age, where HPV changes or CIN1 is detected by histology; in the UK the 

peak incidence of CIN3 is 30 years of age and the peak incidence of cancer occurs at 40 

(Kitchener et al. 2006), although this age may be decreasing. Based on mathematical models, 

in an unscreened population, the lifetime risk of cervical cancer is 1.7% compared to 0.77% 

with pre-2003 screening methods (Canfell et al. 2004). A woman is likely to recover from 

CIN1 without need for treatment whereas regression from CIN3 is uncommon.  The methods 

used to treat lesions of the cervix need careful consideration: it is important to remove/excise 

CIN3 lesions whereas treatment of CIN1 may do more harm than good as treatment is linked 

with preterm labour (Kyrgiou et al. 2006; Arbyn et al. 2008). Also, attendance at colposcopy 

may have an effect on a woman’s sexual health and cause stress. Based on current techniques 

utilised in colposcopy it is impossible to know which CIN1 lesions will progress to CIN3 or 

cancer and which will regress without the need for treatment. Research is needed to develop 
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suitable biomarkers that can predict high-grade disease to avoid over treatment and 

unnecessary stress to women, as well as focusing resources on those most at risk of 

progression of disease. 

 

1.2.3 Improvements to screening 

The following sections will describe ongoing changes that are being made to screening 

programmes and detail biomarkers that may prove useful in future to improve cervical 

screening sensitivity, specificity, negative predictive value and positive predictive value. 

 

1.2.3.1 HPV typing  

Persistent infection with high risk HPV types is essential for cervical cancer development 

(zur Hausen 1986) with high risk types HPV16 and HPV18 being detected most frequently in 

cervical cancer in the UK (Castellsague et al. 2007) (Figure 8). HPV16, HPV18 and HPV45 

have the highest type specific risk of cancer in Wales (Powell et al. 2011). HPV typing has a 

high negative predictive value and can be used to rule out women that do not have an HPV 

infection and who are unlikely to progress to cervical cancer. Future screening of cervical 

cancer in the UK will utilise HR-HPV typing to triage women with mild and borderline 

dyskaryosis: women with cytological grades of moderate dyskaryosis or worse will be 

referred to colposcopy; women with mild or borderline dyskaryosis will be tested for HR-

HPV; those that are positive will be referred to colposcopy and women who are negative for 

HR-HPV will go back to routine recall (Kelly et al. 2011). 
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Figure 8 HPV type distribution in cervical neoplasia in the UK; adapted from Castellsague et al. (2007). 

High grade=HSIL; Low grade=LSIL; other=types other than HPV16, HPV18 or HPV45 (HPV6, HPV31, 

HPV33, HPV35, HPV39, HPV42, HPV51, HPV52, HPV54, HPV56, HPV58, HPV66 and HPV73).  

 

HPV testing has an excellent negative predictive value: the majority of women that do not 

have an HPV infection have no risk of developing cervical cancer. Although HPV testing has 

good negative predictive value, it does remain possible that disruption to the HPV genome 

through integration can produce a false negative result; thus any HPV negative results need 

careful interpretation especially if a woman displays severe cellular dyskaryosis. Triage of 

women with mild and borderline cellular dyskaryosis by HR-HPV testing will reduce the 

number of women attending colposcopy and being treated unnecessarily. HR-HPV testing 

has low specificity and there will still be a number of women that have transient HR-HPV 

infections and do not have a lesion. HPV testing alone cannot determine which women will 

regress or which women will progress and a suitable biomarker is needed.  

 

1.2.3.2 HPV Vaccination 

Due to the strong relationship between cervical cancer and HR-HPV types, prophylactic 

vaccines were developed. From September 2008-2012, in the UK a bivalent vaccine, 

Cervarix™ (GSK) that protected against HPV16 and HPV18, was in use; From September 

2012 in the UK and in the US a quadrivalent vaccine, Gardasil
®
 (Merck) is used that protects 

against 2 additional types: HPV6 and HPV11, associated with genital warts. HPV vaccination 

is targeted primarily at girls aged 12-13 years of age, who have not yet reached sexual 
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maturity and have not yet been exposed to HPV infection in the genital tract. Clinical trials of 

the vaccines have reported vaccination reduces persistent and incident infection, high-grade 

lesions associated with HPV16 and HPV18, and low grade lesions associated with HPV6 and 

HPV11 (Schiller et al. 2012). Not only do the vaccines protect against cervical lesions, the 

vaccines potentially offer protection against cancers of the head and neck, vulva and vagina 

that are associated with HPV16 and HPV18 (see section 1.3). Vaccination of girls will 

prevent infection of men and boys through herd protection; this in turn will reduce HPV 

related cancers of the penis and head and neck cancers in males. There is much controversy 

about the vaccine targets being only girls: there is also a need to protect homosexual males 

that potentially will not benefit from herd protection against HPV related cancers. Australia 

has recently been the first country to introduce HPV vaccination for boys. 

 

Vaccination against HR-HPV will not abolish the need for cervical screening: vaccination 

protects against HPV16 and HPV18 and may offer cross protection against other 

carcinogenic types, but there is still a risk that type replacement may occur (Saleem et al. 

2009). Little is known about the effects of vaccination on cervical cancer and less common 

HPV types. However, screening will need to be adapted as cytology may become less 

effective in detecting cytological abnormalities; highlighting the future importance of 

biomarkers in cervical screening.   

 

1.2.3.3 Biomarkers 

The aim of screening is to reduce the incidence of cervical cancer and any biomarkers 

developed need to test positive when CIN2/3 is present and test negative when CIN2/3 is not 

present (Arbyn et al. 2009); a positive test in CIN1 is not clinically useful since the majority 

of CIN1 will regress without need for treatment. A biomarker must be reproducible, specific: 

produce a negative outcome when disease is absent, and sensitive: produce a positive result 

where disease is present. There is considerable interest in biomarkers for cervical cancer; the 

following sections will describe mRNA detection, viral load, p16 staining, methylation and 

HPV integration and their potential as biomarkers of cervical cancer. 
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1.2.3.3.1 Integration 

HPV integration is widely assumed to be a primary cause of cervical cancer since integration 

is detected in the majority, but not all cervical cancers. HPV integration disrupts the HPV 

genome in regions vital for regulation of HPV oncogene expression leading to 

transformation. HPV integration has been widely studied in cervical cancer and its role as a 

biomarker to predict high-grade cervical disease has not been thoroughly assessed. The basis 

of this PhD is to assess the mechanism of HPV integration in cervical neoplasia and examine 

integration as a biomarker of cervical disease. Section 1.4 will describe HPV integration in 

detail.   

 

1.2.3.3.2 HPV mRNA Detection 

As mentioned above, HR-HPV DNA detection alone cannot predict high-grade disease 

because many women will have transient infections without disease. In high grade cervical 

lesions, expression of HR-HPV oncoproteins, E6 and E7, are increased. A number of studies 

have reported that HR-HPV E6 and E7 mRNA detection is strongly associated with high 

grade disease (Lie et al. 2005; Molden et al. 2005; Kraus et al. 2006; Molden et al. 2006; 

Castle et al. 2007) thus detection of E6 or E7 mRNA is a plausible biomarker to be used to 

predict high grade disease. Disrupted E6 and E7 expression is the endpoint for cervical 

disease progression; if integration precedes altered mRNA production, then it is possible 

integration detection is a more suitable biomarker.   

 

1.2.3.3.3 Viral Load 

Increased viral load has been reported to be associated with CIN2/3 (Moberg et al. 2004; 

Fontaine et al. 2005a; Fontaine et al. 2005b) however assays to detect viral load are not 

suitable in a clinical setting due to sample variability: a sample with combined low and high 

grade lesions may influence viral load, and multiple types may affect assay performance 

through cross reactivity. Additionally, if disease progression follows a pattern where viral 

integration occurs, followed by episome loss as part of disease progression, then viral load 

would be expected to be lower in high grade disease; viral load detection may therefore lack 

specificity and lead to false negative outcomes.  
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1.2.3.3.4 P16
INK4a

  Staining 

p16
INK4a 

 is a cyclin dependant kinase inhibitor that causes cell death in aged or damaged 

cells. As described in section 1.1.4, HPV E7 interacts with the Retinoblastoma Binding 

protein (pRB), this leads to an increased expression of p16
INK4a

; therefore p16
INK4a  

is a 

plausible biomarker of cervical cancer. p16
INK4a

 is used as an immunohistochemical 

biomarker to stain cervical histopathological specimens (Dray et al. 2005) and liquid based 

cytology samples (Wentzensen et al. 2005). p16
INK4a  

does have limitations and may lack 

specificity because p16
INK4a 

 can be detected in non-dysplastic cells that are dying naturally or 

in endocervical cells.  

 

1.2.3.3.5 Methylation 

DNA methylation is a biochemical process that serves to control gene expression as part of 

normal cellular development in higher organisms. Methylation is where a methyl group 

(CH3) is added to the cytosine of DNA at CpG islands, regions of DNA where C and G 

nucleotides are situated next to each other in sequence. Studies of methylation in cervical 

cancer are technically feasible due to the wide availability of assays thus there has been much 

research into methylation of HPV and human genes:  

 

Since HPV integration is not detected in all cervical cancers and some cancers possess HPV 

in its natural episomal form, an additional mode of HPV related carcinogenesis must exist. As 

detailed in section 1.1.3, HPV possesses a regulatory region, known as the Upstream 

Regulatory Region (URR). The HPV URR possesses CpG islands that have been reported to 

be hypomethylated or hypermethylated, depending on the stage of the HPV lifecycle (Kim et 

al. 2003; Kalantari et al. 2008). Changes to HPV methylation, resulting from cervical disease 

progression can be measured; this makes HPV methylation a plausible biomarker to predict 

high grade disease; further studies are required to determine the reproducibility, sensitivity 

and specificity of HPV methylation in a clinical setting.  
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Methylation in promoter regions of human genes has been implicated in cancer and there has 

been much interest in methylation of human genes in cervical cancer. A review of 

methylation of host genes in 52 studies of cervical cancer reported that methylation varied 

widely between studies and methylation in 7 genes (CDH1, FHIT, TERT, CDH13, MGMT, 

TIMP3, HIC1), were studied in most detail (Wentzensen et al. 2009). Methylation assays 

have not yet been widely validated and variation between studies may be due to the variation 

in assays used to quantify methylation. Wentzensen et al. (2009) also added that there was no 

evidence that methylation of host genes had good positive predictive value since methylation 

could not predict CIN2/3. Analysing methylation in panels consisting of a number of host 

genes may improve sensitivity and specificity.  

 

1.2.3.3.6 Chromosomal Changes 

Cancer progression leads to genetic abnormalities such as chromosome duplications 

insertions or deletions; these can be detected by fluorescent in situ hybridisation (FISH).  The 

most common change, with detection in 77% of cervical cancers, is the increase of the human 

telomerase RNA component (TERC) this leads to an increase in the long arm of chromosome 

3 (Heselmeyer et al. 1997). Although detection of chromosomal abnormalities has good 

sensitivity and specificity in cytology (Heselmeyer-Haddad et al. 2005), FISH is technically 

complicated and requires skilled interpretation.  

 

1.3 HPV Related Cancers 

HPV is found in all cervical cancers and is a worldwide health burden. The link between 

HPV infection and development of cancers at other sites in the human body is also of great 

importance (Figure 9).  

 

Head and neck squamous cell carcinoma (HNSCC) is a global health burden with over 400 

thousand new cases each year (Duvvuri and Myers 2009). Tumours occur in the oral cavity, 

larynx, oropharynx and other regions of the head and neck. Studies have reported an 

increasing frequency of head and neck cancers associated with HPV worldwide and the 

frequency of non-HPV related cancers of the head and neck are decreasing due to a reduction 
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in tobacco use. HPV16 is the predominant type in HNSCC, with HPV18, HPV6 and HPV11 

being detected to a lesser extent. HPV related head and neck cancers have a different biology 

to non-HPV related head and neck cancers and HPV related HNSCC respond better to 

chemotherapy and radiotherapy and HPV is a strong prognostic factor of HNSCC (Fakhry et 

al. 2008). Compared to cervical cancer, HPV research related to HNSCC is a relatively new 

subject and little is known about the HPV pathophysiology in HNSCC.  

 

 

Figure 9 Proportion of HPV related cancer worldwide; adapted from Parkin et al (2006). Detection of 

HPV in oral or anogenital cancers; numbers of cases (thousand) are displayed on bars. 

 

Transformation of the lower female genital tract occurs much less frequently compared to the 

cervix but a high proportion of women who develop vaginal or vulval intraepithelial 

neoplasia (VAIN and VIN, respectively) have previously received treatment for cervical 

neoplasia (Audet-Lapointe et al. 1990; Rome and England 2000; Dodge et al. 2001). Vulval 

cancer affects mainly pre-menopausal women with an average age of onset of vulval cancers 

and vaginal cancers being  10 years greater than cervical cancer (Diakomanolis et al. 2002). 

Treatment of both vaginal and vulval neoplasia involves the excision of the affected area; 

treatment is highly disfiguring and has a high recurrence rate. There is currently much 

interest in topical treatment for both vaginal and vulval cancer with an aim to reduce VIN and 

VAIN recurrence rates and reduce the need for surgery. The antiviral drug, Cidofovir, is 

widely used as a treatment in gynaecological conditions such as herpes and condylomata. A 

study of Cidofovir, in 12 women with VIN, reported complete regression in 4 women and a 

partial response in 3 women (Tristram and Fiander 2005).  
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The incidence of HPV-related penile and anal cancers relative to cervical cancer is low. 

Understanding the epidemiology of HPV penile and anal cancers and HPV transmission to 

partners is poorly understood, mainly due to under-developed sampling techniques. Although 

anal cancer is low in the general population, it is common in at-risk groups such as HIV 

patients and homosexual men.  

 

An improved understanding of the pathophysiology of HPV in HNSCC, anal, penile, vulval 

and vaginal cancers would lead to better screening methods and therapeutics. 

 

1.4 HPV Integration and Cervical Neoplasia 

As mentioned above, HPV is maintained in episomal form in productive HPV infections, 

represented by low grade lesions in squamous epithelia (Figure 10) and HPV reproduction is 

synchronised carefully with epithelial differentiation; disruption to the HPV lifecycle leads to 

oncogenesis. A number of viruses are known to integrate into the host genome resulting in 

transformation of the host cell, for example, retroviruses express the protein integrase, which 

facilitates the integration of DNA into the host genome to support their lifecycle; this 

ultimately results in the disruption of certain host cellular oncogenes, leading to cancer. On 

the other hand, integration of DNA into the host genome in viruses such as HPV, Epstein - 

Barr virus (EBV) and Hepatitis B Virus (HBV) does not support the virus lifecycle, is 

deleterious to virus and results in the expression of viral oncogenes that contribute to the 

malignancy of the cell.  

 

HPV integration has been detected in over 80% of cervical cancers, using sensitive 

techniques that detect integration at the nucleotide level (Klaes et al. 1999; Thorland et al. 

2000; Luft et al. 2001; Thorland et al. 2003; Ziegert et al. 2003). To date, HPV integration 

into human DNA has been investigated in cervical neoplasia using quantitative PCR (qPCR) 

(Peitsaro et al. 2002; Cheung et al. 2006; Kulmala et al. 2006; Huang et al. 2008), or 

Southern blot (Evans et al. 2008) (Table 5). Overall, reports are consistent that integration is 

present in CIN1 combined with the presence of episomal HPV. Integration detected without 
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episomes is conflicting in studies: integration, without episomes, was reported to be present 

in CIN2 and CIN3 only (Peitsaro et al. 2002; Kulmala et al. 2006) implying integration is a 

late event, whereas Huang et al (Huang et al. 2008) reported that integration without 

episomes was detected in CIN1 through to invasive cervical cancer for both HPV16 and 

HPV18, implying integration was an early event. Another study, reported no integration 

without episomes, even in CIN3 and that lesions with integrated HPV were capable of 

regressing rather than progressing to cancer (Evans et al. 2008). Collins et al. (2009) used 

PCR across the E2 ORF to detect disrupted E2 as a marker of integration (Collins et al. 2009) 

(data not cited) and reported that E2 disruption was an early event in cervical carcinogenesis. 

Li et al. (Li et al. 2008) used a similar method of overlapping PCRs across E2 to detect 

integration in cervical biopsies; an increased frequency of integration was reported in CIN3 

and cancer compared to CIN1; additionally this study reported that persistent infection in 

CIN was associated with integration rather than episomal HPV. 
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Figure 10 Schematic representation of a productive HPV infection in a low grade lesion compared to a 

non-productive, transformed high grade lesion. Taken from Raybould, Fiander et al. (2011). 

 

A vast amount of knowledge of the mechanism of HPV integration has arisen from the study 

of integration in cervical cancer. Integration of HPV into the genome occurs in a number of 

steps, the first of which is damage to the host and viral DNA followed by DNA repair 

mechanisms that insert the HPV DNA into the genome. Selection of a cell, containing 

integrated HPV, forms an immortalised cell that multiplies clonally and progresses to 

invasive disease. The following sections of this chapter will review the mechanism of HPV 

integration and describe the molecular events that contribute to integration and lead to cancer. 

 

  



 

 

 

3
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Author  Assay
1
  HPV Type N

2
 Histology

3
  Episomal n (%)  Integrated n (%)     Mixed n (%) 

 

Peitsaro (2002) qPCR (B) 16  31 NCIN    0(0)   0(0)   4 (100) 

       CIN1    0(0)   0(0)   4 (100) 

       CIN2    1(9)   2(18)   8(73) 

       CIN3    0 (0)   11 (92)   1 (8) 

Kulmala (2006)  qPCR  (C) 16  164 Normal    1 (14)   0   6 (86) 

       HPV no CIN   2 (29)   0   5 (71) 

       CIN1    4 (29)   0   10 (71) 

       CIN2    4 (29)   0    10 (71) 

       CIN3    1 (16)   1 (16)   4 (68) 

       CaCx    0   2 (33)   4 (67) 

Cheung (2006) qPCR (C) 16  104 Normal/CIN1   9 (31)   not given   19 (69)   

       CIN2    5 (21)   not given   19 (79)   

       CIN3    9 (33)   not given   18 (67)   

       CaCx    7 (28)   not given   18 (72)  

Evans (2008) Southern (C) 16, 18, 43,51 95 Benign    27 (90)   0   3 (10) 

       CIN1    7 (100)   0   0 (0) 

       CIN2/3    28 (93)   0   2 (7) 

Huang (2008)
4
 qPCR (B) 16  101 CIN1    (17)   (33)   (50)   

CIN2/3    (9)   (27)   (64)  

       CCI    (17)   (26)   (57)  

       CCII-IV    (6)   (47)   (47) 

Huang (2008)
4
 qPCR (B) 18  101 CIN1    (50)   (17)   (33)   

CIN2/3    (44)   (44)   (12)  

       CCI    (36)   (36)   (28)  

       CCII-IV    (67)   (33)   (0) 

Table 5 Summary of HPV integration in cervical neoplasia detected by qPCR and Southern blot. Summary of available tabulated and published data. 

                                                 
1
 Assay used and sample type: Southern=Southern blot; C= cervical smear; B= biopsy 

2
 Number of samples assayed 

3
 Histopathological grade. CIN= Cervical intraepithelial neoplasia, CC= cervical cancer followed by grade I to IV; CaCx= cervical cancer grade not cited; NCIN= HPV 

detected but no CIN 
4
 Exact figures not cited. 
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1.4.1 Integration at Fragile Sites 

Chromosome instability arises due to changes or faults in DNA replication and this instability 

occurs at chromosome fragile sites. Chromosome fragile sites are regions of genomic 

instability that are visible as gaps and breaks on metaphase chromosomes following partial 

inhibition of DNA synthesis. Fragile sites are categorised into two main classes based on 

their population prevalence and how they are induced in tissue culture:  

 

Common fragile sites (CFSs) are the largest class of fragile sites (Durkin and Glover 2007) 

and are present on all chromosomes.  Unlike rare fragile sites, CFSs are not the result of 

nucleotide expansion repeats and are induced by aphidicolin (Sutherland et al. 1998). CFSs 

are highly conserved between species (Durkin and Glover 2007) suggesting that they are key 

to species survival. CFSs are late replicating and may be the last sites to replicate and thus 

signal to the cell that replication is complete (Durkin and Glover 2007). 

 

Rare fragile sites are seen in less than 5% of individuals and segregate in a Mendelian fashion 

(Sutherland et al. 1998). The major group of rare fragile is folate sensitive and the remainder 

of rare fragile sites are induced by bromodeoxyuridine. Folate sensitive fragile sites are 

associated with CGG-repeat expansion and this group includes FRAXA in the FMR1 gene, 

which is responsible for fragile X syndrome and FRAXE in the FMR2 gene, which is 

associated with non-specific mental retardation (Kremer et al. 1991). Non-folate sensitive 

fragile sites are characterised by expanded repeat regions of AT-mini-satellite repeats. 

 

For decades it has been recognised that there is a link between fragile sites and cancer (Yunis 

and Soreng 1984). There are a number of chromosome fragile sites that reside within 

oncogenes: FRA11B resides within CBL2, a proto-oncogene and ubiquitin protein ligase 

(Jones et al. 1995). Gene AFF2 resides within fragile site FRAXE (Gecz et al. 1997); FRA7I 

contains the transforming immortalised mammary oncogene (TIM) linked with breast cancer 

(Chan et al. 1994). FRA7G has strong links to prostate and breast cancer (Hansen et al. 

1997). There could be two possible ways that a fragile site may induce oncogenesis. Firstly, 

the fragile site may be able to inactivate a gene or be at a region of genome instability that 

causes deletions that result in alterations of a gene leading to altered transcripts. Secondly, the 
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fragile site may allow chromosomal breakage in response to DNA damaging agents 

(Sutherland et al. 1998). For HPV related oncogenesis, scenario 2 is most appropriate, where 

the fragile site allows breakage of the DNA and HPV is incorporated at the fragile site.  

 

Early studies of HPV integration, using Southern blot and FISH, led to the general conclusion 

that HPV integration was random throughout the genome (Couturier et al. 1991) but more 

recently, studies have observed that DNA integration occurs at CFSs (Cannizzaro et al. 1988; 

Wilke et al. 1996; Thorland et al. 2000; Wentzensen et al. 2002; Thorland et al. 2003; 

Wentzensen et al. 2004; Yu et al. 2005; Dall et al. 2008; Kraus et al. 2008). Figure 11 shows 

a schematic representation of integration sites reported in a systematic review of HPV 

integration (Wentzensen et al. 2004). It remains unclear as to whether DNA integration is 

seen more commonly in CFSs because the DNA is more prone to breakage, because of 

factors such as increased expression of E6 and E7 or because the host DNA contains 

sequences that increase the likelihood of integration occurring. Integration occurs in clusters 

(Kraus et al. 2008) and clusters of integration may reflect chromosomal regions that are 

unstable.



 

 

 

3
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Figure 11 HPV integration in human genome; adapted from Wentzensen 

et al. (2004) . Red stars indicate a reported integration site; blue stars indicate 

location of a gene reported to be involved in oncogenesis. 
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1.4.2 DNA damage 

DNA damage occurs when cells are exposed to various chemical agents, UV damage and 

ionising radiation. Cells have developed check points to detect DNA damage before the cell 

divides and cell division is delayed in response to any damage detected. E6 and E7 have the 

potential, independently of each other, to cause genomic instability through centrosome 

duplication errors and chromosome mis-alignment during mitosis (Duensing and Munger 

2002; Duensing and Münger 2003). HR-HPV E6 and E7 expression in basal cells, for 

example, during latent infections, may increase the risk of HPV DNA integration into host 

genome and contribute to the malignant phenotype (Hudson et al. 1990; Kessis et al. 1996).  

 

Although HPV integration risk is increased in the presence of DNA damaging agents, it is 

possible that integration occurs in an already unstable genome: a study of the W12 cell line, 

described in section 1.4.4, reported HPV16 integration is associated with the acquisition of 

genomic abnormalities: tetraploidy was observed at low passage in the W12; integration 

resulted in increased E7 expression and this resulted in aneuploidy and structural 

chromosome alterations (Pett et al. 2004). A similar observation was made in-vivo: biopsies 

from CIN and cancer were explored for aneuploidy and integration; expression of HPV 

oncogenes in the basal epithelial cells induced chromosomal aneuploidy and chromosomal 

instability this favoured integration and in turn increased the expression of E6 and E7 

(Melsheimer et al. 2004).   

 

1.4.3 DNA Repair  

There are a number of DNA repair mechanisms that include non-homologous end-joining 

(NHEJ) (Figure 12) and homologous recombination. The mechanism of DNA repair depends 

primarily on the type of DNA break and the stage of the cell cycle at which DNA damage 

occurs. NHEJ is the most frequent method of DNA repair in the G1/G0 phase of the cell 

cycle, NHEJ occurs in response to DNA breakages that have complementary overhangs 

(Shrivastav et al. 2008). When ends cannot be precisely rejoined NHEJ aligns one or a few 

complementary bases to direct repair; this results in rearrangements such as small insertions 

or deletions at the site of repair (Shrivastav et al. 2008). Homologous recombination repair is 

more active in the G2/S phase of the cell cycle. Homologous recombination repair is 

considered a more accurate method of DNA repair and involves homologous sequences 
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elsewhere in the genome such as sister chromatids, repeated regions or homologous 

chromosomes. Homologous recombination and NHEJ are not independent pathways for 

DNA repair they both act together to maintain the integrity of the genome. There is also 

evidence to suggest that when one DNA repair method fails the other acts as a back-up 

(Valerie and Povirk 2003). NHEJ has been implicated in HPV integration (Durst et al. 1987; 

el Awady et al. 1987; Ziegert et al. 2003) because, at the site of integration, there is either 

overlapping sequences of homology between HPV and human sequence or an inserted region 

of DNA that bears no homology to human or HPV. 

 

 

Figure 12 Non-homologous end joining adapted from Lange et al. (2011). Strand breaks caused by ionizing 

radiation or by enzymes that cleave DNA usually do not yield DNA ends that can be ligated directly. End-

trimming and re-synthesis of bases is therefore required to join breaks.  

 

1.4.4 HPV Integration and Selection  

The W12 cell line was established from a low grade, warty lesion of the cervix (Stanley et al. 

1989) and at low passage the W12 displays characteristics of a low grade disease and 

maintains episomes at approximately 100 copies per cell whereas at high passage the W12 is 

transformed and contains solely integrated HPV. A study of integration in the W12 cell line 

reported that much integration may occur at early stages of cancer progression, the integrants 

are selected, resulting in one integrant that is actively transcribed (Dall et al. 2008). 
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Regardless of number of integration sites, natural selection favours only one actively 

transcribed integrant that is localised to the perinuclear region of a cell (Van Tine et al. 2004). 

Selection of a cell can take place in the following ways: 

 

1.4.4.1.1 Transcription of Integration Sites 

A number of studies have reported increasing prevalence of integrated transcripts with 

increasing dysplasia (Table 6). Integrated transcripts are reported highest in cervical cancer, 

with low levels reported in cervical intraepithelial neoplasia (Klaes et al. 1999; Vinokurova et 

al. 2008). Episomal transcripts are reported at high levels in CIN1 to CIN3 but episomal 

transcripts are considerably reduced in cancer (Klaes et al. 1999). These studies imply that 

transcription of an integration event is a late event in the progression of cancer and that 

selected integrants are detected within transcriptionally active sites within the genome. 

Transcription of integration sites ultimately gives a cell a selective advantage. Also, episomal 

transcripts are lost in progression from CIN3 to cancer; implying episome loss plays a key 

role in cancer development.  

 

Integrated transcripts are detected at significantly different levels between HPV types 

(Vinokurova et al. 2008): the highest level of integrated transcripts detected in HPV16, 

HPV18 and HPV45 and lowest levels of integrated transcripts in HPV31 and 33. This could 

mean integration sites are transcribed differently for different HPV types or integration into 

DNA occurs more frequently for different HPV types.  

 

Finally, transcription of integrated HPV results in structurally different mRNA: integrated 

transcripts harbour human RNA at the 3′ end whereas natural, episomal transcripts possess an 

AU rich element. Integrated transcripts may have a longer half-life compared to mRNA of 

episomal transcripts and stability of mRNA would enhance the selection of a cell harbouring 

an integrant (Jeon and Lambert 1995). 
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Author HPV Type   Histology Episomal n (%) Integrated n (%)    

 

1
1
 16 and 18  Normal 19 (100)  0 (0) 

   CIN1 10 (100)  0 (0) 

   CIN2 21 (95.5)  1 (4.5) 

   CIN3 54 (84.4)  10 (15.6) 

   CaCx 5 (12.5)   35 (87.5) 

 

2
2
  16, 18, 31, 33, 45 Normal  data not cited  0 (0) 

   CIN1     0 (0) 

   CIN2     5 (3) 

   CIN3     36 (17) 

   CaCx     95 (62) 

Table 6 Prevalence of integrated and episomal transcripts in cervical neoplasia. Data taken from Klaes et al 

(1999) and Vinokurova (2008).  

 

1.4.4.1.2 Increased E6 and E7 expression 

Early reports (Matsukura et al. 1986; Pater et al. 1986) and many subsequent studies of 

HPV16 integration have demonstrated that upon HPV integration, variable parts of the HPV 

genome are lost. Fragments containing E1, E2, E4 and E5 ORFs are disrupted or missing 

whereas the entire E6 and E7 ORFs are integrated and retained. Over-expression of E6 and 

E7 genes, due to the disruption of E1 or E2 ORFs, upon integration, may provide a selective 

growth advantage (Romanczuk and Howley 1992). Jeon et al. (1995) reported, in W12 cell 

line, cells harbouring integrants possessed lower copy numbers of HPV than cells bearing 

extra-chromosomal HPV and HPV E7 expression was detected at higher levels in cells with 

integrated HPV (Jeon et al. 1995). Studies of HPV oncogene expression in relation to 

integration are limited in clinical samples but hypothetically integration gives a cell a 

selective growth advantage through disruption of HPV E1/E2 ORFs and leads to increased 

E6 and E7 expression. Increased production of HPV E6 and E7 oncogenic proteins allows 

transformation through interaction with hTERT, p53 and pRb. hTERT, p53 and pRb are 

proteins involved in cell differentiation and HPV replication and have well documented roles 

in human cell immortalisation (Munger et al. 2004).  

 

                                                 
1
 Klaes et al. (1999) 

2
 Vinokurova et al (2008) 
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E6 and E7 expression has been demonstrated to be vital for ongoing cell proliferation of 

primary cervical carcinoma cell lines (Magaldi et al. 2012) and removal of E6 and E7 

expression in culture induces senescence. However, integration into the host DNA alone is 

not sufficient to drive transformation, transcription of integrated HPV will be inhibited in 

cells possessing both integrated and episomal HPV thus loss of episomal E2 is a key role in 

the emergence of selectable integrated cells (Pett et al. 2006). A study of episomal loss and 

integration in the W12 cell line reported that loss of episomes is associated with the 

emergence of integrants and even the lowest levels of episome could exert an inhibitory 

effect on the expression of integrated oncogenes (Pett et al. 2006). Pett et al. (2006) reported 

that rapid loss of HPV episomes also correlated with expression of cellular IFN antiviral 

genes and loss of episomes through antiviral responses will result in the expression of E6 and 

E7; this has implications in treatment of HPV infections as described for VIN and VAIN in 

section 1.3.  

 

Controversially, expression of HPV oncogenes in vivo may not follow the same pattern as 

that reported in the W12 cell line. A study of HPV E6 expression in cervical smear samples 

taken from women with varying disease grades reported that E6 expression was high in 

samples bearing only integrated HPV16, HPV18, HPV52 and HPV58; but levels of E6 

expression were not significantly different between women who had cancer and women who 

did not, even if integration was detected (Ho et al. 2011). Integration may confer a higher 

level of oncogene expression but it may not be sufficient to maintain the transformed 

phenotype.  

 

1.4.4.1.3 Genomic Instability  

Selection of integrants may arise due to a number of factors. Firstly, integration within a cell 

may offer a selective advantage over other cells due to expression of HPV oncogenes. 

Secondly, integration may cause chromosomal alterations: as mentioned in section 1.1.4.2, 

HPV E1 and E2 are responsible for DNA replication and episomal E1 and E2, within a cell 

containing integrated HPV, has the potential to replicate the integrated HPV resulting in 

chromosomal alterations (Kadaja et al. 2009a); this offers an alternative mechanism for 

chromosomal alterations other than chromosomal damage due to increased E6 and E7 

expression. 
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1.4.4.1.4 Integration within Oncogenes 

The most frequent site of integration is at chromosome 8q24, at fragile site FRA8C, and 

corresponds to the MYC gene (Figure 11) that has strong links with cancer and functions in 

the cell cycle and apoptosis. Integration within a gene or near to a gene may disrupt the 

function of the gene or protein and give a selective advantage. For example, in a patient with 

fatal cervical cancer, integration was detected within and disrupted the Tumour Necrosis 

Factor gene (TNFAIP2). Integration in this region deleted 13kbp including the promoter and 

first two exons of TNFAIP2 (Einstein et al. 2002). In another study, integration was reported 

to be within the promoter of the human telomerase gene (hTERT), resulting in a 3-fold 

increase in the production of hTERT protein (Ferber et al. 2003a).   

 

It is possible that large deletions near to integration sites may account for disruption to human 

genes. In a study of integration in cervical tumours, although integration was not within 

known human genes, integration induced large deletions and disrupted the expression of 

genes within the genomic region surrounding the integration site (Thorland et al. 2003).  

 

On the other hand, integration may occur within or near to a gene and not induce any 

structural or functional abnormalities (Ferber et al. 2003a; Ferber et al. 2003b; Dall et al. 

2008). Integration may have an affinity for transcriptionally active sites that allow the 

expression of HPV oncogenes after integration has occurred; this would give a selection 

advantage without disruption to gene structure or expression. 

 

In a study of integration in the W12 cell line, Southern blot was used to predict which W12 

clones had integration; clones with integration were subjected to micro-array technology to 

determine gene expression relative to integration (Alazawi et al. 2002). Eighty-five genes 

were observed to alter their expression following HPV integration into the host genome 

including anti-apoptotic genes and immunomodulatory genes, such as IFN-responsive genes. 

This study suggests that integration may alter expression of many genes, not just the 
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expression of genes at the site of integration. Interference with anti-apoptotic gene expression 

would increase chances of cell survival and lead to selection of the cell. 

 

1.4.5 Methods to detect integration 

There are many methods that can be employed to detect HPV integration (Table 7). The 

earliest investigations of HPV integration in cervical cancer used fluorescence in-situ 

hybridisation (FISH) where chromosomes were probed with a fluorescently labelled HPV 

probe to determine the chromosomal location of HPV integration. FISH is sensitive but 

requires fresh cellular material: it is useful in cell lines but is unfeasible for biopsies and 

cervical smear samples. Southern blot is a well-established method used in molecular 

biology: DNA is digested, electrophoresed and then probed with radiolabelled HPV. 

Southern blot method is very useful at distinguishing episomal HPV from integrated HPV 

and has been used widely in studies of the W12 cell line (Pett et al. 2004; Pett et al. 2006; 

Pett and Coleman 2007; Dall et al. 2008). Southern blot requires large quantities of DNA and 

is impractical for use in biopsy samples and cervical smear samples. In-situ hybridisation 

(ISH) is a method widely used in pathology especially in studies of head and neck cancer 

(Begum et al. 2005): sections of a biopsy are probed with HPV; when HPV is integrated the 

HPV probe forms punctuate regions and when HPV is in an episomal form, the probes appear 

diffuse. ISH requires no DNA extraction or nucleic acid preparation and it is quick to perform 

however status determination is purely subjective and does not indicate which chromosome 

contains the integrant. 

 

PCR based methods such as E2 PCR and real-time qPCR aim to detect integrated HPV or 

episomal HPV. Real-time PCR compares the DNA quantification ratios of E2 to E6 (Kulmala 

et al. 2006) or E2 to E7 (Cheung et al. 2006). Samples with only episomal HPV will have 

equal quantities of E2 and E6 or E7 and have a ratio of 1; hypothetically, integrated HPV will 

only have E6 or E7 ORF and no E2 thus the ratio is 0. E2 PCR, PCR of overlapping segments 

across the E2 region, (Collins et al. 2009) is a quick and simple method that uses minimal 

DNA and is useful in samples where DNA availability is minimal such as cervical smear and 

biopsy samples; a failed PCR indicates disruption of E2.  In low grade cervical disease, HPV 

may be integrated with a background of episomal HPV; episomal E2 would be amplified in 
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PCR and mask the detection of disrupted E2; therefore the presence of episomes is a crucial 

limitation to E2 PCRs and real-time PCR.  

 

Methods such as Amplification of Papillomavirus Oncogene Transcripts (APOT) (Klaes et al. 

1999), Restriction Site PCR (RS-PCR) (Sarkar et al. 1993; Thorland et al. 2000), and 

Detection of Integrated Papillomavirus Sequences (DIPS) (Luft et al. 2001), detect 

integration at the nucleotide level. RS-PCR and DIPS detect integration in the DNA and have 

been used widely in the detection of integration in DNA from cancer biopsies (Thorland et al. 

2000; Luft et al. 2001; Ferber et al. 2003a; Ferber et al. 2003b; Thorland et al. 2003). APOT 

detects mRNA derived from integrated HPV; this method has been used on mRNA from 

biopsy and smear samples with varying disease grades (Table 6). 
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Method  Description 

 

Strengths 

 

Limitations 

 

 

  

RS-PCR

  

 

Host/viral genomic regions are 

amplified by PCR using HPV 

specific primers and a primer 

designed to bind to restriction 

enzyme sites. 

Can obtain DNA 

sequence of host/viral 

junctions. 

Large concentrations of 

DNA required and labour 

intensive. 

APOT RT-PCR followed by PCR using 

HPV specific primer discriminates 

HPV mRNAs derived from 

integrated and episomal viral 

genomes.  

Can obtain transcripts 

containing 

integration.. 

 

Labour intensive and 

expensive. Detects 

integration in RNA and 

cannot determine the 

nucleotide sequence or pin-

point exact location of 

integration in DNA. 

DIPS Single-side-specific ligation-

mediated PCR. Involves vectorette 

PCR and suppression PCR to detect 

integrated HPV DNA. 

Can obtain DNA 

sequence of host/viral 

junctions. 

 

Labour intensive. 

 

Southern blot Cellular DNA digestion and 

electrophoresis followed by 

hybridisation of labelled HPV DNA 

probes to determine the physical 

state (integrated or episomal) of 

HPV. 

Can reliably 

distinguish episomal 

from integrated HPV 

DNA. 

 

Uses large concentrations 

of DNA and labour 

intensive. The use of radio-

labelled probes has health 

and safety implications.  

 

E2 PCR PCR of overlapping sections across 

E2 ORF can detect E2 disruption 

and indicate integration. 

Uses small quantities 

of DNA and is quick 

to perform. 

Background episomal DNA 

can mask the detection of 

disrupted E2. 

Real-time 

qPCR 

Physical state of HPV is estimated 

by calculating HPV E2:E6/E7 ratio 

by real-time PCR amplification of 

HPV E2 and E6/E7.  

Uses small 

concentrations of 

DNA and is less 

labour intensive. 

 

HPV E2:E6/E7 ratio may 

not reliably distinguish 

integrated DNA in a 

background of episomal 

DNA. Consumables 

expensive. 

FISH Chromosomes are fluorescently 

probed for HPV to determine 

chromosomal location of HPV 

integration. 

Can sensitively detect 

HPV in 

chromosomes. 

Requires fresh cellular 

material. Cannot determine 

the nucleotide sequence or 

pin-point exact location of 

integration. 

ISH Biopsy sections probed with HPV 

probe to determine integration 

status. 

Detects integration 

status in-situ and less 

labour intensive than 

other methods. 

Interpretation of integration 

status is subjective and less 

reliable. 

Table 7 A summary of the most common DNA and RNA based HR-HPV integration detection methods. 

Adapted from Raybould et al. (2011). RS-PCR= Restriction Site PCR; APOT=Amplification of Oncogene 

Transcripts; DIPS=Detection of Integrated Papillomavirus; FISH= Fluorescent in-situ hybridisation, ISH=in-situ 

hybridisation.
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2 Study Outline  

HPV integration is detected in over 80% of cervical cancers and disruption of HPV genome 

through integration leads to high levels of HPV oncogene expression. To date, there are no 

published studies using sensitive, DNA based, techniques that detect integration at the 

nucleotide level in cervical precancers. Studies using RNA based assays, that detect 

transcribed integration events, have reported a higher frequency of integration in cancer 

neoplasia compared to CIN1 to CIN3; but studies using PCR and qPCR on DNA have 

reported integration as an early event in low grade neoplasia. In-vitro studies of cervical 

disease progression, using the W12 cervical cell line, have reported integration as a late event 

in the progression of cervical cancer and emphasised that episomal loss is key to malignant 

progression. This study aimed to test the hypothesis that integration is an early event in 

cervical neoplasia and episomal loss causes malignant transformation through transcription of 

integrated HPV. The mechanism of integration was explored to further understanding of why 

integration occurs: hot-spots for integration such as DNA fragile sites and similarities in HPV 

disruption were examined. This study also served as a pilot for larger future studies to 

determine whether integration is a plausible biomarker to be used as a positive predictor of 

cervical disease and explore the potential role of HPV integration in cervical screening.  

 

The PhD was divided into three stages; the hypotheses are shown in Table 8:  
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Hypothesis  

1 Integration disrupts E1 or E2 ORFs.  

2 Integration gives a selective growth advantage. 

3 Integration results in loss of E2 expression and increased E6 and E7 expression 

and gives a selective growth advantage. 

4 HPV integration is an early event present in CIN1. 

5 Loss of episomes is a late event associated with CIN3, VIN3 or VAIN3. 

6 Integrated transcripts are present in cancer and are linked with episomal loss. 

7 Integration occurs within human genes. 

8 Integration occurs at fragile sites. 

9 DNA sequence similarities between human and HPV DNA at host viral junction 

indicate non homologous end joining  in HPV integration. 

Table 8 Hypotheses for the PhD. 

 

2.1 Stage 1: Assay validation 

In total, 4 different assays to detect integration were developed: DIPS, RS-PCR, E2 PCRs 

and APOT. DIPS, RS-PCR, E2 PCR and APOT have previously been developed for HPV16 

and HPV18 (Klaes et al. 1999; Thorland et al. 2000; Luft et al. 2001; Ferber et al. 2003a; 

Collins et al. 2009) whereas development of HPV45 DIPS, RS-PCR and E2 PCR reported 

here is novel and not yet reported in literature. There are several methods that can be utilised 

to detect integration but a number of these were inappropriate for use in this PhD. Firstly, 

Southern blot utilises large quantities of DNA and is suitable for use on cell lines where vast 

amount of DNA are available, whereas LBC, smear and biopsy samples would have 

insufficient yields of DNA. qPCR has been used to detect integration according to ratios of 

E2 to E6 or E7; this method had already been trialled by the HPV research group at Cardiff 

University and although small quantities of DNA were required, it was difficult to detect 

integration where samples contain both episomal and integrated HPV. RS-PCR, DIPS and 

APOT have been broadly exploited in studies of HPV integration; these methods detect 

integration at the nucleotide level and were novel to the HPV research group, thus these 

assays were chosen for investigation in this PhD. E2 PCR was chosen to detect intact E2 as a 

marker of episomal HPV; this method required minimal DNA and was novel to the Cardiff  

University HPV research group.  
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Assay validation consisted of 2 stages: 

The first stage of validation determined the ability of E2 PCRs to detect disrupted E2 and RS-

PCR, DIPS and APOT to detect integration in cell lines with defined and published 

integration sites. Before assays were applied to clinical material it was essential to determine 

the strengths and limitations of each assay by comparing them in terms of integration 

detection and practicality. In low grade disease, HPV exists in episomal form and integration 

detection may be masked by the presence of episomal DNA. The majority of studies to date 

have not addressed the issue of integration in the presence of episomal HPV. Cervical cancer 

characteristically has only integrated HPV with no episomes and previous studies have 

performed DIPS and RS-PCR on samples that have only integrated DNA. There are no 

published reports of RS-PCR and DIPS in precancerous tumours and this study aims to 

determine whether integration can be detected within a background of episomal HPV. HPV 

copy numbers vary in clinical samples and the lowest number of HPV copies each assay 

could detect was determined. Finally, the assays used are technically complex therefore the 

reproducibility of each assay was determined by exploring the success of achieving the same 

outcome each time the assay was performed. 

 

The second stage of assay validation compared the detection of integration by HPV16 DIPS, 

APOT and E2-PCRs on cell lines with unknown integration events in novel in-vitro cell lines 

of HPV16-associated vulval and vaginal neoplasia. Integration was observed in relation to 

quantities of HPV E2, E6 and E7 mRNA, to determine if integration and increased HPV16 

E6 and E7 expression were essential for cell growth and doubling time.  

  

Finally, it was important to determine that integration sites detected by DIPS or RS-PCR 

were true integration sites and not an artefact of DIPS or RS-PCR. Primers that flanked each 

integration site were designed and PCR was used to confirm the integration site. 

 

2.2 Application of assays to clinical samples:  

Stage 2 applied integration assays to cervical smears and biopsies from women with varying 

disease grades with an aim to determine how integration, transcription of integrants and 
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episomal loss contribute to cervical neoplasia. Integration in relation to episome loss was 

investigated by application of E2 PCR and DIPS to smear samples with varying cytological 

grades: normal, mild, borderline, moderate dyskaryosis, severe dyskaryosis and cervical 

cancer biopsies. The data from E2 PCR and DIPS on smear samples were correlated with 

histological outcome of biopsies taken at colposcopy. APOT was applied to cervical cancer 

biopsies and smear samples with varying cytological and histological grades to determine if 

integrated transcripts are present in CIN3 and cancer where episomes are lost. HPV16 qPCR 

was applied to cervical cancer biopsies and smear samples to quantify HPV E2, E6 and E7 

expression in relation to integration and episomal loss. Additionally, primers that flanked 

each integration site were designed and PCR was used to confirm the integration site. 

 

2.3 Mechanism of integration: 

Stage 3 utilised bioinformatic analysis of sequence data to look at hot-spots for integration 

such as DNA fragile sites and similarities in HPV disruption. Integration sequence data was 

analysed to examine the site of integration for similarities between human and HPV DNA 

sequences. 
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3 Materials and Methods 

This section describes materials and methods employed in the PhD including the statistical 

and quality control measures utilised. All work was performed by the author unless otherwise 

stated. 

 

3.1 Samples 

There were 4 different sample categories used in this PhD: cell lines, plasmid encoding HPV, 

smear samples and biopsy samples. This section will describe sample collection, sample 

storage and nucleic acid preparation for each of the sample categories. 

  

3.1.1 Cell lines 

Cell lines, with known integration sites were used as a source of DNA and RNA with which 

to develop the integration assays. Cell line DNA and RNA was used as positive controls in all 

assays employed. This section describes the cell lines used, culture, harvesting methods and 

nucleic acid preparation. Cell lines were selected according to their HPV type and 

commercial availability and were sourced from a number of different locations: 

 

3.1.1.1 SiHa 

SiHa is a cell line derived from a grade 2 uterine cancer lesion from a Japanese woman aged 

55 years (Friedl et al. 1970). SiHa possess 2 copies of HPV16 integrated at 13q21 with 

disruption to HPV16 at 3132bp and 3384bp. SiHa cells were obtained from the American 

Type Culture Collection (ATCC-LGC), Teddington, Middlesex, UK.  

 

3.1.1.2 W12 

W12 is derived from a cervical lesion with warty atypia, displaying CIN1, from a 22 year old 

woman (Stanley et al. 1989). At early passage, W12 possesses HPV16 in episomal form in 

approximately 100 copies per cell and continued culture of W12, induces clearance of 

episomes with the emergence of cells possessing integrated HPV (Pett et al. 2004). W12 

passage 12 (W12p12) and W12 passage 32 (W12p32) were cultured at the Department of 
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Pathology, University of Cambridge. DNA and RNA from W12p12 and W12p32 were sent 

to us by Mark Pett at the Department of Pathology, University of Cambridge. 

 

3.1.1.3 CaSki 

CaSki is derived from cervical carcinoma, metastatic to the small bowel of a 40 year old 

Caucasian woman (Pattillo et al. 1977). CaSki contains 600 copies of HPV integrated in 

concatenated form at 11 chromosomal sites including chromosomes 2, 3, 6, 7, 11, 12, 14, 20, 

and 21 (Yee et al. 1985; Mincheva et al. 1987). CaSki was obtained from the American Type 

Culture Collection (ATCC-LGC), Teddington, Middlesex, UK. 

 

3.1.1.4 PC0 

The PC0 cell lines were derived from grade 3 vulval (PC08) and vaginal (PC09) 

intraepithelial neoplasia lesions in a 46 and 31 year old woman, respectively. Women were 

recruited by consultant gynaecologists Professor Alison Fiander and Dr Amanda Tristram at 

the specialist VIN Clinic at Llandough Hospital in 2008. PC0 cell lines were established as a 

pilot study and ethical approval was obtained from South East Wales Research Ethics 

Committee (REC Reference number 08/WSE02/32). The pilot project was risk reviewed by 

the Joint Trust/University Peer/Risk Review Committee and approved by the Cardiff and 

Vale NHS Trust Research and Development Office. Heterogeneous PC08 and PC09 were 

established by Ned Powell, a Senior Lecturer, within the HPV research group at Cardiff 

University. Heterogeneous lines were cultured up to passage 21 for PC09, and 19 for PC08 

and Southern blot performed on the DNA.  Southern blot revealed entirely integrated HPV at 

passage 19 for PC08 and a mixed population of integrated concatenated HPV and episomal 

HPV for passage 21 PC09. 

 

3.1.1.5 HeLa 

HeLa is a cell line derived from adenocarcinoma of a 31 year old African American Woman 

(Gey et al. 1952; Jones et al. 1971). HeLa contains 3 sub genomic fragments of HPV18 on 

8q24 (Mincheva et al. 1987). HeLa was obtained from The Health Protection Agency (HPC), 

Porton Down, Salisbury, UK. 
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3.1.1.6 C4I 

C4I is established from carcinoma of the cervix from a 41 year old Caucasian woman 

(Auersperg and Hawryluk 1962) and contains HPV18 integrated on 8q24 with disruption to 

HPV18 at 2952bp and 5442bp (Cannizzaro et al. 1988; Luft et al. 2001). C4I was obtained 

from The Health Protection Agency (HPC), Porton Down, Salisbury, UK. 

 

3.1.1.7 HTB-34™ 

HTB-34™, also known as MS751, is a cell line derived from cervical carcinoma of a 47 year 

old woman (Sykes et al. 1970). Initially, HTB-34™ was reported to have HPV18 DNA 

present (Pater and Pater 1985; Yee et al. 1985) but a subsequent study confirmed HTB-34™ 

solely positive for HPV45 (Geisbill et al. 1997). Integration sites are unconfirmed in this cell 

line but HPV45 disruption is reported at 1888bp and 6963bp (Geisbill et al. 1997). HTB-34™ 

was obtained from American Type Culture Collection (ATCC-LGC), Teddington, Middlesex, 

UK. 

 

3.1.1.8 C33A 

C33A is an HPV negative cervical carcinoma cell line from a 66 year old woman (Auersperg 

and Hawryluk 1962). C33A was obtained from American Type Culture Collection (ATCC-

LGC), Teddington, Middlesex, UK. 

 

3.1.2 Cell Culture 

Heterogeneous PC08 and PC09 lines were cultured previously by Ned Powell, Senior 

Lecturer, in the HPV Research Group, Cardiff University. Single cell cloning of PC08 and 

PC09 was undertaken by Tiffany Onions, PhD student, HPV Research Group, Cardiff 

University.  

 

All cell lines were grown as a monolayer in tissue flasks and handled in sterile conditions in a 

category II laminar flow cabinet. The growth media and supplements required to culture each 
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cell line are summarised in Table 9. All cell lines were incubated in an incubator at 37°C 

supplied with 5% CO2. J2 3T3 mouse fibroblasts were used to supplement PC08 and PC09 as 

feeder cells in culture and although they are listed in Table 9, they were not used for any of 

the integration studies. Growth media was prepared in sterile conditions and for PC08 and 

PC09, all growth media was filter sterilised. 

 

3.1.2.1 Sub-Culturing/Passage of cell lines 

Cell lines were initially seeded into small flasks (25cm
2
) and grown until the cells were 80% 

confluent. The cells were sub-cultured according to ratios in Table 9 and grown until at least 

2 large flasks (125cm
2
) were 80% confluent.  

 

Cell lines were sub-cultured by removal of growth media followed by washing twice with 

sterile Phosphate Buffered Saline (PBS) at pH7.4. The cells were then detached from the 

flask by incubation with 0.25% trypsin, 0.03% EDTA solution (Sigma Aldrich
®
, New Rd, 

Gilllingham, Dorset, UK) at 37ºC for no longer than 10 minutes. The volume of trypsin 

depended on the flask size: 1ml of trypsin-EDTA was added to 25cm
2 

flasks and 5mls of 

trypsin-EDTA added to 125cm
2 

flasks. Trypsinised cells were then seeded into flasks 

according to ratios in Table 9 and supplemented with growth media. 

 

3.1.2.2 Harvesting cell cultures for Nucleic Acid Preparation 

Production of RNA is optimal when cells are 80% confluent and diminishes thereafter. 

Therefore, all cell lines, except J2 3T3s, were harvested for DNA and RNA when 80% 

confluent to ensure optimal RNA retrieval.  

 

Cell lines were harvested by removal of growth media followed by washing twice with sterile 

Phosphate Buffered Saline (PBS) at pH7.4. Cells were then detached from the flask by 

incubation with 0.25% trypsin, 0.03% EDTA solution (Sigma Aldrich
®
, New Rd, 

Gilllingham, Dorset, UK) at 37ºC for no longer than 10 minutes. Five millilitres of growth 

media was then added to cells to inactivate the trypsin enzyme and this was followed by 
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centrifugation at 1000rpm for 5 minutes. Supernatant was removed, 5mls of sterile PBS were 

added and the cells were counted using a haemocytometer prior to nucleic acid preparation.  



 

 

 

5
4
 

Cell line Media
1
 Ratio

2
 Serum

3
 Antibiotics

4
 Supplements 

PC08 and PC09 GEM 1:3 to 1:8 10% FBS PS 2mM LGlutamine, 0.1%ug/mL hydrocortisone, 10
-10

 

mol/l cholera toxin and 5x10
5
/25cm

2
  lethally irradiated 

(60 Gray dose) J2 3T3 fibroblasts. Media was 

supplemented with 10ng/mLepidermal growth factor 48 

hours after plating. 

J2 3T3 DMEM 1:3 to 1:8 10% NCS PS none 

SiHa RPMI 1:3 to 1:8 10% NCS PS none 

CaSki RPMI 1:4 to 1:10 10% NCS PS 2mM LGlutamine. 

C4I Waymouth's MB 

752/1 

1:4 to 1:10 10% NCS PS 2mM LGlutamine. 

HeLa EMEM 1:3 to 1:10 10% NCS PS 2mM LGlutamine. 

HTB-34 EMEM 1:2 to 1:5 10% NCS PS none 

C33A EMEM 1:3 to 1:8 10% NCS PS none 
Table 9 Propagation and sub-culturing for cell lines. All media and supplements obtained from Sigma Aldrich

®
, Dorset, UK.

                                                 
1
 Culture media. GMEM= Glasgow’s Minimum Essential Medium; DMEM=Dulbecco’s Modified Eagle Medium; EMEM= Eagles Minimum Essential Medium. Ten 

millilitres of media was added to 25cm
2 
flasks and 30mL of media was added to 125cm

2
 flasks. 

2
 Sub-culturing ratio. 

3
 Serum. NCS= Newborn Calf Serum; FBS=Fetal Bovine Serum 

4
 PS=Penicillin–streptomycin at 50,000U and 50mg per 500ml, respectively. 
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3.1.3 Plasmids 

Plasmids are extra-chromosomal DNA molecules found in bacteria. The plasmids are 

replicated upon bacterial growth thus making plasmids ideal for cloning DNA. To clone 

DNA, DNA of interest is inserted into a plasmid vector possessing genetic markers that allow 

a selective growth advantage under certain conditions. The vector is then transformed into 

bacteria such as E. Coli and selective pressure, for example using antibiotics or blue/white 

selection, will allow E. Coli containing the plasmid with DNA of interest to grow. The DNA 

of interest can be cloned by further culture of a single colony.  

 

Plasmid vector encoding HPV was used in the development of E2 PCR and as positive 

controls in E2 PCR. Plasmid vector encoding HPV were supplied from a number of sources: 

 

3.1.3.1 HPV16 Plasmid  

Complete intact HPV16 DNA, in vector was obtained from the HPV research group at 

Manchester University. Genomic DNA of HPV16 was originally obtained by the Manchester 

HPV research group from the World Health Organisation, inserted into vector pBR322 

(Sutcliffe 1979) at BamHI restriction site (357bp) (Figure 13), transformed into HB101 E. 

Coli HB101 cultured in Luria Bertani (LB) Broth, supplemented with 100µg/ml ampicillin. 

Two millilitres of HPV16 plasmid in vector cultured in LB Broth was supplied; the culture 

was stored at -80ºC. 
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Figure 13 pBR322 vector adapted from Sutcliffe (1979). 

 

3.1.3.2 HPV18 Plasmid 

Complete intact HPV18 DNA, in vector was obtained from the HPV research group at 

Manchester University. Genomic DNA of HPV18 was originally obtained by the Manchester 

HPV research group from the World Health Organisation and inserted into vector pAT153 

(Twigg and Sherratt 1980) at EcoRI site (3636bp) (Figure 14). The vector was transformed 

into HB101 E. Coli HB101, cultured LB Broth supplemented with 100µg/ml ampicillin. Two 

millilitres of HPV18 plasmid in vector cultured in LB Broth was supplied; the culture was 

stored at -80ºC. 

 

 

Figure 14 pAT Vector adapted from Twigg and Sherratt (1980). 
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3.1.3.3 HPV45 Plasmid Vector 

Complete intact HPV45 DNA, inserted into pGEM
®
-4 vector (Promega Corporation, 

Southampton, UK) at EcoRI restriction site (10bp) (Figure 15), without host, was supplied by 

Professor de Villers at the German Cancer Research centre (DKFZ), Heidelberg.  

 

On receipt HPV45 plasmid in pGEM
®
-4 vector was transformed into One Shot

®
 Top10 

chemically competent E. Coli (Invitrogen
™

, Life Technologies
 
Ltd

 
, Paisley, UK). 

Transformation was done following manufacturer’s instructions by heat shock of E. Coli at 

42ºC for 30 seconds. Transformed cells were then selected by blue/white selection. 

Blue/white selection is a method to identify E. Coli cells that possess the plasmid with vector 

containing inserted DNA. Certain vectors carry a sequence that codes for β-galactosidase that 

metabolise 5-bromo-4-chloro-indolyl-β-D-galactopyranoside (X-Gal) and produce blue E. 

Coli. Expression of β-galactosidase is initiated from the Lac promoter. When DNA is inserted 

into a vector and disrupts the Lac promoter, the metabolism of X-Gal is diminished and E-

Coli cells are white; thus white cells possess the cloned DNA of interest. Transformed E. Coli 

were plated onto LB agarose (Sigma Aldrich
®
, Dorset, UK) supplemented with 50µg/ml X-

Gal (Sigma Aldrich
®
, Dorset, UK) and 100µg/ml Ampicillin (Sigma Aldrich

®
, Dorset, UK) 

and plates were incubated at 37ºC overnight. A single white colony was picked and grown in 

5mLs of LB Broth (Sigma Aldrich
®
, Dorset, UK) supplemented with 100µg/ml ampicillin 

(Sigma Aldrich
®
, Dorset, UK) overnight at 37ºC in a shaking incubator at 5000g. One and a 

half millilitres of transformed E. Coli in LB broth were then mixed with 500µl  of glycerol 

and stored at -80 ºC.  
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Figure 15 pGEM
®
-4 vector 

 

3.1.3.4 Culture of HPV plasmid vectors 

Plasmids encoding HPV16, HPV18 and HPV45 in E. Coli were cultured by incubating 20µl  

of the transformed E. Coli, in 5mL of LB broth, supplemented with 100µg/mL ampicillin, 

overnight at 37ºC in a shaking incubator at 150rpm. The E. Coli were centrifuged at 5000g 

for 5 minutes to pellet the E. Coli in preparation for plasmid DNA extraction, see section 

3.2.2. 

 

3.1.4 Baseline Samples 

The Baseline samples were originally collected as part of a pseudo-anonymous study of HPV 

prevalence in 14,128 samples from women aged 20 to 22 years, who had not been vaccinated 

against HPV. Sample collection occurred between April 2009 and July 2010 in collaboration 

with Cervical Screening Wales. Women were eligible for the study if they resided in Wales 

and had attended their first smear between 20-22 years of age.  Dyfed Powys Local Research 

Ethics Committee approved the study for all Wales recruitment. 

 

3.1.4.1 Sample Collection 

Samples were collected as liquid based cytology samples in BD SurePath™ preservative 

medium. Samples were processed by Cervical Screening Wales at participating cytology 

laboratories: Llandough, Singleton, Llandudno, Royal Gwent Hospital, Wrexham Maelor, 
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Ysbyty Glan Clwyd, Withybush, Royal Glamorgan, Princess of Wales, Prince Charles, West 

Wales General, and neighbouring English laboratories in Hereford, Chester and Shrewsbury. 

Samples were processed according to the British Society of Clinical Cytology guidelines and 

residual samples were transported to the HPV Research Laboratory, University Hospital of 

Wales, School of Medicine, Cardiff University, through the central transport system 

operating between hospitals in Wales.  

 

3.1.4.2 Sample processing  

Upon receipt at the HPV Research Laboratory in Cardiff, samples were processed by 

Research Scientists Jo Jones , Vasiliki Kiparoglou and Angharad Edwards. Residual sample 

was washed twice with 1ml of 10mM Tris (pH 7.4) by mixing, centrifugation and removal of 

supernatant. The cells were re-suspended in 2ml of 10mM Tris (pH 7.4), aliquotted and 

stored at -80ºC. DNA was extracted from samples by Jo Jones and Angharad Edwards, using 

proteinase K method, as described in section 3.2.3, and extraction efficiency was determined 

by Beta-globin PCR (section 3.2.8.1). Samples that were positive for Beta-globin PCR were 

subjected to HPV typing by GP5+/GP6+PCR-Enzyme Immunoassay method (EIA), 

described in 3.3.2.1.  

 

3.1.4.3 Collection of Patient Information 

All histological and cytological data used in this PhD were received and processed by 

Cervical Screening Wales and pseudo-anonomysed. All data that passed between Cervical 

Screening Wales and the HPV Research Laboratory in Cardiff was encrypted. The HPV 

Research Laboratory did not know the identity of the woman who gave the sample and 

Cervical Screening Wales did not know the HPV test result or the outcome of integration 

analysis. The Baseline study has ethical approval to collect follow up clinical screening 

information over two future screening rounds (up to 6 years). 

 

3.1.4.4 Selection of Baseline samples for integration analysis 

Only women that had abnormal cytological outcome and had attended colposcopy were 

selected for integration analysis because these women had histology data that was needed to 

investigate integration in cervical neoplasia. Women attended colposcopy more than once 
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during the period 2008-2012 thus the histology data linked with first attendance at 

colposcopy was used. Sample selection was prioritised by detection of a single HPV type and 

histological outcome. The study of Klaes et al. (1999) was used to estimate the number of 

Baseline samples required for this study: to achieve 80% power to detect a result of true 

significance, a total of 49 samples would have been needed, based on numbers of integrated 

transcripts versus numbers of episomal transcripts between high grade (CIN3 and cervical 

cancer) and low grade (no CIN, CIN1, CIN2) neoplasia (χ
2
=26.03, df=1, φ=0.4, α=0.05). 

However, it was hypothesised that integration events in DNA may be more frequent in low 

grade CIN than those observed by Klaes et al. (1999), due to the reports of Huang et al.(2008) 

(Table 5). This would mean that more than 49 samples would be required to achieve 80% 

power. A total of 131 samples were selected (Figure 16) with approximately equal 

proportions of CIN grade diagnosed by histology. Women with no CIN were rare for HPV16 

positivity and were not observed for HPV18 or HPV45 thus only 10 samples with no CIN 

were included.  

 

An aliquot of Baseline cell suspension for each Baseline sample to be assayed for integration 

was retrieved from the freezer by Jo Jones or Angharad Edwards. The sample identification 

numbers were double checked by the author to eliminate the risk of assaying the incorrect 

sample.  

 

Figure 16 Proportion of CIN grades in samples selected for integration analysis grouped by HPV type. 
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3.1.5 HI-BCD Samples 

The idea for collection of the HI-BCD samples was instigated by the author for the purpose 

of collecting both RNA and DNA from smear samples for integration assays. The “HPV 

Integration as a Biomarker of Cervical Disease” (HI-BCD) study was started in 2012 and is 

ongoing. The author contributed to study design and was a co-investigator in the project (see 

section 10.1, Appendix 1, for study protocol and consent form). Smear samples were 

collected from women attending colposcopy at Llandough Hospital, Cardiff, UK following 

detection of cellular dyskaryosis by smear. The intention was to collect a total of 45 samples 

from 15 women referred to colposcopy with mild, moderate and severe cellular dyskaryosis. 

Women referred to colposcopy due to abnormal cytology and undergoing treatment for high-

grade CIN were included in this study. After confirmation of eligibility for the study, the 

study was discussed with the women and informed consent was given; women also gave 

consent to allow the results of cervical cytology and histology for one round of screening (up 

to 4 years) after entry to be made available for the study.  Women that did not give informed 

consent were not eligible for the study. A total of 28 samples were collected during the period 

of this PhD.   Ethical approval was given from Dyfed Powys Local Research Ethics 

Committee/ National Institute for Social Care and Health Research Permission Co-ordinating 

Unit and the HI-BCD study was approved by Cardiff and Vale R&D committee. 

 

3.1.5.1 Sample Collection 

Samples were collected by colposcopy nurse Sue Ashman and colposcopy gynaecologists Dr. 

Amanda Tristram, Dr. Sadie Jones and Dr. Jonathan Lippiatt at Llandough Hospital, Cardiff, 

UK. A single smear sample was collected by cytological brush in 2mL of RNAProtect
®
 

(QIAGEN Ltd, Manchester, UK) in a sterile 10ml Universal tube. The brush was agitated in 

RNAProtect
® 

and the end of the brush was snapped off into the tube. Samples were 

transported by Sue Ashman, at room temperature, to the author at the HPV Research 

Laboratory, University Hospital of Wales, School of Medicine, Cardiff University. Pseudo-

anonomysed sample identification numbers and cytological outcome were recorded 

electronically. All samples were stored at -80ºC until a batch of 10 was accumulated and then 

nucleic acids were purified from the samples (section 3.2.4).    
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3.1.5.2 Collection of Patient Information 

All histological and cytological data included in this PhD were received by Cervical 

Screening Wales and pseudo-anonomysed. Cytological data and histological data were linked 

with the data from the assays performed in this PhD. 

 

3.1.6 Biopsy Samples 

Six biopsy samples were provided by Dr. Christopher Holmes, a senior lecturer in the Faculty 

of Medicine and Dentistry at Bristol University. Biopsy samples were collected from the 

colposcopy clinic at St Michael's Hospital, Southwell Street, Bristol between 1988 and 1993. 

The same colposcopist collected each biopsy but his/her name remains anonymous.  Sample 

collection was approved by the Ethics Committee of the United Bristol Hospital Trust. 

Samples were collected as part of the screening program where cellular dyskaryosis, detected 

by cervical smear, indicated the possibility of cervical pathology. 

 

All samples were snap frozen in liquid nitrogen within 1 hour of collection and have been 

stored in liquid nitrogen at Cardiff University according to the Human Tissue Act.   

 

Two biopsies, 4T and 6W, were moderately differentiated adenocarcinoma from a 63 and 45 

year old woman, respectively. Samples 1W, 2A, 3O and 5W were from squamous cell 

carcinoma of the cervix from a 23, 33, 46 and 30 year old woman, respectively. Samples 1W, 

3O and 5W were poorly differentiated and 2A was moderately differentiated.  

 

3.2 Nucleic Acid Preparation 

Each sample category required different nucleic acid preparation techniques: 

 

3.2.1 DNA and RNA Extraction from Cell Culture 

Live cells were counted using a haemocytometer and DNA and RNA was extracted from 

between 6x10
10

 and 8 x10
10

 cells using AllPrep™ kit (QIAGEN Ltd, Manchester, UK) 

following manufacturer’s instructions. AllPrep™ DNA/RNA Mini Kit allowed the 
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simultaneous purification of genomic DNA and total RNA from the same biological sample. 

Manufacturer’s instructions were followed. In summary, the cultured cells were immediately 

lysed and homogenised in 750µl  lysis buffer containing 10µl   of 14.3M β-mercaptoethanol 

(Sigma Aldrich
®
, Dorset, UK) per 1ml of buffer, and 1µl   of 2M dithiothreitol (DTT) 

(QIAGEN Ltd, Manchester, UK).  β-mercaptoethanol was added to stabilise RNA and DTT 

was added to prevent excessive foaming of sample during homogenisation. Samples were 

homogenised by passing the sample through a sterile syringe and 20 gauge needle 5-10 times. 

The sample was then applied to an AllPrep™  DNA spin column and centrifuged at 12,000g 

for 1 minute to collect the “flow through” containing RNA. The “flow-through” that 

remained from passing the lysate through the DNA column was mixed with 750µl  70% 

ethanol and applied to an RNeasy
®
 spin column, supplied with the AllPrep™ kit. The 

RNeasy
®
 spin column was then washed by application of buffers to RNeasy

®
 spin column 

and centrifuged at 12,000g for 1 minute to remove DNAses and RNAses. RNA was eluted 

from RNeasy
®

 spin column by addition of 25µl  sterile RNAse free water, incubation at room 

temperate for 1 minute, followed by centrifuged at 12,000g for 1 minute. Elution of RNA was 

repeated to maximise RNA yield. DNA was washed by application of buffers, that inactivate 

DNAses, to the AllPrep™ DNA spin column and centrifuged at 12,000g for 1 minute. DNA 

was washed again using an ethanol based buffer to remove salts, and centrifuged at 12,000g 

for 1 minute. DNA was eluted from the column by addition of 100µl  elution buffer, 

incubation at room temperature for 1 minute followed by centrifugation at 12,000g for 1 

minute. Elution of DNA was repeated to maximise DNA yield. DNA was stored at -20ºC and 

RNA was stored at -80ºC. 

 

Extraction of RNA and DNA from PC08 and PC09 clones was done by Tiffany Onions and 

utilised the same method as described above. 

 

3.2.2 Extraction of HPV plasmid vector DNA 

Extraction of plasmid encoding HPV DNA from E. Coli was done using QIAprep
® 

Miniprep 

kit (QIAGEN Ltd, Manchester, UK) designed to purify high-copy plasmid DNA from E. Coli 

in LB broth. The principle of the kit is based on alkaline lysis of bacterial cells followed by 

adsorption of DNA onto a silica membrane in a column. Manufacturer’s instructions were 

followed. In summary: a bacterial lysate was produced by addition of a lysate buffer to the E. 
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Coli cell pellet. Two further buffers were added and mixed into to the lysate, by inversion of 

microfuge tube, to allow precipitation of genomic DNA and cell debris. The cell debris and 

E. Coli DNA were pelleted by centrifugation at 12,000g for 10 minutes and the supernatant, 

containing the plasmid DNA was applied to a QIAprep
® 

column. Further application of 

buffers and centrifugation cleaned the plasmid DNA by removing endonucleases and co-

purified contaminants such as salts. The plasmid DNA was then eluted from the column 

membrane by addition of 50µl  elution buffer, incubation at room temperature for 1 minute 

followed by centrifugation at 12,000g for 1 minute. The DNA was stored at -20ºC. 

 

3.2.2.1 Confirmation of Plasmid Vector DNA 

To confirm the presence of HPV16, HPV18 and HPV45 in plasmid vectors, DNA was 

subjected to DNA sequence analysis, see section 3.3.3.6.4.  

 

3.2.3 DNA extraction from Baseline samples 

Initially, an experiment was performed to select the optimal method of extraction of DNA 

from the Baseline samples; QIAamp
® 

(QIAGEN Ltd, Manchester, UK) and proteinase K 

methods were compared.  AllPrep™, described above, was unsuitable for extraction of DNA 

from Baseline samples because viable RNA could not be extracted from Baseline samples. 

 

QIAamp
® 

is a DNA extraction method that can extract DNA from samples such as swabs and 

is based on DNA affinity binding to a purification column. Manufacturer’s instructions were 

followed; in summary: 20µl  QIAGEN Proteinase K was added to 100µl  of the sample 

suspension and incubated at 56ºC for 30 minutes to digest proteins and lyse the sample. A 

buffer containing carrier RNA, to enhance binding of viral DNA was mixed with the lysate 

and incubated at 70ºC for 10 minutes; the lysate was then incubated with 300µl  of 100% 

ethanol at room temperature for 5 minutes then bound to the membrane of a QIAamp
® 

mini 

column by centrifugation at 6,000g for 3 minutes. The sample was washed by subsequent 

application of buffers and ethanol to the membrane and a number of centrifugation steps at 

6,000g for 3 minutes. DNA was eluted by addition of 60µl  of elution buffer to maximise the 

DNA concentration, incubation at room temperature for 1 minute, and centrifuged at 12,000g 

for 1 minute. DNA was stored at -20ºC. 
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Proteinase K allows crude extraction of DNA, it does not involve DNA washing or binding 

DNA to a membrane thus endonucleases and co-purified salts are present. The sample is 

lysed by addition of proteinase K followed by heat inactivation; centrifugation of the sample 

collects cellular debris as a pellet and the supernatant containing the DNA is removed from 

the pellet and stored. In summary, 10mg/ml proteinase K (Roche Diagnostics Ltd, West 

Sussex, UK) was added to 100µl  of sample suspension and the sample was incubated for 2 

hours at 56ºC in a shaking incubator at 300rpm; proteinase K was heat inactivated by 

incubation of the sample at 80ºC for 10 minutes. The sample was then chilled at 4 ºC for 10 

minutes and centrifuged at 12,000g, at 4ºC for 10 minutes. The supernatant, approximately 

60µl , containing crude DNA extract was removed by pipette into a sterile tube and stored at -

20ºC. 

 

Eight Baseline samples were extracted using QIAamp
® 

and proteinase K and compared. DNA 

extracted using QIAamp
® 

yielded less DNA compared to the Proteinase K method. High 

yield of DNA was important for the assays used in this PhD thus Proteinase K method was 

selected as the extraction method for the Baseline samples.  

 

3.2.4 DNA and RNA extraction from HI-BCD samples 

HI-BCD samples were collected in 2mL of RNAProtect
®
 (QIAGEN Ltd, Manchester, UK) in 

a sterile 10ml Universal tube. Samples were transferred to a 2ml sterile, microfuge tube and 

centrifuged at 5,000g for 5 minutes to pellet cellular constituents.  It was not possible to count 

the cells in RNAProtect
® 

before extraction due to cell lysis in RNAProtect
®
 but the numbers 

of cells were estimated to be 1x10
5
.  AllPrep™ kit (QIAGEN Ltd, Manchester, UK), was 

used to extract DNA and RNA from HI-BCD samples following manufacturer’s instructions 

described in section 3.2.1 with amendments: the HI-BCD cell pellet was immediately lysed 

and homogenised in 350µl  RLT buffer containing 10µl  of 14.3M β-mercaptoethanol per 

1ml of buffer and 1µl  of 2M DTT; RNA was eluted from RNeasy
®

  spin column with 15µl  

sterile water, to increase concentration of RNA; DNA was eluted in 50 µl  of elution buffer, 

to increase concentration of DNA. DNA was stored at -20ºC and RNA was stored at -80ºC. 
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3.2.5 DNA and RNA extraction from Biopsy Samples 

Biopsies were supplied on dry ice to prevent RNA degradation. The biopsy weight was 

estimated according to the size of biopsy: 1.5mm cube weighs approximately 3.5 to 4.5mg 

according to AllPrep™ kit handbook. AllPrep™ kit (QIAGEN Ltd, Manchester, UK), was 

used to extract DNA and RNA from biopsies samples. AllPrep™ can extract DNA and RNA 

from a maximum of 5mg of biopsy thus samples that were estimated to be larger than 5mg 

were divided by a sterile scalpel and two extractions were done.  AllPrep™ was done 

following manufacturer’s instructions described in section 3.2.1 with amendments: biopsies 

were immediately homogenised in 350µl  buffer containing 10µl  of 14.3M β-

mercaptoethanol per 1ml of buffer and 1µl  of 2M DTT. Samples were homogenised using an 

electrical tissue ruptor until sample was completely homogeneous but for no longer than 1 

minute to prevent DNA shredding. The homogenate was then centrifuged at 13,000rpm for 3 

minutes and the supernatant applied to an AllPrep™ DNA spin column. RNA was eluted 

from RNeasy
®

 spin column with 15µl  sterile water, to increase concentration of RNA. DNA 

was eluted in 50µl  of elution buffer, and elution performed twice to increase yield of DNA. 

 

3.2.6 DNA and RNA Extraction Controls 

A negative control of sterile water was used in each extraction. A positive control was 

extracted with each extraction done, with the exception of DNA and RNA extraction from 

cell lines.  For Baseline extraction, a 100µl  cell suspension of 4x10
3
cells/µl  of CaSki, stored 

in PBS at -80ºC was used. For HI-BCD, a positive control of 4x10
5 
SiHa cells suspended in 

2mL of RNAProtect
®
, stored at -80ºC were used. For biopsies DNA and RNA extraction, no 

biopsy positive control was available.   

 

3.2.7 Nucleic Acid Quantification 

RNA and DNA were quantified using a Thermo Scientific Nanodrop
®
 1000 Spectrophotomer 

(NanoDrop products, 3411 Silverside Rd, Bancroft Building, Wilmington, DE 19810, USA) 

following manufacturer’s instructions. The Nanodrop
®
 accurately measures DNA or RNA in 

a volume as little at 1µl  without the need for cuvettes. The sample is applied to the end of a 

fibre-optic cable and xenon light is flashed onto the sample and a spectrophotomer measures 

the light after it has transmitted through the sample. The out-put gives sample concentration 

(ng/µl ) and purity data:  the 260/280 ratio determines the protein contamination level and the 
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260/230 ratio indicates the presence of co-purified contaminants such as salt. A pure DNA 

sample will have 260/280 ratio of ~1.8 and a 260/230 ratio of ~2. A pure RNA sample will 

have 260/280 ratio of ~2 and a 260/230 ratio of ~2. A pure DNA sample would expect to 

have an out-put image such as the one in Figure 17. 

 

Figure 17 Nanodrop out-put screen.  

 

3.2.8 DNA Integrity 

There were two methods used to determine the integrity of DNA extracted from cell lines, 

smear samples and biopsies:  Beta-globin PCR and electrophoresis of genomic DNA on an 

agarose gel.  

 

3.2.8.1 Beta -globin PCR  

Beta-globin is a conserved housekeeping gene encoding a peptide that forms the Beta chain 

of haemoglobin. Amplification of part of this gene, using PCR, can determine extraction 

efficiency and establish whether DNA extracted is suitable for PCR based methods. PCR is 

described in section 3.3.1. Five micro-litres of extracted DNA, diluted 1:10, were added to 

the PCR reagents summarised in Table 11. PCR conditions are shown in Table 10. Primers 



68 

 

were previously described by Huang et al. (1989) and obtained from Sigma Aldrich
®
, Dorset, 

UK. Amplicons were separated on a 2% (w/v) agarose gel. Samples that produced an 

amplicon of 110bp showed that DNA extraction was efficient and that the sample was 

suitable for PCR based methods. 

 

3.2.8.2 Fine-pore Agarose Gel Electrophoresis 

Gel electrophoresis was used to determine if DNA was degraded. Genomic DNA purified 

with the AllPrep™ procedure has an average length of 15–30kbp depending on 

homogenization conditions. If DNA was un-degraded then a single band of 15-30kbp would 

be observed when electrophoresing the DNA on an agarose gel. If DNA were degraded a 

smear would be observed on the gel due to fragments smaller than 15-30kbp being present. 

Large DNA fragments require electrophoresis on a low percentage agarose gel thus 5µl  of 

extracted DNA was electrophoresed on 0.8% (w/v) AquaPor™ agarose gel (AGTC 

Bioproducts t/a National Diagnostics UK, Hessle, Yorkshire, UK). 

 

3.2.9 RNA Integrity 

Two microlitres of RNA was sent to Cardiff Biotechnology Services, at Cardiff University 

for analysis on an Agilent Bioanalyser (Agilent Technologies UK Ltd, Stockport, UK).  An 

Agilent Bioanalyser is a microfluidics-based platform for sizing, quantification and quality 

control of DNA, RNA, proteins and cells. ribosomal ribonucleic acid rRNA is essential for 

protein synthesis in all organisms. Mammalian rRNA comprises of two subunits translated 

from 18S and 28S rRNA. RNA is applied to an Agilent Bioanalyser chip and RNA integrity 

is given as an RNA Integrity Number (RIN).The RIN is a software tool designed to estimate 

the integrity of total RNA, including 18S and 28S rRNA, in a sample. The software 

automatically assigns an integrity number to eukaryote total RNA sample. Using this tool, 

sample integrity is determined by the entire electrophoretic trace of the RNA sample not just 

the ratio of the ribosomal bands and includes the presence or absence of degradation 

products. An RIN of 10 indicates that RNA is un-degraded whereas an RIN of 1 indicates 

that RNA is degraded. The Agilent Bioanalyser also quantifies the total RNA. Figure 18 

shows an example of Agilent Bioanalyser output: sample 1 has degraded RNA, with an RIN 

of 4.5; sample 3 has intact RNA and an RIN of 10. 
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Figure 18 Agilent Bioanalyser Output File. Top Left hand size is electrophoretic separation of RNA and along 

the bottom are electropherograms of 18S and 28S rRNA. Sample 1 has degraded RNA, sample 3 has intact 

RNA and sample 2 has RNA that is partially degraded.  

 

3.3 Molecular Methods 

There were two assays used to type HPV and four main assays used to detect integration; 

each employed the polymerase chain reaction. The first method to detect integration is 

detection of disruption of HPV E2 ORF using PCR across the E2 region, the second method 

is Restriction Site PCR (RS-PCR), the third is Detection of Integrated Papillomavirus 

Sequences (DIPS) and the fourth is Amplification of Papillomavirus Oncogene Transcripts 

(APOT). All PCR reagents and PCR conditions for each assay are shown in Table 10 and 

Table 11. RS-PCR, DIPS and APOT use DNA sequence analysis; this will be described in 

section 3.3.3.6.  

 

 After the detection of an integration site it was essential to confirm that integration detection 

could be replicated; this was done by PCR using primers that flanked cellular and viral DNA 

sequences; see section 3.3.3.7. 

18S  28S 18S  28S 18S  28S 

28S  

 18S 
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Finally, qPCR was done to quantify HPV16 E2, E6 and E7 mRNA in HPV positive samples, 

where RNA was available, see section 3.3.3.8.  

 

3.3.1 Polymerase Chain Reaction 

The polymerase chain reaction (PCR) was developed in 1988 by Saiki et al. (Saiki et al. 

1988). It is a fundamental technique used in most molecular applications. PCR allows the 

amplification of millions of copies of any region of a DNA sequence where at least some 

sequence information is known. PCR consists of 3 phases: denaturation, annealing and 

extension (Figure 19). Initially DNA is denatured and DNA strands are separated, by heating 

at 94-95ºC. Denaturation is followed by annealing of primers, otherwise known as 

oligonucleotides. Annealing temperature requires optimisation to ascertain optimal annealing 

temperature for successful PCR and annealing temperatures can be anywhere between 45-

65ºC. A lower annealing temperature in PCR confers lower specificity for annealing the 

primers to target DNA and a higher annealing temperature in PCR confers greater specificity 

for annealing the primers to target DNA. Annealing temperature of primers, as a rule of 

thumb, are generally 2-3ºC lower than the melting temperature of the primers, calculated 

from the A+T and G+C content of the primers. Furthermore, the annealing temperature of the 

primers should not differ by more than 5ºC to ensure sufficient denaturation during each 

cycle of the PCR. Extension is the final step catalysed by Taq polymerase at 72ºC. Taq 

Polymerase is a thermostable enzyme that is active at 72ºC and it acts by extending the DNA 

fragment from the primer onwards by adding dioxynucleotide triphosphates (dNTPs: A, G, T 

and C) complementary to the DNA strand to form a double strand of DNA. Magnesium 

chloride is required as a cofactor for efficient Taq polymerase activity. The concentration of 

magnesium chloride can be altered in PCR during the optimisation process. Denaturation, 

annealing and extension are performed for a number of cycles and results in exponential 

amplification of the required DNA sequence. The PCR product, otherwise known as an 

amplicon, can be used for other applications such as sequencing, screening for mutations and 

genotyping. All PCR based methods were performed in a PCR hood, in sterile conditions to 

prevent PCR contamination. All PCRs were done on a thermocycler, with a heated lid to 

prevent evaporation during heating.  
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Figure 19 The Polymerase Chain Reaction. The Polymerase Chain Reaction allows the amplification of 

millions of copies of any region of a DNA sequence where at least some sequence information is known. DNA 

is denatured, primers are annealed and extension follows. 
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Assay Temperature (ºC) Time Cycles 

Beta-globin PCR 94 4min   

  94 30s 40 

  55 30s   

  72 30s   

  72 4min   

        

GP5+/6+ PCR EIA 94 4min   

  94 30s 40 

  40 90s   

  72 1min   

  72 4min   

        

PapilloCheck
®

 95 15min   

  95 30s 40 

  55 25s   

  72 45s   

  95 30s 15 

  72 55s   

        

E2 PCR 95 5min   

  95 30s 10 

  65 -1 ºC per cycle 30s   

  72 1min   

  95 30s 30 

  55 30s   

  72 1min   

  72 10min   

        

RS-PCR Primary 94 2min   

  94 30s 10 

  45 30s   

  68 3min    

  95 30s 25 

  45 30s   

  68 3min +10s per cycle   

  72 10min   

    RS-PCR Nested 94 2min   

  94 30s 10 

  55 30s   

  68 3min    

  95 30s 25 

  55 30s   

  68 3min +10s per cycle   

  72 10min   

Table 10 PCR conditions for all assays used in this PhD.
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Assay Temperature (ºC) Time Cycles 

DIPS Linear 95 15min   

   94 30s 40 

  66 30s   

  72 3min    

  72 10min   

        

DIPS Nested 95 15min   

  94 30s 30 

  66 30s   

  72 3min    

  72 10min   

        

APOT Primary 94 3min   

  94 30s 30 

  66 3min    

  72 3min    

  72 10min   

        

APOT Nested 94 3min   

  94 30s 30 

  67 30s   

  72 3min    

  72 10min   

        

Junction PCR 95 5min   

  95 30s 10 

  (AT+10ºC) -1 per cycle
1
 30s   

  72 1min   

  95 30s 30 

  AT
1 

30s   

  72 1min   

  72 10min   

        

qPCR 95 10min   

  95 10s 60 

  AT
2
 10s   

  72 10s   

Table 10 continued. PCR conditions for all assays used in this PhD. 

 

                                                 
1
 AT= Annealing temperature; see Table 30. 

2
 AT= Annealing temperature; see Table 32. 
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Assay Reagent Concentration Volume (µl ) 

Beta-globin PCR DNA 1:10 dilution 5 

  Forward Primer 5µM 2.5 

  Reverse Primer 5µM 2.5 

  dNTP 2mM 2.5 

  MgCl2 50mM 0.875 

  10X PCR buffer 1X 2.5 

  Taq Polymerase 5U/µl  0.1 

  Sterile Water na 9.025 

  Total Volume  (µl )   25 

        

GP5+/6+PCR EIA DNA 1:10 dilution 20 

  
Forward Primer  5µM 10 

  Reverse Primer 5’Biotinylated 5µM 10 

  dNTP 2mM 10 

  MgCl2 50mM 7 

  10X PCR buffer 10X 10 

  Taq Polymerase   5U/ µl  0.4 

  Sterile Water na 32.6 

  Total Volume  (µl )   100 

        

PapilloCheck® DNA 1:10   5 

  PapilloCheck
®
 Master Mix   18.8 

  Hot Star Taq
®
 Polymerase  5U/µl  0.2 

  Uracil-N-Glycosylase  1U/µl  1 

  Total Volume  (µl )   25 

        

E2 PCR DNA 20ng/ µl  5 

  10X   2 

  Forward Primer  10µM 2 

  Reverse Primer  10µM 2 

  MgCl2 15mM 2 

  dNTP 2mM 2 

  Taq 5U/µl  0.2 

  Sterile Water na 4.8 

  Total Volume  (µl )   20 

Table 11 Reagents used in all PCRs in this PhD. Taq polymerase PCR reagents and dNTPs obtained from 

Invitrogen
™

, Life Technologies
 
Ltd, Paisley, UK. Hot Star Taq

®
 Polymerase PCR reagents obtained from 

QIAGEN Ltd, Manchester, UK. Uracil-DNA Glycosylase obtained from Thermo Scientific* Fermentas 

(Northumberland, UK); PapilloCheck
®
 reagents supplied in PapilloCheck

®
kit.
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Assay Reagent Concentration Volume (µl ) 

RS-PCR Primary Primary HPV Primer 1µM 2 

  RSO primer 10µM 2 

  PCR Buffer  10X 2 

  MgCl2 15mM  2 

  dNTP  2mM 2 

  Taq Polymerase  5U/µl  0.1 

  Sterile Water   4.9 

  DNA 20ng/ µl  5 

  Total Volume  (µl )   20 

        

RS-PCR Nested Nested HPV Primer 1µM 2 

  RSO primer 10µM 2 

  PCR Buffer  10X 2 

  MgCl2 15mM 2 

  dNTP  2mM 2 

  Taq Polymerase 5U/µl  0.1 

  Sterile Water   8.9 

  Primary PCR amplicon   1 

  Total Volume  (µl )   20 

        

DIPS Linear  Ligation product 30ng/µl  2 

  PCR Buffer with 15mM MgCl2 10X 2.5 

  dNTP 10mM 0.5 

  HPV PCR 1 Primer 10µM 0.5 

  Hot Star Taq
®
 Polymerase  4U/µl  0.125 

  Sterile Water   19.375 

  Total Volume  (µl )   25 

        

DIPS Nested  Linear PCR amplicon na 2 

  PCR Buffer with 15mM MgCl2 10X 2.5 

  dNTP 10mM 0.5 

  HPV PCR 2 Primer 10µM 0.5 

  Hot Star Taq
®
 Polymerase  4U/µl  0.125 

  Sterile Water   19.375 

  Total Volume  (µl )   25 

Table 11 continued. Reagents used in all PCRs in this PhD. Taq polymerase PCR reagents and dNTPs 

obtained from Invitrogen
™

, Life Technologies
 
Ltd, Paisley, UK. Hot Star Taq

®
 Polymerase PCR reagents 

obtained from QIAGEN Ltd, Manchester, UK.
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Assay Reagent Concentration Volume (µl ) 

APOT Primary cDNA   1 

  10X buffer   2.5 

  dNTP 10mM 0.5 

  MgCl2 50mM 0.75 

  PCR1 Primer 10μM 0.5 

  p3 reverse 10μM 0.5 

  Taq Polymerase 5U/μl 0.2 

  Sterile Water   19.05 

  Total Volume  (µl )   25 

        

APOT Nested Primary PCR amplicon   5 

  10X buffer   5 

  MgCl2 25mM 5 

  dNTP  25mM 1 

  PCR2 10μM 5 

  (dT)17-p3 10μM 5 

  Taq Polymerase 5U/μl 0.2 

  Sterile Water na 23.8 

  Total Volume  (µl )  50 

        

Junction PCR DNA 10ng/ µl  5 

  Forward Primer 10µM 2 

  Reverse Primer 10µM 2 

  PCR buffer  10X 2 

  MgCl2 15mM See Table 30  

  dNTP 2mM 2 

  Taq Polymerase 5U/µl  0.2 

  Sterile Water   To make volume 15 

  Total Volume  (µl )   20 

       

qPCR Template cDNA   2 

  Forward Primer  5µM 2 

  Reverse Primer  5µM 2 

  FS Mix  10X 2 

  MgCl2 (25mM)  25mM See Table 32 

  Sterile Water   To make volume 18  

  Total Volume  (µl )   20 

Table 11 continued. Reagents used in all PCRs in PhD. Taq polymerase PCR reagents and dNTPs obtained 

from Invitrogen
™

, Life Technologies
 
Ltd, Paisley, UK. Hot Star Taq

®
 Polymerase PCR reagents obtained from 

QIAGEN Ltd, Manchester, UK.
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3.3.2 HPV typing 

HPV typing was performed on the biopsy samples and HI-BCD samples; two methods were 

employed: GP5+/GP6+PCR-Enzyme Immunuassay (EIA) (Jacobs et al. 1997) and 

PapilloCheck
®
 (Greiner Bio One Ltd, Gloucestershire, UK). Positive and negative controls 

from DNA extraction were included in each batch of samples typed. 

 

3.3.2.1 GP5+/GP6+PCR- EIA 

GP5+/GP6+PCR-EIA, as described by Jacobs et al. (1997), is a PCR based enzyme linked 

immunosorbent assay (ELISA) that utilises a solid phase enzyme immunoassay (EIA) to 

detect different types of HPV. In summary, GP5+/GP6+PCR-EIA involved PCR 

amplification of part of HPV L1 ORF using a forward primer and a biotinylated reverse 

primer. The amplicon was then bound to a solid support, hybridised to labelled HPV 

oligonucleotide probes and detected by immunohistochemistry. DNA samples were typed for 

high risk types HPV16, HPV18, HPV31, HPV33, HPV35, HPV39, HPV45, HPV51, HPV52, 

HPV56, HPV58, HPV59, HPV66, HPV68.  

 

3.3.2.1.1 GP5+/GP6+ PCR 

Twenty micro-litres of extracted DNA, diluted 1:10, were added to the GP5+/GP6+PCR-EIA 

PCR reagents summarised in Table 11 in a 100µl  reaction; PCR conditions are shown in 

Table 10. Primers were described previously by Jacob et al. (1997).  

 

3.3.2.1.2 GP5+/GP6+EIA ELISA 

A separate ELISA reaction was performed for each HR HPV type using a digoxigenin (DIG)-

labeled oligonucleotide probe specific for each HR HPV type (Jacobs et al. 1995) (Sigma 

Aldrich
®
, Dorset, UK). Two additional reactions were done using cocktail containing 

HPV16, HPV18, HPV31, HPV33, HPV35, HPV39, HPV45, HPV51, HPV52, HPV56, 

HPV58, HPV59, HPV66 and HPV68  digoxigenin (DIG)-labeled oligonucleotide probes at a 

final concentration of 10pMol.  
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Firstly, 5µl  of amplicon were hybridised to a single well of a 96 well Streptawell plate 

(Roche Diagnostics Ltd, West Sussex, UK) by addition of 50μl of wash buffer (43.8g NaCl, 

22.1g sodium citrate, and 25ml Tween
®
 20 in 1l of sterile distilled H2O), diluted 1:5, and 

incubated at 37ºC for 1hr.  

 

The plate was washed three times with 1:5 wash buffer. One hundred micro litres  of 0.2M 

NaOH was added the well to denature the amplicon bound to the plate.  

 

The plate was washed again three times with 1:5 wash buffer and 50μl (10pMol) of DIG 

labelled probe mixture was added. The plate was incubated at 37ºC for 1hr to hybridise the 

probes to the amplicon. 

 

The plate was washed again three times with 1:5 wash buffer and 50μl of anti-DIG conjugate 

(Roche Diagnostics Ltd, West Sussex, UK) was added. The plate was incubated at 37ºC for 

1hr and then washed 5 times with 1:5 wash buffer. One hundred micro-litres of substrate 

solution (Roche Diagnostics Ltd, West Sussex, UK) was added and the plate was incubated at 

37ºC for 1hr.  

 

Absorbance readings were made on a Bio-Rad 550 Microplate reader (Bio-Rad Laboratories 

Ltd, Hertfordshire, UK), with dual optical density (OD) settings 415nm and 630nm after 1, 2 

and 24hrs of incubation at 37ºC. OD readings taken at 24hrs were taken into account. OD 

values that were at least three times that of the background value, as defined by the OD value 

of the negative sample, were considered positive for HPV.  

 

3.3.2.2 PapilloCheck
®
 

PapilloCheck
®
 (Greiner Bio-one Ltd, Stonehouse, UK)  identifies 18 types of HR HPV: 

HPV16, HPV18, HPV31, HPV33, HPV35, HPV39, HPV45, HPV51, HPV52, HPV53, 

HPV56, HPV58, HPV59, HPV66, HPV68, HPV70, HPV73 and HPV82 and  low risk types: 

HPV6, HPV11, HPV40, HPV42, HPV43 and HPV44.  PapilloCheck
® 

is a DNA hybridisation 
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DNA array test. In summary, PCR, using reagents in kit provided, amplifies part of the E1 

ORF, PCR amplicon is hybridised to a chip with an array of probes specific for the HPV 

types listed above; the chip is then scanned using a PapilloCheck
® 

CheckScanner
™

(Greiner 

Bio-one Ltd, Stonehouse, UK). Data is analysed with specialist software supplied with the 

CheckScanner
™

. PapilloCheck
® 

was performed following manufacturer’s instructions:  

 

3.3.2.2.1 PapilloCheck
®

 PCR 

DNA was diluted 1:10 and 5µl  were added to the reagents listed in Table 11. PCR conditions 

PCR conditions are shown in Table 10. 

 

3.3.2.2.2 PapilloCheck
® 

Hybridisation, Washing and Chip Reading 

PapilloCheck
® 

Hybridisation buffer was added to PCR amplicon and then added to a 

compartment on the chip. The chip was incubated at room temperature in humid conditions 

then washed 3 times using the buffers provided. The chip was then scanned using a 

PapilloCheck
® 

CheckScanner
 
and data analysed with specialist software supplied with the 

CheckScanner
™

.  

 

3.3.3 Integration Assays 

3.3.3.1 Primer Design 

Primers were designed by the author, unless otherwise stated. Primers were designed using a 

web-based program, Primer3 http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi 

(Rozen and Skaletsky 2000). Primer3 is a program that designs PCR primers according to 

melting temperatures and secondary structures that may be formed by the primers and inhibit 

the PCR reaction; amplicon sizes are also calculated. Accession Numbers NC_001526.1, 

X05015 and X74479 were used as HPV16, HPV18 and HPV45 reference sequences for 

primer design. The sequence of DNA containing the HPV region of interest  was submitted to 

Primer3, parameters such as PCR product size in base pairs, primer annealing temperature 

and primer size were selected, regions of wanted DNA sequence were marked following 

web-site instructions; the remaining parameters were left as default.  Suitable primers were 

then selected from a list suggested by the program. 

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
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The PCR could potentially be invalidated if non-specific sequences to HPV were amplified 

therefore, all primer sequences were subjected to alignment to human and “others” database 

sequences using NCBI megaBLAST (Basic Local Alignment Search Tool) at 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBla

st&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome  to 

determine their specificity to HPV and human genomic sequences. Primers were obtained 

from Sigma-Aldrich
®
, Dorset, UK.  

 

3.3.3.2 E2 and E6 PCR 

As mentioned in the introduction, the E2 ORF of HPV is frequently disrupted upon 

integration. Collins et al. (2009) employed PCR to amplify overlapping fragments that 

spanned across the E2 region to detect E2 disruption caused by integration (Figure 20). To 

control for presence of HPV a set of primers that amplified the E6 ORF were used. 

Integration was detected if E6 primers produced an amplicon and one or more primer E2 

ORF sets failed to produce an amplicon. 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome
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Figure 20 A schematic example of overlapping primers used for E2 PCR for HPV16, HPV18 and HPV45. 

Amplicon sizes are shown and primer annealing sites are shown as base pair number of viral sequence that is 

identical to the 5' base of the primer according to NC_001526.1, X05015 and X74479 for HPV16, HPV18 and 

HPV45, respectively. Green bar represents full length E2 amplicon; dark grey bars represent overlapping 

amplicons of E2 PCR. 
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3.3.3.2.1 Primers 

Primers are listed in Table 12. Primers from Collins et al (2009) were used for HPV16 and 

HPV18. HPV45 E2 PCR primers were designed using method in section 3.3.3.1 with product 

size range selected from 100-300, 301-400, 401-500 and 501-600.  

 

HPV16 

 

Forward Primer 

 

 

Reverse Primer 

 

Size 

(bp) 

E2 TTAAGTTTGCACGAGGACGA CGCCAGTAATGTTGTGGATG 1167 

PCR1  AGGACGTGGTCCAGATTAAG TCAAACTGCACTTCCACTGT 419 

PCR2 TAACTGCACCAACAGGATGT  GCCAAGTGCTGCCTAATAAT 341 

PCR3 ATCTGTGTTTAGCAGCAACG TAAATGCAGTGAGGATTGGA 224 

PCR4 ACAGTGCTCCAATCCTCACT  TCACGTTGCCATTCACTATC 244 

PCR5 GGCATTGGACAGGACATAAT CAAAAGCACACAAAGCAAAG 207 

E6 PCR GAACAGCAATACAACAAACC GATCTGCAACAAGACATACA 161 

HPV18     

E2 TTAGATGATGCAACGACCAC CGGTGGGATACCATACTTTT 1763 

PCR1  TCCAGATTAGATTTGCACGA CAATTGTCTTTGTTGCCATC 407 

PCR2 ATACAAAACCGAGGATTGGA ACTTCCCACGTACCTGTGTT 303 

PCR3 AACACAGGTACGTGGGAAGT TTTCGCAATCTGTACCGTAA 371 

PCR4 GACCTGTCAACCCACTTCT ACATGGCAGCACACATACAT 397 

E6 PCR TGTGTATGGAGACACATTGG CTATAGTGCCCAGCTATGTTG 153 

HPV45      

E2 TTGAAAGGACATGGTCCAGA ACCAACAACCAAGCAAAAGC 1285 

PCR1  TGAAAGGACATGGTCCAGATT TGTCCCATATCCCTGTCTCAG 497 

PCR2 CATTTCAAAAAGCAAAGCACA TGCCCCCATATTGTACTTCC 565 

PCR3 TATGGGACAAAACAGCAGCA GTCTGCATATTTGCGTAGCC 493 

PCR4 CAAAAGAAGGAAAGTGTGTAGTGG CCAAGCAAAAGCACACACATA 399 

E6 PCR AAGCTTTGTGGAAAAGTGCAT CTTGTGTTTCCCTACGTCTGC 498 

Table 12 Primers for HPV16, HPV18 and HPV45 E2 PCR. 

 

3.3.3.2.2 PCR Conditions 

The reagents used for E2 and E6 PCRS are shown in Table 11. PCR conditions are shown in 

Table 10.  

 

The amplicons for E2 and E6 PCRs were electrophoresed on a 2% (w/v) agarose gel stained 

with ethidium bromide and viewed under UV light. E2 was considered to be disrupted when 

E6 PCR produced an amplicon and no E2 PCR amplicons were detected, or when one or 
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more E2 PCR amplicons were not detected. E2 was considered to be intact when E2 PCR 

produced an amplicon for all PCR reactions. HPV was interpreted to be absent where E2 

PCR and E6 amplicons were not detected.   

 

3.3.3.3 Restriction Site PCR 

RS-PCR (Sarkar et al. 1993) is a direct method that rapidly retrieves sequences of any DNA 

adjoining a known sequence; in this study the known sequence is HPV and the sequence of 

interest is the site of integration in the genome (Figure 21). RS-PCR includes a primary PCR 

reaction followed by a nested PCR reaction. The PCR reactions comprise a HPV specific 

primer and a primer designed to bind to DNA where the sequence of interest is unknown. 

Nested PCR products are separated by gel electrophoresis and selected fragments are 

subjected to DNA sequence analysis.  
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Figure 21  Steps involved in Restriction site PCR (RS-PCR).  SP denotes HPV specific primers; RSO 

dentotes restriction site oligos. Purple bar represents human DNA and green represents HPV DNA. 

 

3.3.3.3.1 Primers 

RS-PCR uses primers (Restriction Site Oligonucleotides, RSOs) that
 
recognize a given 

restriction enzyme recognition site, anneal
 
to that site, and promote DNA synthesis in a PCR. 

Restriction recognition sequences are useful in RSOs because restriction sites are 

omnipresent across organisms, they have no repeat sequences in them and they are frequently 

repeated across an organism’s genome (Sarkar et al. 1993). Amplification of PCR products 

greater than 1kbp in size can be difficult. To increase the chance of a restriction site being 

present within the range of PCR, RSOs were based on 4 to 6bp cutters because the chance of 

finding longer restriction sites within range PCR would be small. A restriction recognition 

site on its own would not be useful for PCR thus the RSO has an anchor sequence of 10bp of 
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redundant sequence attached to the 5′ end of the restriction recognition site. Attached to the 5′ 

end of the anchor sequence is a T7 phage promoter sequence to enable sequencing from the 5′ 

end of the sequence. Six RSOs were used (Ferber et al. 2003a) (Table 13). E6 and E7 ORFs 

are most likely to be retained after integration and so the HPV specific primers were designed 

to amplify regions of HPV genome, spanning out from the E6 and E7 genes at 750bp 

intervals. Primers sequences used for RS-PCR in HPV16 and HPV18 were described in 

published methods (Thorland et al. 2000; Ferber et al. 2003a) (Table 14 and Table 15). For 

HPV45, a novel primer set was designed using the method described in section 3.3.3.1 (Table 

16).  

 

Primer Name Primer Sequence 

RSO-Bam TAATACGACTCACTATAGGGAGANNNNNNNNNNGGATCC 

RSO-Eco TAATACGACTCACTATAGGGAGANNNNNNNNNNGAATTC 

RSO-Nde TAATACGACTCACTATAGGGAGANNNNNNNNNNCATATG 

RSO-Sau TAATACGACTCACTATAGGGAGANNNNNNNNNNGATC 

RSO-Taq TAATACGACTCACTATAGGGAGANNNNNNNNNNTCGA 

RSO-Xba TAATACGACTCACTATAGGGAGANNNNNNNNNNTCTAGA 

Table 13 Taken from Ferber, Montoya et al (2003). RSO primers used for RS-PCR. 
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Primer Name Annotation Primer Sequence 

 Primary RS-PCR  PCR1   

HPV16-768-24D  P1 ACAAAGCACACACGTAGACATTCG 

HPV16-1545-26D  P2 AGTAATAAATCAACGTGTTGCGATTG 

HPV16-2386-25D  P3 TTTGGTTACAACCATTAGCAGATGC 

HPV16-2929-24D  P4 GTGCCAACACTGGCTGTATCAAAG 

HPV16-5156-27U     P5 TACCAATTCTACTGTACCTAATGCCAG 

HPV16-5883-27U  P6 ACTTATTGGGGTCAGGTAAATGTATTC 

HPV16-6686-25U  P7 AGTAGATATGGCAGCACATAATGAC 

HPV16-7591-22U  P8 GTTGGCAAGCAGTGCAGGTCAG 

Nested RS-PCR  PCR2   

HPV16-790-25D  N1 CGTACTTTGGAAGACCTGTTAATGG 

HPV16-1587-26D  N2 GGACTTACACCCAGTATAGCTGACAG 

HPV16-2414-26D  N3 AATAGGTATGTTAGATGATGCTACAG 

HPV16-2964-25D  N4 ACAAGCAATTGAACTGCAACTAACG 

  HPV16-5121-25U  N5 GAGGTTAATGCTGGCCTATGTAAAG 

HPV16-5850-28U  N6 CCCTGTATTGTAATCCTGATACTTTAGG 

HPV16-6651-25U  N7 TGCGTGTAGTATCAACAACAGTAAC 

HPV16-7524-26U  N8 TTAAACCATAGTTGCTGACATAGAAC 

Sequencing 

primers  

   

HPV16-839-25D  S1 TCTGTTCTCAGAAACCATAATCTAC 

HPV16-1677-26D  S2 GGAATGGTTGTGTTACTATTAGTAAG 

HPV16-2443-24D  S3 CCTGTTGGAACTACATAGATGACA 

HPV16-2995-28D  S4 ACAATATATAACTCACAATATAGTAATG 

HPV16-5069-27U  S5 GAGCTATATTAATACTATTATCATTAC 

HPV16-5774-23U  S6 TCCAACTGCAAGTAGTCTGGATG 

HPV16-6587-24U  S7 CTGTGCTCGTTGTAACCAATAAGG 

HPV16-7467-24U  S8 CATGCAACCGAATTCGGTTGAAGC 

Table 14 HPV16-specific primers used for RS-PCR, taken from Thorland, Myers et al. (2000). HPV16 

denotes primers that are specific to Genbank accession number NC_001526.1 for HPV16. The number 

following HPV16 indicates the base pair number of viral sequence that is identical to the 5' base of the primer 

according to NC_001526.1. The number followed by D or U indicates the length of the primer. D indicates a 

sense primer, and U indicates an antisense primer. When compared to NCBI database sequences of HPV16 

using BLAST, primer HPV16-2386-25D had one incorrect nucleotide. This was replaced with the correct 

nucleotide, highlighted in red. Primers were annotated to simplify microfuge tube labelling to avoid errors in 

RS-PCR.  

http://cancerres.aacrjournals.org/cgi/external_ref?access_num=K02718&link_type=GEN
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Primer Name Annotation Primer Sequence 

Primary   

 HPV18-744D P1 GACGAGCCGAACCACAACGTCAC 

 HPV18-1436D P2 GGCAACAACAGCAGTGTAGACGG 

 HPV18-2266D P3 ATTCCTGCGATACCAACAAATAGAG 

 HPV18-2996D P4 CCAGGTGGTGCCAGCCTATAAC 

 HPV18-4145U P5 CAATATAGCATGTATATGCAATAGTAAC 

 HPV18-5066U P6 CTGAATCAGGAACATCACTACGAGG 

 HPV18-5749U P7 CCAACAGTTAATAATCTAGAGCTGC 

 HPV18-6519U P8 CAGAGGTAACAATAGAGCCACTTGG 

 HPV18-7129U P9 CTGGCACGTACACGCACACGC 

 HPV18-7845U P10 ATGTGCTGCCCAACCTATTTCGG 

 Nested    

 HPV18-786D N1 GTAAGTGTGAAGCCAGAATTGAGC 

 HPV18-1487D N2 GTAAATCCACAATGTACCATAGCAC 

 HPV18-2412D N3 TTATACAAGGAGCAGTAATATCATTTG 

 HPV18-3094D N4 CCGAGGATTGGACACTGCAAGAC 

 HPV18-4029U N5 CATACGCACACATACAGACAGATGG 

 HPV18-5035U N6 TGTTAATGTAGTGTCCACAGGCTC 

 HPV18-5697U N7 TCACATAATCATCGGTATTTAC 

 HPV18-6476U N8 GCTGCCAGGTGAAGCAGGCATAC 

 HPV18-7093U N9 GACGTAGTGGCAGATGGAGCAG 

 HPV18-7806U N10 TGCACAGCTTAGTCATATTATAGTTC 

 Sequencing 

primer 

   

 HPV18-826D S1 AGCAGACGACCTTCGAGCATTCC 

 HPV18-1538D S2 AATAAACAAGGAGCTATGTTAGCAG 

 HPV18-2470D S3 GTTAACAGATACTAAGGTGGCCATG 

 HPV18-3129D S4 CTATGGAATACAGAACCTACTCACTG 

 HPV18-3945U S5 GTGATAACATATTGGTACTACAGCATA 

 HPV18-4956U S6 TTAGCCACTGACACTTGTTGGTAG 

 HPV18-5655U S7 GTGGAAGATATACGGTATTGTCAC 

 HPV18-6442U S8 ATATATAAGGATTGAGGCACAGTGTC 

 HPV18-7047U S9 GCTTGCGACGCAATCCAGCCT 

 HPV18-7742U S10 TGTACAAGCCAAGTATGCAATTAGC 

Table 15 HPV18-specific primers used for RS-PCR and sequencing, taken from Ferber et al.  (2003a). 

HPV18 denotes primers that are specific to Genbank accession number X05015 for HPV18. The number 

following HPV18 indicates the base pair number of the viral sequence that is identical to the 5' base of the 

primer according to X05015. The number followed by D or U indicates the length of the primer. D indicates a 

sense primer, and U indicates an antisense primer. When compared to NCBI database sequences of HPV18 

using BLAST, primer HPV18-1436D had 4 incorrect nucleotides. These were replaced with the correct 

nucleotides highlighted in red. Primers were annotated to simplify microfuge tube labelling to avoid errors in 

RS-PCR. 

  

http://cancerres.aacrjournals.org/cgi/external_ref?access_num=K02718&link_type=GEN
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Primer Name Annotation Primer Sequence 

Primary PCR1   

HPV45_792_20D P1 GTGACGGCAGAATTGAGCTT 

HPV45_1537_20D P2  TGGGCTGTCATTTACGGATT 

HPV45_2334_23D P3 CAGGAAAATCGTATTTTGGAATG 

HPV45_3095_20D P4 TACAGAACCGTCGCAGTGTT 

HPV45_3847_21D P5 AAATCTCGGTGGGATACATGA 

HPV45_5552_25U P6 CCATAAATAATATTGTGTGCCATGA 

HPV45_6275_20U P7 AATGGAACCTCGCACTTTGT 

HPV45_7045_20U P8 GACGTAACCCAGCCTGAACT 

HPV45_7833_21U P9  CAACCTTTTTCGGTTGCATAA 

Nested PCR2   

HPV45_815_20D N1 GTAGAGAGCTCGGCAGAGGA 

HPV45_1597_22D N2 TTGGGTAATGGCTATATTTGGA 

HPV45_2365_23D N3 ACATTTCCTACAAGGTGCAATAA 

HPV45_3146_20D N4 CTTTGATGGCAACAAGGACA 

HPV45_3939_21D N5  TCTGTGTGCCTTTATGTGTGC  

HPV45_5544_23U N6 AATATTGTGTGCCATGAATACCT 

HPV45_6266_20U N7 TCGCACTTTGTATCCTGCAA 

HPV45_7001_20U N8 TGATCCAAATCGGAGGAAAA  

HPV45_7764_23U N9 CAGATTGTTGGATAAGAAAGTGG 

Sequencing 

primer 

   

HPV45_861_20D S1 TGAGCACCTTGTCCTTTGTG 

HPV45_1622_20D S2 AATCCAACGGTAGCAGAAGG 

HPV45_2441_20D S3 AAGGTAGCCATGTTGGATGA  

HPV45_3209_21D S4 TGAGACAGGGATATGGGACAA 

HPV45_3969_20D S5 CCGCTTGTGCAGTCTGTCTA 

HPV45_5481_21U S6 GCCACATAGGAGTATGGGATG 

HPV45_6205_23U S7 CACCATCCTCAATAATGGTGTTT 

HPV45_6935_20U S8 TCCTGCTTTTCTGGAGGTGT 

HPV45_7724_24U S9 ACAATTAGCACAGGTAAAAACAGA 

Table 16 HPV45-specific primers used for RS-PCR and sequencing. HPV45 denotes primers that are 

specific to Genbank accession number X74479 for HPV45. The number following HPV45 indicates the base 

pair number of the viral nucleotide that is identical to the 5' base of the primer according to X74479. The 

number followed by D or U indicates the length of the primer. D indicates a sense primer, and U indicates an 

antisense primer. Primers were annotated to simplify microfuge tube labelling to avoid errors in RS-PCR 

 

3.3.3.3.2 Primary PCR 

PCR was done using one RSO and one HPV specific primer; this means for one sample 48 

PCR reactions are performed for HPV16, 60 for HPV18 and 54 for HPV45. PCR conditions 

http://cancerres.aacrjournals.org/cgi/external_ref?access_num=K02718&link_type=GEN
http://cancerres.aacrjournals.org/cgi/external_ref?access_num=K02718&link_type=GEN
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have low annealing temperature to allow spontaneous annealing of the RSO. PCR conditions 

are shown in Table 10. See Table 11 for PCR reagents. 

 

3.3.3.3.3 Nested PCR 

The primary PCR amplicons were subjected to nested PCR using nested
 
HPV specific primer 

and
 
the same RSO that was used in the primary PCR reaction. PCR conditions are shown in 

Table 10. See Table 11 for PCR reagents. The annealing temperature in the nested PCR was 

55ºC to increase the specificity of the PCR reaction. 

 

3.3.3.3.4 Electrophoresis 

Five micro-litres of nested PCR amplicon was electrophoresed on a 2% (w/v) agarose gel 

stained with ethidium bromide and viewed under UV light. Consistent with Thorland et al. 

(2000), all fragments were subjected to DNA sequence analysis using the HPV sequencing 

primer specific for the HPV region amplified by the nested PCR; for example, amplicons 

generated with HPV16  nested primer HPV16-790-25D would be sequenced with sequencing 

primer HPV16-839-25D; see section 3.3.3.6 for DNA sequence analysis.  

 

3.3.3.4 Detection of Integrated Papillomavirus Sequences 

Detection of Integrated Papillomaviruses Sequences (DIPS) (Luft et al. 2001) is based on a 

single side specific ligation mediated PCR and amplifies any sequence of DNA (cellular 

integration site) that is adjacent to a known sequence (HPV) (Figure 22). In summary, 

genomic DNA was digested with a restriction enzyme and a double stranded adapter primer, 

specific for the restriction enzyme used, was ligated to the digested DNA. This was followed 

by a linear PCR reaction that comprised a HPV specific primer. A second, nested, PCR 

reaction that comprised a HPV specific primer and a primer complementary to the missing 

part of the adapter primer was performed on the linear PCR product. The nested PCR 

amplicons were separated by gel electrophoresis and subjected to DNA sequence analysis. 
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Figure 22 Detection of Integrated Papillomavirus sequences (DIPS). A) The double stranded adapter primer 

used in DIPS. B) The steps involved in DIPS. 

 

 

A 

B 
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3.3.3.4.1 DIPS Adapter Primers 

The synthetic oligonucleotide adapter primers used in DIPS are known as “vectorettes”. The 

vectorette consists of partial double stranded DNA and contains a central mis-matched region 

(Arnold and Hodgson 1991). Vectorettes are designed so they can be amplified only if they 

are attached to the DNA sequence of interest. DIPS involves “suppression PCR”; this evolved 

from the idea of vectorette PCR and uses some aspects of the method. Like vectorette PCR, it 

uses a partially double stranded synthetic oligonucleotide, the bottom of strand is 

complementary to the 3’ end of the top strand and contains an amine group that prevents 

polymerase catalyzed extension of the lower adapter strand (Siebert et al. 1995) (Figure 

22A).  

 

Table 17 shows the adapter primers used in DIPS. A double stranded adapter primer specific 

for Taq
α
I and Sau3AI restriction enzyme used in the assay is constructed by mixing 25µl  of 

100µM AL primer and 25µl  of 100µM AS primer in 50µl  of 66mM trisHCL (pH 7.4), and 

gradually cooling the mix from 90ºC to 4ºC over a period of 16 hours on a thermocycler.  

 

Name Sequence 

DIPS_AL1 

GGGCCATCAGTCAGCAGTCGTAGCCCGGATCCAGACTT

ACACGTTG 

DIPS_AS Taq PO4-CGCAACGTGTAAGTCTG-NH2 

DIPS_AS SauAI PO4-GATCCAACGTGTAAGTCTG-NH2 

DIPS_AP1 GGCCATCAGTCAGCAGTCGTAG 
Table 17 Adapter Primers used in DIPS taken from Luft et al. (2001). 

 

3.3.3.4.2 HPV Specific Primers 

HPV16 and HPV18 specific primers used in DIPS are shown in Table 18 and Table 19, 

respectively. Primer sequences for HPV16 and HPV18 were obtained from Luft et al. (2001). 

The primary and nested HPV45 primers designed for RS-PCR (Table 16) were used in DIPS 

for HPV45. First attempts at DIPS using HPV16 primers specified by Luft et al. (2001) were 

unsuccessful. HPV16 primers specified by Luft et al. (2001) were substituted by HPV16 

specific primers used for RS-PCR (Table 14). 
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Name Annotation Sequence 

DIPS_PCR1_16F1 1F1 CGGGATGTAATGGATGGTTTTATG 

DIPS_PCR1_16F2 1F2 GGGCGCCATGAGACTGAAACAC 

DIPS_PCR1_16F3 1F3 CGCCAGAATGGATACAAAGACAAAC 

DIPS_PCR1_16F4 1F4 GTTTGCACGAGGACGAGGAC 

DIPS_PCR1_16F5 1F5 CACACCGGAAACAGAGCCAG 

DIPS_PCR2_16F1 2F1 GGGGATGCTATATCAGATGACGAGAAC 

DIPS_PCR2_16F2 2F2 GGTGGAAGTGGGGGTGGTTG 

DIPS_PCR2_16F3 2F3 TGGTACAATGGGCCTACGATAATG 

DIPS_PCR2_16F4 2F4 GACGAGGACAAGGAAAACGATGGAG 

DIPS_PCR2_16F5 2F5 GGAAACCCCTGCCACACCAC 
Table 18 HPV16 primers used in DIPS. From Luft et al. (2001). 

 

Name Annotation Sequence 

DIPS_PCR1_18F1 1F1 CCAGAAGGTACAGACGGGGAG 

DIPS_PCR1_18F2 1F2 ATAGACAACGGGGGCACAGAG 

DIPS_PCR1_18F3 1F3 CCACCAAAATTGCGAAGTAGTG 

DIPS_PCR1_18F4 1F4 GAGGAAGAGGAAGATGCAGACAC 

DIPS_PCR1_18F5 1F5 ACCTACAGGCAACAACAAAAGAC 

DIPS_PCR1_18R1 1R1 CCAGTATCTACCATATCACCATCTTCCA 

DIPS_PCR1_18R2 1R2 AGTGTCCACAGGCTCAAAGGC 

DIPS_PCR1_18R3 1R3 GGAAATAGACACAGAGGTAGACGAAGG 

DIPS_PCR1_18R4 1R4 GGGGACGTTATTACCACAATATACACA 

DIPS_PCR2_18F1 2F1 CGGGTTGTAACGGCTGGTTTTATG 

DIPS_PCR2_18F2 2F2 GGGGCACAGAGGGCAACAAC 

DIPS_PCR2_18F3 2F3 TAATGGGAGACACACCTGAGTGGATAC 

DIPS_PCR2_18F4 2F4 AAGATGCAGACACCGAAGGAAACC 

DIPS_PCR2_18F5 2F5 CAGGCAACAACAAAAGACGGAAAC 

DIPS_PCR2_18R1 2R1 TCTACCATATCACCATCTTCCAAAACTG 

DIPS_PCR2_18R2 2R2 AGGATGGACGTGTAAGAAACTCAGGG 

DIPS_PCR2_18R3 2R3 TCAAACCCAGACGTGCCAGTAAAC 

DIPS_PCR2_18R4 2R4 ACAGACAGATGGCAAAAGCGGG 

Table 19 HPV18 primers used in DIPS. From Luft et al. (2001). 

 

3.3.3.4.3 Control Primers 

As carried out by Luft et al. (2001), to confirm successful digestion and ligation of adapter, 

amplification of a genomic locus on chromosome 21 (1.4 kb, accession number ap001068) 

was done on the ligation product of each sample using primers DIPS_CON_1 

(TTCTCTATGTGCGTTCTCTCCCTG) in the first linear PCR and DIPS_CON_2 

(CAAACTCCAGGTCTCCAACCAG) together with AP1 (Table 17) in the nested PCR. 
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3.3.3.4.4 DNA Digestion 

See Table 20 and Table 21 for reagents used. Genomic DNA (1.2µg) from each sample was 

digested with Taq
α
I enzyme and Sau3AI enzyme, in separate reactions, in a total volume of 

20µl  for 16 hours at 37°C. The volume of DNA added to each reaction varied due to 

differing DNA concentrations; a volume of sterile PCR grade water was added to make a 

final reaction volume of 20µl . Sau3AI  and Taq
α
I enzymes were deactivated by incubation at 

60°C and 80°C, respectively for twenty minutes. 

 

Reagent Concentration Volume (µl ) 

DNA Variable To give 1.2µg 

Sau3AI 4U/µl  2.5 

Buffer 10X 2 

BSA 100X 0.2 

H2O  

To make total volume 

up to 20µl  

Total volume 

(µl )   20 
Table 20 Reagents used in Sau3AI digestion. Enzyme obtained from New England Biolabs (UK) Ltd, 

Hertfordshire, UK. Sau3AI recognition site is GATC. 

 

Reagent Concentration Volume (µl ) 

DNA Variable To give 1.2µg 

TaqI 20U/ µl  0.5 

Buffer 10X 2 

BSA 100X 0.2 

H2O  

To make total volume 

up to 20µl  

Total volume 

(µl )   20 
Table 21 Reagents used in Taq

α
I digestion. Enzyme obtained from New England Biolabs (UK) Ltd, 

Hertfordshire, UK. Taq
α
I recognition site is TCGA. 

 

3.3.3.4.5 Modifications to Digestion 

Following advice from New England Biolabs, to reduce star activity, the digestion incubation 

time was decreased from 16 hours to 2 hours at 37°C for both Taq
α
I and Sau3AI digestions. 

Sau3AI is supplied in glycerol. A high glycerol ratio is linked with star activity thus the 

volume of Sau3AI digestion reaction was increased to 50µl  to dilute the glycerol in the 
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digestion reaction (Table 22). Modification to Taq
α
I dissection was not needed due to low 

glycerol ratio in digestion reaction. 

 

Reagent Concentration Volume (µl ) 

DNA Variable To give 1.2µg 

Sau3AI 4U/µl  2.5 

Buffer 10X 5 

BSA 100X 0.5 

H20   

To make total 

volume up to 50µl  

Total volume 

(µl )   50 
Table 22 Reagents used in Sau3AI digestion. Enyzme obtained from New England Biolabs (UK) Ltd, 

Hertfordshire, UK. Sau3AI recognition site is GATC. 

 

3.3.3.4.6 Ligation 

Enzyme specific adapters for Taq
α
I and Sau3AI were ligated to the digested DNA by 

incubation at room temperature for 2 hours with T-4 DNA ligase (New England Biolabs 

(UK) Ltd, Hertfordshire, UK) (Table 23).  The ligase reaction was heat inactivated by 

incubation at 65°C for 10 minutes. Sixteen micro-litres of sterile PCR grade water were 

added to the ligase product to achieve a final volume of 40µl . 

 

Reagent Concentration Volume (µl ) 

Ligase Buffer 10X 2.4 

T4 Ligase 400U/µl  1 

Adapter  25µM 0.48 

H2O   0.12 

Digested DNA 60ng/µl  20 

Total Volume   24 

Table 23 Reagents used in ligation of adapter primers to digested DNA. T4 DNA ligase and buffer were 

obtained from New England Biolabs (UK) Ltd., Hertfordshire, UK. 

 

3.3.3.4.7 Modification to ligation 

The ligation reaction volume was increased to 60µl  to compensate for increasing the volume 

of the restriction digest reaction for Sau3AI, described in section 3.3.3.4.5. Furthermore, the 

volume for the ligation reaction for Taq
α
I was increased to 60µl  to reduce variability 
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between Taq
α
I and Sau3AI reactions (see Table 24). Incubation was as described in section 

3.3.3.4.6. 

 

Reagent Concentration 

Volume (µl ) 

Sau3AI 

Volume (µl ) 

Taq
α
I  

Ligase Buffer 10X 6 6 

T4 Ligase 400U/µl  1 1 

Adapter primer 25µM 1.2 1.2 

H2O   1.8 31.8 

Digested DNA 60ng/µl  50 20 

Total Volume   60 60 
Table 24 Reagents used in modified ligation of adapter primers to digested DNA. T4 DNA ligase and 

buffer were obtained from New England Biolabs
®
 (UK) Ltd, Hertfordshire, UK. 

 

3.3.3.4.8  Linear PCR 

PCR conditions are shown in Table 10. In separate reactions for Sau3AI and Taq
α
I, 2µl  of 

ligation product were added to the PCR reagents listed in Table 11. When using ligation 

product from the amended procedure in section 3.3.3.4.7, 3µl  of ligation product and 18.37µl   

sterile water were added to the PCR reagents listed in Table 11.  

 

3.3.3.4.9 Nested PCR 

Two micro-litres of linear PCR amplicon were added to the PCR reagents listed in Table 11. 

PCR conditions are shown in Table 10.  

 

3.3.3.4.10 Electrophoresis 

Five micro-litres of each DIPS amplicon was electrophoresed on a 2% (w/v) agarose gel 

stained with ethidium bromide and viewed under UV light. All fragments that differed in size 

to predicted fragment sizes (Table 25)  were subjected to DNA sequence analysis using the 

HPV specific primer that was used in nested PCR (see section 3.3.3.6).  
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 HPV Type       Sau3AI Cut (GATC) TaqI Cut (TCGA) 

NC_001526.1 Primer
1
 Strand

2
 

Nested
3
 

PCR 

Sau3AI 

Cut 

Expected 

size 

Taq
α
I 

Cut  

Expected 

size 

HPV16 P1 Sense 790 870 80   0 

HPV16 P2 Sense 1587 3478 1891   0 

HPV16 P3 Sense 2414 3478 1064   0 

HPV16 P4 Sense 2964 3478 514   0 

HPV16 P5 Anti-sense 5121 4537 584 505 4572 

HPV16 P6 Anti-sense 5850 5233 617 505 5266 

HPV16 P7 Anti-sense 6651 6150 501 505 6185 

HPV16 P8 Anti-sense 7524 6950 574 505 7017 

X05015               

HPV18 F1 Sense 948 4732 3833 3083 2160 

HPV18 F2 Sense 1425 4732 3356 3083 1668 

HPV18 F3 Sense 1929 4732 2852 3083 1224 

HPV18 F4 Sense 2814 4732 1967 3083 279 

HPV18 F5 Sense 3634 4732 1147 3083 0 

HPV18 R1 Anti-sense 6217 5038 1223 3083 3140 

HPV18 R2 Anti-sense 4982 4732 294 3083 1943 

HPV18 R3 Anti-sense 4629 919 3754 3083 1619 

HPV18 R4 Anti-sense 4016 919 3141 3083 989 

X74479               

HPV45 P1 Sense 815 919 104 3453 2638 

HPV45 P2 Sense 1597 2596 999 3453 1856 

HPV45 P3 Sense 2365 2596 231 3453 1088 

HPV45 P4 Sense 3146 4532 1386 3453 307 

HPV45 P5 Sense 3939 4532 593 3453 486 

HPV45 P6 Anti-sense 5544 4724 820 3453 2091 

HPV45 P7 Anti-sense 6266 5844 422 3453 2813 

HPV45 P8 Anti-sense 7001 6996 5 3435 3566 

HPV45 P9 Anti-sense 7764 6996 768 7014 750 

Table 25 Expected amplicon sizes for DIPS. Restriction sites (cut sites, nucleotide position shown in base-

pairs) were predicted using New England Biolabs
®
 “Webcutter” at http://tools.neb.com/NEBcutter2/ using 

Genbank accession numbers NC_001526.1, X05015 and X74479 for HPV16, HPV18 and HPV45, respectively. 

                                                 
1
 Annotated primer label. Note predicted fragment sizes for HPV16 are relative to primers from Table 14. 

2
 DNA strand amplified by primer. Sense=coding strand. Anti-sense=template strand. 

3 Base pair number of the viral nucleotide that is identical to the 5' base of the nested primer.  

http://tools.neb.com/NEBcutter2/
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3.3.3.5 Amplification of Papillomavirus Oncogene Transcripts 

Amplification of Papillomavirus Oncogene Transcripts (APOT) is an assay that allows the 

discrimination of HPV mRNAs derived from integrated and episomal viral genomes. APOT, 

first described by Klaes et al. (1999), is based on structural differences among 3′-ends of 

HPV oncogene transcripts and employs the rapid amplification of 3′ cDNA ends (3′-RACE) 

technique. Three prime-RACE reactions are used to isolate unknown 3′ sequences; in this 

PhD the unknown sequence was human sequence. APOT is summarised in Figure 23: cDNA 

is generated from mRNA using an adaptor linked oligo (dT)-primer. The cDNA is subjected 

to primary PCR with a HPV specific forward primer, specific for a region of E7 ORF, and a 

reverse primer consisting of the adapter primer sequence. The primary PCR is followed by a 

nested PCR with HPV E7 specific forward primer and a reverse primer consisting of the 

oligo(dT)17 sequence.  Nested PCR products are separated by gel electrophoresis and 

subjected to DNA sequence analysis. 

 

 

Figure 23 Amplification of Papillomavirus Oncogene Transcripts (APOT). 
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3.3.3.5.1 Reverse-transcription  

Reverse transcription is the generation of complementary DNA (cDNA) from mRNA using 

reverse-transcriptase (RT) enzyme: RNA is denatured by heating at 70 ºC followed by rapid 

chilling on ice to maintain the RNA in linear, denatured form. dNTPs, primer and RT are 

added to the denatured RNA and incubated at a temperature optimal for the RT, to allow 

generation of cDNA by reverse transcriptase. Three prime-RACE utilises an adaptor linked 

oligo (dT)-primer, first described by Frohman et al. (1988), to generate cDNA. The adapter 

linked oligo (dT)17 primer ((dT)17-p3) is a sequence of nucleotides consisting of restriction 

enzyme (XhoI (C/TCGAG), SalI (G/TCGAC) and ClaI (AT/CGAT) ) recognition sites 

(adapter) followed by a sequence consisting of  17 thymine nucleotides (see Table 27) . The 

choice of RT enzyme for APOT is Superscript™ II (Invitrogen
™

, Life Technologies
 
Ltd

 
, 

Paisley, UK) that is identical to Moloney murine leukaemia virus reverse transcriptase (M-

MLV RT), except that three acidic amino acids essential for RNase H activity of the gene 

have been mutated to neutral amino acids, thus eliminating the RNase H activity of the RT 

(Bustin 2000). 

 

RNA is very sensitive to degradation and any work using RNA needs to be performed using 

strict aseptic techniques and equipment and consumables that are certified RNAse free. 

Reverse transcription was done in a PCR-hood sterilised using UV light and prior washing 

with Ambion
® 

RNAseZAP
®
(Invitrogen

™
, Life Technologies

 
Ltd

 
, Paisley, UK) followed by 

washing with 70% ethanol. All pipettes and microfuge tube racks were wiped with Ambion
® 

RNAseZAP
®
 and 70% ethanol.  

 

Residual DNA in an RNA sample could potentially invalidate APOT by amplification of 

DNA, not cDNA from a sample. A DNAse step was performed before reverse transcription to 

remove residual DNA: 1µg of RNA was incubated with 0.2 units of DNAse (New England 

Biolabs (UK) Ltd, Hertfordshire, UK) in a total volume of 10µl   for 10min at 37ºC followed 

by heat inactivation at 75ºC for 10min. 

 

The DNAse treated RNA was mixed with the reagents in Table 26, for step 1, and heated at 

70ºC for 10min and put on ice. The RNA was then mixed with reagents in Table 26, for step 
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2, and heated at 42ºC for 10min. Two hundred units (1µl  ) of Superscript™ II (Invitrogen
™

, 

Life Technologies
 
Ltd

 
, Paisley, UK) were added to the RNA and incubated at 42ºC for 1hr 

followed by heat inactivation at 70ºC for 15min. The cDNA was diluted 1:50 by adding 

980µl   of sterile, RNAse free water.  

 

Step Reagent  Concentration Volume (µl  )  

Step 1 RNA 100ng/µl   10 

 (dT)17-p3 primer 500ng/ µl   1 

 dNTP  10mM 1 

 Total volume (µl  )   12  

    

Step 2 First strand buffer 5X 4 

 DTT  0.1M 2 

 Water (RNAse free)  1 

 Total volume  (µl  )  19 
Table 26 Reagents used in reverse transcription. Reagents supplied by Invitrogen

™
, Life Technologies

 
Ltd, 

Paisley, UK. 

 

3.3.3.5.2 Primers 

APOT PCR comprised of two PCR reactions: a primary PCR and a nested PCR. See Table 27 

for the primers used. HPV primer sequences were obtained from Vinokurova et al. (2008). p3 

reverse and (dT)17-p3 sequences were obtained from Frohman et al. (1988). 

 

Primer Name Sequence 

p3 reverse  GACTCGAGTCGACATCG 

(dT)17-p3  GACTCGAGTCGACATCGATTTTTTTTTTTTTTTTT 

HPV16 PCR1 CGGACAGAGCCCATTACAAT 

HPV16 PCR2 CTTTTTGTTGCAAGTGTGACTCTACG 

HPV18 PCR1 TAGAAAGCTCAGCAGACGACC 

HPV18 PCR2 ACGACCTTCGAGCATTCCAGCAG 

HPV45 PCR1 CCCACGAGCCGAACCACAG 

HPV45 PCR2 GAGAGCTCGGCAGAGGACCTTAG 

Table 27 APOT primers for HPV16, HPV18 and HPV45. HPV primer sequences were obtained from 

Vinokurova et al. (2008). p3 reverse and (dT)17-p3 sequences were obtained from Frohman et al. (1988). 
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3.3.3.5.3 Primary PCR 

PCR conditions are shown in Table 10. One micro-litre of cDNA was added to the reagents 

in Table 11. 

 

3.3.3.5.4 Nested PCR 

PCR conditions are shown in Table 10. Five micro-litres of primary PCR amplicon were 

added to the reagents in Table 11.  

 

3.3.3.5.5 Electrophoresis 

Nested PCR amplicons were electrophoresed on a 1.2% (w/v) agarose gel. All fragments 

were excised and subjected to DNA sequence analysis using the HPV specific primer used in 

the nested PCR reaction (section 3.3.3.6). 

 

3.3.3.6 DNA Sequence Analysis 

In this PhD, the Sanger dideoxy method of DNA sequencing was used (Sanger et al. 1977). 

In summary, a primer is annealed to a PCR amplicon in an asymmetric PCR reaction (a 

single primer used) containing normal dNTPs and a small proportion of dideoxynucleoside 

triphosphates (ddNTPs) labelled with a fluorescent tag. A different florescent label is used for 

each ddNTP nucleoside. If a ddNTP molecule is incorporated into the DNA strand during 

PCR, further extension along that strand is prevented. The PCR reaction produces 

fluorescently labelled amplicons that differ by one base pair. Amplicons are separated by 

electrophoresis usually using an ABI™ sequencer (Applied Biosystems™, Life Technologies 

Ltd, Paisley, UK). The ABI™ sequencer uses capillary technology and the amplicons are 

electrophoresed through capillaries containing acrylamide gel. As the amplicons are 

electrophoresed, the smaller fragments pass through the capillary faster and a laser excites the 

fluorophore on the amplicon, the fluorescence is detected and as subsequent amplicons are 

detected, a sequence comprised of a chain of fluorescence signals is obtained. The 

fluorescence data is converted into a file containing a chromatogram trace of the DNA 

sequence (Figure 24). Sanger sequencing was done off site by Source BioScience 

LifeSciences (Oxford, UK) and the following requirements were adhered to: 
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Figure 24 DNA sequencing chromatogram. Top chromatogram required minimal editing. Middle 

chromatogram required trimming after “GGCCA” to remove noise. The bottom chromatogram required editing 

to reduce the number of uncalled bases (N); the correct nucleotide was added. 

 

3.3.3.6.1 Amplicon Requirements  

One nanogram per micro-litre of DNA per 100bp of amplicon length was needed for 

sequencing. For amplicons with a single band observed by electrophoresis, the concentration 

of the amplicon was estimated by comparison to a size standard. A 100bp DNA ladder, with 

known concentrations, was used as a size standard and electrophoresed alongside the samples 

on the same gel. Amplicons with multiple bands observed by electrophoresis were subjected 

to gel purification. The concentrations of the purified amplicons were estimated by 

electrophoresis of 5µl   of the purified amplicon alongside a size standard 100bp DNA ladder. 

 

3.3.3.6.2 Primer Requirements  

Amplicons were sequenced with a HPV specific primer as explained in each section for RS-

PCR (3.3.3.3.4), DIPS (3.3.3.4.10) and APOT (3.3.3.5.5). Primers were sent at a 

concentration of 3.2pmol/μl. 

 

Trimmed 
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3.3.3.6.3 PCR Purification 

Before a PCR amplicon could be sent for Sanger sequencing, purification was essential to 

remove residual dNTPs and primers remaining in the amplicon that could interfere with the 

Sanger PCR reaction. Amplicons that were observed as a single band by electrophoresis, 

exonuclease I and alkaline phosphatase purification was used. Amplicons that were observed 

as multiple bands by electrophoresis, amplicons were excised from the gel and a gel 

purification kit was used. 

 

Exonuclease I catalyses the removal of nucleotides from single-stranded DNA in the 3' to 5' 

direction and was applied to amplicons to remove residual primers. Amplicon size and 

concentration was estimated as described in 3.3.3.6.1 and sufficient DNA was added to the 

exonuclease reaction to allow 1ng/μl per 100bp in a total volume of 20μl (Table 28). The 

sample was incubated at 37ºC for 30min followed by heat inactivation at 80 ºC for 20min. 

 

Alkaline phosphatase is an enzyme that catalyzes the removal of phosphate groups from 

nucleotides. An alkaline phosphatase reaction was used to prevent the PCR amplicons from 

ligating to each other and maintaining the amplicons in a linear form for sequencing. The 

entire 10μL of exonuclease treated amplicon was added to the reagents for alkaline 

phosphatase treatment in Table 29 and incubated at 37ºC for 30min followed by heat 

inactivation at 80 ºC for 2min. The amplicon was then sent for sequencing with the 

appropriate primer. 
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Reagent Volume (μl) 

Amplicon DNA Variable 

Alkaline Phosphatase 

Buffer 

1 

Sterile water For a final 

volume of 10 

μl 

Exonuclease I 20U/μl 0.5 

Total 10 
Table 28 Reagents for Exonuclease I reaction (New England Biolabs (UK) Ltd, Hertfordshire, UK).  

 

Reagent Volume 

(μl) 

Exonuclease I treated 

amplicon DNA 

10 

Alkaline Phosphatase 1U/μl 1 

Alkaline Phosphatase Buffer 2  

Sterile water 7 

Total Volume 20μl 
Table 29 Reagents for Alkaline phosphatase reaction (Roche Diagnostics Ltd, West Sussex, UK). 

 

Samples that had more than one band observed by electrophoresis were subjected to gel 

purification. To maximise the concentration purified from the gel, the entire remaining 

amplicon was electrophoresed on a gel stained with ethidium bromide. The gel was viewed 

by UV light at lowest possible intensity to prevent DNA damage, and photographed. Each 

lane in the gel was separated by cutting with a sterile scalpel and the bands were excised, 1 

lane at a time whilst being view under low intensity UV light. Each gel band excised was 

placed in a microfuge tube and DNA was extracted using an Illustra™ GFX™ PCR DNA 

and Gel Band Purification Kit (GE Healthcare Life Sciences, Buckinghamshire, UK). The 

Illustra™ GFX™ PCR DNA and Gel Band Purification Kit is designed to extract DNA from 

PCR products or agarose gels using adsorption of DNA to a silica membrane in a column, 

followed by washing and elution of the DNA from the membrane. Manufacturer’s 

instructions were followed. In summary, the gel slice was dissolved in a buffer containing a 

pH indicator to ensure the solution was optimal for DNA adsorption to take place. The 

dissolved agarose was added to the column and DNA was bound to the silica membrane by 

centrifuging at 13,000rpm for 30s. The membrane was washed using a buffer containing 

ethanol followed by centrifuging at 13,000rpm for 30s. The DNA was eluted by addition of 

25µl   of sterile water and incubation at room temperature for 1 minute followed by 
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centrifuging at 13,000rpm for 1 minute. Five micro-litres of eluted DNA was electrophoresed 

on a 2% (w/v) agarose gel stained with ethidium bromide; the concentration of the purified 

DNA was estimated and if a single band was observed, 1ng/µl   per 100 base pairs of 

amplicon were sent for sequencing with an appropriate primer.  

 

3.3.3.6.4 Sequencing of HPV16, HPV18 and HPV45 DNA in Vector  

To confirm the presence of HPV16, HPV18 and HPV45 DNA in the plasmid vectors, 

described in section 3.1.3, 100ng/µl   of plasmid encoding HPV DNA were sent to Source 

Bioscience LifeSciences (Oxford, UK) for Sanger DNA sequence analysis. E2 forward 

primer was the primer used for sequencing and E2 was confirmed in all of the vectors. 

 

3.3.3.6.5 Data Analysis 

The sequence data from Source BioScience LifeSciences was downloaded through a link 

provided in an email. Files in “ABI” format were used for analysis. The ABI file was opened 

and edited using “BioEdit”, a free sequence alignment editor (Figure 24).  Edited files were 

saved with a new filename and the nucleotide sequences were saved in “FASTA” format in a 

txt file. FASTA format allows multiple DNA sequences to be analysed simultaneously and is 

“>” followed by sequence name and the sequence is entered on the following line for 

example: 

>DNA SEQ_1 

Agctagctagatagatagctgatcgta...... 

>DNA SEQ_2 

Agctagctagatagatagctgatcgta...... 

 

The txt file containing FASTA data was uploaded to The National Centre for Biotechnology 

Information Basic Local Alignment Search Tool (BLAST) at 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBla

st&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome. BLAST 

allows a comparison and alignment to sequence data in the NCBI database. BLAST compares 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome
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nucleotide or protein sequences to sequence databases and calculates the statistical 

significance of matches. The data was compared to the human genome database, to the 

database of “others” and to DNA sequences from reference strains with Genbank accession 

numbers NC_001526.1, X05015 and X74479 for HPV16, HPV18 and HPV45, respectively; 

megablast program was selected. Figure 25 shows BLAST output: sequences that had both 

human and HPV matches were integrated. Figure 26 shows the alignment of the BLAST 

data; the alignment in Figure 26B was used to determine the site of HPV disruption (1756bp 

in Figure 26B). Alignments from both Figure 26A and Figure 26B were used to determine 

whether sequence was the same, inserted or flush between human and HPV DNA. Matches 

with over 95% identity between query and reference sequence were considered to be viable 

matches; matches with less than 95% identity between query and reference sequence were 

interpreted with caution and a sample was sent for sequencing again if necessary. 

Occasionally a sequence would have a partial match to HPV sequence, for example in Figure 

25B and Figure 26B but no match would be made to human sequences. In these 

circumstances DNA sequences were submitted to basic local alignment tool (BLAT) at the 

University of California Santa Cruz (UCSC), described below. 

 

Nucleotide sequences that had a match to human DNA using BLAST were also submitted to 

a basic local alignment tool (BLAT) at the University of California Santa Cruz (UCSC) 

online at http://genome.ucsc.edu/cgi-bin/hgBlat?command=start (Kent et al. 2002) . BLAT is 

an alignment tool that compares the query sequence to an index of the entire human genome. 

BLAT search results (Figure 27A) were used to determine the match that had the highest 

score, with highest identity and spanned the lowest number of nucleotides. BLAT browser 

(Figure 27B) was then used to determine the chromosomal band in which integration 

occurred and to gather information of genes or repeat elements present at the site of 

integration. 

 

To determine if integration resided within a fragile site, NCBI “Gene” database at 

www.ncbi.nlm.nih.gov/gene/  was used. The chromosome number “AND” and “Fragile” 

were entered into the search engine and output was a list of fragile sites on the chromosome 

of interest. Figure 28 shows a search for fragile sites on chromosome 8. Note that common 

fragile sites are detected as breaks on metaphase chromosomes when treated with reagents 

http://genome.ucsc.edu/cgi-bin/hgBlat?command=start
http://www.ncbi.nlm.nih.gov/gene/
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such as aphidicolin. A common fragile site spans region of a chromosome (Sutherland and 

Richards 1999), approximately 1Mbp (Thorland et al. 2003), and is not a precise location 

such as the one given by a search for HPV integration, described above.  Integration was 

considered to be within a common fragile site if the chromosomal band from the UCSC 

browser was within 1Mbp of a common fragile site listed on the NCBI Gene database. Rare 

fragile sites are identified by presence of AT nucleotide repeats thus the location can be 

precisely defined. Integration was considered to be within a rare fragile site if the 

chromosomal band was identical between the output from the UCSC browser and a rare 

fragile site listed on the NCBI Gene database.   
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Figure 25 Expected BLAST output for an integration site. A) Comparison of integrated HPV to the human 

genome database; sequence after 150bp is a 100% match for human sequence on chromosome 8. B) Comparison 

of integrated HPV to HPV16 reference strain NC_001526.1; sequence up to approximately 150bp is 100% 

match to HPV16. 

  

A 

B 
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Figure 26 BLAST alignment of data shown in Figure 25. “Query” is the sequence uploaded to BLAST; 

“Subject” is the sequence the query is aligned to; plus/minus indicates antisense orientation; plus/plus indicates 

sense orientation. A) Alignment of query sequence to human NT_0088046_16: 169bp to 263bp matches to 

NT_0088046_16 from 41681077bp to 41680983bp. B) Alignment of query sequence to HPV16: 1bp to 156bp 

matches to NC_001526.1 from 1601bp to 1756bp.  

  

A 

B 
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Figure 27 Output from UCSC BLAT alignment. A) BLAT search results. Red arrow indicates best match to 

chromosome 8, with highest score (95bp match with 100% identity that spans 95bp). B) BLAT browser output 

Top red arrow shows data of the chromosome band in which integration occurs; middle red arrow indicates data 

of integration occurs in relation to known genes; bottom red arrow shows data of integration in relation to repeat 

elements. Integration is within 8q24.21 and within 200bp of a DNA and LINE repeat element; there are no 

known genes within this region of integration.   

 

A 

B 
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Figure 28 Output from NCBI “Gene” database when searched for “Fragile AND 8”. Two fragile sites 

FRA8E and FRA8C reside in 8q24.1 and FRA8D on 8q24.3 but are not within 8q24.21 or within 1Mb of 

8q24.21.  
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3.3.3.7 Confirmation of Integration sites 

To verify the detection of integration sites, primers that flanked the host viral junction on 

HPV DNA and human DNA were designed. Primers were designed using the method 

described in section 3.3.3.1 with the following exceptions: 

 

It was not possible to use chromatogram data to design primers because the sequence data 

were either too short, had too many uncalled bases or the host-viral junction was too close to 

the end of the chromatogram data to allow appropriate primers to be designed. An artificial 

sequence had to be made by obtaining 400bp either side of the host viral junction. Four 

hundred base pairs of HPV DNA preceding the host viral junction was obtained using the 

reference strain sequences (NC_001526.1 for HPV16 and X05015 for HPV18) and 400 base 

pairs of human DNA, beyond the host viral junction, was obtained using “View” “DNA” 

options on UCSC genome browser. It was important to consider the orientation of both the 

HPV and human sequences as this would affect the primer design. To verify that correct 

sequences for human and HPV had been obtained, the artificial HPV and human sequences 

were aligned against the edited chromatogram data (in section 3.3.3.6.5) for the integration 

event; BLAST was used. If the chromatogram data matched the obtained data then Primer3 

was used to design primers. The host viral junction was marked with “[“ and “]” so that 

primers were not designed over the host viral junction. A product size range of 200 to 500 

base pairs was selected.  

 

To verify non-contiguous sequences of HPV, the same principle as above applied but only 

HPV sequence was used to design the primers.  

 

As described in section 3.3.3.1, the PCR could potentially be invalidated if non-specific 

sequences to HPV or human were amplified therefore, primer sequences were subjected to 

alignment to human and “others” database sequences using NCBI megaBLAST.  

 



 

 

 

1
1
2
 

Primer ID Sample
1
 Junction

2
 Sequence Annealing

3
  MgCL2

4
 

J1455_caski_F CaSki J1455 CTGCACAGGAAGCAAAACAA 55 2 

J1455_caski_R    TCATTGCCAAGGAAAACTCA     

Caski E1L1F CaSki Non- contiguous TGAAATTTCTGCAAGGGTCTG 55 2 

Caski E1L1R    GCAAACCACCTATAGGGGAAC     

Caski E2L1F CaSki Non- contiguous ATGCGGGTGGTCAGGTAATA 55 2 

Caski E2L1R    CCCATGTACCAATGTTGCAG     

Caski L1L1F CaSki Non- contiguous TGCGTGCAACATATTCATCC 55 2 

Caski L1L1R    GAACCATATGGCGACAGCTT     

SiHa J3132_F SiHa J3132  TGGATATACAGTGGAAGTGCAGTTTG 55  2 

SiHa J3132_R     TGAGGCCACAAGACGTGGCA     

W12_J1756F W12 J1756 AACGTGTTGCGATTGGTGTA 55 2 

W12_J1756R    TTCCAACCTGAAACACACACA     

W12_J2749F W12 J2749 AAGAAATGCATTGGATGGAAA 55 2 

W12_J2749R    TCCTTGATCTGCCATGCTTA     

W12_J3726F W12 J3726 CCCTGCCACACCACTAAGTT 55 2 

W12_J3726R    ATAAGCAGGCTCGACCAAAA     

W12_J3197F W12 J3197 ACAGTGGAAGTGCAGTTTGAT 55 2 

W12_J3197R    TTGTAAGGCTCCTGCATGAAT     

Hela_J2497F HeLa J2497 TTCCTGCGATACCAACAAAT 55  2  

Hela_J2497R    CCCGTCAGTTTCCTCATCTG     

Hela _J3030Chr8_F HeLa J3030 GCGTGCAGGACAAAATCATA  55 2 

Hela _J3030Chr8_R    GCAGGGGGAGTACATTAGAGG     

 

Table 30 Primers used for confirmation of integration or non-contiguous sequences. Primer ID, sample type, junction name, primer sequences, PCR annealing 

temperatures and volume of 15mM MgCl2 added to PCR regents is shown. Primer sets with “na” in annealing and MgCl2 could not be successfully produce an amplicon 

following multiple attempts at optimisation. 

                                                 
1
 Sample number shown for clinical samples: biopsy, Baseline and HI-BCD. Clone ID shown for PC08 or PC09 cell lines. 

2
 Junction ID is denoted as viral disruption number equal to last viral nucleotide before recombination to human sequence. Numbering of HPV sequence is according to 

Genebank accession numbers NC_001526.1 and X05015 for HPV16 and HPV18, respectively. 
3
 Annealing temperature used in touchdown PCR in Table 10. 

4
 Volume of 15mM MgCl2 added to PCR reagents in Table 11.  



 

 

 

1
1
3
 

Primer ID Sample
1
 Junction

2
 Sequence Annealing

3
  MgCl2

4
 

Hela _J3100Chr8_F HeLa J3100 GAAGGAAACCCTTTCGGAAC 55  2  

Hela _J3100Chr8_R    CCCACTGGGAAGGATACAAA     

D1D D5D J5003 F PC09 D  J5003 GCACCTATAGATTTTCCACTACG 55 2 

D1D D5D J5003 R   ACAAGGTCGCTGCTTAGGG    

PCOD_J3303_f PC09 D  J3303 TCAGTAACTGTGGTAGAGGGTCAA 68 2 

PCOD_J3303_R    AGCTCTGTGGAGTCCGTGAT     

D5H J1848 F PC09 H  J1848 ATGTTCATGGGGAATGGTTG 58 2 

D5H J1848 R    CCTATGGGGCAGCATGATTA     

D1H D5H J2490F PC09 H  J2490 TGAAATTTCTGCAAGGGTCTG 55 2 

D1H D5H J2490R    CTCTCTGCCCACGGAAAATA     

PCO9 J6033F PC09 Het J6033 TGGTACATGGGGATCCTTTG 58 2 

PCO9 J6033 R    GTTAGTCCTCCGAGGGAAGC     

PC09_J3632_F PC09 Het J3632 CCCTGCCACACCACTAAGTT 55 2 

PC09_J3632_R    GTGGCTGTAGAGGTGGGAAA     

1M4M_J1194F PC08 M  J1194 CTGCACAGGAAGCAAAACAA 58 2 

1M4M_J1194R    ATGTTCCAGGGAGAACAGGA     

D1M non contig F PC08 M  Non- contiguous TGCCAGTACGCCTAGAGGTT 55 2 

D1M non contig R    CGTGCCAAATCCCTGTTTT     

PC08_P_Noncontig_F PC08 P  Non- contiguous AAGGATTGTGCAACAATGTG 55 2 

PC08_P_Noncontig_R    TGCACAAAATATGTTCGTATTCC     

D1Y J2116 F PC08 Y  J2116 ATGCACAATTGGCAGACACT 58 2 

D1Y J2116 R    ATCCCACCACGGTTGATTT     

D4Y J3167F PC08 Y  J3167 TTTAACTGCACCAACAGGATG 58 4 

D4Y J3167R    GTTGCCTCAATTCTGGGTGT     

Table 30 Continued. Primers used for confirmation of integration or non-contiguous sequences. Primer ID, sample type, junction name, primer sequences, PCR 

annealing temperatures and volume of 15mM MgCl2 added to PCR regents is shown. Primer sets with “na” in annealing and MgCl2 could not be successfully produce an 

amplicon following multiple attempts at optimisation. 

                                                 
1
 Sample number shown for clinical samples: biopsy, Baseline and HI-BCD. Clone ID shown for PC08 or PC09 cell lines. 

2
 Junction ID is denoted as viral disruption number equal to last viral nucleotide before recombination to human sequence. Numbering of HPV sequence is according to 

Genebank accession numbers NC_001526.1 and X05015 for HPV16 and HPV18,  respectively. 
3
 Annealing temperature used in touchdown PC in Table 10. 

4
 Volume of 15mM MgCl2 added to PCR reagents in Table 11.  



 

 

 

1
1
4
 

Primer ID Sample
1
 Junction

2
 Sequence Annealing

3
  MgCl2

4
 

1571_J1781_F Baseline J1781 ATGTTCATGGGGAATGGTTG na   

1571_J1781_R 1571   GCTGCAGTGAGCTGAGATTG     

1571_J3205_f Baseline J3205 TGGAAGTGCAGTTTGATGGA na   

1571_J3205_R 1571   TGTAGGTGGGAGGCGATATG     

1571_J3080F Baseline J3080 GCAATTGAACTGCAACTAACG na   

1571_J3080R 1571   CTGGCAGGATGAAAATCCTAA     

913_J3098_F Baseline J3098 TTTAACTGCACCAACAGGATG na   

913_J3098_R 913   TGTGGCTCGAACACAAACAT     

913_J6543_F Baseline J6543 GATATGGCAGCACATAATGACA na   

913_J6543_R 913   CCATGGCTCTGGGTTTAGAT     

HIBCD8_J2431F HIBCD8 J2461 TGGTGCAGCTAACACAGGTAA na   

HIBCD8_J2431R    TTTTGCCAAAGGATTTCTGC     

HIBCD9_J1903F HIBCD9 J1903 GCGTAGTACAGCAGCAGCAT na   

HIBCD9_J1903R    GCTGGCTAACATGGCAAAAT     

1W E1-L1 F Biopsy  Non- contiguous AGGTACCAATGGGGAAGAGG 55 2 

1W E1-L1 R 1W   GAACCATATGGCGACAGCTT     

1W L1-E6E7 F Biopsy Non- contiguous GGACCGGTCGATGTATGTCT 55 2 

1W L1-E6E7 R 1W   GCAACATATTCATCCGTGCTT     

1W L1-L1 F Biopsy Non- contiguous TTTGCTACATCCTGTTTTTGTTTT 55 2 

1W L1-L1 R 1W   AATGAAGGAGCTTGGTCAGTTA     

J2345bp 6N F Biopsy J2345 TGGTACAATGGGCCTACGAT 55 3 

J2345bp 6N R 6N   ACCTGTGGATGTGCATGTGT     

J944 3O F Biopsy J944 ACTCTACGCTTCGGTTGTGC 55 2 

J944 3O R 3O   CGGTCAGTTTCCTGCATTTT     

Table 30 Continued. Primers used for confirmation of integration or non-contiguous sequences. Primer ID, sample type, junction name, primer sequences, PCR 

annealing temperatures and volume of 15mM MgCl2 added to PCR regents is shown. Primer sets with “na” in annealing and MgCl2 could not be successfully produce an 

amplicon following multiple attempts at optimisation. 

                                                 
1
 Sample number shown for clinical samples: biopsy, Baseline and HI-BCD. Clone ID shown for PC08 or PC09 cell lines. 

2
 Junction ID is denoted as viral disruption number equal to last viral nucleotide before recombination to human sequence. Numbering of HPV sequence is according to 

Genebank accession numbers NC_001526.1 and X05015 for HPV16 and HPV18, respectively. 
3
 Annealing temperature used in touchdown PCR in Table 10. 

4
 Volume of 15mM MgCl2 added to PCR reagents in Table 11. 



 

 

 

1
1
5
 

Primer ID Sample
1
 Junction

2
 Sequence Annealing

3
  MgCl2

4
 

5B J2673 F Biopsy J2673 TGAAATTTCTGCAAGGGTCTG  na na 

5B J2673 R 5B   CCCACATCATCCGCTAGATT     

6N J1368 F Biopsy J1368 GCACATGCGTTGTTTACTGC na na 

6N J1368 R 6N   TACCCAGCAGTGGGATTGTT     

6N J2345 F Biopsy J2345 TGGTACAATGGGCCTACGAT 55 3 

6N J2345 R 6N   ACCTGTGGATGTGCATGTGT     

 

Table 30 Continued. Primers used for confirmation of integration or non-contiguous sequences. Primer ID, sample type, junction name, primer sequences, PCR 

annealing temperatures and volume of 15mM MgCl2 added to PCR regents is shown. Primer sets with “na” in annealing and MgCl2 could not be successfully produce an 

amplicon following multiple attempts at optimisation. 

                                                 
1
 Sample number shown for clinical samples: biopsy, Baseline and HI-BCD. Clone ID shown for PC08 or PC09 cell lines. 

2
 Junction ID is denoted as viral disruption number equal to last viral nucleotide before recombination to human sequence. Numbering of HPV sequence is according to 

Genebank accession numbers NC_001526.1, X05015 and X74479 for HPV16, HPV18 and HPV45, respectively. 
3
 Annealing temperature used in touchdown PCR in Table 10. 

4
 Volume of 15mM MgCl2 added to PCR reagents in Table 11.  
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3.3.3.7.1 PCR Conditions 

All primers used to verify host viral junctions or non-contiguous sequences are shown in  

Table 30.  

 

All PCRs were optimised using a “Touchdown” protocol. Touchdown PCR is used to 

increase specificity of primer annealing and involves reducing the annealing temperature 

each time a PCR cycle is performed. Five micro-litres of sample DNA (10ng/µl  ) was added 

to the PCR reagents shown in Table 11. PCR conditions are shown in Table 10. All 

amplicons were electrophoresed on a 2% (w/v) agarose gel and subjected to DNA sequence 

analysis (sections 3.3.3.6.1, 3.3.3.6.2 and 3.3.3.6.5).  

 

Where an amplicon could not be produced by PCR, further attempts were made to produce an 

amplicon by changing the MgCl2 volume and/or increasing or decreasing the annealing 

temperature.  

 

3.3.3.8 Real-time, quantitative Reverse-Transcription PCR  

Real-time, quantitative Reverse-Transcription PCR (RT-PCR), also known as qPCR is a tool 

to quantify mRNA and used to detect transcripts and detect changes in gene expression. 

qPCR is based on the principle of PCR, described in section 3.3.1 but it involves the use of a 

fluorescent dye or probe the fluorescence of which can be quantified in real-time.  In this 

PhD, SYBR Green I fluorescent dye was used. SYBR green is a fluorescent dye that binds to 

double stranded DNA and is ideal for use in qPCR as it eliminates the need for molecular 

probes (Morrison et al. 1998). In qPCR, with SYBR green, fluorescence increases during 

elongation and upon denaturation, fluorescence is diminished. Relative quantification was 

used and is based on levels of target gene expression versus expression levels of a 

housekeeping gene. Expression of housekeeping genes can vary between individuals. Two 

housekeeping genes, TBP2 and HPRT, were used to obtain target gene expression relative to 

the average of housekeeping gene expression. The target genes amplified were HPV16 E2, 

E6 and E7. 
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There are 3 steps in qPCR: firstly, cDNA is generated from mRNA using reverse 

transcription, as mentioned in section 3.3.3.5.1, cDNA is then subjected to qPCR and finally 

the data is analysed. CaSki was used as a positive control and to calculate PCR efficiencies 

for each gene analysed. An RNA negative (water) was used as a negative control. 

 

3.3.3.8.1 Reverse Transcription 

As mentioned in section 3.3.3.5.1, RNA is easily degraded and reverse transcription for 

qPCR was performed under the same aseptic, RNAse free conditions as described in section 

3.3.3.5.1. Superscript
®

III (invirtrogen), is an M-MLV RT enzyme, and was used in reverse 

transcription for qPCR. Superscript
®

III is a proprietary mutant of SuperScript
®
 II RT that is 

active at 50°C and has a half-life of 220 minutes, providing increased specificity. Random 

hexamer primers were used in reverse transcription to generate cDNA. A random hexamer 

primer is an oligonucleotide of 6 base pairs that is synthesised randomly and anneals to RNA 

at random points. The use of a random primer reduces the risk of secondary structures caused 

by RNA during the process of reverse transcription. 

 

Contaminating DNA can potentially invalidate qPCR thus it was necessary to remove 

residual DNA from the RNA samples using DNAse treatment. One micro-gram of RNA was 

treated with DNAse using the method in section 3.3.3.5.1. 

 

Although a DNAse step was performed before reverse transcription, it was still possible that 

contaminating DNA remained. As described in the next section, primers that annealed to 

separate exons were used to avoid amplification of contaminating DNA. For amplification of 

HPV E2, E6 and E7 mRNA, it was not possible to design primers on separate exons because 

E2, E6 and E7 do not have intron-exon boundaries like human genes. To overcome this, 

reverse transcriptase negative controls without Superscript
®

III, were generated for each 

sample to allow amplification and detection of DNA, rather than cDNA. The qPCR values 

generated by RT-positive samples were adjusted by deducting qPCR values generated by the 

RT-negative controls (section 3.3.3.8.3). 
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Half a microgram of DNAse treated RNA for RT positive reaction and 0.5µg of DNAse 

treated RNA for RT negative control was added to the reagents for step 1 in Table 31. The 

sample was incubated at 65ºC for 5min and then placed on ice. The entire sample was added 

to the reagents in step 2 in Table 31. The sample was incubated at 25ºC for 5min, followed by 

50ºC for 50min and heat inactivated by incubation at 70ºC for 15min. 

 

 Reagent  Concentration Volume µl    

Step 1 RNA 0.5µg 5 

 Random primers 200ng/µl   1 

 dNTP  10mM 1 

 RNAse free 

water 

  6 

 Total volume µl     13 

Step 2 First strand 

buffer 

5X 4 

 DTT  0.1M 1 

 RNAse™OUT  1 

 Superscript
®

III 200U/µl   1 

 Total volume   20 

Table 31 Reagents used in step 1 and 2 of reverse transcription for qPCR. dNTPS were obtained from 

Invitrogen
™

, Life Technologies
 
Ltd

 
, Paisley, UK; random primers were obtained from Sigma Aldrich

®
, Dorset, 

UK. 

 

3.3.3.8.2 qPCR 

cDNA from experimental samples were diluted 1:10 and cDNA from CaSki was diluted 

1:100. To obtain mean values for each sample experimental samples were subjected to qPCR 

in duplicate and CaSki was subjected to qPCR in triplicate. All qPCR assays were optimised 

by Dean Bryant, a PhD student in the HPV Research Group at Cardiff University. 

Housekeeping genes for qPCR were selected by Dean Bryant based on their stability and 

expression levels described in study of housekeeping gene expression in epidermal 

keratinocytes (Allen et al. 2008).  

 

Primers (Table 32) that annealed to separate exons were used to avoid amplification of 

contaminating DNA. HPRT and TBP2 primer sequences were described by Allen at al. 
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(2008) and Minner and Poumay (2009), respectively. E6 and E7 primers were described by 

Wang-Johanning et al. (2002); E2 primers were described by Roberts et al. (2008). 

LightCycler
®
 Sybr Green I master mix (Roche Diagnostics Ltd, West Sussex, UK) was used 

for qPCR. Eighteen micro-litres of a mastermix of the reagents in Table 11 was added to a 20 

µl   LightCycler
®
 capillary. Two micro-litres of diluted cDNA were added to the capillary. 

The capillaries were placed in a Roche LightCycler
®
 Carousel Based System (Roche 

Diagnostics Ltd, West Sussex, UK). qPCR conditions are shown in Table 10. 

 

 Primer 

Name Sequence 

AT 

(ºC) 

MgCl2 

(µl  ) 

HPRT_F
1
 TGACACTGGCAAAACAATGCA 60 1.6 

HPRT_R
1 

GGTCCTTTTCACCAGCAAGCT     

TBP2_F
2
 TCAAACCCAGAATTGTTCTCCTTAT 60 2.4 

TBP2_R
1 

CCTGAATCCCTTTAGAATAGGGTAGA     

E6_F
3
 CTGCAATGTTTCAGGACCCA 60 1.6 

E6_R
3 

TCATGTATAGTTGTTTGCAGCTCTGT     

E7_F
3 

AAGTGTGACTCTACGCTTCGGTT 62 2 

E7_R
3 

GCCCATTAACAGGTCTTCCAAA     

E2_F
4
 AACGAAGTATCCTCTCCTGAAATTATTAG 58 1.6 

E2_R
4 

CCAAGGCGACGGCTTTG     
Table 32 Primer sequences for qPCR. Annealing temperature (AT) and MgCl2 volume for each qPCR 

reaction are shown. 

 

3.3.3.8.3 qPCR analysis 

Data from qPCR was viewed using LightCycler
®
 software version 3.5. A limitation in using 

SYBR Green I is that any double stranded DNA will be detected, even primer dimerisation. 

To overcome this, a melting curve was plotted by increasing the temperature over the melting 

temperature of the amplicon produced, at the end of the qPCR cycles, to distinguish 

amplicons of qPCR from secondary artefacts such as primer dimers (Figure 29). Any data 

that was not consistent with amplicon melt curves were excluded from further analysis. 

  

                                                 
1
 Allen et al. (2008). 

2
 Minner and Poumay (2008). 

3
 Wang-Johanning et al. (2002). 

4
Roberts et al. (2008). 
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Figure 29 An example of a melting curve. Samples that generated secondary artefacts were excluded from 

further analysis.  

 

Individual samples generate variable data primarily due to variation in starting material 

quantity or quality; this may induce errors in quantification. PCR efficiency calculations were 

included to compensate for sample variability. PCR efficiencies of each housekeeping gene 

and each target gene were made by Dean Bryant by performing qPCR, as described above on 

CaSki cDNA diluted 1/3, 1/9, 1/27, 1/81, 1/243, 1/729 and 1/2187. The purpose of a dilution 

series is to mimic as much as possible the experimental samples that are to be quantified. The 

data from the dilution series and experimental samples were uploaded on to qBase, software 

that utilises mathematical models to determine expression of target genes (Hellemans et al. 

2007). Default parameters in qBase selected for analysis were: normalisation strategy was set 

at “reference targets”; and the average cycle quantity (Cq) was the arithmetic mean and target 

genes were scaled to the Cq average. RT positive and RT negative samples were indicated 

and cycle threshold (Ct) values from RT negative samples were deducted from RT positive 

sample by the qBase software. Ct value is defined as the number of cycles required for the 

fluorescent signal to exceed background levels and is inversely proportional to the amount of 

nucleic acid in the sample. Normalised relative quantities (NRQ) were calculated for each 

Amplicon 

melt curve 

Secondary 

artefact 
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sample by qBase.  Sample Ct values were normalised to the PCR efficiency of CaSki for each 

target and housekeeping gene.  NRQ calculations were based on qPCR Ct values and PCR 

efficiency according to Hellemans et al. (2007). qBase also incorporates quality control 

parameters that consider the stability of expression of the housekeeping genes; if there is 

variability in the stability of housekeeping gene expression across samples assayed, errors in 

NRQ calculation could be made. It was therefore essential to observe the stability of 

housekeeping genes and exclude samples that did not adhere to the housekeeping gene 

stability values. Gene stability values (M) and mean coefficients of variance (CV) were set at 

levels according to Hellemans et al. (2007): “mean CV and M values of lower than 25% and 

0.5, respectively are typically observed for stably expressed housekeeping genes and in 

heterogeneous panels, mean CV and M values of lower than 50% and 1 are acceptable”.  

 

Furthermore, there was greater stability of housekeeping gene expression in biopsy samples 

compared to smear samples thus NRQ values were calculated separately for smear and 

biopsy samples. 

 

3.4  Statistical Methods 

For all statistical analyses two tailed tests were applied and the level of statistical significance 

(α) was 0.05.  

 

3.4.1 Power Calculations 

Power calculations were performed for the chi-squared test and for Z tests. Power 

calculations and power estimations for chi-squared were performed using “pwr” 

supplementary statistical package for “R”.  “R” defined variables such as sample size, effect 

size (denoted as “w”), degrees of freedom, significance level and power. The effect size was 

calculated using Phi (φ) (Equation 1) or Cramers Phi (φc) (Equation 2). For Z tests, power 

calculations were done using “qnorm” and “pnorm” functions in “R” statistical software. 
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3.4.2 Analysis of Variance 

Paired sample T-test and Analysis of Variance (ANOVA) were used when performing assay 

sensitivity tests in assay development to compare the HPV copy numbers or RNA required 

for each assay between HPV types. ANOVA and T-tests were done using SPSS statistical 

package version 16.0.  

 

3.4.3  Chi-squared 

Chi-squared distribution was used to compare frequency of integration events between 

cytology groups and CIN groups. Chi-squared was performed using “R” statistical package.  

Yates’s continuity correction was automatically applied by “R” where sample sizes were 

small.  

 

Chi-squared “goodness of fit” tests were used to compare the frequency of integration 

detected at DNA repeat elements under the assumption that repeat elements constitute 70% of 

the human genome (de Koning et al. 2011) and transposable repeat elements comprise 45% 

of the human genome (Lander et al. 2001).  
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3.4.4 Z test  

Normal approximation to the binomial distribution, using the Z test, was used to examine the 

relationship between chromosome fragile sites, HPV disruption sites and HPV integration 

(Equation 3).  

 

For fragile sites the following assumptions were made: the average size of a fragile site is 1 

Mbp (Thorland et al. 2003); half of the human genome (1500Mbp), the light stained G bands, 

are likely to possess fragile sites (Hecht 1988). There are 120 known fragile sites in the 

human genome (Durkin and Glover 2007; Lukusa and Fryns 2008) thus the probability of 

detecting integration in a single fragile site is 0.08.  

 

For integration detection the following assumptions were made: There are a total of 315 

entire bands on UCSC database (for example counting 22q11.1, 22q11.2 and 22q11.3 as one 

band on 22q11) and Wentzensen et al. (2004) detected integration in 118 of them. The 

probability of detecting integration in one of the same bands as Wentzensen et al. (2004) is 

0.37.  

 

For HPV disruption the following assumptions were made: 37% of the HPV genome is either 

E1 or E2 ORF therefore the probability of detection of an integration event with disruption to 

E1 or E2 is 0.37; 36% of the HPV genome constitutes either L1 or L2 ORF therefore the 

probability of detection of an integration event with disruption to L1 or L2 is 0.36.  

 

Statistical significance was determined using the “pnorm” function in “R” statistical software. 
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3.4.5 Correction for multiple testing 

Correction for multiple testing was performed using Bonferonni correction (Equation 4) 

where n is number of tests and α is significance level.  

 

 

3.5 Quality Control 

A positive control was used when each assay was done. If a positive control failed to produce 

an amplicon/s of correct size, the assay was repeated. For E2 PCR, a positive control with un-

disrupted E2 and E6 was used alongside clinical samples in each set of PCRs: for HPV16 

CaSki DNA was used; for HPV18 and HPV45, plasmid DNA encoding HPV18 or HPV45 

was used. For DIPS, APOT and RS-PCR, SiHa, HeLa and HTB-34™ were used for HPV16, 

HPV18 and HPV45 assays, respectively.  

 

To overcome the risk of error in calling “disrupted” or “intact” E2 when analysing E2 PCR 

data, all gel electrophoresis images were analysed by me and then checked by Dean Bryant 

and again by Jo Jones.   
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4 Assay Validation 

Validation aimed to determine if assays:  

1. Could detect integration in cell lines equivalent to published data. 

2. Could detect integration with presence of episomal HPV. 

3. Produced the same result each time the assay was performed. 

4. Had comparable sensitivity and could detect integration and/or HPV at low copy 

numbers. 

 

4.1 Assay Validation Results 

4.1.1 E2 PCRs 

The E2 PCR assay is a series of PCR reactions that amplify overlapping sections of the E2 

ORF of HPV (Figure 30A). Integration of HPV into the genome commonly disrupts E2 and 

PCR across E2 can determine whether E2 is intact or disrupted.  E2 PCR was validated on 

DNA from W12p12, W12p32, SiHa, HeLa, C4I and HTB-34™ cell lines. Generated 

amplicons were consistent with the expected amplicon sizes specified in the materials and 

methods 3.3.3.2 (Table 12). Data for E2 PCR on cell line DNA were comparable to published 

data for each cell line (Table 33).      

 

E2 was absent in HeLa, C4I and HTB-34™ cells as no E2 amplicons were generated. E6 

PCR was used as a positive control for HPV; HPV was present in HeLa, C4I and HTB-34™ 

because E6 PCR produced amplicons (Figure 56 and Figure 55 in appendices). These data 

emphasise the importance of E6 PCR as a positive control where integration has removed E2. 

E2 and E6 were intact in plasmid DNA encoding HPV18 and HPV45 therefore plasmid, 

encoding HPV18 and HPV45 DNA, were used to optimise and validate HPV18 and HPV45 

E2 PCRs. 
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Figure 30 HPV16 E2 PCR validation. E2 is intact in CaSki cells and was used as a positive control. Water was 

used as a negative control. E2 was disrupted in SiHa and W12 cells. A) Not to scale, schematic representation of 

overlapping PCRs covering the E2 ORF of HPV16; red triangles show the location of primers with positions 

according to NC_001526.1 in base pairs. B) Electrophoresis of E2 amplicons: CaSki has intact E2 and produced 

amplicons for all PCRs; SiHa had disrupted E2 with no amplicons for E2, E2 PCR2 and E2 PCR3. E2 PCR 

results for W12p26 also shown; W12p26 did not have a defined input and was of unknown source and was not 

used further in this PhD.  

 

  

A 

B 
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DNA  HPV Type E2 Status E6 Status  

W12p12 HPV16 Intact  Present 

W12p32 HPV16 Intact  Present 

SiHa  HPV16 Disrupted Present 

CaSki  HPV16 Intact  Present 

HeLa  HPV18 Not detected Present 

C4I  HPV18 Not detected Present 

Plasmid HPV18   Intact  Present 

HTB-34™ HPV45 Not detected Present 

Plasmid HPV45  Intact  Present 

C33A  Negative Not detected
1
 Not detected

1
 

Table 33 Summary of E2 PCR validation results for all cell lines and plasmid encoding HPV18 and 

HPV45 (see Figure 54, Figure 55, Figure 56 in appendices). 

 

4.1.1.1 E2 Disruption Detection in a Background of Episomes 

The W12 cell line is derived from a low grade cervical lesion. Published data reports that at 

low passage, W12 cells contains HPV16 episomes at approximately 100 copies with no 

integrated HPV detected by Southern blot. Episomes are lost from W12 cell line with 

increasing passage, at passage 32 no episomes are detected by Southern blot and only 

integrated HPV16 is present. E2 PCRs on DNA from W12p12 cells did not detect disruption 

to E2; this is consistent with HPV being in episomal form. However, in section 4.1.3.3 (Table 

37), DIPS detected integration in W12p12, with disruption to E2 gene: thus W12p12 

harbours both integrated HPV16 and HPV16 in episomal form. These data illustrate that 

episomal E2 can mask the detection of disrupted E2 by E2 PCR.  

 

4.1.1.2 E2 PCR and HPV copy numbers 

To determine the lowest copy number of HPV that could generate amplicons for E2 PCR and 

E6 PCR, plasmid encoding HPV16, HPV18 and HPV45 DNA at tenfold serial dilutions were 

added to PCR. Table 34 shows the copy number of HPV that can generate an amplicon by 

PCR for each of the E2 primer sets and E6 primer set. There is slight variation between types 

in the copy number of HPV required to produce an amplicon for each set of primers but when 

mean copy number was compared for each primer set between types there was no significant 

difference in mass (ANOVA F=0.87, df=2, p=0.45). The true test of sensitivity is measured 

                                                 
1
 C33A  and PCR negative included in E2 and E6 PCRs for HPV16, HPV18 and HPV45 and no E6 or E2 was 

detected for any type. 
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by the lowest copy number of HPV required at which all primer sets reliably produce an 

amplicon. The lowest copy number of HPV16 at which E2 and E6 PCRs produce an 

amplicon is approximately 8x10
7
 copies. The lowest copy number of HPV18 at which E2 and 

E6 PCRs produce an amplicon is approximately 9x10
7
 copies. The lowest copy number of 

HPV45 at which all E2 and E6 primer sets produce an amplicon is approximately 8x10
6
 

copies. Thus HPV45 E2 and E6 PCRs have 10 times more sensitivity than those for HPV18 

and 100 times more sensitivity than those for HPV16. These data show that E2 PCRs are 

poor in sensitivity. Sensitivity tests for all primer sets were repeated, the number of PCR 

cycles was increased and the same result achieved. 
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      Primers 

Type Set 1 Set 2  Set 3  Set 4  Set 5
1
  E6 

HPV16 8x10
7 

810
 

 8x10
6
  810  8x10

7 
 810 

HPV18 9x10
4
 900

  
9x10

7
  900  na  9x10

6
  

HPV45 8x10
4
 8x10

4 
 8x10

6 
 8x10

4 
 na  8x10

6
 

Table 34 E2 and E6 PCRs: lowest copy number of HPV DNA that produced PCR amplicons. Na=not 

applicable. 

 

4.1.1.3 E2 PCR Reproducibility 

Reproducibility is defined as the number of times an assay produces the same result. E2 and 

E6 PCRs were performed on HPV16, HPV18 and HPV45 clinical samples (Chapter 6). 

CaSki and cloned HPV18 and HPV45 plasmid DNA were used as positive controls due to the 

presence of intact E2 and E6. HPV16 PCR was performed 13 times and intact E2 was 

detected in CaSki DNA every time; HPV18 and HPV45 E2 PCRs were done three times, and 

E2 was intact each time. E2 and E6 PCRs are 100% reproducible.  

 

4.1.2 RS-PCR 

RS-PCR was validated on HPV16, HPV18 and HPV45 cell line DNA with known input. RS-

PCR generated a number of amplicons for each cell line. As an example, Figure 31A shows 

how the amplicons are generated by RS-PCR with HPV primers and BamHI. RS-PCR 

detected integration consistent with published data for SiHa, HeLa and HTB-34™ (Table 35). 

No integration was detected by RS-PCR in C4I and CaSki.  

  

                                                 
1
 Note only 5 primer sets were performed for HPV16 and 4 primer sets for HPV18 and HPV45 and so figures 

for primer set 5 are not given for HPV18 and HPV45. 
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Figure 31 RS-PCR detected integration in SiHa DNA. SiHa was used as a positive control due to known 

HPV integration status; water was used as a negative control. A) A schematic diagram of hypothetical 

amplicons produced by RS-PCR: red, green and purple blocks represent HPV late ORFs, early ORFs and URR; 

red triangles represent HPV primer sets; blue triangles represent BamHI RSO. PCR with HPV primers and 

BamHI RSO can produce amplicons of different sizes that can detect human DNA adjoining HPV DNA. B) Gel 

electrophoresis of RS-PCR amplicons with HPV primers P1, P2, P3 and P4 and RSOs BamHI, EcoRI, NdeI, 

Sau3AI, TaqI and XbaI for SiHa. Uncharacterised W12 (W12F grown with 3T3 feeder cells) was also included 

in RS-PCR at this stage of the PhD but this clone had unknown input, was not used further assay development 

stage and results are not included. Pink arrows highlight amplicons with both human and HPV sequence.  

B 

A 



 

 

 

1
3
1
 

Cell line HPV Primer
1
 RSO

2
                                           Viral Disruption

3
 Accession number

4
 Map

5
 %    Match

6
      Dir

7
 

 
CaSki 16 P2 BamHI Non-contiguous HPV only  

    2573 (E1) to 6192 (L1) 

  P4  Non-contiguous HPV only 

    3540 (E2) to 6315 (L1)   

  P6  Non-contiguous HPV only 

    5610 (L2) to 6563 (L1) 

  

SiHa 16 P3 EcoRI   3132 (E2) NT_024524.14 13q22.1 99%  AS 

  P4  XbaI, BamHI, NdeI, EcoRI 

 

HeLa 18 P8 BamHI 5736 (L2)  NT_008046.16  8q24.1 99% AS 

 

C4I 18   Not detected HPV only  

 

HTB-34™ 45 P2 BamHI, NdeI, EcoRI 1878 (E1) NT_010966.14 18q11 99%  S 

 

Table 35 Results of RS-PCR in validation on CaSki, SiHa, HeLa, C4I and HTB-34™ cell line DNA. Integration sites detected are shown for each cell line; where a 

match to human sequence was detected, the accession number is given with percentage consensus and direction in which the HPV sequence is integrated. 

  

                                                 
1
 HPV specific primer set used in RS-PCR that detected integration. 

2
 Restriction site oligonucleotide used in RS-PCR that detected integration. 

3
 Viral disruption number denotes last viral nucleotide before recombination to human sequence. Numbering of HPV sequence is according to Genbank accession numbers 

NC_001526.1, X05015 and X74479 for HPV16, HPV18 and HPV45, respectively. 
4
 EMBL Accession number for the NCBI database sequence with the most likeness to human sequence data.  

5
 The genomic location of the site of integration, with respect to Giemsa-stained bands, was taken from the UCSC database (Kent et al. 2002). 

6
 Percentage consensus of sequence data with NCBI database sequence. 

7
 Direction of sequence. AS=antisense orientation, S= sense orientation. 
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Figure 32 All amplicons produced by RS-PCR were subjected to DNA sequence analysis. Simplified 

schematic alignment of cell line RS-PCR sequence data to: A) HPV16: NC_001526.1, B) HPV18: X05015, 

C) HPV45: X74479. Purple bar shows an approximate scale of HPV in Kbp with the point of HPV disruption 

for each cell line, early promoter (PE), late promoter (PL), early polyadenylation (AE) and late polyadenylation 

(AL) sites shown. Red triangles show approximate location of RS-PCR primers in relation to HPV genome 

[green (early genes), red (late genes), dark purple (URR) bars, with BamHI (B), EcoRI (E), NdeI(N), SauAI (S), 

TaqI (T) and XbaI (X) restriction recognition sites indicated]; red letters are novel, not in the reference 

sequence. Turquoise bars show HPV DNA sequence data alignment. Integrated, human DNA shown by blue 

bars.  The site of integration is given on right hand side, “no integration” denotes no integration detected. Dotted 

line denotes either start of sequence data in alignment with primer or end of sequence in alignment with 

restriction cut-site.  
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For SiHa, where amplicons were produced (Figure 31B), sequence data aligned to HPV16 

(Figure 32). HPV specific primers P3 and P4 detected integration at 13q22.1, with disruption 

of HPV16 within the E2 ORF. SiHa has a single integration event, present on 13q22.1, and 

the above data are consistent with this. 

 

CaSki has HPV16 integrated at several sites in tandem repeats, of hundreds of copies. RS-

PCR did not detect any host viral junctions in CaSki. HPV DNA sequence that was disrupted 

and linked to HPV DNA, referred to as non-contiguous sequence, was detected in CaSki 

(Table 35). Although RS-PCR did not detect integration in CaSki, rearrangements were 

detected within HPV in CaSki indicating presence of HPV disruption. Failure to detect 

integration in CaSki with RS-PCR is likely due to CaSki having intact HPV16 integrated in 

tandem repeats at high copy number; RS-PCR lacks sensitivity to detect integration in this 

scenario. 

 

HeLa is integrated with three sub-genomic HPV18 fragments on chromosome 8q24.1. RS-

PCR in HeLa detected integration of HPV18 in antisense orientation at 8q24.1 with 

disruption to the L2 ORF (Table 35 and Figure 32). RS-PCR failed to detect the remaining 

HPV integration events. Sau3AI restriction sites are present in the region of integration so in 

theory, primers 2 and 3, with positions 1487 and 2412, respectively, should have detected 

integration with disruption at 2497bp; this shows RS-PCR has limitations to detect 

integration. The likely explanation for failure to detect disruption at 3100 and 5736 is the 

position of the HPV18 primers because primers 4, 5, 6 and 7 (nested primers) are specific for 

HPV sequence located at 3094, 4029, 5035 and 5697, respectively, beyond the sites of 

disruption. 

 

In C4I, HPV18 is integrated at 8q21-22.3 with disruption at nucleotides 2952 and 5442. RS-

PCR detected only HPV18 sequence in C4I and did not detect this integration event. The 

HPV primer 3 was specific for sequence upstream of 2952 and theoretically should have 

detected the disruption; HPV primer 7 produced amplicons with BamHI and Sau3AI RSOs 

and the site of disruption in C4I was beyond the BamHI and Sau3A restriction site (Figure 

32).  This highlights a limitation of RS-PCR’s ability to detect integration: BamHI, EcoRI, 
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XbaI restriction sites are absent on 8q21-22.3, within the region of integration but Sau3AI 

and NdeI restriction sites are present; RS-PCR, with primer 3 and RSOs NdeI and Sau3AI, 

failed to detect integration as did RS-PCR with HPV primer 7 and RSO NdeI. 

 

HTB-34™ does not have a defined integration site in human DNA in the literature but has 

HPV45 integrated into human DNA with disruption at nucleotides 1888 and 6963. RS-PCR 

detected integration in sense orientation at 18q11.2 in HTB-34™, within the Retinoblastoma 

Binding Protein 8 (RBBP8) (Figure 32 and Table 35). HPV45 specific primer set 2 with 

RSOs BamHI, NdeI and EcoRI detected HPV45 disruption at nucleotide 1878bp within the 

E1 ORF of HPV45. Primers 3, 4, 5, 6 and 7 did not produce any amplicons; this is due to the 

location of the primers relative to HPV45 disruption in HTB-34™. Primers 8 and 9 did not 

amplify any HPV45 sequence nor did they detect disruption at nucleotide 6963. Sau3AI, 

XbaI and TaqI restriction sites are present in the sequence at the site of integration so in 

theory these primers with Sau3AI, XbaI and TaqI RSOs should have detected integration; 

again this highlights the limitation of RS-PCR to detect integration. 

 

4.1.2.1 RS-PCR: Detection of Integration With Episomal HPV 

To determine the ability of RS-PCR to detect integration with presence of HPV in episomal 

form, 100ng SiHa DNA was spiked with varying copy numbers plasmid DNA encoding 

HPV16. RS-PCR was performed with a primer set that had previously detected integration in 

SiHa: HPV16 P4 and RSO NdeI. Figure 33 shows the chromatogram of sequence data for 

100ng SiHa spiked with 6x10
7
, 1.2x10

7
 and 6x10

6
 copies of plasmid DNA encoding HPV16. 

SiHa DNA spiked with 6x10
7
 copies of HPV16 had a mixed chromatogram trace of human 

sequence and HPV16 sequence and beyond “TATGC” the sequence is unreadable, hence 

uncalled bases are present. SiHa with 1.2x10
7
 copies of background HPV16 has a 

chromatogram trace of HPV16 and human sequence beyond “TATGC”; the data peaks are 

low but sequence is readable and when aligned to human DNA using BLAST is a 96% 

consensus match to NT_024524.14 on chromosome 13q22.1. SiHa with 6x10
6  

copies of 

background HPV16 has a chromatogram trace of HPV16 and human sequence beyond 

“TATGC”; the sequence is readable and when aligned to human DNA using BLAST, is a 

99% consensus match to NT_024524.14 on chromosome 13q22.1. This data show RS-PCR 
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can detect integration with presence of HPV in episomal form with approximately 750 copies 

of HPV episomes for every single copy of integrated HPV16. 

 

 

 

Figure 33 RS-PCR can detect integration with presence of HPV episomes. Chromatogram data from RS-

PCR of SiHa with varying copy numbers of HPV. To the left of the red, dotted line is HPV16 sequence and is 

the point at which, in SiHa, the HPV DNA links to the human DNA on chromosome 13q22.1. As the number of 

HPV 16 copies is reduced, the number of uncalled bases decreases and integration is detected. 

  

 

6x10
7
  

copies 

 

 

1.2x10
7 

copies
 

 

 

6x10
6 

copies 
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4.1.2.2 RS-PCR and HPV Copy Numbers 

DNA  HPV  RSO  HPV primer Copy numbers
1
Cells

2
 

SiHa  HPV16 EcoRI  3  Failed   

    BamHI  4  10  5 

    EcoRI  4  Failed 

    NdeI  4  1   0.5 

   XbaI  4      

HeLa  HPV18 BamHI  8  20,000  400 

HTB-34™ HPV45 BamHI  2  unknown 

Table 36 RS-PCR: the number of HPV copies required to detect integration in RS-PCR for HPV16, 

HPV18 and HPV45.  

 

To determine the lowest number of integrated HPV copy numbers that are required for 

detection by RS-PCR, cell line DNA was diluted at tenfold serial dilutions ranging from 

20ng/µl   to 2x10-8ng/µl   (Table 36). For SiHa DNA, HPV16 primers P3 and P4 with EcoRI 

and XbaI failed to produce any amplicons. For SiHa DNA, using HPV primer P4 with 

BamHI and NdeI RSOs produced an amplicon with 10 and 1 copies of integrated HPV, 

respectively.  

 

For HeLa, HPV18 primer 8 with BamHI RSO detected integration with 20,000 copies of 

integrated HPV18. 

 

In HTB-34™, HPV45 primer 8 and BamHI RSO detected integration with 10ng of HTB-

34™ DNA. There is no documentation of HPV45 copy numbers in HTB-34™ thus copy 

number could not be estimated. 

 

4.1.2.3 RS-PCR Reproducibility 

Reproducibility is the rate at which the same result was produced each time. RS-PCR for 

HPV16 was performed 8 times using SiHa DNA as a positive control; on 6 occasions the 

                                                 
1
 HPV copy number calculated relative to estimated mass of DNA per cell and number of copies of HPV per 

cell for given cell line. 
2
 Number of cells required to achieve given copy numbers: SiHa has 2 copies of HPV16 per cell; HeLa has 50 

copies of HPV18 per cell. 
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same outcome was obtained; on two occasions, including the sensitivity test in section 

4.1.2.2, RS-PCR failed to produce amplicons using EcoRI and XbaI RSOs. Thus for HPV16, 

RS-PCR produces the same result 75% of the time. RS-PCR detected integration every time 

in SiHa. RS-PCR was performed only once for HPV18 and HPV45 and therefore 

reproducibility not assessed for these types. In terms of integration detection, RS-PCR is 

100% reproducible. 

 

4.1.3 DIPS 

DIPS amplifies and identifies an unknown sequence of DNA sequence that is adjacent to a 

known HPV sequence (Figure 34A). DIPS was validated on DNA from HPV16, HPV18 and 

HPV45 cell lines with known and published input: SiHa, CaSki, W12p12, W12p32, C4I, 

HeLa and HTB-34™.  

 

4.1.3.1 HPV16 DIPS: Changes to Protocol  

First attempts with DIPS using HPV16 primers and the protocol of Luft et al (Luft et al. 

2001) on DNA from CaSki and SiHa, failed to yield satisfactory results: HPV16 was detected 

in CaSki DNA but no HPV16 was detected in SiHa DNA. When the sequence of the primers 

used in the DIPS protocol by Luft et al (2001) were compared to the sequence data generated 

by RS-PCR for SiHa, there was variation between the primers and the DNA sequence of 

SiHa (data not shown); this was indicative of variation in DNA sequence at the sites where 

the primers were located. The HPV16 primers used in RS detected integration in SiHa DNA 

thus the HPV16 primers for RS-PCR were used in the DIPS protocol. 

 

DIPS, following the protocol of Luft et al (Luft et al. 2001) on HPV16 and HPV18 cell lines, 

did not product HPV amplicons consistent with the sizes predicted in Table 25(section 

3.3.3.4). Sequencing of the amplicons indicated that star activity was occurring during 

digestion and ligation. The sequence at the end of the amplicon preceding the adapter primer 

was not GATC, as would be expected using a Sau3AI digestion, and was not TCG or AGC as 

would be expected using TaqI digestion. Following consultation with New England Biolabs 

(NEB), the digestion time was reduced to 2 hours for both Sau3AI and TaqI digests, and the 
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volume of the Sau3AI digestion was increased to 50µl   to reduce the glycerol ratio in order 

to reduce star activity.  

 

4.1.3.2 DIPS Control PCRs 

To confirm the successful digestion and ligation of adapters, amplification of a genomic locus 

on chromosome 21 (1.4 kbp, accession number ap001068) was performed on the ligation 

product of each cell line DNA; all cell lines produced an amplicon of 1.4kbp (Figure 34B) 

and sequence analysis of the amplicon complied with a match to chromosome 21. Thus for all 

cell lines, DIPS assay was performing optimally. 
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Figure 34 Electrophoresis of DIPS amplicons with a 2 hour restriction digestion time. A) A schematic 

figure of DIPS adapter primer and steps in the DIPS assay. B) Electrophoresis of SiHa and CaSki amplicons for 

primers P1 to P8, HeLa and C4I amplicons for primers P1 to P6 and HTB-34™ for primers P2 and P4; control 

amplicons are shown for SiHa, CaSki, C4I, HTB-34™. Red arrows show amplicons containing integrated 

sequences. 

A 

B 



 

 

1
4
0
 

Cell line HPV Primer
1
 Digestion

2
 Viral Disruption

3
 Accession number

4
 Map

5
 % Match

6
 Orientation

7
 

CaSki 16 P2 TaqI  1455 (E1) NT_011681.16 Xq27.3 100% S 

  P4 TaqI Non-contiguous HPV only 

    2857 (E2) to 6561 (L1)   

  P4 TaqI Non-contiguous HPV only 

    6901 (L2) to 470 (L1) 

  

SiHa 16 P4 Sau3AI 3132 (E2) NT_024524.14 13q22.1 99% AS  

   

W12p12 16 P2 TaqI 1756 (E1) NT_008046.16 8q24.21 99% AS 

 16 P3 TaqI 2749 (E1) NT_005403.17 2q35 99% S 

 16 P4 TaqI 3197 (E2) NT_029419.12 12q14.3 99% AS 

W12p32 16 P2 TaqI 1756 (E1) NT_008046.16 8q24.21 100% AS 

 16 P4 Taq1 3726 (E2) NT_005403.17 2q31.1 100% S 

 16 P4 TaqI 3197 (E2) NT_029419.12 12q14.3 99% AS 

 

HeLa 18 F3 Sau3AI
8
 , TaqI 2497 (E1) NT_008046.16  8q24.1 99% AS 

 18 F4 Sau3AI
8
 , TaqI 3100 (E2) NT_008046.16  8q24.1 97% AS 

 18 R1 Sau3AI
8
 , TaqI 5736 (L2)  NT_008046.16  8q24.1 98% AS 

 

C4I 18 F4 Sau3AI
8
 2952 (E2) NT_008046.16 8q21.3 99% AS

8
  

  

HTB-34™ 45 P2 Sau3AI
8
,TaqI 1878 (E1) NT_010966.14 18q11 99%  S 

Table 37 Validation of DIPS in CaSki, SiHa, W12, HeLa, C4I and HTB-34™. Integration sites detected are shown for each cell line; where a match to human sequence 

was detected, the accession number is given with percent consensus and direction in which the HPV sequence is integrated. 

                                                 
1
 HPV specific primer set used in DIPS that detected integration. 

2
 Restriction enzyme used in DIPS that detected integration. 

3
 Viral disruption number denotes last viral nucleotide before recombination to human sequence or viral sequence. Numbering of HPV sequence is according to Genbank 

accession numbers NC_001526.1, X05015 and X74479 for HPV16, HPV18 and HPV45, respectively. 
4
 Genbank accession number for NCBI database sequence with the most likeness to human sequence data. 

5
 The genomic location of the site of integration, with respect to Giemsa-stained bands, was taken from the UCSC database (Kent et al. 2002).   

6
 Percentage consensus of sequence data with NCBI database sequence. 

7
 Direction of sequence. AS=antisense orientation, S= sense orientation. 

8
 Integration was detected when digestion incubation time was decreased to 2 hours. 
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4.1.3.3 DIPS Validation  

DIPS detected integration consistent with published data in the DNA of 6/7 cell lines (Figure 

35 and Table 37): 

 

 
 

Figure 35 Validation of DIPS on cell line DNA. Schematic alignment of cell line DIPS data to: A) HPV16: 

NC_001526.1, B) HPV18: X05015, C) HPV45: X74479. Purple bar shows an approximate scale of HPV in 

Kbp with the point of HPV disruption for each cell line, early promoter (PE), late promoter (PL), early 

polyadenylation (AE) and late polyadenylation (AL) sites marked. Red triangles show approximate location of 

DIPS primers in relation to HPV genome in green (early genes), red (late genes), dark purple (URR) bars, with 

SauAI (S) and TaqI (T) restriction sites indicated. Turquoise bars show HPV DNA sequence data alignment 

with integrated, human DNA shown by blue bars.  Stars show potential star activity in ligation or digestion 

reaction. The site of integration is given on right hand side, “no integration” denotes no integration detected.  
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In CaSki DNA, HPV16 is reported to be integrated at a number of sites in the HPV genome 

in tandem repeats. DIPS did not detect any of the published integration sites. However DIPS, 

with restriction time of 16 hours, using TaqI restriction enzyme and primers set 1 and 2 

detected a novel site of integration in CaSki DNA in sense orientation on Xq27.3 with 

disruption to the E1 ORF at nucleotide 1455bp. Also, in CaSki, non-contiguous sequence was 

detected. DIPS HPV specific primer set 4 with TaqI restriction digest detected E2 ORF 

linked to L1 ORF by a 3bp sequence that was not viral or human sequence. DIPS HPV 

specific primer set 4 with TaqI restriction digest also detected L1 ORF linked to E6 ORF by 

two nucleotides that were neither viral or human sequence.  

 

DIPS detected identical integration events in W12p12 and W12p32 DNA: integration of 

HPV16 at chromosome 8q24.21 and 12q14.3. The detection of integration in W12p12 is 

novel because reports indicate that early passage W12 is episomal with no integration 

detected by Southern blot. Additionally, as shown in section 4.1.1, E2 PCRs indicate that E2 

is intact whereas DIPS showed that there is disruption to the E2 ORF in W12p12 indicating 

W12p12 DNA contains both integrated and episomal HPV.  

 

DIPS in HeLa DNA detected integration of HPV18 in antisense orientation at 8q24.1 with 

disruption to HPV18 at 3 sites. HPV18 specific primer R1 detected HPV18 disruption within 

the L2 ORF. Disruption of HPV18 at nucleotide 5736 was also detected by RS-PCR; these 

data show that DIPS and RS-PCR data are reproducible.  

 

In C4I DNA, HPV18 is integrated at 8q21-22.3 with disruption at nucleotides 2952 and 5442. 

Initially, DIPS detected only HPV18 sequence in C4I and did not detect integration. When 

the incubation time was reduced to 2 hours DIPS, with primer F4 and Sau3AI digestion, 

detected integration on 8q21.3 with disruption to E2 at 2952bp.  

 

As mentioned in section 4.1.2, HTB-34™ does not have a published integration site but 

HPV45 is disrupted at nucleotides 1888 and 6963.  DIPS detected integration at 18q11.2 in 
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sense orientation with HPV45 specific primer set 2; this site of integration was detected by 

RS-PCR. 

 

4.1.3.4 DIPS: Detecting Integration With Presence of Episomal HPV  

DIPS detected integration in W12p12 cell line DNA that has approximately 100 copies of 

HPV16 episomes per cell thus DIPS is sensitive enough to detect integration where episomes 

are present.  

 

4.1.3.5 DIPS and HPV copy numbers 

Sensitivity is given as the smallest number of integrated HPV copy numbers in which 

integration consistent with Table 38 was detected by DIPS. For DIPS with a 16 hour 

digestion time, sensitivity was determined for one primer set for SiHa, HeLa and HTB-34 ™. 

DIPS for HPV16 was more sensitive than HPV18 because it detected integration with 120 

copies of integrated HPV16 in SiHa compared to 60,000 copies of integrated HPV18 for 

HeLa (Table 38).  As mentioned in 4.1.2.2, there is no documentation of HPV45 copy 

numbers in HTB-34™ thus copy number could not be estimated. 

 

For DIPS with a digestion time of 2 hours, all the primer sets that detected integration (Table 

37) in SiHa, HeLa and HTB-34 were used in sensitivity analysis. The number of HPV copy 

numbers, to logarithm of base 10, needed to detect integration was compared between DIPS, 

with 2 hour digestion time and between DIPS with 16 hour digestion time; there was no 

significant difference in mean copy number (t=0.69, df=8, p=0.51; equal variances assumed); 

thus decreasing digestion time does not increase or decrease the sensitivity of DIPS. The 

number of HPV copy numbers, to logarithm of base 10, needed to detect integration was 

compared between SiHa and HeLa with 2 hour digestion time; there a significant difference 

in mean copy numbers (t=-3.11, df=6, p=0.021; equal variances assumed); this indicates that 

DIPS for HPV16 is more sensitive and can detect integration with lower copy numbers than 

HPV18. 
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DNA  HPV  Digestion    HPV primer copy numbers
1
 Cells

2
 

SiHa  HPV16 16hr Sau3AI P4  1200  600 

HeLa  HPV18 16hr TaqI P4  60000  1200 

HTB-34™ HPV45 16hr TaqI P2  unknown 

 

SiHa  HPV16 2hr Sau3AI F4  120  60 

    2hr TaqI F4  12  6 

HeLa  HPV18 2hr Sau3AI F3  6000  120 

2hr TaqI F3  6000  120 

2hr Sau3AI F4  60000  1200 

2hr TaqI F4  6000  120 

2hr Sau3AI R1  600   12 

2hr TaqI R1  600  12 

HTB-34™ HPV45 2hr Sau3AI P2  unknown 

2hr TaqI P2  unknown 

Table 38 Smallest number of integrated HPV copies that produced an amplicon with DIPS for HPV16, 

HPV18 and HPV45 with 16 or 2 hour digestion incubation.  

 

4.1.3.6 DIPS Reproducibility 

Reproducibility is defined as the number of times DIPS produced either the same amplicon 

sizes and/or detected integration. Reducing the digestion time of DIPS to 2 hours from 16 

hours increased the reproducibility of DIPS: 

 

DIPS with 16 hour digestion incubation, was performed 10 times. DIPS detected integration 

every time in SiHa DNA. When observing each amplicon produced with each primer set, the 

same amplicon sizes were produced 51% of the time. For HPV18, DIPS was done twice on 

HeLa DNA and integration detected 100% of the time and the same amplicons produced 69% 

of the time. DIPS for HPV45, was done twice on HTB-34™ DNA; integration was detected 

and the same amplicons produced each time.  

 

With 2 hour digestion incubation, DIPS was performed 8 times on SiHa DNA; DIPS detected 

integration each time and the same amplicon sizes were produced 87% of the time. For 

HPV18, DIPS was done twice on HeLa DNA with integration detected each time and the 

                                                 
1
 HPV copy number calculated relative to estimated mass of DNA per cell and number of copies of HPV per 

cell for given cell line. Copy number unknown for HTB-34™. 
2
 Number of cells required to achieve given copy numbers: SiHa has 2 copies of HPV16 per cell; HeLa has 50 

copies of HPV18 per cell. 
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same amplicons produced 91% of the time. DIPS for HPV45, was done twice on HTB-34™ 

DNA: integration was detected and same amplicons produced each time.  

 

These data show DIPS is 100% reproducible in terms of integration detection. 

 

4.1.4 APOT 

Amplification of Papillomavirus Oncogene Transcripts (APOT) is an assay that allows the 

discrimination of HPV mRNAs derived from integrated and episomal viral genomes. APOT 

was validated on RNA from W12p12, W12p32, CaSki, SiHa, HeLa, C4I, HTB-34™ cell 

lines. Integration was detected in all cell lines consistent with published data and where 

integration had been detected in DNA by DIPS or RS-PCR, APOT detected integration at the 

same sites. Integration was detected in DNA either on the antisense strand or the sense strand; 

APOT detected transcripts mapping to the same strand of DNA. These data illustrate that 

DIPS, APOT and RS-PCR data are reliable and reproducible. 
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Figure 36 Transcripts detected by APOT in cell lines. A) Schematic diagram of transcripts detected in all cell 

lines and how they relate to integration in DNA. B) Amplicons produced by APOT for CaSki, W12p12 and 

W12p32. Different transcript patterns were seen between the cell lines. “250bp” indicates an amplicon produced 

by annealing of the APOT d(T) oligo to an adenosine rich region in the cDNA; this is not a transcript. The red 

arrow indicates a transcript that matches HPV16 sequence only. 



 

 

1
4
7
 

Cell line HPV  Transcript Size
1
 splice/fusion site

2
 Accession number

3
 Map

4
  % Match

5
  Orientation

6
 

CaSki  16 700   3728 (E4/E2) NT_007592.15 6p21.1 99% AS 

 

SiHa  16 300  880(E1) NT_024524.14 13q22.1 100% AS  

SiHa  16 450  880(E1) NT_024524.14 13q22.1 97% AS 

  

W12p12  16 400  880 (E1) NT_008046.16 8q24.21 100% AS 

W12p32  16 400  880 (E1) NT_008046.16 8q24.21 100% AS 

W12p32  16 600  E1^E4/E2 only No human       

W12p32  16 900  3841(E4/E2) NT_008046.16 8q24.21 99% AS 

 

HeLa  18 500  929 (E1) NT_008046.16  8q24.1 97% AS 

HeLa  18 700  929 (E1) NT_008046.16  8q24.1 99% AS 

 

C4I  18 400  929 (E1) No match 8q21.3 100%
7
 AS 

C4I  18 450  929 (E1) NT_008046.16 8q21.3 97% AS 

C4I  18 600  929 (E1) NT_008046.16 8q21.3 99% AS 

 

HTB-34™ 45 400  931 (E1) NT_010966.14 18q11.2 100%  S 

HTB-34™ 45 500  931 (E1) NT_010966.14 18q11.2 99%  S 

Table 39 Transcripts detected by APOT. Accession number of human sequence and orientation of HPV transcripts is shown for each transcript detected by APOT 

for each of the cell lines. 

 

                                                 
1
 Approximate transcript size according to DNA ladder in base pairs (bp). 

2
 HPV splice site denotes last viral nucleotide before splicing to human sequence or viral sequence. Numbering of HPV sequence is according to Genebank accession 

numbers NC_001526.1, X05015 and X74479 for HPV16, HPV18 and HPV45, respectively. 
3
 EMBL Accession number for the NCBI database sequence with the most likeness to human sequence data.  

4
 The genomic location of the site of integration chromosomal reference of all viral-cellular fusion transcripts with respect to Giemsa-stained bands was taken from the UCSC 

database (Kent et al. 2002). 
5
 Percentage consensus of sequence data with NCBI database sequence. 

6
 S=sense orientation, AS= Antisense orientation 

7
 Percentage consensus of sequence data with UCSC database sequence. 
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4
8
 

 DIPS       APOT  

 

Sample HPV
1
 HPV Map

2
    Locus

3
 Gene (I/E)

4
 Dir

5
 Map

2
 Locus

3
 Gene (E/I)

4
 Dir

5 

 

CaSki  E1 16 Xq27.3  144775156  na  S  6p21.1  45659122  na  AS 

 

SiHa  E2 16 13q22.1  74087563  na  AS   13q22.1 74031103 na  AS 

 

W12p12 E1 16 8q24.21 128407528  na  AS   8q24.21  128406752 na  AS 

 E1 16 2q35 216490303  na  S 

 E2 16 12q14.3 66050135  na  AS   

W12p32 E1 16 8q24.21 128407528  na  AS   8q24.21  128406752 na  AS 

 E2 16 2q31.1 173036883  na  S   8q24.21  128451660 na  AS 

 E2 16 12q14.3 66050135  na  AS 

        

HeLa  L2 18 8q24.1  128230632  CCAT (I)  S    8q24.1  128235915 na  AS 

 E2 18 8q24.1 128233367  na  AS      128241328 na  AS 

 E1 18 8q24.1 128241548  na  AS 

        

C4I  E2 18 8q21.3 87038854  EST  AS   8q21.3  87014293 na  AS 

 

HTB-34™ E1 45 18q11.2  20604487 RBBP8 (I)  S  18q11.2  20606103 RBBP8 (E) S 

 

Table 40 Relationship between DNA integration sites detected by DIPS and transcribed integration sites detected by APOT; the exact point of integration in human 

sequence, in base pairs, is shown along with integration in relation to genes.

                                                 
1
 ORF of HPV that was disrupted by integration. 

2
 The genomic location of the site of integration chromosomal reference of all viral-cellular fusion transcripts with respect to Giemsa-stained bands was taken from the UCSC 

database (Kent et al. 2002). 
3
 Viral disruption number denotes last human nucleotide taken from UCSC database (Kent et al. 2002) before recombination to HPV sequence. Numbering of HPV sequence 

is according to Genebank accession number NC_001526.1. 
4
 Gene at integration site. I= intronic integration; E= exonic integration; EST=expressed sequence tag. 

5
 Direction of HPV sequence. AS=antisense orientation, S= sense orientation. 
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CaSki produced a single host viral transcript of type 2 (Figure 36) consisting of HPV16 

E1ORF spliced at 880bp to E2/E4 acceptor site at 3355bp (Table 39). The E2/E4 ORF was 

fused to human sequence at 6p21.1; this is not the same site of integration detected by DIPS 

but is consistent with published data.  

 

SiHa produced 2 integrant derived transcripts; both were type 1 and consisted of HPV16 E1 

ORF spliced at 880bp to 13q22.1 in antisense orientation (Figure 36). This is the same site of 

integration as detected by RS-PCR and DIPS and is consistent with transcription of HPV16 E6 

and E7 from integrated HPV16 on chromosome 13 in antisense orientation. 

 

Identical transcript patterns were not detected in W12p12 and W12p32 RNA (Figure 36 and 

Table 39). W12p12 produced a single type 1 transcript consisting of HPV16 E1 spliced to 

human sequence that mapped to 8q24.21 in antisense orientation. W12p32 produced 3 

transcripts: the 400bp transcript was identical to the transcript detected in W12p12, with a 

consensus of 99% identity. The transcript of 900bp consisted of E1 ORF to the E2/E4 ORF 

acceptor site at 3355bp then fused to human, cellular, sequence that mapped to 8q24.21 in 

antisense orientation. The transcript of 600bp was entirely HPV16 and consisted of E1 ORF 

spliced at 880bp to the E2/E4 ORF acceptor site at 3355bp and sequence terminated at 

3837bp. Episomes are not present in W12p32 so the 600bp transcript is not an episome 

derived transcript; it is likely to be a non-integrated transcript derived from the same DNA 

integration site as the 900bp fragment. The site of 8q24.21 is the same site that was detected 

by DIPS in both W12p12 and W12p32. DIPS detected disruption to HPV16 at 1756bp, within 

the E1 ORF, but APOT has detected transcripts containing the E2 and E4 ORF; this is unusual 

because transcripts of E2 and E4 would be impossible if disruption at E1 were present. Table 

40 shows that although both transcripts mapped to 8q24.21, the 600bp transcript in W12p32 

mapped to a point downstream (128451660bp) of the integration event detected by DIPS 

(128407528bp). It is likely that another integration site is present in W12p32 on 8q24.21 but 

had not been detected by DIPS. The integration data acquired for W12p12 and W12p32 was 

with a 16 hour incubation time but there was insufficient DNA remaining to repeat DIPS with 

a 2 hour restriction digestion time to try and locate the undetected integration event on 8q24.1.  
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HeLa produced 2 type 1 transcripts (Table 39); both consisted of HPV18 E1 ORF of spliced to 

human sequence mapping to 8q24.1 in antisense orientation; this is the same site of integration 

as detected by RS-PCR and DIPS.  

 

C4I produced 3 type 1 transcripts; all 3 transcripts consisted of HPV18 E1 ORF spliced to 

human sequence mapping to 8q21.3 in antisense orientation (Table 39). Note that C4I did not 

match NCBI database sequence data when BLAST was done but was a match for 8q21.3 when 

a BLAT alignment was performed. Both transcripts were transcribed from the non-template, 

coding, strand from the site of integration in the DNA downstream (87038854), within an 

expressed sequence tag (EST) (Table 40). 

 

HTB-34™ produced 2 type 1 transcripts both mapping to an exon of RBBP8 gene. Both 

transcripts consisted of HPV45 E1 ORF spliced to human sequence at 18q11.2 in sense 

orientation; this is the same site of integration detected by RS-PCR and DIPS. Transcription 

in HTB-34™ is occurring on the template strand from the integration site upstream 

(20604487bp, within RBBP8 intron) with two different transcripts that map to the same point 

within an exon of RBBP8 (20606103bp). 

 

4.1.4.1 APOT and HPV copy numbers 

APOT is an RNA based assay and sensitivity tests cannot be based on copy numbers of HPV 

in DNA. To determine the lowest possible mass of cellular RNA that can be added to RT-

PCR to allow host-viral transcript detection, SiHa RNA was diluted in tenfold serial dilution 

so that between 1µg and 0.01ng of RNA would be added to RT-PCR. APOT PCRs were then 

performed on cDNA generated from the RT-PCR with diluted RNA; the lowest possible 

amount of RNA that could produce a host-viral transcript was 0.1ng; this is approximate to 

1/25 of a SiHa cell total RNA. These data illustrate that RT-PCR is sensitive enough to allow 

detection of APOT transcripts on very low starting quantities of RNA.  
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4.1.4.2 APOT Reproducibility  

APOT was performed 12 times on SiHa and 10 times on CaSki; reproducibility was 100% for 

detection of integration and the same amplicon sizes were produced each time. These data 

show that APOT data is reproducible. 

 

4.1.5 Confirmation of integration by PCR 

Integration sites detected in cell lines were confirmed by PCR and sequence analysis using 

primers that flanked integration sites. A novel site of integration was detected in CaSki on 

Xq27.3; this was confirmed by PCR and by DNA sequence analysis (Figure 37). Integration 

was detected on 8q24.1, 2q35 and 12q14 in W12p12 DNA, previously reported to have no 

integration. Figure 37 shows confirmation of integration W12p12 DNA. DIPS detected 

integration in on 8q24.1, 2q31 and 12q14 in W12p32; PCR with flanking primers confirmed 

the presence of integration on 8q24.1 and 12q14. These data illustrate that in cell lines, where 

integration is clonal and present in every cell, PCR will confirm integration detection. The 

integration site on 2q31 could not be confirmed by PCR (data not shown) but DIPS sequence 

data had 100% consensus when analysed using BLAST (Table 37). Failure to confirm 

integration on 2q31 in W12p32 DNA can be interpreted in two ways. It may be possible 

integration on 2q31 is not a true integration site in W12p32 DNA or integration on 2q31 may 

not be clonal in W12p32. 
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Figure 37 Confirmation of novel integration sites by PCR with primers flanking integration sites. 

Electrophoresis of amplicons produced with PCR using primers that flanked integration sites. Note only novel 

integration events are shown: Xq27.3 in CaSki and 8q24.1, 2q35, 12.14 in W12p12. 

 

4.1.6 Quality control 

Cell line DNA and RNA had low levels of protein and co-purified contaminants and had 

ratios consistent with those specified in section 3.2.7. All cell line DNA was intact and not 

degraded because a single band of 15–30kbp was observed and smears were not observed 

when DNA was electrophoresed on a 0.8% fine pore gel. All cell line DNA was positive for 

Beta-globin PCR thus was of good quality for PCR based assays. All cell line RNA had an 

RNA integrity value of 10 thus the RNA was intact and not degraded. 

 

E2 PCRs, RS-PCR, DIPS and APOT did not produce amplicons or detect HPV16, HPV18 or 

HPV45 DNA sequences in the HPV negative cell line C33A thus there was no non-specific 

binding of the HPV primer sets to human DNA. PCR negative controls generated no 

amplicons and no contaminating DNA was present in any of the PCRs. 

 

4.2 Assay Validation: Discussion 

Before integration assays could be applied to clinical samples it was vital to understand assay 

strengths and weaknesses and determine assay capability to detect integration. Clinical 
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samples are highly variable since HPV levels are likely to differ considerably between 

samples. For example, a single copy of integrated HPV may be present in a single cell from 

cervical cancer whereas hundreds of copies of HPV are likely to exist in a productive 

infection. It was paramount to learn how sensitive the assays were and due to the complex 

nature of the assays, it was essential to examine the reliability of the assays in producing the 

same outcome each time.  

 

4.2.1 Integration Detection 

Cell lines were selected on their commercial availability and a number of cell lines were used 

for validation of HPV16, HPV18 and HPV45 assays. 

 

For E2 PCR, detection of integration was good where episomes were not present and E2 

PCRs produced data on CaSki, SiHa, W12p12, W12p32 and HeLa DNA consistent with 

Collins et al. (2009). E2 PCRs were not done on C4I by Collins et al. (2009) nonetheless E2 

PCR data was consistent with Cannizzaro et al. (1988) and Luft et al. (2001). E2 PCR, 

developed for HPV45, used novel primer sets and produced data comparable to Geisbill et al 

(1997). DIPS detected integration, with disruption to E2, in W12p12 but E2 PCR did not 

detect it; this was due to the presence of episomal HPV. These data show that E2 PCR has 

limited capabilities at detecting integration where episomes are present. Furthermore, CaSki 

has HPV integration on chromosomes 2, 3, 6, 7, 11, 12, 14, 20, and 21, without disruption to 

E2 (Mincheva et al. 1987; Van Tine et al. 2004). It remains likely that integration can exist 

without disruption to E2; E2 PCR would not be useful at detecting integration in this 

scenario. 

 

RS-PCR detected integration in SiHa, HeLa and HTB-34 but not in CaSki or C4I indicating 

RS-PCR does have limitations at detecting integration. DIPS detected integration in all the 

cell lines studied and, with the exception of CaSki, integration sites detected were consistent 

with published data summarised in section 3.1.1. DIPS did not detect integration on 

chromosomes 2, 3, 6, 7, 11, 12, 14, 20, and 21 in CaSki but DIPS detected a novel site of 

integration on Xq27. This integration event was confirmed by PCR using flanking primers 

thus the integration event is clonal and not an artefact of the DIPS assay. A reason for failing 
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to detect integration in C4I by RS-CR can be attributed to location of the primers relative to 

HPV disruption. HPV disruption is random but is more likely to be situated within the E1 or 

E2 ORF. Primers that are situated after the site of disruption will yield no amplicons and so 

integration detection may be missed. Also, the nature of HPV at the site of integration may 

prevent the detection of integration. In CaSki, HPV is integrated in concatenated form, with 

copy numbers of over 200 at each integration site. Integration in CaSki was originally 

detected using FISH (Mincheva et al. 1987) and the fact that HPV is concatenated in CaSki 

would allow easy detection of integration by FISH. DIPS and RS-PCR failed to detect 

reported integration sites in CaSki because high copy numbers of concatenated integrated 

HPV can mask the detection of integration. Failure to detect integration does not mean that 

integration is not present; this needs consideration when interpreting data from any 

integration assay. 

APOT detected integrated transcripts that mapped to sites consistent with published reports in 

all cell line RNA. A limitation of APOT is that integration is only detected where integrated 

HPV is being transcribed. For example, in CaSki RNA, APOT detected integration on 

chromosome 6 despite integration being reported on chromosomes 2, 3, 6, 7, 11, 12, 14, 20, 

and 21 (Mincheva et al. 1987; Van Tine et al. 2004). It is possible that integration can be 

missed by APOT, if an integration site is not being transcribed. Hypothetically in a low grade 

lesion, integration may be present but transcription of the integration site may be suppressed 

by HPV in episomal form; in this case APOT would not detect it but a DNA based assay such 

as RS-PCR or DIPS would.  CaSki does not possess HPV in episomal form. The mechanism 

of transcription suppression in CaSki is methylation, as discussed in section 8.4.1.  

 

4.2.2 Detection of integration with presence of episomal HPV 

Characteristically in a productive infection, a lesion possesses episomal HPV at 

approximately 100 copies per cell. It was hypothesised that integration detection may be 

hampered in low-grade lesions such as CIN1 due to presence of episomal HPV. 

 

This hypothesis was tested in RS-PCR, by performing a novel experiment and integration can 

be detected by RS-PCR in the presence of episomal HPV. However, the detection of 

integrated HPV against episomal HPV16 needs cautious interpretation because, in a 
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productive infection, where HPV DNA is being replicated in upper epithelial layers, copy 

numbers maybe more than 750 and integration may not be detected; thus it remains possible 

that RS-PCR may not detect integration where a productive infection is present.  

 

To explore whether DIPS could detect integration when HPV in episomal form is present, 

DIPS was performed on W12p12 DNA. W12p12 is a cell line that is representative of a low-

grade infection and contains approximately 100 copies of HPV16 per cell (Stanley et al. 

1989). Previous studies of W12p12 have used Southern blot to determine integration status 

and have reported no integration (Pett et al. 2006; Dall et al. 2008; Gray et al. 2010). DIPS 

detected three integration sites in W12p12, with disruption of E1 or E2 ORFs, all of which 

were confirmed by PCR using flanking primers. E2 PCR showed E2 was intact indicating 

presence of episomes. These data illustrate that W12p12 contains both integrated and 

episomal HPV and DIPS can detect integration with at least 100 copies of episomes per cell. 

DNA from W12p12 was obtained from cells grown in monolayer. Cells grown in monolayer 

do not have the same productive infection characteristics of a HPV infection in squamous 

epithelia and have the phenotype of basal epithelial cells. Episome copy numbers may be 

considerably less in W12p12 compared to a productive infection thus DIPS may not be 

sensitive enough to detect integration in a productive infection. These are novel data and this 

is the first time a study has explored whether DIPS and RS-PCR can detect integration with a 

background of episomes. To ascertain whether DIPS could detect integration in a productive 

infection, DIPS was applied to samples taken from low-grade lesions, discussed in Chapter 6. 

 

APOT is an assay that differentiates episomal transcripts from integrated transcripts thus, in 

theory, is able to detect integration within a background of episomes. When APOT was 

performed on W12p12 and W12p32, integrated transcripts were detected in both but 

unexpectedly no episomal transcripts were detected in W12p12. Interpretation of DIPS and 

APOT data imply that integration, in W12p12, is an early event since W12p12 represents 

CIN1. These data contradict previously published APOT data (Klaes et al. 1999; Vinokurova 

et al. 2008) that reported integrated transcripts being present only in CIN3, cervical cancer 

and not present in CIN1. An explanation for the contradiction in data may be explained by 

the fact that W12p12 was grown in monolayer. Cells grown in monolayer lack epithelial 

layers that HPV requires for reproduction, thus episomal HPV, present in W12p12, did not 
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produce episomal transcripts or E2 transcripts that would normally repress the expression of 

integrated transcripts. This would explain why integrated transcripts but no episomal 

transcripts were detected by APOT in W12p12 RNA. Cells grown in raft culture maintain 

epithelial layers and support the HPV lifecycle. Gray et al. (2010) performed APOT on W12 

cells grown in raft cultures from passage 20 to passage 60: both episomal and integrated 

transcripts were detected at passage 20 and only integrated transcripts were detected beyond 

passage 20. Gray et al. (2010) reported that raft cultures support expression of episomal 

transcripts but Gray et al. (2010) did not perform APOT on W12 before passage 20, so it 

remains unknown at what passage integrated transcripts are detected in W12. To determine 

whether integration is an early event and being transcribed in CIN1, attempts were made in 

this PhD to apply APOT and DIPS to samples obtained from varying grades of cervical 

neoplasia, discussed in section Chapter 6. 

 

4.2.3 Assay sensitivity and reproducibility 

Cell line DNA and RNA were used as positive controls every time assays were performed 

and this allowed assay reproducibility to be calculated. All assays detected integration every 

time and were therefore 100% reproducible. E2 PCR and APOT produced the same amplicon 

sizes each time the assay was performed with integration being detected every time. DIPS 

and RS-PCR produced more variation in amplicon sizes between runs but integration was 

detected every time. DIPS and RS-PCR are much more labour intensive than E2 PCR and 

APOT, where PCR preparation is simpler. DIPS and RS-PCR are complex to prepare and 

involve a total of 18 PCR reactions and 96 PCR reactions per sample, respectively; this may 

explain variation between runs.  

 

First attempts at DIPS, using the method of Luft et al. (2001), were unsuccessful. Reducing 

restriction digestion time and increasing the reaction volume for Sau3AI was required to 

reduce star activity and detect integration in HeLa and C4I. There are a number of studies 

that have used DIPS making amendments to the protocol: Zeigert et al. (2003) increased the 

starting mass of genomic DNA from 0.6ng to 1.2ng; Schmitz et al. (2012a) shortened the 

adapter primer and postulated that adapter storage at -80ºC was paramount. This emphasises 

that DIPS has limited inter-lab reproducibility and that potential differences in integration 

reported in the literature could be due to assay development issues. 
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The same integration sites were detected by different assays and indicates that the assays are 

reproducible. This is further supported by the fact that integration can be confirmed by PCR 

using primers that flank integration sites. Integration was not confirmed in all the cell lines 

since integration on 2q31 was not confirmed in W12p32 DNA. Integration on 2q31 is 

unlikely to be a result of poor sequence data quality since consensus to human sequence was 

100%. Potentially, DIPS can produce false integration sites where digestion and ligation can 

create HPV DNA adjoining human DNA. It is unlikely that integration on 2q31 is an artefact 

of the DIPS assay since overlapping sequence at the site of integration was not a match for a 

TaqI restriction site. It does remain plausible that integration on 2q31 is not clonal in W12p32 

cells but was detected by chance; this would explain failure to replicate it. This emphasises 

that all integration sites may not have the same pathological importance: non-clonal 

integration sites are not likely to be contributing to disease whereas clonal integration sites 

are likely to be contributing to disease since each cell possesses the same integration event.  

 

To determine the lowest amount of HPV RNA and DNA required to successfully detect 

integration, DIPS, APOT and RS-PCR, were applied to serial dilutions of DNA and RNA. E2 

PCRs required high copy numbers of HPV to generate amplicons. Nonetheless, data 

presented here is comparable to that of Collins et al (2009) who reported 10
5 

HPV copies 

were required for PCR success. HPV16 E2 PCRs required more HPV copies to generate an 

amplicon compared to HPV18 and HPV45; this means that HPV16 data is more likely to be 

inaccurate where small amounts of HPV16 are present because a PCR is more likely to fail 

due to lack of DNA, rather than disruption of the E2 ORF. E2 PCR data needs careful 

consideration because HPV presence in a clinical sample is likely to vary, if a PCR fails due 

to lack of DNA it can result in a false negative result. Detection of E2 disruption by E2 PCR 

requires follow-up with a technique such as RS-PCR or DIPS to confirm disruption by 

obtaining nucleotide sequence.  

  

RS-PCR and DIPS were comparable in HPV copy numbers required to detect integration and 

both were more sensitive than E2 PCR and data confirms that DIPS and RS-PCR are 

sensitive and hypothetically likely to detect integration even where as few as ten cells each 
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containing the same integration events are present in a sample. The difference in sensitivity 

between E2 PCR and RS-PCR and DIPS is due to the nature of the assays since both RS-PCR 

and DIPS utilise nested PCR reactions, which is likely to result in higher sensitivity. 

 

For APOT, as little as 1/25 total cell RNA was required for successful amplification of an 

integrated transcript. Transcription of an integration site is likely to vary between cell lines 

and between clinical samples; nonetheless APOT is a sensitive method.  

 

4.2.4 Integration and E1 and E2 Disruption 

The data presented in this section here support hypothesis 1. Integration disrupted the E1 or 

E2 ORF in DNA of all the cell lines investigated, with the exception of CaSki. HPV 

disruption is important to consider because it may affect the transcripts produced. Disruption 

of the HPV genome before the early polyadenylation site (AE) results in generation of type 1 

integrated transcripts as detected by APOT in SiHa, HeLa, C4I, W12p12 and W12p32 RNA. 

In CaSki, integration does not disrupt the HPV genome before AE thus type 2 integrated 

transcripts were detected by APOT.  Type 1 transcripts will not permit the production of E2 

protein whereas all HPV early proteins have potential to be translated from a type 2 

transcript. Theoretically, a cell with a type 1 transcript will not have any E2 protein resulting 

in high levels of E6 and E7 expression; this will give the cell a selective growth advantage. 

For CaSki, E2 is expressed (Figure 47 and Figure 49, in Chapter 6) because HPV disruption 

is after AE nonetheless CaSki are derived from cervical cancer and E6 and E7 are expressed. 

These data highlight different transcript types exist but transformation remains. Therefore, 

there may be differing mechanisms for transformation between cell lines other than 

disruption to HPV E1 or E2 due to integration.  

 

4.2.5 Unanswered questions: Assay Cross Reactivity 

In a clinical sample from either a smear or biopsy, a mixture of HPV types are likely to be 

present. This may result in cross-reactivity of PCR primers between different HPV types and 

reduce assay sensitivity. The cell lines used in this PhD for assay development did not 

contain multiple types and so DIPS, RS-PCR, APOT and E2 PCR were not tested for cross 

reactivity. When E2 PCRs were performed on clinical samples, in chapter 6, cross reactivity 
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was observed. DIPS was performed on clinical samples where multiple types present and 

cross reactivity was not observed (section 6.4.3.1). In future, it would be an advantage to test 

assay performance where multiple HPV types are present by spiking cell lines with cloned 

HPV plasmids of multiple types. 

 

4.3 Conclusion 

Overall, RS-PCR, DIPS and APOT detected integration sites in cell lines that were consistent 

with the literature and E2 detected disruption to the E2 ORF due to integration. RS-PCR, 

DIPS and APOT detect integration within a background of episomal HPV and so were 

suitable for use on clinical samples that could potentially have a combination of episomal and 

integrated HPV. Due to cost and labour implications, DIPS was selected for use on clinical 

samples to detect integration in DNA because DIPS was less labour intensive, less expensive, 

used less DNA and involved less sequence data analysis compared to RS-PCR. 
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5 Assay Validation Part 2: Evaluation in Primary Culture (PC) 

Cell Lines 

The Primary Culture (PC) cell lines were originally derived from VIN3 (PC08) and VAIN3 

(PC09) biopsies. Currently the only HPV16 cell line model containing HPV in episomal and 

integrated forms is the W12 line derived from a cervical lesion. The aim of this research 

section was to characterise PC08 and PC09 single cell clones by determining site of 

integration and HPV episome status in relation to early and late passages of single cell clones 

of the PC0 cell lines and confirm whether these vulval and vaginal primary cell lines are an in 

vitro model of vulval and vaginal neoplasia. Exploring integration and HPV episome loss in 

VIN3 and VAIN3 would determine if episome loss is a late event associated with VIN3 and 

VAIN3 (hypothesis 5 in Table 8). E2 PCRs were performed by the author to determine the 

E2 status, as a marker of episomal presence or absence. DIPS and RS-PCR were undertaken 

by the author to detect integration. Integration analysis on PC08 and PC09 DNA aimed to test 

whether integration disrupts E1 and E2 ORFs and gives the cell a selective growth advantage 

(hypotheses 1 and 2 in Table 8). qPCR was done by Tiffany Onions to quantify E2, E6 and 

E7 mRNA at each passage to determine how integration influences HPV mRNA expression 

and cell growth. E2, E6 and E7 quantification would determine if integration disrupts E2, 

increases E6 and E7 expression, and gives a cell a selective growth advantage (hypothesis 3 

in Table 8). Finally, APOT was performed by Tiffany Onions to explore integration events 

that are transcribed and give the cell a growth advantage. DIPS and APOT data were 

compared to determine reproducibility of DIPS and APOT at detecting integration  

 

5.1 Assay Validation Part 2: Results 

Figure 38 summarises single cell cloning work performed by Tiffany Onions. For PC08, 3 

clones survived in culture and were characterised in this PhD. For PC09, 9 clones survived in 

culture. Three of the fastest growing PC09 clones were characterised in this PhD.   
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Figure 38 Summary of PC08 and PC09 cloning. Twelve single cell clones were derived from each 

heterogeneous primary cell (PC) lines PC08 (M to Z) and PC09 (A to L). All were passaged when 90% 

confluent; DNA and RNA was prepared at each passage up to passage 11, 9 or 13. PC09 clones grew at 

different rates and single clones that grew rapidly, A, D and H were maintained in culture; clone E was disposed 

due to contamination. PC08 clones M, P and Y survived in culture and were maintained in culture.  

 

5.1.1 Episomal Status  

The aim of this section of work was to determine whether intact E2 was present as a marker 

of episomal presence. If disrupted E2 was detected then it was assumed that integration was 

present with no episomes.  

 

E2 PCR detected disrupted E2 in DNA from PC08 clones M and P at early and late passage 

whereas the Y clone DNA had intact E2 at early and late passage. Heterogeneous PC08 cell 

DNA line had intact E2; episomal E2 is absent in M and P clones but present in clone Y 

(Table 41).  

PC08 PC09 
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Intact E2 was detected in DNA from both early and late passages for PC09 clones A, D and 

H. Heterogeneous PC09 DNA had intact E2; this indicates episomal E2 may be present in 

PC09 clones (Table 41).  

 

These data do not support that episomal loss is associated with high grade neoplasia 

(hypothesis 5) since E2 PCR in both PC08 and PC09 DNA detected intact E2, indicative of 

the presence of episomal HPV. 

 

5.1.2 PC0 DIPS: Integration in DNA 

The data presented here show that each of the PC08 and PC09 clones were unique (Table 41). 

Integration disrupted E1 or the E2 ORF; these data support hypothesis 1. 

 

DIPS detected differing integration events in DNA of PC08 clones M and Y. Passages 5 and 

9 of clone M had disruption to HPV16 within the E1 ORF and integration mapped to 3q28. 

Clone Y had integration mapping to 3p21.31 with disruption of HPV16 within the E1 ORF, 

in passage 9 and with disruption within E2 ORF, in passage 13. As mentioned above, E2 

PCR on the Y clones showed that intact E2 was present at both early and late passage 

whereas DIPS showed that there was integration, with disruption to E2 present in the same 

clone; this indicates HPV in integrated and episomal forms. DIPS also detected non-

contiguous sequence in passage 5 of clone M with L2 ORF linked to the URR. No integration 

was detected by DIPS in P clone but a non-contiguous sequence disrupting E2 ORF was 

detected; this is novel and interesting because integration generally disrupts E2 ORF but in 

this case it is breakage of HPV and repair to form a non-contiguous sequence that has 

disrupted E2. 

 

For PC09, DIPS detected integration in DNA from clones D and H, each with unique sites of 

integration. In DNA of Clone D, integration was detected at 18p11.3, in passages 5 and 11, 

with disruption within the L2 ORF. For DNA of clone H, HPV16 integration mapped to 

11p15.3 in passage 5 and passage 11 with disruption of HPV16 within the E1 ORF; an 

additional site of integration on 22q12.3 was detected in passage 11 with disruption to the E1 
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ORF. In heterogeneous PC09 at late passage 21, DIPS detected integration at 2q36.1 with 

disruption to L1 ORF. DIPS did not detect integration in the A clone of PC09. DIPS or E2 

PCR did not detect disruption to the E2 ORF in any of the PC09 clones. To determine if HPV 

was present in integrated and episomal form, by detecting disruption to E2 in PC09 clones, 

RS-PCR, using HPV primer 4 and BamHI, NdeI, EcoRI and XbaI RSOs, was performed. 

Integration on 18p11.31, with disruption within the E2 ORF was detected in the D clone 

DNA and integration mapping to 2q36, with disruption to E2 ORF was detected in 

heterogeneous PC09. These data illustrate that intact and disrupted E2 are present in DNA 

from heterogeneous PC09 and clone D, with both episomal and integrated HPV present



 

 

1
6
4
 

Clone Biopsy Passage E2 PCR
1
 Primer 

2
 Viral Disruption

3
 Accession

4
  Map

5
     Dir

6
 

M PC08 5 disrupted P5 Taq1 4880 (L2)/7673 (URR) HPV only  non-contig  

 PC08 5 disrupted P1Taq1 1194 (E1)  NT_005612.16 3q28 
7
 AS 

M PC08 9 disrupted P1Taq1 1194 (E1)  NT_005612.16 3q28 
7
 AS      

P PC08 5 disrupted P2 Sau3AI 2201(E1)/3147 (E2) HPV only  non-contig
7
    

P PC08 9 disrupted P2 Sau3AI 2201(E1)/3147 (E2) HPV only  non-contig
7
     

Y PC08 9 intact P2 Taq1 2116 (E1)  NT_0022517.18 3p21.31  AS 

Y PC08 13 intact P4 Taq1 3167 (E2)  NT_0022517.18 3p21.31  AS 

Heterogen PC08 19 intact   Not detected     

 

A PC09 5 intact   Not detected HPV only  

A PC09 11 intact   Not detected HPV only  

D PC09 5 intact P5 Taq1 5003 (L2)  NT_010859.14  18p11.31 AS 

 PC09 5 intact P4 BamHI  3303 (E2)  NT_010859.14 18p11.31
8
 AS 

D PC09 11 intact P5 Taq1 5003 (L2)  NT_010859.14  18p11.31 AS 

H PC09 5 intact P3 Taq1 2490 (E1)  NT_009237.18 11p15.3  S 

H PC09 11 intact P2 Sau3AI 1848 (E1)  NT_011520.12 22q12.3  AS 

    P3 Taq1 2490 (E1)  NT_009237.18 11p15.3  S 

Heterogen PC09 21 intact P7 Taq1 6033 (L1)  NT_005403.17 2q36.1  S 

 PC09 21 intact P4 BamHI 3632 (E2)  NT_005403.17 2q36.1
8
  S 

 

Table 41 PC0 RS-PCR, DIPS and E2 results. E2, RS-PCR and DIPS data is given for earliest and latest passage of PC08 and PC09 clones and latest passage of 

heterogeneous PC08 and PC09.  E2 PCR outcome (intact or disrupted), site of viral disruption, accession number and site of human integration is shown. All data had good 

consensus with HPV and/or human database sequence with matches greater than 95%.  

                                                 
1 E2 PCR outcome: disrupted or intact.  

2 Restriction enzyme and HPV primer used in DIPS or RSO and HPV primer used in RS-PCR that detected integration. 

3 Viral disruption number denotes last viral nucleotide before recombination to human sequence. Numbering of HPV sequence is according to Genebank accession numbers 

NC_001526.1, X05015 and X74479 for HPV16, HPV18 and HPV45, respectively. 

4 EMBL Accession number for the NCBI database sequence with the most similarity to human sequence data. “No human” is where no match to human sequence was 

observed. 

5 The genomic location of the site of integration chromosomal reference of all viral-cellular fusion transcripts with respect to Giemsa-stained bands was taken from the 

UCSC database (Kent et al . 2002). 

6 Orientation of HPV DNA within human sequence. S= Sense orientation, AS=Antisense orientation. 

7 Data were detected by reducing DIPS digestion time to 2 hours. 

8 Integration detected by RS-PCR. 
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Figure 39 Schematic alignment of PC08 (A) and PC09 (B) DIPS and RS-PCR data to HPV16 

(NC_001526.1).  Purple bar shows an approximate scale of HPV in Kbp with early promoter (PE), late 

promoter (PL), early polyadenylation (AE) and late polyadenylation (AL) sites marked. Red triangles show 

approximate location of HPV primers in relation to HPV genome in green (early genes), red (late genes), dark 

purple (URR) bars, with Sau3AI (S) and TaqI (T) cut sites indicated. A red S or T denotes restriction site 

differing to those predicted in NC_001526.1. Turquoise and brown bars show DIPS and RS-PCR HPV DNA 

sequence data alignment, respectively with integrated, human DNA shown by dark blue bars.  Stars show 

potential star activity in ligation or digestion reaction. The site of integration is given on right hand side, “no 

integration” denotes no integration detected. 
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These data do not support the hypothesis that episome loss is a late event in neoplasia 

(hypothesis 5, Table 8) since both VIN3 and VAIN3 possess episomal HPV. Furthermore, 

integration was not detected in all of the clones and data do not support the hypothesis that 

integration gives the cell a selective growth advantage (hypothesis 2, Table 8): there may be a 

mechanism other than integration that gives a cell a selective growth advantage.  

 

5.1.3 PC0 APOT: Integrated Transcripts 

APOT was performed on RNA from PC08 and PC09 clones to determine which integration 

events were actively transcribed (Figure 57 and Table 42). APOT was not done on 

heterogeneous PC08 and PC09 because RNA from heterogeneous PC08 and PC09 was not 

available. APOT data had excellent consensus with DIPS data illustrating that the data for 

both DIPS and APOT are reproducible (Table 43).  

 

In summary, there were 4 different transcripts types detected: E7 spliced directly to human 

sequence (type 1), E7 spliced to E4 that was joined to human sequence (type 2), transcripts 

with E7 spliced to E4 (type 3), and episomal transcripts with E7 spliced to E4 and E5 (type 4) 

(Figure 57A). Type 3 transcripts do not possess human sequence but are likely to be due to 

integrated transcripts since there is no polyadenylation site after the E4 ORF. All 

electrophoretic transcript patterns were identical in early and late passage with the exception 

of PC09 clone H that gained an extra transcript at late passage and PC08 clone Y that lost a 

transcript at late passage. These data illustrate that integrated transcripts are identical in RNA 

between early and late passages and there is no change in the transcription at integration sites 

with increasing passage.   

 

In RNA from PC08 clone P, type 3 episomal transcripts were detected with E7 spliced to E4 

ORF in both early and late passages. RNA from PC08 clone M had a number of transcripts 

all of transcript type 1 and clone Y had 2 transcripts of type 1 at passage 9; these data are 

consistent with DIPS data that indicated disruption to HPV genome before AE at 3355bp 

(Table 41). PC08 Clone M had a number of transcripts all mapping to 3q28 at different sites 

(Table 43); this is shown in Figure 57B and Table 43, with a number of amplicons of 



 

 

167 

 

differing sizes produced. Clone Y had 2 transcripts in passage 9 mapping to 3p21.31 at 2 

different sites and a single transcript mapping to 3p21.31 at passage 13. 

 

At passage 5, RNA from PC09 clone A had type 3 episomal transcripts of E7,E1 spliced to 

E4. At passage 11, clone A, gained an additional transcript of type 4. PC09 clone D RNA had 

a single type 2 transcript at early and late passage, mapping to 18p11.31. RNA from clone H 

had type 2 transcripts mapping to 5q11.2 at early passage and, at late passage, had an extra 

type 1 transcript mapping to 1p36.13. 

 



 

 

1
6
8
 

Clone Line Passage Viral Disruption
1
   Accession number

2
 Map

3
    % Match

4
     Orientation

5
 

M PC08 5  880 (E7,E1); type 1   NT_005612.16 3q28  100%  AS 

M PC08 9  880 (E7,E1); type 1   NT_005612.16 3q28  100%  AS 

        

P PC08 5  episomal E7,E1^E4; type 3  NC_001526.1  na  99%  na 

P PC08 9  episomal E7,E1^E4; type 3  NC_001526.1  na  99%  na 

        

Y PC08 9  882 (E7,E1); type 1   NT_022517.18 3p21.31 100%  AS 

Y PC08 13  882 (E7,E1); type 1   NT_022517.18 3p21.31 100%  AS 

 

A PC09 5  episomal E7,E1^E4; type 3  NC_001526.1  na  100%  na 

A PC09 11  episomal E7,E1^E4; type 3  NC_001526.1  na  100%  na   

  11  episomal E7,E1^E4,E5; type 4 NC_001526.1  na  100%  n 

 

D PC09 5  3716 (E4); type 2   NT_010859.14 18p11.31 99%  S 

D PC09 11  3716 (E4); type 2   NT_010859.14 18p11.31 100%  S 

        

H PC09 5  882 (E7,E1); type 1   NT_006713.15 5q11.2  99%  S 

H PC09 11  882 (E7,E1); type 1   NT_006713.15 5q11.2  99%  S 

    3494 (E4); type 2   NT_004610.19 1p36.13 99%  AS 
 

Table 42 APOT results for PC08 clones M, P and Y and PC09 clones A, D and H at earliest and latest passage. Data shows HPV splice site adjoining the human 

acceptor site, the accession number of closest match to human database sequence, and orientation of the sequence.  

 

                                                 
1
 Viral disruption number denotes last viral nucleotide before recombination to human sequence. Numbering of HPV sequence is according to Genebank accession number 

NC_001526.1. Episomal detection indicates that only episomal transcripts were detected. Transcript type according to Figure 57A is given. 
2
 EMBL Accession number for the NCBI database sequence with the most similarities to human sequence data. 

3
 The genomic location of the site of integration chromosomal reference of all viral-cellular fusion transcripts with respect to Giemsa-stained bands was taken from the UCSC 

database (Kent et al. 2002). 
4
 Percentage consensus of sequence data with NCBI database sequence. 

5
 Direction of HPV sequence. AS=antisense orientation, S= sense orientation. 
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     DIPS       APOT  

Clone Biopsy Pass Map
1
     Locus

2
  Gene (I/E)

3
 Dir

4
 Map

1
  Locus

2
  Gene (E/I)

3
 Dir

4 

 

M PC08 5&9 3q28.7  189689519 LEPREL1(I) AS 3q28  189684664 LEPREL1 (I) AS   

          3q28  189688682 LEPREL1(E) AS   

          3q28  189681562 LEPREL1(E) AS   

          3q28  189679290 LEPREL1(E) AS   

             

               

Y PC08 9&13 3p21.31 45152730 CDCP1 (I) AS 3p21.31 45151731 CDCP1 (I) AS   

  13 3p21.31 45165841       

9        3p21.31 45152297 CDCP1 (E) AS 

 

 

D PC09 5 18p11.31 3462320 TGIF1 (I) S 18p11.31 3440819 TGIF1 (I) S   

D PC09 11 18p11.31 3462320 TGIF1 (I) S 18p11.31 3440819 TGIF1 (I) S  

 PC09 5 18p11.31 3457595 TGIF1 (E) AS 

 

H PC09 5 11p15.3 12166499 MICAL2 (I) S 5q11.2  52615288 no gene S   

H PC09 11 11p15.3 12166499 MICAL2 (I) S 5q11.2  52615288 no gene    

   22q12.3 33736314 LARGE (I) AS 22q12.3 33733795 LARGE (E) AS 

1p36.13 16381373 CLCNKB (I) AS  

Table 43 Summary of integration detected in DNA by DIPS and transcripts by APOT for PC08 clones M and Y and PC09 clones D and H. Integration site for both 

DIPS and APOT data, the locus in base pairs on the chromosome that integration is detected, the gene in which integration occurs and the direction of integrated HPV 

sequence is shown. 

                                                 
1
 The genomic location of the site of integration chromosomal reference of all viral-cellular fusion transcripts with respect to Giemsa-stained bands was taken from the UCSC 

database (Kent et al. 2002). 
2
 Last human nucleotide, taken from UCSC database (Kent et al. 2002), before recombination to HPV sequence.  

3
 Gene at integration site. I= intronic integration. E= exonic integration. 

4
 Direction of HPV sequence. AS=antisense orientation, S= sense orientation. 
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DIPS and APOT produced data that were consistent for all the clones with exception of the H 

clone (Table 43). DIPS did not detect integration in the P or A clone DNA; APOT data is 

consistent with this as only episomal transcripts were detected in RNA by APOT. Integration 

on chromosome 22q12.3 was detected in DNA and RNA by DIPS and APOT for clone H 

however there were discrepancies: DIPS detected integration on 11p15.3, APOT did not 

detect this. APOT detected integration on 5q11.2 and 1p36.13 in RNA, DIPS did not detect 

these in DNA. TaqI and Sau3AI restriction sites are present within 10Kbp of the integration 

sites detected by APOT on 5q11.2 and 1p36.13; thus the failure of DIPS to detect integration 

in clone H DNA cannot be explained by lack of TaqI and Sau3AI restriction sites.  

 

5.1.4 Integration Within Genes 

These data support the hypothesis that integration occurs within human genes (hypothesis 7) 

since all integration sites detected by DIPS in the PC0 clones were within genes (Table 43). 

Integration in clone M DNA at passages 5 and 9 was intronic of leprecan-like gene 

(LEPREL1) that functions in collagen formation. Integration was in antisense orientation and 

produced four integrated transcripts (Figure 57B), detected by APOT, that mapped to 4 

different sites within the LEPREL1 gene, 3 of which were exonic; human mRNA was in 

antisense orientation thus transcription was taking place on the coding strand, rather than the 

template strand.  

 

In clone Y DNA, at passages 9 and 13, integration was intronic of CUB domain containing 

protein (CDCP1), involved in cell adhesion and cell matrix association. A single integrated 

transcript was detected by APOT, intronic of CDCP1, in antisense orientation; transcription 

taking place on the coding strand. 

 

In DNA from clone D, passage 5, a single integration event was detected on 18p11.31, 

intronic of TGFB-induced factor homeobox (TGIF1), involved in cellular retinoid protein 

binding. The site of integration detected within DNA differs to the transcribed site detected 

by APOT. In D clone, the chromosomal location of integration was the same between APOT 

and DIPS but when the exact location, in base pairs, was compared between DNA and 
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transcripts the DNA location was downstream from the transcription integration site. Since it 

is not possible for transcription to be initiated from the integration site downstream; another 

site of integration must be present although DIPS has failed to detect it. TaqI and Sau3AI 

restriction sites are present within 10Kbp of the integration sites detected by APOT on 

18p11.31 thus the failure of DIPS to detect integration cannot be explained by lack of TaqI 

and Sau3AI restriction sites. Multiple attempts at DIPS and APOT did not resolve the 

discrepancies in D clone. 

 

In DNA from H clone passages 5 and 11, DIPS detected integration intronic of microtubule 

associated monoxygenase, calponin and LIM domain containing gene (MICAL2). Integration 

in this gene was not detected by APOT thus integrated transcripts are not being produced 

from this site. DIPS in passage 11 detected integration in an intronic region of like-

glycosyltransferase gene (LARGE), involved in glycosylation. An integrated transcript 

mapping to an exon of LARGE was detected by APOT.  APOT detected integration within 

chloride channel, voltage-sensitive Kb (CLCNKB); DIPS did not detect this integration 

event. 

 

For heterogeneous PC09, integration was intronic of adaptor-related protein complex 1, 

sigma 3 subunit gene (AP1S3); this gene encodes a protein involved in the golgi network and 

endosomes. As mentioned above, no RNA was available for heterogeneous PC09 and APOT 

was not done.  

 

5.1.5 Confirmation of Integration Sites in PC0s 

Integrated transcripts were confirmed by PCR on cDNA using primers that flanked the host 

viral transcript junction by Tiffany Onions. All integration and non-contiguous events 

detected by DIPS were confirmed by PCR and sequencing using primers that flanked the host 

viral junction. To determine whether integration events were present in DNA from PC08 and 

PC09 clones at early and late, PCR reactions for each integration event and non-contiguous 

event were performed. For integration events detected in PC08 clone DNA PCR was 

performed on M, P and Y clones and heterogeneous PC08 (Table 44). PCR reactions for each 
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integration event detected in PC09 were performed on DNA from early and late passage A, D 

and H clones and heterogeneous PC09 (Table 45). These data further illustrate that the clones 

derived from heterogeneous PC08 and PC09 are each unique with different integration sites 

seen in each: 

 

 

Integration site: 3p21.31 3p21.31 L2/URR 3q28.7  E1/E2 

Disruption:  2116bp  3167bp  non-contig 1194bp   non-contig 

Gene   CDCP1 CDCP1   LEPREL1 

 

M, passage 5      Y  Y  

M, passage 9      Y  Y  

 

P, passage 5      Y    Y 

P, passage 9      Y    Y 

 

Y, passage 5  Y    Y  Y  

Y, passage 13  Y  Y  Y  

  

PC08, passage 21 Y    Y  Y  

Table 44 Summary of integration sites detected by PCR on DNA from heterogeneous PC08, passages 5 

and 11 of M, P and Y clones using primers flanking integration sites detected by DIPS. Y denotes an 

amplicon produced. 

 

Integration site: 22q12.3 11p15.3 2q36.31 2q36.31 18p11.31 18p11.31 

HPV disruption: 1848bp 2490bp 6033bp 3632bp 5003bp 3303bp 

Gene LARGE1 MICAL2 AP1S3 AP1S3 TGIF1 TGIF1 

A, passage 5         

A, passage 11      

     

D, passage 5 Y Y   Y Y 

D, passage 11  Y   Y Y 

 

H, passage 5 Y    Y    

H, passage 11 Y    Y    

 

PC09, passage 19   Y Y Y 

Table 45 Summary of integration sites detected by PCR on DNA from heterogeneous PC09, passages 5 

and 11 of A, D and H clones using primers flanking integration sites detected by DIPS. Y denotes an 

amplicon produced.  
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Figure 40 Non-contiguous sequence was confirmed in the P clone: A) A schematic representation of wild-

type, un-disrupted HPV and non-contiguous sequence detected in P clone by DIPS; red triangles mark forward 

and reverse primers and HPV nucleotide positions are according to NC_001526.1. B) Electrophoretic separation 

of amplicons produced using primers designed to amplify across non-contiguous sequence for early and late 

passages of M, P, Y and heterogeneous PC08. 

 

Non-contiguous sequence, with disruption to E2, was observed in P clones this was 

confirmed by PCR and by DNA sequence analysis at all passages (passage 5 and 9 shown in 

Figure 40). M clone at passage 5, Y clones and heterogeneous PC08 had an amplicon size of 

1193bp and did not posses non-contiguous HPV with disruption to E2. 

 

For PC08 clone DNA, PCR detected integration on 3p21.31, with disruption at 2216bp, in 

both passages of Y clones whereas 3p21.31, with disruption at 3167bp, was only present in 

passage 13 of Y clone. Integration on 3q28.7 was detected in both passages of M clones and 
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in passage 5 of Y clone but not present in the P clone or in passage 13 of Y clone. L2/URR 

non-contiguous sequence was present in all clones.  

 

PCR, on DNA from PC09 clones, revealed that clone H, at both passage 5 and 11, had 

integration sites present on 22q12.3 and 18p11.31.Clone D at passages 5 and 11 had 

integration on 18p11.31and 11p15.3 and at passage 5 had integration at 22q12.3. Clone A, at 

both passages, had no integration events detectable by PCR; these data further support 

absence of integration in A clone. 

 

DNA from late passage heterogeneous PC08 and PC09 bear one or more integration sites that 

are similar to their cloned counterparts suggesting that these integration events are needed to 

drive selection and transformation. Integration at 3p21.31, in CDCP1, with disruption at 

2216bp was detected in PC08 heterogeneous DNA; this was also detected in clone Y. 

Integration on 3q28.7, in LEPREL1, was present in both passages of M clones and in passage 

5 of Y clone and in heterogeneous PC08 DNA. L2/URR non-contiguous sequence was 

detected in heterogeneous PC08 and was present in all clones. An integration event in 

heterogeneous PC09 with disruption to E2 (3032bp) and L1 (6033bp) on 2q36.31 in AP1S3; 

this is a single integration event with disruption to both ends of HPV being detected. 

Heterogeneous PC09 had integration on 18p11.31, within TGIF1, present in D and H clones; 

this shows that integration in TGIF1 and AP1S3 are present in both heterogeneous PC09 and 

its cloned counterparts indicating that these events are essential for selection and cell growth. 

Early passage heterogeneous PC08 and PC09 DNA and RNA were not available and any 

integration events could not be confirmed at early passage in heterogeneous PC08 or PC09. 

 

5.1.6 HPV E2, E6 and E7 Expression and Cell Growth 

HPV16 E6, E7 and E2 expression was measured by qPCR relative to CaSki and 

housekeeping genes HPRT and TBP2 by Tiffany Onions. With the exception of clone D, all 

PC0s had steady levels of HPV E2, E6 and E7 expression (Figure 58, in Appendix 2). Clone 

D had small increases in E7 expression with increasing passage, E2 and E6 expression 

increased 4-fold and 5-fold, respectively, between passage 5 and passage 10. At passage 11, 
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expression of E6, E7 and E2 decreased to a ratio similar to clones A and H. qPCR was 

repeated for all D clones by Tiffany Onions and the same outcome observed. 

 

Population doubling (PD) and doubling time (DT) were calculated for heterogeneous cell 

lines, by Ned Powell, and for each PC08 and PC09 clone by Tiffany Onions. PD refers to the 

number of times a cell population doubles over a particular time period, and DT refers to the 

time taken for a cell population to double over a particular time period. Overall there was no 

increase in PD or DT with increasing passage (Figure 59, Figure 60 and Figure 61 in 

Appendix 2). There was an increase in DT for clones M and P between passages 1 and 3. For 

PC09 clones there was no increase in PD or DT with increasing passage.  

 

These data do not support hypothesis 3: Although the pattern of integration and/or episomal 

presence were different in each clone, HPV E2, E6 and E7 expression was steady. Integration 

did not result in changes in E2, E6 or E7 expression, with the exception of clone D. These 

data illustrate that E6 and E7 levels are not rising with increasing passage, but are 

maintained. 

 

5.2 Assay Validation Part 2: Discussion 

VIN and VAIN are chronic conditions that are very difficult to treat and may be recurrent. 

Previous studies of therapeutic agents for VIN and VAIN have been performed in 

immortalised cell lines (Andrei et al. 1998). Immortal cell lines do not show the 

characteristics of a precancerous lesion and the data from transformed cell lines may not be 

representative of a precancerous lesion. Therefore a novel study developed primary cultures, 

PC08 and PC09, to determine the viability of precancerous models to study VIN and VAIN.  

 

Primarily, this PhD was an investigation of HPV integration in cervical neoplasia. PC08 and 

PC09, from vulval and vaginal biopsies, respectively, were included to allow a comparison of 

DIPS and APOT, to characterise the cell lines in terms of integration and episomal HPV and 

to gain insight into the role integration plays in anogenital intraepithelial neoplasia. 
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5.2.1 Assay Validation in PC08 and PC09 

When performed on PC08 and PC09, DIPS and APOT had excellent consensus in integration 

detection and integration sites detected in PC08 and PC09 clones were confirmed by PCR. 

These data show that DIPS and APOT produce valid integration data that is reproducible.  

 

As part of her PhD project, Tiffany Onions performed deep sequencing on RNA from PC08 

clones M and P. Integrated transcripts containing HPV16 and LEPREL1 were detected in 

clone M RNA. In clone P RNA, no integrated transcripts were detected; again this replicates 

the findings from this study using another technique. Data from deep sequencing was not yet 

fully assembled but will be available as a future publication. These data emphasise the 

reliability of APOT and shows that the data presented in this thesis are supported by other 

techniques.  

 

Although DIPS and APOT data show reproducibility, there were a few discrepancies in the 

data. For clone H, there were differences detected and multiple attempts at DIPS and APOT 

failed to resolve these, highlighting limitations of DIPS and APOT assays in detecting certain 

integration events. As discussed in section 4.2.1, the location of HPV specific primers in 

relation to restriction sites and/or the host viral junction at the site of integration can affect the 

detection of integration by DIPS; it is possible that primer location could explain the failure 

to detect integration on 5q11.2 and 1p36.13 by DIPS. Furthermore, DIPS detected integration 

on 11p15.3 but APOT did not detect integrated transcripts from this locus; it is possible that 

integration is not being transcribed on chromosome 11p15.3 and was not detected by APOT. 

Integration on 11p15.3 was within an intron of gene MICAL2, between exons 2 and 3. 

GeneCard database shows that there are 16 splicing variants for MICAL2 and 14/16 RNA 

species do not possess exons 2 or 3; this means that it is highly likely that integrated HPV is 

not transcribed due to alternative splicing of the MICAL1 gene. For clone D, both DIPS and 

APOT detected integration on 18p11.31. When the exact location of integration on 

chromosome 18 was observed, the integration events detected by DIPS did not correlate with 

the integrated transcript detected by APOT: the integration site detected by APOT was over 

21Kbp upstream from the integration sites detected by DIPS and the DNA sequence 

orientation of the APOT data was sense. This implies that an integration event may be located 
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upstream from the transcribed integrant, detected by APOT and was not detected by DIPS in 

DNA. It also remains possible that genomic rearrangements may have occurred at the locus 

on chromosome 18p11.31 in the D clone resulting in inconsistency between DIPS and APOT 

data. This would be a limitation of comparing sequence data to the human genome data on 

UCSC, rather than a limitation of the assays.  

5.2.2 Integration and VIN and VAIN 

The observation that only 2 lines survived beyond passage 10 emphasises that producing a 

cell line from biopsies is very hard to achieve, with less than a 10% success rate. Both PC08 

and PC09 were from biopsies with grade 3 neoplasia; this means that the biopsies had already 

transformed from a productive infection into a precancerous lesion and potentially already 

had genomic alterations that are commonly seen in cancer which would give them a growth 

advantage in culture. DNA was extracted from part of the biopsies at the start of the pilot 

study for the purposes of HPV typing but integration status or human genomic instability was 

not investigated. Knowledge of integration status and human genomic instability of each 

biopsy before it was subjected to culture would have given insight into events that occurred 

in-vivo. In turn this would have allowed better understanding of the role of genomic 

instability and integration status in successful culture of PC08 and PC09. 

 

To gain an understanding of how single cells within each biopsy contributed to grade 3 

neoplasia in PC08 and PC09, single cell cloning was performed: 

 

5.2.3 PC08: Vulval Neoplasia 

5.2.3.1 Integration and Cell Selection  

Single cell cloning of PC08 showed that heterogeneity existed between cells within the 

biopsy because each clone was unique. The data, for PC08, presented here supported 

hypothesis 1 because E1 or E2 ORFs were disrupted due to integration. Theoretically, in a 

high-grade lesion, episomes are lost, integration disrupts E2 or E1, low levels of E2 

expression are detected and E6 and E7 expression would be high. In M and P clones episomal 

HPV was not detected by E2 PCR and integration was present in clone M. Integration was 

detected in Y clone, alongside HPV in episomal form. Despite being different with regards to 
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integration status, clones from PC08 displayed little difference in HPV E2 expression, all 

having extremely low and steady levels of E6 and E7 expression; this does not support the 

hypothesis that integration results in increased E6 and E7 expression. Also, HPV gene 

expression analysis was undertaken by Ned Powell on passage 18 of heterogeneous PC08 in 

the pilot study: patterns of E2, E6 and E7 expression were similar to the cloned counterparts. 

This indicates that E6 and E7 are unlikely to be required to maintain the transformed 

phenotype in heterogeneous and cloned PC08. There were also similarities in doubling time 

and population doubling between PC08 clones when grown in culture. Initially cell doubling 

time was high and population doubling was low; suggesting that although a different HPV 

status was detected in each clone, the growth of the cells did not differ between clones. These 

data indicate neoplasia could not be attributed to differences in integration status or changes 

in HPV gene expression.  

 

The hypothesis that integration gives a cell a selective growth advantage is not supported by 

the data in PC08 clones because integration was detected in M and Y clones and not in clone 

P. Also, there was no apparent growth advantage in the clones possessing the integrants. 

These data illustrate integration is likely to be influencing cell survival in culture in clones M 

and Y but not clone P.  

 

Integration was detected in human genes in PC08 clones. In DNA from clones M and Y, 

integration was within genes. Integration within genes may give the cells selective advantage 

and offer an alternative pathway facilitating cell growth in culture that is not dependant on 

HPV E6 and E7 oncogene expression: 

 

Integration in clone M was within an intron of LEPREL1. LEPREL1 otherwise known as 

P3H2, is a collagen forming protein in basement membranes (Tiainen et al. 2008) that is 

expressed in the majority of tissues. LEPREL1 expression has been reported to be down-

regulated in breast cancer cell lines; the mechanism of down regulation was due to hyper-

methylation of CpG islands around exon 1 (Shah et al. 2009). Loss of collagen is an early 

event in the development of some epithelial cancers (Ikeda et al. 2006). It is possible that 
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disruption of LEPREL1, due to integration, contributes to oncogenesis and clonal selection in 

PC08 because the integration event was detected at late passage 21 in heterogeneous PC08.   

 

Integration in LEPREL1 was detected by PCR in passage 9 of clone Y but not detected in 

later passages of clone Y. Integration in LEPREL1 was not transcribed in the clone Y, and 

not detected by APOT. Integration was detected by DIPS and APOT in passage 9 and 13 of Y 

clone within an intron of CDCP1; this indicates integration within CDCP1 is clonal and 

contributing to cell survival in culture. Integration within CDCP1 may have a stronger 

selection advantage than LEPREL1 in the clone Y because cells containing integrants in 

CDCP1 outgrew the cells containing integration in LEPREL1. These data illustrate selection 

of an integrant in clone Y and may explain why integration in LEPREL1 was not detected in 

passage 13. CDCP1 is a cell surface glycoprotein and resides within a chromosomal region 

on 3q that is frequently deleted in a number of cancers. CDCP1 is significantly up-regulated 

in colon cancer (Scherl-Mostageer et al. 2001) and increased expression correlates with poor 

prognosis, increased metastasis and relapse rate in lung cancer patients (Ikeda et al. 2009). It 

is consistently reported in literature that CDCP1 has strong links with cancer and it is 

plausible that alteration of CDCP1, due to integration, contributes to cell survival in PC08 

because integration in CDCP1 was detected by DIPS and APOT in clone Y and in passage 21 

heterogeneous PC08.  

 

In DNA from PC08 clone P, no integration was detected by DIPS or APOT. E2 disruption 

was detected by E2 PCR; this is interesting because non-contiguous HPV sequence was 

detected and E2 was disrupted by a mechanism other than integration. Non-contiguous 

sequence was also detected in CaSki (section 4.1.3.3) and reported for CaSki in the literature 

(Meissner 1999). Little is known or reported about non-contiguous sequence; this 

phenomenon will be discussed in section 8.4.2. E6 and E7 expression levels were not 

different to those of M and Y clones and HPV E6 and E7 expression may not contribute to 

cell survival in clone P. Non-contiguous sequence that disrupted E2 was confirmed by PCR 

and detected in clone P only and not in passage 21 of heterogeneous PC08; this indicates that 

non-contiguous disruption of E2 does not contribute to cell survival in PC08. APOT detected 

episomal transcripts of E7, E1^E4 for clone P; the PC08 cell lines were grown in monolayer 

and, as mentioned in section 4.2, cells grown in monolayer do not retain the HPV gene 
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expression characteristics of cells grown in epithelial layers; it remains possible that clone P 

may exhibit very different APOT transcripts when grown as a raft culture and this requires 

further exploration in future studies of PC08 clones. 

 

5.2.4 PC09: Vaginal Neoplasia 

In PC09, 12 clones were established, all survived in culture and 3 of the fastest growing 

clones were selected for this study. PC09 clones displayed differences in integration events 

between clones with integration being detected in D and H and no integration detected in 

clone A; this suggests heterogeneity within the PC09 biopsy. Where integration was detected, 

E1 or E2 were disrupted; these data support hypothesis 1.  

 

For A and H clones, HPV E6, E7 and E2 expression was steady between earliest and late 

passages; this implies that HPV E6 and E7 do not contribute to cell survival in these clones; 

this does not support the hypothesis that integration results in increased E6 and E7 

expression. For clone D, E2 and E6 expression increased between passage 5 and 10 and E7 

increased the least. At passage 11 there was a large decrease in E6, E7 and E2 expression; 

these data suggest that HPV E6, E7 and E2 may contribute to transformation in the clone D 

but beyond passage 10, selection favours cells with decreased E6, E7 and E2 expression 

levels. Beyond passage 10 high levels of E6, E7 and E2 expression may no longer be required 

for cell survival or may even be deleterious to the cell. It is also possible that E6 and E7 

expression contributes to genomic instability up to passage 10 and, after passage 10, the DNA 

is damaged enough to enhance cell survival. These data are novel and it would be interesting 

in future studies to investigate genomic changes to human DNA that are occurring in clone D 

up to passage 11. Furthermore these data are supported by an observation reported in W12 

grown in raft culture (Gray et al. 2010): E6, E7 and E2 expression levels increased up to a 

passage where invasiveness was observed and beyond the point of invasiveness, E6, E7 and 

E2 expression levels decreased. Epigenetic mechanisms such as methylation of the HPV 

URR may inactivate HPV E6, E7 and E2 expression (Van Tine et al. 2004) and enhance cell 

survival.   
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Although differences were detected in integration status and HPV gene expression, cell 

population doubling and doubling time did not differ between clones or increase with 

increasing passage; it is likely that since the clones originated from grade 3 neoplasia the 

cells were already dividing at their peak rate; if the clones were from a lower grade lesion 

then one may expect to observe an increase in population doubling and doubling time with 

increasing passage.   

 

Where integration was detected, integration was within human genes; these data support 

hypothesis 7. In PC09 clones D and H, integration was detected in genes MICAL2, LARGE, 

TGIF1, CLCNKB and in heterogeneous PC09, integration was detected in AP1S3:  

 

MICAL2 is an enzyme that acts as a cytoskeletal regulator and is involved in axon guidance.  

The development of the nervous system is an invasive process and it is thought that MICAL2 

contributes to invasiveness of cancer and is reported to be over expressed in prostate cancer 

(Ashida et al. 2006). Integration was detected within MICAL2 in clone D but not in late 

passage heterogeneous PC09, therefore integration within MICAL2 was present in the 

original biopsy, but selective pressure in culture allowed the cells containing MICAL2 

integrant to be outgrown by cells with a stronger selective advantage. Clonal selection has 

also been reported in W12 where cells possessing episomal HPV outgrew the cells containing 

integrated HPV (Gray et al. 2010). 

 

TGIF1 encodes a transcription factor that interacts with ubiquitin ligase to degrade SMAD 

proteins (Seo et al. 2004). SMAD proteins are tumour suppressors that inhibit cell 

proliferation and are reported to be down-regulated in colorectal cancer (Xie et al. 2003). 

HPV16 E6 acts as an ubiquitin ligase and degrades p53. It is possible that integration within 

TGIF1 disrupts either the gene or the function of the TGIF1 protein. Furthermore, as 

mentioned above, D clone displayed increased expression of E6 with increasing passage; 

hypothetically, disruption of TGIF1, due to integration, combined with degradation of SMAD 

through ubiquitination of TGIF1 protein by HPV16 E6 would provide a selective growth 

advantage and lead to selection of cells with increased E6 expression and TGIF1 integrants. 

Integration within TGIF1 was also detected in the heterogeneous PC09 and this event is 



 

 

182 

 

likely to be important for cell selection and survival. High levels of E6 expression were 

detected in passage 21 heterogeneous PC09 when qPCR was performed in the pilot study, 

thus E6 expression is likely to contribute to cell selection and survival.  

 

CLCNKB encodes a voltage-gated chloride channel protein that is involved in cell volume 

regulation, membrane potential stabilization and trans-epithelial transportation. Mutations in 

this gene have been reported to be linked with Bartter’s syndrome; a renal condition where 

excess salt is removed from the body; there are no documented links with cancer. As 

mentioned above, integration in CLCNKB was detected by APOT in H clone. Primers that 

flanked the DNA integration site could not be designed and it remains possible that 

integration within CLCNKB1 resides in A, D and heterogeneous PC09 but it could not be 

explored further as integration was not detected in the DNA by DIPS.  

 

LARGE, as the name suggests, is the largest gene in the human genome and encodes a 

protein involved in glycosylation of alpha-dystroglycan. Mutations in LARGE are linked 

with muscular dystrophy and a large number of muscular dystrophy patients develop cancer. 

Integration in LARGE was not detected in heterogeneous PC09, this suggests that it did not 

have a strong clonal selective advantage when grown in a heterogeneous culture. 

 

Integration in AP1S3 was detected in PC09 heterogeneous DNA but not detected in DNA 

from any of the clones. This is unusual but it is plausible that integration in AP1S3 resided 

within one or more of the 9 clones (B, C, E, F, G, I, J, K and L) that were not continued in 

culture. AP1S3 encodes a part of a protein involved in the golgi-network and endosomes and 

does not have documented links with cancer. APOT was not performed on heterogeneous 

PC09 so it remains unknown if integration on AP1S3 is transcribed and contributing selection 

at late passage. 
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5.2.5 Future work 

PC08 and PC09 integration was detected within strong candidate genes for human cancer, 

however, hypotheses that imply integration is disrupting human gene expression or functions 

are speculative. For PC08, integration in CDCP1 and LEPREL1 was detected within introns 

and in antisense orientation and it is unlikely that integration produces a fusion protein 

containing HPV and CDCP1 or LEPREL1. In PC09, several integration events were detected 

within introns and exons of TGFI1 in both sense and antisense orientation; the mechanism of 

disruption to TGFI1 may be difficult to pinpoint. Further work is required to understand how, 

or if, HPV integration disrupts these genes. It is possible to determine whether integration 

disrupts gene expression or gene function and this has been performed in cervical cancer 

biopsies (Schmitz et al. 2012); it would be ideal in future research to determine whether 

integration disrupts TGIF1, CDCP1 and LEPREL1 by performing gene expression analysis, 

Western blot and ISH.  It would also be interesting to determine whether reduction of E6 in 

PC09 D clone induces senescence or apoptosis through SMAD pathways. 

 

E2 PCRs were chosen to confirm episomal presence with intact E2 indicative of episomal 

presence. As mentioned in section 4.2.4, E2 is not disrupted due to integration in all cases, for 

example in CaSki, integration is present in concatenated form but E2 remains intact. Southern 

blot on late passage heterogeneous PC08 and PC09 revealed entirely integrated HPV at 

passage 19 for PC08 and a mixed population of integrated concatenated HPV and episomal 

HPV for passage 21 PC09. It does remain possible where intact E2 is detected in PC09 

clones, integration is in concatenated form. Southern blot is useful in confirming the presence 

of episomes and determining if integration is present in concatenated form. In future work, 

Southern blot will be applied to DNA from PC08 and PC09 clones to determine episomal 

status and if integration is in concatenated form.  

 

5.3 Conclusion 

In conclusion, data from DIPS and APOT are reproducible. Clones derived from PC08 and 

PC09 were unique in terms of integration and there was little difference between early and 

late passages implying that conditions required for selection were stable. There was evidence 
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in the PC08 or PC09 clones that integration disrupts E2 or E1, but no evidence to suggest that 

episomes are lost resulting in increased E6 and E7 expression. Furthermore, there was no 

evidence to suggest that integration is required for cell survival in culture since integration 

was not detected in all clones. Where integration was detected in a clone, there was evidence 

to imply disruption to human genes. Disruption to human genes may give the cell a selective 

growth advantage in culture and this requires verification in future experiments. 
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6 Application of assays to Clinical Samples 

Hypothetically, integration commonly disrupts E1 and E2 ORFs and loss of episomal E2 

leads to increased E6 and E7 expression and carcinogenesis. It is unclear as to whether HPV 

integration is an early or a late event in cervical carcinogenesis and integration has not yet 

been evaluated as a biomarker for predicting cervical disease. The aim of this section was to 

determine if integration is an early event, present in CIN1 (hypothesis 4), and to determine if 

episomal loss is a late event, present in CIN3 (hypothesis 5). Also qPCR was applied where 

RNA was available to test the hypothesis that integration results in elevated E6 and E7 

expression and reduced E2 expression (hypothesis 3). RS-PCR, E2 PCR, DIPS, APOT and 

qPCR were applied to clinical samples comprising cervical smears with varying grades of 

disease and cervical cancer biopsies: 

 

6.1 Liquid Based Cytology Samples: Baseline Results 

The “Baseline” samples are a collection of cervical smear samples taken from women aged 

20 to 22 years attending their first cervical smear test in Wales. Fifteen thousand samples 

were collected as part of a previous study to determine the HPV prevalence of HPV types in 

young women prior to the commencement of HPV vaccine administration.  Single smear 

samples were placed into SurePath™ preservative fluid and cytology data obtained. Follow-

up screening was available for a further 2 screening rounds and histology data recorded from 

all women who attended colposcopy. The aim of this section was to compare HPV 

integration and E2 as a marker of viral episome presence or absence between different 

cytological and histological grades to determine whether integration and episome clearance is 

a key event in the development of cervical cytological abnormality and neoplasia.  

 

6.1.1 DNA Quality 

6.1.1.1 DNA Degradation and Surepath™ 

Where DNA was available (n=55), 15µl   of Baseline DNA was electrophoresed onto a fine 

pore 0.7% agarose gel. All of the samples failed to produce any band although there should 

have been at least 600ng visible as a single band, similar to that of the positive control in 

Figure 41. Subsequently, to test the ability of SurePath™ to preserve DNA, SurePath™ 

preservative fluid was spiked with a known amount of SiHa cells representative of what 
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would be expected in a clinical LBC specimen (1x10
4
). If DNA were un-degraded then a 

single band would be observed as in lane 9 and lane ”+” in Figure 41. After 48 hours in 

SurePath™ the SiHa DNA had degraded substantially with a visible smearing of the DNA 

electrophoresed on a fine pore gel. When SiHa was stored in SurePath™ for 1 month, SiHa 

DNA was degraded further (lane 1M in Figure 41). Storage of cervical smear cells and cell 

line cells in SurePath™ results in DNA degradation.  

 

 

 

Figure 41 DNA Degradation of samples stored in SurePath™ cytology fluid. Lanes 1 to 9 contain 15µl   of 

Baseline sample DNA; lane 10 contains 1.2µg SiHa DNA positive control; lanes 10 and 11 contain 1.2 µg SiHa 

DNA stored at room temperature in SurePath for 48 hours. Lane 13 contains DNA from SiHa stored in Surepath 

for 48 hours, lane 14 contains DNA from SiHa stored in SurePath for 1 month and lane “+” is DNA from SiHa 

that has not been stored in SurePath.  

 

6.1.1.2 Beta-globin PCR 

All samples selected for DIPS and E2 PCR were subjected to Beta-globin PCR to determine 

whether Baseline DNA was suitable for PCR methods. Eighty-five percent of the samples 

had a positive PCR result indicating good PCR quality DNA. The DNA from samples that 

failed the Beta-globin PCR were diluted 1 in 10 to dilute potential PCR inhibitory 

contaminants and Beta-globin PCR was repeated; the repeated samples did not provide a 

positive result. When E2 PCRs and DIPS were performed on Baseline samples, assays were 

more successful on HPV16 than HPV18 and HPV45. There was no significant difference in 

Beta-globin failure between HPV types (
2
=3.63, df=2, p=0.16; data not shown) indicating 

DNA quality was equal between samples grouped by HPV type. 
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6.1.2 E2 PCR 

To test the hypothesis that loss of episomes is associated with CIN3 (hypothesis 5), E2 PCR 

was applied to the Baseline samples. Analyses were performed on all samples and then 

repeated on data excluding borderline and mild cytology data.  

 

As mentioned in 3.1.4.4, to achieve a maximum chance of a false positive outcome of 20%, 

49 samples would need to be assayed. However, it was hypothesised that integration events in 

DNA may be more frequent in low grade CIN than those observed by Klaes et al. (1999), due 

to the reports of Huang et al.(2008); this would mean that more than 49 samples would be 

required to achieve 20% chance of a false positive result. Initially, thirty one HPV16, 25 

HPV18 samples and 21 HPV45 samples were selected for E2 and E6 PCRs. A pilot set of 6 

of each HPV16, HPV18 and HPV45 samples were subjected E2 and E6 PCRs. Of the HPV16 

samples 100% were successful. For HPV18 and HPV45, only 50% of the samples yielded 

positive results: the positive control was positive and the failure of the E2 and E6 PCRs could 

not be attributed to PCR failure. Attempts to improve the results for HPV18 and HPV45 by 

diluting DNA before adding to the PCR were not successful.  

 

The HPV16 samples were from patients with single infections and the HPV18 and HPV45 

were from patients with multiple infections. Due to high failure rate in HPV18 and HPV45 

baseline samples, further E2 PCRs and E6 PCR were not done on HPV18 and HPV45 

Baseline samples. Instead, to prevent wasting time, reagents and to yield more meaningful 

data, a total of 83 HPV16 samples, comprising the entire HPV16 Baseline set with single 

infections that had attended colposcopy, were selected for E2 and E6 PCRs. 

 

There was no evidence to support hypothesis 5 because detection of intact E2 did not 

decrease with increasing disease severity: 

 

Glandular neoplasia and negative cytology group were removed from Chi-squared analyses 

to reduce the number of groups with a low number and to allow a more accurate test. There 

was no significant difference in intact E2 frequency between cytology groups (
2
=0.28, df=3, 
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p=0.96) (Figure 42A). When cytology was grouped into high (severe and moderate) and low 

(mild and borderline) grade cytology, intact E2 was not significantly different between 

cytology groups (
2
=0.046, df =1, p=0.83; data not shown).  

 

E2 status was compared between histology data obtained from the first attendance at 

colposcopy following their first smear. There was a significant difference in the distribution 

of E2 status between histology groups (2=8.99, df=3, p=0.029) (Figure 42B), with a higher 

frequency of intact E2 than disrupted E2 in CIN1 and in CIN3. When Bonferroni correction 

for multiple testing was applied, the result was not statistically significant (p>0.05). The 

power of the study to detect a true association of intact E2 with CIN3, was 40% (0.4) with 

φC=0.23, N=74, 2 degrees of freedom at the 0.05 significance level. This highlights the 

likelihood of a false positive result at a rate of 60%  in the number of samples tested and 

indicates a larger sample size is required to reduce the rate of detection of a false positive 

difference.  

 

When histology was grouped into high grade (CIN2 and CIN3) and low grade (CIN1 and no 

CIN) histology, there was no significant difference in E2 status (
2
=2.96, df=1, p=0.085, 

adjusted for Yates’ continuity correction) although the frequency of intact E2 was higher in 

low grade histology with an odds ratio of 0.30 (95% CI=0.14-0.64) (Table 46); this indicated 

that women with intact E2 had 3/10 less chance of high grade neoplasia. The power of the 

study comparing E2 status between high-grade and low-grade disease with φ=0.20, N=74, 1 

degree of freedom to achieve significance at the 0.05 level was 40%. This implies that the 

sample size was too small to accurately detect a significant difference. A total sample size of 

196 would be needed to achieve power of 80% to correctly detect a significant difference, 

when α=0.05, between cases and controls when φ=0.20 at 1 degree of freedom.  

 

E2 status was compared between CIN1 and CIN2/3 with mild and borderline cytology data 

removed; there was no significant difference in E2 status between high grade histology and 

low grade histology (
2
=0.11, df=1, p=0.74). 
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Low   High   
21 

p-value df OR  95%CI 
   

Intact E2 22(42%) 30 (58%) 2.96 0.085  1  0.30     0.14-0.64  

Disrupted E2 4 (18%)  18 (82%)   

Table 46 Comparison of E2 as a marker of viral episome presence, with intact E2, or absence, with 

disrupted E2, between low-grade disease (Low: no CIN and CIN1) and high-grade disease (High: CIN2 and 

CIN3).  

  

                                                 
1
 Yates’ continuity correction applied 
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Figure 42 Comparison of E2 as a marker of viral episome presence, with intact E2, or absence, with 

disrupted E2, in different cytology grades. Proportion  and frequency of E2 disruption versus intact E2 is 

shown for A) Negative, borderline, mild, moderate, severe dyskaryosis and glandular neoplasia (
2
=0.28, df=3, 

p=0.96; when glandular neoplasia and negative dysplasia were removed from analysis). B) No CIN, CIN1, 

CIN2 and CIN3 (
2
=8.99, df=3, p=0.029). 

 

6.1.3 DIPS 

6.1.3.1 DIPS Controls 

SiHa, HeLa and HTB-34™ were used as HPV16, HPV18 and HPV45 positive controls, 

respectively; C33A was used as a HPV negative control. DIPS control PCR yielded 

amplicons of 1.2kbp for both Taq1 and Sau3AI digests in SiHa, HeLa, HTB34 and C33A. 
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Integration sites consistent with those in section 4.1.3 (Table 37) were detected for SiHa, 

HeLa and HTB-34™. No HPV16, HPV18 or HPV45 amplicons were generated for C33A.  

 

DIPS control PCR was unsuccessful in the majority of baseline samples with 9% of the 103 

samples tested producing an amplicon of 1.2kbp for either Sau3AI or Taq1. There was no 

significant difference in DIPS control success between HPV types (
2
=0.616, df=2, p=0.74; 

data not shown) nor was there any significant difference in DIPS control success between 

multiple or single infections (
2
= 0.742, df=1, p=0.39, Yates` continuity correction applied; 

data not shown). Thus DIPS performance cannot be attributed to difference in HPV type or 

difference in infection status. 

 

Nanodrop data indicated that sufficient DNA had been put into the DIPS assay and the Beta-

globin PCR indicated that the human DNA was good PCR quality. SiHa DNA that had been 

stored in SurePath™ for 1 month (Figure 41) did not produce an amplicon for the DIPS 

control PCR and it was likely that DNA degradation could explain DIPS control PCR failure 

in the Baseline samples. When the DIPS PCR using HPV16-specific primers was performed 

on SiHa DNA that had been stored in SurePath™ for 1 month, integration was detected. This 

illustrates that DIPS can successfully detect integration in degraded DNA. 

 

DIPS was performed on the baseline samples before the problem of star activity was 

identified and a digestion time of 16 hours used. Subsequently, a selection of 8 HPV16, 8 

HPV18 and 8 HPV45 samples were subjected to DIPS with a digestion time of 2 hours; the 

control PCR outcome was not improved therefore poor DIPS control PCR performance could 

not be due to digestion time or star activity.  

 

6.1.3.2 DIPS on Baseline Samples 

Initially, DIPS was performed on 31 HPV16, 25 HPV18 samples and 21 HPV45 samples. 

DIPS was also done on an additional 25 HPV16 samples that had either disrupted E2 or CIN3 

samples with intact E2 to confirm the data generated by HPV16 E2 PCRs.  
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DIPS detected HPV16 in 51% of the HPV16 samples, HPV18 in 19% of the HPV18 samples 

and HPV45 in 28% of the HPV45 samples: there was a significant difference in HPV 

detection by DIPS between the different types (
2
= 7.44, df=2, p=0.024); the power of which 

was 99% when φC=0.73, N=103, 2 degrees of freedom at the 0.05 significance level. All of 

the HPV16 samples were single infections whereas 13% of HPV45 samples and 63% of 

HPV18 samples were single infections. There was no difference in the detection of HPV by 

DIPS between single infection or multiple infections (
2
= 0.26, df =1, p = 0.61) thus the 

difference in HPV detection between the HPV types cannot be attributed to single or multiple 

infections.  There was no association between DIPS control success and the detection of HPV 

by DIPS (
2
= 1, df=1, p=1; Yates` continuity correction applied (data not shown)): a 

successful DIPS control PCR, that detects human DNA, does not determine detection of HPV 

by DIPS.   

 

Following DIPS application to the Baseline samples E6 PCR was applied to the HPV18 and 

HPV45 samples, where DNA were available. When the E6 data for HPV45 and HPV18 were 

combined with E6 data for HPV16 (n=83) there was a significant association between 

detection of E6 and detection of HPV by DIPS (
2
= 4.93, df=1, p=0.026; Yates` continuity 

correction applied). For 90% of samples, that had HPV detected by DIPS, E6 PCR was 

positive. However, in 34% of samples that had no HPV detected by DIPS, E6 PCR was 

negative. This means that the positive predictive value of E6 PCR to detect HPV by DIPS is 

good but the negative predictive value of E6 PCR is poor. The power was 99% when  =0.54, 

N=83, 1 degree of freedom at the 0.05 significance level; this indicates that the probability of 

a false positive result is 1% in the number of samples compared although the difference is no 

longer significant at the 0.05 level when adjusted for multiple testing.  

 

Ten samples showed HPV integration, each with a unique integration site (Table 47). For all 

the samples where integration was detected, intact E2 was detected by E2 PCR. Nine 

integration events presented with disruption to the E2 ORF; it is likely that integrated and 

episomal HPV are present in these samples. Detection of integration was more frequent in 

HPV16 samples with 8 integration events occurring in HPV16 compared to 2 in HPV18 
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samples and none in HPV45 samples. Four samples had multiple integration events: 265, 

913, 13290 and 1571 but this did not confer a higher severity of disease. Samples 265 and 

913 had 2 integration events detected in the first smear sample and CIN1 was confirmed by 

histology when a biopsy was taken at colposcopy. Sample 13290 had 2 integration events 

detected in the smear sample and CIN2 was confirmed by histology. Sample 1571 had 3 

integration events detected in the smear sample and CIN2 was confirmed in this patient by 

histological examination.  

 

Samples 10295 and 12282 had integration that disrupted HPV at 1551bp, within E1. Sample 

12282 had 4bp overlapping sequence, CAGC that was both a match to human and HPV 

sequence. Sample 10295 had 4bp overlapping sequence, GAGC that was both a match to 

human and HPV sequence. Sample 1571, and both the integration events in sample 13290, 

had HPV18 disrupted at 3080bp and had an overlap of 4bp GATG. HPV disruption occurs at 

a unique site every time when integration occurs and the event seen in the above samples is 

interesting. The similarity in the overlapping sequence at the sites of integration is the same, 

complementary or similar to the sequence preceding the adapter primer seen where star 

activity and incorrect ligation had occurred, GTCG, GCAG and ATCG; it is possible that the 

DNA has been digested and ligated back together at these positions and that these are not true 

integration events. 

 

Sample 3220 had multiple infections when typed by GP5+/6+PCR-EIA, with both HPV16 

and HPV45 present; there was no HPV45 detected by DIPS or by E6 PCR, but when HPV16 

DIPS was applied, integration was detected. Likewise, sample 10295 was HPV45 and 

HPV18 positive when typed by GP5+/6+PCR-EIA; when HPV45 DIPS and E6 PCR were 

applied no HPV45 was detected by DIPS; when HPV18 DIPS was applied, integration was 

detected. These results illustrate the importance of multiple infection and E6 PCR: if a 

transient infection with a certain HPV type is present, then E6 or DIPS will not detect it 

because of low HPV copy numbers, on the other hand, where a certain HPV type causes a 

productive infection, the HPV type will be present at higher copy numbers and detected by 

both DIPS and E6 PCR.  



 

 

1
9
4
 

Study ID Type E2
1
 CIN

2
        Primer

3
              Viral disruption

4
  Map

5
  Accession

6
            Match

7
  Orientation

8
 

 

265 HPV16 intact  1 P4 Sau3AI 3376 (E2) 5q22.5           NT_034772.6  98% S 

265 HPV16 intact  1 P4 Sau3AI 3420 (E2) 15q15.1  BLAT only  100% S 

696 HPV16 intact  3 P4 Sau3AI 3206 (E2) repeat  BLAT only  97% Unknown 

913 HPV16 intact  1 P4 Sau3AI 3098 (E2) Xp11.1  NT_011630.14  99% AS 

913 HPV16 intact  1 P7 Sau3AI 6543 (L1) 9p13.3  NT_008413.18  97% AS 

1513 HPV16 intact  2 P7 Sau3AI 6478 (L1) 8q21.13  NT_008183.19  99% S 

1571 HPV16 intact  2 P2 Sau3AI 1781(E1) 10p12  BLAT only  100% AS 

1571 HPV16 intact  2 P4 Sau3AI 3205 (E2) 17q21.33 NT_10783.15  100% AS 

1571 HPV16 intact  2 P4 Sau3AI 3080 (E2) 8q11.23  NW_001839132.1 100% AS 

3577 HPV16 intact  0 P4 Sau3AI 3206 (E2) 3p14.1  NT_022459.15  100% S 

13290 HPV16 intact  2 P4 Sau3AI 3080 (E2) 16q11.2  NT_010498.15  100% S 

13290 HPV16 intact  2 P4 Sau3AI 3080 (E2) 21q21.1  NT_011512.11  98% AS 

3220 HPV16 /45 not tested 3 P2 Sau3AI 1789 (E1) 12q24.11 BLAT only  100% AS 

12282 HPV18 not tested 1 P2 Sau3AI 1551 (E1) 18q22.3  NT_025028.14  100% S 

10295 HPV18/45 not tested 1 P2 Sau3AI 1551 (E1) Xp22.2  NT_167197.1  100% S 

 

Table 47 DIPS integration data for baseline samples. E2 status, histology grade, DIPS PCR primer and restriction digestion used to detect integration are shown. The site 

of viral disruption and integration locus are listed along with the accession number for the NCBI database sequence with the greatest similarity to human sequence.  

 

  

                                                 
1
 E2 PCR outcome. 

2
 Histology outcome linked with the first attendance at colposcopy following first smear test. 1=CIN1, 2=CIN, 3=CIN3, 0=normal 

3 Restriction enzyme and HPV specific primer used in DIPS that detected integration. 
4
 Viral disruption number denotes last viral nucleotide before recombination to human sequence. Numbering of HPV sequence is according to Genebank accession numbers 

NC_001526.1, X05015 and X74479 for HPV16, HPV18 and HPV45, respectively. 
5
 The genomic location of the site of integration chromosomal reference of all viral-cellular fusion transcripts with respect to Giemsa-stained bands was taken from the 

UCSC database (Kent et al. 2002). 
6
 EMBL Accession number for the NCBI database sequence with the most similarity to human sequence data. 

7
 Percentage consensus of sequence data with NCBI database sequence. 

8
 Orientation of HPV DNA within human sequence. S= Sense orientation, A=Antisense orientation. 

http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNT_025028.14%7C&gi=224514960&term=224514960%5Bgi%5D&taxid=9606&RID=0ATFGGZE01N&QUERY_NUMBER=1&log$=nucltop
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6.1.3.3 Confirmation of Integration Sites 

Once Beta-globin PCR, DIPS and E2 PCRs had been performed on Baseline samples there 

was insufficient DNA to confirm the integration sites by PCR using primers that flanked the 

integration site. DIPS PCRs were repeated on the ligation products for the samples in Table 

47 using the primers indicated in Table 47 in an attempt to confirm the integration events 

detected; integration was not confirmed by replicating the DIPS assay. This indicates that the 

integration events detected in Baseline samples are an artefact of DIPS or they are not clonal. 

 

6.1.3.4 Integration in Baseline Samples 

Hypothesis 4 was tested by comparing the frequency of integration between varying 

histological grades. There was no evidence to support integration as early event in cervical 

neoplasia (hypothesis 4).  Analyses were performed on all samples and then repeated on data 

excluding borderline and mild cytology data. 

 

“Integration not detected” can be defined two ways: 1) DIPS assay performed but no 

integration detected or 2) DIPS assay performed but only HPV sequences detected. To allow 

an accurate Chi squared test, cytology was grouped into high grade cytology (moderate and 

severe) and low grade cytology (mild and borderline); there were no significant differences in 

integration detection between high grade or low grade cytology, when all samples were 

included (
2
=0.00, df =1, p=0.99). 
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Figure 43 Integration detection by cytology groups. Frequency of integration detected versus no integration 

detected is shown for borderline, mild, moderate and severe dyskaryosis.  

 

 

Figure 44 Integration detection by histology group: Frequency of integration detected versus no integration 

detected is shown for no CIN, CIN1, CIN2 and CIN3.  

 

To test hypothesis 4, detection of integration was compared with histology result of a biopsy 

taken at colposcopy following first smear test. The proportion of integration events were 

higher in CIN1 compared to the other groups but this was not statistically significant 

(
2
=1.96, df=3, p=0.58) (Figure 44A). To allow a more accurate comparison with Chi square, 

histology was grouped into low grade (no CIN and CIN1) and high grade (CIN2 and CIN3): 
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when including all samples no significant difference was detected (
2
=1.05, df=1, p=0.30, 

Yates’ continuity correction applied; data not shown); when including only samples positive 

for HPV no significant difference was detected (
2
= 0.71, df=1, p=0.40, Yates’ continuity 

correction applied; data not shown). These data do not support hypothesis 4 and integration is 

not an early event present in CIN1. 

 

6.1.3.5 Alternative DNA extraction method 

The Baseline samples were previously extracted using Proteinase K method. As mentioned in 

section 3.2.3 Proteinase K allows purification of crude, un-purified DNA and it remained 

possible that presence of protein in the extracted DNA may inhibit the DIPS assay. To 

ascertain whether an alternative extraction method could improve the DNA quality and 

improve DIPS outcome, 3 samples that were positive for HPV with DIPS, and 3 samples that 

failed DIPS and E6 PCR for HPV16, HPV18 and HPV45 were extracted using QIAamp
®
 

(QIAGEN). The 3 samples that were HPV positive for DIPS and E6 were still E6 positive 

and produced amplicons for DIPS; the three samples that had failed DIPS and E6 PCR 

previously failed both assays. The QIAamp
®
 DNA was electrophoresed on a fine pore 0.7% 

gel and there were no bands visible. An alternative method of extraction did not improve the 

outcome.  

 

6.1.4 Baseline: Summary  

There was no evidence in this sample set to support hypothesis 3 or hypothesis 4. Integration 

was not more prevalent in CIN1 nor was presence of episomal HPV, represented by intact 

E2, associated with CIN1. The major limitation of this sample set was DNA quality. In 

future, E2 PCRs and DIPS require samples that have not been stored in SurePath™ fluid.  

 

6.2 HPV Integration as a Biomarker of Cervical Disease: Results  

The aim of this section was to pilot whether HPV integration can predict high-grade cervical 

disease, due to presence of integration and loss of episomal HPV, in women with cytological 

abnormalities (hypothesis 4 and 5). Cervical smear samples were collected from women that 

were referred to colposcopy following detection of cellular dyskaryosis by cytological 
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screening. Samples were collected in RNAProtect
®

 (QIAGEN) to provide the best possible 

quality RNA and DNA. Initially, 45 samples were intended to be collected but sample 

collection was slower than anticipated and study initiation was delayed thus 28 samples were 

collected. The samples were HPV typed and E2 PCRs, DIPS, RS-PCR and APOT for 

HPV16, HPV18 and HPV45 applied; HPV16 E2, E6 and E7 mRNA were quantified by 

qPCR. The data from integration assays and qPCR were correlated with cytology and biopsy 

results to determine if integration is present in CIN and loss of episomes is associated with 

CIN3 and leads to high E6 and E7 expression (hypothesis 3). 

 

6.2.1 Samples 

Twenty eight samples were collected (Table 48 and Figure 45). In samples taken from 

women referred to colposcopy with severe dyskaryosis, CIN3 was the most frequent 

diagnosis following histological examination. The majority of samples taken from women 

referred to colposcopy with mild dyskaryosis, either had no CIN confirmed by histology or 

did not have a biopsy taken. There were 2 women (HIBCD10 and HIBCD23) referred to 

colposcopy with mild cellular dyskaryosis that had CIN2 or CIN3 confirmed by histological 

examination.  HIBCD5 was from a woman did not have CIN confirmed by histological 

examination and was referred with sever dyskarosis. HIBCD14 was from a woman referred 

to colposcopy with severe dyskaryosis, who had both cervical cancer and CIN3 confirmed on 

histological examination. HIBCD11 and HIBCD19 were samples for which histological 

grade could not be confirmed; these were taken from women referred with severe and 

moderate dyskaryosis.  
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ID  Age
1
 Cytology

2
 Histology

3
 Infection HPV

4
 

HIBCD1 36 severe  CIN 3  no  

HIBCD2 52 mod  No CIN  single  45 

HIBCD3 27 severe  CIN3  mixed  33,39,58 

HIBCD4 31 severe  CIN 2-3  mixed  33,39,51,58 

HIBCD5 35 severe  No CIN  single  16 

HIBCD6 37 severe  CIN 3  single  16 

HIBCD7 21 severe  CIN 3  mixed  16,35,52 

HIBCD8 24 severe  CIN3  mixed  16,18,31,59,66 

HIBCD9 30 severe  CIN 3  mixed  16,18,39 

HIBCD10 33 mild/mod CIN 2  mixed  33,35,39,52 

HIBCD11 26 severe  CIN ungraded single  16 

HIBCD12 27 severe  CIN 3  single  33,39,58 

HIBCD13 27 severe  CIN 2  single  16 

HIBCD14 25 severe  SCC + CIN 3 mixed  16,59,66 

HIBCD15 35 severe  CIN 3  single  58,59 

HIBCD16 21 severe  CIN 3  mixed  31,35,39,51,66,68 

HIBCD17 25 severe  CIN 3  mixed  33,39,55 

HIBCD18 28 severe  CIN 3  mixed  33,39,58 

HIBCD19 37 mod  CIN ungraded mixed  18,58,66 

HIBCD20 31 mod  CIN3  single  16 

HIBCD21 22 mild  No CIN  mixed  31,35,39,59,68 

HIBCD22 22 mild  No CIN  single  39 

HIBCD23 34 mild  CIN2/3  single  33 

HIBCD24 40 mild  No CIN  no  

HIBCD25 25 mild  No CIN   no  

HIBCD26 21 mild  No CIN   no  

HIBCD27 53 mild  No biopsy no  

HIBCD28 54 mild  No CIN   mixed  51,66 

Table 48 Summary of HI-BCD samples. Sample ID, age, cytology grade (severe, mild or moderate (mod)), 

histology outcome (CIN= cervical intraepithelial neoplasia, CaCx= cervical cancer), infection type (mixed, 

single or no infection) and HPV type. 

 

                                                 
1
 Age of woman at time of sampling. 

2
 Cytology referral result; mod=moderate. 

3
 Histology of biopsy taken at the time of sampling. 

4
 HPV type by Papillocheck

®
 and GP5+/6+ PCR-EIA methods. 
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Figure 45 Histology outcome (No CIN or no biopsy, CIN1, CIN2 CIN3 and CIN unknown) in mild, 

moderate and severe dyskaryosis groups.  

 

6.2.1.1 DNA and RNA quality  

 

Figure 46 HI-BCD DNA Integrity. Electrophoresis of 5uL of extracted HIBCD sample DNA on a 0.8% fine-

pore gel. Lanes 1 to 10 contain DNA for HIBCD samples HIBCD19 to HIBCD28; + is extraction positive 

control SiHa DNA and – is extraction negative control (water). 
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DNA was electrophoresed on a 0.8% fine pore gel and little DNA degradation was observed (

 

Figure 46). Beta-globin PCR was successful on all HI-BCD samples except HIBCD26 

indicating 96% of samples had DNA of suitable quality for PCR. RNA integrity values were 

low indicating that a high level of RNA degradation was present. SiHa cells, that were stored 

in RNAProtect
®
 in the same conditions as the smear samples, were used as a positive control 

each time a batch of samples was extracted; the RNA integrity value was 10 every time; RNA 

degradation did not occur in the extraction process or in the storage of the samples. Jane 

McRea, a senior cytologist in Cervical Screening Wales, confirmed that the likely reason for 

RNA degrading is due to the natural lifecycle of the epithelial cells: the cells collected by a 

smear are ready to be shed from the topmost layer of epithelia, are already dead and RNA has 

started to degrade naturally. 

 

6.2.1.2 HPV Typing 

SiHa was used as a positive control and HPV16 was detected by PapilloCheck
®
 or by 

GP5+/6+PCR-EIA. Mixed infections and single infections were present across all cytology 

and histology groups (Table 48). HPV16 was detected most frequently in samples from 

women referred with severe dyskaryosis. HIBCD1 was taken from a women referred to 

colposcopy with severe dyskaryosis and had CIN3 diagnosed by histology; this sample had 

no HPV detected by PapilloCheck
®
 or by GP5+/6+PCR-EIA. HIBCD2 was from a woman 

with moderate cytology who had no CIN detected when a biopsy was taken; HPV45 was 

detected in this sample. 
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6.2.1.3 E6 PCR 

Integration disrupts the HPV genome and it is plausible that integration can result in failure to 

detect HPV by PapilloCheck
®
 or GP5+/6+PCR-EIA typing. To overcome this, all samples 

were subjected to E6 PCR specific for HPV16, HPV18 and HPV45 (Table 49). Plasmids 

encoding HPV16, HPV18 and HPV45 DNA were used as positive controls and HPV was 

detected in each. All samples that were HPV negative by PapilloCheck
®
 and GP5+/6+ PCR-

EIA typing, did not produce amplicons for HPV16, HPV18 or HPV45 E6 PCR. As 

mentioned above HIBCD1, was diagnosed with severe cellular dyskaryosis and CIN3 but 

was HPV negative by PapilloCheck
®
 and GP5+/6+ PCR-EIA typing; this sample did not 

produce an amplicon for HPV16, HPV45 or HPV18 E6 PCR. All samples positive for 

HPV16 by PapilloCheck
®
 and GP5+/6+ PCR-EIA produced amplicons with HPV16 E6 PCR. 

HIBCD2 was positive for HPV45 by E6 PCR. There was 100% consensus between the 

detection of HPV16 and HPV45 by PapilloCheck
®
, GP5+/6+ PCR-EIA and E6 PCR. 

PapilloCheck
®
 and GP5+/6+ PCR-EIA detected HPV18 in 4 samples: HIBCD5, HIBCD9, 

HIBCD8 and HIBCD19; two samples produced amplicons for HPV18 E6 PCR: HIBCD19 

and HIBCD8; there was therefore 50% consensus for HPV18 between GP5+/6+ PCR-EIA, 

E6 PCR and PapilloCheck
®
. 

 

Sample age
1
 infection

2
 Cytology

3
  CIN

4
  E6

5
 E2

6
  

     

HIBCD2 52 single mod No CIN  HPV45 disrupted  

HIBCD5 35 single severe No CIN  HPV16 intact     

HIBCD6 37 single severe CIN 3  HPV16 intact     

HIBCD7 21 mixed severe CIN 3  HPV16 intact     

HIBCD8 24 mixed severe CIN3  HPV16 intact     

HIBCD8 24 mixed severe CIN3  HPV18 disrupted  

HIBCD9 30 mixed severe CIN 3  HPV16 intact     

HIBCD11 26 single severe CIN Ungraded  HPV16 intact     

HIBCD13 27 single severe CIN 2  HPV16 intact     

HIBCD14 35 mixed severe CaCx, CIN 3 HPV16 intact     

HIBCD19 37 mixed mod CIN ungraded HPV18 disrupted  

HIBCD20 31 single mod CIN3  HPV16 intact    

  

                                                 
1
 Age of woman at time of sampling. 

2
 Infection type, mixed or single infection 

3
 Cytology referral result: mild, moderate (mod) or severe dyskaryosis. 

4
 Histology results of biopsy taken at colposcopy. 

5
 E6 PCR result 

6
 E2 PCR result 
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Table 49 Summary of HI-BCD E2 PCR and E6 PCR results. Age, infection type, HPV type, cytology and 

histology outcome are shown. 

 

6.2.2 HPV Integration 

To test hypotheses that integration is an early event present in CIN1 and that episomal loss is 

a late event associated with CIN3 (hypotheses 4 and 5) DIPS, APOT and E2 PCRs were 

performed on HIBCD samples that were HPV16, HPV18 and HPV45 positive by E6 PCR, 

PapilloCheck
®
 and GP5+/6+ PCR-EIA.  

 

6.2.2.1 E2 PCRs 

E2 PCR was done on all the samples that were HPV16, HPV18 and HPV45 E6 positive 

(Table 49). Samples that were HPV18 positive by PapilloCheck
®
 and GP5+/6+ PCR-EIA, 

but not by HPV18 E6 PCR, failed the E2 PCR. All the samples that were HPV16 positive had 

intact E2 (Table 49).  HIBCD2 had disrupted E2 for HPV45, with primer set 3 failing to 

amplify an amplicon; HIBCD8 had disrupted E2 for HPV18, with primers sets 1, 2 and 3 

failing to produce an amplicon; HIBCD19 had disrupted E2 with primer set 3 failing to 

amplify. There was insufficient sample numbers to perform accurate statistical analysis but 

there was no pattern in the data. There were no samples that had CIN1 confirmed by a biopsy 

however, E2 disruption was not more frequent in CIN3 or CaCx compared to samples with 

no CIN. E2 PCR was used as a marker of episomal presence and these data indicate that loss 

of episomes is not more frequent in CIN3; hypothesis 5 is not supported. 

 

6.2.2.2 DIPS 

DIPS, with a 2 hour incubation restriction digest was performed on HI-BCD samples (Table 

50). DIPS detected HPV in all the samples where E6 PCR had detected HPV16, HPV18 or 

HPV45. DIPS control PCR was 100% successful indicating that efficient digestion and 

ligation had taken place and that the DNA was of sufficient quality for DIPS. HPV16, 

HPV18 and HPV45 plasmid DNAs were used in addition to SiHa, HeLa and HTB-34™ as 

type specific positive controls. All positive controls produced amplicons consistent with 

predicted sizes. Primer sets that detected integration, in SiHa, HeLa and HTB-34™ produced 

the same amplicon sizes as previously detected and DIPS assay was therefore performing 
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optimally. Furthermore, in samples where multiple types were detected by PapilloCheck
®
 and 

GP5+/6+ PCR-EIA, DIPS detected HPV; this shows that DIPS performance is not affected 

by the presence of multiple HPV types. 

 

DIPS detected integration in 3 samples: HIBCD8, HIBCD9 and HIBCD19 (Table 50). 

HIBCD8 had 1 integration event detected for HPV16 on 12q23.2, with disruption to E1 ORF, 

and 3 integration events for HPV18 on 8p11.21, Xp11.4 and 11p12, with disruption to E1/E2 

and L2 ORFs. HIBCD9 had 1 integration site detected on 6q15, with disruption to the E1 

ORF and HIBCD19 had integration detected on 9q21.3, with disruption to the L2 ORF. 

Integration was detected in 3/16 (19%) women with severe dyskaryosis and detected in 3/14 

(21%) of women with CIN3. Samples HIBCD7, HIBCD14 and HIBCD19 had other HPV 

types present; it is possible that in these samples another HPV type could be integrated and 

contributing to disease. HIBCD6 and HIBCD20 were samples taken from women that had 

CIN3; both of these samples had single infections and another HPV type is unlikely to be 

driving disease in these samples. Where integration was detected, it could not be confirmed 

by PCR using primers that flanked the integration site and repeating DIPS PCR could not 

replicate the detection of integration; thus integration is unlikely to be clonal and may not be 

contributing to CIN3 in these samples.  

 

As mentioned in section 6.2.2.1, HPV18 E2 was disrupted in HIBCD8 and HIBCD19 and 

HPV45 E2 was disrupted in sample HIBCD2. The sequence data from DIPS was used to 

verify the E2 status in these samples:  

 

For HIBCD2, E2 PCR primer set 3 failed. DIPS with P4 produced sequence data that covered 

the region of E2 that E2 PCR primers set 3 would amplify: E2 was intact in this sample. 

When the sequence for primer set 3 were compared to the sequence data, the reverse primer 

lacked specificity to HPV45 sequence detected in HIBCD2; this would explain why primer 

set 3 failed to produce an amplicon.  
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For HIBCD8, E2 PCR with primers sets 1, 2 and 3 failed to produce an amplicon. DIPS with 

HPV18 F4 produced sequence data that the region of E2 that E2PCR primers sets 1, 2 and 3 

would amplify thus E2 was intact in this sample. When the sequence of the HPV18 E2 primer 

sets 1, 2 and 3 were compared to HIBCD8 DIPS sequence data, there was no difference in the 

primer sequences to the sequence data; lack of specificity cannot explain why primer sets 1, 2 

and 3 failed the E2 PCR. HIBCD8 had mixed HPV types present (HPV16, HPV18, HPV31, 

HPV59, HPV66), when comparing the HPV18 E2 primers to HPV16 sequence 

(NC_001526.1), primer sets 1, 2 and 3 have high consensus (BLAST E values less than 

0.073) with HPV16 sequence; primer set 4 had low consensus to HPV16 (forward primer had 

BLAST E value of 1 and reverse primer had E value 0.01).  It is likely that a background of 

mixed HPV types interfere with E2 PCR specificity. 

 

For HIBCD19, HPV18 E2 PCR with primer set 3 did not generate an amplicon. DIPS with 

HPV18 F5 produced sequence data that aligned to the region of E2 that E2 PCR primers set 3 

would amplify: E2 was intact in this sample. When sequence of the HPV18 E2 primer set 3 

was compared to HIBCD19 DIPS sequence data, the reverse primer lacked specificity to the 

HIBCD19 sequence data; lack of specificity can explain the failure of E2 primer set 3 to 

produce an amplicon in this sample. 

 

6.2.2.3 APOT 

SiHa, HeLa and HTB-34 RNA were used as positive controls and APOT detected integrated 

transcripts in these samples consistent with section 4.1.4. Although the RNA integrity of the 

samples assayed was poor, GAPDH PCR was used to detect cDNA after RT-PCR and cDNA 

was detected in all of the samples subjected to APOT. APOT did not detect any transcripts in 

samples HIBCD5, HIBCD6, HIBCD11, HIBCD13, HIBCD19 and HIBCD20 (Table 50). 

APOT detected episomal transcripts in samples HIBCD2, HIBCD7, HIBCD8, HIBCD9 and 

HIBCD14: type 3 (E7,E1^E4) and type 4 (E7,E1^E4,E5) transcripts were detected (Table 

50). Integrated transcripts were not detected nor were any full length episomal transcripts 

with E2 detected. RNA integrity cannot explain why HPV transcripts were not detected in 

samples HIBCD5, HIBCD6, HIBCD19 and HIBCD20 since transcripts were detected in 

HIBCD14 and HIBCD8 that failed RNA integrity tests. For samples where DIPS detected 
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integration, integrated transcripts were not detected; the conclusion from this data is although 

integration was detected, it is not clonal, not being transcribed, and not driving CIN3 in these 

samples.  



 

 

2
0
7
 

ID HPV
1
 Infection CIN

2
 Map

3
 Accession

4
   HPV 

5
   APOT

6
 

 

HIBCD2   45 Single no CIN  HPV only na na   Episomal Type 3 and 4 

HIBCD5   16 Single no CIN HPV only na na   Not detected   

HIBCD6   16 Single CIN3 HPV only na na   Not detected 

HIBCD7   16 Mixed CIN3 HPV only na na   Episomal Type 4 

HIBCD8   16 Mixed CIN3 11p12 NT_009237.18 E1 (2431bp)  Not detected 

   18   Xp11.4 NT_079573.4 E2/E1 (2877bp)  Episomal Type 3 and 4 

   18   8p11.21 NT_167187.1 L2 (4540bp)   

   18   12q23.2 NT_029419.12 L2 (4541bp)  

HIBCD9   16 Mixed CIN3 6q15 NT_007299.13 E1 (2877bp)  Episomal Type 4 

HIBCD11   16 Single ungraded HPV only      Not detected 

HIBCD13   16 Single CIN2 HPV only      Not detected 

HIBCD14   16 Mixed CIN3 Cacx HPV only      Episomal Type 4 

HIBCD19   18 Mixed ungraded 9q21.3 NT_008470.19 L2 (4479bp)  Not detected    

HIBCD20   16 Single CIN3 HPV only      Not detected    

   

 

Table 50 DIPS and APOT results. Site of integration, accession number, site of HPV disruption and transcripts detected by APOT are shown. 

                                                 
1
 HPV type 

2
 Histology of biopsy taken at colposcopy. Ungraded= neoplasia was observed but it was not possible to grade CIN1, CIN2 or CIN3. 

3
 The genomic location of the site of integration chromosomal reference of all viral-cellular fusion transcripts with respect to Giemsa-stained bands was taken from the UCSC 

database (Kent et al. 2002). 
4
 EMBL Accession number for the NCBI database sequence with the most likeness to human sequence data. 

5
 Viral disruption number denotes last viral nucleotide before recombination to human sequence. Numbering of HPV sequence is according to Genebank accession numbers 

NC_001526.1, X05015 and X74479 for HPV16, HPV18 and HPV45, respectively. 
6
 Transcripts detected by APOT. Type 3 is E7,E1^E4; type 4 is  E7,E1^E4,E5. 
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6.2.2.4 HPV gene expression 

To test hypothesis 3, HPV16 E2, E6 and E7 mRNA were quantified relative to housekeeping 

gene expression TBP2 and HPRT in all HPV16 positive HIBCD samples (Figure 47 and 

Table 51). Assays to quantify HPV16 E2, E6 and E7 were not available for HPV18 and 

HPV45 and were not developed due to limited time and cost implications. Data is not shown 

for samples HIBCD8, HIBCD13, HIBCD11 and HIBCD20 because their gene stability 

values and coefficients of variance were outside quality control parameters levels, mentioned 

in section 3.3.3.8.3.  

 

Sample infection Cytology
1
 E2 age

2
  CIN

3
 Integ

4
  E2 E6 E7  

 

HIBCD5 single  severe  intact 35 No CIN no 0.89 ND 0.98 

HIBCD6 single  severe  intact 37 CIN 3 no 0.56 2.13 1.76 

HIBCD7 mixed  severe  intact 21 CIN 3 no 0.34 ND 0.94 

HIBCD8 mixed  severe  intact 24 CIN3 yes fail fail fail 

HIBCD9 mixed  severe  intact 30 CIN 3 yes  0.27 0.47 0.62 

HIBCD11 single  severe  intact 26 CIN Ungraded  no fail fail fail 

HIBCD13 single  severe  intact 27 CIN 2 no fail fail fail 

HIBCD14 mixed  severe  intact 35 CaCx + CIN 3 no 21.94 ND ND 

HIBCD20 single  mod  intact 31 CIN3 no fail fail fail 

Table 51 Calibrated Normalised Relative Quantities (CNRQs) of E2, E6 and E7 in HPV16 positive HI-

BCD samples. Infection status, cytology grade, E2 status, age, histology grade and integration status are shown. 

CNRQ values of 1 or more indicate HPV E2, E6 or E7 expression greater than or equal to housekeeping genes. 

CNRQ values less than 1 indicate HPV E2, E6 or E7 expression lower than housekeeping genes. ND= not 

detected. 

  

                                                 
1
 Referral cytology result: mild, moderate (mod) or severe dyskaryosis. 

2
 Age of woman at time of  sampling. 

3
 Histology of biopsy taken at the time of sampling. 

4
 Integration status. Yes=integration detected; no=no integration detected 
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Figure 47 Log10 Calibrated Normalised Relative Quantities (CNRQs) of E2, E6 and E7 in HPV16 positive 

HIBCD samples.  Values equal to zero represent HPVE2, E6 and E7 expression quantities equal to house-

keeping genes; values less than zero represent expression levels lower than housekeeping genes; values greater 

than zero represent expression levels higher than housekeeping genes. 

 

Theoretically, in a productive infection, E2 expression would be high and E6 and E7 

expression would be low; in a high grade lesion, E2 expression would be low, or absent, and 

E6 and E7 expression would be high. HIBCD6, HIBCD7 and HIBCD9, were from women 

with CIN3, and showed lower E2 expression relative to housekeeping genes despite having 

intact E2. E7 and E6 mRNA expression was higher than housekeeping gene expression for 

HIBCD6; it is likely that E7 and E6 are driving CIN3 in HIBCD6. HIBCD14 has unusual 

levels of E2 expression: E2 is expressed over 21 times higher than housekeeping genes 

(Table 51), with no E6 or E7 mRNA detected; the assays were repeated on HIBCD14 and the 

same outcome was achieved. HIBCD14 had mixed HPV types and it is possible that another 

HPV type was contributing to CIN3 and CaCx in this sample. HIBCD5 was taken from a 

woman with no CIN by histology; very low levels of E2 and E7 mRNA were detected. These 

data do not support hypothesis 3: there was no evidence in to suggest, where integration was 

detected, that integration causes loss of E2 that results in increased E6 and E7 expression.  

 

6.2.3 HI-BCD: Summary  

There was no evidence to support hypotheses 3, 4 or 5: HPV integration or episomal loss are 

not contributing to cervical neoplasia in this sample set and the data suggests that integration 

cannot be used as a biomarker of cervical disease when applied to smear samples. The 

average age, at sampling, of the women in this sample set is 31, with the average age of 
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women diagnosed with CIN3 being 29. The DNA quality of the HIBCD samples was 

excellent and DIPS was performing optimally therefore failure to detect integration cannot be 

explained by poor DNA quality. In section 6.1.3.2, very low frequencies of integration were 

detected in women aged 20-22. The data from this section and 6.1.3.2 suggest that HPV 

integration detection and episomal loss do not confer high grade cervical neoplasia in women 

under the age of 30. Many samples had mixed HPV types and a number of samples were not 

explored by DIPS, E2-PCR and APOT because HPV16, HPV18 and HPV45 were not 

present. Types other than HPV16, HPV18 and HPV45 must be explored for integration but 

this will be future research not part of this PhD.  

 

Published studies of integration have focussed on cervical cancer biopsies and integration has 

been reported for cancer biopsies. It is possible that failure to detect integration could be due 

to the sample type: performing the assays on smear samples may reduce the chances of 

detecting integration. Furthermore the presence of episomes in precancerous lesions may 

prevent the detection of integration transcripts. To test the hypothesis that integration and 

integrated transcripts can be detected in cancer (hypothesis 6), DIPS, E2 PCRs and RS-PCR 

were performed on 6 cervical cancer biopsies. 
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6.3 Application of Assays to Cervical Cancer Biopsies: Results 

To test the hypothesis that integrated transcripts are detected in cervical cancer when 

episomal HPV is lost, E2 PCRs, APOT, DIPS and RS-PCR were performed on DNA and 

RNA from sections taken from six cervical cancer biopsies. Assay reproducibility was also 

compared using the biopsies due to availability of DNA and RNA. Integration was detected 

at low frequency in the samples tested in sections 6.1.3.2 and 6.2.2.2 and age was 

hypothesised as a possible explanation: integration is not detected in women under the age of 

30. To test the hypothesis that age may be a factor in detection of integration, integration 

detection was observed in relation to age in the cancer biopsy samples.   

 

6.3.1 HPV typing 

PapilloCheck
® 

was applied to DNA from all six biopsies. Samples 1W, 2A, 3O, and 5B were 

HPV16 only. For sample 6N and 4T no HPV was detected. Samples 6N and 4T were then 

subjected to GP5+/6+ PCR-EIA: HPV16 was detected in 6N and HPV45 was detected in 

sample 4T. 

 

6.3.2 DNA and RNA quality 

Electrophoresis of the DNA samples on a 0.8% finepore gel showed that the DNA had little 

degradation for 1W, 2A, 3O, 5B, and 6N; sample 4T was badly degraded. RNA integrity 

values were between 5.3 and 8.1 for samples 1W, 2A, 3O, 5B, and 6N; samples 4T had an 

RNA integrity value of 4 indicating the RNA had degraded.  

 

6.3.3 Integration and E2  

A different pattern of integration and E2 status was observed in each biopsy (Figure 48, Table 

52, Table 53 and Table 54). 

 

For sample 1W, from a woman aged 23, E2 was intact and RS-PCR and DIPS did not detect 

integration. Three non-contiguous sequence events were detected by RS-PCR (Table 53): and 

confirmed by PCR using primers that flanked the HPV sites of disruption. APOT did not 
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detect integration and detected episomal transcript types 3 and 4 (E7,E1^E4 and 

E7,E1^E4,E5, respectively). These data support the hypothesis that integration is not detected 

in women under the age of 30.  

 

For sample 2A taken from a woman 33 years old, E2 was disrupted; RS-PCR and DIPS 

detected no integration. APOT did not detect any integration or episomal transcripts.  

 

Sample 3O was taken from a woman 46 years old. E2 PCR indicated E2 was intact; RS-PCR, 

DIPS and APOT detected the same integration event on 2q22.3 with disruption at 944bp 

within the E1 ORF. PCR using primers flanking the integration site confirmed the detection 

of integration. These data suggest that the integration event in 3O is contributing to cancer as 

it is clonal and being actively transcribed. 

 

Sample 4T was taken from a woman 63 years old. Unfortunately DNA and RNA from this 

sample were poor in quality and repeated attempts at integration assays failed.  

 

Sample 5B was taken from a woman 30 years old. E2 PCR did not detect E2, however, both 

DIPS and RS-PCR detected HPV16. RS-PCR did not detect integration but DIPS detected 

integration on 8p21.3, with disruption to the E1 ORF. APOT detected no integrated 

transcripts suggesting this integration event was not transcribed. PCR using flanking primers 

did not confirm this integration event nor did repeating the DIPS assay. These data imply that 

integration in sample 5B is not clonal and contributing to the cancer in this sample. 

 

Sample 6N, taken from a woman 45 years old, had no HPV detected by PapilloCheck
®
. 

When HPV16 E6 PCR was performed, E6 was detected and HPV typing by GP5+/6+ PCR-

EIA confirmed that HPV16 was present as a single infection. E2 PCR showed that E2 was 

disrupted in this sample and both DIPS, APOT and RS-PCR detected integration of 4q28.3 

with disruption to the E1 ORF. PapilloCheck
®
 uses E1 sequence to identify different high 

risk types of HPV. The exact locus of HPV that is amplified as part of the PapilloCheck
®
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assay is not disclosed by Greiner, but it is highly likely that integration prevented the 

detection of HPV16 in this sample by PapilloCheck
®
. DIPS detected integration on Xq22.1; 

APOT did not detect an integrated transcript form this site and PCR or repeating the DIPS 

assay could not confirm the detection of integration on Xq22.1; it is likely that integration on 

Xq22.1 is not contributing to cancer. Integration on 4q28.3 was detected by APOT, RS-PCR 

and DIPS; PCR using primers flanking the integration site confirmed the detection of 

integration thus it is likely that this integration event is clonal and contributing to cancer. 

Integration on 4q28 was within an exon of solute carrier family 7 gene (SLC7A11) that 

encodes an amino acid transporter protein; the integrated transcript detected by APOT 

showed integration within an intron of SLC7A11 implying that transcription from this site 

does not encode a fusion protein consisting of both HPV and SLC7A11. Further work is 

needed to determine if integration within SCL7A11 disrupts the function or expression of the 

protein and contributes to cancer in sample 6N.  
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Sample Age HPV E2 PCR
1
 RSO

2
                    Viral Disruption

3
  Accession number

4
 Map

5
 %   Match

6
        

1W 23 HPV16 Intact P1 BamHI discontig seq 1116 (E1)- 6634 (L1) NC_001526.1 na          99%   

    P6 NdeI discontig seq 5562 (L1)-707 (E6) NC_001526.1 na 98%  

    P6 EcooRI discontig seq 5452 (L1) -7547 (L1) NC_001526.1 na 97%    

 

2A 33 HPV16 disrupted not detected         

   

3O 46 HPV16  intact P1 BamHI 944bp (E1)  NT_022135.16 2q22.3 97%   

  

4T 63 HPV45 fail   not detected        

   

5B 30 HPV16 disrupted  not detected        

   

6N 45 HPV16 disrupted P2 NdeI  2345 (E1)  NT_016354.19 4q28.3 98%   

    

 

Table 52. E2 PCR and RS-PCR results for six cervical cancer biopsies. Integration sites detected are shown for each biopsy; where a match to human sequence was 

detected, the accession number is given with percent consensus and direction in which the HPV sequence is integrated.

                                                 
1
 E2 PCR outcome. 

2
 Restriction site oligo and HPV specific primer used in RS-PCR that detected integration. 

3
 Viral disruption number denotes last viral nucleotide before recombination to human sequence. Numbering of HPV16  sequence is according to Genebank accession 

numbers NC_001526.1. 
4
 EMBL Accession number for the NCBI database sequence with the most likeness to human sequence data. 

5
 The genomic location of the site of integration chromosomal reference of all viral-cellular fusion transcripts with respect to Giemsa-stained bands was taken from the 

UCSC database (Kent et al. 2002). 
6
 Percentage consensus of sequence data with NCBI database sequence. 
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Figure 48 Schematic alignment of biopsy A) RS-PCR and B) DIPS data to HPV16 (NC_001526.1). Purple 

bar shows an approximate scale of HPV16 in Kbp with the point of HPV disruption for each cell line, early 

promoter (PE), late promoter (PL), early polyadenylation (AE) and late polyadenylation (AL) sites marked. Red 

triangles show approximate location of DIPS primers in relation to HPV genome in green (early genes), red (late 

genes), dark purple (URR) bars, with BamHI (B), EcoRI (E), NdeI(N), SauAI (S), TaqI (T) and XbaI (X) cut 

sites indicated. Turquoise bars show HPV DNA sequence data alignment with integrated, human DNA shown 

by blue bars. The site of integration is given on right hand side, “no integration” denotes no integration detected. 
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Sample Age E2 PCR
1
 Primer 

2
 Viral Disruption

3
 Accession number

4
 Map

5
 % Match

6
 Orientation 

1W 23 intact  Not detected    

2A 33 disrupted  Not detected 

3O 46 intact P1 TaqI  944bp (E1) NT_022135.16 2q22.3 90%  S 

4T 63 fail  No HPV45 detected       

5B 30 disrupted P3 Sau3AI 2673 (E1) NT_167187.1 8p21.3 100% S  

6N 45 disrupted P1 TaqI 1368 (E1) NT_011651.17 Xq22.1  94% S  

   P2 Sau3AI 2345 (E1) NT_016354.19 4q28.3 100% S 

Table 53 DIPS Biopsy Results. Integration sites detected are shown for each biopsy; where a match to human sequence was detected, the accession number is given with 

percent consensus and direction in which the HPV sequence is integrated.

                                                 
1
 HPV specific primer set used in DIPS that detected integration. 

2 Restriction enzyme used in DIPS that detected integration. 

3 Viral disruption number denotes last viral nucleotide before recombination to human sequence or viral sequence. Numbering of HPV16 sequence is according to Genbank 

accession number NC_001526.1. 

4 Genbank accession number for the NCBI database sequence with the most likeness to human sequence data. 

5 The genomic location of the site of integration chromosomal reference of all viral-cellular fusion transcripts with respect to Giemsa-stained bands was taken from the 

UCSC database (Kent et al. 2002).   

6 Percentage consensus of sequence data with NCBI database sequence. 
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Sample HPV  Transcript Size
1
 HPV splice/fusion site

2
  Accession number

3
 Map

4
  % Match

5
  Orientation

6
 

1W  16 800bp Episomal E7/E1^E4; Type 3 NC_001526.1  na   

  1200bp Episomal E7/E1^E4,E5; Type 4 NC_001526.1 

2A 16  No transcripts  

3O 16 500bp 880bp (E1); Type 1  NT_022135.16  2q22.3  95%  S 

  700bp 880bp (E1); Type 1  No BLAST match  2q22.3 

4T 45 No transcripts  

5B 16  No transcripts  

6N 16 600bp 880bp (E1); Type 1  NT_016354.19  4q28.3  100%  S 

 
Table 54 APOT Biopsy results. Accession number of human sequence and orientation of HPV transcripts is shown for each transcript detected by APOT for each 

of the cell lines

                                                 
1
 Transcript size approximate according to DNA ladder in base pairs (bp). 

2 HPV splice site denotes last viral nucleotide before splicing to human sequence or viral sequence. Numbering of HPV sequence is according to Genebank accession 

numbers NC_001526.1, X05015 and X74479 for HPV16, HPV18 and HPV45, respectively. Transcript type is according to Figure 57, section 5.1.3. 

3 EMBL Accession number for the NCBI database sequence with the most likeness to human sequence data.  

4 The genomic location of the site of integration chromosomal reference of all viral-cellular fusion transcripts with respect to Giemsa-stained bands was taken from the 

UCSC database (Kent et al. 2002). 

5 Percentage consensus of sequence data with NCBI database sequence. 

6 S=sense orientation, AS= Antisense orientation. 

http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNT_022135.16%7C&gi=224514673&term=224514673%5Bgi%5D&taxid=9606&RID=VPUT4DNM01N&QUERY_NUMBER=5&log$=nucltop
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=all_contig+rna&na=1&gnl=ref%7CNT_016354.19%7C&gi=224514665&term=224514665%5Bgi%5D&taxid=9606&RID=VPVV5CN1016&QUERY_NUMBER=1&log$=nucltop
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6.3.4 HPV Gene Expression 

HPV16 E2, E7 and E6 CNRQs relative to housekeeping genes expression were calculated for 

HPV16 positive biopsies (Table 55 and Figure 49). Sample 5B was removed from analysis 

because gene stability value and coefficient of variance was outside quality control 

parameters levels (mentioned in section 3.3.3.8.3).  

 

Sample E2  Integration Age E2 E6 E7 

1W  intact  no  23 1.55 0.48 ND 

2A  disrupted no  33 ND ND ND 

3O  intact  yes  46 0.08 1.40 0.69 

5B  disrupted yes  30 fail fail fail 

6N  disrupted yes  45 ND ND ND 

Table 55. Calibrated Normalised Relative Quantities (CNRQs) of E2, E6 and E7 in biopsy samples. 

CNRQ values of 1 or more indicate HPV E2, E6 or E7 expression greater than or equal to housekeeping genes. 

CNRQ values less than 1 indicate HPV E2, E6 or E7 expression lower than housekeeping genes. ND= not 

detected. 

 

  

Figure 49 Log10 Calibrated Normalised Relative Quantities (CNRQs) of E2, E6 and E7 in HPV16 positive 

cervical cancer biopsies. 

 

For sample 1W, E2 was approximately 1.5 times higher than housekeeping gene expression. 

E6 mRNA quantities were approximately 0.5 times the housekeeping gene mRNA quantities 
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and E7 was not detected. This illustrates that E6 and E7 are not required to maintain 

malignant phenotype in 1W.  

 

E7, E6 and E2 were at very low levels and classed as “not detected” following qPCR data 

analysis in samples 2A and 6N. These data imply that although HPV16 is detected by E6 

PCR, RS-PCR and DIPS, there is no evidence that HPV16 is driving the cancer.  

 

The highest levels of HPV16 E6 and E7 expression were observed in sample 3O and E2 

quantity was low relative to housekeeping genes; this is consistent with HPV E6 contributing 

to cancer.  

 

6.3.5 Biopsies: Summary  

These data illustrate HPV integration may not contribute to cervical cancer in women 

younger than 30 years of age. Integration was not detected by DIPS, RS-PCR or APOT in the 

biopsy from a woman aged 23 and integration was not clonal in the biopsy from the woman 

aged 30. Furthermore, intact E2 was detected in sample 3O indicating episomal DNA is 

present in this sample. These data do not support hypotheses 3 or 6: there may be another 

mechanism of carcinogenesis other than integration and episomal loss in this sample.  

 

6.4 Integration in Clinical Samples: Discussion 

Application of integration assays to clinical samples intended to determine if HPV integration 

is an early event in cervical carcinogenesis (hypothesis 4), and to determine if integration is a 

plausible biomarker for use in cervical screening. Furthermore, application of assays to 

clinical samples was done to test the hypothesis that episomal loss is associated with 

increasing severity of disease (hypothesis 5) and integrated transcripts combined with 

episomal loss would be observed more frequently in cervical cancer (hypothesis 6) . Three 

samples sets were used: smear samples collected from women attending their first smear 

prior to implementation of HPV vaccination (Baseline); smears taken from women attending 

colposcopy following an abnormal cervical smear (HI-BCD); cervical cancer biopsy samples. 
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6.4.1 E2 PCRs 

E2 PCRs were applied to clinical samples to determine if episomal DNA is present at high 

frequency in CIN1. The data presented in this thesis illustrated that E2 PCR may not be 

reliable to use as a marker of E2 disruption or integration. In the study by Collins et al. (2009) 

E2 disruption was a marker of integration, and defined as lack of one or more E2 PCR 

amplicons. As mentioned in section 4.1.1, E2 PCRs were developed on cell lines with good 

DNA quality and known integration status; E2 PCRs produced amplicons consistent with 

reported integration in cell lines. When E2 PCRs were performed on clinical samples, there 

was evidence to suggest lack of one or more E2 PCR amplicons does not confer integration: 

lack of amplicon production could not be explained by poor DNA quality but could be 

explained by primer specificity issues or cross reactivity of primers between HPV types:   

 

Initially, it was hypothesised that lack of E2 PCR amplicons could have been due to poor 

DNA quality, which would increase the rate of PCR failure and indicate disrupted E2. As part 

of a separate study, and data not presented in this thesis, E2 PCRs were performed on DNA 

from head and neck tumours that had been formalin fixed and paraffin embedded; the DNA 

was badly degraded but E2 was intact in all samples. This emphasises that the E2 PCR assay 

is successful with degraded DNA and disrupted E2, detected in the baseline samples, was not 

likely to be due to poor DNA quality.  E2 PCR with disruption at primer 4 was most 

commonly observed and sensitivity tests of E2 PCRs (section 4.1.1.2) showed that primer set 

4 was one of the most sensitive primer sets and able to produce an amplicon with as little as 

800 copies of HPV; thus PCR sensitivity cannot explain why E2 disruption was detected in 

the absence of integration.  

 

As mentioned above, E2 PCR with primer 4 most frequently failed to produce an amplicon. 

Variability in E2 sequence between HPV16 in clinical samples and primer sequences could 

explain why E2 PCR with primer 4 failed to produce an amplicon. Graham et al. (2000) 

reported variation within the E2 gene and three single nucleotide polymorphisms reported 

reside within E2 forward and reverse primer for PCR 3 (AG at 3362bp and TG at 3566bp, 

respectively) and reverse primer for PCR 4 (G/T at 3778bp). Thus it is possible that 

variability in HPV sequence at the annealing location of E2 PCR primers can result in failure 
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to produce an amplicon. In the HI-BCD samples, E2 PCR assay did imply that E2 disruption 

was present in three samples positive for HPV18 and HPV45 because E2 PCR failed to 

produce one or more amplicons. However, follow-up data from DIPS or RS-PCR showed 

that E2 was intact. The explanation for E2 failing to produce an amplicon in 2 HI-BCD 

samples was due to variation within HPV sequence that resulted in lack of specificity of the 

primer sequence to HPV. For the remaining HI-BCD sample, there was evidence to imply 

cross reactivity of E2 PCR primers between HPV16 and HPV18 since primer sets 1, 2 and 3 

had a high consensus with HPV16 sequence.  

 

These data strengthen the observation that E2 PCR amplicon failure does not always confer 

integration, but may also occur due to variation in HPV sequence or due to cross- reactivity 

between types. E2 PCR primer sequences used in this PhD were obtained from Collins et al. 

(2006) who performed E2 PCR on samples that contained HPV16, HPV18 or both; Collins et 

al. (2006) did not show evidence that cross reactivity between primer sets could affect the E2 

PCR assay; therefore the data in this PhD are novel and indicate caution should be taken upon 

interpretation of E2 PCR data. In future assay design for E2 PCR, primers should be situated 

in regions of HPV that harbour no or minimal polymorphisms and primers should be checked 

for possible cross reactivity with other HPV types by checking primer specificity for other 

HPV types.   

 

In conclusion, E2 PCR is not reliable to detect E2 disruption as a marker of integration. E2 

PCR can be used as tool to detect intact E2, as a marker of episomal HPV. Where integration 

is detected, within a background of HPV in episomal form, it is likely that episomal E2 

regulates HPV E6 and E7 expression. Hypothetically low-grade lesions would possess 

episomal HPV and intact E2 would be associated with low-grade disease. With this in mind 

E2 PCRs were used to detect intact E2 as a marker of episomal HPV and where disrupted E2 

was detected, DIPS was performed to confirm integration. 

 

6.4.2 Loss of episomal HPV is not associated with high grade neoplasia 

Collins et al. (2009) reported integration as an early event in cervical disease progression. In 

the Baseline sample, intact E2 was observed in the majority of samples and there was no 
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evidence to support intact E2 being associated with grade of neoplasia or grade of cellular 

dyskaryosis. Disrupted E2 was detected most frequently in CIN2. When CIN2 and CIN3 

were grouped together and defined as high-grade squamous intraepithelial neoplasia, 

disrupted E2 was detected more frequently in high-grade disease compared to low-grade 

disease. This was statistically significant but when correcting for multiple testing, this value 

was no longer statistically significant. Furthermore, power calculations indicated the sample 

size was insufficient to draw a definitive conclusion and a larger sample would be required to 

achieve a statistically significant outcome with a false positive rate of 20%. The maximum 

number of samples that met the study criteria were tested thus it was not possible to perform 

E2 PCR on more samples. In future work, a larger sample set (n=196) should be assayed.  

 

For the HI-BCD samples E2 was intact in all the samples where HPV16, HPV18 or HPV45 

was detected. All samples that had CIN3 diagnosed by histology and were positive for 

HPV16, HPV18 and HPV45 had intact E2.  

 

The data in this PhD are not directly comparable with the Collins et al (2009) study. Collins 

et al (2009) did not observe the histological outcome and did not present any cytological data 

in relation to E2 disruption; instead, in the study of Collins et al. (2009), the population 

investigated comprised “the subset of women who were cytologically normal and HPV DNA 

negative at study entry and who first tested positive during follow-up for HPV16 or HPV18, 

or both”. E2 disruption as an “early event” is defined as time between incident HPV16 or 

HPV18 detection and disrupted E2 detection. The age of the women analysed by Collins et 

al. (2009) was between 15 to 19 years old and they were younger than the women in the 

Baseline cohort, nonetheless the time between detecting E2 disruption after incident infection 

was 5.7 months and since it was detected in such a young age group, it was considered to be 

an early event.  

 

Finally, as mentioned above, E2 disruption detected by E2 PCR requires confirmation by an 

alternative method such as DIPS, which was not done by Collins et al. (2009). One of the 

strengths in this PhD was that DIPS was used to determine if integration were present and 

causing E2 disruption. 
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6.4.3 Integration is not an early event in cervical neoplasia 

DIPS was performed on a selection of HPV16, HPV18 and HPV45 Baseline samples with 

CIN1, CIN2 or CIN3 to determine if integration is an early event. Also, DIPS was performed 

on HPV16 samples where E2 disruption had been implicated by E2 PCR. Where integration 

was detected, intact E2 was present. Thus episomal HPV is likely to exist with integrated 

HPV in the Baseline samples. For samples that indicated disrupted E2 by E2 PCR, no 

integration was detected; this supports the observation that E2 PCR data should not be used 

as a marker of integration.  

 

Overall there was no evidence in the Baseline samples that integration was an early event 

present in CIN1. Integration was detected but in a very small proportion of the samples and 

any integration detected could not be replicated using PCR or by repeating the DIPS assay. 

Section 4.1.3.5 illustrates that DIPS is a sensitive assay and can detect integration in as little 

as 12 copies of HPV, in a clonal population of SiHa cells. Therefore, the fact that integration 

could not be replicated is not a weakness of the PhD methodology, instead it highlights that 

integration may not be a clonal event since if it were, integration detection would have been 

replicated. With the exception of one study, which used PCR primers designed to flank the 

host-viral junction, to confirm integration detection (Dall et al. 2008), confirmation of 

integration is not reported in published data; thus attempts to confirm integration is a strength 

of this PhD.   

 

The DNA quality of Baseline samples was poor because the samples had been collected in 

SurePath™ preservative fluid and the DNA had degraded substantially. Nonetheless Beta-

globin PCR success was high and when DIPS was performed on DNA from SiHa that had 

been stored in SurePath™, integration was detected; thus DIPS was capable of detecting 

integration in degraded DNA. 

 

As mentioned above, DIPS is sensitive enough to detect integration in degraded DNA thus 

failure to detect integration in the Baseline samples cannot be attributed to lack of sensitivity 

of DIPS. Control PCR had a high failure rate and this was due to poor DNA quality. DIPS 

detected integration in SiHa stored in Surepath™, however, there was still an element of 
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uncertainty about whether DNA quality had an effect on integration detection and ability to 

replicate integration. Collection of samples in SurePath™ was unsuitable for RNA 

stabilisation too, thus RNA based assays such as APOT and qPCR could not be performed on 

Baseline samples.  

 

Integration assays were too expensive to perform on the entire Baseline sample set 

(n=14,128) and sample numbers were selected that would give at least 80% power (a 

maximum chance of false positive detection at a rate of 20%) according to the frequency of 

integration in CIN3 and cervical cancer taken from Klaes et al. (1999). Samples were selected 

according to type, single infection status and approximately equal numbers of each histology 

grade were chosen. HPV16 samples were all from women with single infections but the 

numbers of HPV18 and HPV45 samples with single infections were low. For HPV16 

samples, it was highly unlikely that integration was occurring for another HPV type but for 

HPV18 and HPV45 samples with mixed infections, it remained possible that another type 

could have been integrated and contributing to the disease. Investigating HPV types other 

than HPV16, HPV18 and HPV45 would involve developing assays for each type and this was 

beyond the scope and time frame of this project. Rachel Houghton, a PhD student within the 

HPV research group is investigating integration for HPV31, HPV51, HPV33 and HPV35; 

this is currently work in progress. 

 

A weakness of using the Baseline sample set is that the histological outcome is not directly 

linked to the cervical smear sample taken. Firstly, women with moderate or severe 

dyskaryosis have a shorter time period before attending colposcopy. This allows less time for 

changes in disease before being seen by a clinician. In this case, the biopsy taken in 

colposcopy is likely to represent disease contained in the cytological sample used for the 

integration assays. Women with mild or borderline dyskaryosis have a longer period of time 

before attending colposcopy; allowing more time for disease to regress or progress. 

Therefore, smear samples from women with borderline and mild dyskaryosis, assayed in this 

PhD, may not represent the final outcome of histology. To overcome this, separate analyses 

were performed on the samples taken from women who had moderate or severe dyskaryosis 

because the samples taken at their first smear were most likely to represent the nature of the 
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cervical lesion when a biopsy was taken at colposcopy; there was still no evidence that 

integration was an early event present in CIN1. 

 

Women who had attended colposcopy were selected for this study; this was to enable a direct 

comparison of integration and cervical neoplasia. Selecting women that had attended 

colposcopy can bias a study towards a higher severity of disease, since women without 

dyskaryosis are excluded. Due to integration not being detected at a high rate in this sample 

set, bias was not considered to be an issue; however, it would be advantageous in future 

studies to include women not attending colposcopy.  

 

To overcome the problem of poor DNA quality and lack of RNA, a pilot study was proposed 

by the author and smear samples were collected in a reagent designed to preserve RNA and 

DNA.  

 

6.4.3.1 Smear samples: HI-BCD 

The idea for collection of samples was instigated by the author. The purpose of collecting HI-

BCD samples in addition to the Baseline samples was to gather a sample collection with good 

DNA and RNA integrity to determine whether HPV Integration is a Biomarker of Cervical 

Disease (HI-BCD) and to compare DIPS, APOT and RS-PCR for detection of integration.  

 

Overall, there was no evidence to suggest integration, combined with loss of episomal HPV, 

can be used as a biomarker of cervical disease since integration was not detected in CIN3 and 

all samples, where HPV16, HPV18 or HPV45 were present, possessed intact E2. 

Furthermore, a comparison of the integration assays was not warranted due to the lack of 

integration detection. 

 

DIPS detected integration in 3 HI-BCD samples but integration could not be confirmed by 

PCR using primers that flanked integration sites and integration detection could not be 

replicated by DIPS; these data mirror the observations made in the Baseline sample.  
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Integration was not associated with CIN3 or with severe cellular dyskaryosis thus there is no 

evidence in this sample set that integration, combined with episomal loss, is a useful 

biomarker of cervical disease. The DNA quality of HI-BCD sample was excellent, there was 

little DNA degradation detected and protein and co-purified contaminants were low; DIPS 

control PCR produced amplicons of expected size and DIPS detected integration in positive 

controls; therefore, low frequency of integration detection cannot be explained by poor DNA 

quality.  Additionally, as mentioned above, DIPS is a sensitive assay and low frequency of 

integration detection cannot be explained by lack of assay sensitivity.  

 

APOT did not detect integrated transcripts in any of the samples. Therefore any integration, 

detected by DIPS, was not being actively transcribed; further supporting integration not being 

clonal and contributing to cervical disease in this sample set. HI-BCD RNA was degraded; 

this was most likely due to the nature of the sample: a smear takes the top layer of cells from 

epithelium where RNA is likely to be degraded because the cells are dead and due to be shed 

as part of the natural epithelial life cycle. To determine whether RNA degradation inferred 

poor cDNA quality, GAPDH PCR was performed to determine cDNA integrity; GAPDH 

PCR produced an amplicon for all the samples. Although GAPDH PCR implied adequate 

cDNA, APOT data should be interpreted with caution because degraded RNA may explain 

why APOT did not detect integrated transcripts.  

 

Episomal transcripts were detected and consisted of E7, E1^E4 or E7,E1^E4,E5; no episomal 

transcripts contained E2. In a productive infection, in the upper regions of epithelial layers, 

E2 is not typically expressed but E4 is required to break down the cytokeratin network to 

allow release of replicated virions. The pattern of low E2 expression detected by qPCR, 

combined with E4 transcripts, detected by APOT suggests that HPV16 may be present as a 

productive infection in HIBCD2, HIBCD7, HIBCD8 and HIBCD9. HIBCD7, HIBCD8 and 

HIBCD9 had mixed HPV infections thus it remains plausible that another HPV type is 

contributing to disease in these samples.  

 

HIBCD14 was from a woman with cervical cancer and CIN3 with multiple HPV infections. 

No integration was detected in this sample and very high levels of E2 expression were 
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detected. The data for HIBCD14 suggests that HPV16 integration does not play a part in 

carcinogenesis. It remains possible that HPV59 or HPV66 is causing cancer in this sample.  

 

HIBCD1 was taken from a woman referred to colposcopy with severe cellular dyskaryosis 

and CIN3 was confirmed by histological examination. HPV was not detected in this sample 

by E6 PCR, by PapilloCheck
®
 or GP5+/6+PCR-EIA. It is possible that a type other than 

HPV16, HPV18 and HPV45 is integrated and HPV disrupted at the points where primers for 

PapilloCheck
®
 and GP5+/6+PCR-EIA anneal to; this would result in failure to detect HPV in 

this sample. It would be advantageous to perform E6 PCR, specific for HR-HPV types other 

than HPV16, HPV18 and HPV45, to determine if HPV is present in this sample. 

 

The main drawback of the HI-BCD study was the number of patients recruited such that 

numbers were below those required for statistical analyses. A limitation in using smear 

samples is that many HPV types are present in a sample producing a “needle in the haystack” 

search for the culprit HPV type causing disease progression. Additionally, a smear takes the 

top layer of epithelia from the entire cervix and it is possible that the presence of non-

diseased cells alongside diseased cells has a diluting effect and reduces the chance of 

integration detection. Biopsies allow the entire diseased area to be assessed and because the 

majority of the biopsy is composed of diseased cells, detection of integration is hypothetically 

increased.  

 

6.4.4 Assay Comparison in Biopsy Samples  

To allow an assessment of the integration assay ability to detect integration in biopsies, 

APOT, DIPS, E2 PCR and RS-PCR were performed on 6 cervical cancer biopsies. Five 

samples were HPV16 positive, with single infections. One sample was HPV45 positive but 

failed all assays due to poor DNA and RNA quality. Although insignificant numbers of 

samples were tested to make a definitive conclusion, the ability of an assay to detect 

integration in biopsy samples depended on the nature of integration. If integration was clonal 

and being transcribed then APOT, RS-PCR and DIPS detected integration. If integration was 

not clonal then DIPS detected it by chance but it was not replicated by E2 PCR or RS-PCR or 

by repeating DIPS. DIPS detected a higher proportion of integration events in biopsy 
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samples, highlighting the importance of the input sample for optimal integration assay 

performance and reproducibility 

 

Overall, HPV16 integration was detected in 3 samples and integration was confirmed by PCR 

for integration sites in 2 samples both of which were also detected by APOT. It is likely that 

integration on 2q22.3 in sample 3O and on 4q28 in sample 6N is clonal because integration in 

DNA was confirmed by DIPS, RS-PCR and by PCR; the fact that APOT detected integrated 

transcripts in 3O and 6N show that the sites are transcribed, giving the cell selective growth 

advantage. Integration on 8p21.3 in sample 5B and on Xq22.1 in sample 6N was not detected 

by RS-PCR or by APOT and was not confirmed by PCR thus these integration events are not 

likely to be clonal. For samples 1W and 2A, no integration was detected by DIPS, RS-PCR or 

APOT thus integration is not likely to be contributing to disease in these samples. Non-

contiguous sequence was detected by RS-PCR in sample 1W but was not detected by DIPS 

however, PCR confirmed the non-contiguous junctions. In theory, DIPS with primers 6 and 7 

should have detected non contiguous sequence but wild-type sequence was amplified by 

DIPS; this implies that intact wild-type DNA is present alongside non-contiguous sequence 

but it remains unknown whether HPV is integrated or in episomal form.  

 

E2 PCR detected intact E2 in 1W and 3O; this is consistent with DIPS and RS-PCR sequence 

data however, it is unclear whether episomal HPV is present in 1W or 3O. Non-contiguous 

sequence was detected in 1W; this is similar to the detection of non-contiguous HPV in 

CaSki, where E2 is intact and HPV is integrated in concatenated form. Integration may be in 

a concatenated form in 1W, with E2 remaining intact. APOT detected only episomal 

transcripts in 1W if integration were present in 1W, it is not being transcribed. For sample 

3O, integration disrupted E1 but no disruption to E2 was detected, thus it remains possible 

that E2 remained intact in the presence of integration.   

 

Integration was detected and E2 PCR detected disrupted E2 in 5B and 6N; this is consistent 

with presence of integration without episomal HPV. As mentioned above, disruption to E2 

requires confirmation by DIPS or RS-PCR because failure to produce an E2 PCR amplicon 

may be due to variation in HPV16 sequence leading to reduced primer specificity. Data for 
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2A is inconclusive since integration was not detected by DIPS, RS-PCR or APOT although 

E2 was disrupted.   

  

6.4.5 Integrated transcripts are not present in all cervical cancers and are not 

associated with episomal loss. 

The above data do not support the hypothesis that integration results in loss of E2 expression 

and increased E6 and E7 expression (hypothesis 3). Each of the biopsies presented with 

differing data and there was no consistent pattern that would imply integration or episomal 

loss in cervical cancer. Initially it was planned to sample over 100 biopsies but access to 

biopsies was limited thus 6 samples were selected. To replicate the data presented in this 

thesis DIPS, E2-PCR, DIPS and APOT would need to be performed on a larger sample. 

 

Biopsy 1W had no integration and only episomal transcripts, consisting of E7/E1^E4 and 

E7/E1^E4, E5 with E2 being intact. qPCR detected mRNA quantities of E2/E4 in excess of 

the house keeping gene expression and low levels of E6 mRNA was detected. Although no 

integration was detected in 1W, the expression data follows a pattern of episomal 

transformation similar to that of Gray et al (2010) who reported a series of W12 (W12ser4(EPI)) 

that possessed no integrants yet had transforming abilities with high E6 and E2 protein levels 

and low levels of E7. Gray et al (2010) also reported that high copy numbers of episomes 

were maintained in W12ser4(EPI). E2 is vital for HPV episome maintenance and this would 

explain a role for E2 expression in transformation. HPV16 E6 acts through ubiquitination of 

p53 to suppress apoptosis; increased E6 in W12ser4(EPI)  would lead to decreased p53 and 

suppress apoptosis. Clonal selection in 1W may result from episomal maintenance and 

decreased apoptosis through E2 and E6 expression. HPV copy numbers were not estimated in 

1W to investigate how HPV copy numbers relate to HPV gene expression. In future studies 

of cervical cancer with episomal HPV, it would be advantageous to estimate HPV copy 

number in relation to HPV gene expression, HPV protein and human protein quantities, to 

allow further understanding of episomal transformation. No E7 expression was detected in 

1W; this is inconsistent with APOT data that detected transcripts containing E7. It is possible 

that APOT is more sensitive than qPCR, due to a nested PCR reaction being employed by 

APOT. 
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For biopsy 2A, it is unlikely that HPV16 is maintaining the malignant phenotype in this 

sample because integration was not detected by RS-PCR, DIPS or APOT and qPCR did not 

detect E2, E6 or E7 mRNA. HPV16 was the only type present in biopsy 2A and it is unlikely 

that another type is contributing to cancer in this sample. It is possible that before 

transformation occurred in this sample, high levels of HPV E6 and E7 expression damaged 

the cellular DNA; this potentially would lead to chromosomal abnormalities that lead to 

selection of a cell without the need for HPV oncogene expression to maintain the transformed 

phenotype. This hypothesis requires further exploration by a method such as whole genome 

sequencing that could detect differences in chromosome structure between cancer tissue and 

stromal tissue taken from biopsy 2A. This observation would be consistent with Gray et al. 

(2010) who reported a rapid decrease in the expression of HPV E6, E7 and E2 when 

W12ser4(EPI) grown in raft culture became invasive and would highlight that E6 and E7 is not 

required to maintain malignant phenotype. 

 

Biopsy 3O had a different mechanism of selection to 1W and 2A. It is unclear if episomes 

were present in 3O but integration was detected and integration was not within a human gene; 

it is unlikely that the integration event contributed to selection through insertional 

mutagenesis in this sample. Integration from this site was clonal, because DIPS, PCR and 

APOT detected integrated transcripts. There was no evidence to confirm disruption of HPV 

URR thus it is likely that integrated transcripts are being generated from the HPV early viral 

promoter. qPCR detected very small quantites of E2 mRNA expression and quantities of E6 

were higher than housekeeping genes; thus E6 expression is required to maintain the 

transformed phenotype in this sample. Expression of E2 may be suppressed due to epigenetic 

factors such as methylation (see section 8.4.1); this would explain why intact E2 is detected 

by E2-PCR and little E2 expression was detected by qPCR. Increased E6 and E7 expression 

would confer a strong selection advantage through suppression of apoptosis though hTERT, 

p53 and pRB pathways described in the introduction. Furthermore, as mentioned in the 

introduction, integrated transcripts have a longer half life compared to mRNA of episomal 

transcripts and stability of mRNA would enhance the selection of a cell harbouring an 

integrant (Jeon and Lambert 1995). 
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In biopsy 5B DNA integration was detected on 8p21, but there was no detection of integrated 

transcripts from this site; PCR did not confirm the site of integration and it is likely that 

integration is not clonal in this sample and contributing to cancer. Unfortunately, qPCR data 

for 5B did not fall within the quality control parameters and the data was not included in this 

study; qPCR was not repeated on this sample due to limited time and financial constraints; it 

would be worthwhile repeating qPCR on 5B to determine if HPV oncogene expression is 

likely to be contributing to cancer in this sample. 

 

In biopsy 6N, no E2, or E7 expression was detected and E6 expression was below that of 

housekeeping genes thus there was no evidence that HPV gene expression was contributing 

to cancer in this sample. Integration was within an exon of solute carrier family 7 gene 

(SLC7A11) that encodes an amino acid transporter protein that controls the transportation of 

glutathionine (GSH) across the cellular membrane. SLC7A11 has been implicated in chemo 

resistance and maintains cellular GSH as a chemo resistance mediator to certain drugs; 

reduced SLC7A11 would lead to increased GSH and lead to chemoresistance (Huang 2005). 

Disruption to the SLC7A11 gene due to integration would confer a selective growth 

advantage especially if chemotherapy was used; unfortunately, the clinical history of patient 

6N was unknown.  Further work is needed to determine if integration within SCL7A11 

disrupts the function or expression of the protein and contributes to cancer in sample 6N. 

 

6.5  Integration in Clinical Samples: Conclusion  

There was no evidence to support that integration is an early event, present in CIN1 

(hypothesis 4) nor was there evidence to support episomal loss is a late event associated with 

CIN3 (hypothesis 5). There was an interesting link made in this study between integration 

detection and age of women. It is possible that integration is an event that is detected more 

frequently in women over the age of 30. This hypothesis requires testing in a large sample set 

comprised of women of varying ages.  
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7 Mechanism of Integration  

HPV integration occurs at a unique site each time and there are consistent reports that HPV 

integration occurs at chromosome fragile sites. Fragility at chromosome fragile sites may be 

attributable to tandem repeats that slow DNA repair. In this section, integration sites in 

relation to DNA fragile sites and repeat elements were explored to determine if integration is 

a random event or if DNA regions such as repeat elements and CFS are more prone to HPV 

integration. Non-homologous end-joining DNA repair is the mechanism reported to be 

involved incorporating the HPV DNA into the human DNA; DNA sequence, at the site of 

integration, was examined to determine whether there was identical or differing sequence 

between human and HPV DNA to gain insight into the mechanism behind HPV integration. 

Finally, it is reported that HPV integration commonly disrupts the HPV genome within the 

E2 and E1 ORF; the site at which integration disrupted the HPV genome was examined to 

test this theory.  

 

7.1 Mechanism of Integration: Results 

To test the hypothesises that integration disrupts the HPV genome at E1 and E2 ORFs 

(hypothesis 1); integration occurs at DNA fragile sites (hypothesis 8) and NHEJ is involved 

in integration (hypothesis 9), DNA sequence analysis was performed.    
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Sample HPV 
1
  Map

2
 FS

3
    RPT

4
 Details (I/OL)

5 

CaSki  E1;1455 Xq27.3  FRAXA (R) SINE TAC (O)  

  6p21.1 none na
6
 na

5 

SiHa  E2;3132 13q22.1  none LTR TAGC (I)   

W12
7
 E1;1756 8q24.21  none DNA CATTATATTT (I)   

 E2;3197 12q14.3 none LINE 45bp (I) 

W12p12 E1;2749 2q35 none LINE A (O) 

W12p32 E2:3726 2q31.1 FRA2G LINE GACAT (O)           

HeLa  E1;2497 8q24.1  FRA8C/E(C/R) LINE, SINE  ATGTTA (O)   

 E2;3100   8q24.1  SINE AAACA (I) 

 L2;5736 8q24.1  SINE, LTA ATAA (O)       TA(I)             

C4-I  E2;2952 8q21.3 none SINE  CAGGGTTCTGTTCTCACT (I)      

HTB-34  E1;1878 18q11.2  none ALU ACC (I) 

3O E1;944 2q22.3 none AT rich TGCCC (I)        

5B E1;2673 8p21.3 none SINE TATGAGC (I) 

6N E1;1368 Xq22.1  FRAXC (C) LINE TGCA (O)  

6N E1;2345 4q28.3 none DNA G (O)  

PCO9,D L2;5003 18p11.31 none  AT rich GATGTACAAGTTTGCACCTGTCT (I) 

PCO9,D E2;3303 18p11.31 none  SINE            AAAATAAAGTATGGGAAGTTCATGTC (I) 

PCO9,H E1;2490 11p15.3 none  LINE Flush 

PCO9,H E1;1848 22q12.3 FRA22B (C)  SINE Flush 

PCO9, Het E2;3632 2q36.1 none  SINE AAGCACT (O) 

PCO9, Het L1;6033 2q36.1 none  LINE AAG (O) 

PCO8,M, E1;1194 3q28 FRA3C (C)  LTR TG (I) 

PCO8,Y, E1;2116 3p21.31 none   ALU CCC(I) 

 E2;3167 3p21.31 none   DNA ATGTGGCTC (I) 

265 (BL) E2;3376 5q22.5 none   LINE  TATCTCTC (O) 

265(BL) E2;3420 15q15.1 none   SINE  GACC (O) 

696(BL) E2;3206 unknown unknown   LINE  GGGTC(O) 

913(BL) E2;3098 Xp11.1 none   none  GATA (O) 

913(BL) L1;6543 9p13.3 none   none  GCAT (O) 

1513(BL) L1;6478 8q21.13 none   LTR  C (O) 

1571(BL) E1;1781 10p12 none   SINE  GATG (O) 

1571(BL) E2;3205 17q21.33 none   DNA, SINE    GGTC (O) 

1571(BL) E2;3080 8q11.23 none   LTR  GATG (O) 

3577(BL) E2;3206 3p14.1 FRA3B (C)   LTR  GGTCA (O) 

13290(BL) E2;3080 16q11.2 none    AT rich  GATG (O) 

13290(BL) E2;3080 21q21.1 none   (T)n repeat  GATG (O) 

3220(BL) E1;1789 12q24.11 FRA12E (C)  SINE  GAGCC (O) 

12282(BL) E1;1551 18q22.3 none   LINE  CAGC (O) 

10295(BL) E1;1551 Xp22.2 none   SINE, LINE GAGC (O)  

 

Table 56 Summary of integration sites detected. Details of sample ID (BL=Baseline), HPV disruption, fragile 

site, repeat elements and sequence at site of integration is shown. 

  

                                                 
1 EMBL Accession number for the NCBI database sequence with the most likeness to human sequence data. 

2 The genomic location of the site of integration chromosomal reference of sequence data with respect to 

Giemsa-stained bands was taken from the UCSC database (Kent et al. 2002). 

3 Fragile site within 5Mbp of integration site. C=common, R=rare, none=no fragile site 

4 Repeat elements within 2Kbp of the integration site. SINE= short interspersed nuclear element; LINE= long 

interspersed nuclear element; DNA= DNA transposon; LTR= long transposed region.  

5 Details at the site of integration: DNA overlap (O) or inserted (I); sequence given. 

6 Not applicable due to transcript integration site not DNA integration site. 

7 Data for both W12p12 and W12p32. 
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Sample HPV 
1
  Map

2
 FS

3
    RPT

4
 Details (I/OL)

5 

HIBCD8 E1; 2431 11p12 FRA11E (C)  SINE  TAGATGA (O) 

HIBCD8 E1; 1903 Xp11.4 none   SINE  ATAG (O) 

HIBCD8 L2; 4540 8p11.21 none   LTR  TGGGT (O) 

HIBCD8 L2; 4541 12q23.2 none   SINE  GGTC (O) 

HIBCD9 E1/2;2877 6q15 FRA6G (C)   SINE  flush 

HIBCD19 L2; 4479 9q21.3 none   SINE CTAT (O)  

 

Table 56 continued. Summary of integration sites detected. Details of HPV disruption ,  fragile sites, repeat 

elements and sequence at site of integration is shown.

                                                 
1 EMBL Accession number for the NCBI database sequence with the most likeness to human sequence data. 

2 The genomic location of the site of integration chromosomal reference of sequence data with respect to 

Giemsa-stained bands was taken from the UCSC database (Kent et al. 2002). 

3 Fragile site within 1Mbp of integration site. C=common, R=rare, none=no fragile site 

4 Repeat elements within 2Kbp of the integration site. SINE= short interspersed nuclear element; LINE= long 

interspersed nuclear element; DNA= DNA transposon; LTR= long transposed region. 

5 Details at the site of integration: DNA overlap (O) or inserted (I); sequence given. 
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Figure 50 Integration sites detected 

relative to Wentzensen et al. 

(2004).Cell line data not included. Red 

stars indicate a reported integration 

site; blue stars indicate location of a 

gene reported to be involved in 

oncogenesis and green stars are                             

sites detected in this PhD.
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7.1.1 Sites of HPV integration 

In total, 40 different integration sites were detected (Figure 51 and Table 56). Integration 

occurred at a unique site each time: no integration event was the same and there were no hot-

spots where integration occurred within the same band. As mentioned in the introduction, 

Wentzensen et al. (2004) constructed a review of HPV integration sites in cell lines, vulval, 

head and neck and cervical cancer. HeLa, SiHa, C4I and CaSki integration sites had already 

been included in the analysis of Wentzensen et al. (2004) and further integration data for 

HeLa, SiHa, C4I and CaSki from this PhD were not included in a comparison to Wentzensen 

et al. (2004). When data were compared to the study of Wentzensen et al. (2004) (Figure 51), 

20/35 (60%) integration sites were in same bands as previously reported. There are a total of 

315 entire bands on UCSC database (for example counting 22q11.1, 22q11.2 and 22q11.3 as 

one band on 22q11) and Wentzensen et al. (2004) detected integration in 118 of them. 

Twenty integration events were detected in the same bands as those reviewed by Wentzensen 

et al. (2004), this is statistically different from the mean (Z=2.44, p=0.0073; mean=13.11; 

95% CI=12.16-14.15). The power to detect a false positive result in a sample of this size is 

0% (assuming mean=13.11; 95%CI=12.16-14.15 and α=0.05). These data imply that 

although no hot-spots for integration were detected in this PhD, there are hotspots for 

integration when combining data with published data. 

 

7.1.2 Integration at Fragile sites 

Integration was detected at three sites on 8q24 in HeLa, at 2 sites on 18p11.31 in PC09 clone 

D and at 2 sites on 3p21.31 for PC08 clone Y; for fragile site analysis purposes these were 

classed as one event for each sample; 40 samples were included in the overall analysis. Ten 

integration sites occurred within known fragile sites; 9 were within a common fragile site, 1 

was within a rare fragile site; this is statistically different to the mean (Z=3.96, p=0.0001; 

mean=3.2; 95%CI=2.97-4.02). There would be 0% chance of a false positive result in a 

sample this size (assuming mean=3.2; 95%CI=2.97-4.02). These data suggest there is a 

strong correlation between fragile sites and integration; hypothesis 8 is supported.  
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7.1.3 Integration at DNA repeat elements 

The majority of integration sites detected fell within repeat elements. These are novel data 

and there are no published reports of association of integration at repeat elements. To 

determine whether integration was random or associated with repeat element a “goodness of 

fit” Chi squared analysis was performed. 

 

CaSki integration site on 6p21.1 was detected by APOT and the exact integration site in DNA 

was not known; CaSki was not included in DNA repeat element analysis. Under the 

assumption that 70% of the human genome consists of repeat elements, 32/45 integration 

sites would be expected to be detected within a repeat element if integration were random. 

Forty-three (95%) integration sites were within a repeat element; this is a statistically 

significant difference to the expected (Goodness of fit, with Yates’ continuity correction, 
2
 

=8, df=1, p=0.005). In a sample of this size (n=45, c=0.42, =0.05, df=1), the chance of 

detecting a false positive result is 20%. Additionally, when correcting for multiple testing, 

with Bonferroni correction (number of tests performed in section 3.4 was 5), this p value 

remained statistically significant (p=0.02). These data show that repeat elements play a role 

in HPV integration. 

 

Forty-five percent of the human genome is composed of transposon elements (Lander et al. 

2001). Thirty seven (82%) of the integration events were within transposons: short 

interspersed repeat elements (SINE), long interspersed repeat elements (LINE), DNA 

transposons or long transposable regions (LTR); this is statistically significant from expected 

(Goodness of fit, with Yates’ continuity correction, 
2
 =12.24, df=1, p=0.0005). In a sample 

of this size (n=45, c=0.52, =0.05,df=1), the chance of detecting a false positive result is 

7%.  Additionally, when correcting for multiple testing, with Bonferroni correction (number 

of tests performed in section 3.4 was 5), this p value remained statistically significant 

(p=0.0025). These data show that transposon repeat elements play a role in HPV integration. 
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7.1.4 DNA sequence at site of integration 

At 63% of integration sites there was overlapping sequence of DNA that was the same 

between HPV and human. Thirty percent of integration sites had DNA inserted, this DNA 

was not HPV or human DNA; in 3 of these sites, a long insertion of DNA was detected; there 

was no similarity or consensus sequence for long DNA insertions at the site of integration. At 

3 of the integration sites the sequence was flush: HPV sequence adjoined human sequence 

with no overlap or insertions. These data imply that integration is common where there is 

similarity between human and HPV sequence; this is a trait of non-homologous end-joining 

DNA repair. These data support hypothesis 9.  

 

7.1.5 HPV disruption 

To examine hotspots for HPV disruption, and to test hypothesis 1, sites of HPV disruption 

were compared.  

 

The integration site on 6p21.1 in CaSki was detected by APOT, the point of disruption in 

DNA was not known thus CaSki was not included in HPV disruption analysis. The majority 

of integration sites involved disruption of E1 ORF (45%); E2 was disrupted at 36% of the 

integration sites and L1 and L2 were disrupted in 7% and 11% of integration sites, 

respectively. Assuming 37% of the HPV genome is either E1 or E2 ORF the detection of 36 

integration events with disruption to E1 or E2 is statistically significant from the mean 

(Z=6.16, p<0.0001, mean=16.28, 95%CI=15.33-17.22). Assuming 36% of the HPV genome 

constitutes either L1 or L2 ORF: the detection of 8 integration sites with disruption to the L2 

ORF or L1 ORF is statistically significant (Z=-2.48, p=0.006, mean=15.94, 95%CI=14.99-

16.88).  

 

When the precise location of HPV disruption in base pairs was examined by dividing the E1 

and E2 ORF into 10x 300bp sections  (Figure 51), the region between 2966bp and 3265bp 

was more prone to disruption and less likely to occur randomly (Z=4.11, p<0.00001, 

mean=3.6, 95%CI=3.01-4.08) (Figure 51). Seven of the integration events detected in the 

baseline samples had disruption between 2966-3265. As mentioned in section 6.1.3.2, star 
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activity and poor DNA quality were observed in the baseline samples and disruption seen in 

these may not be a result of true integration but due to star activity of Sau3AI restriction 

digest and ligation reaction. When the baseline samples, with disruption between 2966-3265, 

were excluded from the analysis, HPV disruption was randomly distributed across the E1 and 

E2 ORF (-1.96<Z<1.96; p<0.05; mean=3.6, 95%CI=3.01-4.08). 

 

 

Figure 51 Frequency of HPV disruption across E1 to E2 ORFs. 
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7.2 Mechanism of Integration and disease progression: Discussion 

7.2.1 Integration was detected at fragile sites. 

Integration detected in this PhD was at a unique locus every time. When integration in 

relation to fragile sites was investigated, to test hypothesis 8, integration was not a random 

process but had affinity for chromosome fragile sites. These data support the previous studies 

of integration reporting integration at fragile sites (Cannizzaro et al. 1988; Wilke et al. 1996; 

Thorland et al. 2000; Wentzensen et al. 2002; Thorland et al. 2003; Wentzensen et al. 2004; 

Yu et al. 2005; Dall et al. 2008; Kraus et al. 2008). However, not all integration sites detected 

were located within a fragile site: 62% were in chromosomal regions that did not contain a 

fragile site. It is possible that there are fragile sites at other loci throughout the human 

genome not yet detected and that further fragile sites may be identified as hotspots for 

integration. It does remain possible that integration occurs at fragile sites by chance. When 

conducting a Z test, as a rule of thumb, the mean should not be less than 5. This rule is 

important when the probability of an event occurring is close to zero because the data is less 

likely to be normally distributed. When probability is close to zero a sufficient number of 

samples need to be tested to achieve a mean greater than 5. The mean rate of integration 

detection at a fragile site in this PhD was 3.2. Although there was 0% chance of detecting a 

false positive outcome the data presented here need to be interpreted with caution. A sample 

size of 63 would be required to achieve a mean of 5. In both of the studies by Thorland et al, 

(Thorland et al. 2000; Thorland et al. 2003) insufficient sample sizes were tested (n=20 and 

43, respectively) thus the data present by Thorland et al. may not be accurate. Normally 

distributed data takes the shape of a symmetrical bell shaped histogram and data with a mean 

below 5 will not follow this pattern. Future analyses should include greater than 63 samples 

to achieve reliable data that is normally distributed. 

 

7.2.2 Hot-spots for integration are present. 

Wentzensen et al. (2004) compiled a review of HPV integration in the genome, summarised 

in Figure 11. The integration sites detected in this PhD were not detected more than once but 

when comparing them to the data from Wentzensen et al. (2004), hotspots for integration, 

where integration is reported at least 3 times on the same band, are observed; 65% of hotspots 

reside at a chromosome fragile site. These data support the suggestion that integration could 

be used to identify further fragile sites and it would be advantageous in future work to 
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perform an another review, similar to that of Wentzensen et al. (2004), that includes all 

integration studies published since 2004. 

 

7.2.3 Integration is frequent at repeat elements 

Integration at DNA repeat elements was common in this PhD. Repeat elements are various 

DNA sequences present in multiple copies; repeat elements can be defined as tandem arrays 

or interspersed repeats. DNA repeats and AT rich elements were detected at integration sites; 

they fall under the tandem repeat category. As mentioned in 1.4.1, slowed DNA replication at 

replication forks may contribute to fragility of DNA. One of the reasons that DNA replication 

could be delayed is the tandem repeat elements that form secondary DNA structures that 

block DNA replication (Ozeri-Galai et al. 2011). It is therefore possible that integration 

occurs at tandem repeats due to slowed DNA replication.  

 

Integration was most frequently detected at interspersed repeats, otherwise known as 

retroelements; this is supported by a recent publication that reported a high incidence of 

integration at LINE and SINE repeat elements (Li et al. 2013). Retroelements, otherwise 

known as transposons, are regions of DNA that are able to amplify and relocate to another 

region in the genome through an RNA intermediate. Long Terminal Repeats (LTR), Short 

Interspersed Elements (SINE), Long Interspersed Elements (LINE) and ALU repeats were 

detected at the sites of integration. The mechanism of DNA relocation involves formation of 

a transcript from the retroelement, reverse transcription of the retroelement mRNA to form 

cDNA; the retro-element cDNA is then integrated into the genome. The detection of 

integration at retroelements highlights that there may be another mechanism of integration 

that has not yet been investigated; it may be possible that HPV integration occurs at the same 

time as a retroelement relocates or it may be possible that retroelements are more sensitive to 

integration of foreign DNA; this warrants further investigation. Furthermore, retroelements 

have been implicated in a number of cancers (Florl et al. 1999; Takai et al. 2000; Wolff et al. 

2010). Typically, retroelements are methylated in the human genome preventing further 

translocation. In cancer, hypo-methylation activates the retroelement promoter and 

translocation of the retroelement induces genomic instability. In future it would be interesting 

to examine DNA sequence at the location of integration to determine if integration occurred 
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as part of translocation. Hypothetically, if integration occurs at the same time as 

translocation, repeat elements may be intact; if integration disrupts a repeat element then 

integration may not be a result of translocation but could be due to the nature of the DNA 

sequence at the repeat element. Additionally, it would be advantageous to examine 

methylation of promoter regions of repeat elements at the sites of integration because hypo-

methylation at the promoter region may result in translocation of repeat elements and HPV; 

this may explain why CaSki has concatenated HPV at many different sites in the human 

genome. 

 

7.2.4 Integration commonly disrupts E1 and E2 ORFs 

Integration commonly disrupted either the E1 or E2 ORFs of HPV; this observation supports 

hypothesis 1. Integration did not disrupt the same point in E1 or E2, indicating that there is 

not an exact break point that has more susceptibility to breakage. In the Baseline samples 

there were a number of integration sites where HPV disruption occurred at the same point 

with identical overlapping sequence between HPV and human DNA. It may be that 

disruption of E1 and E2 gives the cell a selective advantage through decreased E2 expression 

and increased E6 and E7 expression but this was not observed in any of the samples with 

integration. This pattern of HPV E2, E6 and E7 expression was observed in two samples: 

HIBCD6, where no integration was detected and in sample 3O, where integration was 

detected but E2 was intact. For the remaining clinical samples or primary cultures there was 

no evidence that E1 or E2 disruption influenced selection. It does remain possible that E6 and 

E7 expression was increased initially in the samples with integration and high-grade disease, 

before the samples were taken.  

 

7.2.5 DNA sequence is similar between HPV and human DNA at the sites of 

integration 

NHEJ has been implicated in HPV integration (Durst et al. 1987; el Awady et al. 1987; 

Ziegert et al. 2003) because, at the site of integration, there is either overlapping sequence of 

homology between HPV and human sequence or an insert of DNA that bears no homology to 

human or HPV. Sequence similarity at the site of HPV integration was common and this 

indicates that integration is favoured where similarities exist between HPV and human 

sequences.  
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7.3 Mechanism of Integration: Conclusion 

These data support hypotheses 1, 8 and 9 and illustrate that although integration occurs at a 

unique site in the genome each time, there are hotspots for integration. Integration is not a 

random event: integration has affinity for common fragile sites and transposable repeat 

elements. Integration frequently disrupts the HPV genome within E1 and E2 ORFs but there 

is not a specific site within E1 or E2 that is more prone to disruption. Integration commonly 

occurs at sites within the human DNA where there is sequence similarity between HPV and 

human sequence thus NHEJ is likely to be involved in incorporation of HPV DNA into the 

human genome. 
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8 General Discussion 

8.1 HPV Integration and Cervical Neoplasia 

This is the first study to investigate integration at the nucleotide level in cervical neoplasia 

using DIPS and RS-PCR. Previous studies have looked at integration using DIPS and RS-

PCR in cancer rather than precancers and have reported integration in at least 80% of cancers 

(Klaes et al. 1999; Thorland et al. 2000; Luft et al. 2001; Ferber et al. 2003a; Ferber et al. 

2003b; Thorland et al. 2003). Integration was not detected frequently in CIN1 in this PhD; 

this implies integration is not an early event. Integration was not detected at a high rate in 

CIN3 either and this was surprising because CIN3 has a significant rate of progression to 

cervical cancer and less chance of regressing to normal. Hypothetically, the changes that are 

required to allow a cell to progress to cancer, such as integration, would have already 

occurred in CIN3. There could be a number of explanations for not detecting integration in 

CIN3: 

 

Integration is an event that occurs once invasive disease develops thus may not be 

detected in CIN3. In HI-BCD samples, integration was detected in 13% of CIN3; these data 

are consistent with Klaes et al. (1999) who reported integrated transcripts in 15% of CIN3 

and 85% of cervical cancers; however it remains possible that integrated transcripts were not 

detected in CIN3 in the HI-BCD samples due to poor RNA quality. On the other hand, these 

data contradict the confirmed finding of integration in the W12p12 cell line representative of 

a low-grade cervical lesion. W12 was established from a non-tumourigenic, CIN1 lesion of 

the cervix of a 22 year old woman with a history of mild cellular dyskaryosis; once the lesion 

was removed, the woman did not have further abnormal smears (Stanley et al. 1989). 

Continued culture of W12 leads to the selection of clones with integrated HPV that differ 

between culture series (Jeon et al. 1995; Dall et al. 2008). Culturing W12 may have induced 

integration at a very early stage and the in-vitro integration status of HPV16 may not 

represent the integration state of the lesion in-vivo. Ultimately it is possible that any 

observations made in W12p12 in this PhD are an artefact of cell culture and do not represent 

events that would develop in-vivo. 
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Presence of episomal HPV at levels above the sensitivity threshold of DIPS could mask 

the detection of integration in these sample sets. In both the Baseline and HI-BCD sample 

sets, intact E2 was detected in the majority of samples where HPV16, HPV18 and HPV45 

were present; this is potentially a marker of episomal HPV.  Typically, CIN3 is not a 

productive infection and one would not expect to observe HPV DNA replication but it is 

possible that episomes are maintained in high grade cervical lesions at high copy numbers as 

described in W12ser4(EPI) by Gray et al (2010).  

 

Integration is in concatenated form. DIPS could not detect integration in CaSki because 

HPV is integrated in concatenated form. It is possible that integration is in concatenated form 

in the Baseline and HI-BCD samples and biopsy sample 1W since integration was not 

detected by DIPS or RS-PCR. Although integration is in concatenated form in CaSki, APOT 

detected integrated transcripts because integration is being transcribed. The fact that APOT 

did not detect integration in the HI-BCD samples or in biopsy 1W strengthens the hypothesis 

that integration is not present. Southern blot is ideal to detect integration in concatenated 

form but requires more DNA than was available in the clinical samples used in this study. 

 

Age may influence whether integrated HPV or episomal plays a role in cervical 

carcinogenesis. The ages of the women included in the Baseline study were 20-22 years as 

they were attending their first smear test in Wales, whilst the average age of women sampled 

in HI-BCD study was 31. The age of women from whom the biopsies were taken, ranged 

from 23 to 63 years, with an average age of 40. As mentioned in the introduction, cervical 

cancer is prevalent from age 25 upwards and it takes approximately ten years to progress 

from CIN1 to CIN3 (Figure 7). The average age of first intercourse in the UK is 16 years of 

age (Wellings et al. 2001) and this is the age at which first possible exposure to HPV occurs. 

The women who had CIN3 diagnosed by histology in the Baseline sample set were likely to 

have disease that progressed quickly with the time from exposure to HPV infection through 

to CIN3 being a maximum of 6 years. Biopsy 1W was from a cervical cancer that displayed 

characteristics of episomal transformation and was taken from a woman aged 23 years. It 

remains plausible that cervical disease progression in young women does not involve 

integration but episomal HPV, as observed in 1W. Integration could be involved in cervical 

disease progression in older women as seen in 3O, aged 46 and in 6N, aged 45. Biopsy 5B 
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was taken from a 30 year old woman and although integration was detected, it was not clonal 

and not likely to be contributing to disease. Overall, the data presented in this PhD suggests 

that integration of HPV may not be involved in cervical oncogenesis in women under 30 

years. This hypothesis is supported by studies of integration in women from a similar age 

group: Firstly, Evans et al. (2008) used Southern blot to investigate integration in CIN in a 

sample set with an average age of 30 (Table 3); this group reported very low incidence of 

integration in CIN2/CIN3 and benign lesions with integration being detected alongside 

episomal HPV. Ramanakumar et al. used RS-PCR to investigate integration in persistent and 

transient infections in women aged less than 25 years (2010); they did not detect integration 

but reported high HPV viral loads. It is therefore possible that high viral loads, which are 

reported to be associated with women under the age of 25 years (Flores et al. 2006), may play 

a role in carcinogenesis in young women. A high viral load may confer increased E2, which 

allows episome maintenance, as well as high E6 and E7 expression resulting in 

transformation.  Furthermore, previous reports of HPV integration in cervical cancer (Klaes 

et al. 1999; Thorland et al. 2000; Luft et al. 2001; Ferber et al. 2003a; Ferber et al. 2003b; 

Thorland et al. 2003) did not specify the age of the samples used in the study and it is not 

possible to draw a conclusion as to why integration was detected at such a high rate in these 

studies. Vinokurova et al. (2008) examined age at diagnosis in relation to integration status 

by comparing the age at diagnosis between patients with and without integration; the mean 

age of the entire sample set was 40 years; the median ages at diagnosis of cervical cancer in 

the Vinokurova et al. (2008) study was between 43–44 years for HPV16, HPV18 and HPV45 

and there were no women under the age of 25 years with cervical cancer in the study. The 

data from the Vinokurova et al. (2008) study support the hypothesis that integration 

predominates in cervical cancers of older women. No women younger than 25 years old were 

included thus there is no evidence to support integration being absent in younger women in 

the Vinokurova et al. (2008) study. The link between age and integration is novel and 

interesting but due to the small sample numbers investigated in this PhD, it is not possible to 

draw a definitive conclusion. A hypothetical explanation for more integration in women over 

30 years of age could be environmental factors. Continual exposure to factors such as 

smoking, contraceptive drugs, alcohol, poor diet combined with persistent HPV infection can 

damage DNA over time and this would increase the risk of HPV integration.    
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Types other than HPV16, HPV18 and HPV45 are contributing to disease in these 

samples sets. For example, in the HI-BCD samples mixed infections were detected in the 

majority of samples and although no integration was detected, it is possible that another HPV 

type is integrated and causing disease. HIBCD14 had cervical cancer and qPCR implied that 

HPV16 expression was similar to that expected in a productive infection. A limitation of this 

PhD is that assays were only developed for HPV16, HPV18 and HPV45 and other HPV types 

were not examined for integration; it would be advantageous to explore HI-BCD samples, 

with mixed HPV types, for integration with assays for other HPV types. 

 

8.2 Integration and E2, E6 and E7 expression 

The data presented in this thesis are consistent with the hypothesis that integration disrupts 

E1 and E2 ORFs (hypothesis 1). E1 and E2 ORFs can repress immortalisation and 

hypothetically, over-expression of E6 and E7 genes, due to the disruption of E1 or E2 ORFs 

upon integration, may provide a selective growth advantage (Romanczuk and Howley 1992) 

through interaction with hTERT, p53 and pRb. Furthermore, E6 and E7 expression has been 

demonstrated to be vital for ongoing cell proliferation of primary cervical carcinoma cell 

lines (Magaldi et al. 2012) and removal of E6 and E7 expression in culture induces 

senescence. There was no evidence in this PhD to support the hypothesis that integration 

disrupts E1 and E2 resulting in increased expression of E6 and E7. One of the limitations of 

the samples used in this study is that they are taken at a single time point. PC09 clone D 

initially showed unstable mRNA quantities of E2, E6 and E7 that increased between passage 

5 and 10. After passage 10 there was a dramatic decrease in E2, E6 and E7 mRNA; this 

mimics an observation made in the W12Ser4(EPI) cell line (Gray et al. 2010) where HPV E6, E7 

and E2 expression decreased at the point of invasiveness. E6 and E7 have the potential, 

independently of each other, to cause genomic instability through centrosome duplication 

errors and chromosome miss-alignment during mitosis (Duensing and Munger 2002; 

Duensing and Münger 2003). It is plausible that sufficient DNA damage by E6 or E7 was 

already inflicted in the clinical samples prior to sampling. DNA damage may have been 

sufficient to drive transformation with maintained cell growth favouring cells lacking HPV 

expression. There was evidence in biopsy 3O where integration was detected and HPV 

oncogene expression was higher than housekeeping genes Therefore, integration and E6 and 
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E7 were likely to be contributing to cancer in 3O; this was an exception rather than a rule of 

transformation.  

 

8.3 Integration in Human Genes 

An alternative mechanism for transformation and selection other than HPV oncogene 

expression is disruption to human genes. There was evidence to support integration into 

human genes in the PC0 cultures and in the biopsy samples. It is possible that a cell with 

human gene disruption does not require HPV oncogene expression and although integrated 

HPV is detected, HPV oncogene expression is not required for cell survival. Evidence for this 

was observed in biopsy sample 6W where integration was in gene SLC7A11 but there was no 

detectable E6 or E7. To conclusively determine if integration disrupts SLC7A11 gene 

expression, further work would be required to determine if protein levels are altered by 

integration at this site.   

 

8.4 Alternative mechanisms 

8.4.1 Methylation 

HPVE2 expression was lower and HPV oncogene expression was higher than housekeeping 

genes in 3O and HIBCD6. No integration was detected in HIBCD6, and 3O had intact E2, 

even though integration was detected; this means that suppression of E2 expression was due 

to a mechanism other than integration and episomal loss. As mentioned in section chapter 4, 

CaSki possesses many integration events in concatenated form but only 1 copy is actively 

transcribed. The mechanism of suppression of integrated HPV in CaSki is methylation (Badal 

et al. 2003). It is possible, in CaSki, that one copy of HPV escaped methylation; this in turn 

provided the cell with an un-methylated HPV copy, a selective advantage and allowed 

malignant progression. As mentioned in 1.2.3.3.5, the HPV URR possesses CpG rich regions 

that have been reported to be hypomethylated or hypermethylated, depending on the stage of 

the HPV lifecycle (Kim et al. 2003; Kalantari et al. 2008). Changes in methylation at the CpG 

regions in HPV URR can alter the HPV lifecycle, increase E6 and E7 expression, and 

potentially lead to cancer. Dean Bryant, a PhD student in the HPV research group at Cardiff 

University investigated integration in relation to HPV URR methylation in vulval neoplasia 

(Figure 62 and Table 57, in appendix). There was a higher percentage of methylation of the 
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L2/L1 CpG region in 50% of the samples. This may lead to decreased expression of capsid 

proteins needed to complete the HPV life cycle and disruption of the HPV life cycle may lead 

to transformation. Also, where integration was detected and disruption to the E1 ORF 

occurred, hyper-methylation of the E2 CpG was observed. Methylation of the E2 promoter 

region did not lead to decreased E2 expression or increased E6 or E7 expression but the link 

between integration and methylation is an interesting one. There is increasing evidence that 

the host methylates foreign DNA integrated into the genome, but the reason and mechanism 

is not fully understood. It is possible that methylation is a defence mechanism to protect the 

host cell and may be dependent on the site at which integration occurred and chromosomal 

interactions (Doerfler 2007). Furthermore, methylation of foreign DNA in a host genome 

may influence the methylation of DNA surrounding the integration site; this potentially could 

have an impact on host cell gene expression. Methylation of genes involved in oncogenic 

pathways could increase the risk of oncogenesis and provide a selective advantage without 

the need for HPV E6 and E7 expression as observed in Dean Bryant’s data. In future research 

of HPV methylation, it would be interesting to observe methylation patterns of the genome 

surrounding integration sites and changes in human gene expression. 

 

8.4.2 DNA instability by Replication of Integrated HPV 

Replication of integrated HPV DNA may offer an alternative mechanism of genomic 

instability other than E6 and E7 expression. It has been reported that where integrants are 

transcriptionally active and where episomes are present, HPV DNA replication can still occur 

from the origin of replication in the integrated HPV DNA (Kadaja et al. 2009b). E1 and E2 

are required for HPV genome replication and where episomal HPV and integrated HPV occur 

together, replication of integrated HPV is warranted (Kadaja et al. 2007). In a review of HPV 

replication and genomic instability, Kadaja et al. (2009b) proposed a model for genomic 

instability that resulted from replication of integrated HPV, adapted in Figure 52.  Non-

contiguous sequences have been a common theme in this PhD: firstly, non-contiguous 

sequence was detected in CaSki in the assay development stage and has been previously 

reported in CaSki (Meissner 1999); also non-contiguous sequence was detected in a biopsy 

sample (1W) and in PC08 (clone P). Although episomes are no longer present in CaSki, it is 

possible that non-contiguous sequence arose due to replication of integrated HPV DNA, 

when episomes were present. It is also possible that concatenated HPV at the site of 
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integration is a result of DNA replication of integrated HPV. Structural abnormalities have 

been reported at the sites of integration in cervical cancers (Peter et al. 2010). The majority of 

structural abnormalities have developed due to local amplification of DNA by replication of 

integrated viral sequences. Furthermore, Peter et al. (2010) reported that HPV copy numbers 

were higher in cancers with genomic alterations at the site of integration; this suggests that 

integration precedes genomic alteration in these samples and episomal HPV allows 

replication of integrated HPV. Genomic abnormalities are important to understand in each 

individual cancer because chromosomal abnormalities can give a cell a selective advantage; 

this is important in treatment of cancer because genomic changes may enhance a cell’s 

survival and result in persistent disease. Chromosome abnormalities at the sites of integration 

were not studied in this PhD but should be explored in future work to improve understanding 

of the role of integration in cancer cell evolution. It is important to note that integration was 

not detected in sample 1W or in the P clone. If the model of Kadaja et al. (2009b) only 

applies to integrated HPV, then in theory integration must exist in 1W or in the P clone. It is 

possible that integration occurs in concatenated form in 1W and P clone and this may hinder 

detection of integration by the methods used; whole genome sequencing, Southern blot, or 

FISH would be useful to detect integration in these samples.  
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Figure 52 Model of replication of integrated HPV, adapted from Kadaja et al. (2009). Where episomal 

HPV is present, replication of integrated HPV can be initiated from origin of replication. In most cases cell 

death occurs or HPV is removed by homologous recombination repair. Replication of integrated HPV may lead 

to duplications and concatenated HPV. Excision of replicated HPV may lead to non-contiguous sequence. 

Excised HPV can be translocated to alternate chromosomes. 
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8.5 Clinical Implications 

8.5.1 Integration in Vulval and Vaginal Neoplasia: Clinical Implications  

 

Figure 53 Multifocal clonal integration in vulval and vaginal neoplasia. Multifocal lesions arise from 

separate infections and have different integration characteristics that can be observed through single cell 

cloning; culture of heterogeneous cells results in selection of cells with strongest selective advantage, which do 

not retain original characteristics of the lesion.  

 

Data presented here, from single cell cloning of cells, taken from vaginal and vulval 

intraepithelial neoplasia grade 3 shows that there is variability in integration status between 

clones from the same biopsy. If a single integrant were contributing to grade 3 intraepithelial 

neoplasia then, when single cell cloning were performed, all clones would be expected to be 
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the same; this was not the case for PC08 or PC09.  Multifocality is a risk factor for recurrence 

of vulval and vaginal neoplasia (Dodge et al. 2001) and multifocality would explain the 

detection of differences in integration status in each clone with several separate infections 

developing different integration events (Figure 53). In the pilot study of PC08 and PC09 

development, PC08 was confirmed as a multifocal infection but PC09 was not; it is possible 

that for PC09 a number of separate lesions developed in close proximity to each other 

appearing as one lesion upon clinical examination. The presence of cellular differences 

within a lesion could have implications for treatment: each cell that differs could potentially 

have different viral and host characteristics that respond differently to treatment. In addition, 

cells resistant to treatment would survive and clonal evolution would select these resistant 

cells leading to disease progression or recurrence. The techniques developed in this PhD 

could aid understanding of integration in vulval and vaginal neoplasia and give an insight into 

how treatments can be developed according to an individual patient’s needs, with decisions 

on treatment based upon knowledge of a patient’s HPV integration status. For example, in 

PC08, integration was within two important candidate genes for cancer; PC08 displayed no 

evidence that HPV E6 or E7 expression contributed to cell survival and anti-viral treatment 

may not be suitable for this patient. Therapies that target human proteins such as LEPREL1 

and CDCP1 pathways may be a better choice of treatment. In PC09, there was evidence to 

imply both viral and human factors playing a role in cell survival. Antiviral drugs may be 

more effective in this patient but if integration remains within a cell, disruption to human 

genes will remain; a combination of anti-viral and novel therapeutics to target human protein 

pathways may be required.  

 

8.5.2 Integration in Cervical Neoplasia: Clinical Implications 

One of the aims of this PhD was to determine if HPV integration could be used as biomarker 

of high-grade cervical disease to improve the management of women with mild cellular 

dyskaryosis. Selecting the Baseline samples of young women may have been a weakness of 

the PhD, but there was no evidence in the literature to suggest that integration occurs over 

time and is present in older women. Cervical cancer is becoming an increasing problem in 

young women and women who want to have a family need to decide whether to have 

treatment if they have low-grade abnormalities. It was important to determine if integration 

played a role in disease progression in this age group to improve current screening methods. 
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Performing the assays on this age group has highlighted that a different pattern of disease 

progression may exist between younger women and older women; this is a strength rather 

than a limitation of this PhD.  

 

The data from HI-BCD study shows that integration was not prevalent in CIN3 in the 

samples assayed thus may not be suitable as a biomarker of cervical disease. To be confident 

that integration does not play a role in CIN3, it would need to be confirmed in a larger, 

adequately powered sample with a wider range of ages included. Also, there are additional 

explanations, other than integration not being detected in CIN3 that would justify that 

detection of integration by DIPS, APOT or RS-PCR is unsuitable as a diagnostic biomarker 

for use in a clinical setting to predict high-grade disease: 

 

The assays used in this study required good quality DNA and RNA, where nucleic acids are 

intact without protein and co-purified contaminants. Current methods for the collection of 

liquid based cytology (LBC) samples utilise a fixative agent to preserve the structure of the 

cells for cytological investigation. Baseline smear samples were collected in SurePath™ 

preservative fluid, the ingredients of which are not disclosed by the manufacturer. It was clear 

that contact of cytological smear samples or SiHa cells with SurePath™ resulted in rapid 

degradation of DNA. Thus LBC samples, collected in Surepath™ are not ideal. Furthermore, 

the need for good quality DNA and RNA for reliable data implied that the assays are not 

robust enough for routine clinical practice. Ideally, an assay that performs optimally on both 

intact and degraded DNA or RNA is required for clinical practice as it would reduce the 

number of specimens needing to be repeated. Collection of samples in RNAProtect
®
 would 

improve DNA quality but these samples could not be used for cytological investigation since 

RNAProtect
®
 lyses cells, rendering the sample useless for cytological examination. To 

overcome this 2 smear samples would have to be collected, each in a different reagent. Also, 

RNA was degraded in smear samples as observed in the HI-BCD study although every 

precaution was taken to ensure good RNA quality; thus smears do not provide RNA of good 

quality. 
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An ideal diagnostic biomarker would be used on smear samples to determine which women 

require biopsies, since smear sampling is a less invasive process. Integration assays are not 

suitable for this purpose because smear samples contain a mixture of HPV types as a result of 

transient infections. As described above, a single assay detects integration for a single type 

but where many types are present, it is a tedious search for integration, using a different assay 

for each type. Biopsy samples commonly possess a single HPV type contributing to disease 

(van der Marel et al. 2012) and this reduces the number of integration assays that need to be 

performed but biopsy is a more invasive process. Integration may be a useful as a prognostic 

biomarker, rather than a diagnostic biomarker: a recent study reported that detection of 

episomal transcripts by APOT conferred disease free survival whereas women with 

integrated transcripts had more recurrence of disease (Das et al. 2012). Another recent study 

reported that integration has potential as a prognostic biomarker to predict relapse by 

detecting integrated HPV in the blood of cervical cancer patients (Campitelli et al. 2012). 

DIPS method was used to identify integration sites in cervical tumours. Circulating tumour 

DNA (ctDNA) that possessed the same integration site as the tumour, was quantified from 

blood; in patients that responded to treatment there was a decrease in ctDNA whereas in 

patients that relapsed an increase in ctDNA was detected. In future research of HPV 

integration it would be interesting to replicate the study of Campitelli et al. (2012) to enhance 

understanding of integration in cervical cancer relapse because ctDNA may be useful in 

management of cervical cancer by improving follow-up of patients after treatment. In future 

studies of integration in cervical neoplasia, DIPS and APOT should be applied to biopsies to 

determine if integration is present in CIN3 and to determine if integration can be used as 

prognostic biomarker. 

 

One fascinating observation made in this study was in sample HI-BCD14, taken from a 

woman with cervical cancer: no integration was detected but HPV16 E2, E6 and E7 

expression followed a pattern expected from a productive infection. Currently women with 

cervical cancer are advised by clinicians that cervical cancer carries no risk of sexually 

transmitted HPV infection since a cervical cancer is not producing infectious virions. The 

possible detection of a productive infection alongside cervical cancer could change the way 

patients are advised by clinicians: clinicians would advise that even though cervical cancer is 

present, it is still possible to infect partners with HPV if a productive infection is present too. 
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HIBCD14 also contained HPV59 and HPV66 and these types require investigation for 

integration to test the hypothesis of a productive infection alongside cervical cancer.  

 

Another observation of clinical importance arose in cervical cancer biopsy sample 6N: 

PapilloCheck
®
 was initially used to test 6N but no HPV was detected. When GP5+/6+PCR-

EIA was used to type 6N, HPV16 was detected; integration analysis showed HPV was 

disrupted within E1 ORF. PapilloCheck
®
 genotypes HPV according to the E1 ORF and 

disruption to E1 is very common in integration. Biopsy 6N had integration that disrupted E1 

and although the region of E1 that is amplified by PapilloCheck
® 

is not disclosed by Greiner 

Bio-One, it is very likely that integration prevented the detection of HPV in this sample. 

Integration may result in false negative detection of HPV in high-grade disease, where 

episomal HPV is absent thus any HPV negative outcome needs to be interpreted with caution 

especially if there is evidence of disease.  

 

8.6 Unanswered Questions and Future Work 

8.6.1 Integration and Vulval and Vaginal Neoplasia 

Antiviral response is very important to consider during the treatment of HPV infections as 

rapid loss of episomes from integrant containing cells may speed up malignant progression as 

was reported in a study of Interferon treated W12 cells (Herdman et al. 2006). The action of 

Cidofovir in vulval and vaginal neoplasia is poorly understood and there is much conflicting 

data on the mechanism of action. Currently, Cidofovir treatment of PC08 and PC09 is being 

studied by the Cardiff University HPV research group to determine if antiviral treatment is 

suitable for infections containing only episomal HPV and to further the understanding of 

mechanism of action of Cidofovir in vulval and vaginal neoplasia. Additionally, a multicentre 

UK clinical trial (RT3VIN) of Cidofovir and Imiquimod in the topical treatment of vulval 

neoplasia is being conducted, with Cardiff as the lead centre. Integration techniques 

developed in this PhD are being applied to biopsies taken from women in the trial before and 

after treatment to gain insight into how factors such as integration affect treatment outcomes. 
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8.6.2 Integration and Cervical Neoplasia 

Viral load was not explored in this PhD. At the outset of the PhD, it was hypothesised that 

viral load decreases as transformation progresses due to episomal loss and was therefore not 

useful to investigate. Integration was not detected at a high frequency in Baseline or HI-BCD 

where the average age was lower than studies that reported integration (Vinokurova et al. 

2008). Integration may not be involved in cervical neoplasia in the age group investigated in 

this PhD and viral load may be more important in transformation. In future studies, viral load 

will be examined in cervical neoplasia. High viral loads are common in women younger than 

25 years but cervical cancer is rare in this age group (Figure 2) and hypothetically high viral 

load alone will not lead to cancer. It may be possible that women with early onset cervical 

cancers have a genetic predisposition or other factors that when combined with high viral 

load, trigger transformation. In a study of oral cancer, HPV and variants within p53 related 

genes (Wang et al. 2012) reported an increased risk of oral cancer in patients infected with 

HPV16 who possessed risk variants of p53 related genes. In future studies of cervical 

neoplasia it would be interesting to investigate factors such as human genetic variants of 

genes involved in the HPV lifecycle such as p53, hTERT and pRB. 

 

An interesting observation made in this PhD is that not all integration is clonal and 

contributing to disease; integration may be detected by chance and not be replicated by 

repeating the assay or by PCR. The data from this PhD have allowed the HPV research group 

to evolve DIPS to differentiate non-clonal integration from integration events that are clonal.  

The DIPS assay is performed in duplicate: 2 digestions, ligations and PCRs per sample. 

Electrophoresis of the duplicates side by side allows comparison of amplicons to each other. 

Amplicons that are identical between duplicates and differ in size from amplicons from HPV 

plasmid controls are likely to be clonal integration events. Amplicons that differ between 

duplicates and are different in size to amplicons from HPV plasmid controls are likely to be 

non-clonal integration events. Non-clonal and clonal amplicons are selected for DNA 

sequence analysis. Future studies would ideally examine clonal and non-clonal integration 

events in an adequately powered sample to determine the role of clonal and non-clonal 

integration in HPV related neoplasia. 
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Finally, the samples assayed in this study were taken from a single time point. Taking a 

sample at a single time point cannot give insight into physiological events prior or subsequent 

to the sample being taken. A longitudinal study of samples taken at time points throughout a 

woman’s attendance at clinic would allow understanding of HPV disease progression and 

regression.  
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9 Conclusion  

Cervical malignant progression is a complex process and there is no single mechanism that 

explains why transformation occurs after HPV integration. There appears to be a pattern 

emerging in the data presented here: integration may give a cell a selective advantage either 

due to disruption of HPV oncogene expression or due to disruption of human genes. 

Additionally, there was evidence to imply that E6 and E7 contribute to genome instability but 

are not required to maintain the malignant phenotype. The clinical samples used in this study 

are taken at a fixed time point. To enhance understanding of cervical neoplasia, future work 

should include samples taken over a period of time to observe changes in E6 and E7 

expression and human genome instability in relation to integration and episomal loss.  

 

Integration was not detected abundantly in CIN3 and there was no evidence to suggest that 

episomal loss drives cervical disease progression; this implies that integration is not suitable 

as a biomarker of cervical disease. Also, it is possible that presence of episomes alongside 

integrated HPV can induce human genome instability and contributes to disease progression; 

this requires further investigation. 

 

The samples examined in this PhD were taken from young women and it does remain 

possible that age can determine whether a woman has integrated or episomal related 

oncogenesis. An alternative mechanism of oncogenesis could be related to presence of 

episomal HPV in high copy numbers. The sample sizes used in this PhD were too small to 

make a definitive conclusion about the relationship between age and integration. Further 

investigation using an adequately powered collection of samples from women with a range of 

ages would allow further understanding of the role of age in cervical neoplasia.  

 

Integration was detected in fragile sites in approximately a quarter of the sample. This 

suggests that fragile sites may play a role in integration in some cases, but not all and that a 

mechanism other than DNA damage and repair to incorporate the HPV into human DNA may 

exist. Transposon repeat elements were observed at the majority of integration sites. This 
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highlights the possibility of an alternative mechanism of integration of HPV into the human 

genome.  

 

Finally, the importance of clonal evolution has been highlighted in this PhD. An 

understanding of how integration contributes to oncogenesis in each patient is vital for 

selection of optimal management of cervical cancer. The techniques developed in this PhD 

could also aid understanding of integration in vulval and vaginal neoplasia and give an 

insight into how treatments can be developed according to an individual patient’s needs, with 

decisions on treatment based upon knowledge of a patient’s HPV integration status. 
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10 Appendices

10.1 Appendix 1: HI-BCD Study Protocol and Consent Form 

Human Papillomavirus Integration analysis in liquid based cytology samples as a 

Biomarker for Cervical Disease 

 

Protocol Summary 

 

Acronym  

HI BCD (HPV Integration as a Biomarker for Cervical Disease) 

 

Principle Investigator  

Sam Hibbitts, Senior Lecturer in Gynaecological Oncology, Cardiff University 

 

Co-Investigators 

Amanda Tristram, Senior Lecturer in Gynaecological Oncology, Cardiff University 

Sue Ashman, Research Nurse Colposcopist, Cardiff University 

Joanne Jones, Senior Technician in Gynaecological Oncology, Cardiff University 

Chris Holmes, Consultant, Cardiff University 

Helen Beer, Senior Information Manager and Research Specialist 

Rachel Raybould, PhD student in Gynaecological Oncology, Cardiff University 

  

Study Advisors  

Shantini Paranjothy, Senior Lecturer and MPH Programme Director, Cardiff University 

Bryan Rose, All Wales Programme Manager, Cervical Screening Wales  

Dave Nuttall, Head of Laboratory Services, Cervical Screening Wales 

    

Participating Institutions  

Cardiff University, Cardiff and Vale University Health Board and Public Health Wales, Screening 

Division. 
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Aim  

To pilot whether: 

HPV viral integration can predict high-grade cervical abnormality in women with cytological 
abnormalities. 

A novel repertoire of monoclonal antibodies can be used as tools to objectively assess the quality, 
adequacy and pathological status of smears. 

 

Number of Subjects   

45 

 

Study Design    

Pilot, cohort, observational study. 

 

Inclusion Criteria   

Women referred to colposcopy following an abnormal cytology 

 

Exclusion Criteria   

Women unable to give informed written consent. 

 

Study Interventions  

HPV testing and biomarker assays for viral integration performed on an additional smear taken 

during colposcopy. 

 

Primary endpoint    

Histologically proven high-grade disease at first colposcopy visit. 

 

Secondary endpoint  

Histologically proven high-grade disease during subsequent visits (up to 4 years). 
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1.0 Lay Summary 

This is a study to see if carrying out new tests on cervical screening samples could safely 

reduce the number of women referred to hospital following an abnormal smear result.  

Taking part in the study will involve having one additional smear taken but will not affect 

patient treatment.  Identifiable personal details will be removed from the samples before 

they are tested.  The result of the tests will only be used by the study team to evaluate the 

new tests for viral integration. The result will not go in the woman’s hospital or screening 

records.  The women will be invited to take part if they have been referred to colposcopy 

clinic following an abnormal smear.  If they consent to being included in the study, a smear 

will be taken and tested first for human Papillomavirus (HPV).  

 

HPV is a very common virus that is responsible for cervical cancer.  HPV types 16 and 18 are 

considered to be high risk, and together with type 45 are the three commonest HPV types in 

cervical cancer, causing about 80% of cervical cancers. HPV 16, HPV 18 and HPV 45 positive 

samples will be tested further with tests for viral integration. The results of these tests will 

be compared with available smear and biopsy results from consenting women at 

subsequent visits (up to 4 years). These results will be provided by Screening Services Wales, 

Public Health Wales with the support of a data analyst. 

 

2.0 Introduction  

2.1 Cervical Screening 

The UK has national cervical screening programmes that have been estimated to prevent 

80% of deaths from cervical cancer (Peto et al. 2004).  The premise of the screening 

programmes is that women at risk of having cervical intraepithelial neoplasia (CIN) can be 

identified by cytological analysis of a cervical smear.  Women are then referred to 

colposcopy for diagnostic biopsy.  Those identified at colposcopy as having high-grade CIN 
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(CIN2+) can then be offered treatment in order to prevent future development of cervical 

cancer. 

 

In Wales, women are referred for colposcopy as a result of the following cytological 

abnormalities: 

 

 Persistent low-grade: either two consecutive samples with mild dyskaryosis or three 
with borderline nuclear change.   

 One test reported as borderline nuclear change in endocervical cells 

 One test reported as moderate dyskaryosis 

 One test reported as severe dyskaryosis 

 One test reported as possible invasion 

 One test reported as glandular neoplasia 

 Three tests reported as abnormal at any grade in a 10 year period 
 

Whilst there is a high incidence of CIN2+ following a moderate or severe cytology result (74-

77% and 80-90% respectively), approximately only 20% of women with persistent low-grade 

cytology will have high-grade disease and require treatment (Wales 2007). Therefore, 

approximately 50% of all women who are referred will have high-grade disease and require 

treatment.  This means that many women are being referred who do not require hospital 

treatment.  It is known that referral for colposcopy itself generates anxiety in women (Jones 

et al. 1996).  Reducing the number of women referred would reduce the number of women 

that are unnecessarily concerned with the possibility of having cervical cancer, in addition to 

focusing resources on those women that need to be seen.   

 

In this study we aim to investigate viral integration as a potential prognostic marker in 

women referred to colposcopy.  Whilst there are many women with low-grade cytological 

abnormalities referred for colposcopy who do not have disease; samples from women with 

all grades of cytological abnormality will be taken to evaluate integration status in relation 

to grade of abnormality. It may then be possible to identify biomarkers in low-grade smears 

that will predict high-grade disease.   
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2.2 Human Papillomavirus 

High risk Human Papilloma Virus (HPV) plays a central aetiological role in anogenital 

neoplasia (Walboomers et al. 1999).  Such is the strength of the association that there are 

increasing calls to incorporate oncogenic HPV testing into Cervical Screening or even 

replace cervical cytology with a test for the virus (Cuzick et al. 2003; Cuzick et al. 2006). 

Consequently, many large randomized controlled trials are in progress to determine the 

most efficient and effective algorithm for detection of high-grade cervical intraepithelial 

neoplasia (CIN 2+) in primary screening (Davies et al. 2006) (Mayrand et al. 2006). There is 

also evidence that testing for oncogenic HPV is a sensitive and cost effective measure in 

follow up of women treated for CIN (Arbyn et al. 2005) and in triage of women with 

equivocal cytology (borderline and mild dyskaryosis) (Solomon et al. 2001; Kulasingam et al. 

2006; Moss et al. 2006). 

 

However, HPV is common with an 80% lifetime risk of infection. The majority of infections 

are transient and asymptomatic with less than 5% of those infected developing CIN.  

Because of the discrepancy between those infected and those developing disease, it is 

necessary to determine prognostic markers in order to identify women at risk of developing 

disease, thereby allowing valuable resources to be focussed on those most at risk.  

Regulation of HPV oncogene expression has emerged as a critical factor and this is 

intimately linked to the differentiation state of the host cell, and in undifferentiated cells, 

oncogene expression is repressed by modulation of chromatin structure by factors including 

CDP and YY1 (Stunkel and Bernard 1999). Factors reported to effect expression include 

integration of the HPV genome into host cell DNA (Tan et al. 1994). 

 

2.3 Viral Integration 

Episomal HPV genomes exist during the normal viral life cycle and are maintained in basal 

cells of the squamous epithelium at approximately 50-100 copies per cell (Stanley et al. 
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1989). Within HPV episomes the expression of viral oncogenes is highly regulated and E6 

and E7 induce the unscheduled re-entry into the S-phase of the cell cycle and activate the 

host replication machinery in order to allow amplification of the viral genomes before virion 

synthesis (Cheng et al. 1995). Although viral oncogenes E6 and E7 are actively produced 

within episomes they appear to not function as carcinogenic. This is because these events 

take place in cells that are ultimately lost from the cervical squamous epithelium as a result 

of the constant renewal process that occurs in this area. For cervical neoplastic progression 

to occur the viral oncogenes need to become expressed and maintained throughout the 

cervical epithelium. 

 

Most cervical carcinomas have deregulated viral oncogene expression and these cells 

contain truncated viral genomes integrated into the host genome. In vitro viral integration 

increases cell proliferation (Jeon et al. 1995; Wentzensen et al. 2004) even though 

integration is not a normal part of the HPV life cycle and causes the deletion of viral genes 

that are essential for production of infectious virions. Numerous studies have characterised 

viral integrants and although many variants have been found, some consistent features 

have been defined. A predominant finding is the loss of the viral E2 gene. E2 recognises and 

binds to the origin of replication of the viral promoter and controls the decreased 

expression of E6 and E7. The loss of E2 is the first stage in transformation with subsequent 

increased expression of the viral oncogenes responsible for disruption in function of key 

cellular proteins (p53 and Rb).  

 

A positive HR HPV result alone has a poor PPV due to the high number of transient 

infections. This project aims to establish whether viral integration can increase the PPV for 

detection of high-grade cervical disease in women with cytological abnormalities. This is a 

pilot, prospective, cohort study and testing reflects the setting that the biomarkers might be 

used if introduced into clinical practice.  
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2.4 Novel Monoclonal Antibodies 

The assessment of cytological smears underpinning the cervical screening programme 

remains a subjective, error-prone and labour intensive process. A novel repertoire of 

monoclonal antibodies has been developed against human cervical tissue that unequivocally 

identifies and discriminates between the complex epithelial cell subpopulations present in 

the cervix. When used on cytological smears, the antibodies provide a clear indication of the 

origin of the component cells from within the cervix in vivo.  

 

The research aims to use these reagents as tools to objectively assess the quality, adequacy 

and pathological status of smears, thereby reducing errors during sample taking in the clinic 

and providing information on the pathological status of smears. Use of antibodies in this 

way renders the approach eminently suitable for automated analysis. This stage of the 

research programme requires detailed analysis of the performance of antibodies against 

endocervical and tranformation zone cells in cervical smear preparations from LBC (liquid 

based cytology) samples. 

 

2.5 Aims and Objectives 

The aim of the study is to perform a pilot study to investigate the potential of viral 

integration as a biomarker in predicting high-grade cervical abnormality in women referred 

to colposcopy. A novel repertoire of monoclonal antibodies will also be investigated to see if 

they can be used as tools to objectively assess the quality, adequacy and pathological status 

of smears. 

 

Primary Outcomes 

1. Comparison of three viral integration methods for identification and prediction of 
high-grade disease. 

2. To correlate results from the integration assays with histology obtained from this 
cohort at subsequent visits (up to 4 years) to validate long-term positive predictive 
value (PPV). 
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3. Functionality of novel monoclonal antibodies as tools to objectively assess the 
quality, adequacy and pathological status of smears.  

 

2.6 Rationale 

This pilot, cohort, observational study has been designed to examine the benefit of viral 

integration following a HPV positive result in a clinical cohort of patients attending 

colposcopy clinic. A novel set of monoclonal antibodies will also be assessed to further 

investigate the pathological status of the smears. 

 

3.0 Investigational Plan 

3.1 Overall Study Design 

This is a cohort study to investigate viral integration as a biomarker and novel monoclonal 

antibodies targeting human cervical tissue in a group of women referred for colposcopy 

with follow up of their screening results over the next round of screening (up to 4 years). 

The primary outcome will be whether viral integration following a HPV positive result can 

predict histological high-grade disease on biopsy.  The analysis will not be undertaken until 

after the woman has attended colposcopy and consented and will not alter her 

management. The functionality of the novel monoclonal antibodies as tools to objectively 

assess the quality, adequacy and pathological status of smears will also be investigated. 

 

3.2 Discussion of Design 

The design of the study has been chosen to reflect as closely as possible the setting in which 

the test might be used, if introduced into clinical practice.  As the efficacy has not been 

assessed in this setting before, it was thought appropriate for the study to be a pilot and 

observational, rather than interventional. 
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3.3 Study Population 

The study population consists of those women attending colposcopy at a single site within 

Cardiff and Vale University Health Board.  The sample will be a convenience sample, taken 

from women who give written informed consent. 

 

3.4 Inclusion and Exclusion Criteria 

Inclusion Criteria 

Women referred to colposcopy due to abnormal cytology  

Women undergoing treatment for high-grade CIN 

Exclusion Criteria 

Women who are unable to give informed written consent. 

 

3.5 Recruitment 

Women will be invited to take part in the study when they attend for colposcopy.  This study 

will include 15 patients with mild dyskaryosis, 15 with moderate dyskaryosis and 15 with 

severe dyskaryosis. Approximately 20-40 women per month are expected to be eligible for 

the study within the single site.  Recruitment is expected to be completed within three 

months. 

 

3.6 Interventions 

This study is designed to evaluate viral integration and the potential functionality of novel 

monoclonal antibodies specific for cervical tissue in a real life setting and one additional 

sample will be taken from the participants.  Up to three additional methods for viral 

integration will be carried out on the sample taken and x monoclonal antibodies will be 

assessed.   
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3.7 Study Plan 

1. Women will be informed of their smear test result and colposcopy referral as per Cervical 
Screening Wales (CSW) standard operating procedures (CSAD Quality Manual Feb 2005). 
 

2. The colposcopy administration at Llandough Hospital will send the study information to 
women referred from CSAD with abnormal cytology along with their colposcopy 
appointment. This ensures women receive the study information in advance, giving them 
time to read and absorb the information. This study is a pilot and will only include 15 
patients with mild dyskaryosis, 15 with moderate dyskaryosis and 15 with severe 
dyskaryosis. 

 

3. After confirming eligibility criteria, women will be given the opportunity to discuss the 
study and ask any questions when they attend the colposcopy clinic.  Written informed 
consent will be obtained. 

 

4. Women will also be asked to consent to allow the results of cervical cytology and 
histology for one round of screening (up to 4 years) after entry to be made available for 
the study.  These data will be retrieved by Cervical Screening Wales. 

 

5. A ThinPrep liquid based cervical sample will be taken, according to standard operating 
procedures, from all women who give written consent. The LBC pots will be labelled with 
the women’s date of birth and hospital number for transportation to the HPV Laboratory 
at Cardiff University.  Once received in the lab the samples will be pseudo-anonymised 
and all patient identifiers will be removed and a unique study code allocated. An excel 
worksheet linking study ID and patient identifiers will be forwarded to CSAD.  

 

6. Colposcopy will be undertaken according to normal practice as set out in the current 
version of CSW’s Quality Manual Version  

 

7. HPV testing and analysis of viral integration will be performed by the department of HPV 
Research Laboratories, Obstetrics and Gynaecology at Cardiff University. 

 

8. Monoclonal antibody testing will be performed in the School of Medicine, Cardiff 
University. 
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3.9 Endpoints 

• Primary endpoint will be high-grade disease on histology at first colposcopy visit. 

• Secondary endpoint will be correlation of biomarker results and antibody results 

with histology at subsequent visits over next screening round (up to 4 years). 

 

Histological analysis will be carried out according to usual practice at each centre.  

Histological analysis is already subject to quality assurance as part of CSW standards and will 

not be repeated.  This will ensure that participation in the trial will not change patient 

management and that it reflects true clinical practice.  High-grade disease will be defined as 

the presence of CIN2+.  The exact grade will be recorded and may be used in analysis of 

false negative samples.  

 

4.0 Sample Management 

4.1 Cytology 

ThinPrep samples will be taken from women with written informed consent within the 

Cardiff and Vale NHS Trust Colposcopy Clinics following standard operating procedures. The 

LBC pots will be sealed and transported to the HPV Research Laboratories, Department of 

Obstetrics & Gynaecology, Cardiff University. 

 

4.2 HPV Testing 

Samples received by Cardiff University will be logged electronically, pseudo anonomysed 

and processed according to the standard operating procedures. 

All specimens will be tested for HPV DNA using 2 methods: 

 The research based PCR-EIA method of Walboomers (Jacobs et al. 1997). Each sample 
will be divided into high-risk (HR) and low-risk (LR) HPV infection using a cocktail of type-
specific probes and then HR HPV + samples will be sub-typed using type-specific probes.  
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 The commercial PapilloCheck® HPV-Screen DNA-chip: detects 24 different HPV types (18 
HR and 6 LR) in DNA-preparations from human cervical smears. The HPV types which can 
be detected and differentiated by PapilloCheck are HPV 6, 11, 16, 18, 31, 33, 35, 39, 40, 
42, 43, 44/55, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73 and 81.  

 

4.3 HPV Viral Integration 

HPV 16, HPV 18 and HPV45 positive samples will be assessed using validated viral 

integration assays. There are a number of methods currently employed to detect HR-HPV 

integrants in the human genome.  Amplification of Papillomavirus Oncogene Transcripts 

(APOT) detects transcripts of integrated HPV, Restriction Site PCR (RS-PCR), Southern blot 

and Detection of Integrated Papillomavirus Sequences (DIPS) detect integrated HPV DNA 

regardless of its transcriptional status. The methods used to detect HPV integration are 

important because a transcriptionally active integrant may contribute more to the 

malignant phenotype.  However, integrants that are not transcribed may also contribute to 

malignant progression by regulating or disrupting the expression of genes that contribute to 

cervical malignant progression. 

   

DNA and RNA based methods to detect HR HPV integration have been validated through a 

PhD studentship funded by the Welsh Office of Research and Development.  

 

 

4.4 Novel Monoclonal Antibodies 

 

5.0 Data Management 

 

5.1 Statistical Methods 
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This pilot study aims to investigate the potential of viral integration as a biomarker in 

predicting high-grade cervical abnormality in women referred to colposcopy.  

 

5.2 Sample Size  

The project will test 45 samples for HPV status and HPV 16, HPV 18 and HPV 45 positive 

cases will be investigated further for viral integration status.  It is expected that 

approximately 60% of women in this group will be HPV positive and 60% of these cases will 

be HPV 16, HPV 18 or HPV 45 positive (n=16) (Jones et al. 2009). All samples will be tested 

with the novel repertoire of monoclonal antibodies. 

 

5.3 Data Analysis and Dissemination 
Using the unique study code CSW will identify the relevant screening data. The HPV 

Research Laboratories will link all results with a unique study code. The results of the 

histology, HPV testing, viral integration and monoclonal antibody results will be correlated 

for the primary outcome.  Subsequent analysis will be performed over the follow-up period 

as data becomes available (up to 4 years). Findings will be disseminated through peer-

review publication. Favourable primary outcome will support further grant proposals to 

increase sample size with prospective cohort studies and randomised control trials that aim 

to reduce cervical cancer mortality through decreased incidence with early detection of 

CIN2+. 
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6.0 Project Management 

Principal Investigator: Dr Sam Hibbitts   

Dr Hibbitts is a Senior Lecturer in Gynaecological oncology and the Scientific Manager for 

the HPV Research Laboratory, School of Medicine, Cardiff University.  She has demonstrated 

her abilities in handling large scale cross-sectional HPV genotyping studies (n=10,000) 

(Hibbitts et al, 2008) and will be responsible for coordinating the scientific study protocol 

and data management.  Dr Hibbitts is the supervisor for a PhD studentship focusing on HPV 

viral integration. 

 

Dr Amanda Tristram 

Dr Tristram is a Senior Lecturer in Gynaecological Oncology and the clinical lead for the HPV 

Research Laboratory. Dr Tristram has experience in designing trials, obtaining regulatory 

approval and funding, recruiting patients, analysing results as well as publishing research 

and presenting it at International meetings.  

 

Sue Ashman 

Miss Ashman is a qualified nurse colposcopist and has previous experience in phase 1 and 

11 clinical trials.   Miss Ashman coordinates studies within the department of Obstetrics & 

Gynaecology and is experienced in study recruitment, organising clinics and taking informed 

consent.  Miss Ashman has also been responsible for the maintenance of study 

documentation and the preparation of protocols and patient specific documentation for 

clinical trials.  Miss Ashman will be the primary link between the colposcopy clinic and the 

HPV laboratory.    

 

Dr Chris Holmes 

 

Dr Shantini Paranjothy 
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Dr Paranjothy is a Clinical Senior Lecturer in Public Health Medicine, Cardiff University and 

Public Health Wales and has research expertise in screening. 

 

Mr Bryan Rose 

Mr Rose is the All Wales Programme Manager for Cervical Screening Wales. 

 

Mr Dave Nuttall 

Mr Nuttall is the Head of Laboratory Services for Cervical Screening Wales. 

 

Miss Helen Beer 

Miss Beer is a Senior Information Analyst / Manager for Screening Services and has expertise 

is the linkage and statistical analysis of identifiable data for all screening programmes in 

Wales, concentrating on the cervical screening programme. Miss Beer has been involved in 

the evaluation of new technologies into the cervical screening programme, such as Liquid 

Based Cytology and Computer Assisted Screening.  

 

Mrs Rachel Raybould 

Mrs Raybould is a PhD student with the HPV Research group at Cardiff University and has 

expertise in molecular biology and virology.  

 

7.0 Administrative Procedures 

7.1 Changes to the Protocol 

Any amendments to the protocol will be notified to relevant regulatory bodies. 
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7.2 Recording of Data and Retention of Documents 

The research team will act to preserve patient confidentiality and will not disclose or 

reproduce any information by which patients could be identified.   

 

7.3 Publication of Results 

The results of the study will be submitted for publication in a peer reviewed journal and for 

presentation at national and international conferences.  

 

8.0 Ethical Considerations and Consent 

Women participating in this study will provide one extra samples however, the study will 

not influence their clinical management.  They will be asked to permit study specific testing 

on the extra sample and to allow the study team access to results relating to their cervical 

smears and colposcopy for three years.  The women will be sent information in advance and 

will be permitted to consent during their visit to the colposcopy clinic, having had an 

opportunity to discuss the study with an appropriately trained health professional.  

 

The purpose of the extra testing is to evaluate a potential screening test.  The results of the 

HPV viral integration and monoclonal antibody tests will not change clinical management for 

the women and we will not inform women of the results of their study tests. 
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Human Papillomavirus Integration analysis in liquid based cytology samples as a Biomarker for Cervical 

Disease (HI BCD) 

(A new study for looking at cervical smear tests in the laboratory) 

 

We would like to invite you to take part in a research study. Before you decide you need to understand why the 

research is being done and what it would involve for you. Please take time to read the following information 

carefully.  Ask us if there is anything that is not clear or if you would like more information. Talk to friends and 

family about the study if you wish.  

 

What is the study about? 

This is a study to see if carrying out new tests on cervical smear samples could safely cut down the number of 

women who have to go to hospital following an abnormal smear result.  

 

Cervical Screening (regular smear tests) has greatly reduced the number of cervical cancers in the UK, but a lot of 

women are seen in the hospital who do not need to have treatment. The purpose of the screening programme is to 

pick out women who would most benefit from having treatment to prevent cervical cancer developing in years to 

come. The smear taken at your doctors can identify whether you have an increased chance of having abnormal cells 

in the cervix (the neck of the womb). You can then be referred to hospital, to see if you need to have treatment. Not 

all women picked up by the current cervical smear test and referred to hospital will actually have abnormal cells. 

Even fewer women will need to have treatment. 

 

We would like to do some new tests on a smear sample and compare the results of the new tests with what is found 

when women are seen in the hospital. This is to see if carrying out the new tests will help us know who needs 

treatment and who does not. 
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Why have I been chosen? 

You have had an abnormal smear result and are being referred to hospital for a colposcopy (closer look at your 

cervix) to see if you have abnormal cells. Most women in your situation will not need to have treatment. We are 

trying to find out if new tests can help identify which women need to be seen and which women do not. 

 

What are the tests being used for? 

Current cervical smear testing involves looking at the shapes of the cells in your cervical smear to see if they look 

abnormal. The new tests will concentrate more on what is actually happening inside the cells. Normally, cells 

divide but this is tightly controlled by within the cells. Cancer develops when this control is lost and cells can then 

divide randomly and rapidly. We want to see if there are any early changes within the cells that can determine 

which cells could eventually lead to cancer.  

 

The first test we will do will be a test for Human Papillomavirus (HPV). HPV is a very common viral infection and 

most women will be infected at some point in their lives. HPV usually clears from the body in about a year, 

without any treatment. We know that HPV causes abnormal smears and cervical cancer, especially HPV types 16 

and 18 (these are the ones we are currently vaccinating school girls against) however, having a HPV infection very 

rarely leads to cancer. As HPV is so common, just testing for the virus would mean too many women would have 

to go to hospital to be checked. 

 

Occasionally, HPV can cause abnormal cell growth by interfering with the normal cell controls. The tests will start 

to look for possible changes in the virus that could be the cause of this interference in the normal cell controls.  

 

What Are The Possible Benefits of Taking Part? 
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Taking part in this study will not change the way you are treated. The study will not help you now, but the 

information we get from this study will help improve the way cervical screening is carried out in the future.  

 

What are the possible disadvantages of taking part? 

Taking part in the study will not change the way you are treated.  

 

Do I have to take part? 

It is up to you to decide whether you want to take part in the study or not. If, after reading this information sheet, 

you decide you would like to take part we will ask you to sign a consent form when you attend the colposcopy 

clinic. If you decide not to take part or you decide to withdraw at any time, it will not affect the standard of care 

you receive, now or in the future. 

 

What would I have to do? 

When you come for your colposcopy appointment we will answer any questions you may have and ask you if you 

are happy to take part in the study. It is up to you to decide if you are happy to take part or not. If you are happy to 

take part we will ask you to sign a consent form and give you a copy of the form to take home. Before we have a 

look at your cervix we will take a smear sample for the study. This smear will be taken in exactly the same way as 

your other smears. Although we would not normally take a smear during this visit, the sample taken will not affect 

your usual care. This smear sample will be sent to our Laboratory in the University Hospital of Wales so that the 

new tests can be done. The people testing your sample will not know who you are. The results of these tests will 

not change any treatment you are offered. We will not give you the result of these tests. 

 

What extra tests will I need if I take part? 

You will have one extra smear sample taken from you during your colposcopy visit if you agree to take part in the 

study. 
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What if something goes wrong? 

If you are unhappy with any aspect of the study we would like you to tell us. Regardless of this, if you wished to 

complain about any aspect of the way in which you have been approached or treated, the normal NHS complaints 

mechanism is available to you. 

 

Would my taking part in this study be kept confidential? 

All information which is collected about you during the course of the research will be kept strictly confidential. 

The fact you are included in the study will be documented in your hospital notes. You would be assigned a study 

number which will be used on information or samples that leave the hospital. Your medical records might be 

inspected by regulatory authorities to check the study is properly carried out. Signing the consent form to take part 

in the study means you agree to this access.  

 

What happens to the results of the study? 

The results may be published in a medical journal and/or presented at a scientific meeting. It would not be possible 

to identify you from any of the information published or presented. 

 

Who has reviewed the study? 

All research in the NHS is looked at by independent group of people, called a Research Ethics Committee to 

protect your safety, rights, wellbeing and dignity. This study has been reviewed and given favourable opinion by 

South East Wales Research Ethics Committee.  

 

Who is organising and funding the research? 
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The research is being coordinated by the Academic Department of Obstetrics and Gynaecology at Wales College 

of Medicine, Cardiff University. It is being supported by Emma Jayne Demery Bequest Fund, Cardiff University. 

 

What happens to my sample at the end of the study? 

On completion of the study all material will be disposed of in line with the Human Tissue Act 2004. 

 

Further Information 

Further information about cervical smear tests, results and treatment is available on the Cervical Screening Wales 

website:    www.screeningservices.org.uk/csw 

 

If you have any questions at any time during the study please contact: 

         

Dr Sam Hibbitts   02920 745005 

Dr Amanda Tristram  02920 742337 

Research Nurse Sue Ashman 02920 745365      

 

 

Thank you for taking the time to read this information and considering whether or not you would like to take part 

in this study of a new test for cervical screening. 

 

  



 

  

 

 

 

 

 

 

HC BCD Patient Information and Consent V.1.0                   Page 1 of                                                                   14.10.10 
Bwrdd Iechyd Prifysgol Caerdydd a’r Fro yw enw gweithredol Bwyrdd Iechyd Lleol Prifysgol Caerdydd a’r Fro 

Cardiff and Vale University Health Board is the operational name of Cardiff and Vale University Local Health Board 

Ysbyty Athrofaol Llandochau 

University Hospital Llandough 

 

Penlan Road, Llandough  Heol Penlan, Llandochau 

Penarth, Vale of Glamorgan Penarth, Bro Morgannwg 

CF64 2XX   CF64 2XX 

Phone 029 2071 1711  Ffôn 029 2071 1711 

Fax 029 2070 8973  Ffacs 029 2070 8973 

 

 

 

 

 

 

Consent Form 

 

HPV Integration analysis in LBC samples as a Biomarker for Cervical Disease (HI BCD) 

(A study of a new test for cervical screening) 

 

Centre Number:  

 

 

Study Number:  

 

 

Referral Smear Laboratory Number:  

 

 

 

Name of Researcher: Dr Sam Hibbitts Please initial each box 

 

1. I confirm that I have read and understand the information sheet dated 14.10.10 version 1.0 
for the above study. I have had the opportunity to consider the information, ask questions 
and have had these answered satisfactorily.  

2. I understand that my participation is voluntary and that I am free to withdraw at any time 
without giving any reason, without my medical care or legal rights being affected.  

Ysbyty Athrofaol Llandochau 

University Hospital Llandough 

 

Penlan Road, Llandough  Heol Penlan, Llandochau 

Penarth, Vale of Glamorgan Penarth, Bro Morgannwg 

CF64 2XX   CF64 2XX 

Phone 029 2071 1711  Ffôn 029 2071 1711 

Fax 029 2070 8973  Ffacs 029 2070 8973 
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3. I understand that relevant sections of my medical notes and data collected during the study, 
may be looked at by individuals from Cardiff University, from regulatory authorities or from 
the NHS Trust, where it is relevant to my taking part in this research. I give permission for 
these individuals to have access to my records.  

4. I agree to take part in the above study.  
 

 

 

Name of Patient  Date Signature 

 

 

Name of Person taking consent Date Signature 

 
When completed, 1 for patient; 1 to Cytology Laboratory; 1 (original) to be kept in medical notes  
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10.2 Appendix 2: E2 supplementary data 

 

Figure 54 E2 PCR gel electrophoresis of W12p12, W12p32 and C33A. HPV16 plasmid DNA was used as a 

positive control and water as a negative control. W12p12 and W12p32 had intact E2, indicating the presence of 

episomal HPV16.  
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Figure 55 E2 PCR gel electrophoresis of Hela, C4I  and C33A. HPV18 plasmid DNA was used as a positive 

control and water as a negative control (not shown). C4I and HeLa had no E2, indicating the absence of 

episomal HPV18.  
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Figure 56 Optimisation of HPV45 E2 PCRs at differing MgCl2 concentrations. HTB34
TM 

has no E2 (not 

shown) thus HPV45 plasmid DNA was used as a positive control for optimisation and produced an amplicon for 

each E2 or E6 PCR. C33A was used as a HPV negative control and produced no amplicons. Water was used as 

a negative control. 
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10.3 Appendix 3:Tiffany Onions’ PC08 and PC09 Data 

 

 

Figure 57 Transcripts detected in PC08 and PC09 by APOT. A) Schematic diagram of transcripts detected 

and how they relate to integration in DNA. Integration in DNA, disrupting HPV before 3355bp, will produce 

type 1 transcripts, integration in DNA, disrupting HPV after 3355bp, will result in a type 2 transcript. B) 

Electrophoretic separation of APOT amplicons for early and late passage clones A, D, H, M, P, and Y ; image 

used with permission from Tiffany Onions. 
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Figure 58 HPV16 E2, E6 and E7 expression ratios, relative to CaSki and house-keeping genes TBP2 and 

HPRT for all PC08 clones (M, P and Y) and PC09 (A, D and H) clones at each passage. Note that an 

expression ratio of 1 is equal to CaSki, more than 1 is more than CaSki; an expression ratio less than 1 denotes 

expression levels lower than CaSki.  
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Figure 59 Population doubling (PD) and doubling time (DT) for heterogeneous PC08 (A) and PC09 (B) 

cell lines.  Population doubling and doubling time fluctuates slightly over all passages for both cell lines.  

However, there appears to be a trend with increasing passage; population doubling is inversely proportional to 

doubling time.  
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Figure 60 Population doubling (A) and doubling time (B) in clones derived from PC08. 
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Figure 61 Population doubling (A) and doubling time (B) in clones derived from PC09.  
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10.4 Appendix 3: Dean Bryant’s Methylation Data 

 

 

Figure 62 HPV16 URR methylation and HPV E2, E6 and E7 expression in VIN biopsies. A) Methylation at 

E2, L1, L2 promoters and Long Control Region (LCR also referred to as URR). B) Log10 expression ratios/ 

relative quantities (RQ) of E2, E6 and E7 relative to CaSki E2, E6 and E7 expression, normalised to 

housekeeping genes TBP2 and HPRT.   
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Sample 

HPV 

disruption Position (bp) Human genome region 

VR24 E1 1,540 Chr8 (q24.21)  

VR32 E2 3,348 Chr2 (q35) 

VR37 E2 & L2 3,161 & 4,917 Chr1 (q32.1) 

VR39 E1 1,786 Chr1 (p36.22)  

VR42 L2 4,910 Satellite DNA* 

VR44 E2 3,166 Chr17 (q24.3)  

VR46 E1 2,508 Chr9 (q21.31)  

VR53 L2 4,989 Chr3 (q26.31)  
Table 57 Summary of integration events detected by DIPS by Dean Bryant in VIN biopsy samples. HPV 

disruption refers to the HPV16 ORF where the integration event disrupts HPV16. Position (bp) gives the 

integration site into the HPV genome. Human genome region gives the region in which integration occured. 

*Homology was found to HSATII satellite DNA in Chr7, Chr22, Chr2, Chr16, Chr10 and ChrY. VR37 had two 

detected integration sites, showing disruption of the E2 and L2 genes. Both events were within the same region 

of the human genome and were orientated in opposite directions and so are likely to represent the opposite ends 

of a single integration event rather than representing independent integration events. 
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10.5 Appendix 4: Associated Publications 

This section shows the manuscript , written by the author, that was submitted to the Open 

Clincal Cancer Journal in November 2010: 

Raybould, R. et al. 2011. Human Papillomavirus Integration and its Role in Cervical 

Malignant Progression. Open Clinical Cancer Journal 5, pp. 1-7. 

 

Human Papillomavirus Integration And Its Role In Cervical 

Malignant Progression 

Rachel Raybould, Alison Fiander and Sam Hibbitts  

Obstetrics and Gynaecology, School of Medicine, Cardiff University, CF14 

4XN 

Telephone: 029 2074 4742 

Email: raybouldre1@cf.ac.uk, fianderan@cf.ac.uk, hibbittssj@Cardiff.ac.uk  

 

Abstract  

High risk Human Papilloma Virus (HR-HPV) DNA integration into the human genome is 

one of the key stages in the progression of cervical neoplasia. This mini-review highlights the 

importance of HPV integration as a potential biomarker for cervical screening and briefly 

describes the main methods used to detect HPV integration: Amplification of Papillomavirus 

Oncogene Transcripts (APOT), Restriction Site PCR (RS-PCR), Southern blot and Detection 

of Integrated Papillomavirus Sequences (DIPS). The potential mechanisms of HPV 

integration are discussed with a focus on DNA instability; site of integration; and 

transcriptional regulation of integrants. This article provides an overview of the role HPV 

integration plays in malignant progression. 

 

Keywords: Human Papillomavirus; integration; cervical cancer; E6 and E7 

mailto:raybouldre1@cf.ac.uk
mailto:hibbittssj@Cardiff.ac.uk
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Introduction 

Cervical cancer is the second most common cancer among women worldwide. Globally there 

are around 500,000 new cases and 274,000 deaths due to cervical cancer annually (WHO 

2008).  For centuries, cervical carcinoma has been recognised to behave as a sexually 

transmitted disease and in the mid 1970’s it was proposed that there was an aetiological link 

with Human Papillomavirus (HPV) (zur Hausen et al. 1974; Meisels and Fortin 1976; zur 

Hausen 1976).  Infection with HPV is now recognised as an essential, but not sufficient, 

factor for the development of cervical cancer with many HPV lesions regressing without a 

need for treatment.  Current cervical screening serves to detect and treat precancerous cells 

(Cervical Intraepithelial Neoplasia) before invasive disease develops.  A biomarker able to 

predict malignant progression in women at risk would enhance screening algorithms. High 

risk HPV (HR-HPV) DNA integration into the human genome is one of the key stages in 

malignant progression and is therefore a potential biomarker that precedes invasive disease.  

 

HPV Genome  

HPV is strictly epitheliotropic and infects epithelial cells either of the skin or mucous 

membranes, particularly of the anogenital tract and oropharynx.  Viral transcription is tightly 

regulated and linked spatially and temporally with epithelial differentiation.  The HPV 

genome consists of double stranded DNA (dsDNA) approximately 8kbp long contained 

within a capsid (Fig 1).  Only one coding strand of the dsDNA acts as a template for 

transcription.  The HPV genome is divided into three regions: an Early region containing 

genes encoding non-structural proteins (E), a Late region containing genes encoding capsid 

proteins (L), and an Upstream Regulatory Region (URR) (or Long Control Region), which 

contains a DNA replication origin, transcription regulatory sequences and one or more 

promoters which control expression of the viral oncoproteins E6 and E7.   

 

HPV Proteins 

The late proteins, L1 and L2, are expressed late in the HPV lifecycle in the upper, granular 

layer of the epidermis. The HPV late proteins make up the virion shell and play an important 
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role in mediating virus infectivity. To achieve a successful lifecycle HPV must be able to 

bind to cell surface receptors. Heparan sulphate proteoglycans on the cell surface are 

considered the primary binding sites for L1 and L2 from certain HPV evolutionary groups 

however different secondary receptors are involved for other HPV types.  

 

The Early proteins are predominantly expressed in the basal and suprabasal layers of the 

epidermis. E5, E6 and E7 are oncogenic proteins (Table 1). E5 expression enhances 

oncogenic potential (Stoppler et al. 1996; Maufort et al. 2010) but the exact function of E5 

remains poorly understood. E6 and E7 expression is essential for maintenance of the 

transformed state and malignant progression (von Knebel Doeberitz et al. 1988; Bosch et al. 

1990) and the roles E6 and E7 play in carcinogenesis are well documented. HPV integration 

increases the production of E6 and E7 proteins and influences cancer progression through 

interaction with hTERT, p53 and Retinoblastoma protein (pRB). hTERT is a catalytic subunit 

of Telomerase that acts to synthesise telomere ends of linear chromosomes during DNA 

replication. p53 is a transcription factor that regulates cell cycle arrest, apoptosis, senescence, 

DNA repair and cell metabolism; p53 activity is inhibited by ubiquitin ligase which also 

ubiquitinates p53 to initiate p53 degradation. pRB is a tumour suppressor protein and 

interacts with transcription factor E2F to repress the transcription of genes required for the S 

phase of the cell cycle.  In the normal HPV life-cycle expression of E5, E6 and E7 is tightly 

regulated within cells that are destined to be lost from the surface epithelial layers, such that 

they do not pose a carcinogenic threat (Fig 2).  

 

 

HPV Integration  

There are more than 100 types of HPV (WHO 2008), which can be sub-divided by their 

oncogenic risk.  HPV16, HPV18, HPV31, HPV33, HPV35, HPV39, HPV45, HPV51, 

HPV52, HPV56 and HPV58 are the predominant HR types detected in cervical cancer cases 

and HR-HPV DNA is often integrated into the human genome. As disease progresses, the 

risk of integration is higher (Pirami et al. 1997; Klaes et al. 1999). Many studies of HPV16 

have demonstrated that upon viral integration, variable parts of the HPV genome are 

disrupted; fragments containing E2, E4 and E5 ORFs are missing whereas the entire E1, E6 

and E7 ORFs are integrated and retained (Matsukura et al. 1986; Pater et al. 1986).  
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Integration is not part of the normal HPV lifecycle, unlike the retroviruses that encode the 

protein integrase, which facilitates their integration into the host genome.  The mechanisms 

by which HPV integrates its DNA into the human genome are not fully understood although 

there are a number of hypotheses:  

 

DNA instability  

There is considerable debate over whether integration precedes genetic instability or 

integration arises due to genetic instability.  A number of studies have observed that DNA 

integration occurs in the presence of Double Strand Breaks (DSBs). DSBs occur in regions of 

DNA in which the DNA repair process has failed.  Regions that harbour DNA instability, 

known as Chromosome Fragile Sites (CFSs), are distributed throughout the genome.  Studies 

have reported an increased frequency of HR-HPV integration in regions of DNA that contain 

CFSs (Thorland et al. 2003; Wentzensen et al. 2004; Dall et al. 2008).  However, it remains 

unclear as to whether DNA integration is more common in CFSs because DNA is more prone 

to breakage, as a result of factors such as increased expression of E6 and E7, or because the 

host DNA contains sequences that increase the likelihood of integration occurring.  

  

Matzner et al. (Matzner et al. 2003) investigated the integration frequency of exogenous 

DNA into a breast cancer cell line containing many fragile sites within the genome. This 

study reported preferential integration of exogenous DNA into fragile sites of cellular DNA, 

supporting the hypothesis that integration occurs due to chromosome instability.   

 

There is also speculation that HPV oncogenes E6 and E7 induce DNA damage (Duensing and 

Munger 2002) and increase the risk of HPV DNA integration (Kessis et al. 1996).  Kessis et 

al (Kessis et al. 1996) assessed the integration frequency of a reporter plasmid in a cell line 

expressing individual E6 or E7 genes from HR and low-risk (LR) HPV types and proposed 

that the difference in oncogenic potential observed between HR and LR HPV types may be 

due to the increased ability of HR-HPV to integrate into host DNA.  
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Site of integration 

Integration is random throughout the genome and much research has been carried out 

investigating sites of HR-HPV integration in cell lines and clinical samples of HPV related 

cancers at various sites of the body. A systematic review of HR-HPV integration in epithelial 

dysplasia and infections of the female lower genital tract  assessed over 190 HR-HPV 

integration loci all of which were randomly located throughout the genome with a 

predilection of integration in CFSs (Wentzensen et al. 2004). Integration of HPV DNA into 

genomic regions harbouring oncogenes may also contribute to the malignant phenotype. A 

number of studies have observed disruption and/or over-expression of oncogenes as a 

consequence of integration at specific sites (Durst et al. 1987; Couturier et al. 1991; Einstein 

and Goldberg 2002; Ferber et al. 2003a; Thorland et al. 2003; Peter et al. 2006); however this 

data is not conclusive with contradicting reports from different research groups (Wentzensen 

et al. 2004; Dall et al. 2008).    

 

Transcriptional regulation of integrants 

As mentioned above, HR-HPV DNA integration occurs randomly throughout the human 

genome but not all integrants will be involved in malignant progression of the host cell.  

Transcription of integrated HR-HPV is regulated and both host cell and HPV regulatory 

elements have been implicated in this event. Disruption of regulatory elements may 

contribute to the fate of the cell. 

 

HPV gene expression is tightly associated with the epithelial cell life cycle. Differentiated 

and quiescent epithelial cells are the natural host of HPV. When epithelial cells have 

undergone differentiation, the cells stop expressing genes involved in cell replication (Baker 

and Kligman 1967) and HPV must reactivate the host cell machinery in order to replicate 

(Fig 2). In low-grade cervical lesions, expression of HPV E6 and E7 in undifferentiated basal 

cells is repressed; this is partly due to host trans-acting repressors of the HPV URR, and as 

the cell differentiates E7 protein inactivates host proteins that repress transcription and viral 
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gene expression increases.  In contrast, high grade lesions that contain integrated HPV have 

high levels of viral transcription throughout the epithelium (Durst et al. 1992).  A study that 

injected an immortalised cell line into nude mice reported that viral transcription was more 

evident in basal cells where the HPV DNA was mainly integrated (Durst et al. 1991). It is 

probable that a combination of HPV DNA integration and host cell de-repression of viral 

gene expression contributes to the malignant phenotype.  

 

The physical state of HPV DNA (integrated or episomal) plays a role in influencing viral 

gene regulation. Episomal HPV within the host cell contributes to regulation of integrant 

transcription, with E1 and E2 ORFs repressing immortalisation and over-expression of E6 

and E7 genes. The loss of E1 or E2 ORFs following integration may therefore provide a 

selective growth advantage (Romanczuk and Howley 1992).  Loss of episomes from 

integrant containing cells enables expression of E6 and E7, highlighting the importance of 

both episomal loss and integration in malignant progression (Pett et al. 2006).  HPV infected 

cells can be treated to promote episome loss and recent studies have observed that this may 

speed up malignant progression (Herdman et al. 2006).  Detection of HPV integration may 

potentially be a useful biomarker, which could be used to make more informed decisions 

about management of HPV infection and cervical disease. 
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Protein Function/s Molecular Activity 

 
E1 

 
Maintains viral genome. 
Contributes to viral 
genome replication. 

 
E1 interacts with cellular DNA polymerase and replication 
proteins to initiate viral DNA replication. 

 
E2 

 
Maintains viral genome. 
Anchors episomes to 
mitotic chromosomes in 
basal cells.  
Controls transcription. 

 
E2 engages E1 to viral origin and binds E1 to cellular 
proteins essential for DNA replication. Low levels of E2 
activate transcription and high levels of E2 inhibit 
transcription through interaction with viral early promoters. 
E2 represses hTERT promoter activity.  

 
E4 

 
Function unclear.  
E4 has potential roles in 
the late stage of viral 
lifecycle, apoptosis and cell 
cycle arrest. 

 
E4 may bind to keratins and lead to breakdown of the 
cytokeratin network. 
E4 may bind to cdk/cyclin complexes leading to arrest of 
the cell cycle in G2 phase. 
E4 may interact with E2 and mediate relocation of E2 from 
nucleus to cytoplasm. 

 
E5 
 

 
Transformation 

 
HPV16 E5 interacts with E6 and E7 to stimulate cell 
proliferation. E5 may inhibit apoptosis and cell to cell 
communication. 

 
E6 
 

 
Transformation 

 
HR-HPV E6 mediates ubiquitination and degradation of 
p53. HR-HPV E6 activates expression of hTERT. 

 
E7 

 
Transformation 

 
E7 disrupts association of pRb with E2F transcription 
factors, activates cellular proteins involved in viral DNA 
replication and pushes the cell from G1 phase to S phase. 
Stimulates cell proliferation through interaction with histone 
deacetylases, AP1 transcription complex, p21 and p27 
cyclin-dependant kinase inhibitors. 

 

Table 1, A summary of the molecular activity of HPV Early proteins.  

 

Cervical Screening  

Cervical screening serves to detect and treat precancerous cells before invasive disease 

develops however, cytological testing may lack sensitivity and an increasing number of 

women develop invasive cancer following a routine normal smear result. HPV testing can 

detect high grade lesions but also detects transient infections that are not associated with high 

grade lesion development; thus HPV testing has a good negative predictive value but a poor 

positive predictive value. High risk HPV (HR-HPV) DNA integration into the human genome 

is one of the key stages in the onset of malignant progression and so it makes a very plausible 

positive predictive biomarker of invasive disease. Not only would development of assays to 

detect integration improve cervical screening and improve management of women with 
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cervical HPV infections, the assays would be applicable to HPV related cancers in other parts 

of the body, in men and women e.g. head and neck cancers, vulval cancer and anogenital 

cancers. Thus understanding the biology and mechanisms behind HPV integration will aid the 

prevention and/or detection of many HPV related cancers. 

 

HPV Vaccination 

HPV16 and HPV18 are responsible for approximately 70% of cervical cancer cases globally 

(Clifford et al. 2003) and most studies have focused on investigating integration for these 2 

genotypes. Current vaccination programs serve to protect women against HR HPV16 and 

HPV18 infection. Vaccination protects against HPV16 and HPV18 infections throughout the 

body; this in turn will reduce the prevalence of HPV related cancers including cancers of the 

anogenital region, vulva and head and neck. There are two vaccines currently available: 

Gardasil®, a quadrivalent HPV6/11/16/18 vaccine (Merck) and Cervarix™, a bivalent 

HPV16/18 vaccine (GSK). Vaccine trials have been conducted for both Cervarix™ 

(GSK001/007 (Harper et al. 2004) and PATRICIA (Paavonen et al. 2009)) and Gardasil® 

(Merck 007 (Villa et al. 2006), FUTURE I (Garland et al. 2007) and FUTURE II (2007)). 

The vaccine trials followed women from Asia, Australia, Europe, Latin America and North 

America for up to four years; see table 2 for an overview of  trial designs. The vaccines 

reduce persistent HPV infection, of the targeted HPV types and the HPV6/11/16/18 vaccine 

eliminated genital warts in the vaccinated group compared to the placebo (Saleem et al. 

2009). In the PATRICIA trial, Cervarix™ was at least 90% effective against persistent 

infection with HPV16/18; with a 100% reduction of high grade lesions of the cervix 

associated with HPV16/18 in the vaccine recipient group compared to the placebo group. The 

PATRICIA trial also indicated that the benefits of the vaccine would be greater in women 

that have not had previous exposure to HPV16/18 infections. Clinical trials of the vaccine 

have also suggested the possibility of cross-protection against other HR-types and there are 

some concerns that type-replacement may occur with one or more of the other HR types 

becoming more predominant in cancer cases in the absence of HPV16 and HPV18 (Saleem et 

al. 2009).  It will therefore be advantageous to develop novel methods to investigate HPV 

integration for less prevalent HR-HPV types.   
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Clinical 

Trial 

Vaccine Endpoint Outcome 

GSK001/007 Cervarix™ N=1,113, AR=15-25 years, SF= 6 

months, Mean FU= 48 months. 

Objective: to examine HPV16/18 

infection incidence, infection 

persistence, CIN1+ and adverse 

events. 

Efficacy was 91.6% against 

HPV16/18 infection and 100% 

against persistent infection 

with HPV16/18. 

PATRICIA Cervarix™ N=18,644, AR=15-25 years, SF= 12 

months, Mean FU= 15 months. 

Objective: to examine HPV16/18 

CIN2+, infection persistence, CIN1+ 

and adverse events. 

There was 100% reduction 

against HPV16/18 CIN2/3. 

Efficacy against 6 month and 

12 month HPV16/18 

persistent infection was 

93.8% and 91.2%, 

respectively. 

Merck 007 Gardasil® N=552, AR=16-23 years, SF= 6 

months, Mean FU= 60 months. 

Objective: to examine 

HPV6/11/16/18 infection 

persistence, cervical and external 

genital disease and adverse events. 

Persistent infection with 

HPV6/11/16/18 was reduced 

by 89%. 

FUTURE I Gardasil® N=5,455, AR=16-24 years, SF= 6 

months, Mean FU= 36 months. 

Objective: to examine 

HPV6/11/16/18 CIN1+, external 

genital lesions and adverse events. 

HPV associated genital warts 

was reduced by 100%. 

Vaccination reduced vulvar, 

vaginal and perianal lesions 

by 34% and reduced cervical 

lesions by 20% regardless of 

HPV type.. 

FUTURE II Gardasil® N=12,167, AR=15-26 years, SF= 12 

months, Mean FU= 36 months. 

Objective: to examine HPV16/18 

CIN2+ and adverse events. 

HPV associated genital warts 

was reduced by 98%. 

Estimated vaccine efficacy in 

cervical lesions regardless of 

HPV type was 17%. 

Table 2, A summary of HPV vaccine clinical trials. N= number of women, AR= age range, 

SF= screening frequency, Mean FU= mean follow-up, CIN=Cervical Intraepithelial 

Neoplasia, VIN= Vulval Intraepithelial Neoplasia, VAIN= Vaginal Intraepithelial Neoplasia. 
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Detection of HPV Integration 

There are a number of methods currently employed to detect HR-HPV integrants in the 

human genome (summary in Table 3).  Amplification of Papillomavirus Oncogene 

Transcripts (APOT) detects transcripts of integrated HPV, Restriction Site PCR (RS-PCR), 

Southern blot and Detection of Integrated Papillomavirus Sequences (DIPS) detect integrated 

HPV DNA regardless of its transcriptional status. The methods used to detect HPV 

integration are important because a transcriptionally active integrant may contribute more to 

the malignant phenotype.  However, integrants that are not transcribed may also contribute to 

malignant progression by regulating or disrupting the expression of genes that contribute to 

cervical malignant progression.  

 

The majority of studies have investigated integration in clinical samples whilst a number of 

studies have chosen to investigate integration mechanisms in carcinoma cell line cultures 

such as CaSki, HeLa and SiHa.  The W12 cell line has been used as a model to study HPV16 

integration.  This cell line was derived from a low-grade cervical lesion infected with HPV16 

(Stanley et al. 1989).  Early passages of W12 contain HPV16 in an episomal form (ca 100 

episomes per cell) and long-term passage produces cells containing fully integrated HPV16 

DNA. The properties of the W12 cell line are rare and although cell lines enable practical 

approaches to investigate mechanisms of HPV integration they are limited and not available 

for types other than HPV16 and HPV18.  Investigation of HPV integration, in large and well 

defined clinical cohorts, may give insight into natural integration events and determine 

whether HPV integration can be used as a reliable biomarker to predict malignant 

progression. 

 

Conclusion 

HR-HPV integration is vital, but not the only contributing factor to the development of 

invasive cervical cancer.  Integration induces changes in the viral DNA structure that favours 

an immortalized host cell, although this event is disruptive to the viral lifecycle.  Further 

studies of HPV integration are required in large clinical samples to improve our 

understanding of HPV integration and its role in the pathogenesis of cervical carcinoma.
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Table 3, A summary of the most common DNA and RNA based HR-HPV integration detection methods:
 
 RS-PCR= Restriction Site PCR; 

APOT=Amplification of Oncogene Transcripts; DIPS=Detection of Integrated Papillomavirus. 

Method 
    
RS-PCR  
 

Description 
 
Host/viral genomic regions are 
amplified by PCR using HPV specific 
primers and a primer designed to 
bind to restriction enzyme sites. 

Strengths 
 
Can obtain DNA sequence of 
host/viral junctions. 

Limitations 
 
Large concentrations of DNA required 
and labour intensive. 

APOT RT-PCR followed by PCR using HPV 
specific primer discriminates HPV 
mRNAs derived from integrated and 
episomal viral genomes.  

Can obtain DNA sequence of 
host/viral junctions. 
 

Labour intensive and expensive. 

DIPS Single-side-specific ligation-mediated 
PCR. Involves vectorette PCR and 
suppression PCR to detect 
integrated HPV DNA. 

Can obtain DNA sequence of 
host/viral junctions. 
 

Labour intensive. 

 

Southern blot Cellular DNA digestion and 
electrophoresis followed by 
hybridisation of labelled HPV DNA 
probes to determine the physical 
state (integrated or episomal) of 
HPV. 

Can reliably distinguish episomal 
from integrated HPV DNA. 
 

Uses large concentrations of DNA and 
labour intensive. The use of radio-
labelled probes has health and safety 
implications.  

 

Real-time PCR Physical state of HPV is estimated by 
calculating HPV E2:E6/E7 ratio by 
real-time PCR amplification of HPV 
E2 and E6/E7.  

Uses small concentrations of DNA 
and is less labour intensive. 
 

HPV E2:E6/E7 ratio may not reliably 
distinguish integrated DNA in a 
background of episomal DNA. 
Consumables expensive. 
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Figures  

 

Fig 1 A schematic representation of HPV16:  a) A representation of HPV16 episomal DNA 

contained within the HPV capsid, b) A schematic representation of HPV16 in episomal 

form, c) A schematic representation of linear HPV16  
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Fig 2 A schematic comparison of HPV physical state and HPV gene expression for low grade and high-grade cervical lesions. CFS= 

chromosome fragile site. 
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