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ABSTRACT; The analysis aspects of the 23,000-line FORTRAN program VICON- 
OPT are described. Overall stiffness matrices assembled from the earlier exact 
VIPASA flat plate stiffnesses are optionally coupled by Lagrangian multipliers to 
find critical buckling loads, or natural frequencies of undamped vibration, of pris- 
matic assemblies of anisotropic flat plates with arbitrarily located point supports 
or simple transverse supporting frames. The longitudinal continuity of typical wing 
and fuselage panels is closely approximated because the solutions are for the in- 
finitely long structure obtained by repeating a bay and its supports longitudinally. 
Any longitudinally invariant in-plane plate stresses are permitted, and very rapid 
solutions are guaranteed by numerous refinements, including multilevel substruc- 
turing and a method for repetitive cross sections that is exact for regular polygons 
used to represent cylinders. Modal displacements and stresses in or between plies 
of laminated plates are calculated and plotted, with values being recovered at all 
nodes of substructures. Comparison with usual approximate finite-element methods 
confirms that, for comparably converged solutions, VICONOPT is typically be- 
tween 100 and 104 times faster. 

INTRODUCTION 

The F O R T R A N  77 program V I C O N O P T  ( V I P A S A  with constraints and 
optimization) has approximate ly  23,000 lines and incorporates  the ear l ier  
V I P A S A  (Vibrat ion and instabili ty of  plate  assemblies including shear  and 
anisotropy) (Wittr ick and Will iams 1974) and V I C O N  ( V I P A S A  with con- 
straints) (Anderson  et al. 1983). It covers any prismatic assembly of ani- 
sotropic plates,  and Fig. l ( a )  shows typical cross sections. Each plate  can 
carry any combinat ion of NL, Nr, and Ns, the longitudinally invariant  in- 
plane forces per  unit length of plate edge shown in Fig. l ( b ) ,  where  negative 
NL and NT give tension. Analysis  or  op t imum design can be per formed.  
Design aspects are descr ibed elsewhere (Butler  and Will iams 1990). The  
present paper  covers the analysis features;  these concern the calculation of 
eigenvalues, i.e. critical buckling load factors or  undamped  natural  fre- 
quencies, the corresponding mode  shapes,  and the per turba t ion  stress levels 
caused by these modes.  

Development  of  V I P A S A  was led by Fred  W. Will iams and the late 
W. H. Wit t r ick at the Universi ty  of Birmingham (Wittr ick and Will iams 
1974; Will iams and Ander son  1973). Af te r  enhancement  by Anderson  et 
al. (1976) at NASA-Lang l ey  Research Center ,  V I P A S A  was re leased by 
COSMIC.  The theory and a pre l iminary version of V I C O N  were deve loped  
at the University of Wales  Inst i tute of Science and Technology (UWIST)  
in collaborat ion with N A S A  and British Aerospace  (Anderson  et al. 1983). 
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( a )  ( b )  

FIG. 1. (a) Cross Sections of Typical Prismatic Plate Assemblies Covered; (b) 
Component Plate, Showing Basic Force System, Plate Axis System, and Associated 
Displacement Amplitudes 

(UWIST has since merged to become the University of Wales College of 
Cardiff.) Similar collaboration led to VICONOPT (Williams et al. 1990a), 
which is much more user friendly, has additional analysis features, has a 
design capability, and has been released to U.S. users by COSMIC. The 
present paper describes its analysis capabilities sufficiently for engineers to 
assess its relevance. Many of its novel theoretical aspects have already been 
published and are cross referenced, although some are described for the 
first time here and in a related conference paper (Williams et al. 1990b). 
Example problems were chosen to illustrate the scope of the program and 
solution times and storage requirements are given to enable its performance 
to be compared with competing programs. The basis is also given for for- 
mulas that the program uses to obtain a preliminary prediction of solution 
times, thus enabling users to plan computer runs accordingly. 

SUMMARY OF VIPASA THEORY 

VIPASA (Wittrick and Williams 1974) uses the stiffness matrix method 
based on exact flat plate theory, with Winkler foundations recently added 
(Kennedy and Williams 1990). The buckling or vibration mode is assumed 
to vary sinusoidally in the longitudinal direction x, wit half-wavelength k 
and with the displacement amplitudes u, v, w, and + shown in Fig. l (b) .  
Computations are performed separately for each k specified by the user. It 
also uses an algorithm (Wittrick and Williams 1971, 1973; Williams and 
Wittrick 1983) that guarantees convergence on all required eigenvalues and 
permits very concise and flexible use of multilevel substructuring (Williams 
1972) to reduce computation, data preparation, and computer memory usage. 

Plate bending and membrane behaviors are assumed to be uncoupled and 
orthotropy is assumed for the membrane case with the principal elastic axes 
parallel to the x- and y-axes of Fig. l (b) .  Thus, using the usual symbols, 
the matrices B, D, and A are, respectively, null, fully populated, and such 
that A13 = A23 = 0. Hence the commonly used balanced symmetric lami- 
nates are included. The "nodal" lines of zero displacement are straight and 
in the y-direction of Fig. l (b)  if all plates are either isotropic or orthotropic 
(i.e. having D13 = D23 = 0) with Ns = 0 and so satisfy transverse simply 
supported end conditions provided that k divides exactly into the length l. 
This case gives the fastest execution times because all the stiffness calcu- 
lations use real arithmetic. Otherwise (i.e. if any plates are anisotropic or 
have Ns 4: 0), solutions only approach such end conditions, and when Ns 
is large they become excessively conservative as h approaches l. This case 
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results in the stiffness matrix of the structure being complex (Wittrick and 
Williams 1974), although real arithmetic is still used for any substructures 
in which each plate is isotropic or orthotropic with Ns = O. 

Dead load values of NL, N~, and Ns are permitted for both buckling and 
vibration problems. In the former case they are additional to live load values 
which are factored until buckling occurs. Plate loadings may be given as 
data, although the program usually calculates NL from the total longitudinal 
load on the panel or from a uniform longitudinal strain, optionally allowing 
for temperature changes between plies in a laminated plate. 

S U M M A R Y  OF V ICON E N H A N C E M E N T S  T O  V I P A S A  

VICON overcomes the difficulty that VIPASA solutions do not always 
approximate simply supported end conditions adequately when plates are 
anisotropic or have Ns 4: O, by using Lagrangian multipliers (Anderson et 
al. 1983) to minimize the total energy of the panel (including inertia effects 
for vibration cases) subject to constraints that represent rigid or elastic point 
supports. Hence a shear loaded panel supported along rectangular bound- 
aries can be represented to high accuracy, as in Fig. 2, which shows a 
polygonal blade stiffened panel with point supports (denoted by crosses) 
used to approximate transverse line supports. Alternatively, Fig. 2 shows 
that the constraints can be point attachments (denoted by circles) to sup- 
porting structures comprising straight beam-columns that lie in the y-z plane, 
and that repeat at longitudinal intervals of l. The solution is a Fourier series 
involving appropriate half-wavelengths k. Thus results are for an infinitely 
long plate assembly, with supports repeating at intervals of 1. This accounts 
for the continuity over several bays of typical aerospace construction. A 
panel of finite length 1 with simply supported ends may be modeled rea- 
sonably accurately by representing the simple supports by a line of rigid 
point supports at x = 0. The results assume that the mode repeats over a 
length L = 21/~ for some value 0 -< ~ <- 1. Each of the values of ~ chosen 
by the user generates an infinite series of k (Anderson et al. 1983), although 
a small finite number usually gives acceptable results, and it is necessary to 
find the ~ that gives the lowest answer. For ~ = 0 the mode repeats at 
intervals of l and so is the same for all longitudinal bays. 

This approach is necessarily slower than a VIPASA analysis involving a 
single value of k. Therefore VIPASA analysis is recommended for the 
majority of cases, because it gives exact results when anisotropy, shear and 

I!* 
i I 

I X=O x = {  
I 
' 

I I 

I t 

(a) • bl 

FIG. 2. Infinitely Long Structure: {a) Plan View with ~ = 2/8; (b) Isometric View 
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constraints are absent and otherwise usually gives acceptable accuracy, un- 
less X approaches l for panels with large values of Ns or unless point supports 
are used for purposes other than representing transverse simply supported 
ends. 

Plate assemblies that repeat in the global y-direction are analyzed by 
using infinite width recurrence relations (Williams and Anderson 1985) so 
that analysis involves only a datum-repeating portion. Such a structure is 
illustrated in Fig. 3. When used with the cylindrical coordinate option out- 
lined later, this rapid analysis gives the same result for regular polygonal 
cross sections, including stiffened or corrugated ones, as would be given by 
modeling the compete polygon. 

The "infinitely wide" analysis is analogous to the "infinitely long" analysis 
of Fig. 2. To approximate a panel comprising P repeating portions each of 
width B [see Fig. 3(a)] that is simply supported at its longitudinal edges, 
only modes that repeat at transverse intervals of 2PB should be analyzed, 
by considering only transverse half-wavelengths kT = B/'q for ~q = 0, -+ 1/ 
P, +-2/P . . . . .  + 1. This condition gives exact results in VIPASA analyses 
when shear and anisotropy are absent, and also in certain VICON analyses 
when the nodal lines run longitudinally. For -q = 0, all repeating portions 
deflect identically. [Negative values of-q are required because of the complex 
arithmetic formulation used; see Williams and Anderson (1985).] 

FURTHER DETAILS OF ANALYSIS FEATURES 

The two previous sections showed that finding the lowest eigenvalue of 
a plate assembly involves repeating the analysis for several values of ~, 
and/or 6, and also of "q for a repetitive structure. The FAST option accel- 
erates this process by omitting unnecessary calculation of eigenvalues which 
exceed the lowest one found already, as follows. 

The program finds eigenvalues by performing iterations, at each of which 
the eigenparameter is changed and the algorithm (Wittrick and Williams 
1971, 1973) checks how many eigenvalues have been exceeded. For the 
second and subsequent combinations of ~ or ~ and "q, the first iteration is 
at the lowest eigenvalue found already and no further iterations are per- 
formed if no eigenvalues have been exceeded there. This method saves 

r I I 
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L PB L .  j - -  
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I 

- - i  
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(a)  (b)  

FIG. 3. Repetitive Plate Assemblies: (a) Plan View, Showing P Repeating Portions; 
(b) Typical Cross Section, with Datum-Repeating Portion Shown Bold 
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much time if the first combination of values of k or ~ and ~q chosen is that 
which gives the lowest eigenvalue. The user is allowed to choose the order 
of the various combinations, so that those most likely to yield the lowest 
buckling load are tried first. If VIPASA and VICON analyses are selected 
in the same run, the faster VIPASA analysis is performed first to save time. 

VICONOPT can analyze in a single run several variants of the basic 
problem, e.g. multiple load cases, by means of very concise extra data. Then 
the FAST option can accelerate the analysis if the only eigenvalue required 
is the overall lowest for the basic problem and its variants. 

The data permits concise definition of individual isotropic, anisotropic or 
laminated plates. Fig. 4 shows how these may be aligned by rotation, by 
applying offsets at edges or by a cylindrical coordinate transformation which 
simplifies the modeling of polygonal cross sections. Such aligned plates are 
connected together rigidly and may be formed into substructures before 
being inserted in the final assembly. The substructures must form chains, 
i.e. each node can only be connected to the nodes immediately preceding 
and following it by a plate or any previously defined substructure. Singly 
connected substructures may be formed by attaching one edge of a plate or 
previously defined substructure to any node of a substructure chain or to a 
node of the final assembly. Because substructures can be nested to any level 
modeling is very adaptable, so that nearly all practical structures can be 
modeled efficiently. Previous examples (Williams 1972) illustrate this, as 

/ i 2 z t : - -  ! 
ezlt  ez ,, , '  

/ \,, Y 

"~Y z z eY 1 eY 2 z 

(a) (b) (c) 

FIG. 4. Plate Alignment Options: (a) Rotation; (b) Offsets; (c) Cylindrical Coor- 
dinates 

( a )  �9 �9 �9 ' �9 �9 

A B C "7 F 

.__ . / - -X  
Ib) "A -E -  P -E- P -  P-E-  P -E P P E P - E - B "  

FIG. 5. Assembly by Substructuring: (a) Substructures A-F; (b) Parent Cross 
Section, Showing Nodes (e), Longitudinal Supports (&), and Individual Plates (P) 
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does Fig. 5, on which the longitudinal supports are rigid or are longitudinally 
invariant elastic line supports and for which the User Manual (Williams 
et al. 1990a) gives full data preparation details. Here substructures are singly 
(A-D)  or doubly (E and F) connected. Note that D requires prior assembly 
of C to make its nodes form a chain, so that two levels of substructuring 
are required. The use of F in Fig. 5(b) illustrates the usefulness of multiple 
connections (two here) between the same pair of nodes. Similarly, several 
singly connected substructures can be connected to the same parent structure 
node. The substructures D and F were introduced to reduce data preparation 
and computer run times, both because they need be defined and analyzed 
only once, and also because they make the nodes of Fig. 5(b) form a chain, 
thus minimizing the bandwidth of the associated stiffness matrix. 

The operations of Fig. 4 are applicable to substructures and can be applied 
in any order to the same plate or substructure (Williams et al. 1990a). 
Transforming into and out of cylindrical coordinates at appropriate stages 
can be very efficient when using substructures to model cross sections that 
involve several regular polygonal portions, e.g. to represent cylindrical por- 
tions of differing radius. The theory for transformation to cylindrical co- 
ordinates is given elsewhere (Williams and Wright 1978) and the plate align- 
ment and substructuring theory used was given when VIPASA was written 
(Wittrick and Williams 1974). 

Laminated walls can be assembled from any sequence of arbitrarily ori- 
ented orthotropic plies. In general A13 and A23 are nonzero for unbalanced 
laminates, while the B matrix exists for unsymmetric laminates. The first of 
these effects is ignored. The second is partially eliminated by a procedure 
that automatically reduces terms in B (which are then ignored) while ad- 
justing terms in I), by redefining the reference surface away from the mid- 
plane of the wall and then automatically applying the offset transformation 
of Fig. 4(b). Alternatively, when balanced symmetric laminates are bonded 
to form an unsymmetric whole (e.g. E on Fig. 5), the laminates can be 
divided into narrow strips that are then connected together by offset con- 
nections. 

VIPASA and VICON mode finding routines calculated only the deflec- 
tions at the nodes of the final structure and then interpolated modes between 
them. The perturbation stresses caused by these modes were not calculated. 
VICONOPT additionally permits calculation of the displacements of all 
internal nodes of substructures and of the resulting perturbation stresses 
including, for laminated plates, the in-plane direct and shear stresses in plies 
and the interply shear stresses. The program has many plot options, in- 
cluding contour plots of any of these stresses for selected plates and contour, 
isometric, or cross section plots of deflections. Undeflected cross section 
plots show individual plies of laminated plates. These features are easily 
portable between computers, and are largely due to a colleague, 
Dr. G. Aston, of British Aerospace. Although they involved no new fun- 
damental theory, they needed extensive logical thinking and about 2,500 
lines of very involved coding. This is because they had to mesh with the 
alignment and substructuring features just discussed; see Figs. 4 and 5. 
Particular difficulties were that the number of levels of substructuring is 
unlimited and that a given type of substructure appears only once in data 
and in computations (prior to mode finding) but can appear often in the 
structure, possibly within parent substructures that are at different substruc- 
ture levels. Stresses within a plate may optionally be found by making an 
automatic, temporary division into a user chosen number of narrower plates 
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and using the substructure method just described to calculate the displace- 
ments, and hence the stresses, at their longitudinal edges. 

RUN TIMES 

The lengthy derivation of (1) and (2) is given elsewhere [Anderson et al. 
(1983), where these equations are numbered (A1) and (32) and use a slightly 
different notation]. 

For the present purpose this application of the algorithm to the Lagrangian 
multiplier method of VICON can be summarized as follows. The number of 
eigenvalues exceeded by a trial value of the eigenparameter, J, is given by 

J = cg(Jor + s{Ky} + s{R} - r) + ~ c~i(Joi ~- s{Ki}) (1) 

where 

1 
R = -esKy-~ef - ~ ~ e,KT'eff  (2) 

Here Kf = stiffness matrix of any supporting structure; the Ki = VIPASA 
stiffness matrices for the ks coupled by the Lagrangian multipliers and the 
summations are over these ks; and r = number of constraints imposed by 
the Lagrangian multipliers over length l [e.g. 17 for Fig. 2(a) if each cross 
or circle constrains only one degree of freedom]. The el, e I, and R (which 
is r x r) are generated by these constraints. Superscripts T and H denote 
transpose and Hermitian transpose; and ~i and the ~g are all equal to unity 
or two, depending upon the problem. The Jog and J0r are the contributions 
that would be made to J if all nodes of the final structure and supporting 
structure were fully clamped, and they are calculated by methods described 
previously (Anderson et al. 1983). s{ } denotes the sign count (Wittrick and 
Williams 1971) of the matrix within the curly braces; i.e. such that s{Ki} 
equals the number of negative leading diagonal elements of Kf, the upper 
triangular form of K~ obtained by applying Gauss elimination in the form 
in which rows are taken as pivotal in order and multiples of the pivotal row 
are added to unsealed succeeding rows. For any given problem the K~ have 
order fN  x fN  and bandwidth fM,  where N is the number of nodes of the 
final structure, M exceeds by one the maximum node number difference 
for any pair of connected nodes and f is the number of degrees of freedom 
at each node. Here f = 4 to account for the four displacement amplitudes 
at each node shown in Fig. l (b) ,  but f = 3 for the plane frame supporting 
structures described later. From (2), e; is r x f N  and ef has r rows and as 
many columns as Kf. 

VICONOPT calculates egKFleff in (2) and the s{Ki} in (1) by a single 
standard substructuring operation, in which f = 4 and the ( fN + r) x ( fN 
+ r) Hermitian matrix 

It 
has Gauss elimination applied to it until fN  rows have been pivotal. Hence 
K~ replaces Ki and -esK7 left replaces the null matrix. Applying standard 
techniques, it is easily demonstrated that this involves 

1 {  ( 2 ) M  2 ~ } (3) tl~- ~ ]'3 N -  ~ M + f2(N - M)Mr + fNr 2 
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multiplications, This expression is equivalent to that given earlier (Williams 
and Anderson 1985), but has been modified to allow for savings when the 
last fM rows of Ki are pivotal. 

A similar procedure gives e r K [  1el and s{Kr} , except that, since supporting 
structures consist of an uncoupled set of transverse plane frames that are 
perpendicular to the x-axis, computer time is saved by treating each frame 
separately. Therefore the formula for t2, the number of multiplications needed, 
is identical to (3) except that N and M are replaced by the corresponding 
values for the frame, f = 3 and summation over all supporting frames is 
required. The number of multiplications needed to compute s{R} in (1) is 

1 
t 3 = ~ r 3 (4) 

Substructuring is particularly useful when using VICON analysis because 
it reduces N and hence also h, e.g. see (3) and substructures A and B in 
Fig. 5. However, substructures cannot include constraints, which restricts 
their use. The program sets up the fNs • fN, stiffness matrix corresponding 
to the Ns nodes of a substructure, with its (Ms - 1) connection nodes 
numbered last. The bandwidth isfMs, where M, is 2 for singly (3 for doubly) 
connected substructures and again f = 4. Analogously to the computation 
of tl in (3), Gauss elimination is applied until all except the last f(Ms = 1) 
rows have been pivotal. This involves 

1 
t. Z p U, - M, (5) 

multiplications, where the summation is over all substructures. 
Substructuring can also be used when assembling supporting structures, 

to reduce the order of K s, and hence to reduce t2. This involves t5 multi- 
plications, where the formula for t5 duplicates (5), with Ns and Ms now being 
for the frame substructures and with f = 3. Such substructures, and their 
component Timoshenko beam-column members, can be aligned just as plates 
can; see Fig. 4. Hence they can be singly or doubly connected and can be 
used in the multilevel way illustrated by Fig. 5. 

Computing plate and beam stiffnesses may take significant time. There- 
fore when there are t6 plate types and t7 beam types the program estimates 
the VICON type iteration time by multiplying each of tl . . . .  , t7 by ap- 
propriate constants and then summing. The constants clearly depend upon 
the computer, the number of Ki used, and the extent to which complex 
arithmetic is needed. The User Manual (Williams et al. 1990a) gives the 
detailed formulas and the corresponding formulas for VIPASA analysis 
(which use r -- t2 = t5 = t7 = 0) and for the transversely repetitive structure 
method described around Fig. 3. The computer-dependent constants used 
in these formulas must be found by using measured computer times for 
typical problems. Thus their values are automatically inflated to compensate 
for all operations (e.g. those of Fig. 4) that are omitted by tl �9 �9 �9 , tT. 

The program does not estimate the number of iterations required. This 
is of order 10-15 per eigenvalue found and depends upon many factors, 
including the accuracy required, the unpredictable effects of the FAST 
option described earlier, the user's initial eigenvalue estimate and how well 
suited the problem is to the convergence procedures described in the next 
section. 
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CONVERGENCE PROCEDURES 

VICON used the value of J computed by (1) to converge on the required 
eigenvalues by bisection. The recent alternative "multiple determinant par- 
abolic interpolation method" was shown to be approximately twice as fast 
as bisection for frame problems (Williams and Kennedy 1988). It solves the 
transcendental eigenvalue problem which arises when exact member theory 
is used to obtain the overall stiffness matrix of a structure. Therefore it was 
easily adapted to the VIPASA route through VICONOPT, but care was 
needed when using Lagrangian multipliers, i.e. when using (1) and (2), as 
follows. 

Its key feature is that the method selects one of a list of alternative 
determinants specified by the program and, subject to certain conditions 
being met, uses parabolic interpolation through three known points on the 
determinant versus eigenparameter curve to predict the eigenvalue as being 
where the determinant is zero. A bisection step is substituted if the con- 
ditions are not met and a criterion is used to decide which determinant to 
use if several satisfy the conditions. The principal conditions are that the 
three points used bracket the required eigenvalue and no others, that the 
determinant plot has no poles (i.e. vertical asymptotes) between the points 
and that the parabola through the points is sufficiently close to the straight 
line through their outermost pair. The criterion picks the determinant that 
satisfies all the conditions and has the least relative separation between the 
parabola and the straight line. If Ki is temporarily thought of as the real fN 
• fN stiffness matrix to which the method was originally applied (Williams 
and Kennedy 1988), the determinants used are those obtained by multiplying 
together the last m leading diagonal elements of K~ for selected values of 
m, with m = fN, i.e. the determinant of the complete stiffness matrix Ki, 
usually included. Theoretical proofs guarantee that the method converges 
on eigenvalues without missing any and without ever taking many more 
iterations than bisection would. These proofs depend upon J being known 
and upon properties of Ki that enable poles to be detected. Fortunately the 
proofs extend to apply when J is given by (1) and the determinants are 
obtained by multiplying together the last m elements of the array obtained 
by writing in sequence the leading diagonals of K~ x, of the K~, and of R A, 
which are all calculated anyway when finding s{KI} , the s{Ki} and s{R} in 
(1). The extended proof has not been given anywhere, but starts from the 
published (Anderson et al. 1983; Williams and Anderson 1983) derivation 
of (1). 

The value of J is always even for the very common situations for which 
c 9 and all of the c~; are equal to two, so that then eigenvalues always occur 
in coincident pairs. A physical interpretation is that when the number of 
longitudinal bays over which the mode repeats [i.e. 2/~, equals three for 
Fig. 2(a)] exceeds two, moving the original mode along the plate assembly 
by l gives an alternative mode, because the two modes are distinct when 
viewed from a common vantage point. 

The problem could have been formulated using entirely real arithmetic, 
resulting in real symmetric stiffness matrices whose determinant plots touch 
(but do not cross) the eigenparameter axis. However the complex formu- 
lation used in VICONOPT results in these matrices being replaced by Her- 
mitian ones of half the order, such that each (real) leading diagonal element 
of the Hermitian K# corresponds to a pair of equal leading diagonal elements 
of the real K#. A similar thing happens for K s and R. Thus the determinant 
of the complex formulation is equal in magnitude to the square root of that 
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for the real formulation and crosses the eigenparameter axis were the latter 
touches it. It may therefore be used for parabolic interpolation and hence, 
when % and all of the oq are equal to two, the condition that only one 
eigenvalue must be spanned by the parabola is replaced by the condition 
that the value of J at one point must differ by two from its value at the 
other two points. 

Computer runs showed that including this modified form of the multiple 
determinant parabolic interpolation method within VICONOPT typically 
saved over 50% of the iterations previously needed by the bisection method 
of VIPASA and VICON. These runs found eigenvalues to a relative ac- 
curacy of 10 -6, which is approximately the accuracy needed to obtain re- 
liable modes. 

FUTURE DEVELOPMENTS 

Since the release of VICONOPT in 1990, substantial further develop- 
ments have begun. This section outlines additional features which are ex- 
pected to appear in future releases. 

The exact flat plate theory of VIPASA (Wittrick and Williams 1974) is 
being extended to optionally include first-order shear deformation plate 
theory, so giving more accurate results for panels containing thick plates. 
While the plate stiffness matrix is still derived by solving the governing 
differential equations, this new solution is obtained numerically rather than 
analytically. 

Similar numerical solutions are also applied to cases which could not 
previously be solved analytically. For example, plates with completely gen- 
eral A, B, and D matrices are allowed, so removing the restriction to bal- 
anced symmetric laminates. Numerical solutions also simplify mode finding 
by allowing a more efficient calculation of modal displacements within plates 
than that described previously. 

Plates with curved cross sections or tapered geometry, properties or loads 
could previously be handled efficiently by linking numerous flat plates in 
substructures. A new feature allows concise definition of the whole plate 
in data, with the substrncturing being performed automatically, optionally 
allowing for transverse shear effects. 

Some additional loading conditions are being introduced: bending loads 
causing moments or curvatures about the y- and z-axes of Fig. l (b);  pressure 
loading, causing bending about the y-axis for a number of different boundary 
conditions; and an initial bow in the z-direction causing bending about the 
y-axis of Fig. l(b).  These all supplement the total longitudinal load or 
uniform longitudinal strain in the preliminary calculation of the dead and 
live loads in each plate. 

It is proposed to allow VICON constraints (i.e. point supports and sup- 
porting structure attachments) in substructures. This is expected to improve 
solution times by allowing more efficient use of substructures when 
modeling. 

Finally, the program is being made more user friendly by the introduction 
of interactive procedures for data preparation, input, and editing. 

EXAMPLES 

The first example presented is the composite blade stiffened panel of Fig. 
6, which was also used as example 1 by Stroud et al. (1984) when comparing 
VIPASA results with those of the finite-element programs EAL and STAGS 
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(a) (b) 
6x 127ram ,_l ~ 127ram .5' 

I j ~ - L  

', 63.5mm t 
A I  I I I I I �9 I i ~- 

~-- ' l -  I 
34,34rnm 

(c) 
N x /  _ Nxy ]~/ xju.- /NxyT-x='~ 

O ~ , V  / /  /762 mm 
zvw , / ' __t,_x=O v v v v v v e) 

Nxy-=/N x 

FIG. 6. Composite Panel: (a) Cross Section; (b) Repeating Portion; (c) Isometric 
View; (d) Isometric View of Midsurface Skin Displacements for First Result in Table 
1; (e) Corresponding Contour Plot of Stress ~x at Midsurface of Upper 0 ~ Skin Ply 
(Negative is Dashed) 

(Almroth et al. 1982). The material  propert ies were E1 = 131 GPa,  E 2 = 

13.0 GPa;  E 1 2  = 6.41 GPa;  v12 = 0.38; and re1 = 0.0378. With positive 
angles denoted by 0 on Fig. 6(c), the laminates were [45 ~ - 45 ~ - 45 ~ 45 ~ 
0 ~ 90~ for the skin and [45 ~ - 4 5  ~ - 4 5  ~ 45 ~ 0~ for the blade, with all 
thicknesses being 0.1397 m m  except for the 90 ~ fibers for the skin and the 
0 ~ ones for the blade, for which the thicknesses were,  respectively, 1.2573 
mm and 0.2794 mm. The panel  was simply supported on all four edges. 
Factored longitudinal and shear loads were applied, with the latter confined 
to the skin. 

Table 1 gives the results, to the first of which the two V I C O N O P T  graph- 
ical output examples of Figs. 6(d and e) relate. The load factor shown was 
applied to both Nx and Nxy. The V I P A S A  results were obtained by Stroud 
et al. (1984) to demonstrate  that  V I P A S A  could be unacceptably conserv- 
ative. However ,  discussion of why the various other results given in Table 
1 differ from eaeh other  is given in the following section rather  than here. 
For the V I C O N O P T  results with r -- 17 or 3 the constraints prevented w 
displacement of the skin at the blade at tachments and halfway between 
them and also prevented v displacement at the blade tips, whereas when r 
= 12 or 2 the w constraints between blades were omitted. These constraints 
were all input at x = 0 and their repetit ion at intervals of l was implied, 
see Fig. 2(a). For the full analysis given in the first three rows for each of 
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TABLE 1. Buckling Load Factors and Dimensionless Solution Times for Example 
1 (N,y = 175.13 kN/m) 

Actual Eigen- Predicted 
Type of time values, time 
analysis Nx/Nxy r, q Factor ~, Vl (%) iterations (%) 

(1) (2) (3) (4) (5) (6) (7) (8) 

VICONOPT 1.0 17, 5 0.927 1.0, - 2.30 1, 18 2.44 
VICONOPT 1.0 12, 5 0.925 1.0, - 1.43 1, 18 1.38 
VICONOPT 1.0 12, 2 0.936 1.0, - 0.61 1, 16 0.58 
Repetitive 1.0 3, 5 0 .820 0.75, 0.17 1.39 2, 65 0.75 
Repetitive 1.0 2, 5 0.818 ~0.75, 0.17 0.77 2, 65 0.41 
VIPASA ~ = l 1.0 0.417 - -  0.09 1, 11 0.09 
EAL 1.0 0.840 . . . .  
STAGS coarse 1.0 0.868 - -  4.60 - -  - -  
STAGS medium 1.0 0.851 - -  29.9 - -  - -  
STAGS fine 1.0 0.842 - -  100 - -  - -  
VICONOPT 0.5 17, 5 1 .298 0.75, - 5.76 2, 32 5.66 
VICONOPT 0.5 12, 5 1.285 0.75, 3.46 2, 32 3.17 
VICONOPT 0.5 12, 2 1.304 0.75, - 1.91 3, 47 1.80 
Repetitive 0.5 3, 5 1.114 0.50, 0.33 2.04 5, 94 1.06 
Repetitive 0.5 2, 5 1.106 0.50, 0.33 1.11 5, 92 0.55 
VIPASA ~ = l 0.5 0.485 - -  0.09 1, 10 0.09 
EAL 0.5 1.206 . . . .  

the two values of Nx/Nxy , the number  of VIPASA stiffness matrices coupled 
was q when ~ -- 0 or 1 and 2q + 1 otherwise, whereas for the repetitive 
analysis given in the next two rows the number  was 2q - 1 when ~ = 0; 
2q when ~ = 1; and 2q + 1 otherwise. (The program uses q = 5 by default.) 
The values of ~ considered were 1, 0, 0.75, 0.5, and 0.25 in that order, and 
the repetitive analyses were run for -q = _+ 1/6, _+ 2/6 . . . . .  _+ 5/6, 1. (Note 
that "q = 0 was omitted because its only possible buckling modes are a wide 
column one, at a lower buckling load than for simply supported longitudinal 
edges, and a local one that is not  relevant when finding overall modes.) 
The FAST option was used, and so the solution times depended largely 
upon how many values of ~ and -q had been considered fully before the 
lowest eigenvalue was found. This information is given in the penult imate 
column of Table 1, together with the total i teration count. 

The last column of Table 1 gives estimated solution times, based on the 
quantities fi . . . . .  t7 defined in and around (3) - (5)  and the actual number  
of iterations required. Allowance was made for overheads such as data 
reading and mode finding, but not for the additional plate stiffness trans- 
formations required in repetitive problems. Thus the predictions for the 
repetitive cases consistently underest imated the actual solution times. The 
results for EAL were the well converged ones (Stroud et al. 1984), for which 
comparative solution times were not available. 

The STAGS run used rectangular element 411 (Almroth et al. 1982). The 
coarse mesh used 20 elements along the length of the panel and one element  
widthwise for each of the six blades, the five skin portions between blades 
and the two remaining skin portions. The medium mesh differed only be- 
cause two elements were used across each of the five skin portions between 
blades. The fine mesh divided every element of the medium mesh into two 
halves widthwise. The time taken to find the buckling load for the fine mesh 
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was used to make all solution times dimensionless. VICONOPT and STAGS 
were not run on the same computer, but the program PASCO (Anderson 
and Stroud 1981) was used to solve a typical problem on both machines in 
order to obtain a conversion factor to relate all the times in Table 1 to a 
common base, such that 100% in Table 1 equated approximately to 1,062 
central processing unit (CPU) seconds on a VAX 6320 computer. STAGS 
was only run for Nx = Nxy, and similar times might be expected for N~ = 
0.SUxy. 

The versatility and efficiency of VICONOPT are illustrated by the second 
example, namely the corrugated, ring-stiffened, laminated cylinder of Fig. 
7, for which the User Manual (Williams et al. 1990a) gives full numerical 
details. The cylinder was loaded in shear and compression, with thermal 
effects included. Radial and tangential skin displacements were constrained 
by transverse simply supported edges (represented by the point supports 
shown) and attachments of the inner flanges to three ring stiffeners, rep- 
resented by supporting structures. The cylinder was modeled efficiently 
using cylindrical coordinate transformations (so only five angles needed to 
be given in data) and the repetitive analysis, which used only a repeating 
portion comprising two nodes on the outer flange, one node on the inner 
flange, three point supports (each preventing two displacements for each 
node at x = 0) and three attachments to the supporting structures (each 
linking two displacements of the skin and ring stiffeners at x = l/4, l/2, and 
3//4). The FAST option was used to obtain the lowest buckling load over 
226 combinations of ~ and -q, from which only six eigenvalues were found, 
the remainder being eliminated by check iterations. Fig. 7(c) shows a contour 
plot of the radial displacement around 1/4 of the circumference. The contour 
lines are wrinkled because the inner and outer flanges had different de- 
flection patterns, an effect made more pronounced by the ring stiffener 
attachments. 

(a) 

(b) 

If 
I m  = [  

I I 

i 

0 -  

O -  

J 
I 

x/.~= 
• ~ 1 

o -  

o- -It  I/2 
o -  

x :~  0 

(c) 

!i ,'ii :i:i!iTi-iiii!7 !iiii i:i i i:i '.., 

FIG. 7. Cylinder with 48 Regular Corrugations and Three Ring Stiffeners (Shown 
Dashed): (a) Typical Portion; (b) Side View (Foreshortened), Showing Point Sup- 
ports (x )  and Attachments to Rings (o); (c) Contour Plot of Radial Displacements 
of 1/4 Cylinder at Lowest Buckling Load (Negative is Dashed) 
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COMMENT ON RESULTS 

The STAGS results of Table 1 appear to be converging to the EAL result 
of 0.840 as the mesh is refined, and the results of the VICONOPT full 
analysis were similarly converged at 0.927. The difference of about 10% 
between these results is typical for panels with high shear loading. Such 
differences reduce as Ns is reduced relative to NL and Nr  and are zero when 
every plate has D13 = D 2 3  = N s  - -  0. They arise because the converged 
STAGS results were for a panel of finite length l, whereas the VICONOPT 
results were for an infinitely long panel simply supported at longitudinal 
intervals of l and therefore probably model more accurately the continuity 
with adjacent panels and other structure which exists in most practical ap- 
plications, e.g. aircraft wings. 

The results of Table 1 show that the medium or even the coarse STAGS 
mesh gave the buckling load factor sufficiently accurately for most engi- 
neering purposes. This is because overall buckling governed the response 
for this example. However, local buckling governs for many other panels 
and it is often not known in advance whether this will be the case, particularly 
when using optimization procedures that may converge to panels having 
coincident or close local and overall buckling loads. Then the mesh needs 
to be fine enough to predict local buckling accurately and hence the use of 
the fine mesh as the datum for the time comparisons in Table 1 was more 
than justified by the following additional results. 

To check whether STAGS would need more elements to obtain sufficient 
accuracy when the governing mode is local, the skin portion between blades 
was removed from the panel and analyzed with its ends simply supported 
and with its longitudinal edges either simply supported or clamped, for the 
Nx = Nxy case of Table 1, the numbers of elements needed to get within 
1% of the converged buckling load were found to be approximately 30 in 
the longitudinal direction, and 4 in the transverse direction for the simply 
supported (7 for clamped) case. 

The full VICONOPT result of 0.936 for r = 12 and q -- 2 given in Table 
1 was sufficiently close to the converged answer of 0.927 for most engineering 
purposes and took well under 1% of the datum solution time. This per- 
centage would be lower for panels with more stiffeners, because whereas 
VICONOPT and STAGS times are both increased by the larger number of 
nodes needed across the width of the panel, the STAGS runs are also likely 
to need more elements in the longitudinal x-direction, due to the higher 
aspect ratios of the interstiffener skin portions (compared with 6 for example 
1) and hence higher ratios between their length and the half-wavelength of 
local buckling. In such cases VICONOPT can detect local buckling by per- 
forming VIPASA analyses at half-wavelengths in the vicinity of the width 
of the skin portion, with negligible increase in solution time, e.g. see the 
comparable VIPASA times in Table 1. Similarly, the advantage of using 
VICONOPT will also be greater than two orders of magnitude when using 
stiffeners such as hats, the width of which reduces the width of unsupported 
skin between them. 

Solution times depend upon the order of presentation of the values of 
(and of "q for repetitive analysis) in data because the FAST option finds 
only critical load factors that are lower than any already found. For the full 
analysis with Nx = Nxy, the penultimate column of Table 1 shows that the 
first eigenvalue found was the lowest one for all three r and q combinations 
given in Table 1 and so solution was very fast. For the corresponding Nx 
= 0.5Nxy results the second or third eigenvalue found was the lowest one, 
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so the solution times for this case were somewhat greater. Similarly in the 
repetitive analyses, the lowest eigenvalue for the Nx = Nxy case was found 
faster than that for the Nx = 0.5N~y case. 

The repetitive method can be invaluable for regular polygonal cross sec- 
tions, which represent cylinders very accurately, giving the same answer as 
a full VICONOPT analysis. For instance, a full solution was estimated to 
need at least three orders of magnitude more time than was used to solve 
example 2 (see Fig. 7), and the equivalent finite-element calculation would 
be a very major undertaking. In contrast, the repetitive method gave only 
small time savings when applied to example 1 (see Table 1, but also the 
previous paragraph) and its answer of 0.820 was not very close to the 0.927 
of the full analysis, with which it should be compared because both results 
were for an infinitely long panel with supports that repeat at longitudinal 
intervals of l. However the method still has value for flat panels both because 
it gives a progressively increasing time advantage over full analysis as the 
number of stiffeners is increased and also because it gives lower answers 
and so is likely to be closer to the result for finite-length panels, e.g. compare 
the load factors of 0.820 and 0.840 in Table 1. 

Data preparation took several times longer for STAGS than for VICON- 
OPT and the latter had computer memory requirements of only between 
9,000 and 17,000 floating-point real numbers. In contrast the EAL and 
STAGS runs of Table 1 each required core storage well in excess of 100,000 
floating-point numbers and also used external backing store. 

MAIN CONCLUSIONS 

VICONOPT finds eigenvalues (i.e. critical buckling loads or natural fre- 
quencies) and modes for any prismatic assembly of flat plates that each 
carry a general longitudinally invariant in-plane stress system and have an- 
isotropic bending properties. Major features combine to make modeling of 
complex cross sections relatively easy and to give very fast solutions. These 
features include a guarantee that modes are never missed; very powerful 
multilevel substructuring; calculation and plotting of modes within substruc- 
tures and of stresses in or between plies of laminated plates; the ability to 
transform to cylindrical coordinates or back to Cartesian ones at will; at- 
tachment to transverse beams or transverse plane frames; a very fast analysis 
of repetitive cross sections that introduces no additional approximations 
when applied to cylindrical structures; and a convergence method that is 
typically more than twice as fast as bisection. 

For the usual simply supported end conditions, earlier VIPASA theory 
is used to obtain exact results, unless some plates are anisotropic and/or 
loaded in shear. Otherwise, there is the option of finding local modes by 
VIPASA theory and overall modes by VICON theory, which couples VI- 
PASA responses with appropriate half-wavelengths by a Lagrangian mul- 
tiplier method. Results show that this VICON method converged rapidly 
to the correct answer as the number of half-wavelengths, and the number 
of point supports used to represent the simple supports, were both increased. 

VICONOPT accounts for the continuity over several bays, that typifies 
wing and fuselage construction, by solving for the infinitely long structure 
obtained by repeating the bay and its supports longitudinally. In contrast 
typical finite-element solutions are for a single bay with simply supported 
ends and so give overall buckling loads that are about 10% lower when 
shear loads are high. 

Although care must be taken when generalizing from so few results, 
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comparison with STAGS finite-element results was sufficiently reliable to 
show that data preparation was several times quicker and that solution times 
were typically two or more orders of  magnitude faster, the higher orders 
including approximately three when V I P A S A  analysis was sufficient and 
four or more when repetitive analysis was used for cylindrical cross sections. 
In the absence of anisotropic and/or shear loaded plates, the V I C O N O P T  
and fully converged STAGS results would be identical for all problems with 
suitable arrangements of point supports. 

ACKNOWLEDGMENTS 

This work was sponsored by N A S A  under Cooperative Agreement  No. 
NCCW-000002 and Contract  No. NAS1-18584 Task No. 5, with the United 
Kingdom work also supported by British Aerospace.  

APPENDIX I. REFERENCES 

Almroth, B. O., Brogan, F. A., and Stanley, G. M. (1982). "Structural analysis of 
general shells, Vol. II: user instructions for STAGSC-I." Rep. LMSC-D633873, 
Lockheed Palo Alto Research Laboratory, Palo Alto, Calif. 

Anderson, M. S., Hennessy, K. W., and Heard, W. L. Jr. (1976). "Addendum to 
users guide to VIPASA (vibration and instability of plate assemblies including 
shear and anisotropy)." NASA TM X-73914, National Aeronautics and Space 
Administration (NASA), Washington, D.C. 

Anderson, M. S., and Stroud, W. J. (1981), "PASCO: structural panel analysis and 
sizing code; user's manual." NASA TM-80182, National Aeronautics and Space 
Administration (NASA), Washington, D.C. 

Anderson, M. S., Williams, F. W., and Wright, C. J. (1983). "Buckling and vibration 
of any prismatic assembly of shear and compression loaded anisotropic plates with 
an arbitrary supporting structure." Int. J. of  Mech. Sci., 25(8), 585-596. 

Butler, R., and Williams, F. W. (1990). "Optimum design features of VICONOPT, 
an exact buckling program for prismatic assemblies of anisotropic plates." Proc., 
31st AIAA/ASME/ASCE/AHS/ASC Struct., Struct. Dynamics and Mat. Conf., 
ASCE, New York, N.Y., 1289-1299. 

Kennedy, D., and Williams, F. W. (1990). "Vibration and buckling of anisotropic 
plate assemblies with Winkler foundations." J. Sound and Vibration, 138(3), 501- 
510. 

Stroud, W. J., Greene, W. H., and Anderson, M. S. (1984). "Buckling loads of 
stiffened panels subjected to combined longitudinal compression and shear: results 
obtained with PASCO, EAL and STAGS computer programs." NASA TP-2215, 
National Aeronautics and Space Administration (NASA), Washington, D.C. 

Williams, F. W. (1972). "Computation of natural frequencies and initial buckling 
stresses of prismatic plate assemblies." J. Sound and Vibration, 21(1), 87-106. 

Williams, F. W., and Anderson, M. E. (1973). "User's guide to VIPASA (vibration 
and instability of plate assemblies including shear and anisotropy)." Rep., De- 
partment of Civil Engineering, University of Birmingham, Birmingham, England. 

Williams, F. W., and Anderson, M. S. (1983). "Incorporation of Lagrangian mul- 
tipliers into an algorithm for finding exact natural frequencies or critical buckling 
loads." lnt. J. Mech. Sci., 25(8), 579-584. 

Williams, F. W., and Anderson, M. S. (1985). "Buckling and vibration analysis of 
shear-loaded prismatic plate assemblies with supporting structures, utilizing sym- 
metric or repetitive cross-sections." Aspects of  the analysis of  ptate structures--a 
volume in honour of  W. H. Wittrick, D. J. Dawe, R. W. Horsington, A. G. 
Kamtekar, and G. H. Little, eds., Oxford University Press, Oxford, England, 51- 
71. 

Williams, F. W., Anderson, M. S., Kennedy, D., Butler, R., and Aston, G. (1990a). 
User manual for VICONOPT; NASA CR-181966, National Aeronautics and Space 
Administration (NASA), Washington, D.C. 

260 

J. Aerosp. Eng. 1994.7:245-262.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

di
ff

 U
ni

ve
rs

ity
 o

n 
02

/2
5/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Williams, F. W., and Kennedy, D. (1988). "Reliable use of determinants to solve 
non-linear structural eigenvalue problems efficiently." Int. J. for Numerical Meth- 
ods in Engrg., 26(8), 1825-1841. 

Williams, F. W., Kennedy, D., and Anderson, M. S. (1990b). "Analysis features of 
VICONOPT, an exact buckling and vibration program for prismatic assemblies of 
anisotropic plates." Proc., 31st AIAA/ASME/ASCE/AHS/ASC Struct., Struct. Dy- 
namics and Mat. Conf., ASCE, New York, N.Y., 920-929, 

Williams, F. W., and Wittrick, W. H. (1983). "Exact buckling and frequency cal- 
culations surveyed." J. Struct. Engrg., ASCE, 109(1), 169-187. 

Williams, F. W., and Wright, C. J. (1978). "A compact computer program for 
calculating buckling stresses and natural frequencies of vibration of prismatic plate 
assemblies." Int. J. Numerical methods in Engrg., 12(9), 1429-1456. 

Wittrick, W. H., and Williams, F. W. (1971). "A general algorithm for computing 
natural frequencies of elastic structures." Quarterly J. Mech. and Appl. Mathe- 
matics, 24(3), 263-284. 

Wittrick, W. H., and Williams, F. W. (1973). "An algorithm for computing critical 
buckling loads of elastic structures." J. Struct. Mech., 1(4), 497-518. 

Wittrick, W. H., and Williams, F. W. (1974). "Buckling and vibration of anisotropic 
or isotropic plate assemblies under combined loadings." Int. J. of  Mech. Sci., 
16(4), 209-239. 

APPENDIX II. NOTATION 

The following symbols are used in th& paper: 

A, B, D 
B 
b 

El, E2 
E12 

el, ef 
eyk, ezk 

f 
J 

Jo,, Joi 

Ki, Kf 

L 
l 

M,M~ 

m 

N, Ns 
NL, Ns, Nr  

N~, N~y 
P 
q 
R 
r 

s{ } 
tk 

U~ U, W, 1~ 

= plate membrane,  coupling, and bending stiffness matrices; 
= breadth of repeating portion of panel; 
= breadth of  plate; 
= Young's  modulus parallel and normal to fiber direction; 
= in-plane shear modulus; 
= panel and supporting structure constraint matrices; 
= y and z offsets at edge k of node (k = 1, 2); 
= number  of degrees of freedom per node; 
= number  of  eigenvalues exceeded; 
= number  of fully clamped eigenvalues exceeded, for panel 

and supporting structure; 
= panel (VIPASA)  and supporting structure stiffness mat- 

rices; 
= length of mode repetition; 
= length of panel or repeating portion; 
= 1 + maximum node number  difference for any pair of con- 

nected nodes, for panel and substructure; 
= order of determinant used for parabolic interpolation; 
= number  of  nodes in panel and substructure; 
= in-plane longitudinal, shear and transverse loads per unit 

length of plate edge; 
= longitudinal and shear loads per unit length of  panel edge; 
= number  of  transverse repeating portions; 
= parameter  defining number  of half-wavelengths used; 
= matrix generated by constraints; 
-- number  of  constraints; 
= sign count of  a matrix, defined following (2); 
= parameters used in time prediction (k = 1 . . . . .  7); 
= displacement amplitudes; 
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x, y, z = 
0[i~ OLf : 

x I = 
h = 

~k T : 
p~ = 

1)127 1)21 ~--- 
~= 

Subscripts 
f =  
i = 

S : 

Superscripts 
H =  
T =  
A =  

plate coordinates; 
problem dependent constants used in (1); 
transverse repetition parameter (=  B/h~); 
half-wavelength; 
transverse half-wavelength; 
angle of rotation or cylindrical coordinate transformation; 
Poisson's ratio, such that v12E2 = v21E1; and 
longitudinal repetition parameter ( =  2l/L). 

plane frame supporting structure; 
sequence number of half-wavelength used; and 
substructure. 

Hermitian transpose of matrix; 
transpose of matrix; and 
upper triangular form of matrix. 
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