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SUMMARY 

MODELLING EMERGENCY MEDICAL SERVICES  

Leanne Smith, B.Sc. 

Cardiff University, School of Mathematics 

 

Emergency Medical Services (EMS) play a pivotal role in any healthcare organisation.  Response 

and turnaround time targets are always of great concern for the Welsh Ambulance NHS Trust 

(WAST).  In particular, the more rural areas in South East Wales consistently perform poorly with 

respect to Government set response standards, whilst delayed transfer of care to Emergency 

Departments (EDs) is a problem publicised extensively in recent years.  Many Trusts, including 

WAST, are additionally moving towards clinical outcome based performance measures, allowing 

an alternative system-evaluation approach to the traditional response threshold led strategies, 

resulting in a more patient centred system.   

Three main investigative parts form this thesis, culminating in a suite of operational and strategic 

decision support tools to aid EMS managers.  Firstly, four novel allocation model methods are 

developed to provide vehicle allocations to existing stations whilst maximising patient survival.  A 

detailed simulation model then evaluates clinical outcomes given a survival based (compared to 

response target based) allocation, determining also the impact of the fleet, its location and a variety 

of system changes of interest to WAST (through ‘what-if?’ style experimentation) on entire system 

performance.  Additionally, a developed travel time matrix generator tool, enabling the calculation 

and/or prediction of journey times between all pairs of locations from route distances is utilised 

within the aforementioned models.  

The conclusions of the experimentation and investigative processes suggest system improvements 

can in fact come from better allocating vehicles across the region, by reducing turnaround times at 

hospital facilities and, in application to South East Wales, through alternative operational policies 

without the need to increase resources.  As an example, a comparable degree of improvement in 

patient survival is witnessed for a simulation scenario where the fleet capacity is increased by 10% 

in contrast to a scenario in which ideal turnaround times (within the target) occur.    
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Chapter 1 

 Introduction 

 

1.1 Emergency Medical Services 

1.1.1 Introduction 

Emergency Medical Services (EMS) play a vital role in the secondary healthcare of any population.  

In the United Kingdom, EMS are components of the many Ambulance Trusts that operate across 

the country. They are managed locally by the individual trusts and provide pre-hospital care and 

treatment to emergency medical patients in designated regions.  Healthcare managers continually 

endeavour to improve the services provided by the trusts; since ambulance services are often the 

first point of contact for a potential health-service patient in an emergency situation, awareness of 

system efficiency and operational effectiveness is imperative to the improvement of care.   Servicing 

the public in their hour of need – in diverse situations and medical crises – presents obstacles to any 

emergency organisation; yet it is essential to still provide a consistently first-class service.  

 

1.1.2 Associated Problems for EMS 

All Emergency Medical Service systems find themselves faced with analogous problems but with 

the need to find exclusive solutions – deciphering the best operational procedures and service 

strategies to optimise system performance in their own specific region. 

System design problems may range from the decision of staffing levels (as with any business or 

organisation) to the best way to minimise patient risk.  Location of vehicles at ambulance bases or 

stand-by points, operational fleet capacity, response policy and treatment locality are just some of 

the decisions faced daily by EMS managers.  Additionally, demand to ambulance services is ever 

increasing (National Audit Office 2011).  With an ageing and growing population (Office for 

National Statistics 2012), in a world where good health is promoted, pursued and protected, 

ambulance services need to find the best ways of providing emergency care to an informed 

population whilst meeting their own performance targets.  Much research has been conducted into 
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EMS systems around the world, and improving conduct within them continues to be a well 

investigated subject area.   

Ensuing is the story of a study delving into the heart of one National Health Service (NHS) 

Ambulance Service in particular – the Welsh Ambulance Services NHS Trust (WAST).  This thesis 

focuses on suggesting improvements in the service provided to the Welsh population through 

increasing efficiency of operations regarding the fleet, its location and deployment and service 

policies.  

 

1.1.3 Studying The Welsh Ambulance Service 

With largely sparse, sprawling populations, where even urban areas are comparatively much less 

dense than in England, the problems faced by WAST are likely to be accentuated by the 

demographics of the country.  Budget cuts, increasing demand and high turnover of executive staff, 

has meant that WAST has struggled for many years to meet performance standards.  

Welsh Government (2013) records (reproduced graphically in Figure 1.1), show that despite 

recent improvement there is still a necessity to increase the response time achievements of WAST, 

especially in problematic areas where response consistently falls below target. 

 

Figure 1.1 Average WAST performance for critical emergency responses throughout Wales, 

separated by region for the period of November 2012 – January 2013  
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Although advances have been made, and milestone targets are being met much more frequently and 

with more vigour, there is still an apparent need for further insight to the processes.  Future 

implementation of qualitative and quantitative decision tools should assist in preventing WAST 

from trailing behind more urban trusts’ performance and instead evolve in the field of secondary 

health care for Wales.  A more in-depth discussion on the ambulance system in Wales and the 

problems it faces is given in Chapter 2. 

Quite recently, support for changes in performance measures, from response time proportions to 

clinical outcome indicators has been vocalised.  For a patient experiencing a life-threatening 

emergency, a good chance of survival requires a timely response, which has the added benefit of 

reducing patient (and bystander) anxiety, suffering and distress.  It has been advocated that for non 

life-threatening emergencies, the single response time standard should also be replaced with clinical 

based measures.  Since such patients suffer a variety of medical conditions, a range of responses 

would be better suited than a single target; however, it is acknowledged that this will only be 

possible “once the evidence base and professional consensus are sufficiently developed” (Department of 

Health 2005).  It is for this reason that this study looks to investigate patient outcome based models 

for determining the impact system performance has on survival of a population.   

Other issues, not discussed explicitly in this thesis but which occur recurrently throughout the 

academic literature and in ambulance service publications, are the situating of new facilities and 

evaluation of existing ones (workshops, bases and control centres), dispatching and reallocation 

rules of sub-fleets, staffing rules and rostering, shift lengths, cost-benefit analysis (health economics) 

and crisis management.  Nevertheless, many of these issues will be reviewed in Chapter 3. 

 

1.2 Research Objectives 

Response time performance is heavily dependent not only on the size of the fleet and resources, but 

also on the positions from which these vehicles respond.  By simply increasing the capacity, 

response performance may not necessarily witness great improvement (a more detailed discussion 

of this peculiarity will be given in Chapter 6, section 6.2).  The optimal location of the fleet is the 

main contributor to improved performance when targeting emergency operations.  The primary 

objective of this study is therefore to provide an EMS, in this case WAST, with an allocation of 

vehicles at existing base facilities that best allows them to reach and exceed their Government set 
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targets under a set of system conditions.  Simulation of the system, functioning with an ‘optimal’ 

fleet allocation, will provide insight into problematic areas of the country, so that the Trust might 

develop superior strategies to combat any under-achievements in performance.  Ultimately, the 

given allocation will assist WAST in meeting their performance targets whilst saving lives of the 

people they serve.  

Using insight gained of EMS through exploration (of data and recent literature) and communication 

(with members of WAST), it is the intention of the research presented here to provide planning 

tools that offer alternative operational and strategic solutions to any ambulance service.  The 

contribution of research is applicable to a generic EMS setting and so can easily be extended to the 

whole of Wales, to other trusts in the UK and to similarly structured services elsewhere.  The tools 

designed and mathematical models developed, enable investigation on a large geographic scale as 

well as into the differences of modelling patient outcome over response performance – shifting the 

focus of the health service from a business model to be patient centred.  

The five main goals of the study can be laid out, providing a frame of reference throughout the 

thesis, and topics for discussion in the conclusions of Chapter 9, section 9.1.2: 

 Investigate if improvements to WAST’s performance can be made with regards to response 

and turnaround phases, whilst maintaining current capacity; 

 Investigate current policy impact on patient survival; 

 Suggest ways in which to improve survival probability; 

 Support WAST’s move to clinical outcome based measures; 

 Develop generic tools that may be utilised by EMS managers for future planning purposes in 

areas dealing with demand, fleet allocation and capacity. 

 

1.3 Research Strategy 

One of the main classification areas of healthcare research as defined by Hulshof et al. (2012), is 

that of ‘emergency care services’, where either strategic, tactical or operational decision objectives 

form the focus of such a project.  Under this heading fall the problems faced by ambulance services. 
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According to Hulshof et al., the three decision objectives can then be further defined for various 

ambulance service problems: 

 Strategic planning – such as ambulance districting, ambulance coverage problems and 

capacity dimensioning (number of vehicles); 

 Tactical planning – staff-shift planning; 

 Operational planning – including ambulance dispatching, hospital facility selection, 

ambulance routing, vehicle relocation and prioritisation. 

Previously, Operational Research (OR) techniques such as Queueing Theory, Location Analysis and 

Simulation, and a combination of these, have been used to study the operational and strategic 

planning of such Emergency Medical Services and test changes to systems (Brotcorne et al. 2003, 

Mason 2013).  The research approach engaged throughout this thesis makes use of all three 

techniques but offered in a way that, if desired, allows frequent follow-up use of them by non-OR 

experts, including WAST analysts, planners and controllers. 

EMS research has classically taken the course of reducing travel times to and from the emergency 

scene by locating vehicles at different places on a network (Peleg and Pliskin 2004).  In OR, this is 

captured by the field of Location Analysis.  Another useful OR practice for EMS analysis is that of 

Queueing Theory, where one objective would be to minimise the length of time a prioritised 

patient spends waiting for service.  Both of these methodologies are exploited in this study in 

conjunction with a full-system simulation in order to answer the question of how many vehicles to 

locate at existing bases within a region to meet performance targets.  This take on a Location 

Analysis problem will offer WAST the tools they require to make future decisions of resource levels 

to reach the variable regional demand within their performance standards. 

Previous studies focus mainly on the performance driven needs of an ambulance service and not 

necessarily on the best result for a patient (although these often coincide, they strive for different 

things), whereas this study reassesses the use of the Government targets and considers the need of 

meeting these targets whilst ensuring best possible patient outcome.  A limited amount of work has 

formerly been conducted in this area; however, more recently research objectives of this nature are 

undoubtedly becoming the focus of much EMS modelling. 
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Finally, the simulation model presented offers an environment in which to explore the other service 

phases and system aspects, including the proposed clinical outcome based objective, enabling insight 

to problematic policies and alternative operations. 

 

1.4 Thesis Overview 

The thesis begins by looking at the Welsh Ambulance Services NHS Trust (WAST) and its current 

operations.  In Chapter 3 a presentation is made reviewing some of the more important preceding 

studies in the field. 

In order to develop any tools for the modelling of WAST, insight to the current situation is 

required.  Therefore, Chapter 4 sees analyses conducted on a data set provided by WAST for the 

purposes of this study, with the troublesome geographic conditions highlighted, enhancing 

understanding of the current system.   

One common issue in many location problems is the accurate modelling of journey time or distance 

on a network.  To improve the level of detail obtained compared to more traditional models, the 

Google Maps API is utilised and embedded within a Travel Time Matrix Generator Tool, offering a 

benchmark from which to predict all journey times for WAST.  This solution is illustrated in 

Chapter 5, along with a detailed explanation of prior travel time and distance estimation techniques.  

Intelligent location of an operational EMS fleet on a network is widely thought to enhance response 

performance.  Chapter 6 presents four allocation models, demonstrated for two different 

performance measure standards.  The resulting allocations of vehicles to existing stations in the 

South East of Wales are then utilised as input in the simulation modelling approach (Chapter 7) to 

evaluate the probability of a patient experiencing a favourable outcome from a complete service 

process.  The results of all simulation experimentations are presented in Chapter 8 and conclusions 

are formulated in the final chapter.     
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Chapter 2 

 Welsh Ambulance Services NHS Trust 

 

2.1 EMS Responsibility 

2.1.1 Patient Care 

An ambulance was customarily seen as no more than a means of transport for sick or injured people; 

yet, the importance of its role within today’s society is one that should not be underrated.  From 

early records of what can be thought to be the origins of the modern day ambulance – where 

injured patients were carried by hammock based wagons or suspensions between horses (Barkley 

1978) – to the current Mercedes motor vehicles, ambulances are crucial to patient outcome in out-

of-hospital  medical situations. 

Knights of The Order of St. John, known collectively as the ‘Knights Hospitaller’, provided 

immediate care to injured soldiers throughout the Crusades of the Middle Ages, removing them 

from battlefields and pioneering ‘first-aid’ (Nicholson 2001, The Order of St. John 2012).  

Nowadays, The Order of St. John is a charity providing healthcare (predominantly through 

ambulance services) around the world, with the mission:  

“Pro Fide, Pro Utilitate Hominum” 

(“For the Faith, In the Service of Humanity”) 

During the Napoleonic Era, Baron Dominique Jean Larrey shared compassion with wounded 

soldiers of the battlefield who would usually only be collected and transported to a medical centre 

after hostilities had ceased.  Larrey introduced a tiered ambulance system in 1793,   known as the 

“Flying Ambulances” to evacuate injured soldiers during battle to improve their chances of survival 

(Ortiz 1998, Skandalakis et al. 2006).  Following acceptance of the necessity of a medical transport 

service within the military, ambulance services have evolved across the world to include purpose 

built EMS systems for providing emergency care alongside transportation.   
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2.1.2 Star of Life 

After the evolution of civilian ambulance services in the late 19th Century, it was deemed necessary 

by the U.S. Department of Transport, National Highway Traffic Safety Administration, NHTSA, 

(NHTSA EMS 2012), for all emergency medical care services and resources to exhibit a uniform 

symbol allowing them to be easily identifiable.  In 1977 the “Star of Life” (Figure 2.1) was approved 

as the symbol for resource and personnel associated with emergency medical services. 

 

Figure 2.1 The Star of Life Figure 2.2 Phases of EMS service 

The Star of Life was designed by Leo Schwartz, but is an amalgamation of ancient symbols (NAEMT 

News 2010).  The six points were based on an existing symbol of the American Medical Association 

and represent the six phases (Figure 2.2) an EMS goes through in response to an emergency.   

The Star of Life is also displayed on fire engines in some countries since the care procedure is 

similar and the quest of saving lives the same; additionally, many emergency services across the 

world are integrated, with fire engines supporting EMS vehicles and often even enlisting paramedic 

staff to optimise the chances of patient survival wherever in the region an emergency arises. 

 

2.2 Ambulance Services of the United Kingdom 

2.2.1 Introduction 

Traditionally, ambulance services have been used as emergency life-support; however, the 

proportion of genuinely life-threatening emergencies is relatively small, and so the focus of these 

services has shifted over time to urgent care as a whole. 
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Ambulance trusts in England and Wales are part of the secondary care or ‘acute healthcare’ service 

provided by the NHS, and were commissioned by local Primary Care Trusts (PCTs) in England 

who controlled around 80% of the English NHS budget (NHS Choices 2011c) and currently by 

Local Health Boards in Wales (NHS Wales 2012b).  Secondary care encompasses both the elective 

and emergency care of its users, with the Ambulance Service making up part of the pre-hospital 

patient pathway. 

There are some discrepancies between the operations of ambulance services of the United 

Kingdom.  In England (excluding the Isle of Wight) there exist eleven ambulance services (NHS 

Choices 2011a), whereas, Wales and Scotland have only one.  Elsewhere in the UK, such as with 

the Northern Ireland health service, a designated ambulance trust does not truly exist, instead the 

ambulance service comes under the ‘Health and Social Care Trust’. 

The Welsh Ambulance Services NHS Trust provides treatment and care to the Welsh population 

for pre-hospital emergencies and inter-hospital transfers.  Covering urban, rural and sparse areas, 

the Trust operates over a diverse and often problematic region.  Its responsibility to provide an 

efficient and tailored service in each of these areas leads to the necessity of dedicated staff and 

reliable strategies.  The current aim of WAST is to provide equity in this service and ultimately save 

lives whilst maintaining a given level of performance with regards to responses and handovers.  

Their vision is to “deliver high quality care wherever and whenever it is needed” (WAST 2012c).   

 

2.2.2 Services 

An ambulance service encompasses both Patient Care Services (PCS) and Emergency Medical 

Services (EMS).  PCS are responsible for the safe and timely transport of scheduled and elective 

patients to and from medical facilities; EMS, which are the focus of this study, deal solely with 

unscheduled emergency care.  EMS also often involves transportation of patients from the scene of 

an incident to a hospital facility if required, but moreover, staffed paramedics onboard EMS vehicles 

are able to administer medication and provide treatment directly to patients whilst in attendance or 

during transport. 
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2.2.3 Challenges 

In this “Age of Austerity”, the NHS has a duty to make extensive efficiency savings.  For the 

ambulance trusts, this has meant budget cuts.  Financial pressure brings a necessity for better 

organisation of emergency services and cooperation with other health services.     

Over the past few years, the Welsh Ambulance Services Trust has been a focus of local and national 

media attention due to its comparatively poor performance with other UK ambulance trusts.  They 

are however not alone in pursuit of efficacy under arduous circumstances.  Disruption within trusts’ 

structure and management (BBC News 2006a, 2010, 2012b), continual stories of long awaited 

responses by critical patients and shrinking budgets (BBC News 2012a, Panorama 2012), all add to 

the struggle of convincing the media and the public of success whilst attempting to advance UK 

services. 

In terms of demand, the number of calls for urgent medical assistance has been increasing yearly 

across the UK (National Audit Office 2011) due to an ageing population resulting from the post-

war baby boom.  Demand also fluctuates temporally (hour, day and season), spatially, due to 

meteorological changes (Wong and Lai 2012) and as some suggest, with celestial movements such 

as the lunar cycle (Alves et al. 2003, Stomp et al. 2009).  EMS systems must work to accommodate 

this variation in order to provide a sustained service. 

Many services operate with a paramedic on board every ambulance, yet patients are often still 

unnecessarily taken to hospital following a response, particularly within the elderly community 

(Knowles et al. 2011).  In 2005 a report by the Department of Health outlined problematic areas 

and improvement policies for English ambulance trusts.  It was believed that more than one million 

people that end up in Accident and Emergency (A&E) departments across the country as a result of 

ambulance transportation could have been treated at the scene or in their homes, and that the 

approach should be to take healthcare into the community (Department of Health 2005). 

Amongst visions of reducing numbers transported, guidelines were set to also enhance the speed 

and quality of call handling and emergency care received by patients, and to consistently improve 

efficiency, effectiveness and performance.  The report instructs that the correct emergency 

response should be given “first time, in time”.  One conclusion that echoes the particular objectives 

of the Welsh Trust and this study is that progressively “ambulance services should be designed 

around the needs of the patient”.   
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2.3 The Welsh Ambulance Service  

2.3.1 The Trust 

Having a single national ambulance service, Wales manages its EMS with a workforce of 2,500 

employees and with an annual income of £72 million (WAST 2012d).  As the third largest 

ambulance service in the UK, WAST have a duty to a population of 2.9 million people, operating 

resources across a large geographic area of 20,600km2.  Although a small country, this area is 

considerably larger than most ambulance trusts would control, yet has a relatively small population, 

meaning much of the Trust’s operational region is sparse.   

Established 1st April 1998, through the merger of five predecessor ambulance services (WAO 2006), 

WAST operators have since handled around 300,000 emergency medical occurrences and provided 

more than 1.3 million non-emergency patient transportations per year through the Patient Care 

Services (WAST 2012b, Watkins and Price 2010).   

Whilst WAST must be able to balance their operations between urban cities (of which there are 

officially only four) and rural communities, they must also serve the remote and mountainous 

regions of Wales.  In addition to ground coverage, Wales has three air ambulances (funded by the 

Welsh Air Ambulance Charitable Trust) that provide rescue services for injured people in these 

areas as well as immediate emergency care (Wales Air Ambulance 2009).  

 

2.3.2 NHS Direct 

In 2007, NHS Direct Wales became part of WAST (NHS Wales 2012a), providing a 24 hour 

telephone based medical advice service for the population.  The purpose of the service is mainly 

triage driven, giving direction to patients as to the appropriate service and level of healthcare they 

require.  The nurse led service assists the ambulance service when patients may not be experiencing 

an emergency but where an ambulance dispatch might still be required.  It is unique to Wales that 

NHS Direct is incorporated within the Ambulance Trust.  In England and Scotland, separate trusts 

operate the telephone service.  If a call made directly to NHS Direct in Wales is deemed urgent (or 

more critical – see section 2.3.5) then the call is immediately passed to the ambulance service 

operators so that a dispatch may be arranged.  Similarly, if a call arrives with the Ambulance Trust 

requesting medical attention for a condition that does not require the assistance of a paramedic or 
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transportation to hospital, then the call is passed to NHS Direct operators who may assist the 

patient via telephone and offer advice to deal with their condition independently.  Such parallel 

systems offer advantages over separate operations in reducing unnecessary dispatches (Dale et al. 

2003).  Since the two services may coordinate and both sets of call-takers are often in the same 

control room, swift transfer of patients between services is easier and works with minimal 

disruption to the patient.     

 

2.3.3 Emergency Service Operations  

Current practice endeavours to increase patient care, chances of survival and of recovery, whilst 

exceeding strict performance targets, with various procedures in place to help achieve these tasks.   

Typically, when urgent medical attention is required outside of secondary care facilities, (but not 

necessarily outside of the primary care structure), a bystander, third party, or the patient 

themselves may make a phone call to the national ‘999’ emergency telephone line (or equivalent 

international number).   

Operators receive emergency calls through a ‘force-fed’ telephone system, allowing random and 

equal spread of incidents to operators, ensuring fair workloads and distribution of calls.  On 

receiving a call, operators must obtain three vital pieces of information before the call can be logged 

and a decision made on which vehicle to dispatch.   

These three pieces of information are: 

 a geographical location or postcode of the incident; 

 the name of the patient and/or caller; 

 description of the emergency. 

The ‘clock’ starts measuring emergency response time when the dispatcher obtains the above pieces 

of information and stops measuring when the (first) EMS vehicle arrives at the scene of the incident 

and the crew log their arrival.  

Upon receipt of the call by the emergency service telephone operators, it is assessed and categorised 

(as in Figure 2.5) according to the severity of the incident by an Advanced Medical Priority 
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Dispatch System (AMPDS).  This is a unified system for the whole of the UK, whereby, the 

responses of the caller to questions relating to the emergency determine the type of response the 

incident requires.  The AMPDS is one type of Emergency Medical Dispatcher, EMD, (sometimes 

known as Computer-Aided Dispatcher, CAD), that triages emergencies, then determines optimal 

vehicle dispatch choices.  The AMPDS is simply a tool comprising of a visual display and a 

structured mathematical algorithm that determines which vehicle is closest to the incident location.  

It is then in the interest of the Trust and of the patient that the minimum possible delay is 

experienced; the emergency care providers need to reach the scene of the incident quickly in order 

for treatment to be of most benefit, especially in severely life-threatening situations.  The chosen 

ambulance is given orders to dispatch to the scene by the EMS controllers.   

Some CAD tools are unable to specify which ambulance is closest and so dispatchers must make an 

educated guess to this when vehicles are not at the stations.  To improve performance, Dean (2008) 

suggests dynamic deployment can be used; however, to do this accurately, much more information 

is required by the dispatchers to determine the impact of not sending the closest available 

ambulance, especially “within systems that use fixed-deployment response strategies” and ones 

which are unable to track individual resources when they are not at their station. 

Vehicles are sited based on a rotational hierarchy in Wales; when a vehicle becomes free after 

finishing with an incident it needs to be sited at a base or stand-by point ready to await its next call.  

The bases that do not already have an available vehicle positioned at them are ranked based on a 

weighted decision for which would be most desirable to locate at given expected demand and so the 

available, un-located vehicle will be sent to the highest ranked base. 

An ambulance service not only has to dispatch a vehicle quickly enough from the best location to 

ensure a fast response, but also guarantee the correct level of care can be provided where needed; 

that is, a vehicle with the appropriate crew type on board must be dispatched.  An assumption made 

throughout this thesis is that the correct crew will always be on board the chosen vehicle, since 

staffing levels of vehicles and scheduling is a large EMS problem in itself and not considered here.   

The assignment of a hospital for transportation is almost always pre-determined by the location of 

the incident; however, the Trust is keen to reduce conveyance rates and treat more incidents within 

the community.  Paramedic manned vehicles can also treat, test and administer drugs on scene, and 

have the ability to refer patients to social services.  Special Practitioners (SPs) are a recent addition 
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to Welsh EMS, reducing automatic conveyance to hospital (only 4 out of 26 cases in a trial period 

were transported compared to the expected 26 (Watkins and Price 2010)).  They are highly 

qualified and able to perform more procedures and administer a larger range of medicines than 

paramedics whilst allowing the patient to remain in their home or the community.  Many incidents 

categorised as high priority by AMPDS are found not to be life-threatening upon attendance 

(improvements to AMPDS prediction abilities are recommended (Clawson et al. 2008); the SP is 

able to treat the patient at the scene, removing the need for transportation.     

Figure 2.3 exhibits the prior discussion of operational stages for service of an emergency incident. 

After communication with staff members at a WAST control centre in 2010, it was discovered that 

the service operates with locality based rosters which do not vary weekly or seasonally, but 

accommodate some variation by weekday based on simple average peak demand analysis.  The 

rosters inform the number (and type) of vehicles to be on duty within each locality and the 

assignment to base stations.  The average peak demand strategy is designed to show the system in its 

worst possible state based on historical data, yet the informatics team within WAST alluded to the 

fact that this approach might not suggest the best number of resources to deploy to meet demand.   

Other issues that EMS managers may wish to investigate include: 

 vehicle and crew safety and safety of patients when transporting; 

 equipment selection; 

 misclassification of emergencies by call-takers and automated systems; 

 forecasting demand. 

The service aims not only to improve patient satisfaction, care and clinical outcome through timely 

responses and swift handovers, but aims further to reduce cost, maximise equity and make resource 

utilisation (vehicles and crews) fair.  
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Figure 2.3 Pathway through time for the service, service user and vehicle 

for a single emergency call 

 

2.3.4 Resources 

A wide variety of transportation modes have been used to carry sick and injured people over the 

centuries, and across the world.  Husky dogs are not an unusual means of travel in places such as 

Alaska and Scandinavia, and often assist in hauling medical supplies and patient transports.  During 
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the winters of the first world war, dog sleds pulled by teams of Huskies were used even in France 

(British Pathe c1915, Petwave 2012).  In warmer climates, elephants made appearances in EMS 

teams, carrying the wounded from battlefields  (National Army Museum 2012).  Even hot air 

balloons have been used when land transportation was unsuitable (Air Ambulance Service 2012). 

Nowadays, motor vehicles are common across all continents.  There are two main types of vehicles 

used within UK ambulance trusts (Figure 2.4): 

 Emergency Ambulances (EA) - traditional two-manned (either two emergency medical 

technicians (EMTs) or one technician and one paramedic) vehicles with the ability to 

transport patients if required; 

 Rapid Response Vehicles (RRV) - equipped by a paramedic, these vehicles are smaller and 

faster than EAs, so are best used for life-threatening emergency incidents since they are in 

theory able to attend the scene quickly, but are unable to transport patients. 

 

Figure 2.4 Common EMS vehicle types in the UK (left: EA; right: RRV) 

In addition to these commonly used vehicles, there also exist (WAST 2012a): 

 High Dependency Units (HDU) - used primarily for transportations of lower priority 

patients and PCS.  St. John’s Ambulance Service operates with mainly these vehicle types; 

 community first responders - volunteers are able to administer basic first-aid, resuscitate 

and use strategically placed community defibrillators; 

 air ambulances - helicopters and occasionally small planes; 

 bicycles - motor and pedal powered bikes are sometimes used in urban areas. 

For combined EMS and PCS, there are over 700 vehicles in Wales, providing around 50% spare 

fleet capacity for the services.  Emergency Ambulances within WAST are operational 24 hours a 
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day, which is not necessarily the case for the RRV fleet.  For example, there are approximately 70 

vehicles available for use within the South East region, but only around 40 are on shift at any one 

time.  Many stations function with only one EA, sometimes with one additional RRV.  

 

2.3.5 Response Targets 

Response times (the interval between arrival of the call and attendance of a paramedic) and 

turnaround times (the time spent at hospital transferring patient care) are the Key Performance 

Indicators (KPIs) of the Welsh Ambulance Service.  It is apparent why these two are the KPIs when 

patient outcome is considered.  In almost all emergency conditions, whether life-threatening or 

otherwise, a quicker response will mean less adverse effects from prolonged exposure to the 

condition, increasing the chances of treatment and administered medication having a more positive 

effect on the patient.  At the hospital, if a long handover is experienced it is possible for the 

patient’s status to deteriorate.  For some conditions, the time from onset of the emergency to 

administration of life-saving drugs is critical to outcome (e.g. ‘Golden Hour’ for stroke victims) 

meaning the transfer of care should be minimal. 

Performance standards for all UK ambulance trusts are determined by the Government.  One such 

response performance target stipulates that a specific proportion of the population requiring an 

emergency ambulance response must be serviced within a set time from the receipt of an 

emergency call.   

Emergencies are given one of a maximum of five classifications by the Trust, each with their own 

response time targets and monthly performance measures, summarised in Figure 2.5.  The AMPDS 

also assigns the emergency a colour based on its urgency. 

In the UK (and other countries such as the USA and Germany) targets are set to represent the 

difference in equity for rural and urban areas.  That is, there are slightly different targets and 

possibly different deployment strategies depending on whether the area is rural or urban (or sparse).  

This represents how performance differs within and between these areas – the relative ease of 

serving an urban area compared to a rural one and the effect population density has on efficiency of 

the service (Erkut et al. 2008a, Felder and Brinkmann 2002, Fitch 2005). 
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Figure 2.5 Response performance targets for emergency calls in Wales 

 

Category A  (Red) 

Classification given to immediately life-threatening incidents.  Patients require an urgent ‘blue light’ 

response (vehicles use lights and sirens when travelling).  Life-threatening conditions have been 

defined as “an event, injury or illness that is time critical; […] without appropriate intervention or assistance, 

death is likely” (Department of Health 2005). 

Primary Target: 65% of first responses to arrive within 8 minutes (60% in each LHB). 

Secondary Targets: 70% of first responses within 9 minutes; 75% within 10 minutes; 95% 

follow-up responses by an EA within 14, 18 or 21 minutes for urban, rural and sparse areas 

respectively. 

 

Category B  (Amber) 

Non-immediately life-threatening incidents.  A patient still requires a fast response but is not in 

immediate danger and so vehicles do not travel under ‘blue light’ conditions.   

Target: 95% to be reached within 14, 18 or 21 minutes in urban, rural and sparse regions. 

 

Category C  (Green) 

Deemed ‘neither serious nor life-threatening’.  These non-urgent calls are less of a priority in terms 

of response, but still require attention by a paramedic crew as soon as possible.  
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Target: 95% to be reached within 14, 18 or 21 minutes in urban, rural and sparse regions (though 

these targets may be set locally throughout the UK). 

 

AS2 – Urgent GP Referrals/Requests  (Green) 

Sometimes a patient contacts or is seen by a General Practitioner (GP) before involving the 

emergency medical service.  The GP may decide the patient requires secondary care and so requests 

that the patient be transported to hospital, stating a time window for arrival.  

Target: 95% to arrive at destination no later than 15 minutes after appointed time. 

 

AS3 – Urgent Transfers  (Green) 

When a patient at one hospital requires transportation to another facility.  In non-emergency 

situations the Patient Care Services (PCS) deal with these requests; however, under urgent 

conditions the emergency ambulance service is utilised. 

Target: 95% to arrive at destination no later than 15 minutes after appointed time. 

In Wales, for high priority calls, the target for an initial responder is fixed and not dependent upon 

the density of the population; however, when a second responder is required – EA attendance – 

follow-up vehicle targets differ for urban and rural emergency calls.  Ethical issues surround 

decisions to set such performance targets, many of which are discussed in the paper by Felder and 

Brinkman (2002).  For example, if a target of 75% performance exists, and 75% of demand occurs 

in urban areas, it could be possible to locate enough vehicles in these regions to guarantee to meet 

performance targets but without equitable service to rural populations. 

 

2.3.6 Turnaround Targets 

Hong and Ghani (2006) show diagrammatically the flow of an ambulance through a system, and 

alongside show the performance measures at each stage of process.  WAST have an additional 

performance measure to Hong and Ghani’s system – turnaround time at the hospital.  The Welsh 

target for this phase of service is to transfer patient care to the Emergency Department (ED) within 

fifteen minutes for all cases and all conditions.  Extending the handover time by five minutes gives 

the overall turnaround time target of twenty minutes for all emergency cases, allowing handover 

and replenishment of the vehicle ready for service of any imminent emergency call.  
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It is in the interest of any ambulance trust, patients and hospital staff for a patient to experience a 

swift handover of care.  This is however, not always possible and conflicting targets for the 

ambulance service and the emergency departments are not conducive to small turnaround times.  

Without better and more consistent recording of information referring to the length of these 

transfers of care, advancement in this service phase is restricted (BBC News 2009a).   

 

2.3.7 Challenges 

Hospital handovers cost the NHS millions of pounds per year in tens of thousands of lost ambulance 

hours due to queueing at EDs, which have risen from 37,000 hours in 2008/2009 to around 54,000 

in 2010/2011 (Hughes 2009, Jones 2011).  Not only is this money wasted that could be better used 

within the service, distressed patients spend long periods of time waiting for transfer of care, 

resulting in potential deterioration in their condition and effectiveness of subsequent treatment.  

Furthermore, whilst waiting to handover, vehicles are ‘blocked’ – unavailable to attend other 

emergency incidents – increasing utilisation (Lowthian et al. 2011) and putting lives at risk.   

Rural areas such as Monmouthshire in South East Wales often witness poor performance with 

regards to response time.  In 2008, suggestions of closure of the existing, already unmanned, 

station in Monmouth (Monmouthshire Beacon 2008) caused further controversy within the 

community, with the public looking to WAST to provide solutions to the response time problem 

witnessed in the area.  In one reported case, a resident waited over an hour for the attention of an 

EMS crew, from over 30 miles away, after making a request for help for a Category A classified 

emergency call.  

There have been many other cases, also in the South East, where ambulances from across the border 

in England were dispatched to an emergency since vehicles from local Welsh stations were unable 

to reach the patient within a reasonable response time. 

It is not exclusively South East Wales that experience problems in meeting targets.  Although small 

yearly improvements can be seen for overall Category A eight minute response performance from 

2001 to 2007, WAST are still struggling to meet the all Wales 65% target.  Even when this is 

surpassed, not all LHBs make their milestone 60% target.  By improving the service solely to meet 
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the eight minute mark, the service could be jeopardising performance with respect to other 

categories and outcomes.   

A report into the operations of English ambulance trusts comments on how the suggestion of 

moving towards medical based measures for all conditions could be beneficial. 

“It is becoming increasingly inappropriate to judge responses to non-category A calls exclusively on the basis of 

response times rather than clinical outcomes and the care given to the patient” - Department of Health (2005) 

The report comments on the classification of ambulance service targets by population density.  Such 

classifications are often outdated (based on Welsh data from 2004), lack clarity and present 

confusion in the expectation of response times.  Recommendations were for a single measure to be 

implemented from 2006 and not the segregation by urban or rural communities (Department of 

Health 2005).  This approach would be more equitable, and would solve the problem of population 

classifications requiring regular re-evaluation. 

It is also suggested that ‘GP urgent’ performance standards should be the same as the other ‘999’ 

calls – that the clock should stop with arrival at the scene and not based on a target of reaching the 

hospital within 15 minutes of the requested time. 

Centralised ambulance service structures exist around the world with the thinking that this will 

improve performance through better management and highly accessible resource centres.  In Wales 

many vehicles operate out of centrally populous areas to serve the higher demand, but this leaves 

the more rural areas vulnerable.  When individual staff members at the South East control centre 

were asked what they felt were the biggest challenges faced by the service, many mentioned that 

more vehicles and crews were required.    

Delays, outdated equipment, resource deprivations, staff sickness levels due to overworking and 

disrupt to management structure are all thought to be “costing lives” according to the former 

WAST chief executive Roger Thayne (BBC News 2009b).  In 2006, WAST saw three appointments 

of chief executive in three months (BBC News 2006b) which would have had an obvious impact on 

the smooth running of any organisation.  Although some six years ago (at the time of writing), this 

has likely had a knock-on, if not adverse, affect on the service.  A workforce takes time to adapt to 

any newly implemented changes, especially when such high turnover in management means 

introduced strategies may end up being temporary. 



Chapter 2. WAST 
 

22 

Lower cost of living and reduced house prices are attractive to low income families and the elderly, 

particularly in the current economic climate.  Both deprived and elderly residents have a higher 

probability of EMS requirement and hospital care at some point during their lives (Cadigan and 

Bugarin 1989), where this socio-economic demand category is also on the rise (Portz et al. 2012).  

The South East region of Wales is home to a large proportion of this demographic, meaning EMS 

resources must be prepared to serve such a population effectively.   

Continual improvement to any emergency service, not just EMS, is vital in order to retain service 

quality.  Deterioration is likely if certain national issues (some of which are discussed by Hong and 

Ghani (2006)) are not accounted for, including: 

 increasing and ageing population; 

 ageing staff; 

 expanding area of coverage (although in Wales this is less of an issue since the one 

Trust covers the entire country); 

 health consciousness - increasing demand to all NHS services. 

One of the biggest present challenges to WAST is public perception.  Not only does the service 

need to achieve its own vision of improvement but must also convince the public of its successes.  

By restructuring the existing service, WAST hope to satisfy service users and restore faith.  Public 

understanding however, is another, separate issue.  A large number of calls for service are deemed 

inappropriate as an emergency (Wrigley et al. 2002) or are thought of as misuse of the service 

(Knapp et al. 2009).  The concept of what indicates a necessary emergency intervention needs to be 

tackled and clarified for the public; this, alongside a better triaging system, would relieve some of 

the immediate pressure on EMS systems.   

 

2.3.8 Interventions  

The Welsh Government carries out regular analyses on the data collected by WAST to ensure 

standards are maintained and any problems with the system are highlighted.  Further details 

regarding the analysis conducted are provided in Chapter 4. 
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Large variation between regions in response time performance is not always due to worse or better 

operational procedures.  Weather, which is known to affect EMS response, varies across the 

country and seasonally.  Demography also takes its toll; urban areas tend to perform better than 

rural since, although demand is higher, travel times between sites is relatively small.  The 

Department of Health (2005) recommended that English services prioritise all emergency calls in 

the same way so as to minimise variation by region.  In order to combat the challenges faced in 

Wales and suggest courses for improvement, in-depth analyses of WAST have been commissioned, 

returning reports of operational and strategic findings over the past few years. 

One of the earliest reports was presented by the Auditor General for Wales to the National 

Assembly (WAO 2006).  Conclusions showed, against common belief, that the Trust was not 

under-resourced, yet questions were raised surrounding the efficiency of use and deployment of 

these resources.  The discussion in section 2.3.7 regarding outdated rural and urban categorisation 

is supported by the Audit.  It was found that the postcode and address database used at the time did 

not conform to British Standards and so future recommendations were that the target discrepancy 

between rural and urban areas be disregarded.    

A similarly focussed investigation by Lightfoot Solutions (authorised by Health Commission Wales 

and WAST) found the lack of exact vehicle location details reduces the effectiveness of dispatch 

decisions.  Through the introduction of Automatic Vehicle Location Systems (AVLS) or a mobile 

data system, the CAD system could more effectively track vehicles and optimise deployment.  

Another main finding of the report was that the reliance on overtime and planned relief for staff, 

although undesirable, is in fact keeping the costs to the service lower than if the service operated at 

the recommended staffing level (with larger delays).  The efficiency review therefore recommends 

the contrary to the earlier Audit, offering the solution to the problem as simply increasing resources; 

however, the objective of this study is to show that ploughing more resources into a system is not a 

necessary solution and that it is possible to provide an alternative that may improve performance 

without incurring additional costs. 
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2.3.9 Improvement Policies 

Ambulance services around the world are interested in improving their own systems, and targets as 

set by individual governing bodies are becoming more demanding.  With the development of 

services comes the question of performance and whether the current measures are even appropriate.   

If better triaging and assessment of incoming emergency calls could be implemented, it is possible 

that even continuing with current staffing levels and resource capacity, much of the pressure on the 

Welsh EMS system could be lessened (Lightfoot Solutions 2010).  The Government offer a toolkit 

for commissioners to assist in understanding, identifying and combating the problems faced by EMS 

Trusts as laid out in sections 2.2.3 and 2.3.7 (Department of Health 2009). 

The current UK system fails to record or capture by how much the response time target is 

exceeded.  An early recommended method of measurement by the Audit Office was to use the 95th 

percentile, allowing the tail of the response time distribution to be captured rather than cutting off 

data beyond the target standard.  More recently, some Trusts are moving from ‘coverage’ type 

targets to more clinical outcome based results, opening up an alternative line of questioning for 

researchers.   

 

Figure 2.6 New WAST framework for EMS performance 
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Since late 2011, after a claim by the National Audit Office that ambulance services put too much 

emphasis on response time with detrimental effects to patients (National Audit Office 2011), 

WAST have been instead working with patient care led strategies.  Clinical quality indicators 

measure performance opposed to response time.  Improving patient outcome can be achieved 

through improving efficiency, safety and care.  The new performance framework is summarised in 

Figure 2.6 based on a document received after communication with the service detailing the change 

to only two category types and the planned and unscheduled methods of care (WAST March 2011).   

Additional performance standards include: 

 increasing percentage of patients suffering ‘myocardial infarction’ (heart attack) transferred 

to treatment centres within 150 minutes and improving patient outcome by increasing 

number of eligible patients receiving thrombolysis within 60 minutes; 

 improving access and treatment compliance rates and percentage of patients transferred 

directly to a stroke team within 60 minutes. 

A surge in prevalence of quantitative EMS data since 1994 (Henderson and Mason 2000), for 

example through CAD tools, has allowed more in depth understanding of different EMS systems 

and encourages investigations into better operational and strategic procedures.  For example, in 

Ireland prior to the year 2000, data was unavailable for ambulance response times and had to be 

collected specifically for investigation to the system’s performance (Breen et al. 2000).  The 

discovery of unnecessarily quick responses to minor incidents and large delays experienced by some 

high acuity patients show priority-based classification and dispatch tools are vital for the potential 

improvement of the population’s health.  The suggestion of introducing an AVLS would also assist 

in this data collection in Wales, enabling more accurate data analysis and system perception.  For 

now, the use of existing data, supported by communication and collaboration with ambulance trusts 

is enough to provide a valuable insight to the daily operations and larger scale tactics of an EMS 

system, from which the development of planning and decision support tools can aid improvement 

missions of such services.     
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Chapter 3 

 EMS Modelling: A Literature Review 

 

3.1 Introduction 

The National Healthcare Service (NHS) in the United Kingdom (UK) is a body that provides 

medical and rehabilitation care and treatment of the public.  Founded by Aneurin Bevan in 1948 

(NHS Choices 2011b), much work has since been and continues to be conducted in improving all 

NHS delivered services, ensuring better quality of care to patients and potential service users.  

Pre-hospital patient care pathways often incorporate NHS ambulance service processes.  The 

performance issue of an ambulance system is one that occurs wherever such an EMS structure 

exists, and is not a current issue for the UK alone.  The literature review following spans a lengthy 

time period, with results originating from many different countries and for various services.  

Literature considered important to progression in the fields of health, emergency service, 

simulation and resource location, and those studies which encounter problems similar to an 

emergency service (medical or otherwise) are discussed.   

Beginning with the health aspects, the effects of policies on NHS services are documented in section 

3.2, with results collated from previous research and from medical documentation itself.  

Following an appraisal of mathematical and OR methodologies (section 3.3) and solution 

techniques (section 3.4) used to tackle diverse facility location and vehicle allocation problems in 

the past, the theoretical and implemented progression these techniques make into emergency 

service and emergency medical service operations is deliberated in section 3.5.  The review 

presented here moves on to look at the difference in EMS modelling around the world and the 

limitations of implementing developed models.  
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3.2 Medical Insight 

3.2.1 Introduction 

“When someone’s heart stops beating, every second is vital” 

– Mark Whitbread, Clinical Practice Manager of the London Ambulance Services NHS 

Trust (London Ambulance Service 2010). 

The importance of immediate attendance to critical patients is indisputable.  A patient’s chance of 

survival in many emergency conditions is initially dependent upon the speedy delivery of life-saving 

drugs and the administration of medical procedures such as cardiopulmonary resuscitation (CPR) 

and defibrillation.  These procedures are almost certainly required to be conducted by trained 

emergency technicians or paramedics, and in many emergency situations require further care, 

treatment and diagnosis at a nearby hospital facility.   

Response and transportation times are therefore crucial components of any EMS system, leading 

research to focus on better locations, optimal fleet capacities and shrewd deployment policies to 

improve the performance of these service phases.  

 

Figure 3.1 Yearly publication results from search engine ScienceDirect (SciVerse © 2013) 

using keyword criteria “emergency medical service, ambulance” in addition to either “location 

analysis” or “simulation” 
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A seemingly exponential growth in the number of research papers published, highlights the attempts 

at improving emergency secondary care provisions whilst suggesting location analysis and simulation 

modelling as approaches to tackling this problem in recent years (see Figure 3.1).   

 

3.2.2 Triage & Categorisation 

To improve the service provided by EMS Trusts, a simple, but costly, solution would be to 

introduce new resource elements to the system in order to manage demand and respond quickly.  A 

more economical solution, and the core objective of many research projects, is the maximisation of 

existing resource efficiency (Breen et al. 2000).  Savas (1969) advises that the cost-effectiveness of a 

solution should indeed be contemplated.  Alternatives to new-resource solutions, some of which 

WAST have previously considered (and others which are explored throughout this thesis), include: 

 substituting threshold response time targets with clinical outcome based indicators; 

 maximising the use of prioritised dispatch systems; 

 correctly identifying life-threatening and urgent calls – i.e. better triaging; 

 utilising first responders; 

 encouraging communication between operating areas; 

 skill-mix of staff on ambulances – e.g. having qualified technicians on all EAs. 

The Auditor General highlights call categorisation (originating from automated dispatch systems) 

and initial triage as issues requiring further attention in the future to improve prioritisation accuracy 

(WAO 2006).  Furthermore, in order to enhance the smooth running of an EMS system, the 

Department of Health (2005) suggests making a summary of patient records available at the point of 

care.  This would assist with triaging at the time and in the future, and in the accurate recording of 

service data, allowing swift handover of care at the subsequent stages of service.  From an 

Operational Research point of view, this would also benefit future modelling endeavours.    

The AMPDS (as discussed in Chapter 2, section 2.3.3) is a standard scheme, implemented by all UK 

Trusts.  In other countries however, such a regulator does not always exist.  EMS service structure, 

strategy and operations vary by trust, country and continent.  Thakore et al. (2002) summarise why 

triage is necessary for all emergency calls and state how a priority-based dispatch system can reduce 
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overall response length.  Prior to publication of the paper, not even all UK EMS Trusts operated 

with a prioritisation system – in these areas, all emergency calls were expected to receive an 

immediate response.  In queueing terms, this implies the system exercises a first-in, first-out (FIFO) 

service policy.  WAST do in essence operate with a FIFO system, complemented by the attribution 

of priority to patients so that separate FIFO queues exist for each emergency category; yet, in 

reality the queueing system is more complex than this, and the length of time the patient has spent 

waiting for service will also factor in their queue position.   

 

3.2.3 Response, On-scene Care & Patient Outcome 

 “Greater understanding of clinical best practice and technological advances […] will make it 

possible to increasingly assess ambulance trusts on the quality of the care they provide, not just how 

quickly they get to the patient” – Department of Health (2005). 

Many medical-profession and OR researchers spend time deliberating the factors affecting patient 

survival and efficiency of emergency healthcare services.  In some cases, the focus of a study is on 

EMS response time and location of resources, whereas others consider instead the training provided 

to responding paramedics and the effects of administering treatment prior to hospital admission.  

One such study (Studnek et al. 2010) assesses the impact of pre-hospital time intervals on a specific 

type of myocardial infarction (heart attack) patients.  Time until treatment is found to be critical to 

patient outcome – as also known for cardiac arrest patients and stroke patients.  Performance of the 

system is deemed acceptable if the interval from first contact to intervention is no longer than 90 

minutes.  By identifying the areas in pre-hospital processes for these coronary syndrome patients 

that require improvement, the authors claim that their model could have great clinical impact in the 

future.   

One of the earliest references to evaluating clinical outcome given an emergency medical response 

and the challenge this presents to future EMS modelling was in 1984 (Hill III et al.).  Despite the 

difficulty in obtaining data, a study of the long term survival of patients who experience an out-of-

hospital cardiac arrest (OHCA) was later successfully conducted in Norway (Naess and Steen 2004).  

As one of the longest spanning follow-up studies, insight to patient outcome was obtained and the 

cost-benefits of treatment and service in relation to quality of life and length of survival was sought.  

From the information collected, a survival curve was found, approximately negative exponential in 
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shape, representing the cumulative survival of patients over time in years for an OHCA discharged 

from hospital alive.    

Often, the probability of survival of a patient is measured until hospital discharge.  For some 

medical conditions in particular, short-term outcome can be improved with a swift response by an 

appropriately trained ambulance crew.  It is therefore thought, that by reducing the expected time 

taken to respond to the emergency the better the chance of survival of EMS service users. 

Statistical significance of early paramedic intervention on cardiac patient outcome is supported by 

Mayer (1979) but the concept of minimising response time objectives in EMS planning is challenged.   

Response time is still a crucial component to survival, whether or not response times are used as 

performance measures, but this new way of thinking has been the main factor in the recent 

progression of UK EMS performance measures.   

With UK pilot schemes exploring the feasibility of providing angioplasty instead of thrombolysis as a 

first emergency treatment (i.e. at the scene) for heart attack victims country-wide (Department of 

Health 2005), the shift from the traditional and accustomed eight minute response to best responses 

and community treatment is duly supported.   

It is important to realise that some follow-on emergency treatment for such incidences may only be 

able to be provided at specific hospitals.  Although transportation time was found to be the variable 

most strongly associated with achieving intervention within the target time by Studnek et al. (2010), 

transportation times may not be improvable if only certain facilities have the ability to intervene; 

therefore rural regional planning has a part to play in determining feasibility of coronary syndrome 

protocol. 

As mentioned, for many critical conditions (stroke, cardiac arrest and heart attack), response, on-

scene care, transportation and handover of care interval must all be contained in the onset to 

treatment time frame to maximise chances of survival.  By minimising each segment of service in 

turn it is possible to minimise the overall emergency service length to increase chances of a 

favourable patient outcome.   
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3.2.4 Challenges 

Progress in service improvement (by either a response time or clinical outcome based measure), is 

hindered by temporal and spatial demand factors, vehicle type dispatched, personnel dealing with 

the incident and many other conditions which the ambulance trust may not have control over.  

Although, ideally, the focus of such an emergency system should be on the service it provides to its 

patients and not on system performance per se, adversity during service does not solely surround 

the patient’s condition.  Coats and Davies (2002) briefly mention some of the factors that 

contribute to difficulty experienced by EMS crews, doctors and paramedics at the scene: 

 lighting (especially when incidents occur outdoors, under darkness); 

 noise; 

 ease of access to patients; 

 weather conditions. 

Weather for example, is fairly well explored when it comes to its impact on demand for an 

ambulance service (McLay and Mayorga 2010, Vile et al. 2012) but there exists little investigation 

of the affects it might also have on service (and travel) time and the increased risk response. 

McLay, Boone and Brooks (2011) analyse call volume arriving to emergency services during times 

of extreme weather conditions (blizzards and hurricane evacuations), since it is acknowledged that 

the level and type of emergency (risk to patients) is higher than under normal weather conditions 

and the transportation network may itself be “impaired”.  This paper makes an unusual contribution 

to the literature since it is common for temporary and fast relief suggestions to be made for 

occurrences of extreme weather or disaster (Altay and Green 2006, Lin et al. 2012, Wright et al. 

2006, Zayas-Caban et al. 2013).  McLay et al. instead focus on not compromising preparedness 

whilst still accommodating the additional needs on the service in these periods of excessive demand.    

“Ambulance services need to become more rigorous and sophisticated in matching supply to demand, 

particularly given the consistent year on year increases” – Department of Health (2005). 

Adjustments to workforce plans and vehicle deployment strategies were highlighted as essential to 

deal with high demand in the Department of Health report.  An exemplar system praised was that of 

the Staffordshire Ambulance Service NHS Trust, which have operated with the ‘high performance 
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ambulance service’ concept since 1994 (Turner and Nicholl 2002).  The high performance concept 

predicts where demand is expected, so that vehicles may be positioned accordingly for time-

dependent demand, reducing long-term operational expense.  

A study into regular call volume predictions for EMS looks at demand varying over the time of day 

and day of the week (Setzler et al. 2009).  Forecasting demand by only considering the expected 

number of calls for an individual region does not allow response times to be minimised effectively.  

Instead, to optimise, the forecasts should include both temporal and spatial distributions of the 

demand and resources (Geroliminis et al. 2009).  Additionally, these aspects should be at the 

forefront of EMS modelling design when attempting to reduce response times and improve survival 

For example, Chang and Schoenberg (2009), Ong et al. (2010) and Trowbridge et al. (2009). 

 

3.2.5 Specialist Staff & Training 

In order to enhance patient survival (as WAST intend, Chapter 2 section 2.3.9), early interventions 

could occur from sources other than paramedic practitioners; for example, GPs, first responders, 

trained first aiders or bystanders.  Persse et al.’s study (2003) pays homage to the tiered ambulance 

system whereby paramedics are not always the first line in emergency care.  For some EMS 

incidents, paramedics are unnecessary, and by minimising their assignment to low priority calls – 

instead sending technicians (EMTs) – the result is of a system with more highly skilled paramedics, 

as these resources are able to become more specialised in a smaller range of incidents, aiding early 

intervention. 

In Wales, Special Practitioners (SPs) are a recent addition to the EMS team.  With further training 

and expertise, these employees help with the triaging and treatment of patients at the scene, 

enabling the Trust to reduce conveyance and bring care back into the community.   

An assessment of pre-hospital care suggests some response protocols do not necessarily minimise 

mortality; however, clinical outcomes for survivors may be improved if the idea of manning all 

vehicles with highly skilled staff is implemented (Nicholl et al. 1998).  As yet, there is a lack of 

commitment throughout the rest of the NHS to provide assigned pre-hospital care doctors.  If this 

strategy were adopted in the UK, it could assist in swifter treatment of patients at the scene, or 

even during transportation, resulting in a higher survival probability for the most critical patients.   
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The appropriateness of non-paramedic first responses for pre-hospital care, is discussed in a clinical 

review paper (Coats and Davies 2002) in relation to road traffic accidents.  Delays experienced 

during response may cause patients’ conditions to deteriorate; yet as an alternative to investigating 

operational procedures to reduce these delays, improvement of professional training to support 

clinicians in these situations is suggested.  For attending GPs at the scene of critical emergencies, 

patient survival could also be enhanced by the immediate administration of certain treatments (as 

mentioned in section 3.2.3); however, surveys suggest many lack the confidence to deal with these 

situations (Bloe et al. 2009).  Improvement to training and inter-service collaboration is 

recommended to alleviate these barriers.    

A range of papers have been discussed relating to the concerns and problems faced by EMS 

managers.  The next section describes research corresponding to the use of one particular OR tool – 

namely Location Analysis – often used to address problems where the location of resources is 

fundamental to service and efficiency of a network.  

 

3.3 Location Problems 

3.3.1 Introduction 

Over the years, various tools such as mathematical programming, queueing theory, simulation and 

statistical modelling have all contributed to the development of EMS solutions, commonly through 

improving efficiency of resources.  Such OR techniques are indispensible in solving both public and 

private sector problems for systems of service and delivery.  One application is to location problems, 

which can be described as the problem of “siting facilities in some given space”, where solution 

approaches have four main characteristics (ReVelle and Eiselt 2005): 

1. customers located at nodes or on arcs; 

2. facilities to be located at nodes; 

3. a space in which all customers and facilities are located; 

4. a metric indicating distance or time between nodes. 

Location theory and its applications have played a major part in the structure of the UK’s operations.  

With foundations in war efforts where the need to better organise, strategise and develop tactics for 

defence existed (Blackett 1962), this field of OR now lends itself to a wide and diverse set of 
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commercial and public sector problems (Daskin and Murray 2012).  An extensive inspection of 

general location analysis papers can be found in the survey provided by ReVelle and Eiselt (2005). 

One special case of the theory is the problem of locating vehicles or servers on a network to best 

meet a particular service user or management directed target.  Spanning mainly the past five 

decades, the research into these areas has produced profound results from mathematical 

programming methods developed for a broad range of related situations.    

Simulation offers an alternative environment for submitting a system to modifications and noting 

impacts of policy changes on overall performance.  For an organisation where real-world testing is 

undesirable, or even impossible, simulation is a dependable and insightful tool for providing 

justification for operational decisions.  For an EMS system, such as WAST, this technique can help 

convince policy makers through visual interaction that increasing efficiency in the system is possible.  

The location of vehicles on a network and the service of demand are key elements to the type of 

problem faced by the research in this thesis and so create a starting point and become a continuous 

focus of the following literature review.  

 

3.3.2 P-Median and P-Center Problems 

According to Smith et al. (2008) “the major growth of location applications has occurred […] since 1980”.  

Classic problems presented in the location literature however, occur much earlier and form the 

foundations of the bulk of modern day studies.  

With the discovery of solutions to the classic p-Center and p-Median problems by Hakimi (1964, 

1965), the theory around location analysis quickly became a widely deliberated topic – 

commercially and academically – due to an increase in demand and rise in site planning interest.   

Referring to a communication network, the p-Median problem solution outlines the technique for 

optimally locating a number, p, ‘switching’ centres or points on a nodal network in such a manner 

as to minimise the total length of branches (wires) connecting the centre to all other nodes of the 

network.  That is, the objective is to minimise average travel time or total average demand-

weighted distance of the population to the facility.   
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The p-Center problem has slightly different objectives; instead of minimising the average travel time 

alone, it looks to optimally site p points or facilities on a network with the purpose of minimising 

the maximum distance from the demand to the nearest point or facility.  For example, where the 

network can be considered to represent a highway system, police vehicles may respond to 

emergency incidents anywhere on the network, where large travel times are undesirable.   

Almost alongside Hakimi’s introduction of the p-Median problem, Maranzana published results on 

the location of supply points (1964).  Based on Cooper’s ‘alternative’ heuristic solution (1963) for 

the similar problem in the plane, the location-allocation heuristic minimises transport costs of a 

network through a ‘centre of gravity’ concept.  Although unable to guarantee optimal results, it 

offered an important step forward at this time for location and routing problems.  

 

3.3.3 Covering Problems 

Over the following decade, Britain saw many further investigations in location theory drawing from 

the innovations of Hakimi and Maranzana.  Locating major public-use facilities is prominent in the 

literature, but with a variety of objectives.  An alternative to minimising total distance travelled by a 

population to facilities is to maximise the coverage of population demand with the minimum 

number of facilities (located at a predetermined number of candidate sites) whilst maintaining a 

certain level of service.  This type of problem is known as ‘set-covering’.  Voronoi (1907) is 

responsible for the underlying mathematics of set-covering, with the principle of ‘Voronoi Cells’ 

being that of dividing a planar region into sub-regions using tessellations, and where distance from a 

discrete set of points in the plane is significant.   

More than sixty years after Voronoi, the influential Location Set Covering Problem (LSCP) was first 

described formally (Toregas et al. 1971).  The discovery of its solutions builds upon Hakimi’s work, 

though some believe that set-covering is more generally inspired by the problems of locating 

emergency service facilities (Smith et al. 2008).  It is viewed to be mainly a public sector problem 

since costs are not usually incorporated explicitly, leading to a cost-ignorant objective function; 

however, its popularity and use in subsequent studies (as will be shown) highlight its importance to 

modern location theory.   
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Unlike the p-Median and p-Center cases, the objective of Toregas’ models is to enable coverage of 

an entire population within a pre-specified distance standard, to reduce the previously inevitable 

situation of some customers experiencing large travel times in the solutions.  In other words, it 

intends to minimise the number of points required to provide a service to all other nodes on the 

network, where at least one service or facility is placed within the pre-specified distance standard, ܵ, 

of the population it is covering. 

This deterministic model makes a breakthrough into the coverage of a population; however, lacks 

foresight of demand.  Population density, and therefore population at each node on the network is 

not considered by the traditional LSCP, leading to issues of unbalanced demand on servers.  The 

numbers of servers located are often unrealistic and beyond the restrictions and resources of the 

problem modelled.  The issues neglected by this primary insight of Toregas and of further 

developments in this area of location analysis are highlighted soon after by other researchers.   

Work undertaken by Church and ReVelle (1974) and by White and Case (1974) essentially 

independently investigate the Maximal Covering Location Problem (MCLP).  By maximising 

coverage of the population, rather than seeking to cover the entire population (as in the LSCP), the 

MCLP serves demand nodes within a predetermined service (time or distance) standard.  The 

formulation considers a finite number of servers to be located optimally at candidate sites assigned 

to specific nodes on the network.  The studies lend a popular structure for more modern models, 

including the ones presented in Chapter 6 of this thesis; a review of this class of covering models and 

their progression is given by Berman, Drezner and Krass (2010). 

Limiting the real-world application of MCLP, is the absence of customer choice.  Often a customer 

is able to choose the facility they attend or from which they receive service.  The idea of ‘choice’ is a 

fairly recent interest and much literature (both for and against) exists with regards to patient choice 

in healthcare (Gallivan and Utley 2004, Knight et al. 2012b).  In emergency services, choice is more 

likely to be deliberated by the operators, as opposed to the user.  Silva and Serra (2008) take a 

different approach by incorporating directed choice within their queueing model.  Control-room 

operators are able to deviate from an algorithm for selecting the closest available and appropriate 

server.  This line of research is not discussed further here, despite its prevalence in modern 

literature, since for any emergency service, choice of whom to serve or by whom to be served 

would be unethical (French and Casali 2008).   
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Another limitation of the mentioned models (common also with many other models), can be seen 

by the lack of incorporation of server availability – deterministic models of this type have no link to 

congestion of the system.   

An important extension to the MCLP is introduced in the late 1980’s.  The Maximum Availability 

Location Problem, MALP (ReVelle and Hogan 1989), can simply be thought of as a probabilistic 

version of the MCLP.  Essentially, it strives to incorporate congestion – the chance of finding a 

server unavailable when required for service.  Two versions are applied to Baltimore City: 

 MALP I: makes use of the assumption of equal busy fractions across all regions in the city.   

 MALP II: relaxes the assumption of uniform busy fractions and instead employs area 

specific busy fractions calculated from local estimates. 

A summary of the results suggests MALP II provides better and more dispersed coverage in the 

solution for locating ݌ servers than the first version.  The authors were aware that solutions for 

location from other models do not always realise the requirements of the problem, particularly for 

emergency response systems.  When rates of incoming emergency calls are large for a particular 

region, the demand on servers positioned in that region may in some cases prevent coverage.  

Where congestion effects occur, ReVelle and Hogan recommend MALP to ensure reliable 

approximation of utilisation. 

So far, the position of resources has been considered; a method for finding the number of facilities 

required to be located is described by Neebe (1988).  The intention is to keep the maximum 

distance travelled from demand to the facility less than some distance, ܵ; in particular, a range of 

emergency facility quantities are explored for maximum distance values (including single facility 

networks).  Earlier studies only consider standard values of ܵ for a specific number of servers ݌.  

Even small changes in distance or time standards may greatly affect the overall amount of facilities 

necessary.  This is an important consideration and is vital to the optimal working of any network. 

The problems discussed in this section utilise a number of OR techniques in finding solutions; the 

solution approaches available for location problems are now discussed, and literature demonstrating 

implementation is featured.  
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3.4 Solution Approaches 

3.4.1 Mathematical Programming 

Where the solution space to a problem is perhaps too large to attempt a full enumeration approach, 

mathematical programming, in particular, integer programming, can assist in discovering potential 

suitable solutions. 

Often in application to EMS problems, mathematical programming approach solutions carry 

weaknesses (Goldberg and Paz 1991), such as: 

1. deterministic travel time assumptions; 

2. equal utilisation of all vehicles; 

3. “a priori distribution for primary and secondary service is known”; 

4. independent service time of location. 

Despite the limitations, some models show great realistic efforts in EMS application.  For example, 

interruption of low-priority calls to allow resources to attend higher priority ones can be 

incorporated to the integer programs, for use in real-time decision support and disaster 

management systems (Majzoubi et al. 2012).  

In Chapter 6, developed integer models capture the location dependence of service time by 

calculating all possible route travel times individually. Goldberg and Paz similarly develop models 

with stochastic travel times, consideration to variation in service time by location and estimated 

vehicle utilisation per station. 

 

3.4.2 Queueing Theory 

Modelling of emergency systems is a complex problem.  Some efforts represent this reality solely 

using location analysis; however, it is understandable that queueing theory lends itself well to the 

situation when the structure of the system is considered (Figure 3.2).  Priority queueing theory in 

particular fits with incoming calls for service, where emergencies are assigned a classification code 

for service order upon receipt.  The phases that patients pass through during an emergency service 
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can also be represented using techniques from stochastic processes such as Markov Chains (Alanis et 

al. 2013) and simulation (section 3.5.7), as can server states and their locations.  

 

Figure 3.2 EMS system structured as a priority queueing system 

The development and use of queueing theory within location analysis intends to encourage the 

production of fast solutions to deal with resource allocation and capacity issues on a network.  

Advances in location analysis seek the probabilistic location of vehicles on a network.  Stochastic 

models allow the uncertainty of the arrivals of demand for emergency services and also probabilities 

of travel times and service distributions to be incorporated into the representation.  

Larson’s Hypercube Queueing Model (1974) (a type of ‘Queueing Descriptive Model’) is a 

cornerstone study, providing a bridge between queueing theory and location analysis.  Its unique 

research direction proves to be invaluable in the course taken by subsequent investigations.   

The Hypercube model considers server congestion rather than just coverage for situating ܰ 

emergency service vehicles.  A geographic region is split into ‘cells’, a concept explained in further 

detail in Chapter 5, where a (possibly non-symmetric) matrix represents the inter-cell travel times.  

The problem is then modelled using a continuous time Markov process to account for server 

availability.  By tracking the state of mobile servers in a congested system, where servers in 

individual regions are treated independently, a solution to the steady state distribution of busy 

fractions is found.   

The model was developed in conjunction with application to the problem of police patrol vehicle 

routing since its dynamic nature allows assessment of the quality of the decisions and adjusts to 

improve the solution. 
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Interestingly, the Hypercube was developed at a similar time to the Set Covering models and yet its 

advancements are made in the area of probabilistic, rather than deterministic, modelling.  The 

substantial success of the Hypercube model likely comes from the combination of location analysis 

with queueing theory and the allowed interaction between the multiple servers on the network. 

For bigger problems, involving a large number of servers, heuristics are suggested as a solution 

option in an approximation to the Hypercube Queueing Model (Berman et al. 1987). 

In an emergency recovery tow vehicle study conducted in San Francisco Bay (Geroliminis et al. 

2006), servers must be located to cover demand whilst keeping response times small.  This is 

similar to the EMS vehicle location problem; however, this is a case of a solely urban district model, 

looking at highway breakdowns achieved through the Generalised Hypercube Queueing Model 

(GHM).  Consideration is given to server availability whilst varying the number of incidents 

occurring in a time instant.  Results are compared to the MCLP and p-Median since the GHM is a 

similarly structured coverage model, and finds that GHM can perform better in situations where 

demand rates are high. 

One weakness is the exponential service time assumption of the Hypercube approximation.  Jarvis 

(1975) develops the Mean Service Calibration (MSC), so that the Hypercube models can include 

location dependent service times.  The MSC process follows the form: 

1. set mean service time estimate of a vehicle at station ݆ to average service time of the region; 

2. use current estimates for mean service time, evaluate the model being used to gain 

probabilities that ambulance from ݆ serves demand node ݅; 

3. use serving probabilities for each station from 2. to derive a new estimate for average 

service time for each vehicle; 

4. if new estimates are close to current estimates of average service time, stop, else replace 

average service estimates by current estimates and repeat from step 2. 

The next step in bridging the theory of location analysis and stochastic processes leads to the 

Queueing Probabilistic Location Set-Covering Problem (Marianov and Revelle 1994).  The Q-

PLSCP is an extension of the PLSCP (ReVelle and Hogan 1988) where the necessity of this new 

probabilistic model comes from the implication of busy servers on the network.  In the PLSCP, 

coverage is one of the objective constraints, whereas the Q-PLSCP instigates an availability 
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constraint of ߙ reliability that has the aim of minimising the number of servers required to cover 

demand.  All previous research including the notion of availability assumes independent server 

availabilities.  The Q-PLSCP however, relaxes this assumption, allowing dependence of all servers 

by utilising an ܯ/ܯ/s-loss queueing system for each region.  Not only is this dependence of 

availability included, but it is also applied to neighbourhood-specific busy fractions, rather than the 

network as a whole.  The results illustrate the need for the queueing aspect of the PLSCP, 

particularly where availability required is high, as in emergency service systems.  Yet, in cases 

where only quite low availability is necessary, the Q-PLSCP often overestimates congestion due to 

the method for deriving the minimum number of servers to place within the travel standard of any 

node.  

Following their efforts of the Q-PLSCP, the authors also attempt to solve the probabilistic MALP.  

Using linear programming combined with queueing theory, the Queueing Maximal Availability 

Location Problem, QMALP, was produced (Marianov and ReVelle 1996).  The formulation follows 

that of the MALP, but again with the assumption of independence of busy servers relaxed.  The 

model’s objective is to maximise the (demand-weighted) population covered by the emergency 

service, where server availability has reliability ߙ and probabilities of servers contained in the same 

region being busy depend on each other.  The authors claim it is the first example of queueing 

theory explicitly applied to MALP server busy fractions.  Availability and reliability for EMS is 

examined further in a paper by Erkut, Ingolfsson and Budge (2008a). 

The Priority Queueing Covering Location Problem, PQCLP (Silva and Serra 2008), provides an 

illustrative example where two priorities of emergency are considered.  From the combination of 

maximal covering location models and queueing theory in its structure, the PQCLP also utilises 

heuristics to solve the problem of relating population demand with the allocation of resources.   

Geroliminis et al. (2009) use queueing to locate and district emergency service vehicles with 

location dependent service times and non-identical server service rates.  For freeway service patrol 

vehicles, good results were obtained for high demand periods.   

Queueing theory itself may also be used as a starting point for determining a fleet capacity, before 

offering the findings to other more complex and realistic modelling techniques (Henderson and 

Mason 1999, Jenkins 2012).  
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Emergency systems, as has been seen, can be modelled using numerous location analysis and 

queueing theory solutions developed for situating resources.  Such techniques endeavour to improve 

positioning in order to maximise response times and improve reliability of availability.  The 

incorporation of queueing theory produces descriptive methods for solving; however, with the 

addition of other processes into queueing theory, the entire service operation can be addressed.  

Erlang-loss models have been used to capture the situation of an EMS scenario whereby demand 

must be met, finding promising allocations of vehicles (Restrepo et al. 2009), with results showing 

good performance and accuracy even compared with the Hypercube Queueing Model. 

Phase-type service distributions are described in the literature for non-Markovian queueing 

representations of ambulance responses to emergency calls and the situation of priority modelling.  

With regards to an ambulance service, the response time is only a portion of the overall service time, 

which intuitively leads to the possibility of using phase-type processes to model the reality of an 

EMS vehicle responding to and serving an emergency call.  

A software package design integrating a method for modelling queueing systems with priorities and 

phase-type approximations of service time distributions, such as in an EMS system, is presented by 

Mickevicius and Valakevicius (2006).  Another application of this theory is to a numerical model of 

quality control.  In a similar vein, Valakevicius (2007) demonstrates a similar problem highlighting 

the use of the phase-type distribution for service phases of a priority queueing system.   

 

3.4.3 Multi-Objective Modelling 

In Daskin’s paper ‘What you should know about location modelling’ (2008), readers are informed 

that for multi-objective models, where only one of the objectives is solved optimally, it is likely to 

give poor results with respect to the other objectives.  The survey paper looks at tradeoffs between 

two objective constraints – the average and maximum distances from located facilities on a network 

to demand points. 

By incorporating multiple objectives and equity in busy servers, analytical models (utilising the 

Hypercube model) are applied to Boston EMS in order to evaluate deployment strategies and 
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develop a resource allocation system (Hill III et al. 1984).  The novel aspect of their work is the 

ability to consider multiple objectives and their interactions simultaneously: 

1. minimise average response time in line with an average seven minute target; 

2. minimise inequity in vehicle availability. 

Comparing a week’s activity for the EMS logic dispatch rules with a week using rules and locations 

generated by the model, results showed a 30 second reduction in average response time.  Adding 

another vehicle to the fleet would achieve the same improvement but at a quoted cost of $150,000. 

Application of location theory models and solutions to emergency services and emergency medical 

services has already been demonstrated, but a closer and more specific investigation at the 

contribution location analysis has in this field follows in the next section.  

 

3.5 Location Analysis for Emergency Services 

3.5.1 Introduction 

In 2012, it was reported (BBC News 2012a) that, of all UK emergency calls: 

 52% are connected to the police; 

 41% are for emergency medical services; 

 6% go through to the fire brigade; 

 and a mere 1% are for the coastguard and cave and mountain rescue services. 

Quite often, particularly in America and Canada, the fire service is used in conjunction with the 

EMS.  In fact, the fire service may be given instruction to dispatch to a medical emergency before an 

ambulance.  Planning therefore can sometimes incorporate both types of fleet (Jewkes 2011, Knight 

et al. 2012a, Monroe 1980) and must accommodate the various objectives and roles each service 

plays, as well as the limitations around allocations.  

Despite many simplifying assumptions inevitable when modelling reality, coverage and average 

response time models have been widely used for emergency service systems.  The objective often 

being to find the fraction of emergency calls reached within the given time standard set in line with 
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the services’ targets.  Such work was conducted by Chaiken and Larson (1972) for emergency 

services in urban regions. 

Marianov and ReVelle (1995) provide a critique of location covering models mainly applied to 

emergency services.  An exploration into recent OR work in EMS planning and management by 

Ingolfsson (2013) reviews the problems associated with forecasting demand, response upon survival 

and utilisation on healthcare policy. 

 

3.5.2 Dispatching 

Following the introduction by Larson (1974) of location application to police services, other 

emergency service location problems become more evident in the literature.  One of the earliest 

appearances of ambulance service problems in the OR literature occurs through the discussion of 

multiple vehicle dispatches.  For emergencies where more than one EMS vehicle may be required, 

Daskin and Haghani (1984) analyse arrival times at the scene for the first vehicle to reach the patient.  

In much of the emergency service research, arcs of the nodal network are thought to be 

representative of the road network available to the vehicles.  Travel times are represented by 

distributions so arrival times at the scene of the incident can be modelled.  Where more than one 

vehicle is dispatched, the important information is contained in the length of time it takes for one of 

the vehicles, not necessarily the first dispatched, to reach the patient.  Many of the studies before 

this point in time assume deterministic travel times in order to handle the matter of location and 

also presume single server requirements.  Daskin and Haghani notice the problem with the common 

assumption of closest single server availability in providing the best response to the emergency 

incident. 

 

3.5.3 Equity in Access 

Equity in location analysis is a widely studied problem in its own right, especially with regards to 

healthcare and emergency intervention.  Although not much detail on this topic is provided here it 

is important to highlight additional issues surrounding location research and equity of service 

provision. 
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Equitable service to each neighbourhood in a region is a prime concern and professional department 

managers may also specify the need for a good level of service at minimal cost (Hill III et al. 1984).  

The Ambulance Allocation Capacity Model (AACM) (Shiah and Chen 2007) was developed to 

address the capacity capabilities of the ambulance service of Taichung City, Taiwan, in particular, 

the inability to provide equity to the population with the current system operations.  By combining 

probabilistic and deterministic methods used throughout location analysis, and applying them to 

multiple coverage decisions, equity can be incorporated to the system capacity design.  

With regards to the progression seen into survival maximising research, Felder and Brinkman (2002) 

provide an equal access approach to EMS planning.  Equal access highlights the need for an equity-

efficiency trade-off.  Response time is recognised to affect both the quantity and quality of saved 

lives by a service.  Consideration of costs to the service when basing policies on equity often implies 

that the value of saving lives differs for urban and rural areas.  To ensure patients perceive there to 

be equitable service, Chanta et al. (2011) provide the p-envy model to locate emergency resources.   

 

3.5.4 Travel Times & GIS 

Travel times across boundaries of sub-regions of a network have commonly been considered 

negligible, deeming neighbourhoods fixed and distinct and operation of servers in the different 

regions independent.  Examples of models that make this assumption include mathematical 

programs such as MALP and queueing extensions, for example QMALP.   

For all types of emergency service system, travel time is one of the most crucial components of a 

location model objective function since performance is based on the ability to respond quickly, and 

not just coverage.  It is therefore important to realise travel may not be symmetric on a network, 

and that servers may be required to provide back-up coverage for neighbouring regions or nodes.   

Geographical Information Systems (GIS) can be utilised by studies situating emergency service 

vehicles.  Single line road maps (Shiah and Chen 2007) and street map databases (Azizan et al. 2012) 

can be used to site ambulance service vehicles within optimisation and simulation solutions.  

Rural areas are known to be more problematic to EMS managers than urban districts when it comes 

to meeting response time targets.  Some ambulance trusts operate with Global Positioning Systems 



Chapter 3. Literature Review 
 

46 

(GPS), allowing fastest routes to incidents to be found, and for vehicles to be tracked during a 

service, enabling subsequent analysis of operations.  Gonzalez et al. (2009) found that in a trial 

where GPS units were introduced to an EMS provider operating in a rural area, after one year, 

response time to certain call types was improved compared with service from a previous year.   

Within this study, travel times feature heavily in the development of new models, and so a detailed 

discussion is provided in Chapter 5, considering in particular the problem of rural demography. 

 

3.5.5 Utilisation 

Having access to the probability that each service vehicle is busy allows a modeller to determine, of 

these vehicles, which has the highest probability of serving a particular call from a certain demand  

node, and so overall performance of the system for a given set of allocations.   

Calculation of these busy probabilities in earlier studies was usually taken to be the average 

utilisation of the system.  This however, is not an accurate representation of the operations and 

leads to an inaccurate measure of performance and success.  Instead, many researchers have 

attempted to find better ways of estimating such busy probabilities.  Persse et al. (2003) evaluate 

vehicle utilisation by taking hourly levels as the calculation of: 

൫number of transports × average busy time of a vehicle serving൯
total time the vehicle is on duty

 

This approach is similar to the one currently adopted by WAST, employed in simple demand 

forecasts.  Although these are simple calculation estimates, often more intricate vehicle busy 

probabilities equations are used.  A study by Goldberg and Szidarovszky (1991) develops an iterative 

method for solving non-linear versions of such equations. 

 

3.5.6  Dynamic Modelling 

Another multi-objective concept for ambulance modelling is where the response time is minimised 

whilst the system simultaneously aims to be best prepared to respond to future calls.  A dynamic 

approach is necessary.  
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Fairly recent attempts have been made into the dynamic solution of the location problem, although 

the dynamic ambulance allocation problem remains relatively little studied compared to the static 

problem (Brailsford and Harper 2007).  Dynamic models account for the relocation and reallocation 

aspects and the various comprehensive characteristics of any emergency service response procedure.  

Automatic ambulance dispatching in Sweden was addressed in a study into dynamic ambulance 

relocation, creating the DYNAROC algorithm (Andersson and Varbrand 2007).  The introduction 

of ‘preparedness’ to emergency service literature helps improve service modelling and reduces 

patient waiting lengths.  Preparedness is the concept of increasing the number of operational 

ambulances in a region to allow coverage of the population by multiple vehicles, possibly at multiple 

locations, so that during a time when the primary assigned vehicles is attending a call, any future 

calls for service originating in a similar region will still be covered.   

A model designed to forecast EMS call volumes (Setzler et al. 2009) – mentioned earlier – also 

addresses the differences between real-time repositioning (the fleet is relocated after one vehicle is 

dispatched) and dynamic deployment (using forecasts to anticipate fleet positions based on expected 

demand).  Saydam et al. (2013) extend the dynamic coverage models to account not only for 

spatially and temporally dependent demand, but balancing the amount of repositioning to limit 

affect on crews.   

Owen and Daskin (1998) offer a survey paper of dynamic contributions.  Brotcorne et al. (2003) 

provide a thorough survey of location and relocation models, spanning from early deterministic 

efforts, to the developments of probabilistic inputs from queueing theory, and to the advancements 

of dynamic modelling. 

 

3.5.7 Simulation for EMS 

A popular technique used by Operational Researchers and Management Scientists for practical 

problem solving is simulation.  Its use in an EMS environment is not novel, and many previous 

studies demonstrate the success that can come from suggested system set-up implementation.  Due 

to the complexities of an EMS system, analytical modelling is often not robust enough for thorough 

investigation of full scenarios (Monroe 1980).  Simulation provides the playground in which 

researchers and decision makers can witness cause and effect on a system.  Procedure changes can 



Chapter 3. Literature Review 
 

48 

be suggested that may increase efficiency and performance.  Models are used to determine these, 

capturing all the important aspects of a system and replicating its inner workings without forcing 

generalised assumptions where undesirable. 

Using discrete-event simulation, Wu and Hwang (2009) investigate the threshold of expansion of an 

ambulance service fleet in order to cope with ever increasing demand and vehicle availability issues 

(not considering allocation).  This study is one of very few that considers the effect of dispatch 

strategies on response time and so subsequently on availability.  Initially, the closest available server 

is chosen for dispatch, but other options include: maintaining preparedness through repositioning 

vehicles after each deployment (dynamic relocation), or, sending the second closest resource in a 

forecasting approximation attempt. 

Although entirely theoretical in development, this research was later applied to an EMS data set to 

see the impact operations and changes have on the system; however, due to limitations in the data 

and development of the model using only literature, it seems likely that its accuracy would not 

necessarily be sufficient for application to any other real-world service, without extensive validation.  

An important strength however, is the time dependent and spatial distribution inclusion for demand.  

The model also bases the decision for which hospital to transfer the patient on destination 

probabilities rather than the usual closest facility rule.   

Simulation is thought to be an under-utilised (supported by Figure 3.1) but powerful tool for 

emergency service planning.  For improved communication of OR modelling to EMS managers, 

Henderson and Mason develop an in-depth simulation visualisation tool, designed specifically as a 

tool for emergency decision process (2004).  The trace-driven discrete event simulation recognises 

the necessity of predicted time-dependent travel times, GIS and a historical data feed.  The inclusion 

of all these aspects, whilst being a substantial advantage of the tool, is also a direct impracticality 

when considering computation time.  Trace-driven however, allows the model to feed directly off 

the intricacies of the data and avoids errors in sampling (spatially and temporally) that may occur 

with theoretical structures.  It allows also, the small number of multiple-response incidents to be 

captured, which is fairly unique to this model, even if limited for more long-term planning.  The 

authors acknowledge “fairness” versus “efficiency” (equity) issue within such a service in relation to 

position and capacity of demanded resources.   
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3.6 Around the World in 999  

The EMS location-allocation problem has been studied world-wide.  Every country, even each 

ambulance service, has their own operational targets, design and commitments.  An overview of the 

differences in strategies due to regional demographics is now discussed, highlighting the problems 

faced by many services and the differences they must combat compared with their neighbours.  

Beginning in Wales, it has already been noted that the ambulance service is a single system operating 

over the entire country.  Although a small country, and for the most part sparsely populated, the 

service is regularly over-utilised resulting in poorer performance than England.  Certain regions of 

Australia witness a similar effect.  Entire populations are left with little EMS cover, meaning when 

emergencies do arise, patients wait long periods of time for critical responders, increasing mortality 

(Fitch 2005).   

Efforts are currently being made into optimally locating public-access defibrillators in Canada (Chan 

et al. 2013).  This is particularly important in countries like Canada and Australia – where large 

sparse expanses exist – in order to increase population survival. 

Combining the previously discussed MALP and Q-PLSCP, Harwood (2002) adopts a multi-

objective approach to deploying Barbados EMS vehicles.  Due to the geography and demography of 

the island, the deployment of ambulances when another server is busy may need to suit more than 

one objective.  It is likely desirable to maximise coverage of the population within a pre-specified 

distance (or time) standard with ߙ reliability, whilst for this particular scenario, it is also attractive 

to locate vehicles at sites which will minimise the cost of coverage.  Although a typical public sector 

problem, with the inclusion of costs in location, the solution here becomes more like those 

developed for private-sector challenges.   

A Chilean case study of the ambulance service introduces Key Performance Indicators (KPI) for 

both patients and ambulance service managers (Singer and Donoso 2008).  These KPI are used in 

conjunction with an ܯ/ܯ/s-loss queueing system to assess the effects of changes of parameters in 

the model.  Focus is given to the time dependency of the optimal geographical coverage solution for 

the population.  Patient outcome is also considered – where long term effects on chronic patients is 

compared to emergency patient groups.   
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In Hong Kong, a lack of mainstream prioritisation standards results in all requests receiving an 

immediate response, despite under-performance.  

Simulation modelling approaches in New Zealand have already been mentioned (section 3.5.7); 

however researchers here are among the leaders in simulation implementation for EMS systems.  

Many recent publications, both academic and consultancy led, have made valuable contributions to 

the progression of this OR field.  Henderson and Mason (2000) developed BARTSIM in order to 

balance “political, economic and medical objectives” at operational, strategic and tactical levels and 

to answer a number of questions faced daily by ambulance service staff.  Success stories exists also in 

the real-world implementation for a suite of models, part of the ‘Optima’ emergency service 

optimisation technology brand (Optima 2013). 

In America, a range of location-allocation and EMS system improvement approaches are utilised.  

Some use tiered systems for deployment, however, others use uniform strategies (Persse et al. 2003) 

with varying results in survival studies.  Tavakoli and Lightner (2004) develops a mathematical 

model that simultaneously optimises a given number of facilities and a set number of vehicles at the 

chosen locations.   

 

3.7 Generic Modelling 

Many of these previous research attempts have underlying theoretical similarities; yet it is rare for a 

new study to adopt an existing model and attempt to alter it, especially in simulation, more likely a 

brand new model is developed.  If existing research is utilised, progress could be enhanced more 

quickly and combined efforts are likely to lead to better long term results.   

Hoping to combat the problem of unnecessary development of new models, Hillsman (1984) 

identifies similarities and defines desirable location problem structures in a generalised computer 

software package, known as the Unified Linear Model (ULM).  This robust model can be adapted to 

suit different objective functions (built on the generalised solution for the p-Median problem) and 

so has the ability to derive solutions to various special cases of the original Median question, the 

LSCM and their extensions. 
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3.8 Model Limitations 

Simulation model validation in Swoveland et al.’s (1973) paper suggested models often could have 

benefited from the collection of more data and further analysis, particularly with regards to demand 

variation (and possibly seasonality).   

The suitability of performance measures of many earlier works is discussed by Erkut et al. (2008b) 

who claim unrealistic outcomes of early location models.  Their main critique is that of the 

performance measure most commonly used in location literature – namely ambulance service 

response time proportions given a time standard.  Many maximum availability or reliability location 

studies however, choose to look at coverage.  Erkut et al. state that to their knowledge, the 

approach of coverage “has not been put to the test of real world relevance”.  Whilst they recognise 

the importance of such models, and the contribution they have made to the field, many set-covering 

models do not fully capture the difficulties in locating EMS vehicles.  Coverage of all demand points 

is unrealistic, particularly in rural regions, such as are seen in Wales.  The ambulance service is 

unlikely to attempt to locate standby vehicles in order to reach all rural areas within their target, 

instead positioning vehicles where calls are more likely to originate based on historical occurrence, 

but still with reasonable accessibility to rural communities.  The authors also point out that many 

ambulance service targets are actually system wide, not for individual sectors; therefore coverage at 

the target level for all neighbourhoods is inappropriate and unnecessary.   

Budge et al. (2009) note the four other limiting assumptions commonly made in location problem 

approximation methods: 

 the number of vehicles per station is generally taken to be 1; 

 average workload is taken for the whole system rather than utilisation per station; 

 average service time is often assumed independent of location and responding vehicle; 

 server cooperation is regularly ignored, such that either all vehicles are equally likely to 

respond, or neighbouring stations operate completely independently. 

The authors demonstrate a model where dispatch probabilities for individual servers from each 

vehicle station are provided.  Using these and station-specific service times, an approximation for 

system wide busy fractions can be obtained, leading to a system modelled for ambulance allocation 

and utilisation.   
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3.9 Summary 

Further exploration of existing research and suggestions of potential research directions in queueing 

theory, location analysis and simulation for EMS is on the increase.  Popular areas considered for 

future investigations (surrounding the discussions of this chapter) include specific location-allocation 

techniques – stochasticity and location-routing – and explicit designs of queueing theory – phase-

type service distributions and priority assignments.  

There are many other location problem aspects and vehicle-routing scenarios where the existing 

theory cannot be used realistically in application, if at all, due to the complexity of the real-world 

problem.  Geographical representations and dependencies may not be captured thoroughly enough 

using computer based interpretation.  Distributions of population often create theoretical problems.  

Some more advanced algorithms can become almost impossible to solve (at least in real-time) once 

all constraints of the application are considered.   

From the progress already seen in the field, further success is inevitable and study into location 

problems persists in being a foremost focus in the OR community.  Implementing academic 

research in public and private sector organisations is the more difficult task.  Hill III et al. (1984) 

note that, to EMS managers, the “credibility and applicability” of the model designed is very 

important.  Difficulties lie not only in the convincing of the integrity of a model, but often also in 

simultaneously pleasing managers from both civic and political backgrounds with differing 

motivations.   

An ambulance service cannot be seen solely as a transportation service.  Following the medical 

aspect literature review for EMS improvement problems, it is important to recognise that an EMS 

system should be treated as a provider of medical care in their own right within future studies, 

linking to the considerations of patient survival.  Medical based studies already make this 

recognition, but more mathematical studies may ignore this fact for simplicity or make simplifying 

assumptions, looking exclusively at transportation and response. 

The EMS is often the first point of contact for emergency patients and lengthy on scene services are 

not necessarily an undesirable system feature.  It is possible that treatment may be administered at 

the scene, even where data cannot yet explicitly acknowledge the impact of this procedure.  If 

ambulance trusts and local hospitals were able to communicate more directly, it may be that certain 

medicinal procedures – as in Studnek et al. (2010), where treatment is required to be administered 
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quickly – are the best implementation option.  In these cases, a longer cycle time with the 

ambulance service may have a more successful patient outcome than immediate conveyance. 

The implications of such policy changes and the direct affect of operational alterations are further 

investigated in the following chapters of this research project.  With application to the South East 

Wales EMS system, an allocation problem is explored through mathematical programming and 

simulation (integrating simple queueing theory) techniques.  The research results in the 

development of new generic models with the intention of providing insight to both academics and 

healthcare professionals.  
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Chapter 4 

 WAST: Data Analysis 

 

4.1 Introduction 

Wales, although occupied by a relatively small population considering its size, witnesses a 

substantial annual number of medical emergencies, which appear to be increasing year on year (Vile 

et al. 2012).  Over 274,000 data records were provided for this study by WAST, covering the 

twelve month period of 1st January to 31st December 2009.  The data set refers to approximately 

175,000 unique emergency incidents originating throughout the South East region of Wales only, 

spanning 50 postcode districts (a district is represented by the first three or four characters of a UK 

postcode and the first two characters give the postcode area).  Reasons for the focus on the South 

East of the country were discussed in Chapter 2, section 2.3.7. 

Since one objective of the research presented in this thesis is to provide WAST with planning tools 

that may be used by the Trust in decision making, obtaining relevant real-world data is imperative 

to the design and ultimate implementation of any developed models.  Without such detailed data, 

the models built may be subject to inaccuracies and may be difficult to validate.  The results for the 

region under scrutiny need to be of use practically to the Trust, and application to other EMS 

systems enabled through adaption of the provided input data.  

The data analysis that follows refers only to emergency calls, allowing conclusions to be made and 

further details obtained surrounding the emergency operations of the ambulance service in Wales, 

highlighting the more troublesome areas of service.  The empirical information gained is used to 

supply details to location analysis models (Chapter 6) and a discrete event simulation (Chapter 7).  

 

4.2 The Data Set 

4.2.1 Statement of Accuracy 

Although it is possible that the accuracy in the recording of data by WAST may be imperfect (due to 

human and technological error in recording and logging of incident details), it is assumed that for 
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the purposes of this research, the level of accuracy is adequate.  Since WAST uses the same data as 

provided for this study in their own performance analyses, any results obtained later in this thesis 

may be thought to be comparable with conclusions derived from this work, in accordance with the 

Trust’s own decision making assumptions where information on these is known. 

 

4.2.2 Influences 

Throughout 2009, there was a global pandemic, commonly referred to as ‘Swine Flu’.  This strain 

of influenza virus infected over 540,000 members of the English population (Donaldson et al. 2009) 

and the NHS was under pressure to treat and respond to these patients as well as continue to 

provide as efficient a regular service as possible.  NHS Direct reported an increase in the percentage 

of calls witnessed relating to influenza; since this peaked during summer months when typical 

seasonal (winter) flu calls are low, the higher call rate can be accredited to the pandemic (Public 

Health Wales 2010).   

It is likely that certain effects of the pandemic will be evident in the data collected by WAST – a 

slight bias in normal operations due to an increase in demand – but this effect was minimised by the 

excellent additional services the NHS provided exclusively for Swine Flu outbreaks, including a 

collaboration scheme with NHS Direct (HPA 2009).  Websites and campaigns also aimed to 

provide information and treatment of the condition within the community (Owen 2009); only 

critical cases (of which there were a few) would have required paramedic response.   

Such widespread crisis situations are not uncommon scenarios for any emergency service and one 

WAST would possibly have to contend with similarly in the future, so no efforts are made in this 

study to eradicate the (likely small) contributions of the pandemic to the data set.   

Generic modelling solutions provided in this thesis concern daily planning and operational 

procedures and not predictive or forecast modelling (which would in any case not be based on 

solely a year’s worth of data).  Any influence from a cause of increased demand during the year 

should not reduce the suitability of data analysis conclusions when applied to the development of 

modelling tools, maintaining their reliability and credibility.  
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4.2.3 Dispatching 

The disparity in the total number of records provided by WAST (274,300) and the number of 

unique calls for service witnessed in the data set (174,665) is due to the fact that multiple vehicles 

are frequently dispatched to an incident.  For larger incidents, perhaps several crews are necessary 

to deal with the scale of injuries, or in some cases assorted vehicle and crew types are required. 

For a category A emergency only, in 2009, the Trust’s policy was to dispatch an RRV (if available) 

to attend the scene as quickly as possible and for the paramedic to stabilise the patient, but with an 

EA dispatched simultaneously as follow-up, enabling conveyance to hospital if deemed necessary 

when on scene.  In following this protocol, the dispatcher assigns multiple vehicles within a similar 

proximity to the incident in the first dispatch instance, often without knowing enough about the 

nature of the emergency to justify such a demand on resources.  This approach however, does give 

high acuity patients better chances of survival through swift responses.  In mathematical terms, this 

may be thought of as a variance reduction technique by the controllers, to give the best probability 

of achieving the minimum possible response time for each incident.  The procedure is commonly 

known as a ‘double dispatch’ and is currently one of which WAST are trying to reduce unnecessary 

occurrences (WAST March 2011).   

Note that, for incidents with a multiple or double dispatch, the additional vehicles do not always 

reach the scene; they may not be required, or they may be reallocated to another call or cancelled 

before on scene attendance.  This is known as ‘stepping down’.  

Even though policy dictates that RRVs be used for the high priority patients only, since their power 

is their speed in response, it is seen in the data that RRVs are also dispatched to lower priority calls 

on some occasions.  Table 4.1 shows the proportion of calls that witness an EA and RRV response 

(amongst other combinations), and show that on nearly half the occasions, a lone EA serves 

category A calls; presumably, sometimes RRVs are also dispatched but step down, and other times, 

an RRV may simply not be available.  
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Table 4.1 Percentage of service occurrences for all vehicle combinations per category 

Category: A B C AS2 AS3 

1 EA Only 48.11 67.08 82.50 96.64 95.27 

2 EAs 0.58 0.57 0.48 0.99 3.04 

1 RRV Only 6.89 8.56 6.47 2.15 1.62 

2 RRVs 0.35 0.29 0.24 0.01 0.00 

1 RRV + 1 EA 43.08 22.66 10.13 0.17 0.07 

3 Vehicles 0.91 0.66 0.16 0.01 0.00 

Other 0.08 0.18 0.02 0.03 0.00 

 

 

4.2.4 Variables and Field Headers 

In order to evaluate their own performance, WAST record time stamp data for many events that 

occur during the service of individual emergency incidents.  The data set received contains 24 

variables.  Many of these record a time stamp for an event, i.e. the start or end time of a phase of 

service.  Other fields specify information regarding the nature of the emergency, locations and 

resource details.   

A selection of fields present in the WAST data set is given in Appendix 4.1, with comprehensive 

definitions of the variables’ attributes. 

The reasons for cancellation of service before completion by a particular vehicle (stepping down), 

are quite varied.  They range from an error entered in the call log, to a hoax or cancelled call, or to 

the transfer of the patient to another emergency service (police or fire) or to another emergency 

medical service provider.  In some cases no patient was found at the scene, or the patient took 

alternative transport to hospital before the EMS vehicles could attend.  Due to the focus of this 

study and time limitations, these reasons are not investigated any further at this stage, although they 

provide an interest for future research opportunities. 
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4.2.5 Pathway 

Although much of the EMS process is widely known, or is disclosed through communications with 

trusts and their publications, real-world data provide an opportunity for further insight to the 

Welsh operational practices.  A process-flow diagram displayed in Figure 4.1 summarises potential 

areas of understanding gained from the data set.   

Service phases associated with the seven time stamps provided in the data set are portrayed over 

time, from which at least ten time intervals of interest can be derived as the difference between 

start times of sequential stamps.  Pre-travel delay and response times can be calculated and so 

analysed based on existing data.  From the variable list in Appendix 4.1 and from Figure 4.1 it can 

be seen that turnaround times may be analysed in general, but explicit handover time per incident is 

unable to be extracted from the data of this particular study.  

  

Figure 4.1 Pathway through time of an emergency call with event time stamps and interval phases 
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Additional variables do also exist, and others can be computed using information from a 

combination of the original fields.  These extras include: 

 Division – based on information provided separately by WAST, detailing postcode districts 

located in each of the five locality divisions of the South East region; 

 Category – can be determined using the AMPDS Priority and Incident Type fields (A, B, C, 

AS2, AS3); 

 Service phase lengths – using start and end time of an event (examples given in Figure 4.1). 

The data provided were fairly comprehensive but required some cleaning and organisation.  Time 

stamps were not always chronological when compared with other time stamps of the same incident, 

implying error in the recording of some of the data.  Checks were carried out to ensure no obvious 

errors or outliers exist in the data, resulting in the construction of Figure 4.2 for clarification of the 

number of records referring to each possible patient pathway for category A, B and C emergencies.  

 

Figure 4.2 Patient pathway through the system, developed during preliminary data investigation 

and cleaning for priority A, B and C patients 
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In total, only 56 records were removed (leaving a total of 274,244) due to infeasible lengths of 

some service phases – that is, where records were found to have negative On Scene, Transportation 

or Turnaround lengths.  This number is relatively miniscule when compared with the original 

number of data records, and although tests and checks were still performed regularly during data 

procedures, it was not deemed a priority to continue an in depth search for further errors since 

such small numbers have minimal impact on the overall results obtained from any such analysis.  

 

4.3 Preliminary Analysis 

4.3.1 South East Structure 

The Welsh population is divided into three regions: the North, Central & West and the South East.  

Operations are managed individually out of a control centre, one per region.  Prior to October 

2009, Wales was partitioned as 22 Local Health Boards (LHBs) within which seven different health 

trusts operated.  The South East was home to 9 of the 22 health boards: Cardiff, Vale of Glamorgan, 

Merthyr, Caerphilly, Monmouthshire, Rhondda Cynon Taf, Blaenau Gwent, Torfaen and Newport.  

Wales’ structure is now made up of a total of only seven LHBs providing all health care services 

(NHS Wales 2009).  In the South East, where the population is largest, there exist the Aneurin 

Bevan, Cardiff & Vale University and Cwm Taf Health Boards (Figure 4.3).  

 

Figure 4.3 Local Health Boards of South East Wales (Health Maps Wales) 

Aneurin Bevan Cwm 

Taf 

Cardiff & Vale 



Chapter 4. Data Analysis 
 

61 

It is possible to define the coverage of the nine original South East health board localities of 2009 by 

the three new ones in the way outlined by Table 4.2; however, demand and dispatch in 2009 were 

based upon five geographical districts, with rosters (built using software called ‘PROMIS’) based on 

the original nine health board localities.  Approximately 700 emergency calls are received by a total 

of six control room operators each day.  

Table 4.2 Locality assignment to South East Wales Health Boards 

Health Board Locality (pre October 2009) 

Aneurin Bevan 

Blaenau Gwent 
Caerphilly 

Monmouthshire 
Newport 
Torfaen 

Cardiff & Vale Cardiff 
Vale of Glamorgan 

Cwm Taf Merthyr 
Rhondda Cynon Taff 

 

4.3.2 Demographics 

The South East region has consistently struggled to meet the current response and turnaround time 

performance targets (Figure 4.4), particularly when compared with other areas of Wales and 

especially when considering that England and Scotland aim to operate to a 75% eight minute 

response target. 

The region covers an area of approximately 2,559 km2 and the Trust serves a population of 1.3 

million in the three health boards (Welsh Government KAS 2009).  Although mostly rural, the 

South East is also home to the capital city of Wales, Cardiff, and its close neighbour, the city of 

Newport.  By national standards, the South East itself is not sparsely populated, unlike Powys 

(Wales Rural Observatory 2012), but its geography and position of rural valley towns compared to 

the higher demand areas of the urban population contribute to the large response times (and high 

variation) witnessed by residents of the region.  Local EMS vehicles that are assigned to rural towns 

may end up being called to more densely populated areas at busy times, leaving fewer resources 
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available to serve rurally located incidents when they arise.  Even if there are available vehicles, they 

may have been placed tactically closer to urban communities to deal with expected demand but 

resulting in higher response times to other areas. 

 

Figure 4.4 Summary of category A emergency response time performance, re-produced from 

statistical publications of performance by locality (Welsh Government HSA 2012) 

As would be expected and supporting the earlier discussions of Chapter 2, atmospheric and 

seasonality conditions do appear to have an impact on performance.  From Figure 4.4, many of the 

more severe dips in response performance, both in the South East and other areas of Wales, occur 

during winter months.  November 2010 to January 2011 was a particularly harsh winter resulting in 

an upsurge in road traffic accidents, falls and influenza viruses by about 40% (BBC News 2011d).  

EMS systems across the UK struggled to provide their usual service due to this higher demand, 

terrible road conditions and congestion at hospital facilities (BBC News 2011b, c). 
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Table 4.3 Station preference based on usage (frequency of emergency dispatches) 

 Station 
Code Location 

Percentage 
of all 

Dispatches 

Cumulative 
Percentage 

Frequency 
Order of 
Dispatch 

EA 
Frequency 

Order 

RRV 
Frequency 

Order 

WASTs 
regular 
bases 

1 SABW Blackweir 15.19 15.19 1 1 1 ● 

2 SANP Newport 5.90 21.09 2 4 4 ● 

3 SABA Barry 5.48 26.57 3 7 3 ● 

4 SABG Bassaleg 5.09 31.66 4 3 11 ● 

5 SACE Cardiff East 4.94 36.61 5 2 20 ● 

6 SAAE Aberdare 4.73 41.33 6 6 12 ● 

7 SABR Bargoed 4.46 45.79 7 11 7 ● 

8 SAGI Gelli 4.35 50.14 8 5 6 ● 

9 SSVP  4.23 54.37 9 70 21  
10 SAHN Hawthorn 4.06 58.42 10 8 8 ● 

11 SAMR Merthyr Tydfil 3.56 61.99 11 9 13 ● 

12 SAPO Pontypool 3.37 65.36 12 16 5 ● 

13 SATR Tredegar 2.84 68.21 13 21 9 ● 

14 SAAB Aberbeeg 2.84 71.05 14 13 14 ● 

15 SABD Blackwood 2.79 73.83 15 20 10 ● 

16 SACY Caerphilly 2.77 76.60 16 14 15 ● 

17 SACB Cowbridge 2.62 79.22 17 10 . ● 

18 SSEF  2.34 81.55 18 . 2  
19 SACH Parkwall 2.16 83.72 19 22 16 ● 

20 SAPC  1.91 85.62 20 12 18  
21 SACW Cwmbran 1.73 87.35 21 17 . ● 

22 SAAG Abergavenny 1.69 89.05 22 19 19 ● 

23 SANN Nelson 1.69 90.74 23 18 . ● 

24 SAFD Ferndale 1.69 92.43 24 15 . ● 

25 SAMO Monmouth 1.65 94.08 25 23 17 ● 

26 SAHQ Headquarters 1.01 95.09 26 . .  
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4.3.3 Locations 

Postcode Districts (Demand) 

Exactly 54 postcode districts are contained in the data set for South East Wales.  Although four of 

these are actually locations outside of the South East boundaries (three across the border in 

England), representing times where service interaction occurs across zones, these occasions are 

very rare (only around a dozen of all records).   

Via communication with WAST headquarters, it was discovered that in November 2007 the Trust 

stopped using an (outdated) post office dataset when referencing the location of the postcode 

district in which a call originates, and instead switched to a more automated gazetteer developed 

from Ordinance Survey address-point data – returning the central postcode for the zone in which 

the incident is located, and not the specific postcode.  This means calls in the data set are aggregated 

to this smaller, limited number of (50) South East Wales locations than if all full postcode addresses 

of incidents were recorded, but which are more useful in WAST’s own demand analysis processes.     

 

Station (Server Base) 

In total, 170 vehicle base stations are referenced; however for all non-unique records – that is those 

including multiple dispatches to an incident – 95% of all responses (not just initial responses) are 

serviced by only 26 common stations (Table 4.3).   

Station 9 (SSVP), which, according to Table 4.3, contributes to a large proportion of services, is in 

fact a low preference (based on frequency of use) station for locating EAs and RRVs.  On closer 

inspection, the majority of services by a vehicle allocated to this station are by HDUs to AS2 or AS3 

calls.  Details of this station were not provided by WAST since it is located outside of the South East 

control region.  Similarly, station 18 (SSEF) is not located within the South East boundaries, even 

though a large proportion of services by RRVs are assigned to this station, hence further details are 

unavailable.  It is likely ‘allocation’ to these external stations (including SAPC) of the region means 

these vehicles are housed at the station, but during operational hours are positioned more tactically 

within the region at stand-by points or other bases to await incoming emergency calls.    

WAST, provided a list of fixed bases that they claim to use on a daily basis, which amount to only 

22 stations.  Throughout this thesis, the 22 locations are used as base station and stand-by points for 

analysis and further modelling.  It should be noted that the fixed list provided and the 26 commonly 
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found preferable bases in the data, mainly account for the same locations.  A comparison for 

interest and completeness is provided in Table 4.3.   

 

Hospital (Service Facility) 

More than 150 hospital facilities were used by the South East Wales ambulance service in 2009.  

Some of these listed locations however are minor or specialist facilities, accepting only a handful of 

patients a year.  Other facilities are located geographically or administratively in other service 

regions, and even occasionally across the border in England (operated by the English NHS Trusts).  

Even so, almost 95% of incidents are handled by only eight main hospitals in the South East.  Later, 

during discussions of conveyance rates, Table 4.10 informs of the major players in the South East 

hospital arena for EMS handovers at EDs. 

 

4.3.4 Resources 

There were found to be 18 different types of vehicle in use in the data set.  For simplicity of the 

modelling to follow later, and for ease of analysis, only the main two vehicle types are considered; 

however for completeness in this chapter, some of the other types that are commonly used will be 

incorporated in discussions, where appropriate.  The two major vehicle types extracted from the 

data, EAs and RRVs, account for over 83% of responses (Table 4.4).  All other types (including 

HDUs) serving any type of emergency incident are grouped as ‘Other’ in the analysis.  

Table 4.4 Proportion of all records and unique (initial response) services by vehicle type 

Vehicle Type Occurrences Percentage 
of Responses 

Unique 
Incidents 

Percentage of 
First Responses 

EA 166,310 60.6% 95,445 54.6% 

RRV 62,729 22.9% 47,569 27.3% 

Other 45,261 16.5% 31,680 18.1% 

Total 274,300 100.0% 174,694 100.0% 
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4.3.5 Category Computation 

Incident classification is dependent upon the severity of the emergency and type of service required 

(emergency – AS1, urgent – AS2 and emergency transfers – AS3).  Classification therefore 

describes the order or priority in which to serve these received calls, as detailed in Chapter 2, 

Figure 2.5.  Since it is expected that there will be variation between service for the different 

categories of calls, especially since the ambulance service targets differ dependent on the priority, 

the South East region structure is further split by category of calls in the data analysis, Figure 4.5. 

South East AS1 (category A, B and C) calls for service make up around 82% of unique annual 

medical emergencies.  Within this classification, the incident is given priority over other 

emergencies based on severity of the condition and state of the patient.   

 

Figure 4.5 Proportion of calls for service witnessed in 2009 per emergency type 

Primarily, categorisation assists in the analysis of response time of vehicles to the scene of an 

emergency.  Determination of this phase of service is necessary as a basis to future problem solving.  

Performance indicator focus is founded in the eight minute response time target that WAST must 

adhere to in 60% of category A cases per LHB (65% for all Wales) and similarly for the other 

categories.   
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4.4 Demand 

4.4.1 Regional 

The mean number of calls for service per week is 3150, averaged over all emergency types for the 

whole of 2009, with a standard deviation of approximately 140 calls (Table 4.5).  The daily demand 

average is 478.6 calls with a standard deviation of 40 calls.  

From Table 4.5 it seems Mondays and Thursdays are similarly variable, more so than the other 

weekdays.  The reason for the larger spread is likely due to the long service periods often 

experienced with AS2 and AS3 demand, for which activity is higher on weekdays, particularly 

Monday mornings, due to a backlog after the weekend of GPs requesting transport for patients 

(Health Service Executive 2010). 

Table 4.5 Demand per weekday for the region, averaged over entire year 

Weekday Average Demand S.D. of Demand 

Sunday 442.73 30.82 

Monday 456.19 34.91 

Tuesday 441.50 27.97 

Wednesday 439.50 26.04 

Thursday 447.89 34.42 

Friday 469.81 28.42 

Saturday 462.17 30.59 

Full Week 3150.22 139.35 

 

4.4.2 Inter-Zone Assistance 

Due to the nature of such emergency provisions, equitable service to the entire population is one of 

WAST’s main objectives.  Although three individual regions exist within the service area, there are 

times when these three regions of Wales will have to coordinate for optimal provision of medical 

care.  In some cases, it may even be that WAST are called to incidents outside of their operational 

area, such as across the border of Wales with England – in counties such as Shropshire and Cheshire.  
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Similarly, there will be occasions where English units assist at emergencies located in Wales when 

resources are closest or during busy periods.   

For the purposes of this analysis, based on a commonly used solution, such occurrences will be dealt 

with by assuming the flow of vehicles attending calls outside of the South East region of Wales is 

equal to the rate at which calls within the South East are responded to by non regional EMS units. 

 

4.4.3 Divisional 

The Trust partitions the region into five divisions in line with conduct at the regional control centre, 

where telephone operators receive emergency calls and manage the vehicle dispatch tasks from five 

hubs in the control room.  The divisions – SE1, SE2, SE3, SE4 and SE5 – represent geographic 

areas of the region (Figure 4.6) and the postcode districts contained within them, the breakdown of 

which is seen in Table 4.6.  Postcode districts are designed with the aim of containing similarly 

sized populations but divisions will not necessarily contain equal numbers of districts, depending on 

area and other demographic characteristics. 

 

Figure 4.6 Map of South East divisions provided by WAST (Maher and Rees 2010) 
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Table 4.6 Occurrences of unique incidents in South East Wales in 2009 

Division Localities Districts Records 

All Region  51 174,665 

SE1 Monmouth, Abergavenny, Tredegar & Blackwood 8 23,911 

SE2 Pontypool, Newport & Chepstow 9 35,809 

SE3 Aberdare, Mountain Ash, Merthyr & Caerphilly 10 30,474 

SE4 Treorchy, Pontypridd, Pontyclun & Cowbridge 13 26,327 

SE5 Cardiff & Barry 11 58,144 

 

Demand from the region can therefore also be considered at this lower divisional level.  

Proportions of demand arising within each are portrayed in Figure 4.7 and by category in Figure 4.8.  

The size of each bubble in Figure 4.8 is proportional to the number of incidents arising from within 

the category and division subgroup.  The relative proportion shows how the demand for each of the 

categories within one division is spread and also the contrast of category demand with neighbouring 

divisions. 

 

Figure 4.7 Proportions of unique incidents for service by division 
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Figure 4.8 Proportional demand by category and division for all unique incidents 

As seen in Figures 4.7 and 4.8, demand varies across the South East geographically.  There has been 

some discussion already as to the cause of this – location of urban and rural populations, deprivation 

and demography.  The city of Cardiff is located in division 5, attributing to the largest amount of 

demand in the region being witnessed in SE5 – resources are pulled into the city centre, leaving 

more rural areas vulnerable.  

 

4.4.4 District 

There are various other factors that influence the scale of demand witnessed by the service.  Overall 

demand and demand by category can be seen to be dependent upon the geographic distribution of 

the population.  Certain postcode districts witness larger proportions of calls for certain emergency 

types than others (Figure 4.9), although the majority follow a similar trend despite differences in 

frequency.     
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Figure 4.9 Proportion of demand at each postcode district making up calls for service for each 

emergency type, in order of quantity of demand (highest to lowest: left to right) 

 

4.4.5 Time Dependency 

Demand for service can also be demonstrated statistically to be dependent on time of day, day of 

week and month of the year, whilst also perceived to be fluctuating spatially.  There is already an 

understanding of time dependency and seasonality affects on EMS demand (Vile et al. 2012), but 

the WAST data further supports this tendency. 

In Figure 4.10 the trend of demand for the seven individual weekdays shows a difference in the 

weekday versus weekend hourly profiles.  Saturday and Sunday follow a similar pattern until the 

evening when Sunday demand becomes more like a weekday profile, and Saturday follows the 

Friday night trend, witnessing an increase in demand possibly due to an influence of standard social 

activities around these times.      

The peak around midday of each of the five weekdays is typical of such emergency data, and similar 

effects are seen for emergency admissions at an ED (Knight et al. 2012b) and in other EMS studies 

(Monroe 1980).  
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Figure 4.10 Average demand by hour of the day per weekday 

The time series of demand over the region for the whole of 2009 is depicted in Figure 4.11.  The 

profile is as expected – heightened demand in summer and winter months, large variation across 

the year and daily fluctuations.  This is further supported by the monthly variations of Figure 4.12. 

 

Figure 4.11 Time series of South East demand for 2009 

When looking at the average demand arising from within each division over the week (Figure 4.13), 

the discrepancy between demand in SE5 (Cardiff) and all other divisions is highly noticeable.  The 

variation around the average is also larger for the more populated regions. 
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Figure 4.12 Mean daily demand per month for 2009, with standard deviation 

Additionally, the proportion of calls originating by postcode district within each of the divisions is 

of interest since populations will differ not only across divisions in total, leading to variation in 

expected demand, but also within a division, particularly where a contrast between rural and urban 

populations exists.  In the graphs of Figure 4.14, the mean demand per postcode district is stacked 

by weekday to show the distribution of expected demand over the week and the split by location. 

 

Figure 4.13 Mean demand per division by weekday, showing 95% confidence intervals for data 

points 
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Figure 4.14 Average proportions of daily demands for postcode districts arising in each of the five 

South East divisions  
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4.4.6 Inter-Arrivals 

Using the Palisade DecisionTools Suite 5.7 for Microsoft Excel (Palisade Corporation 2011), which 

incorporates the packages ‘@Risk’ and ‘StatTools’, a distributional fit to the inter-arrival times of 

incidents in the South East region is found.  The data, compared with a theoretical negative 

exponential distribution is shown in Figure 4.15, and the same pattern is witnessed for all weekdays.  

Although the fit is significantly different when using the Kolmogorov-Smirnoff (nor the Chi-Square) 

goodness-of-fit test, due to a lower frequency of zero value inter-arrival times and heavy tails of the 

data, the graphical representation shows a similarity from one minute intervals onwards.  (Monroe 

(1980) similarly found the negative exponential distribution a suitable representation for emergency 

medical arrivals.)  However, accuracy is difficult even when ignoring the zero interval range.       

 

Figure 4.15 Inter-arrival time distribution of historical data and theoretical statistical fit 

 

4.5 Station Assignment 

The allocation of a station in servicing a particular demand node should not only be determined by 

the frequency at which the station is used (Table 4.3) as this will be influenced by location, but also 

the number and type of vehicles positioned there.  Proximity to demand can indicate preference, 

but in some cases, the closest station is not the most preferable when calculated by comparing the 

set of demand node and service node pairings in the data. 
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A station frequency matrix derived from the 2009 South East data, for all emergency units, is 

provided in Table 4.7.  Referring only to incidents that received an EMS unit on scene, preference 

is based on the number of attendances from the station to the demand node.  The stations are listed 

in order by the overall proportion of regional calls they served (as given in Table 4.3), whilst for 

individual demand nodes, the preferred station is the station whose allocated vehicles attended the 

largest number of calls originating in that postcode district.  Stations not providing any attending 

vehicles to calls for service from a particular demand node during 2009 will not be assigned any 

level of preference – the matrix entry remains blank implying an undesirable assignment to these 

geographical emergency incidents.  

In the location analysis modelling that follows later in this thesis, such preference details are 

necessary for vehicle busy probability calculations.  A lack of exact known vehicle allocations in the 

South East is the reason why direct comparison of simulation results to the real-world data for 

average travel times is futile (this argument is further testified in Chapter 5).  Instead, preference is 

taken to be ordered based on proximity of a station to a demand node, Table 4.8, rather than usage 

prevalence in the data, as in Table 4.7.  

For example, in SE5, the most preferable station for the majority of postcode districts (CF10, CF11, 

CF14, CF15, CF23, CF24, CF3 and CF5), based on usage in the 2009 data set (Table 4.7), is 

station 1 – SABW.  However, when proximity and shortest travel time is used in selecting the most 

preferable station (Table 4.8), station 5 – SACE – instead becomes the best choice for postcode 

district CF23 (with SABW second choice) and CF3 (where SABW is in fact fourth closest).  Station 

10 is more preferable for CF15, and the final postcode district of the region (CF64) which was 

served most frequently by station 3 – SABA, is in fact situated closer to station 1.   



 

 

Table 4.7 Station frequency matrix based on occurrences of usage 

 PC 

SA
BW

 

SA
N

P 

SA
BA

 

SA
BG

 

SA
CE

 

SA
AE

 

SA
BR

 

SA
G

I 

SS
VP

 

SA
HN

 

SA
M

R 

SA
PO

 

SA
TR

 

SA
AB

 

SA
BD

 

SA
CY

 

SA
CB

 

SS
EF

 

SA
CH

 

SA
PC

 

SA
CW

 

SA
AG

 

SA
N

N
 

SA
FD

 

SA
M

O
 

SA
HQ

 

Total 
calls % 

SE1 

NP11 14 3 19 2 15 20 10 
 

5 20 18 6 7 4 1 16 22 
 

9 22 8 11 17 
 

12 13 6424 2.6 
NP12 18 7 23 3 23 16 2 20 6 17 15 8 5 4 1 12 

 
23 11 22 9 10 14 21 13 19 6121 2.4 

NP13 14 8 19 6 
 

15 11 
 

7 19 16 5 2 1 3 17 
  

12 
 

10 4 18 19 9 13 3718 1.5 
NP22 22 14 

 
13 23 8 3 20 6 17 4 15 1 2 7 10 23 23 18 21 16 5 11 19 9 12 4606 1.8 

NP23 17 9 21 8 21 15 12 
 

5 18 10 7 1 2 4 19 
  

13 
 

11 3 16 20 6 14 6768 2.7 
NP25 13 7 14 6 14 

 
16 

 
5 

  
9 4 8 11 

   
3 

 
10 2 

  
1 12 2244 0.9 

NP7 13 7 20 8 15 17 14 21 5 18 16 6 3 4 9 21 21 
 

12 21 11 1 18 
 

2 10 4539 1.8 
NP8       8   8 8   1       4 6 6             2     3 5 65 0.0 

SE2 

NP10 10 2 17 1 9 
 

15 20 4 
 

19 7 11 8 3 16 18 20 5 
 

6 12 20 
 

13 14 3228 1.3 
NP15 13 3 14 5 14 

   
6 

  
2 10 8 11 

   
9 

 
7 4 

  
1 12 969 0.4 

NP16 13 2 16 3 14 16 16 
 

5 15 16 7 12 11 9 16 
 

16 1 
 

6 10 
  

4 8 2839 1.1 
NP18 11 1 15 2 14 16 16 

 
6 

  
4 12 9 7 

   
3 

 
5 10 

  
8 13 2159 0.9 

NP19 11 1 15 2 13 19 16 21 5 20 21 6 12 8 7 18 17 
 

3 
 

4 10 21 21 9 14 8600 3.4 
NP20 10 1 18 2 14 17 15 23 6 19 25 5 13 8 7 16 20 24 4 22 3 11 21 25 12 9 14160 5.6 
NP26 12 2 16 3 14 

 
16 

 
4 16 

 
6 13 9 8 

   
1 

 
5 10 15 

 
7 11 3372 1.3 

NP4 13 2 16 3 19 17 14 
 

7 19 21 1 8 4 9 15 
  

11 22 6 5 18 
 

10 12 8268 3.3 
NP44 12 2 15 3 14 19 16 21 5 18 20 1 11 7 9 17 23   6 23 4 8 21   10 13 9158 3.6 

SE3 

CF44 12 13 
 

15 19 1 3 7 10 6 2 18 13 17 16 8 19 
  

9 19 19 4 5 19 11 8144 3.2 
CF45 11 14 14 14 17 1 5 6 10 4 2 19 13 19 17 8 19 

  
9 

  
3 7 

 
12 3812 1.5 

CF46 11 15 
 

15 18 3 1 7 9 5 2 20 17 14 13 6 
   

8 
 

18 4 10 
 

12 2048 0.8 
CF47 11 14 22 19 17 2 3 8 10 5 1 20 13 17 15 6 

   
12 22 16 4 7 20 9 6218 2.5 

CF48 12 18 21 18 21 2 3 8 10 5 1 
 

11 15 14 6 
 

18 
 

9 
 

16 4 7 17 13 4883 1.9 
CF81 15 18 

 
16 20 4 1 9 7 6 2 17 12 14 8 3 22 

  
10 20 18 5 11 22 13 3687 1.5 

CF82 13 18 
 

14 19 4 1 7 9 6 5 17 16 15 12 2 21 
 

21 8 
 

20 3 11 21 10 4035 1.6 
CF83 8 15 18 6 14 5 2 9 12 3 10 20 19 20 16 1 17 25 22 7 23 24 4 11 25 13 10848 4.3 
NP24 15 18       4 1 8 9 6 2 18 7 12 13 5       11   14 3 10 17 16 1045 0.4 



 

 

  

SE4 

CF31 
                         

1 10 0.0 
CF32 

                
2 

        
1 3 0.0 

CF35 
  

6 
  

5 
 

6 6 4 
      

1 
  

3 
   

6 
 

2 52 0.0 
CF37 10 15 16 19 12 4 6 2 11 1 9 18 21 21 17 5 14 

 
19 3 

 
21 7 8 

 
13 8060 3.2 

CF38 10 16 15 17 13 4 6 3 11 1 9 
 

19 
 

19 5 12 
 

17 2 
 

19 8 7 
 

14 2603 1.0 
CF39 11 14 15 19 16 5 8 1 10 2 7 18 19 

 
16 6 12 

  
4 

  
9 3 

 
13 5182 2.1 

CF40 12 15 15 
 

14 5 7 1 11 3 9 18 
 

18 17 8 13 
  

4 
  

10 2 
 

6 4973 2.0 
CF41 11 14 15 

 
17 5 7 1 9 3 6 

   
16 8 13 

  
4 17 

 
10 2 

 
12 2423 1.0 

CF42 11 14 
 

16 16 4 9 1 7 3 6 
   

13 10 14 
  

5 
  

8 2 
 

12 2969 1.2 
CF43 12 13 

 
17 13 3 7 1 9 4 6 

   
16 10 13 

  
5 

  
8 2 

 
11 2362 0.9 

CF61 3 8 2 
 

5 8 
 

8 4 8 
 

13 
   

12 1 
  

7 
   

13 
 

6 870 0.3 
CF71 3 

 
2 14 4 12 

 
9 5 9 14 

    
14 1 7 14 6 

  
13 11 

 
8 788 0.3 

CF72 6 16 15 18 14 4 7 3 10 1 11 21 20   22 8 9 17 23 2 24 19 12 5   13 4309 1.7 

SE5 

CF10 1 8 3 9 2 20 19 16 6 7 23 16 14 
 

20 12 4 5 18 13 20 11 15 23 
 

10 8235 3.3 
CF11 1 8 3 12 2 17 13 13 6 10 22 16 22 22 19 9 5 4 19 11 19 17 13 

  
7 7317 2.9 

CF14 1 8 3 10 2 12 14 17 4 9 16 18 23 26 21 11 6 5 25 13 21 19 15 20 24 7 13773 5.5 
CF15 1 17 7 18 3 11 12 8 10 2 14 20 21 

 
19 6 9 4 21 5 21 

 
13 15 

 
16 2200 0.9 

CF23 1 7 5 8 2 12 13 22 4 10 20 16 22 20 18 11 6 3 14 14 16 
 

17 
 

22 9 5805 2.3 
CF24 1 10 3 8 2 14 14 16 5 9 18 17 21 

 
23 11 6 4 23 13 18 

 
12 18 22 7 8970 3.6 

CF3 1 8 5 7 2 18 17 21 3 10 25 10 21 16 12 15 6 4 9 19 13 21 19 25 21 14 6995 2.8 
CF5 1 9 4 12 3 16 13 15 6 7 17 18 21 22 22 11 5 2 24 10 20 24 18 14 

 
8 12391 4.9 

CF62 2 7 1 12 5 11 16 13 4 9 16 15 
 

21 21 21 3 10 
 

8 18 18 18 14 21 6 7971 3.2 
CF63 2 9 1 14 4 

 
12 11 5 7 18 13 

  
14 14 3 10 

 
6 

   
14 

 
8 4341 1.7 

CF64 2 8 1 15 4 11 17 14 5 10 17 12 21     13 3 7   9   21 15 17 17 6 6819 2.7 

Total Served 40169 
15592 

14485 
13465 

13073 
12494 

11795 
11497 

11176 
10727 

9424 
8923 

7516 
7509 

7370 
7315 

6922 
6176 

5716 
5043 

4571 
4475 

4470 
4466 

4364 
2646 

251379 

% 16 6.2 5.8 5.4 5.2 5.0 4.7 4.6 4.4 4.3 3.7 3.5 3.0 3.0 2.9 2.9 2.8 2.5 2.3 2.0 1.8 1.8 1.8 1.8 1.7 1.1     



 

 

Table 4.8 Station preference matrix based on proximity1  

PC 
Station Preference Choice 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 

SE1 

NP11 15 14 12 4 7 24 16 22 2 13 10 5 6 23 1 25 11 8 19 21 17 26 3 

NP12 15 7 14 24 16 13 12 4 10 2 22 6 11 1 25 21 8 5 23 17 3 26 19 

NP13 14 15 7 12 13 23 24 16 4 22 11 2 10 5 6 1 25 21 8 26 17 19 3 

NP22 13 7 11 15 14 24 23 16 6 12 10 4 22 25 2 21 8 26 5 1 17 19 3 

NP23 13 14 15 7 11 23 12 6 16 4 24 22 2 10 25 5 1 26 21 8 19 17 3 

NP25 26 23 19 12 2 4 13 22 14 15 7 11 5 1 16 6 10 21 17 24 3 25 8 

NP7 23 12 13 26 14 22 2 11 15 4 7 19 16 6 24 5 1 25 10 8 21 17 3 

NP8 23 13 14 11 7 12 15 26 22 6 24 2 4 19 10 16 25 21 8 5 1 17 3 

SE2 

NP10 4 2 5 22 1 16 15 12 14 7 24 10 3 21 13 19 23 17 25 26 8 6 11 

NP15 26 12 23 19 2 4 14 22 15 7 13 24 5 1 16 11 10 6 21 17 3 25 8 

NP16 19 26 2 4 22 23 12 5 1 16 15 14 13 7 10 21 11 17 24 3 25 8 6 

NP18 2 4 22 12 19 5 1 16 15 14 26 7 10 23 21 17 24 3 25 13 8 6 11 

NP19 2 4 22 5 12 16 19 15 1 7 14 26 10 23 21 17 24 3 25 13 8 6 11 

NP20 2 4 22 12 16 5 1 15 14 7 24 19 10 23 21 13 26 17 3 25 8 6 11 

NP26 19 2 4 22 12 5 1 16 15 14 26 7 10 23 21 17 24 3 25 13 8 6 11 

NP4 12 22 2 4 14 15 7 23 24 16 13 5 1 26 11 6 19 10 21 17 3 25 8 

NP44 22 12 2 4 14 15 23 7 5 1 16 24 13 19 10 21 26 17 3 11 25 8 6 

SE3 

CF44 6 11 25 24 8 13 10 15 7 16 21 14 1 12 23 5 17 4 2 3 22 26 19 
CF45 6 24 25 10 8 15 7 16 11 21 14 13 1 12 5 17 4 2 23 3 22 19 26 
CF46 24 15 7 10 16 6 25 11 21 13 8 14 12 1 4 17 5 23 2 3 22 19 26 
CF47 11 13 6 7 24 10 25 15 14 16 23 21 8 12 1 5 17 4 2 26 3 22 19 
CF48 11 13 6 7 24 10 25 15 14 16 23 21 8 12 1 5 17 4 2 26 3 22 19 
CF81 7 15 24 14 13 16 12 10 11 6 4 25 1 21 2 22 8 5 23 17 3 26 19 
CF82 24 15 7 16 10 14 6 12 11 25 4 13 1 21 5 8 2 22 17 23 3 26 19 



 

 

SE3 CF83 16 10 1 24 4 15 7 5 2 21 14 22 12 25 6 8 13 11 17 3 23 19 26 
NP24 7 15 13 14 24 11 16 12 10 6 4 22 23 2 1 5 21 25 8 17 3 26 19 

SE4 

CF31 17 21 3 8 25 1 10 16 5 4 24 2 15 7 22 6 11 12 14 13 19 23 26 

CF32 17 21 8 25 1 3 10 16 5 4 24 2 15 7 22 6 11 12 14 13 19 23 26 

CF35 17 21 8 25 1 3 10 16 5 4 24 2 15 7 22 6 11 12 14 13 19 23 26 

CF37 10 16 24 21 1 25 8 5 17 15 7 6 4 2 11 14 3 12 22 13 23 19 26 

CF38 10 21 16 24 1 25 8 17 5 7 15 6 3 11 4 2 14 12 13 22 23 19 26 

CF39 25 8 10 21 24 16 6 17 1 15 7 11 3 5 14 4 13 12 2 22 23 19 26 

CF40 8 25 21 10 24 17 16 6 1 15 7 3 11 5 14 13 12 4 2 22 23 19 26 

CF41 8 25 21 10 6 24 16 17 11 1 15 7 3 5 13 14 4 12 2 22 23 19 26 

CF42 8 25 21 10 6 11 24 16 17 1 13 3 5 7 4 2 15 14 23 22 12 19 26 

CF43 25 8 6 10 24 21 11 16 15 7 17 1 13 5 14 3 12 4 2 23 22 19 26 

CF61 17 3 21 1 10 5 8 25 16 4 24 2 15 7 22 6 11 12 14 13 19 23 26 

CF71 17 3 21 10 1 8 25 16 5 24 4 2 15 7 6 22 11 13 12 14 19 23 26 

CF72 21 17 10 8 16 25 3 1 24 5 15 7 4 2 6 11 22 13 12 14 19 23 26 

SE5 

CF10 1 5 16 10 4 2 3 21 22 17 24 15 7 25 8 12 6 14 11 19 13 23 26 

CF11 1 5 16 10 3 21 17 4 2 24 22 15 7 25 8 6 12 11 14 13 19 23 26 

CF14 1 16 5 10 4 2 21 3 15 7 17 22 24 25 8 14 12 6 13 11 19 23 26 

CF15 10 1 16 5 21 24 4 15 7 2 17 25 8 3 6 22 14 11 12 13 19 23 26 

CF23 5 1 4 16 2 10 22 3 21 17 12 24 15 25 14 8 7 6 19 11 23 13 26 

CF24 1 5 16 10 4 2 21 3 22 17 24 15 7 25 8 12 6 14 11 19 13 23 26 

CF3 5 4 2 1 16 22 10 12 15 21 3 14 7 17 24 25 19 13 23 8 6 11 26 

CF5 1 5 3 16 21 17 10 4 2 24 8 22 15 7 25 12 6 11 14 13 19 23 26 

CF62 3 17 1 21 5 10 16 8 25 4 24 2 15 7 22 6 11 12 14 13 19 23 26 

CF63 3 1 5 17 21 10 16 8 4 25 24 2 15 7 22 6 11 12 14 13 19 23 26 

CF64 1 5 3 16 10 21 17 4 2 24 22 15 7 8 25 6 12 11 14 13 19 23 26 
 

1 Stations 9, 18 and 20 of Table 4.3 do not contribute to the travel time preference matrix since their locations are unknown, leaving 23 station choices.
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High station utilisation is one of the main factors leading to stations becoming less desirable to 

demand nodes in reality, where the station would have been the most preferable if based on 

proximity alone.  The reasons for this may be attributed to: 

1. Numbers of allocated vehicles: popularity of a station based on frequency of use is 

dependent upon the number of vehicles allocated to the station.  If there exists a station 

closer to a demand node than its first proximity station, it could be due to a smaller number 

of vehicles located at the closer station, likely leading to higher utilisation.  Therefore, 

vehicles may actually be unable to service all demand where preferred, hence bases further 

from the demand node serve more often.  Additionally, for the closest station, if utilisation is 

higher, the likelihood of a vehicle being idle at the base is small, so, vehicles could find 

themselves being dispatched to new calls whilst returning from other incidents, which may be 

less desirable than if a vehicle was sent from the next closest base.  

2. Demand rate of neighbouring nodes: if nearby populations have a higher demand rate, the 

closest station may also be closest to the neighbouring localities, in which case vehicles are 

likely to be called to the higher demand regions more often, meaning a less preferable station 

may have to serve subsequent calls from the postcode district.  

3. Distance from hospital facilities: some demand nodes are not situated near to a hospital 

facility; therefore, any time a patient requires transportation from the scene, the vehicle must 

travel further to and from the hospital and so is busy for a longer period of time per service.  

This increases utilisation, and the chance of a less preferable station being selected to serve 

subsequent calls originating from the same location.     

 

4.6 Fleet Allocations 

WAST provide allocation information, but only in relation to total fleet assignment per shift, not 

the operational units.  This means, the numbers of vehicles quoted to be positioned at a station at 

any one time are markedly overestimated.  Figure 4.16 shows the maximum number of EAs on shift 

during the week is 52 vehicles; when this is considered in addition to the number of RRVs – with a 

maximum of 32 (Figure 4.17) – a mean average of (37 + 18) 55 vehicles is witnessed at points 

during the week. 
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Resulting from discussions with the Trust, 40 vehicles on shift at any one time in the South East 

region is deemed typical.  To account for the inflated fleet size suggested by the data, an 

approximated (operational ÷ total average fleet = 40 ÷ 55)  70% scaled version of the average 

WAST allocation is used as a potential benchmark if required.   This overestimation likely comes 

from the fact that all vehicles owned by the Trust working the South East region are assigned to a 

base station whether or not they are currently or at all operational.           

 

Figure 4.16 WAST EA fleet size (averaged per half hour) by day 

 

Figure 4.17 WAST RRV fleet size (averaged per half hour) by day 
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4.7 Response Time 

4.7.1 Introduction 

Opinions of the definition of response time are often inconsistent in emergency service modelling.  

The response time can be classified as the waiting time of the customer, i.e. the queueing time; the 

service time would be the period of time starting from the moment of arrival of the ambulance 

crew with the patient and ending whenever the objectives of the incident request are met, e.g. 

when the ambulance reaches the hospital, or when the patient is transferred from ambulance to 

hospital care, or when treatment of the patient is terminated. 

In terms of a patient, response time should also be taken as the total length of time the individual 

spends waiting until the arrival of an EMS crew.  WAST define their best response to an incident as 

the “number of minutes taken for the first vehicle to arrive on-scene at an incident” (WAST 2008).   

This is still an ambiguous period of time to be defined as the standard response time.  For ease of 

modelling, or sometimes due to limitations of available data, it is often only reasonable to calculate 

response time exclusively through physical travel time or time from dispatch orders by controllers.  

The time instant for the vehicle to become mobile after dispatch orders is sometimes ignored since 

it is deemed hopefully small enough to be inconsequential; however, there are times when this 

dispatch and the allocation delay, (here known collectively as the pre-travel delay), may account for 

a substantial portion of the overall response time (see Figure 4.1).   

WAST calculate response time as the time after the arrival of the emergency call and after orders 

for dispatch have been given by the call operators until the arrival on scene (Lightfoot Solutions 

2010).  That is, from allocation, including the mobilisation of the vehicle and travel, to arrival with 

the patient.  For the purposes of this study, response time will be defined as this interval – 

allocation to on-scene time.  It is therefore possible, to independently extrapolate the two main 

components that make up the response time phase for analysis: 

1. pre-travel delay; 

2. travel time. 
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4.7.2 Delays  

By definition, waiting time of a patient should incorporate any pre-travel delay that may not only be 

due to the crew or vehicles themselves, but also processes at the control centre.  As mentioned in 

Chapter 2, when a call arrives with an emergency operator, the call cannot be logged, categorised 

or provided with service by a dispatched vehicle until three item of information have been collected: 

 location of the incident; 

 patient information; 

 description of the emergency. 

In many ambulance services, therefore an additional delay is experienced by the patient during the 

response service phase.  This delay can be thought of as the time from the instance of the incident to 

the initiation of phone contact, plus the time from the call being connected to the official recording 

of the emergency by the operator. 

The more distinct delay period known as ‘pre-travel delay’ accounts only for the other, measurable, 

time instances at which a patient is waiting and whilst a vehicle is assigned to the call but not mobile.  

Once an operator has logged the call and chosen an EMS unit to dispatch, there is a delay before the 

selected vehicle becomes mobile – the crew need to be informed that they are to be dispatched, and 

need to mobilise themselves and the vehicle.  This may take a few minutes, but is a distinguishable 

phase in the WAST data set.  

In previous studies, pre-travel delay has been modelled as a Lognormal distribution, in two cases 

with a mean of 3 minutes and a standard deviation of 1.5 minutes (Budge et al. 2010, Erkut et al. 

2008b).  Jewkes (2011) quoted Lognormal response times for a study of a Canadian EMS system; 

additionally, EMS travel times have been modelled by Lognormal distributions in the past (Budge et 

al. 2010). 

One final area of possible delay is at the scene.  Upon reaching an emergency, the crew log their 

arrival, yet there will still be some time associated with attempting to reach the patient after 

disembarking the vehicle, particularly in tower blocks, or in situations where the vehicle may have 

to be left some distance from the site of the emergency.  
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4.7.3 Travel Time  

Taking the minimum travel time for an incident with multiple vehicle attendances, the distribution 

of travel from the starting locations of EMS units to an emergency scene can be found.  The 

hypothesis is that travel time will differ between emergency types due to the urgency with which 

crews respond.  

A comparison is made to see if there are statistically significant differences between category A, B 

and C travel times for EA vehicles.  Since each of these groupings are non-normally distributed, a 

non-parametric one-way ANOVA (Kruskal-Wallis test) is used via the software package SAS 

Enterprise Guide (SAS 2011).  The test shows significant differences with a p-value <0.001, so a 

post-hoc test, namely the step-down Bonferroni method, or Holm test, is conducted to determine 

where the differences in medians lie.  The results suggest significance between all pairings, likely 

due to discrepancies in the frequencies of the tails of the distributions. 

Similar results are found for category A, B and C for RRV travel times, and all post-hoc test 

comparisons see p-values <0.05, exposing differences at the 5% significance level.   

Travel time modelling however, is a much larger problem than simply finding a distribution from 

the data, and will be discussed in thorough detail in the next chapter.  

 

4.7.4 Response Time Data Results 

For 2009, the data provides the distributions for response time based upon WAST’s definition, as 

given in Figure 4.18, for categories A, B and C.  AS2 and AS3 response times are combined since 

their response times are on average greatly longer due to the nature of the incident.  

As is seen, the response distributions of the three high priority categories all peak around the eight 

minute mark, which according to the standards would appear to be satisfactory; however, the heavy 

tails show the large amount of variation, highlighting vast room for improvement in this service 

phase.  
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Figure 4.18 Response time data distribution of unique incidents by category 

 

4.8 On-scene Service 

The length of the phase of service, whereby an EMS crew attends to the patient(s) at the incident 

scene, will depend on the requirements of the patient and the nature of their emergency.  This is 

where the category of the call can determine the expected length of time a vehicle will spend 

servicing an emergency; yet it is important to realise that the initial telephone triaging of the 

condition may have been incorrect and so prediction of the needs of the patient will not always be 

adequate or may have instead overestimated requirements.  

In some studies, even where priority is used to determine the dependent travel time to scene, the 

time spent with the patient on-scene is often assumed to be independent of nature and even 

deterministic (Singer and Donoso 2008).  However, in Norway, it was found that a physician-

manned vehicle is able to deal with only half the number of equivalent of category A incidents 

(known as “emergency red runs”) per hour than an ambulance attending lower priority calls (Naess 

and Steen 2004).  

A possible triangular relationship (Figure 4.19, where a directional arrow suggests an influence) 

may exist between the nature of the incident, length of time on-scene and decision to transport.  

The distinct effect each has on the others is uncertain but it is unlikely any of these are independent 

from the rest.  As a guideline, the nature of the incident will indicate the decision to transport and 
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both these may determine the expected length of time the crew spend on-scene.  Vehicle utilisation 

also plays some part due to the crew and vehicle type available for dispatch. 

It seems, from Table 4.9 that the on-scene length does differ depending on whether or not the 

patient ends up being transported to hospital.  Crews spend less time on-scene when the patient is 

later transported, presumably due to more critically ill patients requiring swifter transportation.  

Likely, treatment and care can continue to be provided during transit as opposed to patients who do 

not need hospital attention but need to be stabilised at the scene.   

 

Figure 4.19 Relationship between category, on-scene length, transportation decision and vehicle 

utilisation and their influences 

Figures 4.20, 4.21 and 4.22 provide more insight to the distributional shapes and skews for this 

service phase for the different emergency types and EMS units.  When looking at lengths of service 

of absolute frequencies per category (graph A in Figure 4.20), the category C service distribution by 

any EMS vehicle falls much shorter than the other two.  This is due to the fact that much fewer calls 

for this emergency type are witnessed by the Trust.  Graph B of Figure 4.20 portrays the relative 

distributions of service per call quota for EMS attendance, showing in fact, it is category A that is 

slightly more negatively skewed.  

Categories AS2 and AS3 have considerably different service definitions as primarily they require 

transportation; as expected Figure 4.21 shows a higher proportion of shorter on-scene service 

lengths than category A, B and C emergencies.    
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Table 4.9 Summary statistics for on-scene length (in minutes) per category by vehicle type 

Category Vehicle 
Proportion 

of all 
Records 

Transported Patients Non Transported Patients 

% Mean SD % Mean SD 

A 
EA 21.4% 33.18 19.51 10.22 10.80 26.87 27.16 

RRV 11.5% 1.13 21.93 14.70 35.88 26.75 71.79 

B 
EA 23.6% 32.71 18.28 11.12 16.64 23.28 28.11 

RRV 8.6% 1.27 20.41 15.87 23.85 27.61 65.39 

C 
EA 9.6% 12.82 18.68 11.75 6.63 25.97 21.74 

RRV 2.6% 0.41 19.41 14.35 4.61 32.26 65.97 

AS2 
HDS 6.3% 7.34 15.97 9.83 0.43 16.78 68.45 

EA 5.2% 8.61 18.26 12.08 0.69 20.21 34.69 

AS3 
HDS 0.8% 1.24 17.67 14.88 0.22 14.67 13.27 

EA 0.8% 1.29 14.38 13.85 0.26 16.03 20.85 

Total  90.5% 100   100   
 

When comparing the distributions per category, the data can be broken down further to 

differentiate between length of on-scene service time per vehicle type (Figure 4.22).  RRVs 

generally spend longer at the scene with larger variation, due to the fact they are initial responders.  

Even though they reach the scene first, usual practice suggests they will stay on site until the patient 

is stabilised or transported by another EMS unit in the cases of double-dispatch.  

 

Figure 4.20 On-scene length distributions for categories A, B and C – comparison of shape for 

absolute frequencies (graph A: left) and relative proportions (graph B: right) 
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Figure 4.21 On-scene length distribution for categories AS2 and AS3 

 

Figure 4.22 On-scene distributions by category showing differences in service by vehicle type 
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4.9 Transportation 

Conveyance policy for WAST is to the nearest facility; however, there will be exceptions to this 

rule, where a patient requires specialist attention only provided by one or a limited number of 

facilities, or where a hospital’s ED is experiencing a crisis or major backlog of admissions and so 

refuses to admit further emergency patients.  In such a situation, the vehicle is diverted to the next 

closest suitable facility (preference for conveyance is given in Appendix 4.2).  In a reply to the audit 

commissioned in 2006 (WAO 2006), WAST state that their aim is to transport to the best 

accommodating facility for the individual patients’ need, rather than the closest (Audit Committee 

2009); however, there is no evidence that this endeavour has been implemented in daily operations. 

Taken from the data set, only seven commonly used hospitals were analysed in detail (despite 150 

being witnessed), since WAST themselves make reference to only these seven facilities.  When the 

proportion of patients transported to each of the hospitals is explored (Table 4.10), the reason for 

choosing only these seven for data analysis and further modelling is justified by the usage frequency. 

Table 4.10 Proportion of records referring to patient conveyance to each hospital 

ID Hospital Unique 
Transports 

Unique 
Incidents 
Assigned 

% Unique 
Transports

% Unique 
Incident 

Transports 

% Assigned 
Incident 

Transports 

1 University Hospital of Wales, Cardiff 36045 53293 30.27 22.18 67.64 

2 Royal Gwent Hospital, Newport 27901 37706 23.43 17.17 74.00 

3 Royal Glamorgan Hospital, Pontyclun 15817 21572 13.28 9.73 73.32 

4 Prince Charles Hospital, Merthyr 15281 21354 12.83 9.40 71.56 

5 Nevill Hall Hospital, Abergavenny 12595 16136 10.58 7.75 78.06 

6 University Hospital Llandough 8403 8705 7.06 5.17 96.53 

7 Princess of Wales Hospital, Bridgend 3023 3723 2.54 1.86 81.20 

 

Total 119065 162489 100.00 73.28  
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Of the 162,489 unique incidents (out of 174,665), 93.03%, would be assigned to one of the seven 

listed hospitals (their closest facility) if transportation was required.  Therefore, the other 143 

hospitals not listed only make up 7% of records.  The decision to transport actually comes after the 

assignment of a hospital in the care pathway, since hospital choice is made at initial triage and 

(usually) based on proximity rather than specialism.  In some cases of course this is altered after 

assessment of the patient on scene.  Around 73% of all emergencies in South East Wales which are 

assigned to one of the seven are eventually transported.   

Although hospital 7, the Princess of Wales, receives only 1.86% of the overall transported incidents, 

which appears insignificant at first glance, it is still included in the analysis since this actually equates 

to approximately eight transports per day throughout the year.  

When investigating transportation by category, for AS1 calls, the higher the priority the more likely 

the patient will require transportation (Table 4.11).  Category AS2 is defined as a request for 

transport to hospital and is reflected in the high conveyance rate.  Destinations of AS3 patients are 

unknown, and may not necessarily end up at a hospital – the information for this category is less 

insightful without further details per incident.   

Table 4.11 Proportion of transportations by emergency type 

Category % of All 
Transports 

% of 
Category 

A 35.55 78.99 

B 35.33 71.71 

C 14.15 69.26 

AS2 14.97 91.33 

AS3 ≈0.00 45.45 

Total 100.00  

 

4.10 Turnaround and Clear Time 

Discussions of Chapter 2 surrounding the difficulties faced by the Trust in handing over patients to 

hospital care within the target time are now re-evaluated.  Some delay may exist for the vehicle, 

crew and patient upon arrival at a hospital facility, whilst the paramedics transfer patients to A&E.  
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During this period, the emergency vehicle is not able to be ‘cleared’ or ready to be dispatched to 

another call.  Figure 4.23 shows the distribution of this delay (incorporating handover processes) 

across the region.   

On inspection of the distribution at individual hospitals, a statistically significant difference was 

found for the seven hospitals when their medians were compared.  This suggests separate 

distributions should be used for modelling each of the turnarounds at the individual facilities, 

although some do appear to follow similar patterns (Figure 4.24).  Vandeventer et al. (2011) also 

find that variation in handover is strongly related to the hospital attended.   

 

Figure 4.23 Turnaround time data for all transported patients to the seven regional hospitals 

 

Figure 4.24 Turnaround time distributions for transported patients to each of the seven hospitals 
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4.11 Summary 

Much of the analysis conducted in this chapter is necessary for the ensuing modelling approaches of 

Chapters 6 and 7.  Where required, the data input utilised in the future modelling methods will be 

detailed, but mainly results are taken from the analysis of this chapter.   

The challenges faced by WAST have been highlighted and reiterated, stating what common 

problems are faced by the Trust, namely: 

 geographical distribution of demand; 

 increasing demand; 

 delays in allocation and dispatch; 

 delays at hospital; 

 high utilisation. 

The aim of the subsequent chapters is to use the information investigated here to suggest changes to 

operations and strategies of an EMS system that might improve performance and reduce 

problematic process areas in the future.  
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Chapter 5 

 Travel Time Estimation 

 

5.1 Introduction 

Performance of any emergency service system is typically measured using response time.  Whether 

it is a police force attending a crime scene or fire and medical services hoping to save lives, a fast 

response will increase chances of a positive outcome.  Studies of these emergency service systems 

have demonstrated the importance of gaining good travel time predictors for modelling response 

performance, meanwhile a review by Goldberg (2004) exposes just how little work has been done.   

Typically, in EMS modelling, reliable and realistic travel time estimates are required for use within 

developed models, to allow for detailed investigation of the operational and strategic service aspects 

where travel time can be thought of as a proxy for response time (Hong and Ghani 2006).  Strategic 

policies for EMS systems mainly surround the resources and approach to improving patient outcome, 

for all of which, travel time is intrinsic.  

Three main types of journey occur within an EMS system when serving an out-of-hospital medical 

emergency:  

1. from an EMS vehicle base to a demand point; referred to as a ‘Response’ journey hereafter; 

2. from a demand location to hospital facility; a ‘Transportation’ journey; 

3. from a facility or demand location back to a vehicle base; a ‘Return’ journey. 

This chapter presents a study of the travel times for journey types 1 and 2 recorded by the WAST in 

South East Wales in 2009 and searches for a suitable model to capture the behaviour over the 

network.  Much work has been conducted in the area of travel time estimation and a review of the 

key studies is presented.  A travel time and distance matrix generator tool has been designed which 

obtains journey distances using the embedded Google Maps Application Programming Interface 

(API), from which estimates for travel times for the journey can then be calculated.  A description of 

the techniques employed for estimation is given.  The chapter concludes by providing a re-useable 

results matrix of journey information for use in subsequent South East Wales EMS modelling.  
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5.2 Necessity of Estimation Methods 

Travel time issues arise regularly in location analysis and many other fields of OR.  These range 

from vehicle scheduling and routing, where network models and shortest path algorithms are used 

in the estimation process (Horn 2000), to cognitive human behaviour (Qi et al. 2006) and 

transportation (Hassan and Ferrell c2009, Sisiopiku and Rouphail 1994).   

Where data for travel along routes of a network does not exist, the need for estimation of distance, 

travel time or response time before modelling is important.  Travel time data may be collected 

directly via observation, although this would result in regional specific information and all possible 

route legs within the region must be traversed (on multiple occasions to account for variation) to 

obtain robust estimations.  This has the potential to put strain on both financial and temporal 

resources for any organisation.  Another situation that presents a need for estimation is where 

certain routes of the network may not contribute any historical travel time information to a study.  

For example when a station facility (or hospital) is closed or not yet built, or when data points are 

limited for a particular region or when demand regions are to be disaggregated for accuracy, 

journey times on routes from these nodes to all others will not exist.  Ideally, these potential or 

data-lacking sites would still be considered when modelling.  Equally, there are many occasions 

where estimation is required even in the presence of ample data.  Where, for example, there exists 

large variation in the data or uncertainty in the geographical starting and ending locations of a 

journey, average travel times may indeed be provided for routes, but with such uncertainty that 

errors may occur in any subsequent modelling.     

The need for estimation within EMS is not just limited to finding journey travel time, but may also 

be utilised to support the probability of a vehicle reaching the incident scene within the target time 

(Goldberg and Paz 1991) or finding dispatch probabilities (Budge et al. 2009).  

 

5.3 Travel Distance Estimation 

Travel time is regularly treated as a surrogate for response time when investigating emergency 

service systems.  In such cases accurate estimates of the expected journey time must be found 

between every node pair of the network being modelled.  The accuracy of travel time calculations 

lies not only in the method of estimation selected but also in the level of detail of the data used.  
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There are occasions where travel times must be extracted from distance and speed, or when 

distances are unknown, times may be found by first using coordinates and displacement exercises to 

estimate distances, which are then converted to time by an appropriate method. 

Two of the simplest ways to estimate travel distances between points on a network are via the use of 

rectilinear and Euclidean metrics.  Many early emergency service studies took these approaches 

(Fujiwara et al. 1987, Hogg 1968) and some still calculate this way where data is unsuitable or 

unavailable (Silva and Serra 2008).  

Euclidean distance is one of the more commonly and widely used metrics throughout practical 

geometry and mathematics.  It assumes two fixed points given in terms of either Cartesian 

coordinates ((ݔଵ,ݕଵ), (ݔଶ,ݕଶ) in two dimensions), or spherical coordinates (latitude and longitude) 

and finds the straight line difference (݀௘) of these points on a grid system using the Pythagorean 

formula (see Figure 5.1).   

݀௘ = ଵݔ)) − ଶ)ଶݔ + ଵݕ) − (ଶ)ଶݕ
ଵ
ଶ 

The rectilinear or rectangular metric is also used for point coordinate distance estimation within the 

literature, (݀௥) (Fitzsimmons 1973).  Its formulation can also be seen in Figure 5.1.   

݀௥ = ଵݔ| − |ଶݔ + ଵݕ| −  |ଶݕ

Rectilinear distance is commonly used in studies of cities where the street network is laid out in 

blocks, and so also goes by the names of the ‘city block’, ‘Manhattan’ or ‘Taxicab’ metric.  Where 

road direction information is known, it is possible to coincide the distance estimates to the network 

by altering the coordinate axis direction (Miyagawa 2009).  

The Minkowski distance metric generalises the Euclidean, rectilinear and the Chebyshev (where 

݌ ∈ ℝ tends to infinity) distance metrics by formulating the distance from location ݅ to ݆ as: 

݀௜௝ = ቀหݔ௜ − ௝หݔ
௣

+ หݕ௜ − ௝หݕ
௣ቁ

భ
೛ 
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Figure 5.1 Example of a Cartesian coordinate system 

Love and Morris (1972, 1979) evaluate and compare several different distance metrics for 

estimating road distances in the United States.  They discover the best performing estimation 

function to be of the type of Equation 5.1, but due to complexity in calculating parameters ݏ ,݌ ∈ ℝ 

and ݇ (weight), it is suggested that since optimal values of ݌ and ݏ are fairly similar, the simpler 

function, a weighted Minkowski formula (found to be relatively accurate), would be suitable. 

݀௜௝ = ݇ቀหݔ௜ − ௝หݔ
௣

+ หݕ௜ − ௝หݕ
௣ቁ

భ
ೞ     (5.1) 

In their 1979 paper, Love and Morris compare the performance of the metrics for shortest travel 

distances for routes in urban and rural networks separately.  Again, the more general functions are 

found to work best.  The authors do note, however, that in urban settings it is more convenient to 

use the Euclidean metric which works almost as well as the general functions, and is easier to 

implement. (Note that where a network has “rectangular bias” the rectilinear function, rather than 

the Euclidean metric, is recommended.)  

 

5.4 Computing Shortest Distance 

In some studies, the length of all arcs or paths in a network is known, but a matrix of all possible 

route lengths is required.  Once a method has been selected for determining the distance of an arc 

(as described in the section 5.3), then the shortest path can be calculated for a journey from one 
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node to another, that travels along one or more of the known arcs, building up a collection of route 

distances. A commonly used algorithm for this purpose is known as Dijkstra’s algorithm (Dijkstra 

1959), though this will not be described here since its computation is not required by the study. 

Often with road networks, there is more than one possible journey route.  For a member of the 

public trying to get “from A to B”, or for an EMS driver going about their day job, the fastest route 

is usually more desirable than the shortest path.  Eaton et al. (1986) and Ingolfsson et al. (2003) 

make use of shortest path algorithms to pre-compute travel time between nodes of their networks.  

Google Maps (Google ©2013) also implements a similar algorithm to provide the best possible 

travel option for a requested journey, rewarding shortest journey time rather than distance.  New 

dynamic features even enable estimates under current traffic conditions.  An example, showing two 

possible routes between an origin and a destination is given in Figure 5.2.  The darker route 

returned is the fastest, with the fainter blue route resulting in the same distance travelled but taking 

slightly longer. 

 

Figure 5.2 Example of a network with just two nodes but two paths between the origin and 

destination address points, returned by Google Maps 
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5.5 Travel Time Estimation 

5.5.1 Introduction 

Computation of travel times can be achieved in  multiple ways, with additional considerations 

regarding speed, road type, transport type, aggregation of points, time of day effects and geography 

of the network.  Factors incorporated by the travel time estimation method vary according to which 

specific network characteristics the researcher deems important.   

 

5.5.2 Scaling Factors 

An approximation of ambulance travel times may be achieved if actual travel times (based, for 

example, on road speed restrictions) are known.  Assuming an EMS vehicle travels on average at a 

given rate of speed faster than a regular vehicle, if standard travel times are known (or can be 

accessed), then the ambulance travel time can simply be found through scaling.  A study which uses 

this scaling approach is that of Perez (1982).  There are more accurate and sophisticated methods 

available for travel time calculation; some studies use information stored by organisations such as 

the Department of Transport, or computer systems containing distance and traffic survey data 

(Alsalloum and Rand 2006, Love and Morris 1979) which allow more in depth analysis of travel 

times over a network. 

In transportation and location logistic studies, it may be distance that is required to be estimated.  

Network specific characteristics such as density, geography of the region and traffic flow may affect 

the results of the estimation, but could be accounted for by a ‘circuity’ factor or multiplier that 

corrects estimated straight-line distances.  A table of calculated circuity factors for 30 countries is 

provided by Ballou et al. (2002).   

 

5.5.3 Estimation via Distance 

A more in-depth procedure than scaling, estimates travel time using known distances for each given 

route.  In the most simplistic version of this approach, all that is required for computation is route 
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distance (݀) and overall average velocity (ݒ).  From this, a linear relation of travel time (ܶ) and 

distance can be established.   

ܶ(݀) =  (5.2)                         ݒ/݀

This may be generalised, as in Eaton et al. (1986), by expressing ܶ(݀) as the linear model: 

ܶ(݀) = ܽ + ܾ݀ 

However, when distance and time are treated interchangeably (Equation 5.2) then constant speed is 

assumed, implying travel time is proportional to distance.  This has been shown to overestimate the 

response performance and that the estimates significantly affect results of a real-world system 

(Carson and Batta 1990).  Other studies (detailed in the next sections) test explicitly whether this 

relationship is valid. 

The ‘square root law’, coined by Kolesar and Blum, was first explored in their paper for fire engine 

response distances (1973).  The paper demonstrates the relationship between the number of 

vehicles in operation and average travel time.  The square root law states that “the average [Euclidean] 

response distance in a region is inversely proportional to the square root of the number of [vehicle] locations”.  

This follows, as, if the number of stations increases, the area ‘covered’ by each station should 

become smaller, and therefore average distance should be inversely proportional to the square root 

of station density due to the relationship between distance and area.  If the arrival rate of 

emergencies to a region of geographical area ܣ square miles is ߣ, and ݊ is the number of vehicles 

located within the region with service rate ߤ, then the expected travel distance, ܦܧ௜, for the area ݅ 

is formulated as: 

௜ܦܧ						 = ܿ௜ ൬
௜ܣ

݊௜ − ௜ߣ ⁄௜ߤ ൰
ଵ
ଶ
 

where ܿ௜ is a constant of proportionality dependent on the structure of the region and ݊ > ߣ ⁄ߤ .  

Expected distance is transformed to expected response time via model 5.3. 

௜ܴܧ = ܾ଴೔ + ܾଵ೔ ቀ
஺೔

௡೔ିఒ೔ ఓ೔⁄ ቁ
భ
మ      (5.3) 

A limitation of this model is that vehicles are assumed to serve only in their designated area 

(Goldberg et al. 1990).   
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5.6 Acceleration, Deceleration and Cruising 

If the simplistic conversion of distance to time via Equation 5.2 is applied, the resulting travel time 

is thought to not accurately depict reality (Goldberg et al. 1990).  Speed fluctuates over each 

experienced trip and so is non-constant for a given route.   

A seminal study of New York City fire engines by Kolesar et al. (1975) looks at the difference in 

travel times for short journeys, compared to longer journeys.  It is found that although for relatively 

long journeys (distances approximately more than a mile) the relationship between travel time and 

distance is linear, for short journeys, travel time increases with the square-root of the distance.  

Each specific location pair is analysed separately and only journeys where the vehicle begins at the 

specified base location are considered owing to the possibility of inaccuracies that non-base locations 

may otherwise introduce.  Due to a lack of data, the authors are not able to consider more than one 

type of vehicle and acknowledge that this may have brought bias to their results.   

Utilising regression techniques, a continuous piecewise function, comprising of both a square-root 

part and a linear part, devised to map travel distance to travel time, enables the user to estimate 

response times of journeys whilst accounting for the change in vehicle speed.  The claim is made 

that the speed of an EMS vehicle may be represented as accelerating for the portion of travel along 

smaller, rural or residential roads (where the vehicle may travel slower than when on major 

roadways) and decelerating when approaching the incident scene, or when leaving main roadways to 

travel along smaller ones.  Kolesar et al. propose that on short journeys the vehicle never reaches 

cruising state, and spends its journey in acceleration or deceleration states.  However, for longer 

trips, after accelerating, the vehicle is able to spend a larger proportion of time in a cruising state on 

main roadways before nearing the scene of the incident.   

The importance of acceleration and deceleration consideration is discussed in further studies 

(Campbell 1992, Ingolfsson et al. 2003).  Typical values of the acceleration distance are suggested 

by Larson & Odoni (1981).  For emergency service vehicles, Kolesar et al. (1975) state that the rate 

of acceleration takes values ranging from 0.5 to 1.0 miles per minute² with cruising speeds of 

around 33 to 40 miles per hour (mph). 

Kolesar et al. let ܽ be the acceleration (assumed constant), ݀௖ the distance required for travel before 

cruising state is reached, ݒ௖ cruising speed (also constant), ܦ the route length and 	ܶ the travel time 

to be estimated; then the travel time becomes a function of distance such that: 
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(ܦ)ܶ = ቊ2(ܦ ܽ⁄ )
భ
మ	,																		if	ܦ ≤ 2݀௖

௖ݒ) ܽ⁄ ) + ܦ) ⁄௖ݒ )	,		if	ܦ > 2݀௖
ቋ 

Constrained non-linear regression is needed to fit to the function.  For each region of the city, fits 

are performed iteratively to the single continuous piecewise function (and additionally to each 

function piece individually) via the least-squares method using average travel times for each route.  

It was found that the piecewise function is able to produce good estimates for all regions of New 

York City due to its square-root and linear components.  Acceleration distance (݀௖) was found to be 

0.44 miles for an acceleration value (ܽ) of 29.0 mph per minute and a cruising velocity (ݒ௖) of 39.2 

mph.  Since the fit was almost linear for distance values from 0.3 to 0.6 miles, the travel time values 

were found to be fairly stable within this range.   

Many studies utilise or extend Kolesar et al.’s travel time estimation model.  One such study applies 

the model to non-emergency vehicle travel times in urban regions using Euclidean and rectangular 

distances calculated via coordinates (Cook and Russell 1980).  The paper states two approaches for 

predicting travel times: a piecewise square-root – linear function as seen in Kolesar et al. or 

multiple linear regression; however, Camp and DeHayes (1974) discovered that a regression model 

for such an estimation problem cannot be greatly improved by including independent variables in 

addition to distance. 

More recently, the validity of Kolesar’s fire engine travel time equations has been tested for use 

with EMS average response times.  Budge et al. (2010) discovered in fact that the model is more 

suited to median ambulance travel times in stochastic models.  They argue that since travel times are 

non-negative, their distributions will be skewed and so median is better predicted than mean.  A 

parametric version of the median model is shown to work as well as a non-parametric version.  

 

5.7 Travel Time Estimation by Road Type 

It has already been suggested that EMS drivers and paramedics prefer to take the fastest route to the 

scene of an emergency rather than the route with the shortest journey time (Hong and Ghani 2006).  

Investigating this decision, Campbell (1992) states that “travel times for very short trips may be very 

sensitive to local conditions; […] for longer trips, local conditions will tend to average out” and so goes on to 

consider mean and maximum vehicle speeds by different road types.  When a journey passes along 
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more than one road type, the problem of estimating travel time from distance becomes more 

complex.  The earlier models of Kolesar et al. can also be extended to incorporate this idea of 

variation by journey leg.  Previously, using an iterative optimisation algorithm, Volz (1971) devised 

a ‘point-to-point driving time model’ to find mean response time of an EMS system.  It was 

assumed that expected travel time already considers all the factors that may affect it (such as 

weather, congestion, start and end driving location, day etc.).  Route distances along four different 

road types were obtained from maps, and through corresponding average (inverse) velocities a two-

dimensional array of driving times was calculated.   

Goldberg et al. (1990) suggest two ways of estimating average travel time through the use of 

distance data, also over four different road types, whilst capturing the variation in speeds: 

 Base-to-call: “Regress distances against the empirical travel times”.  However, in many situations 

this would provide a poor fit due to large time variance per route where distance is constant.  

 Base-to-zone: “Regress travel distances against average travel time for each base-zone pair”.  The 

predictions may then be used to estimate variance.  This method is better in case studies 

with large variation since outliers will cause less disruption. 

Variation around the average travel time can then be calculated from a histogram of the normalised 

residuals of the model.   The regression was run for base-to-call and base-to-zone models, but 

prediction errors were found that suggest the problem lies in the structure of zones and large 

variance within routes, and not from the fitted models. 

 

5.8 Targeting Variation 

5.8.1 Introduction 

Kolesar and Blum (1973) and Kolesar et al. (1975), also consider base-zone routes (not just all 

base-to-call records) for regression, and like Goldberg et al. (1990), witness large travel time 

variance in the data.  Demand locations may refer to quite small geographic points (or sparsely 

populated areas), and so locations are often aggregated to a larger fixed average ‘zone’ instead 

(Figure 5.3).  Since the distance is unchanging for any (and every) journey taken on a specified 

route, yet travel time varies, linear regression of distances cannot provide a good prediction of 
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expected travel time when zones cover a large area.  As an alternative, and in an attempt to capture 

the problem of uncertainty in variance of a region, Goldberg and Paz (1991) present a method 

whereby the normalised residuals of the predicted travel times (from regression of average travel 

time data and distances per route) are used to estimate the variance of the travel time for the route.   

Variance may also occur due to the size of chosen zones.  When an emergency arises from within a 

zone, its exact location is not known when modelling.  This causes some error in distance and 

travel time estimation.  However, it is assumed that the times where travel is underestimated may 

be balanced out somewhat by times where travel is overestimated.  To reduce the effect of this 

error, zones should be taken to be suitable sizes, or cover appropriate population centres. 

 

5.8.2 Regional Zoning & Preferences 

Defining demand zones presents more problems than unexplained variation.  There exists a trade-

off between the level of output detail sought and computational effort required.  The larger the 

number of defined zones, nodes or grid cells, the more accurate the solution (since the allocation of 

servers is dependent on the spatial distribution of demand), yet the more extensive the calculation 

required to find it.  Hence, it is necessary to assume appropriately aggregated locations (Benveniste 

1985), despite the reduction in detail that explains the variance during service.     

From any node to its ݇th closest neighbouring node, the distance is known as ‘݇th nearest distance’ 

(Miyagawa 2009).  This concept is used for ordering preferences of service nodes to demand nodes 

(Benveniste 1985, Hill III et al. 1984).  Such a model structure is made use of by Goldberg & Paz 

(1991), assuming 80% of calls from a demand node are served by the closest station, and the further 

20% by the second closest.  The weakness in this two-station simplification is the lack of 

consideration for vehicle utilisation, since in reality, a vehicle from any station may serve any call if 

it is the best available at any given moment.  Goldberg et al. (1990) build and validate their zone 

structure via a simulation model whose “dispatching rules require that the zones be small enough so that 

there is a strict ordering of the vehicles preferred for each zone.”  This implies that each demand location 

will have a higher probability of being served by a particular station or specific vehicle, tending to 

reduce variance.   In Chapter 6, a similar approach of ‘dispatch preference lists’ is applied to the 

developed allocation models.  There exists literature focussing on methods for determining these 

zones or districts (Benveniste 1985, Carter et al. 1972, Keeney 1972, Larson and Stevenson 1972) 
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though this is not a primary concern of this study since zones (taken as the recorded postcode 

districts) are relatively easily deciphered from the Welsh ambulance service data. 

 

Figure 5.3 Representation of a region divided into sub-regions with aggregated centroid demand 

 

5.8.3 Travel Barriers 

It is possible to obtain a travel matrix for a region by implementing a ‘travel barrier routine’.  This 

routine is one whereby a minimal number of routes are estimated by placing a limit on the distance 

a vehicle is expected to travel (Figure 5.4).  It prevents extensive data collection and full route-set 

searches, by finding information for only a selected number of paths within regions, but lacks in 

detail and accuracy (Hill III et al. 1984). 

 

Figure 5.4 Geographical area with travel barrier routine 
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5.8.4 Starting Point Assumption 

Chelst and Jarvis (1979) note that the large variation in travel time data is often due to uncertainty 

in the response vehicle starting point when dispatched to an incident.  To combat this, an 

assumption is made that either all response journeys begin at the vehicle’s assigned base station, or 

only data of trips between stations and demand nodes are considered.  This is known as the ‘starting 

point assumption’ (Goldberg and Paz 1991).  Although this premise is implemented in the travel 

time analysis following, the Welsh data provided does not necessarily adhere to the rule, as 

illustrated by Figure 5.5.  Some discrepancy or error will still need to be accounted for in the data 

when vehicles begin responding from other locations or whilst en route back to their assigned base.   

 

Figure 5.5 Example of an incorrect starting point assumption (call 2 is assumed to be responded to 

by a vehicle beginning at the station but is served by a vehicle returning from an earlier call)  

 

5.9 Distributional Fits 

Where theoretical distributions have been successfully fitted to data, the Lognormal distribution has 

commonly been used (in location and simulation models) to sample travel times due to the natural 

skew of this type of data (Ingolfsson et al. 2008, Wu and Hwang 2009).  

The Hypercube model and its approximations (mentioned in Chapter 3) have been used and 

extended in many studies since their development.  One such study (Chelst and Jarvis 1979) uses 

the Hypercube to calculate cumulative distribution functions for travel time.  This model would be 

useful for ‘random variate generation’ and can easily be incorporated in simulation models; 
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however, a large amount of computational effort is required when using the Hypercube model 

(Goldberg and Szidarovszky 1991).  The authors claim that non-simulation models tend to estimate 

only average response times, but since there appear to be non-linear relationships between patient 

outcome and response time, travel time distributions are required.  Conversely, it is noted that 

overall average travel times are not as sensitive to dispatch rules as travel time distributions  (Chelst 

1975; 1977), so have benefits where strategic policies are being investigated.   

 

5.10  Time-Dependent Travel Times 

There is a case for considering time-dependency in travel times even when empirical evidence does 

not support such a structure – Schmid and Doerner (2010) make an argument for its importance in 

solving ambulance location problems.  Their claims are supported by operating practitioners who 

state that in Europe where streets are narrower than in America (where travel was not found to be 

time-of-day dependent), congestion has more of an effect on ambulance services.   

Kolesar et al. (1975) and Budge et al. (2010) find evidence against time-dependent journey lengths.  

Kolesar et al. show that although differences do exist, they are not significant so may be discounted.  

The average travel velocity of emergency vehicles is found to only be affected slightly by the time of 

day and between daylight and darkness.  Not as much difference as expected is found for speeds by 

peak and non-peak travel hours; yet, since analysis is not conducted by weekday, the authors note 

that this effect might be greater if weekdays and weekends are considered separately.  

Where time-dependent travel times exist, it is possible to avoid building time-dependent models by 

taking the simpler approach of estimating route travel times per time period and running a model 

for the multiple time blocks separately.  In such a situation, the start time period of the journey and 

the end time period must be regarded so that for journeys that can potentially span more than one 

period the appropriate speed can be assumed (Hill and Benton 1992, Horn 2000).  (In EMS systems 

a journey is unlikely to span more than two periods assuming they refer to non-trivial blocks of a 

day.)  It is important to employ the model under steady-state arrival conditions in order to avoid 

over or under-estimating coverage.  A single day should be divided into time periods that contain 

constant demand (Goldberg and Paz 1991).  Periods should be long enough to allow demand to 

operate under steady-state conditions so that any instant relocation assumption between blocks does 

not prevent the system reaching an optimal state within the time period.  In busy periods utilisation 
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will be high, but if average utilisation and demand is used in the model, coverage will be 

overestimated.  In quiet times, utilisation and demand averages will imply the coverage is 

underestimated (Goldberg and Paz 1991).  Carson & Batta (1990) deal with time-dependent 

demand locations by breaking the 24 hour day into four ‘states’ and modelling the travel time 

between station and demand over these separately; whereas, Goldberg et al. (1990) “assume that 

travel time variance is call time and location stationary”.  This means that the uncertainty in travel time 

will not be dependent upon time of day or the node from which the demand originates. 

A disadvantage of including time-dependent network travel times is the computational complexity.  

In addition to parameter estimation of a route, calculation of all travel times prior to modelling is 

demanding and requires large amount of resources (depending upon the number of time periods and 

locations modelled).  If vehicle speeds are assumed to change over the day, travel times should also 

have some stochastic element that captures the uncertainty in speed at any time of day.  The use of 

static models for estimation purposes is a much simpler method, and has the potential to produce 

good approximations in most cases for the available data.   

Realising the progression of computational power, Campbell (1992) points out that “in the future, 

real time dynamic route guidance information may provide impressive benefits, especially for emergency vehicles”.  

However, as an analytical tool, static location and discrete event simulation models will likely 

continue to dominate the EMS response time investigations.    

Vehicle speed is also often dependent on the category of incident.  Where EMS vehicles are able to 

increase their speed for patients in life-threatening states (‘blue response’), the overall travel time 

may not depend on time of day since the vehicle is hindered less by traffic; but for lower priority 

cases, speed may be affected by congestion (time of day effect) and speed limits.  Although the 

consideration of time-dependent travel time may be a valid one, without empirical evidence there is 

no justification for predicting the travel times for different blocks of time, and so for the purposes of 

this study, time-dependent vehicle speeds are ignored, since the data does not allow support (or 

disproval) of the hypotheses. 
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5.11 Limitations of Models 

Firstly, none of the models found in the literature, deal with the difference in speed and overall 

travel time by vehicle type.  The fleet for the Welsh Ambulance Trust is heterogeneous; the 

different vehicle types are designed specifically for different jobs and their various strengths utilised 

purposefully.  RRVs can travel faster than EAs but are less likely to transport a patient to hospital.  

The heterogeneous fleet will be considered in the estimation analysis of the next section. 

Secondly, all of the studies mentioned only consider travel time for the response journey of an EMS 

system.  Since an aim of this study is to model the entire EMS system and not just the response 

phase, estimates of travel times for all possible routes, referring to all three journeys – response, 

transportation and return – must be found.   In some cases, for example, the same route will be 

traversed by a vehicle on a response journey and a return journey.  Real world distance or time will 

depend on the direction of travel (due to one way systems and traffic routing) and so the assumption 

of identical travel information in both directions of a route cannot be applied.  It is therefore 

necessary to produce a non-symmetric travel time or distance matrix.   

It is important to note that in the majority of the studies mentioned above where travel distances are 

not explicitly contained in the data, they are usually found using Euclidean or rectangular distance 

metrics from grid coordinates.  Applications are often to American cities where road networks are 

generally grid plan systems of right-angled blocks of streets in urban areas, so usage of straight line 

distances is quite suitable.  Applying these methods to non-grid plan networks in less urban areas 

could be misleading.  Most of the studies are based on urban areas, and where rural regions are also 

considered, the two areas are usually treated separately.  However, in many real-world applications 

it is desirable to have a model that may be functional for a region containing both geographies.  

Kolesar et al.’s work with piecewise functions was a great step towards an accurate representation 

of this situation, whereby it might be possible to think of regions having a square-root function for 

travel along rural roads and linear travel along more major roads or for longer journeys.  However, 

since distance here may vary greatly but still only along one road type (e.g. rural) the results will 

unlikely be a good fit when using Kolesar’s (or others’) findings exactly.  Instead, one aim of this 

project is to find a set of new functions, via the regression of non-Euclidean travel distances, 

returning rural and urban travel time nature of South East Wales for a heterogeneous fleet. 
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5.12 Estimation in Wales 

5.12.1 Introduction 

Being the crucial component of response time, travel time estimation methods for an EMS system 

must be realistic, whatever the regional structure; however, this area of South East Wales poses 

many geographical, strategic and operational problems when modelling, particularly given the true 

mix of urban and rural communities.  Much of the road network in the region is of A and B class 

roads, with only a relatively small section of motorway running between the two cities.  Predicting 

travel time for the region is therefore not a simple task. 

 

5.12.2 Necessity of Travel Time Prediction for Modelling WAST 

It is necessary to provide a method for travel time estimation in this study, primarily due to the lack 

of sufficiently reliable data.  Although travel times for all journey types can easily be calculated from 

WAST’s 2009 data, many anomalies exist in the records, and it is not possible to determine the 

starting location of the response vehicle in many cases.  A low level of detail (postcode districts) 

recorded for emergency location means the granularity of the interpreted network is not easily 

increased.  Additionally, the large variance for travel on given routes prevents a formal fit of a 

theoretical distribution to the data.  Ingolfsson et al. (2008) note that the standard deviation of a 

route’s travel time in their EMS study is on average 40% of the mean travel time for the route.  

Compared to service time, Benveniste et al. (1985) claim that travel times are short (Goldberg and 

Paz (1991) find that travel times are usually around 20% of the service time), and so ignore the 

variation in this part of their probabilistic system.   

More succinctly, the reasons for a prediction method being developed are: 

1. demand zone aggregation; 

2. incorrect starting-point assumption; 

3. large variance. 

Origins of calls have been aggregated to postcode districts (due to the lack of detail in the data).  

The benefit of this is the reduction of complexity in the number of individual locations required for 

computation.  Although the distance between a particular station and each demand node will always 
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be the same, it would be expected that the travel time between will vary; yet if more demand nodes 

are used, the accuracy in overall estimation will increase and variance decrease.   

Each incident in the data set is responded to by a vehicle for which its assigned base station is known; 

however, it cannot be guaranteed for any incident whether the vehicle actually began its journey 

from the base station, or whether (as happens frequently) it began responding from its current 

position on the road network – either returning to base from an earlier call, or from a stand-by 

point (or even en route to a lower priority call in the cases of pre-emptive service).  As such, when 

a subsequent call for service arrives with the EMS operators, and a vehicle is assigned, no matter 

where its current geographical position is on the network, the recorded starting point is the station.  

Hence, travel times may in fact be very short (if a vehicle happened to be close by and available) 

even when it appears that the assigned vehicle would be an undesirable choice due to distance.   

Variation is likely contributed to by both the previous two points (demand node representation area 

and unknown starting locations) and may also come from other factors such as:  

 Congestion of the network; 

 Time-dependency of the traffic flow in the network (including season); 

 Individual driver characteristics; 

 Weather; 

 Condition of roads travelled. 

Any model utilising non-deterministic travel time will require the inclusion of some level of 

uncertainty around journey times.  Instead of including all of the factors listed (and any others that 

may exist), this chapter aims to develop a model that can capture some aspects of variation in travel 

time despite the ambiguity regarding actual physical location.  To do this, prediction is required not 

only of average travel time, but also of travel time variance; however, it will become apparent that 

it is difficult to get good estimates for travel time variance.  

 

5.12.3 Available Travel Time Prediction Methods 

Three possible approaches to travel time estimation are considered for the application to EMS 

vehicles along the South East road network.  Even though it is already known that response journey 
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time variance is large, (primarily due to uncertainty in vehicle starting location), attempts are made 

to apply prediction methods to this phase of service, as well as to the transportation journey phase.  

1. Distributional Representation  

Of the common theoretical distributions available, none were found adequately suitable to 

represent travel time over network.  Even when analysed by category, and limited to only the main 

demand regions, stations and hospitals, both travel time phases (response and transportation) lack 

significant distributional representations.  The lack of any statistical fit is a consequence of the 

geographical structure of the region and high travel variance of the data, which produce a non-

typical distribution shape and skewness, as portrayed in Figures 5.6, 5.7 and 5.8.   

2. Average Travel Time 

When the objective is to utilise travel times in a subsequent simulation model (where exact 

movements and positions of vehicles are observed), travel time should be route specific.  Taking the 

average travel time for a route is seen to be unrealistic when it is imperative to also capture the 

variation in the empirical data of an EMS system such as WAST.  Along a particular route in the 

network travel time is expected to be fairly similar over all trips, fluctuating due to some factors of 

uncertainty, but following a fixed pattern.  This is attributable to the route’s associated constant 

distance.  Despite the ease of calculation, ambiguity in starting location of vehicles, aggregation of 

zones and skewness, mean that variance from the data is not a reliable measure and is not easily 

predicted in the case of the South East.  Additionally, information may not exist for all possible 

routes over the network, and there is no simple way of predicting average values and variation 

around them for such journeys.   

3. Travel time estimation from distance via a chosen model 

The simplest model that may be used to provide an estimate for time based on distance is that of 

Equation 5.2, section 5.5.3.  The limitations of this constant speed assumption have already been 

discussed, yet there exist numerous alternative types of model whereby time can still be predicted 

by regressing distance.  Almost all of these models are applied specifically to a particular region or 

city.  It is therefore not sensible to adopt results directly from previous work, especially for a 

network that has both rural and urban characteristics.  Instead, the next sections describe a model 

designed specifically for South East Wales where regression analysis is carried out. 
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Figure 5.6 Travel time for first responding vehicle journeys 

 

Figure 5.7 Travel time for all response journeys 

 

Figure 5.8 Travel time for all transportation journeys 

 

5.12.4 Response Journey Modelling 

Attempts at modelling response journey travel time include: 

 graphical analysis; 

 distribution fitting; 
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 factor scaling - comparing travel time data to Google Maps travel times and distances; 

 comparison testing; 

 cluster analysis to group demand locations and find factors; 

 cluster analysis to group demand locations so that a significant distributional fit might be 

found to individual groups; 

Each of these were attempted for data from the few most popular (commonly used) station choices 

for each demand location, since it was assumed that the variance for less utilised station-demand 

routes would give worse results.  Preference was initially determined by the number of journeys 

made between the two points.  This did not provide insightful results and so examination into 

preference was carried out with consideration to the minimum average travel time at the popular 

stations.  Unfortunately, results were similarly unsupportive, probably as a result of smaller stations 

with fewer vehicles but shorter travel times being made a higher preference to more demand areas 

than they can realistically serve.  All efforts listed failed to produce good results (statistically 

significant, nor visually suitable), even when classified by emergency priority and vehicle type.   

 

5.12.5 Transportation Journey Modelling 

The decision was made to work with transportation journey data instead. (A summary of the 

available travel data provided in the WAST 2009 data set is given in Figure 5.9.)  This 

transportation travel phase was expected to contain less uncertainty than response journeys since 

the starting (at the scene) and ending (at the hospital) locations of the vehicle are known.  It is not 

possible to begin transportation from a location other than the scene of the incident, and there 

should be no cases where the patient is transferred to a location other than the recorded hospital.   

Exact position for the hospital facility may be used, and so in this phase, variance can be mainly 

attributed to aggregation of demand areas to centralised points.   

The approach of modelling transportation journeys does present its own problems.  There exists an 

issue of scaling any results for transportation journeys to response journeys when the modelling 

necessitates both pieces of information.  How should the proportion of transportation speed that 

vehicles travel at when on a response journey be calculated?  This problem can be trialled by 

spreadsheet or simulation models to see the effects of scaling.   
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Figure 5.9 All possible journeys made by an EMS vehicle during an emergency service, showing 

whether data is collected by WAST or not for each of the journey lengths 

Any incorrect assumptions can easily be rectified; updates can be made if applied to a different 

region or if a more accurate scaling procedure is revealed.  Due to this flexibility, transportation 

time modelling with scalability is deemed an appropriate method to estimating response journey 

travel times.  The third approach mentioned in the previous section 5.12.3 – ‘estimation from 

distance via a chosen model’ – is adopted for application to the South East region, for which travel 

distance must first be obtained. 

 

5.12.6 Travel Matrix Generator  

For modelling purposes, via both Location Analysis (Chapter 6) and simulation (Chapter 7), the key 

component required for response time computation is that of travel time.  In order to estimate 

travel times, one possible way is to predict using known distances for all routes.  Approximate or 

real distance values between all location pairs for the South East Wales EMS region must be found 

for inclusion in prediction models since the data set provided lacks any distance details.    

For any given network, route distances may be obtained via Google Maps for each existing journey 

between two nodes.  The Google Maps API is utilised within a purpose-built Travel Matrix 
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Generator Tool (Smith et al. 2011), enabling the creation of a matrix detailing journey information 

from an input list of geographic locations (see pseudo code, Appendix 5.1, for this process).  By 

sending multiple requests to Google Maps, a collection of travel time and distance values between 

location pairs may be obtained, where a pair consists of a start location and an end location (which 

may or may not refer to the same geographic points).  Input locations may denote full or partial 

addresses, full or partial postcodes or geographical references (such as latitude and longitude 

coordinates) of explicit or aggregated demand districts, stations and hospitals.  Journey information 

results returned by the Google Maps API are stored in matrix form internally and in ‘xml’ format 

externally.  After all requests have been made, a data table of information will be displayed within 

the interface where the user may select whether they wish to view travel times or travel distances 

for the routes.  From this, the user may export the data to an external software package such as 

Microsoft Excel or similar, in order to analyse or work with the information further if desired.   

Although it is possible to acquire travel time information for any route from Google Maps directly, 

due to the speed assumptions made by Google for individual roads, it is likely these will 

underestimate speeds travelled by EMS vehicles.  Distances, which are constant for a given route, 

are therefore used instead.  Since response time of vehicles to emergencies is the primary 

performance measure of ambulance services, distances must be converted into journey times for 

subsequent modelling and investigation of the system.  Station, hospital and demand locations are 

supplied to the tool in return for road based distances.  From these, travel times can be predicted 

through regression methodologies (section 5.13.4); however, the starting point assumption is still 

an issue with this approach and so regression is applied only to transportation journeys (distances 

between demand and hospital nodes).   

 

5.12.7 Zoning Characteristics: South East Wales 

Before finding route information between all locations via the Travel Matrix Generator Tool, if 

demand points are aggregated, the centre of a demand zone must be determined.   For the purposes 

of this study, this may be done one of two ways: 

1. using given Google Maps position for the geographic centre of a postcode district; 

2. via manual estimation when the centre of a postcode district refers to a mainly uninhabited 

area, where the population centre is located elsewhere within the district.    
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In the second situation, when Google Maps returns the centre of a postcode district to be within a 

forest for example, the postcode district may simply be taken at a greater detail level (maybe 

referring to a main street in the nearest town) in order to locate the centre more appropriately.  

Communities are the areas that contribute more to the demand of the region than the rural or 

remote, geographically central points.  Therefore, it is assumed that by taking a town centre over 

the district centre, the average travel times between regions are better and consistently represented 

when modelling.  This ‘manual’ approach was also taken by Goldberg et al. (1990) who state:   

“The accuracy of this assumption [“that all calls from a zone occur at the average location of all calls in 

the zone”] depends heavily on the size of each zone. […] The distance to the average call location does 

not equal the average travel distance.  However, if the zone is small enough, the difference between these 

two values is small when compared to total trip length.” 

 

5.12.8 Time Dependency: South East Wales 

There may be time dependency contained within the travel data, but due to the consistently high 

variance perhaps it is not immediately apparent.  Some statistical analysis was performed on the data 

provided by WAST by time of day and day of week, to see if any dependency for travel was 

significant.  Very little discrepancy over segments of the day, and across weekdays, is seen, even 

when analysed by location.  For this reason time-dependency is only considered for demand volume 

and not route travel times in all subsequent modelling.  This is possibly explained by the fact that in 

Wales, there are few major roads, except around the two cities.  Either congestion plays less of a 

role in variation than has been witnessed in other studies around the world, or perhaps, smaller 

rural roads mean that vehicles would not be able to travel much quicker in off-peak times than rush 

hours.  Since the region is mainly rural, traffic would be expected to be lower than in other areas of 

the country, and it is possible that congestion is fairly stable within each of the South East districts.   

By using a model that predicts travel time for each and every route, it is possible to apply the model 

to other regions, other ambulance trusts, and incorporate any time dependency quite easily if 

necessary compared to using regional (or district) average times or empirical data approaches.  
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5.13 Application of Estimation Method 

5.13.1 Introduction 

Utilising the travel distance information obtained from the Travel Matrix Generator Tool, 

regression techniques are used to fit models to the known routes of Figure 5.9 which are then 

applied to all other network routes to find suitable model parameters by emergency category and 

vehicle type.  

In a similar fashion to Kolesar et al. (1975), approach 3 of section 5.12.3 is now applied to the 

WAST journey data.  Travel time for a route is taken to be the average of all travel time values 

witnessed.  For the South East region of Wales, there are 50 demand nodes (at postcode district 

level), 23 stations and seven hospitals.  A non-symmetric matrix is required since it is not 

guaranteed that a route will have the same distance value in both directions.  In total, there are 

(50 + 23 + 7)ଶ = 6,400 possible non-symmetric routes, with only 350 of these routes beginning at 

demand nodes and ending at hospital facilities (transportation journeys).  Although the average 

travel times for routes are not an accurate representation of actual average travel time, 

representative regression models can be built to better estimate the expected length of a journey in 

the region and incorporate the variation expected due to demand aggregation, driver route decision, 

weather, congestion and time dependency via the inclusion of the single dependent travel variable.   

 

5.13.2 Response Journey Correlation 

Initially, correlation visualisations were created for travel time and distance data in order to see the 

relevance and suitability of a regression technique.  Response journeys are more difficult to analyse 

due to the inaccuracy in recording the vehicle start position, as already discussed in detail.  To 

demonstrate this fully and for comparison with transportation journeys, correlation plots are 

produced (Figures 5.10 and 5.11).  A trend in correlation can be seen, with coefficients of 0.64 for 

EAs and 0.59 for RRVs; however the spread of the data seems to increase as distance increases and 

there are many outlying data points.  These observations are enough to tell us that linear regression 

analysis via the method of least squares is not directly appropriate in this case.  The increase in 

dispersion as distance increases implies that the error data are not Normally distributed and that the 

homoscedasticity condition of the residuals will be violated (i.e. variance is not constant). 
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Figure 5.10 Distance against average travel time for each route by category for EA response 

journeys (categories A, B and C only) 

 
Figure 5.11 Distance against average travel time for each route by category for RRV response 

journeys (categories A, B and C only) 

To combat this effect, regression could possibly be performed with a transformation on the 

dependent variable, yet this has not been attempted due to the issues that lie with the starting point 

assumption which a transformation would not resolve. 

The average speed for a route can be calculated using the Google Maps distance and average travel 

time for all the journeys between a location pair.  The effects of the high level of variance within the 

response journey data are then apparent.  For example, for category A, EA vehicles only, the 

response journey average speed ranges from around 235 kph (146 mph) to as low as 5 kph (3 mph).  

It is obvious that these extremes are unviable, leading to a skew in the data, with outliers and curves 

as seen in the scatter-plots of Figures 5.10 and 5.11.     
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5.13.3 Transportation Journey Correlation 

The resulting correlations for transportation journeys are portrayed graphically for each of the 

patient and vehicle types in Appendix 5.2.  Instead, combining all data points for each of the 

individual categories by vehicle type produces the results shown in Figures 5.12 and 5.13.   

Although more sparse for RRV journeys, there is still an obvious trend in the transportation data, 

supporting a strong positive correlation between distance and journey length for all emergency 

classifications and both vehicle types.    

 

Figure 5.12 Distance against average travel time for each route by category for EA transportation 

journeys 

 

Figure 5.13 Distance against average travel time for each route by category for RRV transportation 

journeys 
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Little difference is witnessed in the patterns between the emergency categories within vehicle type, 

yet, the difference is more pronounced across vehicle types.  Despite similarities for categories 

within a vehicle type, grouping these may in fact hinder the estimation process.  Where comparison 

tests prove the legitimacy of this grouping, the resulting detail level would still be decreased.  Even 

a slight difference in speed travelled by vehicles to the various emergency categories will have an 

influence on system performance.  It will become evident that modelling the category of incident 

separately allows the best insight to the service system, and will allow changes in policy to be 

included in subsequent analysis.  In particular, category A patients are often served differently with 

a ‘blue light’ response reducing the overall travel time to these incidents. 

 

5.13.4 Regression Analysis for Average Travel Time Estimation 

Regression analysis is a parameter estimation technique used where a linear relationship between 

variables is believed to exist (Kleinbaum et al. 2008).  The value of a variable may be predicted 

given a combination of other variables (assumed to be without error) and a constant (or intercept).  

Simple linear regression is a popular choice due to the ease of investigation and aims to fit an 

appropriate line to data by minimising the sum of the residuals squared via calculus or numerical 

evaluation.  This method of least squares was used successfully by Kolesar et al. (1975) and 

Goldberg and Paz (1991) for similar emergency service travel time problems as already mentioned.  

Multivariate linear regression deals with several independent variables and so it is more difficult to 

find the optimum model (fitted curve) unless receiving help from a computer package.  

If a general linear model is assumed to be of the form:  

ොݕ = ߙ + ଵݔଵߚ +⋯+  ௞ݔ௞ߚ

where ݔ௝  are the independent variables (which may be raised to powers), ߚ௝  are the linear 

coefficients (݆ = 1, … ,݇) and ݕො is the value of the model, then the difference between an observed 

value and a predicted one, known as a residual, is expressed as: 

௜ݎ = ௜ݕ − ො௜ݕ = ௜ݕ − ߙ) + ଵ௜ݔଵߚ +⋯+  (௞௜ݔ௞ߚ

where ݕ௜ is the ݅th observed value of the dependent variable, ݕො௜ is ݅th the predicted value from the 

model. 
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For linear regression, assumptions regarding the dependent variable are that it is: 

 continuous; 

 approximately Normally distributed. 

Further assumptions that must be made about the model are that the random error: 

 should have a Normal probability distribution; 

 has a probability distribution with a mean of zero; 

 has a probability distribution with constant variance for independent variables; 

 associated with any two observations are independent. 

The validity of linear regression can be verified through analysing graphical representations of the 

random error or residuals.  If the scatter appears random, the residuals can be assumed to be 

Normally distributed, satisfying the homoscedasticity (equal variances) assumption. 

 

5.13.5 Tested Models 

In this study, only one independent variable is considered – distance – therefore simple linear 

regression analysis is undertaken.  Four separate travel time prediction models are considered.  

Models 1, 2 and 4 mirror work by Kolesar et al. (1975).  The additional inclusion of Model 3 was 

decided upon after a preliminary investigation of the other three.  Model 1 is linear, the second and 

third have non-linear functions and the fourth is a piecewise square-root – linear function. 

Model 1: ܻ = ܽ + ܾܺ     (5.4) 

Model 2: ܻ = ܽܺ଴.ହ     (5.5) 

Model 3: ܻ = ܽ + ܾܺ଴.ହ     (5.6) 

Model 4: ܻ = ൜ ܿܺ଴.ହ, ܺ ≤ ݀
ܽ + ܾܺ, ܺ > ݀    (5.7) 

Despite some of the models representing non-linear functions, linear regression can be run in all 

cases since all coefficients in the models are linear in form. 
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Let ܻ be the travel time to be estimated, ܺ the distance for the route obtained via the Travel Matrix 

Generator Tool, ܽ, ܾ and ܿ be appropriate regression model coefficients and ݀ (a constant) which 

represents the distance at which a change in the slope of Model 4 occurs (see Kolesar et al. (1975) 

for further explanations regarding ݀). 

 

5.13.6 Method of Least Squares Fit 

Parameter fits are found for these four models, predicting transportation travel time of journeys in 

South East Wales from Google Maps distance.  Simple linear regression is conducted separately for 

each emergency category and vehicle type and the method of least squares is applied using the 

Microsoft Excel Solver add-in tool.  Budge et al. (2010) use Solver and the maximum (log) 

likelihood approach to find the components of their proposed model.  The four incident categories 

and two vehicle types are dealt with.  Category AS2 and AS3 are only served by Emergency 

Ambulances (EAs) and High Dependency Units (HDUs), which are essentially equivalent, so these 

two emergency types are combined to form one category that receive only EA vehicle attendance.  

The best performing model in each case is selected, producing seven individual models in total.  The 

comparison of the residuals and least squares for all the models can be seen in Table 5.1. 

Table 5.1 Regression analysis coefficients, minimum sum of residuals squared, correlation 

coefficient and R-squared values for each Model by category and vehicle type 

 

a 7.23 7.47 6.90 7.76 5.85 6.29 6.31
b 0.80 0.82 0.90 0.94 0.73 0.76 0.75

Min Residual  Sum 341.46 362.62 325.86 488.07 222.28 250.13 113.86
a 5.27 5.33 5.44 6.12 4.50 4.72 4.65

Min Residual  Sum 454.14 388.07 348.55 747.35 216.08 221.93 97.79
a -2.64 -1.63 -2.07 -4.77 -1.57 -1.61 -0.36
b 5.93 5.75 6.00 7.26 4.92 5.16 4.77

Min Residual  Sum 407.15 371.34 327.59 626.75 206.77 212.06 97.51
b 0.88 0.90 0.94 0.93 0.74 0.70 0.80
d 6.87 6.87 6.87 8.69 7.82 10.94 6.87

Min Residual  Sum 404.92 420.77 339.41 498.81 222.87 231.52 127.25

1 1 1 1 3 3 3
0.954 0.942 0.934 0.950 0.922 0.924 0.902
0.911 0.887 0.872 0.902 0.850 0.854 0.814

A RRV B RRV C RRVModel Coefficients

Correlation Coefficient
R-Squared

AS2/3 
EA/HDS

A EA B EA C EA

1

2

3

4

Best Fit Model
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For EA vehicles, the best model for all categories is the linear function of Model 1, Equation 5.4, 

with an R-squared value of 0.91.  For RRVs however, the best fitting model is in fact the square-

root function of Model 3, Equation 5.6, with R-squared value of 0.85.  This result is supported by 

the slight curve in the correlation scatter-plot of Figure 5.13 for RRVs.  The resulting models can 

be seen to be fairly similar for categories within a vehicle type group: 

EAs per category: 

A:   ෠ܻ = 7.23 + 0.80ܺ +  (5.8)    ߝ	

B:    ෠ܻ = 7.47 + 0.82ܺ +  (5.9)    ߝ	

C:  	 ොܻ = 6.90 + 0.90ܺ +  (5.10)    ߝ	

     Urgent: 	 ොܻ = 7.76 + 0.94ܺ +  (5.11)    ߝ	

RRVs per category: 

A:    ෠ܻ = −1.57 + 	4.92ܺ଴.ହ + 	ε    (5.12) 

B:   ෠ܻ = −1.61 + 	5.16ܺ଴.ହ + 	ε    (5.13) 

C:   ෠ܻ = −0.36 + 	4.77ܺ଴.ହ + 	ε                           (5.14) 

The error terms (ߝ) in the final models account for variability in the travel time that is independent 

of distance.  This variance, which can lead to inaccurate measurement (Budge et al. 2010) could be 

caused by the way the data is recorded, aggregation of zones or origin of vehicles.  Other causes of 

expected variability in the overall travel time might be founded in weather conditions, congestion, 

driver preference, and vehicle condition and variety.  It will be shown later, in Chapter 7, section 

7.5.8, that the error term can be calculated in many ways.  One possibility is to sample the error 

value from the associated distribution of the normalised residuals.  An alternative model is to 

assume that the travel time itself must be sampled from an appropriate distribution, whereby the 

distribution mean is given by ෠ܻ and the variance could be the mean of the variance values witnessed 

over the routes in the data.  In this vein, regression analysis using ෠ܻ, the predicted average travel 

time value as the independent variable could be used similarly to estimate the variation.  The 

decision of variation prediction will also be discussed further in Chapter 7.   
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5.13.7 Residual Analysis 

For regression analysis, the validity of the model must be checked before the results can be accepted.  

Residuals of the best fitting model in each category and vehicle case are standardised and plotted 

against the predicted values of travel time to check their normality and spread.  Figure 5.14 shows 

these distributions.  Since all standardised residual plots show the random error assumptions of 

linear regression have been met, then the suggested models in Equations 5.8 - 5.14 can be accepted.   

 

Figure 5.14 Standardised residual plots of the chosen best fitting model for category and vehicle 
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5.14 Results 

5.14.1 Google Map Locations 

All postcode districts, station locations and hospital addresses were submitted to the Google Maps 

Travel Matrix Generator Tool, resulting in the travel time and distance matrices shown in section 

5.14.2, and visually plotted on a static Google Map by the tool, to display the locations spatially 

(Figure 5.15).   

 
 

Key: Postcode Demand District Ambulance Base Hospital Facility 

Figure 5.15 Google Maps API interface inbuilt to Travel Time Matrix Generator Tool, displaying 

all demand nodes, potential vehicle bases and hospitals in the South East Wales region 
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5.14.2 Travel Time and Distance Matrices 

 

Figure 5.16 A selection of Travel Time Matrix results between all demand postcode districts, 

stations and hospitals for South East Wales 

 

Figure 5.17 A selection of Travel Distance Matrix results between all demand 

postcode districts, stations and hospitals for South East Wales 
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5.15 Conclusion 

A 2004 review paper highlights work on travel time modelling and emphasises the importance of 

good travel time estimates (Goldberg 2004), so that knowledge obtained from research in the field 

may be shared with non-OR specialists such as emergency service managers and medical directors.  

The problems faced and assumptions necessary when modelling are summarised without detailing 

the supporting mathematics.  This less technical style is key in bridging the gap between research, 

practitioners and users of such models.  Many researchers are coming to appreciate that such 

knowledge transfer needs to be addressed if new theoretical realisations are to be implemented in 

real-world applications.  Hence the tool developed and described in this chapter has been created in 

a way that allows transfer of use to WAST themselves, and built generically so that application to 

numerous other problems is trivial.  A guide to support users is available on the Cardiff School of 

Mathematics research web pages: 

www.cardiff.ac.uk/maths/research/researchgroups/opresearch/healthcare/index.html 

Unlike other similar studies found in the literature, this EMS travel time estimation analysis makes 

use of information known for transportation journeys (avoiding the uncertainty in starting and 

ending location of response journeys), fitting travel time models to the data.  Vehicles are likely to 

travel faster when responding to patients compared to transporting and so the estimated travel times 

must be scaled to find response journey times if these are additionally required.   

Kolesar et al.’s work implies that regression Model 4 (Equation 5.7) should provide the best fit due 

to the consideration of difference in speed for long and short journeys.  It was in fact found that 

Model 4 was not superior to the simpler models when applied to the WAST system.  Looking back 

to the data in Figure 5.12 and 5.13, the plots appear faintly non-linear.  Model 4 would indeed 

capture a curve in data for lower distance values, yet the Welsh data curves with higher distance.  It 

could be that Kolesar et al.’s square-root phenomenon is not explicitly present in this study since 

the literature often refers to distances less than a mile as ‘short’.  Very few of these short journeys 

would ever be witnessed in Wales due to its rural nature and road network structure.  Another 

reason may be attributable to the size of demand zones chosen, for which little improvement could 

be made in this particular study.   

Emergency Ambulances are found to travel with constant speed, going against the idea of long and 

short trip discrepancies.  For Rapid Response Vehicles, although Model 4 did not give the smallest 
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Mean Squared Error (MSE), the chosen fit is that of a square-root function, suggesting speed for 

these smaller vehicles in attendance of the highest priority patients does indeed follow Kolesar et 

al.’s suggestion of acceleration with distance more closely than for the larger EA vehicles.   

Categorisation of travel time data by emergency type and vehicle type may help account for the 

variance in the original data.  It is possible, had Kolesar et al. and the other researchers mentioned in 

sections 5.5 - 5.10, been able to split their data similarly, the resulting models may have been 

applied differently to the emergency systems considered.  Patient condition may have influence on 

the speed of vehicle and also the decision to transport.  Repede and Bernardo (1994) were among 

the first to consider travel time as a function of the priority of call.  Least squares regression fits are 

conducted on the WAST data separately for each emergency type and vehicle type to allow the most 

accurate application to the current south east Wales system.  Where a system may be subject to 

changes in service policies, these travel time estimation models can be easily adapted, or instead 

serve in experimental situations (for example, simulation modelling) to aid decision makers on the 

implementation of such changes.  It would be possible to evaluate the expected outcome of a patient 

of a particular category given the relative speed of a responding vehicle and also see the effect on the 

system should this speed be altered.  Therefore, despite similar parameters being found for 

subgroups of the final models (Equations 5.8-5.14), all are assumed independent, as are the patient 

categories and responding vehicle types.  

The developed chosen models and the distance matrix obtained from Google Maps will be used in 

the following two chapters as input to the modelling techniques explored.   
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Chapter 6 

 Location Analysis 

 

6.1 Introduction 

From allocation of relief resources in anticipation of natural disasters to the transfer of data packages 

in telecommunications, location theory models have been demonstrated and implemented 

extensively over the past few decades.  Discussions of EMS system studies in Chapter 3 highlight 

how few of them actually model the importance of patient survival explicitly, instead capturing 

alternative goals such as maximising coverage or minimising average travel times.  Only recently 

have attempts been made to encapsulate the decline of a patient’s health over time taken to respond 

through location analysis techniques.   

In the same way that the construct of coverage relates to the performance measure of meeting a 

fraction of calls within a target, response time success relates to a clinical outcome measures.  It has 

been shown that real-world modelling of the latter concept is superior to the former (Bevan and 

Hamblin 2009, Erkut et al. 2008b, Price 2006), and since current EMS targets (of meeting calls 

within a time) is already a proxy for survival, progression to clinical outcome based performance 

measures is not far from the current situation, and one that some ambulance services are embracing.   

Models of coverage are revisited but with a modern slant in this chapter.  The traditional outlook of 

these location-allocation models is swapped for a viewpoint where performance is measured by the 

number of patients expecting a timely and positive outcome, referred to as ‘survival’.  Originating 

with work by Erkut et al. in 2008, the research presented here builds on standard coverage models 

by including a survival probability for patients of a particular type given a specific response length.  

The relevance and value of maximising survival over simple coverage is demonstrated, supporting 

the change in direction of current research and EMS Trust policies towards clinical outcome 

(Department of Health 2005, Turner et al. 2006, WAST March 2011).  The set of models detailed 

aim to suggest better allocations of vehicles over a network in order to serve the population, 

enhancing outcome even for non life-threatened patients.  The chapter concludes with a case study; 

produced vehicle allocations for the South East may be offered to WAST as suggested improvement 

on current design, or used as benchmark input to a simulation model, as demonstrated in Chapter 7.  
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6.2 Improving EMS Performance with Location Analysis 

It is not practical to improve aspects of an EMS system by simply suggesting additional resources or 

stating processes should be shorter; such decisions should ideally be supported and quantified, and 

their implications verified through modelling.  Even so, by merely reducing average service phase 

lengths of an EMS system, information regarding the utilisation of vehicles is lost, which gives 

limited insight to the decision’s impact.  For example, to improve response time performance, 

queueing theory (as seen in Figure 3.2, Chapter 3) may be used as a solution methodology to 

suggest the number of servers necessary to meet demand within set targets.  Although this approach 

provides good comprehension of resource level impact on waiting time of patients, the response 

time distribution can only be improved credibly if the geographic locations of responding vehicles 

are considered.   

When travel time of a system is a component of its KPI, making up part of the modelling objective, 

it is imperative to consider the full range of data – the geographic location of the resources – since 

average response time is not independent of vehicle position.  Even when fleet sizes are increased, 

dramatic impact on response time should still only be seen if optimisation of the allocations is 

reconsidered (Jenkins 2012), despite a reduction in average response times based on simple 

queueing theory.  For such capacity and allocation decisions, analysis may be conducted through the 

use of location theory to suggest fleet positioning to meet a coverage or response time threshold.   

Although many location models have similar objectives of attempting to minimise some maximum 

distance or time travelled, or maximise the population covered by the servers, in all emergency 

service modelling these objectives are surrogates for the overall endeavour of saving lives, even 

when not stated absolutely (Goldberg 2004, Hong and Ghani 2006).   

 

6.3 Coverage 

Prevalent in emergency service location, capacity and deployment studies is the idea of coverage of 

a population.  Many solutions to covering location analysis problems lie in mathematical 

programming techniques, particularly through integer optimisation methods.  The purposes of such 

models are to find the locations on a network that provide the best coverage to the population, not 
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necessarily by ensuring all demand points are reachable within the response standard, but by 

maximising the amount of the population that can be reached. 

Early location theory makes use of binary variables (in the objective functions and constraints) 

within the formulations for coverage; notably, it is often assumed that coverage takes a value of 1 if 

a demand node is ‘covered’ (can be reached within a time or distance standard) by a service node 

and 0 otherwise (Pan et al. 2012).  Later, variables were altered to have a more continuous 

representation using a scale of coverage between 0 and 1 resulting in more gradual models such as 

Berman et al.’s which decays coverage with distance, capturing some of the sensitivity around 

absolute travel distances and survival (2003).   

Allocation models also make use of binary and mixed-integer linear and nonlinear programming 

approaches, dealing with the distribution of servers across nodes of a network, where again binary 

variables may be used to express the decision of situating a resource at a specific node or where 

integer values represent the number of resources allocated to a particular node.  Other models 

extend to the incorporation of vehicle utilisation (as was seen in Chapter 3) since coverage in earlier 

studies was based only on proximity and not on demand and availability of the system.  Additional 

attempts are made to deviate from deterministic modelling, incorporating uncertainty in travel time 

in the network or plane with probabilities of reaching the scene in a given time standard (Budge et 

al. 2010).  Extensions to this type of work were mentioned in the literature review and include 

back-up coverage and cooperative covering models.  

Coverage is an agreeable objective in terms of EMS location problems due to the performance 

measures that are commonly in place for such services.  The idea of maximising the amount of 

demand within a certain distance or time standard of service nodes, transfers easily into a model 

that maximised the percentage of calls that are reached within the target time.  Erkut et al. (2008b) 

also point out that coverage models are easily communicated to policy-makers, service managers 

and the public, and that the integer programs can be solved using basic optimisation software if 

deterministic assumptions are made.  Despite this, standard coverage models for EMS vehicle 

location are still subject to two types of error according to the authors. 
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1.  Measurement Error: since there is no distinction between individual response times 

within covered areas and within non-covered areas (Figure 6.1). 

 
Figure 6.1 Measurement Error: covered area with response time of no more than 8 minutes 

2. Optimality Error: in the location of resources and facilities due to measurement errors of 

the network even when demand magnitude is considered (see Example 6.1 later).  

An additional weakness of covering models is: 

3. Threshold Error: if a system can be covered by a minimum of x stations, then all solutions 

with more than x stations will not improve the result; whereas, an increase in resources 

(maintaining a realistic quantity) should continually increase the probability of a positive 

patient outcome by reducing response time further if located sensibly.   

It therefore appears a more reasonable and accountable objective function should be implemented 

to measure performance of an EMS system, rather than sole calculation of covered demand within a 

time standard. 
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6.4 Survival 

6.4.1 Introduction 

Act F.A.S.T. – A global acronymic slogan advertised within the UK, Ireland, Australia and the USA, 

used to draw public attention to the urgency of recognising a stroke and obtaining medical 

treatment for victims.   

 

Figure 6.2 F.A.S.T. Campaign (NHS 2009) 

Hard and Fast - A recent television advertisement by the British Heart Foundation (BHF) encourages 

witnesses of a person experiencing cardiac arrest to administer hands-only CPR, after calling 999. 

 

Figure 6.3 Hands-Only CPR Campaign (British Heart Foundation 2012) 

Each informative advert (Figures 6.2 and 6.3) stresses the necessity of recognition and immediate 

medical assistance in the case of a stroke or cardiac arrest, whether it be preliminary care from 

bystanders or secondary care from a local EMS.  In terms of response “faster is better, and OR models 

for EMS system design should take this into account” (Erkut et al. 2008b).  After the launch of the 

‘F.A.S.T.’ campaign, England witnessed a 55% rise in emergency calls reporting possible strokes 

(BBC News Health 2009), showing an increase in public appreciation of rapid response.   
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The importance of swift attendance at the scene of an emergency in order to increase chances of 

survival may seem fairly obvious for such critical and life-threatening conditions, yet the quantity of 

research in survival based performance measures is much less than response led targets.  Although 

the two may be thought to be identical, Erkut et al. (2008b) demonstrate (replicated here in Figure 

6.4 and explained by Example 6.1) how for a network of demand nodes with populations of various 

sizes, response targets may lead to a poorer allocation decision with fewer ‘survivors’.  

 

Example 6.1 

In an EMS system with two demand nodes, 16 minutes road travel apart, where node ܣ has a 

demand, ߣ஺, of 10 per unit time, and node ܤ expects a demand, ߣ஻, of 1 per unit time, to operate 

full coverage with an eight minute response target, it makes sense to place vehicles exactly 

equidistant apart from both nodes at base ܺ (Figure 6.4).  This positioning however, does not take 

into account the outcome of patients, or even the relative demands at each node of the network.   

 

Figure 6.4 Example of coverage versus survival probability modelling constructs based on 

Erkut et al. (2008b) 

Alternatively, if clinical outcome measures are the focus, with survival probability (representing 

desirable patient outcome as opposed to life or death) calculated using a simple exponent function, 

ܲ(survival) = ݁ି௧, (where ݐ is travel time) then the expected number of survivors at ܣ is 10  ݁

ି଼ = 

0.0034, and at ܤ would be ݁ି଼ =	0.00034, giving a total number of 0.0037 possible survivors out 

of 11.  If the vehicle were instead to be placed at ܣ rather than ܺ, the total number of expected 

survivors would be approximately 10 (91%).  This simple example highlights the weakness of 

coverage but also the ethical issues surrounding inequitable resource distribution and of a profession 

where service must be all-encompassing (French and Casali 2008, Klugman 2007). 

࡭ࣅ = ૚૙ ࡮ࣅ = ૚ 
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Survival can be thought of as a better option for EMS performance measurement than coverage for 

several reasons: 

 money and lives saved are more attention grabbing than percentage met within an arbitrary 

time standard; 

 survival is already a key message provided to the public in emergency campaigns; 

 EMS targets differ around the world, whereas maximising lives saved is a common goal; 

 coverage is already a proxy for survival. 

Survival as a modelling objective does not refer to actual outcome of a patient within this thesis; 

instead the term is used to define the chance of a patient experiencing a timely response which 

enhances their chances of recovery.  Patient outcome data were unavailable for this study; yet 

theoretical survival probabilities, calculated from monotonically decaying survival functions found 

in the literature, are used to demonstrate an attainable level of success from the response. 

 

6.4.2 Cardiac Arrest 

Since the effects of a person’s heart stopping can be devastating, potentially resulting in irreversible 

brain and heart damage or even death, easy and rapid access to Advanced Life Support (ALS) is 

essential to decrease mortality rates and increase quality of life for victims.  Similarly to the Star of 

Life described in Chapter 2, cardiac arrest has its own defined ‘Chain of Survival’ (Figure 6.5) for 

the actions involved in responding to victims.   

 

Figure 6.5 Process of intervention for victims of cardiac arrest (ChainofSurvival.com 2012) 
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In an almost heroic example, one Welsh cardiac victim made a full recovery after a perfect 

implementation of the Chain of Survival (Newman 2012).  The chain began with early bystander 

CPR attempts instructed by an EMS call-taker and assisted by community first responders, shortly 

succeeded by the arrival of a paramedic-manned RRV to provide defibrillation and followed-up of 

the nearest vehicle for conveyance, manned by another paramedic and a technician.    

Out-of-hospital cardiac arrest (OHCA) is the most commonly researched medical condition when it 

comes to response time effectiveness (O'Keeffe et al. 2010).  There are several studies which 

investigate similarly the effects on patient survival for stroke (Rajajee and Saver 2005), heart attack 

(myocardial infarction) (Cretin and Willemain 1979) and in-hospital cardiac arrest (IHCA) (Moretti 

et al. 2007); however, little is known regarding short term outcomes for other conditions given 

time taken from onset to intervention.  

Following a large study in Canada, (OPALS 2004), pre-hospital interventions for four patient 

groups were evaluated: 

1. cardiac arrest; 

2. major trauma; 

3. respiratory arrest; 

4. chest pain. 

Preliminary results for 2, 3 and 4 showed no real benefit from Advanced Life Support (ALS) 

interventions (equivalent to a paramedic response) compared with the original Basic Life Support 

(BLS) program.  Other studies have also found that trauma patient outcome is not affected by 

ambulance response time (Pons and Markovchick 2002, Turner et al. 2006).  For cardiac arrest 

however, the OPALS study advocates bystander CPR and shows early defibrillation does improve 

survival, in line with BLS.  These findings further support Mayer’s claim (1979) that there is a 

relationship between paramedic response time and survival rate.   

An example function developed to represent survival until hospital discharge for OHCA is shown in 

Equation 6.1 (De Maio et al. 2003), where ݐ is the response interval from onset to defibrillation.  

Graphically, this decaying survival function is represented over time in Figure 6.6 and is shown 

alongside the hard target step function (from Equation 6.2) for category A calls (which by definition, 

includes all correctly triaged cardiac arrest patients).  The eight minute guideline originates from an 

article based on survival findings for cardiac arrest (Eisenberg et al. 1979), and has since been used 
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as a general target for most emergency responses (Fitch 2005), so comparison with the cardiac 

arrest survival approach is legitimate.    

 

Figure 6.6 Survival function, (ݐ)ݏ, estimated by De Maio (2003) compared with current  

category A hard target,	ℎ(ݐ), represented as a step function (binary coverage) 

 

(ݐ)ݏ = (1 + ݁଴.଺଻ଽା଴.ଶ଺ଶ௧)ିଵ              (6.1) 

ℎ(ݐ) = ቄ1	if	0 ≤ ݐ ≤ 8
0	if	ݐ > 8								 ݐ		, ∈ ℝ ≥ 0           (6.2) 

 

When system performance using the hard target approach is translated into survival, the current 

target of an eight minute response greatly overestimates clinical outcome for category A patients 

met within the time standard (deeming all services successful), yet predicts no clinical success 

whatsoever if patients are responded to later.  This ignorance of actual patient outcome also fails to 

discriminate between an instant response and one taking eight minutes.  The survival function 

approach however, represents a varying slim, (but non-zero) chance of success given response over 

eight minutes, with realistic, yet less optimistic, results between nought and eight minutes, 

providing a more suitable platform for measures of success.  Immediately, it can be seen that the 

current eight minute target is not optimal as there is approximately an 85 percentage point decrease 

in expected survival from an immediate response to one taking the target time.  
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Erkut et al.’s exploitation of a similar survival function for patients experiencing cardiac arrest in 

their models is said to be for four reasons: 

 time has been shown to be critical to clinical outcome in such cases (Holmberg et al. 1998, 

Mayer 1979) since they are the highest priority emergency conditions; 

 the current eight minute response time standard is based on cardiac medical research; 

 the relationship between survival has been researched for response time to cardiac patients 

(but little for other conditions); 

 their data contained a large proportion of cardiac arrest emergency calls. 

The first three points are supported by the earlier literature discussion; the fourth point is also true 

of the South East Wales data set obtained from WAST for 2009, where 3% of category A calls are 

initially logged as cardiac arrest.  Grouping heart attack, cardiac arrest and stroke incidents (which 

are the most prevalent high priority life-threatening conditions) accounts for more than 32% of 

category A demand. 

The full and immediate impact on survival of a population from system changes is not clear by 

looking exclusively at cardiac arrests or even just category A emergencies.  Potentially multiple 

survival curves would be required as input if every medical condition wished to be modelled 

accurately and separately.  Eisenberg (1979) noted that neither is response time solely accountable 

for survival, but instead two individual time components should be considered: time from onset of 

cardiac arrest to cardiopulmonary resuscitation (CPR) and from onset to definitive care.  

 

6.4.3 Survival Function Development 

Few pre-hospital based survival functions are found in the literature.  For any emergency condition, 

despite the lack of research, response time is the fundamental component in terms of survival 

probability or even simply acceptable levels of patient care and service.  It is desirable to 

amalgamate groups of patients with similar functions to reduce modelling time; nevertheless, group 

composition should maintain integrity to ensure not just the major incidents are considered. 

Data analysis literature suggests a non-linear trend between survival and response.  Survival curves 

are anticipated to plateau once a paramedic arrives with the patient, so that the probability will no 
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longer decrease significantly when considering survival onward to hospital (or even discharge, 

assuming transfer of care adheres to guidelines) (Eisenberg et al. 1990); hence the theoretical 

survival function is used only for response duration and not for the continuation of service or 

transportation (Larsen et al. 1993).  In reality, survival probabilities do not reach zero as they do 

with some theoretical functions, but the limits can still become very low when considering such 

critical life-threatening conditions as cardiac arrest, with a minimum of 3% (compared to the 

predicted 0%) survival reported by Larsen et al. (1993) for an eight minute to CPR target.   

Regression (multiple linear and logistic versions) is a commonly used tool in determining survival 

functions (Larsen et al. 1993, Pons et al. 2005, Valenzuela et al. 1997), since paramedic response 

time, although a key component, is not the sole contributor to survival.  Based on the Chain of 

Survival, it is likely many other factors, such as bystander intervention, times between incident, call 

and dispatch, initial responder type, patient age (Herlitz et al. 2004), instructions given for 

bystander CPR (Lerner et al. 2012, Rea et al. 2001), resuscitation consistency (Valenzuela et al. 

2005) and intervention type (Iwami et al. 2007, Sayre et al. 2008) will all influence patient 

outcome.  

Valenzuela (2000) offers a survival function that was found after studying data collected from 

casinos, of people who suffered cardiac arrest whilst on the premises.  The study supports 

prediction of expected survival probability from response time, but requires also information for 

time from attack to bystander intervention, paramedic response and other explanatory variables to 

be included, which in many situations are unavailable or unknown.  Since this information is 

difficult to collect and is rare, it may be possible to utilise coefficients of explanatory variables 

obtained from such previous studies.  Alternatively, averaging over several behavioural variables in 

the original regression model may provide a function that predicts survival solely on response time 

(or distance) (De Maio et al. 2003).  Erkut et al. point out however, that the estimated survival 

function is dependent upon the data used in its development.  The data will be influenced by the 

structure of the EMS system and the region from which it was derived, which may be substantially 

different or not even comparable to the proposed system.  Calibration for application to a new 

region would therefore still be necessary.   
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6.4.4 Challenges 

Clinical outcome in EMS systems is affected by factors such as proximity to Automated External 

Defibrillators (AED) (Cardiac Science n.d.), demography, bystander willingness and ability to assist, 

and care provider.  This leads to large variation in patient outcome for cardiac arrest (amongst other 

conditions), with survival rates in some locations being significantly higher than others (Field et al. 

2010).  It has been suggested also, that two further links should be added to the Chain of Survival 

seen in Figure 6.5 – ‘Early Intervention’ or ‘Recognition’ and ‘Post Cardiac Arrest Care’ – with 

EMS managers and operational staff ensuring any weaknesses in their specific chain are identified 

and monitored.  The early intervention aspect refers to a link prior to the first one of the chain.  A 

witness to the cardiac arrest could administer some form of CPR before arrival of an EMS crew in 

order to increase chances of survival.  This perhaps is the biggest current weakness of the system in 

Wales, and with better awareness, triaging, telephone instruction and increased numbers of AEDs, 

particularly in rural areas, lives could be saved.   

Survival rates are not uniform in their definition or modelling implementation (Eisenberg et al. 

1990, Eisenberg et al. 1991).  The most common definition is of survival to hospital discharge, 

assuming response to be the interval from onset to arrival of a paramedic (or beginning of ALS).  

For the purposes of this study, the functions utilised refer to probability of survival to hospital 

discharge (although the true outcome of patients is unknown from the WAST data), based upon a 

response time from the logging of the 999 call to arrival of an initial EMS vehicle at the scene. 

 

6.4.5 Survival and Location Theory 

After many years of response based EMS performance modelling, research is moving slowly towards 

more clinical outcome based measures, whereby the survival and post-treatment quality of life of 

patients is beginning to be included in mathematical models. 

Population coverage has been widely used as a proxy for patient survival in location theory, with 

recent inclusion of known survival curves to mathematical programming objective functions.  

Organisations recognise that reporting numbers of lives saved or direct costs can have more impact 

than reporting percentages of responses met in arbitrary time standards, placing the user at the 

centre of the system (Audit Committee 2009).  Even though time standards have been set based on 
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medical research, in many cases this explanation is not general public knowledge.  Improvements 

are more easily spotted however, when numbers of lives saved is the metric quoted across Trusts 

and between policies.  

Survival is not the only patient focussed (as opposed to system focussed) measure that accounts for 

effectiveness of a service.  If access were readily available to such data, it would be possible to also 

consider medical care costs, Quality of Life Years (QALYs), hospital length of stay and other such 

consequential factors.  For the purposes of this study, the measurement of performance will be 

taken to be survival (not in terms of actual patient outcome, but in terms of probability of a positive 

patient outcome based on a theoretical distribution) compared with coverage. 

Chelst and Jarvis (1979) state that it would be possible to make “great savings in research time and effort 

if the existing models that estimate travel times could serve as the foundation on which to build these newer 

[outcome based] models.” 

Erkut et al. (2008b) devise a new generation of location models with the Maximum Survival 

Location Problem (MSLP).  They account for this survival probability within an existing coverage 

model, locating EMS vehicles in order to maximise the survival of a population.  The authors give 

details of the weakness of the previous coverage approaches, and demonstrate how a survival-

maximising approach benefits the service and population of Edmonton, Canada.  Results presented 

show the expected number of survivors using their proposed models, where survival (until hospital 

discharge) after a cardiac arrest is given by the function in Equation 6.3 based on the function 

devised by Valenzuela (2000). 

(ݐ)ݏ = (1 + ݁଴.ଶ଺ା଴.ଵଷଽ௧)ିଵ            (6.3) 

The MSLP model makes progress into the clinical outcome based location objectives, yet, as stated 

by Knight et al. (2012a), limitations surround the consideration of only one group of patients at a 

time.  Many different medical conditions are dealt with daily by any EMS Trust, for which, different 

levels of response are required with different targets.  Each critical patient would therefore have a 

distinct expected survival value, highlighting the need to consider response time and survival by 

emergency condition.  A second weakness of the MSLP is that only one type of vehicle is considered 

for the allocation.  In reality, EMS systems operate with multiple types of vehicles that each have 

specific roles and may be managed in different ways.   
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Ongoing work in Ontario, Canada, supports the findings of Erkut et al. in the importance of 

survival outcomes for EMS systems.  After discussion with Dr. Jewkes of the University of 

Waterloo (2011), the new models proposed in the next sections are believed to also support 

current EMS endeavours and follow on suitably from earlier work in the field with a  novel 

contribution. 

Accommodating for differences in response procedures for different emergency types and sub-fleets, 

the Maximal Expected Survival Location Model for Heterogeneous Patients (MESLMHP) (Knight et 

al. 2012a) and the Maximal Expected Survival Location Model for Heterogeneous Patients with 

Heterogeneous Fleet (MESLMHPHF) aim to deal suitably with the allocation of a mixed fleet to 

existing stations whilst best serving a diverse population.  

 

6.5 Modelling Heterogeneous Patient Groups 

6.5.1 Introduction: MESLMHP 

Where OR techniques are applied directly to real-world problems, the reliability of the modelled 

environment is dependent upon assumptions made and the precision of system processes captured.  

As witnessed in the literature, in EMS modelling, patients are often considered to be homogeneous, 

that is, from the same demand pool.  Some studies do account for the discrepancies in patients in 

terms of the type of emergency for which they require service, yet the category prevalence may also 

depend on location.  It is more unusual for a study to consider the geospatial distribution of demand 

in conjunction with emergency condition.  Most models consider only the vehicles as entities and 

the output from models relates to the success of response time from the vehicle perspective.  In 

such potential ‘life-death’ situations as with emergency service systems, it is important not to 

confuse the outcome of an individual with the output of the service.   

The following new EMS allocation models aim to prioritise positive patient outcomes compared to 

simply maximising responses achieved within the time standards.  WAST have already moved 

towards this style of performance measure, and some other Trusts across the UK and elsewhere are 

doing the same.  It is not a simple transition, and of course is expected to take some time to develop 

fully within a system, but with modelling tools and techniques as may be supplied by OR, the 

possibility of a swift changeover in policy could be increased.  
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The first model described – the Maximal Expected Survival Location Model for Heterogeneous 

Patients (MESLMHP) – strives to accommodate more than one type of patient by seeking to satisfy 

objectives for different response measures.  Inclusion of clinical outcome for various category-based 

targets has (at the time of writing) yet to be seen within the coverage location theory literature.   

Compliance tables are one of the resulting outputs of the proposed models.  Where fleet capacity 

can be altered by the Trust in reality, for example if additional resources were obtained, or for 

capacity fluctuations by shift or weekday, then an optimal allocation reference exists for operational 

and strategic planners to exploit.   

 

6.5.2 Model Brief: MESLMHP  

Primarily, the motivation for embarking on this allocation modelling task is to improve the chances 

of a positive clinical outcome for EMS users.  The MESLMHP aims to maximise the survival of 

multiple patient groups, for various emergency medical conditions, given a particular fleet.  Initially, 

only a homogeneous fleet of specified size is considered.   

Demand on an EMS comes in more than one form and not all emergencies require a response within 

the same target time.  Some conditions, such as cardiac arrest and stroke, require immediate 

attention, and so a short response time target is set.  Other conditions, including trauma, do still 

require emergency service, but with less urgency than those that are immediately life-threatening.  

Extending Erkut et al.’s model from a single life-threatening emergency condition (cardiac arrest) 

to different targets for a variety of emergency types witnessed in Wales, the proposed model’s 

features are largely generic, allowing application to other similarly structured EMS systems and any 

number of emergency classifications.   

Implementation of the model follows the pre-defined Welsh categories, referred to as A, B, C and 

Urgent in this chapter.  The possibility of splitting categories further by medical condition or 

grouping existing categories together – for example B and C since their current hard targets are 

equivalent – is flexible; however, it is important to be aware when considering the formation of 

new groups, that for some patients, their condition might deteriorate if a long response time is 

experienced.  Although categories B and C have the same UK target, they are modelled separately 

to avoid assuming equal priority.  The Urgent category represents the combination of categories 
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AS2 and AS3 since they are similar in nature and occur less frequently in the data than the three AS1 

type emergencies.  By weighting demand within the mathematical programming models, service 

prioritisation is enabled.   

Categories for survival curves may be taken to correspond to existing emergency categories, or, 

through clustering techniques, classes may be agreed to represent severity or a particular type of 

medical condition.  The MESLMHP allows multiple survival functions to be implemented in the 

current system to see the impact on the service, whilst current hard targets may also be used to find 

the optimal allocation of vehicles for the current performance measures.  In addition, a mixture of 

these two performance types (via survival and step functions) may be explored in a single system.  

 

6.5.3 Notation & Formulation: MESLMHP 

Let ݉ denote the number of demand nodes, ݊ the number of service nodes and ݇ the number of 

patient types.  Using the notation [ܽ] = 1	|	ݔ} ≤ ݔ ≤ ܽ} for any ܽ ∈ ℤ, where ݉,݊,݇ ∈ ℤ: 

 demand of type ݈ ∈ [݇] from demand node ݅ ∈ [݉] is denoted by ߣ௜௟; 

 average ambulance utilisation at a given service station ݆ ∈ [݊] is given by ߨ௝; 

 therefore, the probability that a vehicle at station ݆  is available to respond is given by 

൫1−    .௝൯ߨ

To ensure that all stations are given an order of preference for allocation to each demand node, let 

ߩ ∈ ℝஹ଴
௠×௡ denote the preference matrix; for demand node ݅, the ݆th favoured choice of station,  ߩ௜௝, 

having no available vehicle (occurring with probability ߨఘ೔ೕ
௫ೕ , where ݔ௝  is the number of vehicles 

located at the station ݆) implies the (ߩ௜௝ାଵ)th service node will be the next station to be selected.   

It is possible to have a different survival function for each patient type ݈, ݏ௟:	ℝஹ଴ → [0,1].  Example 

survival functions were seen in Equations 6.1 and 6.3.  The function used for analysis in this study is 

that of Equation 6.3 (Valenzuela et al. 2000).   

For each demand-service node pair, the travel time is required as input to the model, represented 

by travel matrix ݐ௜,௝ ∈ ℝஹ଴
௠×௡ .  Finally, since the different groups of patients are based on the 

urgency of the medical condition, a weight ݓ௟ for each patient type is required in order to prioritise 

the demand.  
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All model parameters are summarised in Table 6.1, identifying also their contribution to the 

forthcoming models.   

Beginning with the probability of survival of a patient of type ݈ from demand node ݅, serviced by 

station ߩ௜௝, the formulation is as follows: 

 ௜ܲ,ఘ೔ೕ
௟ = ௟ݏ ቀݐ௜,ఘ೔ೕቁ ቀ1− ఘ೔ೕߨ

௫ഐ೔ೕቁෑߨఘ೔ೝ
௫ഐ೔ೝ

௝ିଵ

௥ୀଵ

 (6.4) 

Therefore, the objective of MESLMHP is to maximise the weighted sum over demand nodes for 

each of the patient groups, ݂(ݖ) (with specific capacity ݖ), where 

(ݖ)݂		  = ෍ݓ௟

௞

௟ୀଵ

෍ߣ௜௟
௠

௜ୀଵ

෍ ௜ܲ,ఘ೔ೕ
௟

௡

௝ୀଵ

= ෍ݓ௟

௞

௟ୀଵ

෍ߣ௜௟
௠

௜ୀଵ

෍ݏ௟ ቀݐ௜,ఘ೔ೕቁ ቀ1− ఘ೔ೕߨ
௫ഐ೔ೕቁෑߨఘ೔ೝ

௫ഐ೔ೝ

௝ିଵ

௥ୀଵ

௡

௝ୀଵ

   (6.5) 

such that 

 ∑ ௝௡ݔ
௝ୀଵ = ܼ  and   ݔ௝ ∈ ℤஹ଴   (6.6) 

Constraint in Equation 6.6 ensures that the total number of vehicles, ܼ, are all allocated, with an 

integer number of vehicles allocated to a service node.  

A short example is now provided to demonstrate the formulation of this modelling method for a 

survival based approach.  

 
Example 6.2 

Assume a system exists, as depicted by Figure 6.7, where survival of the heterogeneous population 

given a response by a homogeneous fleet can be calculated using Equation 6.2. 

 

Figure 6.7 MESLMHP example network with one demand node and two service nodes 
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The travel time and preference matrices can therefore be constructed as ݐ௜௝ = [9 7]  and          

௜௝ߩ = [2 1]  respectively.  Assume ݔଵ = 1 ଶݔ , = 1  and input utilisation for the stations to be 

௝ߨ = ൜0.5	for	݆ = 1
0.7	for	݆ = 2 , so that ߨ௝ < 1.  Let the demand rate per hour for category A patients be 

஺ߣ = 0.9  and for category B patients be ߣ஻ = 0.8, and ݓ௟ = ቄ0.6	for	݈ = A
0.4	for	݈ = B , then the objective 

function to maximise (of Equation 6.5) becomes: 

(ݖ)݂ = ஺ݓ ቌߣଵ஺෍ݏ஺ ቀݐଵ,ఘభೕቁ ቀ1− ఘభೕߨ
௫ഐభೕቁෑߨఘభೝ

௫ഐభೝ

௝ିଵ

௥ୀଵ

ଶ

௝ୀଵ

ቍ

஻ݓ+ ቌߣଵ஻෍ݏ஻ ቀݐଵ,ఘభೕቁ ቀ1− ఘభೕߨ
௫ഐభೕቁෑߨఘభೝ

௫ഐభೝ

௝ିଵ

௥ୀଵ

ଶ

௝ୀଵ

ቍ 

										= 0.6 ቀ0.9൫ݏ஺൫ݐଵ,ଶ൯൫1− ଶߨ
௫మ൯ + −ଵ,ଵ൯൫1ݐ஺൫ݏ ଵߨ

௫భ൯ߨଶ
௫మ൯ቁ

+ 0.4 ቀ0.8൫ݏ஻൫ݐଵ,ଶ൯൫1− ଶߨ
௫మ൯ + −ଵ,ଵ൯൫1ݐ஻൫ݏ ଵߨ

௫భ൯ߨଶ
௫మ൯ቁ 

										= 0.6൫0.9(ݏ஺(7)(1 − 0.7) + −஺(9)(1ݏ 0.5)0.7)൯

+ 0.4൫0.8(ݏ஻(7)(1 − 0.7) + −஻(9)(1ݏ 0.5)0.7)൯ 

										= 0.6 ቀ0.9൫0.23(0.3) + 0.18(0.35)൯ቁ + 0.4 ቀ0.8൫0.23(0.3) + 0.18(0.35)൯ቁ 

										= 0.1135 expected proportion of survivors. 

 

6.6 Modelling Heterogeneous Patients and a Heterogeneous Fleet 

6.6.1 Model Brief: MESLMHPHF  

The model described in the previous section (6.5), although considers different classes of patients, 

and advances the MSLP, still lacks in realism by ignoring multiple vehicle varieties.  With the 

necessary addition to the model formulation of a fleet that is both heterogeneous in vehicle type and 

purpose, the resulting model may provide even more accuracy in allocations of ambulance resources 

in order to maximise survival of a heterogeneous population.   

EMS systems often operate with a fleet containing more than one type of vehicle.  Vehicles of the 

same variety form a sub-fleet, from which single or multiple vehicles can be dispatched to 
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emergencies for specific purposes.  The two main vehicle types in the Wales, EAs and RRVs, are 

used in different combinations for the various categories of patients.  An RRV is sent to the highest 

priority patients (since they are able to travel more quickly than EAs) with an EA as a follow-up 

vehicle (since RRVs do not have the capacity nor the equipment to be able to transport patients).  

For other patient categories, an RRV is often not dispatched at all, and instead, the EA becomes the 

primary responder.  For this reason, it is important to model not only the patient categories, but 

also the difference in response operations dependent on the category. 

The mathematical programming model proposed in this section considers heterogeneous patient 

groups as well as the two sub-fleets separately in order to optimise the allocation to best respond to 

all classes of patients in the correct way and with the correct vehicle and ambulance crew.   

 

6.6.2 Notation: MESLMHPHF 

The MESLMHP formulation can be extended to incorporate different vehicle types as well as 

heterogeneous patient groups.  The logic of this extension for two sub-fleets is now explained. 

Consider two different sets of patient groups, defined as: 

1. a set of patients to be responded to initially by an RRV and to be followed up by an EA 

service – referred to as set ݇ଵ; 

2. a set of groups that require only EA attendance – referred to as set ݇ଶ. 

The first set of patients, ݇ଵ,	contains the highest priority patient groups (categories) that require 

immediate attention.  On receipt of such a call for service, an RRV will often be dispatched at the 

same time as an EA (if available) in the hope that the RRV will reach the patient first, begin 

treatment at the scene, and stabilise the patient ready for transportation (if necessary) by the 

following EA.  If there is no RRV available, or if an EA at a closer station would be able to attend 

the incident faster than the best available RRV, then it is also possible for an EA to respond to these 

emergencies alone (i.e. for set ݇ଵ , RRV attendance is dependent on availability and the speed of 

response of closer vehicles).   
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The second set of patient categories, ݇ଶ, accounts for the lower acuity patients.  They require fairly 

quick attendance, but are not in a life-threatening state and so an EA will be dispatched when the 

Trust has the available capacity to attend the scene or provide transport to hospital.  In the UK, the 

only emergency group captured by ݇ଵ	are the category A patients, as Figure 6.8 portrays. 

 

Figure 6.8 The structure and categorisation of emergency incidents according to the models 

Before extending the MESLMHP objective function of Equation 6.5 to include appropriate terms 

that capture the characteristics of the two sub-fleets used in the UK, the following scenarios must 

first be considered.  Scenarios 1 and 2 represent incidents requiring both EA & RRV attendance – 

patient set ݇ଵ; scenario 3 concerns incidents that require only an EA on scene – patient set ݇ଶ.  Let 

 .௝,௨the utilisation of these vehiclesߨ and ݑ ௝,௨ be the number of vehicles at station ݆of typeݔ

 

Scenario 1 

Assume that for an RRV from station ݆ provides the initial response to an incident of set ݇ଵ - all 

vehicles at all more preferred (closer) stations must be busy.  However, this ignores the fact that 

EAs at the preferred stations may travel slower than the current RRV, and so would not be chosen 

for dispatch over an RRV from station ݆ to serve demand node ݅, even if available.  Therefore, we 

must elaborate on this scenario, and state that for an RRV to respond from station ݆, all RRVs at all 

closer stations must be busy, and all (if any) preferable EAs at these stations must also be unavailable.    
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Scenario 2 

Assume an EA at station ݆ responds to an incident at demand node ݅ that requires a response of type 

݇ଵ,  all EAs and RRVs at more preferred stations must be unavailable for this to be the case.  In 

addition, all RRVs at less preferable stations that could travel faster to the scene than an EA from ݆ 

must be busy. 

 

Scenario 3 

In Wales, for all patient groups other than Category A, the only vehicle type necessary on scene is 

that of an EA (or equivalent).  Therefore, for these ݇ଶ	emergencies, only the busy probabilities of 

EAs at all closer stations are required for calculation in the objective function, which corresponds to 

the formulation already described by Equation 6.5. 

Considering the mathematical representation of the various response scenarios separately, we have 

four modelling constructs: 

1. RRV Responder (Scenario 1) 

For a ݇ଵ	incident, the elements required for computation of an RRV response are the probability of 

an available RRV at station ݆, busy probabilities of all preferred RRVs, and busy probabilities of 

preferred EAs if and only if the EAs could have responded more quickly than the current RRV.  

Let ݑ be the vehicle type, so that ݑ = ቄ0	if	RRV
1	if	EA			 and ܴ be a variable that indicates whether an EA at a 

more preferable station could reach the scene faster than an RRV at the considered station, 

ܴ = ቊ1	if	 ቀݐ௜,ఘ೔ೝ,ଵ − ௜,ఘ೔ೕ,଴ቁݐ ≤ 0
0		otherwise																								

 

where, ݐ௜,ఘ೔ೝ,௨ is the travel time of a vehicle of type ݑ between demand node ݅ and preferred station 

௜,௥ߩ  If the travel times are equal, the best decision would be to  .(݆ is a greater preference than ݎ) 

dispatch the EA at the preferred station, so for an RRV at ݆ to respond, the busy probability of the 

EA at ݎ is still required in the calculation.  The variable ܴ takes a value of 1 if the EA at the more 

preferable station ݎ, has a journey time to the scene shorter than (or equivalent to) the RRV at the 

current station ݆, and a value of 0 if the EA would be slower than the current RRV. 
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Multiplying these busy probabilities for all stations favoured over station ݆, the total probability of 

only more preferable vehicles being busy is:   

 ෑߨఘ೔ೝ,଴
௫ഐ೔ೝ,బ ቀߨఘ೔ೝ,ଵ

௫ഐ೔ೝ,భቁ
ோ

௝ିଵ

௥ୀଵ

 (6.7) 

(ܴ = 0 creates an EA busy probability of 1 for the preferred station, implying that the EA at ݎ 

would never serve demand of type ݈ from node ݅ over an RRV at station  ݆).
      

2. EA Responder (Scenario 2) 

For a ݇ଵ	incident, the elements required for computation of an EA response are the probability of an 

available EA at station ݆, busy probabilities of all favoured RRVs and EAs, and busy probabilities of 

less preferred RRVs if and only if the less preferable RRVs could have responded more quickly than 

the current EA.  

Let ܳ be a variable that indicates whether an RRV at a less preferable station could reach the scene 

faster than an EA at the considered station, 

ܳ = ቊ1	if	 ቀݐ௜,ఘ೔೜,଴ − ௜,ఘ೔ೕ,ଵቁݐ < 0
0		otherwise

 

where, ݐ௜,ఘ೔೜,௨ is the travel time of a vehicle of type ݑ between demand node ݅ and preferred station 

 If the travel times are equal, the best decision would be to  .(݆ is a lower preference than ݍ) ௜௤ߩ

dispatch the EA at the current station, so the busy probability of an RRV at ݍ is not required.  The 

variable ܳ takes a value of 1 if the RRV at a less preferable station ݍ, has a journey time to the scene 

shorter than the EA at the current station ݆.  It takes a value of 0 if the EA would be the quicker 

vehicle to respond. 

Multiplying these busy probabilities over all stations (other than current station ݆ ), the total 

probability of only more preferable vehicles being busy can be written as:   

 ෑߨఘ೔ೝ,଴
௫ഐ೔ೝ,బߨఘ೔ೝ ,ଵ

௫ഐ೔ೝ,భ

௝ିଵ

௥ୀଵ

ෑ ቀߨఘ೔೜,଴
௫ഐ೔೜,బ

ቁ
ொ

௡

௤ୀ௝ାଵ

 (6.8) 
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(ܳ = 0 creates an RRV busy probability of 1 for the less preferable station ݍ, implying the RRV at ݍ 

would never serve demand of type ݈ over an EA at station  ݆). 

 

3. RRV or EA Responder (Scenario 1 & 2 combined) 

Merging the two mathematical formulations of constructs 1 and 2, we reach the situation, where 

the probability of either an RRV or an EA being the first responder to an emergency of type ݇ଵ	is 

accounted for. 

There are four extra possibilities for service of a ݇ଵ	patient by vehicle ݑ positioned at station ߩ௜௝. 

1. Response by an RRV, whereby EAs at all preferred stations would in fact reach the scene 

quicker than the current RRV. 

2. Response by an RRV, whereby EAs at only some (or none) of the preferred stations would 

reach the scene quicker than the current RRV. 

3. Response by an EA, where all RRVs at less preferable stations would not be able to reach 

the scene faster than the current EA. 

4. Response by an EA, where RRVs at some (or all) less preferable stations would be able to 

reach the scene faster than the current EA. 

The total busy probability must consider the probabilities that all preferable vehicles are busy given 

a vehicle of type ݑ responds to the incident. 

 ෑߨఘ೔ೝ ,଴
௫ഐ೔ೝ,బ ቀߨఘ೔ೝ,ଵ

௫ഐ೔ೝ,భቁ
൫ோభషೠ൯

௝ିଵ

௥ୀଵ

ෑ ቀߨఘ೔೜ ,଴
௫ഐ೔೜,బ

ቁ
ொ∙௨

௡

௤ୀ௝ାଵ

 (6.9) 

For an RRV response, ݑ = 0, the second factor (EA utilisation at ݎ) in the first product term, will 

be to the power ܴ, whereas the power ܳ ∙  in the second (ݍ of an EA at) of the utilisation factor ݑ

product term reduces to 0, giving the total product value of 1.  Therefore, the final form of 

Equation 6.9 for an RRV response is equivalent to that of 6.7.  For an EA response, ݑ = 1, in the 

first product term in 6.9, the power of the second factor (EA utilisation at ݎ) is ܴ଴ = 1 and for the 

second product term, the power is simply ܳ, resulting in the formulation given by Equation 6.8 as 

required. 
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4. EA Response Only (Scenario 3) 

When the demand is for a incident type captured by set ݇ଶ,	that is, only an EA is required to attend 

the scene, the total busy probability of all more preferable vehicles is the same as given in the 

MESLMHP formulation of Equation 6.5.   

ෑߨఘ೔ೝ
௫ഐ೔ೝ

௝ିଵ

௥ୀଵ

 

Therefore, in these cases, where an EA will respond from station ݆, simply consider the utilisation 

of EAs at all stations ݎ, where ݎ is preferred to station ݆ in dispatch to demand node ݅. 

 

6.6.3 Formulation: MESLMHPHF 

The final formulation of the Maximal Expected Survival Location Model for Heterogeneous Patients 

with Heterogeneous Fleet (MESLMHPHF) is based on the structure of the MESLMHP given in 

Equation 6.5 and the discussions surrounding scenarios 1 to 3 in section 6.6.2.  Additional notation 

is required for defining the emergency categories, following information of patient sets given in 

Figure 6.8. 

If ݇ଵ	is the set of patient groups that require both an RRV and EA response if possible and ݇ଶ	is the 

set that require only an EA response, then let ݈ be a patient group such that ݈ ∈ ݇ଵ ,݇ଶ.   

The survival probability of a patient of type ݈ ∈ ݇ଶ from demand node ݅, serviced by a vehicle of 

type ݑ found at station ߩ௜௝, can now be written as: 

 
௜,ఘ೔ೕ,௨݌
௟ = ௟ݏ ቀݐ௜,ఘ೔ೕ,௨ቁ ቀ1− ఘ೔ೕ,௨ߨ

௫೛೔ೕ ,ೠ
ቁ ቀߨఘ೔ೕ,ଵି௨

௫೛೔ೕ,భషೠ
ቁ
௨

∙ෑቆߨఘ೔ೝ,଴
௫ഐ೔ೝ,బ ቀߨఘ೔ೝ,ଵ

௫ഐ೔ೝ,భቁ
൫ோభషೠ൯

ቇ
௝ିଵ

௥ୀଵ

ෑ ൬ቀߨఘ೔೜,଴
௫ഐ೔೜,బ

ቁ
ொ∙௨
൰

௡

௤ୀ௝ାଵ

 
(6.10) 

The survival probability of a patient of type ݈ ∈ ݇ଵ, from demand node ݅, serviced by an EA vehicle 

stationed at ߩ௜௝, can be written as: 

௜,ఘ೔ೕ,ଵ݌ 
௟ = ௟ݏ ቀݐ௜,ఘ೔ೕ,ଵቁ ቀ1− ఘ೔ೕ,ଵߨ

௫೛೔ೕ,భ
ቁ ∙ෑߨఘ೔ೝ,ଵ

௫ഐ೔ೝ,భ

௝ିଵ

௥ୀଵ

 (6.11) 
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The new model aims to maximise the number of survivors from different patient groups given an 

allocation of a heterogeneous fleet through the addition of these two probabilities (Equations 6.10 

and 6.11) summed over all stations and demand for the given patient groups and weighted 

accordingly.   

The objective of MESLMHPHF is to maximise: 

 

(ݖ)݃ = ෍ݓ௟

|௞భ|

௟ୀଵ

෍ߣ௜௟
௠

௜ୀଵ

෍෍݌௜,ఘ೔ೕ,௨
௟

ଵ

௨ୀ଴

௡

௝ୀଵ

+෍ݓ௟

|௞మ|
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(6.12) 

 

 

6.7 Combating the Input Utilisation Problem: A vicious circle  

6.7.1 Model Brief: MESLMHP-I and MESLMHPHF-I 

A structural restriction of both MESLMHP and MESLMHPHF, is that utilisation is estimated from 

the data and provided as input to the models (Knight et al. 2012a).  The problem with this 

deterministic assumption of average system utilisation and constant busy probabilities is that after 

optimising the allocation of vehicles, in reality, the distribution of demand to stations will alter and 

so the utilisation at stations will in fact not be equal and will differ from the provided input 

utilisation ߨ௝.  Figures 6.9a - 6.9d demonstrate this process.  Utilisation is station specific depending 

on the number of vehicles allocated and demand rate arriving at the station.  The assumption that ߨ௝, 

the mean utilisation of vehicles at station ݆, remains unchanged as allocations are optimised, limits 

conclusions drawn from MESLMHP and MESLMHPHF.  Considering these new demand and 

utilisation values, it is likely that the allocations are now not optimal.  A circular relationship is born.    



Chapter 6. Location Analysis 

155 

To overcome the circular relationship between demand distribution and station utilisation, iterative 

versions of both the Heterogeneous Patients and Heterogeneous Patient and Fleet models – 

MESLMHP-I and MESLMHPHF-I are devised to take into account actual utilisation at each 

individual station, given the number of vehicles sited and demand to be served.   

 

Figure 6.9a Example EMS system with overall average region utilisation input, demand per station 

region and total fleet size but with allocation unknown 

 

Figure 6.9b Allocation 

results after optimisation 

model process 

Figure 6.9c Updated 

utilisation given newly 

allocated vehicles per station  

Figure 6.9d Incorrect demand 

based on new allocation and 

updated utilisation 
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6.7.2 Notation: MESLMHP-I 

Notation follows the convention laid out in section 6.5.3, for the MESLMHP, with the following 

amendments.  For a summary on the parameters used in each model, and the inherent differences in 

the way in which utilisation is captured by each of the methods, refer to Table 6.1. 

MESLMHP-I utilises the output from a MESLMHP optimisation and redistributes demand expected 

at each station based on the assumed optimal allocation of vehicles.  The utilisation used as input to 

MESLMHP is now incorrect based on the new allocations and so is recalculated to use as input to 

the next iteration of MESLMHP.  This cycle (demonstrated by Figure 6.10) continues until the 

chosen stopping method criteria is met: 

 either the output demand distribution from one iteration is equal to the output demand 

distribution of the previous iteration Λ௝
(௞) = Λ௝

(௞ିଵ)  for all ݆ ∈ [݊], where Λ௝  is the mean 

demand rate at the ݆th station – the allocation of vehicles is now suitable for the system’s 

demand and utilisation;  

 or the algorithm has run for a fixed set of iterations, with final results selected from the 

iteration with the smallest mean square error between the input and output demand 

distributions. 

Insight from queueing theory into the processes at service nodes is used to model each ambulance 

station as an ܯ௝/ܯ௝/ݔ௝ queue, (random arrivals, random service rate and ݔ servers) giving actual 

station utilisation of ߨ௝ =
ஃೕ
ఓೕ௫ೕ

< 1. 

 

Figure 6.10 MESLMHP-I iteration steps to combat circular relationship between demand 

distribution and station utilisation in MESLMHP 
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After each iteration the input to the next iteration is based on the output of the previous.  For a 

given iteration ݇, the input utilisation parameter is given by Equation  6.13. 

௝ߨ 
(௞) =

⎩
⎪
⎨

⎪
⎧

minቌ1,
Λ௝

(௞ିଵ)

௝ݔ௝ߤ
(௞ିଵ)ቍ ; ௝ݔ	

(௞ିଵ) > 0

;																														∗ߨ	 ௝ݔ		
(௞ିଵ) = 0

 (6.13) 

where Λ௝
(௞)  is the approximated actual demand distribution resulting from the optimisation, 

depending upon the number of vehicle allocated to the base.   

Difficulties lie in selecting such a method for distributing demand amongst the stations.  It would be 

possible to use an argument similar to that employed in Equation 6.5, using the busy probabilities of 

vehicles and weighted demand (as demonstrated in Equation 6.14) for each station in turn. 

 
Λ௝

(௞) = ෍ߣ௜௟ ቆ1 − ఘ೔ೕߨ
(௞ିଵ)௫ഐ೔ೕ

(ೖషభ)

ቇ
௜,௟

ෑߨఘ೔ೝ
(௞ିଵ)௫ഐ೔ೝ

(ೖషభ)
௝ିଵ

௥ୀଵ

 (6.14) 

An issue with this approach however, surrounds the total demand obtained after each iteration 

(Knight et al. 2012a).  Due to the small probability that all vehicles and therefore all stations are 

busy, a proportion of the original demand is unaccounted for using this formula.   

෍Λ௝
(௞)

௝

= ෍ߣ௜௟ ቆ1 − ఘ೔ೕߨ
(௞ିଵ)௫ഐ೔ೕ

(ೖషభ)

ቇ
௜,௟,௝

ෑߨఘ೔ೝ
(௞ିଵ)௫ഐ೔ೝ

(ೖషభ)
௝ିଵ

௥ୀଵ

			 

														 = ෍ߣ௜௟

௜,௟

෍ቆ1 − ఘ೔ೕߨ
(௞ିଵ)௫ഐ೔ೕ

(ೖషభ)

ቇ
௝

ෑߨఘ೔ೝ
(௞ିଵ)௫ഐ೔ೝ

(ೖషభ)
௝ିଵ

௥ୀଵ

 

														 = ෍ߣ௜௟

௜,௟

൭ቆ1 − ఘ೔భߨ
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ቇ+ ቆ1 − ఘ೔మߨ
(௞ିଵ)௫ഐ೔మ

(ೖషభ)

ቇ ∙ ቆߨఘ೔భ
(௞ିଵ)௫ഐ೔భ

(ೖషభ)

ቇ+ ⋯൱ 

															= ෍ߣ௜௟

௜,௟

ቌ1 −ෑߨఘ೔ೕ
(௞ିଵ)௫ഐ೔ೕ

(ೖషభ)௡

௝ୀଵ

ቍ < ෍ߣ௜௟

௜,௟

 

As a solution to the lost demand, it is possible to include an additional term that, given the 

probability all vehicles are busy, splits leftover demand between stations based on the number of 

vehicles assigned to the base.  
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Λ௝
(௞) = ෍ߣ௜௟ ൮ቆ1− ఘ೔ೕߨ
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(ೖషభ)
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൲
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 (6.15) 

Through experimentation, this technique was found to not converge due to the cyclic nature of the 

relationship between demand and utilisation.  Appendix 6.1 shows substantial noise in the mean 

square error between the input and output utilisations at each iteration of an experimental scenario.  

These preliminary investigations were performed for a subset of the WAST data; with 18 demand 

nodes, 11 stations, a total number of 218 calls in the given period and a fleet capacity of 36 

homogeneous vehicles.  The model was run for 2000 iterations to be sure no signs of convergence 

existed in the allocation solution. 

By setting such a fixed iteration stopping criteria, this approach may be implemented despite the 

convergence problem.   

Alternatively, it is possible to instead approximate demand at a station more simply using the 

following queueing based formula: 

Λ௝
(௞) = ௝ݔ

(௞ିଵ) ቆ
∑ ௜௟௜,௟ߣ

ܼ
ቇ 

If there is at least one vehicle, it is possible to calculate the next iteration input utilisation using the 

queueing theory formula.  If there are no vehicles allocated to the station, calculating utilisation this 

way would not be possible, leading to a skewed view of the system where vehicles would never be 

placed at the base in subsequent iterations; for this case, utilisation must be calculated differently, 

using one of a number of methods for choosing ߨ∗. 

Various options were experimented with for selecting a suitable ߨ∗ < 1, including inferring a 

utilisation from the current utilisations at other busy stations, or setting to a specific estimated value.  

The chosen method for this case study was to calculate ߨ∗ as the mean utilisation of stations with at 

least one vehicle allocated, that is, the average utilisation of operational stations.   
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The MESLMHP-I algorithm can be summarised as follows: 

1. Estimate ߤ and ߤ௝  from data; 

2. Assume a certain utilisation ߨ௝
(଴) for all ݆; 

3. Solve MESLMHP for these ߨ௝  and obtain allocation ݔ௝  for all ݆; 

4. Calculate the resulting demand distribution Λ௝
(௞) for all ݆; 

5. Using ܯ௝/ܯ௝/ݔ௝, calculate the resulting ߨ௝  consistent with the allocation of step 3; 

6. Repeat 3, 4 and 5 until convergence criteria is met. 

Initial conditions (݇ = 0) for the MESLMHP-I model are as follows: 

 Total number of vehicles ܼ distributed evenly across the stations; 

 Overall mean system service rate ߤ (calculated from data provided); 

 Utilisation ߨ௝
(଴) = ∑ ఒ೔

೗

ఓ௓௜,௟ . 

 

6.7.3 Notation: MESLMHPHF-I 

The iterative discussion of sections 6.7.1 and 6.7.2 can similarly be applied directly to the 

MESLMHPHF, adjusting only for the utilisation per vehicle type.  The algorithm must now assume  

௝,௨ߨ
(଴) from the data for ݑ = ቄ0	if	RRV

1	if	EA			and calculate resulting ߨ௝,௨ for each station ݆ and vehicle type ݑ.  

Service rates will also refer to a specific vehicle type, giving two values for ߤ௝,௨ at each station. 

Since service of a high priority patient requires both an EA and RRV attendance, utilisation of EA 

vehicles will take into account demand for all call categories, but RRV utilisation will be calculated 

based only on category A demand rates.    
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Table 6.1 Summary of model input parameters for all four location models 

(1 – MESLMHP; 2 – MESLMHP-I; 3 – MESLMHPHF; 4 – MESLMHPHF-I) 

Parameter Description 1 2 3 4 

λ௜௟  
Demand at rate λ	from demand node ݅ ∈ ݉ for 
emergency of type ݈ ∈ ݇ ● ● ● ● 

Λ௝  Actual demand distributed to station ݆ ∈ ݊  ●  ● 

   ● ● ݆ at station ߤ ௝ Service rateߤ

ݑ ௝,௨ Service rate at station ݆ for vehicleߤ ∈ [0,1]   ● ● 

 ●  ●  Overall mean system service rate ߤ

௜௝ߩ  Station preference ݆ of demand node ݅ ● ●   

 ௜௝,௨ Station preference ݆ of demand node ݅ for serviceߩ
by a vehicle of type ݑ   ● ● 

   ● ● ݆	௝ The utilisation of stationߨ

 ● ●   ݆	at station ݑ ௝,௨ The utilisation of vehicle typeߨ

 ●  ●  Average utilisation of operational stations ∗ߨ

௝ݔ  The number of vehicles at station	݆ ● ●   

 ● ●   ݆ at station ݑ ௝,௨ The number of vehicles of typeݔ

 ௟ݏ
The survival function given for emergency of 
type ݈ ● ● ● ● 

 ௜௝ݐ
Predicted travel time between station ݆   and 
demand node ݅ ● ●   

݆ ௜௝,௨ Predicted travel time between stationݐ   and 
demand node ݅ by vehicle of type ݑ   ● ● 

௟ݓ  
Weight applied to category ݈  in order to 
prioritise emergency types ● ● ● ● 

ܼ Total number of vehicles in fleet ● ● ● ● 
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6.8 Application to WAST 

6.8.1 Introduction 

Both models and their iterative versions are now applied to the South East Wales EMS system.  Two 

approaches (Figure 6.11) are investigated based on current and prospective system performance 

measures.  The ‘Hard’ approach lends itself to the setup of the location models using the current 

WAST structure – step functions represent survival for all category hard target responses.  The 

‘Heterogeneous’ approach refers to one where a mixture of hard targets for lower priority patients 

and a survival curve (taken from the literature) for critical patients are implemented for a system 

based on clinical outcome.   

 

Figure 6.11 All methods and approaches applied to the South East Wales vehicle allocation 

problem 

 

6.8.2 Granularity 

Before experimentation between coverage and survival can begin, the structure of the network, and 

the degree of detail taken for demand zones must first be defined.  Calls for service originating 

within close proximity of each other may be aggregated to form a single demand zone (as described 

in Chapter 5).  In this case, a demand zone or node corresponds to a single postcode district since 

location data detail is only available at this level.  For the South East region of Wales alone, 

accumulating demand to postcode districts produces 50 nodes for computation.  In addition to 

demand, there are 23 regularly used vehicle bases.  Overall run time will be greatly affected for 
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even a small increase in the number of nodes, especially since travel times and distances between all 

location pairs must be pre-computed (per individual regional scenario) using the Travel Matrix 

Generator Tool. 

 

6.8.3 Genetic Algorithm 

Finding an optimal solution to an integer location problem with even just 10 stations and 20 

homogeneous vehicles through complete enumeration requires evaluation of over 1020 combinations 

of allocations (by the uncapacitated facility location problem (Krarup and Pruzan 1990)).  This is 

unrealistically achievable due to the computational complexity.  There are two alternative solution 

approaches: multi-objective integer programming or Heuristic techniques.  Due to the issue of 

scalability of patient groups and dimensionality, and the desire for a generic formulation, a heuristic 

method is exploited.   

One particular heuristic technique that lends itself well to such problems is that of a genetic 

algorithm, GA, (Deb 2005, Sasaki et al. 2010).  A GA is a population based heuristic that selects 

characteristics of parent solutions to pass on to new generations of solutions and has previously been 

used directly to maximise survival in EMS allocation (Erkut et al. 2008a).  A benefit of solving the 

developed set of location models here using a GA is that the method can be applied to other, much 

larger EMS systems, or extended to the whole of WAST, not just the South East regional allocation 

strategy.   

The spreadsheet models, built in Microsoft Excel, invoke the GA of the Palisade software-suite add-

in, Evolver, with a population size of 50.  Selection of parent solutions from the population on 

which to perform modifications is rank-based; as is the method of replacement of new solutions in 

obtaining the next generation.  Uniform crossover rate (the chance that an element of a parent 

solution combines with another parent to generate a new solution) and adaptive mutation rate (the 

chance of a random swap of new solution values to diversify the gene pool) are taken to be 0.5 and 

0.1 respectively.  These choices are based on suggested ‘rules of thumb’ from various sources 

(Corporation 2010, Petrovic 2010, Sastry et al. 2005); they are not discussed further since WAST 

would not be expected to alter nor understand the operation or purpose of such parameters if 

application to the Trust was successful.  Stopping criteria used for the optimisation of a particular 

scenario are 100 trials without improvement or a maximum change of 0.01% in the overall solution.   
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6.8.4 Iterations 

To determine the necessary number of iterations for the iterative models, firstly the MESLMHP-I 

was run, distributing demand according to Equation 6.15 and stopping the model after 25 iterations.  

The best resulting allocation is selected as the one which gives the smallest mean square error 

between the input and output demand distributions.  Running this version of the model for various 

shifts, and recording after each complete run which iteration produced the best allocation, seen in 

Figure 6.12, ten iterations were deemed adequate for subsequent experimentation – especially since 

the iterative and heterogeneous fleet models require considerably more computation time, a 

minimum number of iterations is desirable to balance the trade-off between optimality and run time.   

 

Figure 6.12 Frequency of selection of iteration as best solution to allocation problem using 

MESLMHP-I – 25 iteration stopping condition 

 

6.8.5 Data Input 

A single week’s worth of data was selected from the 2009 South East Wales data set to enable more 

definitive representation of the system and more explicit input.  Average numbers of vehicles on 

shift over the year and average demand are subject to large amounts of variation.  By limiting the 

range of data, uncertainty in matching allocations with demand would be minimised and the 

location theory technique demonstrated for a more precise and realistic problem. 

The week chosen for demonstration purposes is that of Sunday 10th May to Saturday 16th May 2009.  

For test and benchmark modelling, it is desirable to avoid any special calendar dates or regional 
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events to be sure typical demand would be adequately handled by a standard fleet.  Furthermore, 

higher demand is witnessed during the summer school holidays and in winter due to adverse 

weather and so a moderate seasonal effect is obtained by selecting a spring month. 

The developed models are not designed to be stochastic or dynamic; multiple versions must be run 

independently to capture variations in allocation patterns over time.  For the chosen week, each 

weekday and weekend day are modelled separately, per shift.  The pattern of demand is also 

significantly different between weekdays and weekends and over a 24-hour period.  Six distinct 

operational shifts (shown in Table 6.2) thought to make up a typical week are extracted from a 

graphical representation of historical busy vehicles over time (Figure 6.13) and average arrival rate 

patterns (Chapter 4, Figure 4.9). 

Table 6.2 Daily data for the chosen week used in determining input values for each weekday and 

weekend shift for modelling 

Shift 
Hours of Shift 

1am – 9am 9am – 5pm 5pm – 1am 

Weekday 1 Monday-Friday   

Weekday 2  Monday-Thursday  

Weekday 3   Sunday-Thursday 

Weekend 1 Saturday-Sunday   

Weekend 2  Friday-Sunday  

Weekend 3   Friday-Saturday 
 

 Arrival rates are derived from the average number of calls arriving from a particular demand 

node, for each of the four categories of emergency, during each shift. 

 Service rates per shift are procured from average cycle length found from the chosen week 

data.  Cycle length in this case is taken to be the interval between time vehicle is allocated to 

the emergency call until time the vehicle becomes clear and reports itself available to attend 

further calls.  Average cycle length from the data and cycle length for EAs and RRVs separately 

are converted into number of calls served per shift by each station, from which service rates ߤ௝  

and ߤ௝,௨ are obtained.  
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 Fleet capacity is the variable of the modelling process with potential for further exploration.  

Altering the fleet size will result in varying allocations and survival rates; for WAST this is a 

strategic and daily operational decision that could be expedited using such location modelling 

tools.  Since capacity is time dependent, if WAST could access information which instructs on 

vehicle positioning given a total number of operational vehicles at any one point, fleet 

management would be a simple look-up task.  All models are therefore run for various values 

of ܼ (fleet size) and results stored in compliance tables for future reference and comparison.  

To give an indication of a typical fleet size as a guide for the range of ܼ for modelling, (and as 

further support for the suggestion in Chapter 4, section 4.6, that allocations provided by WAST are 

overestimated) the moving average (of 60 minutes) of busy vehicles at each point in the chosen 

week is portrayed in Figure 6.13, for all vehicles types combined.  A vehicle is defined as busy from 

allocation to time clear.   

 

Figure 6.13 Number of busy vehicles (all types) over time for chosen week 

 

6.8.6 Service Procedures 

Since the location models purely delve into location based on demand, fleet capacity and overall 

average service rates (per vehicle type), no assumptions are made as to whether the patients require 

transportation or not.  These are deterministic models, accounting for total demand rates and not 

individual requests for service as a simulation model might, so transportation decision is captured 

only by average cycle time.   
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For the heterogeneous fleet models (MESLMHPHF and MESLMHPHF-I), category A patients will 

require both an EA and RRV attendance.  Categories B, C and Urgent (where Urgent is the 

combined AS2 and AS3) emergency patients will only require service by an EA (illustrated earlier 

by Figure 6.8).  The calculation of utilisation is therefore dependent upon the vehicle type and 

suited demand.   

 

6.8.7 Priority Weighting 

Efforts were made to obtain importance values for the prioritisation of patient groups from WAST 

for weighting the categories during modelling.  Figure 2.5 provides an understanding of the current 

priority of service structure, but WAST were unable to unequivocally state numeric values to 

represent differences in priorities for obvious ethical reasons.  Literature on Quality of Life Years 

(QALYs) was investigated to see whether any numeric understanding from life years gained from a 

given level of response and survival probability could be applied to the developed survival coverage 

models.  Again, no simple numeric answer exists at the time of writing.  For these reasons, a 

selection of weights were tried and tested in a sensitivity analysis style experiment to see the effects 

different weight proportions had on the model outcomes. 

Priority weightings are observed to be fairly stable over sensitivity analysis, such that the final 

decision on weights is a best guess, proportion-led outcome.  Categories A, B, C and Urgent are 

given weights 0.6, 0.2, 0.15 and 0.05 respectively in all subsequent modelling.  The larger 

proportion for category A reflects the life-threatening state in which patients arrive to the service.  

Category B and C have only a small discrepancy in weights to reflect their current target status in 

Wales (response time targets are equal) whilst maintaining a preference on order of service. 

 

6.9 Results 

Results obtained demonstrate similar patterns across the weekday shifts and typical outcomes; 

therefore, only a selection are presented for brevity.  The chosen results for portrayal are those of 

weekday shift 2 (daytime) since demand is fairly constant and consistently high during this period.   

Firstly, comparisons of results across the modelling approaches for each method are illustrated.   
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MESLMHP 

Optimising the allocation of a homogeneous fleet to maximise survival of four patient groups via the 

MESLMHP produces results in accordance with Figures 6.14 and 6.15.  When initial results for 

expected numbers of survivors of the original demand population are displayed graphically, as in 

6.14, it appears there is very little difference between the overall effects of the Hard and 

Heterogeneous approaches in terms of total survival probability; however, on closer inspection, 

comparing the actual difference in total expected number of survivors, where a positive difference 

refers to the Heterogeneous approach maximising more survivors, it does generally perform better 

for category B, C and Urgent patients, but more category A patient lives are lost than with the Hard 

approach.  This effect is due to the nature of the modelling objective.  Hard targets result in vehicles 

being positioned in order to maximise the population that are attended within the time standard.  

The difference between a one minute and an eight minute response is not noted since they are both 

deemed successful, despite the clinical outcome of the patient likely being significantly different.  

When this allocation is converted into survival, using travel time as input to the survival function, 

the Hard target approach may have coincidently allocated vehicles close to the high priority demand, 

since their hard response time target is more important than the lower priority patients.  The 

Heterogeneous approach, although it accounts for priority through weights, aims to distribute 

vehicles more equitably, which may in fact lead to a lower survival probability than previously.  

 

Figure 6.14 Expected proportion of survivors for hard target and heterogeneous approaches from 

the MESLMHP method, weekday shift 2 
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Figure 6.15 Difference between expected number of survivors of the Heterogeneous and Hard 

target approaches from the MESLMHP method, weekday shift 2 

 

MESLMHP-I 

The outcome of the Heterogeneous approach is slightly more favourable for the MESLMHP-I.  The 

iterative method of readjusting the input utilisations based on actual demand expected at the station 

after an optimal allocation has been determined means the variation in number of survivors is higher.  

From Figure 6.16, it seems that the Heterogeneous approach gives a more stable result than the 

Hard approach for larger fleet sizes. 

The instability in both graphs for smaller values of ܼ  relates to the queueing theory problem 

embedded in the location analysis modelling structure.  For small fleet sizes, the system utilisation 

value ߨ will be close to 1 ቀߨ = ఒ
ఓ∙௓
ቁ meaning the length of time a patient spends waiting is likely 

higher than in situations with larger fleets. 

 

Figure 6.16 Expected proportion of survivors for hard target and heterogeneous approaches from 

the MESLMHP-I method, weekday shift 2 
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Figure 6.17 Difference between expected number of survivors of the heterogeneous and hard 

target approaches from the MESLMHP-I method, weekday shift 2 

 

MESLMHPHF 

Looking initially only at category A patients, for a range of vehicles per type, again the comparison 

of Hard and Heterogeneous results in Figure 6.18 suggests little difference.  Once the difference is 

calculated explicitly in terms of expected number of survivors however (Figure 6.19), the 

substantial improvement of the Heterogeneous approach on the outcome of patients is obvious.   

 

Figure 6.18 Expected proportion of category A survivors only for hard target and heterogeneous 

approaches from the MESLMHPHF method, weekday shift 2 
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Figure 6.19 Difference between expected number of category A survivors only of the 

heterogeneous and hard target approaches from the MESLMHPHF method, weekday shift 2 

For category B, the difference in outcome between the two approaches is still substantially better in 

the Heterogeneous case (Figure 6.20); however, as the number of RRVs increase, with the ability 

only to serve category A patients, the difference in survivors decreases since the EAs now are more 

able to focus on lower priority calls than contributing to high priority patient response.  

 

Figure 6.20 Difference between expected number of category B survivors only of the 

heterogeneous and hard target approaches from the MESLMHPHF method, weekday shift 2 

 

MESLMHPHF-I 

Due to the exorbitant run length (up to one hour per iteration) of the iterative heterogeneous fleet 

model, only a select few combinations of sub-fleets were tested.  The graphical results produced do 
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therefore not depict a full surface, making appreciation from the three-dimensional comparison 

curve (Figure 6.22) more difficult.  A figure (removing gaps for fleet combinations that were not 

run) is shown, yet, scalability of this graph should be assumed with caution, the axes are not 

continuous or constantly distributed.  

 

Figure 6.21 Expected proportion of category A survivors only for hard target and heterogeneous 

approaches from the MESLMHPHF-I method, whole week 

 

Figure 6.22 Difference between expected number of category A survivors only of the 

heterogeneous and hard target approaches from the MESLMHPHF-I method, whole week 

 

Comparison with Actual Allocation 

WAST provided some information regarding the actual numbers of vehicles they have assigned to 

each station per shift across the South East region.  This assignment does not guarantee the same 

number of vehicles are operational at any one time, but it gives a good indication of the total fleet 
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size available.  Using this allocation and obtaining expected numbers of survivors based on their 

locations for the chosen weeks demand pattern, comparison with the four methods is now made.  

   

Figure 6.23 Difference between expected number of survivors of models compared with actual 

WAST allocation (weekday shift 2), for Hard and Survival function approaches per method 

The difference in the expected number of survivors is depicted in Figure 6.23, where a positive 

difference implies a higher number of survivors.  Across all categories, it is possible to see that the 

heterogeneous fleet model matches the current allocation performance the closest. 

 

6.10 Conclusion 

6.10.1 Introduction 

From earlier results for the MESLMHP and its iterative version, it seemed that perhaps the 

Heterogeneous, survival maximising, approach would be less successful than originally hoped.  Yet, 

the full complexity of the EMS system is not captured by these models and so outcomes may be 

misleading.  Due to discrepancies in roles played by the two main operational vehicle types, the 

MESLMHPHF and MESLMHPHF-I offer a more accurate representation of the system and so more 

reliable results.  Through this novel contribution, the Heterogeneous approach does prove to give 

better allocations in maximising positive outcome of the population.  The importance of operating 

based on strategies that focus on the patient and not the system in fact proves to benefit both.  
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6.10.2 Model Limitations 

The implemented survival curve in the developed set of location models may not be suitable for its 

purpose, but such curves are scarce.  A single survival function, regressed from cardiac arrest data, 

is applied to the whole category A population.  The curve utilised is also designed for response by a 

one-tiered system, not one that operates with BLS and ALS such as WAST.  Dividing up categories 

in a manner accounting for differences in patient needs and condition would require the testing of 

various survival functions, ones suited to the system structure and possibly with better results.  

Of the input data, some assumptions are made for simplicity and due to a lack of detail in the 

original data used for design.  The travel time estimates do include residual variation, which is 

thought to generally capture occasions in the data where vehicles may be en-route or returning to 

their base when dispatched to a call and variation in speed, road conditions and human differences.  

It is also assumed that station preference is strictly ordered based on travel time; whereas in reality, 

this may not be strict – dispatch operators may use knowledge and experience to maintain a balance 

in coverage during dispatch and so do not always send the nearest available vehicle. 

One problem with the input to the models is that the service times are taken to be the overall 

average cycle time of a shift.  This time interval incorporates travel time from the scene to the 

hospital, but based on the data not the Google Maps API journey results.  Since the transportation 

journey data is used in the regression of the Google Maps distance data to convert to travel time, it 

is deemed that this will not cause much error in cycle time values, since the travel time estimations 

are matched as best as possible to the existing historical data.     

 

6.10.3 Extensions 

An immediate extension to the models presented in this chapter is to an EMS system with more 

than two types of vehicle.  WAST are also attempting to reduce the number of double-dispatches; 

therefore, in the MESLMHPHF models, consideration should be extended to service solely by 

RRVs, without EA back-up.  Further work could consider the stochastic elements of such an 

emergency service, and capture the full extent of congestion, utilisation and time dependency 

through probabilistic modelling.   
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Capacity constraints on some, or all, stations may exist in reality, yet the allocation models assume 

that the entire fleet could be placed at a single vehicle base if this were the optimal allocation.  This 

is a relatively simple constraint to implement in the current models, but has been ignored since it is 

assumed (and noted from preliminary tests) that subject to a fleet suitably large enough to handle 

the demand, optimal allocations will almost certainly be spread fairly equitably to capture demand 

across the network.  Such capacity constraints are unlikely to be broken, and if they were, are 

unlikely to impact drastically on population survival, hopeful that the over-subscribed vehicles at 

one base could alternatively be located at the next nearest station to assist with local demand.   

 

6.10.4 Survival Approach 

The development of Automated External Defibrillator programs and Community First Responders 

allows response time intervals to be drastically shortened; however, these programs rely heavily on 

the awareness of the public and the assumption of willing bystander intervention.  Although this is 

more a medical issue than an OR modelling one, the fact that in many cases the EMS crews will be 

the first attendees implies work still needs to be undertaken to ensure patients receive immediate 

attention where needed and are not subjected to unnecessary long response delays. 

Despite this, response time intervals (taken as onset to arrival of paramedics at the scene), may not 

actually be fully representative in terms of survival.  There is a need for more information, such as: 

 Was the cardiac arrest witnessed? 

 Did a bystander intervene? 

 How long until CPR was initiated? 

 How long until defibrillation? 

 Further details of BLS. 

 Attendance by BLS (emergency medical technicians) or ALS (paramedic crews) or both? 

 Details of other aspects of the Chain of Survival. 

Discussion has shown the positive impact on patient outcome that early intervention can have for a 

patient experiencing an OHCA, following the Chain of Survival; however, there is still some 

uncertainty as to whether a BLS or ALS response would improve the rate of survival to discharge 
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(Chien et al. 2011).  Stiell et al. (2004) found no significant difference except in admission rate to 

hospital; however, in their letter to the editor, Chien et al. argue that immediate outcomes are 

improved by BLS for some aspects of the condition but overall survival is not necessarily better for 

either group.  They state, that rapid transportation to hospital facilities also contributes to a more 

positive outcome.  This issue of transportation time is not captured by the location models used in 

this chapter and so another technique should be used as an alternative to investigate this further.   

Concentration on survival as an objective should be thought not as a short term clinical outcome aim, 

but as an aim for long term effect improvements in an entire secondary care population through a 

simple shift in focus of strategy.  Changes from hard targets to clinical performance measures have 

the benefit of accommodating the importance of the patient outcome, placing an emphasis on 

service of patients rather than performance of the system.  Performance is still captured by the idea 

of having targets at all, but with survival curves, the time taken to attend the scene is a better 

approximation of success of the service in their underlying goal – saving lives. 



 

176 

Chapter 7 

 Simulating an EMS System 

 

7.1 Why Simulate? 

7.1.1 Definition 

‘Simulate’ comes from the Latin simulare - to copy or represent - and, by definition (Penguin 

Reference 2003), means: 

“to assume the outward qualities or appearance of something”. 

Before Operational Research and Management Science disciplines popularised the term ‘simulation’ 

as a type of modelling methodology, and even before technology was truly capable, the concept and 

structure of simulation had been in use under various guises for many years.  Origins exist in 

military applications (Hill and McIntyre 2001) and flight simulators (Page 2000), healthcare, for 

medical skill training (Healthcare Simulation South Carolina 2013, Rosen 2008) and education 

(CreativeTeaching 2011, Zuckerman and Horn 1970).  Today, simulation can be found in 

entertainment; conceptualised by films such as ‘The Matrix’ (1999), demonstrated by war games 

(Lenoir and Lowood 2005, Smith 2010) and computer games (Atkins 2003, Rennard 2007), and 

implemented in amusement park experiences (Clave 2007).  Even exercise comes in simulated 

form, with the aid of game consoles (such as the Nintendo Wii and Microsoft’s Kinect device), 

where ‘players’ simulate the actions of particular sports and activities without the need for sports 

equipment.  

More commonly, in OR circles, simulating defines the act of mathematically recreating a real-

world situation, system or process, often using a computer to perform experiments on the system 

in a controlled, safe and virtual environment.  It offers an accessible environment for various, 

interconnected components of a system to be represented and explored with regard to a (multi-) 

set of objectives. 
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7.1.2 Benefits 

Demonstration of the power of modelling and experimentation has become ubiquitous in OR over 

the past few decades.  (The Chapter 3 example of ambulance response time modelling prevalence in 

the literature, Figure 3.1, shows such an increase.)     

Many organisations prefer the use of simulation experimentation to more technical methodologies, 

since, for the non-mathematical mindset, the understanding of simulation results can be much more 

intuitive than other modelling approach solutions and provides abundant interactive learning 

opportunities (Summers 2004).  If graphics and visualisations are integrated and are to a good 

standard, and if the developer of the tool has the capability to communicate well the purpose, 

capacity and results of the model, then simulation can be a valuable asset to problem-management 

processes.  

An advocate of this modelling aspect is Goldberg et al. (1990) who chose to use a simulation 

approach (with a multi-server queueing structure) in an effort to gain confidence from a client – 

namely the Tuscon Fire department of Arizona.  The client felt more comfortable accepting output 

from a simulation model over a more analytical model. 

 

7.1.3 Overview 

From the data analysis conclusions (Chapter 4), along with output from the Google Maps Travel 

Matrix Generator Tool (Chapter 5) and allocations obtained from developed location models 

(Chapter 6), a simulation tool is developed to allow in-depth investigation of the entire emergency 

ambulance service system.  The interaction between the components developed in this thesis, along 

with the contribution of data and theory, is portrayed in Figure 7.1.  The simulation tool’s purpose, 

design and structure are detailed in the forthcoming sections, concluding with an account of hopeful 

future implementation in Wales. 
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Figure 7.1 Interaction of the developed models and tools in potentially informing WAST’s policy 

and operational decisions 

 

7.2 Strength of Simulation 

7.2.1 Introduction 

According to Robinson (1994), the concept of simulating is built around three activities: 

1. Modelling: the abstract representation of important features of a system, ranging from 

conceptual modelling to physical recreation of the current operations; 

2. Experimenting: skill and knowledge of the system are used to gain understanding and 

further explore the system and its capabilities; 

3. Computing: often used as the means to create a model and carry out the two former 

aspects of a simulation project. 

In this study, each of these activities are considered and the description of the development process 

of a simulation tool is supplied in the following sections.  
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From spreadsheet models to purpose-built simulation packages, modern day computer simulation 

allows instant interaction of a proposed system model, looking at the effect of inputs (policies) on 

outputs (responses), where redesign and modifications are part of the interminable evolution 

process of simulation modelling.  Manufacturing, transport, healthcare, defence, education, social 

networking – almost all sectors at some point or another have pioneered the use of simulation 

techniques, often with the expectation of reducing costs, maximising profits or improving efficiency. 

 

7.2.2 Advantages 

Simulation can be a powerful tool in the understanding of organisational, strategic, operational and 

tactical problems.  Whether issues surround resource management, processes or pathways, 

simulation not only gives insights to situations that may be difficult to model mathematically, but 

allows the user to identify flaws and disparity in system knowledge and provides a canvas to 

replicate or test alternative ideas.  It allows analysts to experience system characteristic changes in a 

safe environment and see the monetary and performance impact of decisions.   

The benefits of simulating are numerous, hence why many emergency services (and other 

organisations) explore their systems in this manner (as seen in Chapter 3 section 3.5.7): 

 Understanding: the simulated system should be easy to follow, with recognisable differences 

and similarities for anyone familiar with the real system, making the implications of any process 

modifications transparent where perhaps thought had not previously been given. 

 Safety: in certain real-world experiments, if the consequences of system changes are unknown, 

implementing them can be risky to the organisation or business, or in some cases even unsafe 

to system users (particularly for an EMS system where patients’ lives are in the balance). 

 Savings: experimentation and system modifications are often costly.  As with safety, it is often 

undesirable to simply change policies before testing them, since this costs time and money.  

Modelling prevents unnecessary changes until the optimal system state is determined. 

 Graphics: through the inclusion of graphical displays of information and results, system 

operations are visibly understandable and interpretable, eliminating the need to deduce 

outcomes from complex formulae and abstract numeric values. 
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 Scale: experimentation can be sped up so outcomes are witnessed in a shorter period of time 

compared with the physical length of such activities.  This is particularly useful when real 

changes might not take effect for months or years or when many scenarios wish to be explored. 

 Repeatability: unlike in reality, simulated experiments can be replicated exactly to enhance 

the insight gained from results. 

 Flexibility: it is possible to simulate in such a way that provides the user access to measures 

and estimates that would otherwise be unavailable or require years of data collection and new 

physical measurement of such information.  Henderson and Mason (2000) state performance 

measures may be more accurately predicted than with more analytical modelling such as 

Markov chains and queueing theory. 

 Communication: decision makers and system managers can interpret the outcomes of such a 

modelling approach for themselves, potentially with little assistance from the model builders.  

Results can be laid out simply and clearly for effective communication.   

 

7.2.3 Visualisation 

Simulation modelling often includes a visual aspect, whether that be specific movement of entities 

through the model, or (graphical) results displayed to the user.  Visualisation of system structure 

and results is key in providing understanding of the processes contained behind the scenes in the 

programming code.   

Designers are often not the same people as the intended users of the model and so the required 

formation of input and output structures should be as intuitive as possible for the eventual user, 

which can be aided by graphical displays and user-interface structures.  An important inclusion to 

this simulation project is a robust user-friendly interface for the client.  Results of complex logic 

and procedures need to be communicated simply and swiftly. 

Graphical output can be demanding on computational resources and require long periods of time to 

develop and produce results.  This study therefore takes a more conservative approach to the 

amount of graphical output given, finding a balance between informative and superfluous detail.  

Dynamic graphics are not used, but settings and simulation options are displayed as simplistically 

and intuitively as possible, with KPI results displayed to the user upon run completion instead.  
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The objective of this research is to provide WAST with a generic tool, with an interactive interface, 

to assist with daily planning tasks relating to locations and allocations of vehicles across any network.  

 

7.2.4 Comparison with Other Techniques 

Due to the relative inflexibility (of structure alterations, input styles and limiting Markovian 

assumptions) of non-simulation modelling approaches (which are mainly deterministic and static in 

nature) and also the potential degree of complexity of some problems, the provision of a simulation 

model is often more desirable.  Simulation has the ability to cope with dynamic and transient effects 

(Pidd 2004, Robinson 1994) compared with more mathematical modelling approaches.  A 

simulation model may also often better portray the effects on the system for more diverse scenarios 

and the implications of making changes to resources and control logic employed by the system.  For 

example, in an EMS system, the analytical location-allocation model described in Chapter 6 

provides static results regarding the optimal allocation of vehicles to the South East region of Wales; 

however, further analysis can be conducted via simulation in order to understand the stochastic 

performance over time of the system as a whole, given such an allocation.  

 

7.2.5 Limitations 

It is important however, to also realise the limitations of simulation when considering this line of 

experimentation.  Often it is the case that the models developed may be over simplified for ease of 

representation.  Real-world systems can be incredibly complex and it is usually impossible and 

undesirable to consider every detail when attempting to simulate their processes.  Sources of 

inaccuracies include input and experimentation choices (Robinson 1999).  The accuracy of the 

imitation is obviously crucial to the choices that may later be made using the model as a decision 

tool – model verification and validation, which deal with the accuracy and precision of 

representations, are discussed further in sections 7.8.4 and 7.8.5.  
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7.3 Simulation Type 

Over the decades, many different types of simulation approach have been developed.  The three 

main paradigms of simulation that assist Operational Researchers in a variety of scenarios are: 

 Discrete Event Simulation (DES): perhaps the most commonly used approach, gaining 

momentum with the development of computer simulation in the late 1950’s (Nance and 

Sargent 2002).  It has since been used to model system processes in discrete time, where 

objects pass through the system in sequence with a time stamp to indicate the order in and time 

at which to process an event or change associated with the characteristic state.  DES is useful 

when the behaviour of the system is stochastic and focuses on individual entities. 

 Agent-Based Simulation (ABS): a slightly less common method stemming from ideas of John 

Von Neumann and work by Schelling (1971); multi-agent based simulation is a technique 

employed when there exist a large number of agents or entities, but where decisions are based 

on rules present for the agents interaction with each other and their behaviour within the 

system, rather than governed by probabilistic distributions as in DES. 

 System Dynamics (SD): developed by Jay Forrester (1961), at the Massachusetts Institute for 

Technology (MIT), SD differs significantly from the other two techniques in that it can be 

thought of as a broader, aggregated view of an entire system.  It is a population based view 

rather than entity/agent specific, looking at the flow and rate of change of populations, 

capturing feedback and interaction effects but for deterministic behaviour. 

The approach of DES is chosen for the ambulance allocation-location problem, since its 

characteristics lend themselves well to the system’s structure and the desired outcomes of this 

particular modelling task.  DES compliments queueing theory, and due to the connections that 

queueing theory has to an EMS system, the technique is suited for application to WAST. 
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7.4 Programming 

7.4.1 Choice of Style 

A choice is made early in the planning stages of a simulation project on the style of build.  For this 

project, it was decided the tool should be built and written in a general purpose programming 

language, as opposed to using a pre-developed simulation software package.   

When deciding how best to conduct a simulation, the benefits of utilising a purpose built package as 

opposed to contriving one via a programming language must be considered.  The question is 

whether the cost (for time and expertise) of manufacturing a new model in a coding language is 

outweighed by the cost of acquiring licences and understanding of existing commercial modelling 

software in which to develop the model (for which build time is still required and rigidity exits) 

(Goldberg et al. 1990).   

Developing a completely new tool for this study has a higher cost in terms of development than 

exploiting a package, but benefits are found in the level of detail, complete flexibility of content and 

design and dynamic complexity captured by the final model.  Additional logic can be added to 

models built in most pre-developed packages, but the user is bounded by the software.  Through 

the creation of an original program, the developer gains further understanding of the system and 

appreciation of accuracy and assumption implications when making attempts to incorporate aspects 

of the real-world system.  Henderson and Mason (2000) use a high-level programming language for 

this logical complexity reason and for two others: speed and integration with specialist GIS tools.  

From the outcomes of the modelling project in this thesis, non-simulation experts should be able to 

make use of the tool in the future without the necessity to understand ‘off-the-shelf’ simulation 

packages or purchase expensive licences.  The resulting tool is a standalone application that may also 

be run on more than one computer console at once, without the need for multiple copies of 

professional software – reducing running costs for the client and increasing speed.  Some aspects 

incorporated to the simulation are also rarely seen in other models (such as a heterogeneous fleet, 

road map travel data and survival considerations).   
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7.4.2 Choice of Language 

The tool developed for this project is written in the Visual C# programming language.  Visual C# 

language is similar to C++ and Java (in that it offers class-based, run-time compilation), but utilises 

services of the .NET framework (instead of the computer hardware or operating system directly).  

It is developed in the Microsoft Visual Studio (Microsoft Corporation ©2010) Integrated 

Development Environment (IDE) which provides a place to create various application types using 

various .NET classes for execution.  This .NET framework consists of class libraries of pre-written 

code and the Common Language Runtime (CLR) which handles memory, execution and security at 

runtime (Murach 2008).   

The developed tool is an application that is executable directly from a user’s PC, operating with a 

minimum specification of Microsoft Windows 2000 (Windows XP or later is required for 

development).   

One reason for this choice over other general purpose languages is that it enables object-oriented 

programming (OOP).  ‘Objects’ are manipulated whereby the focus falls on the form of the data 

and not the logic.  Since this simulation is being driven by historical data, and the desired output 

should also inform through collected data (presented similarly to the data WAST collect 

themselves), this is of benefit to the project at hand.   

Simula is considered to be the first object-oriented programming (OOP) language (Dahl 2002, 

Kindler 2007).  Apparent from its name is the relationship between the language and its intent for 

use with simulation.  As an OOP language (compared with ‘procedure’ and ‘module’ based 

structures), C# offers the user the benefits of concepts such as ‘inheritance’, ‘polymorphism’ and 

‘encapsulation’ (Murach 2008, Wren 2007).  Classes are created for objects, containing sequences 

of logic (‘methods’) and instructions on the actions befitting the individual objects.    

 Inheritance – reduces development time and makes the coding more accurate by defining a 

new object in terms of an existing one.  In this project, ‘demand’, ‘station’ and ‘hospital’ are 

all types of ‘location’ but with different attributes; therefore each of these three classes 

inherit (through polymorphism) all properties, methods and constructors from the parent 

class ‘location’.   
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 Polymorphism – methods can accommodate more than one type of object but behave 

differently accordingly.  Classes can provide inheritance to different objects due to this 

feature.  It provides flexibility in usage and reduces the amount of code required to process 

objects during construction when their type may not be known until run-time.  

 Encapsulation – enables better control of data within classes, where methods describe 

object actions.  Methods can make changes to object instances but access to specific methods, 

modules and data associated with an instance of an object can only be viewed by other objects. 

 Reusability – objects are created from a single class; the code is reusable anytime the same 

object type needs to be developed.  Also, all methods contained in the class are accessible 

throughout the model where an object necessitates its access.  Classes allow construction of 

new data types and can easily be adapted for implementation in other OOP languages 

or .NET applications. 

Free-coding in Visual C# allows complete control and the ability to integrate the Travel Matrix 

Generator Tool into the simulation whilst capturing the exact level of detail required for the 

research.  The tool interacts with the JavaScript source code behind the Google Maps web page and 

utilises the API as described in Chapter 5 and Appendix 5.1.  Finally, the visual aspect that can be 

incorporated to a model built using Visual Studio, achieves the goal of creating an intuitive user-

interface for WAST to implement in the future – navigated easily by non-technical users.  

 

7.4.3 Time Handling 

DES handles processes through time, where events indicate system actions. Various methods exist 

for dealing with time steps, including the three-phase, activity based and process based approaches 

(Pidd 2004).  More commonly, the ‘clock’ of the simulation is advanced using the ‘next event’ 

technique, whereby the simulation skips forward in time (in unfixed increments) until it reaches a 

time state in which an event must be processed.  The life cycle of the system is split into manageable 

parts and a time scan is performed to see if an event is due to occur; if so, the clock pauses, an event 

execution is triggered and a routine is called to deal with the state change associated with the 

event(s).   
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An alternative process for handling the progression of time in a simulation is ‘time-slice’ 

programming.  It involves moving forward through time in equal steps or intervals, and reviewing 

requirements of the system at each step.  The interval is denoted as having length ݐߜ and so the next 

review of the system occurs at time ݐ +  It is important to correctly gauge the time  .(Pidd 2004) ݐߜ

slice when simulating so that the model gives a ‘good’ representation and that information and 

system conduct is not lost by too large an interval (‘bad’), yet computer processing effort is not 

wasted unnecessarily by too small an interval (‘ugly’) (Figure 7.2).  

 

Figure 7.2 Examples of time-slice programming: The Good, the Bad and the Ugly 

Next-event avoids ‘slack’ periods, speeds up processing time and performs more efficiently in 

periods of low demand than time-slicing.  However, to accomplish next-event, more information 

must be provided for the simulation logic.  Time-slicing is equally efficient in periods of high 

demand so long as the fixed time interval selected is suitable.  In this simulation project, the time-

slice approach is implemented, with a step interval of one minute (since the system generally 

witnesses a large number of events). 
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7.5 Simulation Design 

7.5.1 Contribution to WAST 

There is an abundance of reasons for the decision to simulate an EMS specifically.  For WAST, the 

daily operational structure, for the most part, is designed and planned by hand.  Vehicle locations 

(and allocations) are planned by the information analysts and decisions are based on the judgement 

of experienced individuals.  Results are unlikely to be near optimal when devised in this manner.  

Simulation is used here to help plan static resource location strategies to give good starting 

allocations such that the expertise of the service planners can then be better exploited for any 

dynamic relocation requirements at an operational level. 

The four main, iterative stages (Robinson 1994) of a project using simulation, conveyed by Figure 

7.3, are: 1) Define the problem; 2) Build and test the model; 3) Experiment; 4) Complete and 

implement.  The first two points are covered by the remainder of this chapter, the third point is 

explored in Chapter 8 and the fourth remains a hopeful achievement of this project. 

 

Figure 7.3 Stages of Simulation 

 



   Chapter 7. Simulation 
 

188 

Designing a simulation (1 and 2) consists of separate, sequential stages: a) definition; b) plan; c) 

conception; d) build.  Design and build stages for this particular project are sizeable since a good 

amount of interaction with the tool is desired so WAST may later use it themselves.  The model 

needs to convey policy and operational options to the client without intimidating users with 

unnecessary complexity.  A generic design also permits extension to other regions and EMS systems. 

 

7.5.2 Objectives 

A commonly used framework (Robinson 1994) for project objectives is to consider, in context, 

three components: achievements, measurements and constraints (sections 7.5.7-7.5.9). 

In brief, simulation is chosen as a methodology to model South East Wales’ EMS operations for the 

following reasons, (based on the advantages of simulation discussed previously and the purpose of 

this particular modelling project): 

 reduce risk to patients during strategy testing; 

 gain understanding of the operations of the current system; 

 reduce costs, lost ambulance hours at hospital and patient waiting time, whilst improving 

utilisation, patient experience and performance (saving money and lives); 

 test impact of suggested system changes such as clinical outcome. 

In determining the objectives, motivation is justified by the discussions of earlier chapters – negative 

reports of the service’s operations show a desperate need to improve the customer experience and 

reduce response times in line with the current UK targets, whilst reducing yearly expenditure.  

Investigation of the turnaround aspect of WAST’s operations is also ideally suited to simulation 

modelling.  The Trust has little control over this service phase so cannot make real-world 

operational changes but can instead experiment through simulation to see if improvements of the 

interaction with A&E departments assist with EMS performance.  

In addition to the main objectives, this study also considers vehicle utilisation across the region.  

This is obviously a by-product of vehicle positioning, but also of turnaround time.   
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The problem faced by WAST is redefined with respect to the possibilities of simulation, allowing 

the objectives for this part of the project to be stated as: 

Improving patient service and survival by minimising the response time and turnaround time 

experienced across the South East region by utilising optimal allocations and whilst maintaining 

existing resource levels. 

The general project objectives call for a high level of detail, especially following the static and 

deterministic efforts of the previously described location models (Chapter 6), to build on current 

information and explore system processes in depth.   

 

7.5.3 Conceptual Modelling 

By conceptualising a model before building, the developer is able to consider both the ‘scope’ 

(breadth) and ‘level’ (detail) required of the simulation.  For WAST, the model intends to cover 

the entire emergency system in a resource planning capacity whilst investigating closely specific 

phases of service (response and turnaround).  

There exists a trade-off in the design of the EMS system simulation between the level of detail to 

include (since the problem is quite complex and much information is required for a good 

representation) and keeping the model as simple but accurate as possible to avoid unnecessary build 

time.  The optimal scope and level for a specific model may be determined by judgement and 

“successive inclusion” or “successive exclusion” (Robinson 1994) of details along with the 

consideration of run time and time scale of the project. 
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The conceptual model, seen in Figures 7.4a and 7.4b, was created and verified through interaction 

with WAST control centre employees and the historical data received. 

 

 

 

 

 

 

Figure 7.4a Process flow design of the simulation model (high level) 
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Figure 7.4b Process flow design of the simulation model design (logic level) 

 

7.5.4 Entities 

Referring to Figure 2.3 (Chapter 2), the service user and vehicle are shown to experience different 

processes during a service.  In this simulation, both patients and vehicles change state differently 

throughout the service pathway.  It is desirable to consider both these sets of system changes. 



   Chapter 7. Simulation 
 

192 

An ‘entity’ is an individually identifiable object (in OOP terminology), element, resource or person 

in the simulation environment of interest, which changes and moves through time, obeying the 

control logic in place.  In the case of the Welsh ambulance service, it can be thought that there are 

two types of entity of interest:  the patient or incident (a ‘temporary’ entity) and the responding 

EMS unit (a ‘permanent’ entity).  Each of these is followed through time in the system and changes 

are made according to the entities’ location, status and history within the system.  ‘Attributes’ are 

the characteristics of a particular entity that may be changed, and are summarised in Table 7.1.  

(Entities and C# attribute enumerators may be seen in the class structure - Appendix 7.1 and 7.2.) 

Table 7.1 Details of the simulation entities and their main attributes  

Entity Attribute Class, Enumeration or Value of Attribute 

Incident 

Origin Origin of call is Demand, inherits from Location class  

Type Enumerates either A, B, C, AS2, AS3 

Time Stamps From arrival time of call through to clear time of service 
vehicle (see Figure 4.1, Chapter 4 for all time stamps) 

Vehicles Number of vehicles required (1 or 2) 

Survival Probability of patient survival given response length 

Vehicle 

Base Station Station inherits from Location class 

Type Enumerates either EA or RRV 

Status Enumerates Off-Shift, Busy, Free, Returning or 
Returning 

Utilisation Total utilisation based on total busy and on-shift time 

Job List List of all Incident entities served by the Vehicle entity  

 

7.5.5 Assumptions 

Including too much scope and detail into a simulation means increasing the amount of time required 

for development.  By making some carefully considered simplifying assumptions, the integrity and 

accuracy of the model can be maintained whilst minimising design time and avoiding including 

unnecessary system aspects not critical to the problem objectives.  
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Assume the simulation represents a region with distinct, fixed and restricted (sub-region) 

boundaries.  Other assumptions made during the building of this simulation include: 

 infinite queue size – if all vehicles are busy, a patient will simply wait for the next available 

and suitable resource; 

 as default, RRVs serve only category A (but the ability to change this exists and will be 

explored in Chapter 8); 

 only EAs have the ability to transport patients to hospital facilities; 

 nature of an incident influences the time spent on scene, as does the vehicle type responding; 

 on-scene service length is not dependent upon decision to transport; 

 travel times are temporally independent; 

 pre-travel delay is dependent upon vehicle type and category (not station); 

 turnaround times are independent of nature of emergency but dependent upon hospital; 

 the modelled South East Wales region is self-contained – can also assume the principle of 

equal assistance rates as given in the discussion of Chapter 4, section 4.4.2. 

 

7.5.6 Data Analysis 

The simulation model is built bearing in mind many of the results and discoveries of the Chapter 4 

data analysis findings.  All parameters and variable values of the simulation model are able to be 

amended according to a particular scenario, region or Trust being modelled.  For the purposes of 

this study, the design and demonstration of the working model is based on the characteristics of the 

South East Wales regional data for 2009. 

Stochastic elements are incorporated to reflect the unpredictable nature of an EMS.  A 

deterministic model would not be ideal in this scenario since the distribution of arrivals and 

changing demand has an effect on emergency service.  The model needs the ability to model 

variation and stochasticity around travel, service and turnaround phases of the system.   
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7.5.7 Input 

Inputs and experimental ‘factors’ of this project are listed in Table 7.2 along with the possible range 

of values which they feasibly and realistically could take.  The choice of data entry method is a 

crucial aspect to the input mechanism. 

Data entry is granted through a combination of menu-driven options, manual user input, and 

loading of pre-generated text, comma-separated value (csv) or spreadsheet files (see Appendix 7.3).  

Values are stored and referred to in memory, where all values may be viewed and altered internally 

if required.  Since the user-interface provides further details displayed for all data values and factor 

levels, it offers an advantage to making alterations to the external csv files.  Any changes made 

within the tool are able to be saved as external csv files such that if a scenario is required to be run 

again exactly, it may be reloaded and all history of experimentation is accessible. 

The data values and factor levels are not all pre-determined before the model building began; 

however, due to the iterative nature of simulation, the experimental factors and other such items 

may have been decided upon throughout the design process.  

Fleet allocation to stations across a region per shift can be altered after loading the information into 

the model.  Before running a trial, it is possible to modify the default or pre-generated shift 

allocation data manually or read in alternative shift information from other external files (Excel, 

xml or csv).  The allocations are completely controllable and freely adjustable by the user.  This 

feature is particularly useful since real-world vehicle allocations were unobtainable for the project; 

links can instead be made with the outputs of the location models presented in Chapter 6 to gain a 

suitable benchmark set-up.  Allocation and capacity estimates can be explored within the simulation.   

Some further variables, relating solely to conduct of a scenario, are also input to the simulation 

model, or can be specified within the tool by the user at run-time: 

 run length; 

 replications; 

 warm-up length; 

 choice of auto seed or specified seed; 

 control seed (if auto seed selected). 
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Table 7.2 Input data and variable types provided to simulation 

Input Data (D) & 
Factors (F) 

Details Data Type Default Values 

Total Demand (D) Average weekly demand ℤ > 0 ~ܰ(3150,140) 

Speed Factor (D) 
Percent to scale estimated travel 
time by vehicle and journey type 

[0,100] 100 

Travel Equation (D) 
Regression model and parameters 
used to estimate travel time 

 
Google Maps 

results 

Shift (F) Number of shift changes ℤ > 0 1 

Locations (F) List of addresses Object 
Demand, Station 
or Hospital type 

Routes (D) 
Dictionary of travel information 
between all pairs of locations 

 0 distance, 0 time 

Category Demand (D) Proportion of demand [0,100]  

Response Targets (F) Targets per category ℤ > 0 
Current UK 

targets 

Transport (F) 
Proportion of category 
transported ℝ ≥ 0 100 

On-scene (D) 
Information of on-scene length 
by category and vehicle type 

Distribution 15 minutes (fixed) 

Pre-travel delay (D) 
Information of pre-travel delay 
per category and vehicle type 

Distribution 1 minute (fixed) 

Hourly Demand (D) Profile of demand per category  
Empirical 

distribution 
 

Vehicles (F) 
Number of vehicles assigned to 
each station location, per type ℤ ≥ 0 0 EAs, 0 RRVs 

Shift Vehicles (F) 
Number of vehicles on shift at 
each shift change, per type ℤ ≥ 0  

Turnaround (D)  
Information for turnaround time 
at each hospital location 

Distribution 20 minutes (fixed) 
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The dispatch algorithm (e.g. closest available), hospital facility choice algorithm (e.g. closest) and 

service policies (i.e. whether an RRV serves all categories or only some) can also be modified.  

These will be discussed further in Chapter 8 as they lend themselves to the experimentation stages 

of this simulation project; however they are mentioned here to illustrate that the possibility of such 

diversification is incorporated to the model design.  

 

7.5.8 Google Maps API Input 

In addition to the input data, travel information between all nodes of the network modelled is 

required for reference to compute vehicle journey times during the simulation.  The Travel Matrix 

Generator Tool is utilised in conjunction with developed regression models for this purpose. 

All locations to be represented in the simulation are passed to the Matrix Generator Tool 

(embedded within the simulation model interface) with a matrix of travel distances (and times) 

returned and stored ready for reference throughout the modelling process.  This method speeds up 

simulation run-time, since the Google Maps API is accessed only once per location pair in advance 

of a trial, followed by a lookup process from a reference matrix as and when required during a run 

(i.e. Google Map requests do not have to be made for every occurring journey of the run, only once 

per possible journey).  

During simulation, a choice can be made to use Google Map travel times directly, or a prediction 

method.  Unfortunately, the travel times returned by Google Maps are not necessarily 

representative of journey times by emergency vehicles. 

Distances over routes can be taken as constant for any vehicle type or journey purpose, so as 

previously explained, travel times can instead be calculated via regression models (Chapter 5) with 

Google Maps distance as the independent variable.  Scaling parameters are applied to the models to 

represent variation in speed for the different EMS journey and vehicle types, all of which are 

provided as input information to the model.  

Regional journey travel time	ܻ, is modelled as 

(ߪ,ߤ)ܰܮ~(ݐ)ܻ ∙ ݏ − 1 
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where ݏ is a scalar dependent on the journey and vehicle type, ߪ is the average standard deviation of 

all routes from the data (by category) and mean, ߤ, is given by the developed regression models of 

Chapter 5, dependent upon vehicle type and incident type: 

ߤ = (ܽ + ܾܺ௖) + ఌߤ)ܰ~ߝ  (ఌ²ߪ,

When a journey time needs to be calculated during a simulation run, a look-up in the Travel Matrix 

of the distance of the route is made and the value input to the corresponding regression model 

equation, returning an estimated travel time for the journey.  

Utilising the models of Chapter 5 (Equations 5.8-5.14), with the correct parameter values for ܽ, ܾ 

and ܿ, for each of the incident types and vehicles types captured by the simulation model, the 

following equations (7.1-7.8) are input as default models for travel time in the South East region of 

Wales.   

EAs per category: 

A:     ܻ(ݐ)~7.23])ܰܮ + 0.80ܺ] + ,	(1.84,1.35)ܰ~ߝ 6.12) (7.1) 

B:     ܻ(ݐ)~7.47])ܰܮ + 0.82ܺ] + ,	(1.91,1.28)ܰ~ߝ 5.66) (7.2) 

C:     ܻ(ݐ)~6.90])ܰܮ + 0.90ܺ] + ,	(1.92,1.55)ܰ~ߝ 5.54) (7.3) 

Urgent:  ܻ(ݐ)~7.76])ܰܮ + 0.94ܺ] + ,	(2.33,1.96)ܰ~ߝ 6.57) (7.4) 

RRVs per category: 

A:     ܻ(ݐ)~1.57−])ܰܮ + 4.92ܺ଴.ହ] + ,	(1.71,1.56)ܰ~ߝ 6.83) (7.5) 

B:     ܻ(ݐ)~1.61−])ܰܮ + 5.16ܺ଴.ହ] + ,	(1.88,1.40)ܰ~ߝ 5.90) (7.6) 

C:     ܻ(ݐ)~0.36−])ܰܮ + 	4.77ܺ଴.ହ] + ,	(1.90,1.38)ܰ~ߝ 6.11) (7.7) 

Urgent:   ܻ 0.25−])ܰܮ~(ݐ) + 5.68ܺ଴.ହ] + ,	(2.01,1.66)ܰ~ߝ 7.11) (7.8) 

Using a globally stored value, (seen later in Figure 7.8) the estimated travel time value is then 

scaled to represent the speed at which the vehicle is likely to travel given the type of journey and 

vehicle serving.  For example, a vehicle on a response journey travels faster than a vehicle returning 
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to its base.  From discussions with WAST employees, the consensus is that a vehicle transporting 

patients generally travel more slowly than when responding, even during a high priority service, 

since the vehicle aims to remain stable when the patient is on board no matter how urgently they 

need to get to hospital.  

When a base is located at a demand node, travel time or distance given by Google Maps (stored in 

the Travel Journey Matrix), will have a value of zero.  However, there is obviously still some travel 

time associated with a response journey from the base to the exact scene of the emergency, so the 

simulation accommodates this by taking minimum travel time to be one minute when using travel 

times directly.  Goldberg and Paz (1991) set the distance of such instances to be 0.5 km before 

estimating the travel speed and response time.  

 

Figure 7.5 Google calculated travel time compared with predicted travel time for a category A 

transportation journey using only the mean component of Equation 7.1 

A comparison of the travel times calculated by Google for a given journey, with those estimated 

using Equation 7.1 is given in Figure 7.5.  This scatter plot represents the similarity between the 

developed predicted travel times of transportation journey for a category A patient by an EA (based 

on distance) and the unknown Google Maps value calculation method.  During a transportation 

journey (represented by the plot), vehicles are unlikely to travel at high speeds so as not to cause 
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further trauma to the patient.  The further need for prediction methods over exact Google Maps 

results arises when other vehicle types and journey types are considered.   

 

7.5.9 Outputs 

Outputs or responses identify the values useful to inform WAST.  The method of reporting should 

be determined along with how to view the outputs (Robinson 1994).  Responses refer to the way in 

which the measurements of the simulation, listed in Table 7.3, are portrayed.  The output may also 

highlight ways in which the objectives have not been met and so identify potential room for 

improvement in the solutions.   

Table 7.3 Measurements of the simulation that highlight performance of the system 

Measure Details Expected Impact On 

Waiting Time 
Time patient spends waiting from incident 
time to arrival of vehicle at scene 

Survival 

Response 
Time from vehicle allocated to arrival at 
scene 

Survival & 
Performance 

Turnaround 
Time taken to transfer the care of patient at 
the closest hospital facility 

Utilisation & 
Response 

Utilisation 
Amount of time vehicle spends serving 
patients compared to total on-shift length 

Response 

Survival 
Given a response time (from arrival to on 
scene) the corresponding survival 
probability 

Performance 

 

After running the simulation (for individual or batched scenarios), the tool generates summary 

output, all of which may be viewed internally, but additionally, all data generated by the model can 

be exported.  The externally stored output enables further analysis to be conducted at a later stage 

or can be used for reference.  The user has complete control over the location of the exported data; 

the style in which the data is saved allows the resulting file to be opened using programs such as 

Microsoft Excel or SAS for further exploration.  
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Importantly, the recorded and exported data has an almost identical structure and format to 

WAST’s data set in order to optimise comparisons.  In-depth analysis may therefore be performed 

on the simulation results compared with historical data (analysis of Chapter 4) to investigate 

operations and contribute to the model validation processes.  WAST’s monthly response target 

reports would be comparable (if the data were accessible) to the modelled output since the tool 

produces similar content.  One addition is that the simulation retains and stores information 

regarding individual vehicle utilisation and incidents. 

 

7.6 Program Processes 

7.6.1 Process Introduction 

All of the required input data and parameter values are stored as references and values in memory 

such that the model has immediate access to them.  A main window displays menus directing the 

user to sub-forms of data selection and variable options.  At this point the simulation itself is idle, 

waiting for the user to instruct on the activities to conduct, as in Figure 7.6. The subsequent sub-

windows, Figure 7.7, accessed from the ‘Scenario Collection’ form, allow alterations of travel, 

demand, station and hospital parameter values, distributions and options via the user-interface. 

 

Figure 7.6 User-interface of the simulation tool, in idle state, with scenario collection sub-window 

as displayed upon loading scenarios from the ‘Load File’ main menu 
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Figure 7.7 Sub-windows ‘Demand Details’, ‘Base Station Details’ and ‘Hospital Details’ as 

accessed from the ‘Scenario Collection’ form of Figure 7.6 (Examples of the display given by the 

‘Journey Time Matrix’ form were provided in Chapter 5, Figures 5.16 and 5.17) 
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Additionally, the user may make further alterations to do with the model set-up and logic through 

the ‘Model Options’ menu and ‘Global Options’ form (Figure 7.8).  Choices regarding shift times, 

overall demand amount to simulate, dispatch policies and whether to use Google or predicted travel 

values are facilitated.   

Upon deciding to perform a simulation, the user initiates the start of this modelling process from 

the current window.  By selecting the ‘Run Ambulance Model’ menu option, a final window is 

opened as in Figure 7.9, so that the user can observe the simulation’s progress via the status bar, 

portraying the current weekday and hour being modelled and the proportion of overall runs so far 

completed during run-time.  The speed of the simulation may be altered using the slide-bar 

mechanism, this facilitates debugging and judgement of process and scenario speed. 

 

Figure 7.8 ‘Global Options’ form displaying alternative choices from the default values (displayed) 

for model and system variable options 
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The program must perform some tasks before conducting any replications of the system, (such as 

the decision on whether to ‘generate arrivals’ or ‘load arrivals’ – assume the former option for the 

following explanations, the latter will be explained shortly, in section 7.6.3).  The steps involved in 

a single run of the model were laid out in the process flow diagram of Figure 7.4b and will now 

individually be detailed, where pseudo-code for some of the subsequent section action can be 

referred to in Appendices 7.4a and 7.4b. 

 

Figure 7.9 User-interface during a trial of the simulation, showing settings and current state of the 

model 

 

7.6.2 Generating Demand 

The first action of the simulation is to generate the correct demand quantity ready to represent the 

arrivals of emergency calls to the region.  The partially stratified (for call category) sampling 

process for demand is summarised in Figure 7.10, which depicts the method employed for sampling 

the characteristics or attributes of an emergency call (also known as an arrival). 

The figure represents diagrammatically the steps of attribute sampling for generated calls for service 

at the beginning of each new run during a simulation, which are then stored as a call log, detailing 

all expected demand and their known attributes. 
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Figure 7.10 Probability pathway of patient groups and call generation process used within 

simulation programming structure 

Steps: 

1. Calculate the number of calls expected to arrive throughout the run-length time period, 

dependent upon run length and weekly demand.  Weekly demand is a global variable, with a 

given distribution from which to sample.  Sample the total number of expected calls per week of 

the run-period; adjust the demand amount for any partially modelled weeks since run-lengths 

are not required to be exactly divisible by seven days.  

2. The category of call is determined using known emergency type proportions from Chapter 4.  

Time of day dependency is not included for overall call category proportions, but arrival time is 

dependent upon category.   
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3. Arrival time of the call is sampled using input data detailing the average number of expected calls 

in any one hour of the week (hour of the day, by day of the week).  Within the model, 

cumulative probability is calculated for arrival time.  After random number generation, the hour 

of the week is sampled and assigned; the remainder of the random number denotes the minutes 

associated with the selected arrival hour.  

4. Similarly, determine the origin of the call.  Each postcode district has an associated expected 

number of calls.  Proportions are cumulated so that a generated random number look-up 

method can represent an arrival from any one of the locations.  The profile of demand by 

location differs by category, but not specifically by time of day or day of the week – any time 

dependency is captured by category not location in the simulation.  

5. Finally, a decision of whether or not to transport the patient is made.  It may be thought of as 

independent of location, time of day and all other factors, except for emergency type for the 

purposes of the simulation.  Proportions are given per category and the decision is the result of a 

simple Bernoulli sample. 

 

7.6.3 List Structures 

When a call log is generated, either using the method of the previous section or by accessing a pre-

generated call log (containing an exact list of incidents and their attributes), all the incident objects 

are stored in a sequential-list in the order they were generated (due to the way in which the arrival 

time is sampled).  During the simulation, it is preferable and more efficient to search a list in order 

of event occurrence (service order).  An example of a generated call log is given in Figure 7.11 for a 

portion of the generated calls and a selection of their attributes.  From the fourth column of the 

incident list the arrival time and day of the call is noticeably unordered temporally. 
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Figure 7.11 Example of a call log generated at the start of a simulation run 

The next step of the simulation logic organises the call log by arrival time (day, hour and minute) 

and then by category of call, placing any calls with the exact same arrival time in order of service 

priority (highest to lowest).  Each item in the new linked-list (which is a faster search structure than 

a sequential-list) is given a unique ID number to be able to track the incident object throughout the 

simulation and update the attributes of these entities as changes take place.  The resulting list is 

copied into an ‘event’ list, referred to as the ‘schedule’, so that additional event type objects (not 

just incident arrivals) may later be included, utilising object timestamps.   

 

7.6.4 Event List 

An event list (also a linked-list but with binary search, to speed-up processing), as communicated in 

the previous section, is a collection of all objects requiring action at a particular (discrete) time step.  

Within the simulation process, there are several event types that are launched during a run, 

requiring some form of control logic to take effect.  Priority is given to certain events over others, 

so that in the ordered linked-list, events with the same time stamp will be dealt with in the natural 

or necessary processing order.  This ensures resources are available accordingly and the processes 

with precedent in reality are carried out similarly in the model.   
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Events can be one of the following (in priority order): 

1. vehicle goes on shift; 

2. vehicle is clear; 

3. vehicle returns to base; 

4. vehicle arrives on-scene; 

5. vehicle goes off-shift; 

6. incident awaits an RRV; 

7. incident awaits an EA; 

8. arrival. 

If events at a time step have the same priority, the order in which the event objects are dealt with is 

dependent upon the category.  If the category is also identical, the length of time the patient has 

been waiting for service will indicate their sequence (this only has an influence on results if dealing 

with a waiting event).  If by chance, every attribute compared is identical, the object with the 

earliest ID number is handled first.    

Each individual event object references an incident object and vehicle object along with other 

attribute information such as the timestamp and event type (and priority).   

In event approach DES, an event list is generally created at the beginning of a run and is populated 

initially with arrivals and subsequently with service events and vehicle shift changes throughout the 

run.  If and when an event is dealt with or is no longer required, it is removed from the list.  

Correctly scheduling events in the list or scanning the list during run-time can be quite demanding 

on computer processing time.  There are some developed methods that combat this problem; 

however, due to the size of this particular problem, it is appropriate to schedule using a simple 

calendar queue data structure (Brown 1988). 

The relationship between the various list structures housed in the model is demonstrated by the 

linking configuration of Figure 7.12.   
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Figure 7.12 Relationship between the various list structures (call logs and schedule) for incident 

objects and the eight event objects in the model 

 

7.6.5 Waiting Events 

If no vehicle is available, an event is created of type ‘incident awaiting vehicle’.  If the incident is 

awaiting an EA response, the event created should be scheduled at the next time step that has an 

event already listed.  When the clock reaches the planned time of this new event, a search for an 

available EA occurs; since no other system state or object changes occur until this next populated 

time step, there is no benefit in simply scheduling the waiting event at the next time step, at least 

one other event of some sort must occur first for the outcome of the search for available vehicles to 

differ.  If however, the incident is of a type that requires service by an RRV and EA (e.g. category A) 

and an EA has already been dispatched but an RRV was not initially available, there is no advantage 

in scheduling a waiting event for an RRV at all if the EA is due to arrive on scene before the next 

available RRV.  Since an RRV is usually sent as an initial responder with EA follow-up, a new event 

is not created in this situation.  Both these waiting scenarios are possible in simulation since future 

events are known in advance (unlike in reality), through the use of an event list.  

Additionally, when an EA arrives on scene, a check is made to see if an RRV is required but has not 

yet arrived on scene.  If an RRV is scheduled, not at the scene but en route or dispatched, the RRV 

is then cancelled, since their use as an initial response is no longer necessary.  This routine is based 



   Chapter 7. Simulation 
 

209 

on what is considered to be common practice in the control rooms of WAST after discussions with 

the analysts in the Trust.  The cut-off for cancellation is one minute – when an RRV is a minute or 

less away from arrival on scene, the vehicle is not cancelled and the system continues as scheduled.  

If a patient experiences a long wait, their priority level can be increased to account for the possible 

deterioration of their health and the heightened urgency with which the Trust would, in reality, 

attempt to respond to the incident.  There are various options for incorporating this method in the 

simulation (no knowledge of the real conduct in such a situation is known); for example: 

1. Increase priority by a maximum of one category level, if waiting time exceeds a pre-defined 

global maximum time length (for all but the highest priority patients). 

2. Increase priority, up to the highest priority emergency type depending on length of wait.  For 

every multiple of the global, pre-defined maximum waiting limit surpassed by the patient 

waiting time, increase their priority another level. 

3. Increase priority, up to the highest priority emergency type if waiting time exceeds a pre-

specified length of time, for all emergency priority levels as originally triaged.  

4. Increase priority, up to the highest priority emergency type if waiting time exceeds a pre-

specified length of time, for only specific categories (e.g. originally triaged category B patients 

have the potential for their condition to deteriorate over time, meaning their chance of survival 

decreases more than less critical emergency types). 

5. Sample a maximum waiting limit from a distribution ൫e.g.	~ܰ(20,5)൯.  If the experienced 

waiting time is greater than this sampled value, increase the priority up to the highest priority 

emergency type (alternatively, increase only by a maximum of one level). 

 

7.6.6 Dispatch Method 

When a vehicle is to be dispatched, expert EMS control room operators decide which vehicle is 

suitable; this is generally guided by a process or algorithm.  In the simulation, this algorithm is less 

abstract and can be written down specifically; however, due to the nature of simulation models, the 

algorithm modelled is likely much more rigid than the actual operations in reality.  This is one of 
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the downfalls of modelling, but still the logic coded can provide a good general approximation to 

the everyday decisions EMS operators face.  

The dispatch method implemented in this project represents the decision of dispatching the closest, 

available and suitable EMS unit.  The pseudo-code for the algorithm can be seen in Appendix 7.4c. 

A vehicle is deemed: 

 available if it is on-shift and either free, or returning to base after finishing servicing a previous 

call;  

 suitable if it is of the required type to service the type of emergency given by the input rules of 

the model (e.g. RRVs only serve one category of call, as initial responders, unable to transport); 

 and closest based on the travel distance between the vehicle’s location and the demand node, 

based on the value stored in the Google Maps Journey Matrix.  

Although in 2009, the official policy recommended an RRV as an initial responder to category A 

patients only (see earlier descriptions – Chapter 2 section 2.3.4 and Chapter 4 section 4.2.3 – on 

dispatching), vehicles are not always so strictly assigned to calls.  

Considering only services where either an EA attends alone, or an RRV is dispatched as the initial 

responder with an EA follow-up, proportions are given in Table 7.4 of these service occasions per 

category.  Category AS2 and AS3 are almost always served by a sole EA (or equivalent, e.g. HDU) 

and therefore are not included here.  (All other vehicle combination possibilities and their 

proportions making up all 2009 services in South East Wales were given in Table 4.1.)  

Table 7.4 Service occurrences for single and double dispatch 

Category: A B C 

1 EA Only 0.53 0.75 0.89 

1 EA + 1 RRV 0.47 0.25 0.11 

 

The data suggest RRVs are frequently dispatched to lower priority calls, and so, although policy 

suggests otherwise, the inclusion of these alternate dispatch rule proportions in the simulation is 

necessary. 
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During testing stages of the simulation build, it was found (through trial and error) that in fact, the 

proportions given by the data do not provide a simulated outcome matching the travel and response 

time distributions expected.  The model’s distribution profiles more closely match the historical 

data when RRVs are instead sent to category A, B and C calls (followed-up by an EA) on 60%, 30% 

and 15% of occasions respectively (as opposed to the data proportions of 0.47, 0.25 and 0.11).  

The reason these higher percentages improve the reliability of the model is that these numbers 

specify the number of times an RRV is attempted to be dispatched (assigned to a call); it does not 

illustrate the number of successful services by such a vehicle type as found from the data.  The 

larger input proportions for dispatch policy account for times when an RRV is unavailable or an EAs 

arrives at the scene ahead of the RRV (which then might ‘step down’).  

Dispatching a returning vehicle requires some further calculation.  Since the definition of ‘returning’ 

in terms of the simulation means that the vehicle is en route back to its assigned base from some 

earlier call, its exact location is unknown.  The starting location of the unit’s journey (either a 

hospital or demand node) is known, and the length of time it has currently spent travelling back to 

base is also known.  The vehicle’s current location is taken to be whichever of the two locations 

(last service location and assigned base) is closest.  From this, the travel time to the new incident 

location can be estimated.  

A global setting in the simulation exists, so that interrupting vehicles on their return journey can be 

prohibited if desirable, preventing the need for this estimation of position and journey time, but 

increasing regional utilisation and service length, since vehicles will be considered ‘busy’ per call for 

longer.  

 

7.6.7 Transportation Policy 

For the purposes of all experimentation in this study, patients requiring transportation are 

transferred to an ED at the nearest, open hospital facility to the scene of the incident.  It is assumed 

that all hospital locations input to the simulation have the capacity and capability to deal with any 

patient type and will not turn patients, paramedics or EMS units away (expect when specified 

during modelling of diversion tactic scenarios).  With a simple addition to the simulation logic, it 

would be possible to include specialist units in the network and allow transportation of only certain 

patient categories to some facilities.  
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7.7 Sampling Methods 

Simulation has the capacity to include levels of uncertainty in its processes, allowing for possible 

stochastic as well as deterministic modelling.  The importance of incorporating this stochastic 

nature in healthcare is demonstrated with examples in Simul8 (Harper 2013, Simul8 2013). 

There are multiple ways to model randomness, through data streams (obtained for example, from 

WAST’s historical data – such as loading an incident schedule), or by user-defined distributions 

(such as generating demand from the stored time-dependent demand distribution) or through 

standard statistical distributions (as utilised for turnaround and service length). 

The dangers of stochastic simulation are the issues of randomness, correlation and sampling errors.  

It is vital that variation between runs is unbiased.  True randomness is unobtainable in computing, 

since a mathematically generated stream from which to read a number is required.  For this reason, 

sampling uses pseudo-random number sequences – where an algorithm produces seeming random 

numbers.  The numbers are predictable, but a good sequence will pass the randomness tests of 

uniformity and independence (correlation should be in-determinant). 

By using a number stream with a specified starting point or ‘seed’ (as opposed to an automated one), 

simulation scenarios may be replicated with the same sequence of random numbers, enabling fair 

comparison between trials.  This allows system changes to be accountable for identified differences 

in results rather than simply stochastic variation in sampled numbers.  To introduce variability 

between trials with the same conditions, different seeds may be used.  The particular pseudo-

random number sampling method implemented in this project is the ‘Mersenne Twister’ 

(Matsumoto and Nishimura 1998). 

One or more random numbers are generated and transformed into a value sampled from the 

required distribution, usually via top-hat sampling for discrete distributions (similar to look-up 

tables but of the CDF (Morgan 1984)) or analytical transformation for continuous distributions 

(such as inversion and rejection methods using the PDF).  In this simulation a single pseudo-random 

number stream is used throughout a trial.  Whenever a new random number is generated, the 

algorithm begins at the last finishing point of the stream to obtain the next value.  This continuity 

maintains the integrity of the sampling and minimises the chance of dependence between generated 

numbers.  
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7.8 Model Validation 

7.8.1 Introduction 

Model validation ranges from testing assumptions about data and input, to testing that the structure 

responds similarly to reality.  It is something that is not always possible but should always be 

attempted, in order to “give credence to results […] and instil confidence in extrapolations beyond the range 

of model experience” (Fishman and Kiviat 1967).  A model is simply either valid, or not valid (useful 

or not useful), but the validation process itself cannot provide such a conclusive answer.  It is a 

version of proof by contradiction – by attempting to prove the model is wrong in some way, when 

results show it is similar to reality, or expectation, then confidence in the model grows.  Testing 

continues until sufficient evidence and confidence exists in the model’s accuracy, leading to the 

assumption of validity.  

Graphical validation makes use of scatter plots to certify that the “occurrence of random events is truly 

random” (Robinson 1994).  That is, one random event plotted against the previous random event 

should have no pattern or relationship, suggesting a good sampling technique is implemented.   

Scope and level also need to be validated since precision and accuracy cannot be considered as the 

same thing.  Too much detail does not result in more accuracy of the model compared with reality; 

the data may not be accurate enough to justify an increase in detail and build time may limit the 

detail included.   

Verification and validation should be performed throughout the modelling process – as the design, 

build and testing of the model is iterative (Figure 7.3) so should the procedures for ensuring 

reliability and credibility.   

 

7.8.2 Warm-up Period 

A ‘warm-up’ is a tool for avoiding error.  The usual necessity of a warm-up (or ‘run in’ or 

‘truncation’) is due to the fact that the expected mean from a single run is not an unbiased estimator 

for the population mean if the simulation does not start in steady state.  A second motive is that 

independence of the solution is required; effects on the results of a non-steady state system may 
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influence the outcomes, especially if the system starts ‘empty and idle’, where in reality it does not.  

A warm-up period reduces this initialisation bias.    

In this simulation study, warm-up translates to allowing the system to become stable, with a 

realistic number of patients in the system and busy vehicles, and where resource utilisation is at a 

natural level.  Only the steady-state output is desirable for result interpretation.  Since WAST 

operates 24 hours a day, every day of the year, there is no point at which the system switches off – 

it is a non-terminating simulation.  The initial transient (initialisation bias) must be dealt with, via a 

warm-up period of determinable length, so that investigation is only made on the stable system. 

Rejecting the addition of a warm-up is acceptable in certain cases; alternative approaches include: 

 truncation – the discarding or deletion of a portion of collected data; 

 initialisation – starting the system off in a realistic state by providing typical queue lengths 

and system process values given by data or judgement. 

There are many studies that suggest ways to improve simulation output analysis, such as 

investigating methods for determining these warm-up periods (Mahajan and Ingalls 2004), steady-

state (Alexopoulos 2006) or truncation points (White et al. 2000).  By 2009, there were already 44 

different methods for determining steady-state points; the five main categories of warm-up period 

determination methods are (Robinson 2007): 

1. Graphical – such as time series inspection and Welch’s method (Welch 1983), where the 

output of a KPI on completion of the run provides an asymptotic graph from the point of 

steady-state; 

2. Heuristic – for example, MSER-5 is a heuristic method that minimises the mean squared 

error of the batch means (size five) output data;   

3. Statistical; 

4. Initialisation bias; 

5. Hybrid methods. 

The simplest way of discovering a suitable warm-up period is by running the model until it reaches 

steady-state and studying the output.  From this suitable point onwards during experimentation, 

responses can be collected and a range of accurate information obtained from the run.  This time 

series inspection method, although simple and effective, is not necessarily a good approach when 
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demand is cyclic (or highly variable over time) – the point of steady-state is more difficult to spot in 

such systems, as in an EMS, where incident arrival rates are non-stationary.  This is also an 

inefficient method when models take hours to run since the length of the warm-up period adds to 

the overall length of the run (although run-length is not a significant problem in this study).  

Overestimating warm-up, although increases stability in the output, is wasteful and information that 

could have been used for analysis is discarded, wasting computer power and run-time.    

For this study, time-series inspection is assisted by determining batch means of the measured output 

statistics – average number of busy vehicles (by type) and average queue length for waiting patients, 

each per half hour time period.  An experiment is conducted of the simulation, with a single long or 

‘continued’ run (of ten weeks), replicated ten times.  Different random number streams are used 

for each replication so that variation between runs is created.   

Using Welch’s method, with batch window length of 15 periods (i.e. a moving average of 15 half-

hour periods) and by splitting the corresponding results into weekly cycles, for this single run of the 

simulation, a trend can be seen despite the demand periodicity (Figure 7.13).  A constant fleet is 

used (30 EAs and 5 RRVs), to avoid any unnecessary additional fluctuation from number of 

available resources on shift at different times of the week.  

 

Figure 7.13 Average number of busy EAs (from 10 runs) per week 

Even though the system begins empty, it begins at midnight on a Sunday, where demand is low, so 

full and extensive analysis of the warm-up period may not be necessary since this is a natural lull in 
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the system.  By midnight Monday, a full cycle of demand will have occurred and a second natural 

lull occurs.  It is therefore expected that a warm-up period of maximum a day will suffice; this 

recommendation is supported by the non-steady behaviour in the first portion of the curve of Figure 

7.13, where an obvious difference in trend occurs for the first 30 half-hour periods (15 hours) for 

only the first week of the run.  

 

7.8.3 Run-Length and Replication Analysis 

The decision for the length of run and number of replications to perform when experimenting is 

made simultaneously.  A short run-length will usually require more replications to reduce the 

variation in the responses, and vice versa.  In terms of reducing the deviation from the cumulative 

mean of the number of replications, it is considered better practice to have a longer run-length with 

fewer replications, than a short one (Mahajan and Ingalls 2004).   

Run-length is a difficult simulation parameter to estimate.  A rule of thumb for deciding on the 

length of run is to say it “is sufficient when the most infrequent event has taken place on at least 10 to 20 

occasions” (Robinson 1994).  Alternatively, if data are available, it is adequate enough to use a run-

length similar to the sample data used or period covered by the historical data (Fishman and Kiviat 

1967).  For this simulation, the run length can be changed to be any length of time in minutes, plus 

a warm-up, for all desired number of replications; however, initial benchmark values are required 

before experimentation can begin. 

Some test scenarios are performed to determine the two simulation parameters.  The simulation 

responses used in the evaluation are the average response time and the average waiting times for 

both EA and RRV units.  Again a constant fleet (30 EAs and 5 RRVs) is used in the scenario, with a 

single day warm-up period.  The decision is then based on a result of less than 5% deviation of the 

90% confidence interval from the mean.  

Results indicate that experimentation would be adequate with a run length of six weeks and around 

25-30 replications based on the stability and narrow range of the confidence intervals portrayed in 

Figure 7.14.   
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Figure 7.14 Average response time for a trial with 55 replications, each with six weeks run-length 

 

7.8.4 Verification 

Verification can be thought of as a micro-check of the simulation model and goes hand-in-hand with 

validation. Verification ranges from ensuring the pseudo-random number generator used does 

indeed generate independent pseudo-random variables, to verifying the behaviour of sub-structures 

of the model (Fishman and Kiviat 1967). 

Table 7.5 Verification approach and conclusion 

Verification Tactic Conclusion 

Arrivals per category  Numbers as expected (output is not significantly different to data) 

Total postcode district 
arrivals by hour 

Distribution over time is not significantly different to data for 46 
(out of 48) postcode districts 

On scene length by 
category & vehicle type 

No significant difference between simulated distributions and data 
(only category A analysed for RRVs), see Appendices 7.5a & 7.5b 

Transportation time by 
category 

No significant difference between simulated estimations and data 
distribution (using travel time models), see Appendix 7.5c 

Turnaround time by 
hospital 
(& category) 

Significant difference found (simulated output and data 
distributions are statistically different with lognormal sampling 
Figure 7.15, but for overall region are similar graphically, Figure 
7.16 so are assumed suitably verified) 
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Deterministic checks are made to ensure that the numbers of patients entering the system are the 

same as the number added to the event list and the final list of the call log.  Other similar 

authentication tests are made, listed in Table 7.5, to increase dependability and belief in the model 

design and set-up. 

 

Figure 7.15 Turnaround time distributions, per hospital, from data (left) compared with 

simulation results (right) with Lognormal sampling 

  

Figure 7.16 Turnaround time distribution for whole region, comparing data and simulated results 

with simulation sampling from a truncated Lognormal distribution per hospital 
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7.8.5 Validation 

Much discussion surrounds the apparent lack of model validation in past EMS and other policy and 

operation-driven simulation literature, despite the wealth of validation techniques documented and 

methods provided generally (Finlay and Wilson 1987, Gass 1983, Goldberg et al. 1990, Green and 

Kolesar 1989, Kleijnen 1972).  

Validation, defined originally by Fishman and Kiviat (1967), is necessary since models typically 

make many assumptions to the design and structure of the system replicated.  Three levels of 

validation are (Gass 1983, Robinson 1994): 

1. Face validity: do decision makers and system experts agree the model has credibility? 

2. Replication or sensitivity validity: do results change based on input variable and 

parameter changes; 

3. Prediction or hypothesis validity: are the modelled system outcomes comparable with the 

real system?  

The verification and validation tests performed on this simulation model are detailed in Table 7.6, 

showing the conclusion of each individual investigation.  

Table 7.6 Validation approach and conclusion 

Validation Tactic Conclusion 

Waiting times of patients for response Dependent upon fleet – benchmark fleet taken as 
average from WAST data.  See Figure 7.17  

Travel time by category & vehicle type Significantly different simulated estimations 
compared with observed data distributions.  
Dependent upon scalar parameter used, fleet size 
and allocation.  Figures 7.18 and 7.19 for best fit. 

Response time by category & vehicle type Significant difference between simulated response 
times and observed data distributions, Figure 
7.20, but similar graphically, so assumed suitable. 
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Figure 7.17 Comparison of waiting time (including pre-travel delay) for combined category A, B 

and C for data distribution and simulation output 

 

Figure 7.18 Travel time to the scene from the data (left) and as results from the simulation (right) 

 

 

Figure 7.19 Comparison of travel time of EA vehicles to the scene of category A, B and C 

combined using average WAST fleet recommendation at 75% capacity and prediction method 
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Figure 7.20 Comparison of response time from data distribution (left) to simulation output (right), 

using average WAST fleet recommendation at 75% capacity and travel times of Figure 7.18 

 

7.9 Discussion and Extensions 

Simulation can be used in many different forms.  It is possible to use the approach to evaluate 

solutions of less precise modelling approaches, for example covering models, as is attempted in this 

project with regards to survival.  In Chapter 8, this idea is utilised and the results from the survival 

covering models of Chapter 6 are implemented and compared to investigate the performance of the 

suggested allocations.  

Simulation optimisation is the process of embedding the simulation in a search routine, whereby the 

best system solutions can be determined by testing different combinations of parameter values 

(Goldberg 2004).  By extending the model’s framework, this technique could be used to assist in 

the search routine for best fleet size, allocation and travel time estimation parameters.  

With some adjustments to the code, it would also be possible to use the tool as a more real-time 

planning tool in the future, where decisions on relocation of vehicles could be tested (relatively 

quickly) to see the impact on service provided to the rest of the region, assisting control room 

operators in re-allocation decisions.  

Since the tool was originally intended to be highly interactive during run-time – a Visual Interactive 

Model (VIM) – future endeavours would aim include such dynamic graphical aspects.  ‘Interactive’ 

implies that a simulation run can be interrupted to allow the user to make changes to the decisions 

made by the model.  The environment developed in this study, although not fully interactive, does 
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allow the user to watch the run in progress.  If the ability existed to view the locations of vehicles or 

entities over time, it is likely buy-in of the tool and confidence in its replication of the real world 

would greatly improve; however, this level of detail significantly adds to design, build and run 

times.  The current model, as it stands, takes steps in the direction of interactivity, offering more 

insight than many other models (particularly analytical types) but without the greater run-length.   

There exists a belief that a model may never be fully validated (Holling 1978, Quade 1980), that 

strengths and weaknesses may be identified but exactness will not be proven.  Nevertheless, 

validation is a crucial modelling aspect when simulating, and for the purposes of this thesis, the 

developed model is considered valid and verified based on the findings of sections 7.8.4 and 7.8.5.  

Despite some finding suggesting significant differences between the historical data and simulated 

outputs, based on graphical interpretation, the model seems suitably similar to reality, given the 

assumptions made and lack of knowledge of the real-world system for some procedures (dispatch 

algorithm and exact allocations). 

One benefit of a simulation model is that the objectives of a study do not have to be specified before 

the model is run. Multiple investigations can be carried out simultaneously during a single 

experiment.  The next chapter goes on to use the final model as described by this chapter in 

experimenting with various EMS scenarios of interest to the WAST.  It also aims to validate the 

survival conclusions of Chapter 6, based on certain fleet allocations, showing the impact on the rest 

of the system, its performance and various other attributes.   
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Chapter 8 

 Simulation Results 

 

8.1 Why Experiment? 

Fundamentally, the strength of simulation lies in its ability to create a domain in which system 

managers can explore various scenarios of interest, investigating the impact of change on (multiple) 

specific aspects such as throughput, performance, efficiency and profit.  For an EMS system 

simulation, many attributes can be changed; those that are of direct interest to WAST (and to 

academic research) are investigated in this chapter, including: service and dispatch policies, demand, 

transportation tactics, allocations and fleet size. 

Large-scale assemblages of the public – festivals, concerts, sporting events – and disaster situations, 

undoubtedly place additional strain on any emergency service, so much so, that it is in WAST’s 

interest to have strategies in place for such increased and likely localised emergency occurrences.   

Additionally, WAST are moving towards a system that operates with a clinical outcome based 

performance measure, as opposed to the usual response-target driven system.  Although these 

changes have already been implemented in some parts of England (London Ambulance Service 

© 2013), and are likely to develop across the rest of the UK in the next few years, it is important to 

understand fully the implications of such a change to policy.  Demonstration is a powerful 

motivator, such that if improvements can be quantified, the strategy merits justification and other 

Trusts may also recognise the need for swift change in structure.   

 

8.2 Model Set-up 

8.2.1 Introduction 

Since operational vehicle allocations are difficult to decipher from historical data, it is not possible 

to compare simulation results with exact real-world WAST operations.  Although the data provides 

the majority of simulation model input, without a known fleet capacity or its arrangement at any 

given time, the simulated results will not truly represent 2009 operations and so the performance is 
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not directly comparable.  Instead, a benchmark scenario is established – where the operations 

match as closely as possible to what is known of the real South East Wales EMS system, and further 

modelling experiment results can be compared to this standard.  The model setup described in the 

following sections aims to detail the input used for this benchmark scenario; factors that can later be 

altered for experimental scenarios will be indicated where existent. 

 

8.2.2 Data 

The simulation is initially conducted with a single week’s worth of data as a benchmark for further 

testing.  When selecting this week of information from the historical data, desirable criteria include 

‘typical’ system profiles, no major public events or holidays falling within the period, occurrence 

within typical school term time and avoidance of periods with the potential for extreme weather 

conditions.  For this study, the ‘typical’ week chosen is therefore Sunday 10th to Saturday 16th May 

2009 (as in Chapter 6), witnessing a total of 3041 unique incident records. 

With the exception of the demand profile (and vehicle allocations – explained in section 8.3), all 

other distributions and variable parameters refer to the whole yearly averages, as analysed in 

Chapter 4.  This enables typical variation, already investigated for different phases of service, to be 

incorporated into the simulation as opposed to week specific occurrences.  Demand however, 

varies by hour, day and season; therefore, a snapshot of this variation is captured by using a single 

week’s worth of data for experimentation.  Alternatively, it is possible to model a full year’s 

demand profile (or any time period) by inputting a schedule; although, this is deemed unnecessary 

since it is unlikely evaluation and planning for a whole year would be conducted in a single 

investigative instance.   

 

8.2.3 Run Options 

Validated by the conclusions of Chapter 7, the chosen initial high-level model settings for use 

during experimentation are given in Table 8.1.  This benchmark trial takes approximately 6 

minutes in total to run, suggesting one replication every 12 seconds. 
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Table 8.1 Benchmark model run-time options 

Model Option Decision Setting 

Run-length 60480 minutes (6 weeks) 

Warm-up period 1440 minutes (1 day) 

Replications 30 

 

 

8.2.4 Parameters and Variable Values 

In addition to the high-level settings, model options are available (that can be loaded automatically 

or changed manually by the user) that relate to chosen distributions, variable values and logic 

decisions for simulation. 

The subsequent list, given in Table 8.2, constitutes what are known as the global parameter options 

and the values taken and distributions sampled from during the benchmark scenario 

experimentation process – later labelled as scenario 0. 

Additional benchmark scenario values exist that do not refer to global model settings but to values 

specifically relating to incidents dependent upon emergency types (Table 8.3), the serving stations 

(also Table 8.3) and hospital transfers (Table 8.4).  The variable values found in the following tables 

were originally defined as simulation model options in Chapter 7 (Table 7.2), but some of which 

are also elaborated on elsewhere in the thesis.  
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Table 8.2 Global model options initialised for benchmark scenario 

Global Option Value Taken Additional Details 

Total Weekly 
Demand, ܺ ܺ~ܰ(3150,140) Expected weekly demand for region (all categories) 

Interruptible? False Are vehicles interruptible during a response journey 
to service a higher priority call? 

EA Response Scale 0.36 Value to scale response journeys by (from a 
transportation journey estimate)  

RRV Response Scale 0.25 Value to scale response journeys by (from a 
transportation journey estimate) 

Non-urgent Scale 1.1 Value to scale non-urgent (return) journeys by (from 
a transportation journey estimate) 

Travel Information Predicted 
Whether the model obtains a journey time value 
from Google Maps directly, or through prediction 
methods (models given in Chapter 7) 

RRV Dispatch Policy 
(see also Section 7.6.6) 

A: 60% 
B: 30% 
C: 15% 

Are RRVs able to attend more than one category, 
and what proportion of each? 

Maximum Wait? False 
Is there an implemented limit on the maximum 
length of time a patient waits before priority 
increases? 

Maximum Wait Limit n/a If Maximum Wait is true, what is this waiting limit? 

Transport Policy Closest Rule for transporting patients – which facility? 

Shifts 21 Number of shifts per week (3 per day) 
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Table 8.3 Data and input option values for benchmark scenario given emergency category 

Variable/Parameter Benchmark Option A B C AS2 AS3 

Pre-travel delay EA Exponential 
distribution 

sampling with 
mean: 

0.668 0.660 0.675 0.661 0.756 

Pre-travel delay RRV 0.508 0.660 0.675 ● ● 

Queueing Policy 
(section 7.6.5) Priority (default) 1st 2nd 3rd 4th 5th 

Demand Proportion of total 
demand 32% 35% 15% 15% 3% 

On-scene EA Distribution of on-
scene length with 
,ߤ)ܰܮ~ܮ  :(ߪ

(20.7,12.8) (19.4,14.3) (20.4,14.5) (18.5,12.4) (15.1,14.8) 

On-Scene RRV (31.3,20.7) (20.4,15.9) (19.4,14.4) ● ● 

Transportation 
Proportion of 

patients requiring 
transport 

79% 72% 69% 91% 46% 

 

Table 8.4 Data and input option values for benchmark scenario by hospital 

ID Hospital Truncated Lognormal Turnaround 
Distribution (to 70 minutes) 

1 UHWC ܺ~27.8)ܰܮ	, 12.9) 

2 RGHN ܺ~31.4)ܰܮ	, 15.6) 

3 RGHP ܺ~29.2)ܰܮ	, 12.7) 

4 PCHM ܺ~27.4)ܰܮ	, 13.2) 

5 NHHA ܺ~27.5)ܰܮ	, 12.1) 

6 LLAN ܺ~26.8)ܰܮ	, 13.3) 

7 POWB ܺ~27.4)ܰܮ	, 12.5) 
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8.3 Fleet Allocations 

In the validation section (7.8.5), a constant fleet is commonly used in order to minimise the 

variation experienced from vehicles going on and off shift at numerous points in the week, so that 

the factor under scrutiny can be better analysed.  To validate response and waiting time however, 

and during experimentation, the closest operations to the real-world system are desired.   

Mentioned as a guideline in section 4.6 (Chapter 4), the WAST allocations should be scaled to 

approximately 70% of the fleet size to accommodate the inflated capacity estimates.  Upon 

inspection of the created simulation model, the validation process in fact determined the best 

operational capacity to be a scaled version of WAST’s available fleet with 67% EA and 50% RRV 

capacities.  These values are supported in general by a comment made by WAST employees during 

discussions – that the Trust on the whole have around 50% total spare fleet capacity – assuming the 

data provided accounts for all vehicles owned (but not necessarily operational) by the Trust.   

From the location models developed in Chapter 6, and the shift patterns detailed in Table 6.2, a 

benchmark allocation of vehicles to the stations in the region is obtained and used as fleet starting 

positions, input to the simulation model.  The scaled EA and RRV fleets are reflected in Figure 8.1 

for the vehicle types by shift of the week (as detailed initially in Chapter 6, section 6.8.5).  

 

Figure 8.1 Benchmark allocation of operational vehicles based on average available WAST fleet 

per shift, with 67% EA and 50% RRV scalar 
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8.4 Simulation Scenarios 

8.4.1 Benchmark Scenario Results 

Some results are now shown for the benchmark investigation, scenario 0, with a further, more 

concise summary of its results depicted later in Table 8.6.  For all other experimental scenarios, the 

same summary analyses are performed following run completion.  A developed spreadsheet tool 

(created in Microsoft Excel and formulated around a VBA program) expedites the process of post-

simulation analysis to enable effortless replication for the end user. 

Initital curiosity surrounds the output average response time in the region relative to the level of 

demand across each day.  Overall average response time reaches extreme levels shortly after a peak 

in demand (following the demand profile input from Chapter 4, Figure 4.10), fitting with the larger 

waiting times experienced by patients requiring emergency assistance when the system is already 

busy.  Interestingly, the average weekend response times are relatively low compared with demand, 

showing saturation in the weekday demand but a manageable level during the weekend day shift. 

 

Figure 8.2 Average demand and response for benchmark scenario trial 
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The overall category A, B and C response distributions are displayed in Figure 8.3, highlighting 

heavy and problematic service phase tails of the simulated system.  In reality, such outliers are 

contributors to the high average response time peaks seen between 2pm and 4pm on weekdays in 

the graph of Figure 8.2.  

 

Figure 8.3 Average response time frequency, per category, for benchmark trial 

As explained previously, response time is made up of two main components – waiting time and 

travel time.  Since travel time for the benchmark scenario is estimated via Google Maps distance 

and regression models, and validated to be similar to the distributions found in the data, the waiting 

time phase is of more interest during experimentation – as this aspect is affecting response 

distribution characteristics.   

 

Figure 8.4 Average waiting time, per category, for benchmark trial 
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Figure 8.4 shows the distribution of waiting times experienced by patients of type A, B and C, 

when served by each vehicle type.  The overall shape of this distribution was validated in Chapter 7, 

but proves here to represent fairly small waiting times for all individual emergency incident types. 

Gaining further insight to the contribution of waiting time to the overall average response time, in 

comparison to the actual travel time of the initial responder comes from Figure 8.5.  The average 

response time and wait time for an EA dispatch both increase somewhat linearly as incident priority 

decreases, whilst average travel time for an EA remains constant (as expected).  However, wait 

time and travel time for an RRV decrease with a decrease in priority; this is attributed to the 

prevalence in which such vehicle types are required.   

 

Figure 8.5 Average response phase summary statistics, per category, for benchmark trial 

Similarly to Figure 8.2, average response time of a trial compared with demand can again be 

portrayed – Figure 8.6 – but now with respect to the division of incident location.  The key feature 

of this graph is the difference in ratios of response.  That is, for SE2 and SE5, the difference in 

average response time is fairly small, whereas demand is around two thirds higher in SE5 (Cardiff); 

however SE3 and SE4 have a relatively small difference in average demand, but average response 

time differs by more than five minutes.  Both these comparisons show how response time is not 

only a factor of demography but also of travel and geography.    
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Figure 8.6 Average over runs of divisional demand and response time, for benchmark trial 

Of more interest to an EMS than the average response time, is in fact the average proportion of 

responses met within the individual category target times.  For this reason, Figure 8.7 collates 

information in relation to expected demand volume per category and the confidence in proportion 

of responses meeting the target for the benchmark scenario trial.  From the 99% confidence 

intervals, it is possible to witness the small spread of results for all categories over simulation runs.  

The size of the bubble in the graph represents the proportion of regional demand occurring 

throughout the system attributed to each category.   

 

Figure 8.7 Proportion of demand and average proportion of within-target responses, per category, 

for benchmark trial 
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Little difference lies in the average response times for categories A and B, with a more noticeable 

reduction when incident priority reaches classification C.  The reason for the lower priority AS3 

calls being responded to within the target time more successfully than AS2 calls (which have the 

same target) can be put down to the fact that calls for service of AS3 incidents are infrequent and 

much less common than AS2 calls.  Although outliers may be larger during peak hours, often 

requests for service originate from hospitals, meaning responses can credibly be very short.  All five 

categories demonstrate a small confidence interval width at the 0.01 significance level.  

Although the confidence interval widths are small across emergency types, it is interesting to see 

that in fact the intervals increase almost linearly with respect to priority (Figure 8.8).  That is, the 

spread of response data in the system is linearly dependent upon the queueing structure 

implemented for servicing emergency calls. 

 

Figure 8.8 The 99% confidence interval half-widths (two-sided 0.01 significance level) for 

emergency categories for average proportion of responses met within corresponding target time 

Similar confidence interval width line graphs may be produced for both average hard target patient 

outcome (equivalent to response targets) and average survival probability outcome with the same 

trends as seen in the Figure 8.7.  A mathematical idiosyncrasy appears when standardised – the half-

widths produce an almost identical trend (confidence) over emergency types for the two different 

performance approaches (Figure 8.9), so that even though the intervals increase as priority 

decreases (due to larger variation in waiting and therefore response times) they are always small. 
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Figure 8.9 The 99% confidence interval half-widths compared with standardised half-widths of 

average patient outcome over runs for total hard target survival and total survival probability 

The scatter plot of Figure 8.10 shows that there is a non-monotonic, non-linear trend between 

survival and hard outcomes by priority.  Patient outcome for both types increases as the critical 

nature of the incident increases for A, B and C incidents due to the order in which patients are 

served and responses given, but the sequence is lost for AS2 and AS3 incidents.  This is likely due to 

the very small number of AS3 calls witnessed often originates from a hospital facility, meaning any 

recently cleared vehicles at the same hospital will be able to respond almost immediately.  Although 

the relationship may seem linear between the two approaches if priority is unordered, Figure 8.9 

reassures that the spread of outcomes for each approach per category is still similar – the priority 

queueing structure has the same form of impact on responses whichever performance measure is 

implemented, despite differing in the ratio and number of positive outcomes.  

 

Figure 8.10 Scatter plot of average hard target outcome versus average survival function 

probability outcome for response time, for each emergency type of benchmark scenario trial 
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It is important to realise that lower priority patients are in fact at less risk of experiencing a 

worsening medical outcome (given a longer response period), their conditions are triaged as non-

life threatening, and therefore the risk to survival is relative only to their waiting time, not their 

health.  

 

8.4.2 Experimental Scenarios: What if? 

The intention of a benchmark is so that other experimental scenarios have a baseline comparison 

from which improvements, or lack thereof, in system performance and system user outcome can be 

made.  Table 8.5 details all the experiments performed on the South East Wales EMS system 

simulation set-up.  Results and comparisons follow in sections 8.4.3 - 8.4.10. 

Results of the experiments are comparable, as the same underlying set-up is used for all scenarios 

and all measurements are calculated consistently; where differences do exist, they are as such 

described. 

The scenarios are identified by letter and number, grouping similar system set-ups and scenarios 

that act upon the same phase or operational policy of the system.  Scenarios 1 a, b and c involve 

dispatch and response policy; scenarios 2 a, b and c affect demand; scenarios 3, 4, 5a and 5b 

examine the service phases of turnaround and transportation, i.e. affecting the service of patients 

who require hospital admission; the penultimate grouping – scenario identification 6 and 7 – utilise 

allocations obtained from the location models of Chapter 6 and compare the patient outcomes (and 

responses) with the current benchmark system.  Finally, scenario 8 delves deeper into the capacity 

issues faced by WAST but will be explained in more detail later in section 8.4.10.    
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Table 8.5 Scenario descriptions for all simulation experiments performed 

Scenario Scenario Name Approach 

0 Benchmark 
Standard model with parameters and options as sections 8.2.4 

RRVs attend 60% category A, 30% category B, 15% category C 

1a RRV to A RRVs attend only category A calls, 60%  

1b RRV to all A RRVs attend all category A calls only (as is described policy) 

1c Fixed Travel Deterministic travel times; RRVs attend all category A calls only 

2a Increased demand 10% increase of entire regional demand 

2b Altered demand 
20% demand increase for categories A, B and C, Saturday noon-

midnight; 10% location specific increase for CF10  

2c Catastrophe Increase CF10 Monday 1pm demand with an extra 200 (50%) calls 

3 Diversion 
Emergency admission refusal at UHWC (e.g. A&E department 

closes); diversion to next closest hospital for transfer of care 

4 Transportation 
10% reduction in transportation - category A from 79% to 71%, 

B from 72% to 65% and C from 69% to 62% 

5a Turnaround 
Reduction of all turnaround distributions to 20 minute average 

at all hospital facilities (corrected standard deviation)  

5b Ideal Turnaround 
Truncation of all sampled turnarounds to 20 minutes or less 

(resample if longer) using original distributions 

6 Hard Allocation 

MESLMHPHF allocation (optimised with hard targets) with fleet 

capacity equivalent to WAST capacity as used in benchmark (6a 

is comparable to benchmark scenario,  6b to scenario 1b and 6c to 1c)  

7 Survival Allocation 

MESLMHPHF allocation (optimised with survival function) with 

fleet capacity equivalent to WAST capacity as used in benchmark 

(7a is comparable to benchmark scenario,  7b to scenario 1b and 7c to 

1c) 

8 Capacity 
Increases to fleet capacity for all shifts are made and allocations 

from MESLMHPHF are used to position the fleet  
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Handover of care at the hospitals is a forefront concern for the Trust.  Since many ambulance hours 

are lost during this phase of service it is an area for investigation via simulation.  Another main focus 

of the output results lies in response time performance as this is the common measure for EMS 

systems and comparable across the country; however, since some ambulance services, in particular 

WAST, are moving to clinical outcome based measures, it is also of interest to see if survival 

between different scenarios alters.  Later, the comparison of survival and response performance 

measures will be made more explicitly, but for now, it is enough to realise that, for example, 60% 

target-met responses equates to 60% survival when using hard target measures; it is therefore 

simple and intuitive to directly compare response target performance with survival outcome. 

 

8.4.3 Results Summary 

The main descriptive performance results obtained from the simulation for each of the executed 

experiments (compared to the benchmark) are given in Table 8.6, informing of the percentage 

increase or decrease in certain system aspects given operational and strategic changes.  

Interestingly, all scenarios run are able to at least meet the 60% category A response time target of 

8 minutes; however, the 95% targets for B and C calls are rarely met.  It would appear that 

comparing to the data, the benchmark scenarios reach similar proportions of all category calls 

within the targets, confirming the simulation validation of Chapter 7.  
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Table 8.6 Experimentation results for scenarios 1-7 (percentage difference comparisons) 

Scenario Response Time Results 
(category) 

Response 
Graph 

Expected Survivors 
(survival function) 

Turn-
around   

in target 

EA 
Utilisation 

RRV 
Utilisation 

A B C A B C 

0 66.8% 63.8% 54.1% 
 

32.3% 23.7% 19.3% 32.4% 86.3% 41.6% 

1a 1.3% -15.5% -8.5% 
 

0.5% -6.9% -3.7% -0.1% 0.0% -14.1% 

1b 24.5% -14.3% -7.3% 
 

7.4% -6.6% -3.4% 0.1% -0.4% 3.8% 

1c 26.3% -4.0% 3.5% 
 

9.9% -1.6% 2.0% 0.1% -2.8% 3.6% 

2a -5.1% -11.1% -14.4% 
 

-1.8% -3.5% -4.7% 0.1% 6.0% 5.2% 

2b -0.9% -1.8% -1.9% 
 

-0.4% -0.6% -0.5% 0.0% 0.0% 0.4% 

2c -1.5% -2.4% -2.7% 
 

-0.6% -0.8% -0.8% 0.1% 0.8% 0.7% 

3 -1.2% -3.0% -3.5% 
 

-0.5% -1.0% -1.2% 0.4% 1.5% 30.3% 

4 2.1% 5.0% 6.1% 
 

0.7% 1.5% 1.9% -0.1% -2.2% -0.3% 

5a 4.9% 12.0% 14.8% 
 

1.7% 3.7% 4.7% 30.7% -5.0% -0.6% 

5b 8.3% 19.4% 23.9% 
 

2.7% 5.9% 7.6% 67.7% -8.3% -1.6% 

6a 0.3%% -0.1% -0.1%   0.0% 0.0% 0.0% 0.0% -0.8% 0.4% 

7a 0.7% 0.4% 0.6% 
 

0.2% 0.2% 0.2% 0.0% -0.8% -0.1% 

1b 91.3% 49.5% 46.8% 
 

 

 

39.7% 17.1% 16.0% 32.4% 86.3% 41.6% 

6b 0.2% -0.8% -0.8% 
 

0.0% -0.3% -0.3% -0.1% -0.9% 4.3% 

7b 0.3% -0.6% -0.6% 
 

0.1% -0.1% -0.2% 0.0% -0.8% 4.0% 

1c 93.1% 59.8% 57.6% 
 

 

42.2% 22.1% 21.3% 32.5% 83.5% 45.2% 

6c 0.6% 0.9% 1.0% 
 

0.1% 0.3% 0.3% 0.0% -1.2% 0.0% 

7c 0.8% 0.8% 0.9% 
 

0.2% 0.5% 0.5% 0.0% -1.3% -0.4% 
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8.4.4 Dispatch Policy Results 

The key factor of interest in any simulation experiment investigating dispatch and service policy is 

the effect on response performance within the region.  Restricting emergencies for which a vehicle 

type may serve, or increasing prevalence of dispatch of a sub-fleet, may impact the number of 

incidents met within target, and so subsequently the number of ‘survivors’.  Figure 8.11 compares 

average response to demand within each division (defined in Chapter 4) from scenarios 1a and 1b 

(RRVs attend a proportion of category A calls) with the benchmark (where RRVs are dispatched to 

a set proportion of A, B and C calls).  Similar graphs can be generated for survival outcomes.  

 

Figure 8.11 Average overall response times per division, comparing scenarios 0, 1a and 1b 

By sending RRVs to category A calls only (at the benchmark rate – scenario 1a) there appears to be 

little improvement in response across divisions; however with a category A only, automatic double-

dispatch policy (RRVs always dispatched to A emergencies – scenario 1b), the response 

performance improves across all divisions.  Reviewing Table 8.6, EA utilisation decreases by 0.4% 

with this policy, leading to an approximate three minute improvement in all divisional responses.  

Category A survival also increases by 7.4%, equating to an extra 75 ‘survivors’ in a typical week!  

Even the relatively small improvement of 0.5% category A survivors in scenario 1a compared to the 

benchmark refers to approximately five more survivors a week.  

Scenario 1c differs somewhat from 1a and 1b, in that travel is assumed to be deterministic.  The 

experiment’s purpose is to see the affect of allocation on response without the interference of travel 

variation.  This comparison is explored later in conjunction with scenarios 6 and 7. 
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8.4.5 Demand Scenario Results 

It is obvious that as demand increases on the service that performance may suffer.  Although this 

conclusion is fairly intuitive, it may be that a small increase in demand leads to a large discrepancy 

in response when the system is already near its capacity.  The system is beyond steady-state, which 

in this case is detrimental to patients entering the system.  From Figure 8.12 and Table 8.6, it can 

be seen that comparing scenarios 2a (10% demand adjustment), 2b (location and time specific 

demand adjustment) and later 2c (catastrophe) with the benchmark, an increase in demand does 

indeed reduce response performance (similarly for patient survival).  An increase of ten percent in 

demand across the region leads to a reduction of target-met responses between 5 and 15 percent.  

Divisional service is also affected, where response to the more populated and higher demand areas 

(SE5) has more consequence than some of the more rural regions (SE1 & SE4) in scenario 2b.  

 

Figure 8.12 Average overall response times per division, comparing scenarios 0, 2a and 2b 

Large scale events, such as sporting fixtures, may increase widespread demand whilst 

simultaneously bringing a higher concentration of localised demand between specific hours.  A great 

decrease in response performance is found when a major event occurs within the region, even if 

localised, compared with a smaller magnitude of increased widespread demand.  This shows that 

the system can accommodate an increase in general demand more easily than it can spontaneously 

deal with a large localised incident.   
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8.4.6 Catastrophe Scenario Results 

When a catastrophic event occurs in the region, as in the case of scenario 2c included in the analysis, 

the response performance deteriorates even further than the examples of small scale demand-

increase of the previous section.   

A simulation trial is run to demonstrate the impact of a dramatic increase in emergencies in one 

particular area (CF10, Cardiff centre) during a small period of time near the beginning of the run 

length (Monday lunchtime).  This allows the consequences to be monitored through waiting time 

and response time graphs, as in Figure 8.13, and the knock-on effect within the region over time.   

 

Figure 8.13 Average waiting lengths per hour of patients for each emergency type following the 

occurrence of a catastrophic event, scenario 2c trial 

As can be seen, it takes a considerable amount of time for the vehicle utilisation to return to normal, 

allowing service to resume as usual within the region, despite only an hour of increased demand.  

The peak waiting time for category C calls is around 900 minutes, meaning on average during the 

aftermath of the incident, these patients can expect to wait around 15 hours for service.  Obviously, 

in reality, extra services would be utilised, and additional crews and vehicles deployed to account 

for the disaster, yet the simulation demonstrates how long the system takes to recover from such an 

incident.  
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8.4.7 Transportation Policy Results 

Despite the closure of the University Hospital of Wales Cardiff (UHWC) A&E department in 

scenario 3 (such that all potential transports are diverted to the next closest hospital) leading to an 

increase in target-met turnarounds (Table 8.6), the overall response times per category are slightly 

worse than the benchmark due to the risk associate with diversion (Patel et al. 2006, Redelmeier et 

al. 1994).  On the surface it could be thought that if turnaround times were lower in general, 

response times may also improve due to the positive knock-on effect on utilisation and vehicle 

availability; however, UHWC, accepts the largest proportion of emergency patients in the region 

and is centrally located for high demand areas, so, by sending patients to alternative facilities 

(mainly to the other Cardiff hospital and a neighbouring one in Merthyr, Figure 8.14), vehicles 

spend longer in the transportation phase of service, leading to overall increases in utilisation in both 

sub-fleets and waiting times of subsequent patients.  

 

Figure 8.14 Average transportation numbers to each hospital, comparing scenario 0, 3 and 4 

By reducing the proportion of patients actually transported, response performance can be seen to 

improve (scenario 4); however this policy would be better conducted with respect also to the 

dispatch policies.  WAST and other UK Trusts are currently attempting to transform their response 

models by reducing conveyance along with the number of automatic double-dispatches (National 

Audit Office 2011), so that more patients are treated in the community by their initial responders, 

minimising the number of unnecessary care transfers.  This approach would require consideration 

of training provided and specialist crews and so would be best investigated if further fleet 

information could be obtained from WAST. 
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8.4.8 Turnaround Time Results 

Summary results regarding turnaround for scenarios 5a and 5b are shown in Table 8.6 but can be 

seen more coherently in Figure 8.15 and 8.16.  Little variation surrounds the distribution at each 

hospital for handover, given by the input values; however, slight fluctuation between hospitals 

across the region exists following the data analysis investigations of Chapter 4 (Figure 4.23).  If 

these discrepancies could be standardised (scenario 5a), or if turnarounds could in fact be reduced 

to a maximum of the 20 minute target (scenario 5b), then Figure 8.16 shows the dramatic impact of 

better vehicle utilisation on patient outcome compared with the benchmark scenario. 

 

Figure 8.15 Average turnaround time at regional hospitals with 99% confidence intervals 

 

Figure 8.16 Average extra number of survivors than benchmark scenario 0 per category, 

comparing scenarios 5a and 5b 
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8.4.9 Location Model Allocation Comparisons 

For all scenarios 6, 7 and 8, allocations are taken from the Maximal Expected Survival Location 

Model with Heterogeneous Patient and Heterogeneous Fleet (MESLMHPHF) of Chapter 6, for 

hard target optimisation and separately for survival probability maximisation.  The fleet capacity 

constraint is based on the average WAST fleet, per shift, scaling EAs to 67% and RRVs to 50% of 

the given size.  Summary results may be seen in Table 8.6, but more detailed analysis of the survival 

outcomes per scenario, compared with the equivalent standard models, are now given.   

Although it initially appears there is minimal improvement in using the location model allocations 

over the benchmark allocation, the crux of the matter is that allocating vehicles across a region with 

a survival maximising approach does indeed produce improved performance results over a hard 

target maximising approach.  The comparisons of scenarios 6 and 7 with each other, rather than 

against the benchmark (for which it appears on the surface of this particular EMS system setup to 

perform worse – Table 8.6), validate the conclusions drawn in Chapter 6, where the location 

model designs themselves were tested.   

 

Figure 8.17 Comparison of average expected extra survival per category for scenarios 6 and 7 with 

equivalent benchmarks (equivalent dispatch and service policies) 

Figure 8.17 shows that the scenarios 6 and 7 are almost always better than their equivalent WAST 

average allocation systems operating with the same policies.  Even where little improvement exists 

(or results are worse for lower priority calls) on the equivalent benchmark (be it 0, 1b or 1c), 

scenario 7 (survival maximising) is always better, substantially, than scenario 6 (response target 

optimisation).  
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Although the location models optimise vehicle allocations, when this fleet set-up is put into a non-

deterministic model, the stochastic nature means it may not always perform to its full potential 

when high variation in system phases exist.  The third graph in Figure 8.17 – the comparison of 6c 

and 7c with benchmark 1c – demonstrates that when travel in the simulation model is fixed (no 

variation, deterministic travel times) – the allocations obtained by the location models are indeed 

superior to the one estimated from WAST’s data (supporting Chapter 6).   

 

8.4.10 Capacity Results 

Scenario 8 aims to make comparisons between various increased fleet sizes and the benchmark 

simulation model setup.  Capacity is increased in line with a given percentage for one or both 

vehicle type sub-fleets in turn.  Three capacity combinations are explored, seen in Table 8.7; 

results with regards to response and survival are given in Table 8.8 alongside the original results of 

the benchmark comparison of scenario 0 shown earlier (Table 8.6). 

Table 8.7 Resulting scenario version from increased sub-fleet capacity combinations  

 EA 
% Increase 0% 10% 

RRV 
0% 0 8a 

10% 8b 8c 

 

As can be seen from the results, and as is expected, as fleet size increases so does the ability of the 

service to improve performance, whether it be with respect to response or clinical outcome based 

objectives.  Scenario 8c is compared to the benchmark in Figure 8.18, showing the higher peak of 

the average response time distribution when the number of operational vehicles (per type) is 

increased by only 10%.  This percentage corresponds to a maximum of only three additional 

vehicles per shift at peak times during the week, and on some occasions, a rounded integer increase 

in vehicles of 10% means that where the original number of vehicles on shift were less than 5, there 

will be no increase in the new scenario (i.e. during lower demand periods). 
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Table 8.8 Experimentation results for scenario 8 (percentage difference comparisons) 

Scenario Response Time Results 
(category) 

Expected Survivors 
(survival function) 

EA 
Utilisation 

RRV 
Utilisation 

A B C A B C 

0 66.8% 63.8% 54.1% 32.3% 23.7% 19.3% 86.3% 41.6% 

8a 6.7% 14.7% 17.8% 2.2% 4.6% 5.7% -7.2% -1.0% 

8b 1.2% 0.8% 1.1% 0.5% 0.4% 0.4% -1.2% -3.6% 

8c 7.4% 15.3% 18.6% 2.5% 4.8% 6.0% -7.6% -4.6% 

 

A small increase in operational vehicles can have a large impact on overall expected number of 

survivors. By simply adding approximately two or three more EAs per shift (scenario 8a), a 

category A survival percentage increase of 2.2% is witnessed, which equates to more than twenty 

additional survivors per week. 

 

Figure 8.18 Average response time distributions for scenario 0 and 8c trials 
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8.5 Conclusions 

8.5.1 Allocation Insight 

Some interesting points to note from the allocations used in the experimentation are that, firstly, 

the average WAST allocation utilised in the benchmark, positions only RRVs at station 1 (SABW – 

Blackweir in Cardiff) and never EAs; however, for both the survival and hard target allocation 

model approaches this is the best located and so most frequented station for both vehicle types, 

housing the largest proportion of vehicles for the shifts throughout a typical week (Figure 8.19).  It 

would be possible to include station-specific capacity constraints within the location models in 

future work to enable such restrictions or even the preferences of WAST to be taken into account.  

In the survival allocation scenarios (scenarios 7), only one station, station 23 (HQ) is not ever 

occupied by EAs; yet for the hard target approaches, all stations are used at some point during a 

week period for EA situation.   

 

Figure 8.19 Comparison of sub-fleet capacity at station 1 (SABW) for average WAST fleet and 

location model allocations per shift 

One unanticipated discovery is that the hard target allocation scenario, where RRVs attend A, B and 

C calls (scenario 6a),  does not produce markedly better results than the benchmark, which since 

scenario 0 attempts to reflect current WAST operations, suggests WAST are able to achieve better 

results without any mathematical optimisation assistance.  However, the location models optimise 



Chapter 8. Results 

248 

based on average service time and deterministic travel, not taking into account full service.  It was 

shown in Chapter 6, that if the current WAST allocation was input to the same model, in fact the 

location models are indeed able to find better allocations.  In the simulation, the optimised 

allocations may not enhance performance compared with the average WAST setup due to the 

impact of other service phases.  For example, if the new allocations mean vehicles are positioned 

further from hospitals, the time they spend en route to and from facilities may increase, worsening 

utilisation, decreasing availability and subsequently affecting response.  As mentioned, the location 

model allocations also exploit deterministic travel times, whereas the simulation typically runs 

based on predicted travel time, scaled by vehicle type.  It is this variation that may therefore limit 

the impact of the allocation on patient survival (given a hard target approach); hence the inclusion 

of a contrasting set of location model allocations with a fixed travel benchmark (scenario 1c), 

demonstrating improved performance over the benchmark, as expected. 

Particular interest lies not in the discrimination between policies, but within them – that is, the 

comparison between hard and survival approaches as opposed to location model allocations versus a 

true WAST allocation.  Since the scaled average benchmark allocation is essentially an educated 

guess, the real daily operations of WAST are not known exactly.  Although scenario 0 is not 

expected to be a fully accurate representation, its uncertainty may prove misleading if further 

experimental results are to be directly connected to reality; therefore, scenario 0 is used in place of 

true operations as a standard from which to measure impact of system changes.    

A sensitivity analysis could be conducted, altering some of the allocations to see the impact on 

performance.   A simple exploration in this vein showed results do differ, although only slightly, 

but further investigation should be sought after as validation before applying the model to other 

EMS systems.  The slight difference in results is of course expected, since location is known to 

affect response, yet it might also indicate a lack of robustness in the model.  For the purposes of this 

study, the models are deemed robust enough to take reliable solutions for the region investigated, 

even given slight sensitivity to input changes.  This is combated through experimentation (where all 

other parameter values are kept constant), validation and multiple runs. 
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8.5.2 Diversion 

During the investigation of diversion (scenario 3), patients who would have been transported to 

UHWC are instead mainly sent to Llandough (both located in Cardiff), which in reality, would not 

always be a possible alterative tactic.  University Hospital Llandough is much smaller and operates 

mainly outpatient clinics, being classified as a ‘major acute’, not a ‘major accident and emergency’ 

facility.  Extensively increasing its emergency admissions in this manner would not necessarily be 

feasible.  Further experimentation within the simulation could investigate transportation policy 

modifications; however, to do so, additional information regarding capacities of hospitals and their 

functionality would be essential.  

Further work utilising the developed simulation tool could extend to the inclusion of interruptible 

lower priority calls (the structure for such operational control logic is already in place in the 

simulation program).  At a recent conference (NISCHR February 2013), a Welsh paramedic 

commented that crews assigned to lower priority calls (category C and below) are at risk of being 

stood down in order to attend any higher priority calls.  Currently, the simulation operates where 

only return journeys are interruptible but vehicles on response journeys may also be diverted in 

reality.   

 

8.5.3  Payoff 

Culminating the investigations of this chapter leads to many recommendations and insights 

regarding the procedures of WAST for standard operations, forming the basis of discussion in the 

following chapter.  Before going forwards, one valuable fact to adopt from the experimentation 

process is that, as hoped, it is not necessary to increase fleet capacity in furtherance of performance.  

A similar level of improvement can be made with simple policy changes, from hard response time 

targets, to instead locating from optimised patient survival probability.  Not much of a difference 

lies between the proportion of survivors per category for scenario 8b (increasing the number of 

operational RRVs per shift by 10%) than for scenario 7a (survival approach allocation, with RRVs 

attending A, B and C calls); although there is a small discrepancy, the latter scenario comes at no 

additional cost to WAST, improves both response performance and expected clinical outcome 

whilst also reducing utilisation from the current setup. 
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Chapter 9 

 Conclusion 

 

9.1 Discussion 

9.1.1 Introduction 

An array of evidence, throughout the literature sections and the data analysis of Chapter 4, suggests 

WAST are indeed struggling to meet current Government set (national) targets, despite improving 

on their own efficacy over a number of years.  The data and publications prove that there is scope to 

progress, particularly in response and turnaround service phases. 

The question posed by this research was whether the system’s performance could be enhanced, 

complying with the demographic, geographic, resource and monetary constraints faced by the Trust, 

by simply suggesting ways WAST could better allocate vehicles across regions.  In short, the answer 

to this is, yes.  However, further enquiry emerges from the idea that response time is perhaps an 

inadequate way of evaluating such a public service (South Wales Argus 2013, Wankhade 2011) and 

that in fact turnaround time may be a more highly contributing factor to poor performance than 

immediately recognised (BBC News 2011a, Goldhill 2013, Knight and Harper 2012).   

Operational Research facilitates the investigation process of such matters, not only in healthcare and 

EMS systems, but also in various public and private sector situations.  This was made evident in 

Chapter 3 through the models, research and successful application of techniques to location 

problems.  Common methodologies of Location Analysis, Queueing Theory and Simulation are 

employed harmoniously throughout this study.  The following discussions aim to highlight the main 

successes of the techniques exploited and key findings of the research, culminating in an offering of 

recommendations to WAST or to any EMS hoping to gain insight of their service. 
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9.1.2 Objectives 

At the outset, this investigation aspired to suggest better resource allocations across the South East 

of Wales in order to enhance utilisation and response performance whilst demonstrating the 

potential benefit gained from applied OR techniques.  It intended to explore the proposed change 

to clinical outcome based performance measures across the UK and by looking at the system as a 

whole, see the impact of such policy alterations on current operations.  An auxiliary goal of the 

investigation was to develop generic tools that could be utilised by EMS managers and analysts for 

future planning purposes within their own Trusts, so that region specific solutions can be 

discovered for nationwide EMS problems.    

Referring back to the introduction of Chapter 1, the outcomes of the study address the presented 

objectives (section 1.2) and successfully provide system insight not only mathematically and 

academically but also to service managers, planners and users.  In summary, the original objectives 

and resultant outcomes are: 

 Investigate if improvements to WAST’s performance can be made with regards to response 

and turnaround phases, whilst maintaining current capacity; 

 Improvements are shown with better allocation of the operational fleet; 

 Additionally, a reduction in the turnaround service phase improves utilisation, 

availability and response; 

 Investigate current policy impact on patient survival; 

 Through the location theory models survival given a hard target performance measure 

approach is calculated; 

 Using the simulation, the expected number of survivors, given the benchmark system 

setup can be evaluated; 

 Suggest ways in which to improve survival probability; 

 Better allocation also proves beneficial to patient outcome; 

 Support WAST’s move to clinical outcome based measures; 

 Advantages over hard target measures are found via the allocation models, and supported 

by the simulation outcomes; 
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 Develop generic tools that may be utilised by EMS managers for future planning purposes, 

in areas dealing with demand, fleet allocation and capacity; 

 Travel time matrix generator utilising the Google Maps API; 

 Two allocation models and the provision of four novel modelling approaches; 

 User-friendly simulation tool with full graphical interface. 

Further insights that materialise throughout the course of this study are discussed in the following 

sections, relating the method of discovery with its findings. 

 

9.1.3 Modelling Conclusions 

Travel Time Matrix Generator 

In order to model any network formulated around a road structure, travel times or distances 

between all points on the network must be known; if unknown, they must be estimated.  Chapter 5 

presents a tool utilising the Google Maps API providing the user two travel time calculation options 

for the subsequent EMS modelling approaches, either: 

1. exploit the Google Maps calculated travel times directly; 

2. or, utilise the Google Maps measured distances to better estimate travel time in conjunction 

with developed regression models for all journeys conducted by a heterogeneous EMS fleet. 

The resulting matrices, of route distances and travel times, are used as input to both the location 

and simulation modelling endeavours.  Such an extensive estimation process is conducted since the 

classic Euclidean and linear calculation methods explained in the literature are poor predictors of 

response time of emergency service vehicles, particularly in rural areas.  Furthermore, the tool’s 

generic structure allows it to be invoked easily and comparably by other EMS Trust regions.    

 

Location Models 

After providing a typical data structure to the newly developed mathematical programming location 

models (of Chapter 6), allocation optimisation of a fleet (whether it be homogeneous or 

heterogeneous) to maximise the expected patient survival probability is conducted for a particular 
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region – in this case, South East Wales.  Two approaches (although extendable further) are 

integrated in each of the four model designs; firstly, the models are run whereby the system 

operates with hard targets measuring successful service of patients (as is current practice) and 

secondly where survival is calculated as a probability given a certain response time. 

Drawing conclusions from the experiments within and between the four location models shows that 

a survival-maximising approach produces better overall results than hard target operational conduct 

for life-threatened patients.  Those lower in risk witness a worse survival probability, but this does 

not necessarily lead to unfavourable outcomes in reality, just to the experience of slightly delayed 

responses in trade-off for more critical-patient lives being saved.  

 

Simulation 

Thirdly, since the location models are only able to explore the influence allocation has on response 

phases of the system, simulation is used in order to investigate consequences overall, and which 

other service phases impact performance.  The model is also used to support the conclusions of the 

location models – that a survival-maximising approach is superior for patient outcome to a hard-

target based approach when optimising operational fleet allocation.  This verdict was suggested in 

the literature and supports prior findings.  A survival founded allocation in the simulation produces 

consistently better results than a hard allocation, for all categories, not just high priority patients (as 

is the bias present in the location model comparisons).  This more favourable outcome of a survival-

maximising approach comes from the improved allocation impact on sub-fleet utilisation and 

response.  Due to the deterministic nature of the location models, despite the attempts of the 

iterative versions, the full system stochasticity can only be captured through simulation. 

In addition to evaluating the conclusions of Chapter 6, the simulation experiments enable insight to 

the problematic phases of service.  Experiencing an increase in regional demand (simulation 

scenarios 2a and 2b) is on the whole detrimental to the population as would maybe be speculated.  

The consequence of reducing turnaround time however (scenarios 5a and 5b), which is found from 

the data to be on average far above the recommended length, is extensively positive.  Freeing up 

vehicles at hospital quicker, allowing them to respond to new calls earlier and reducing vehicle 

utilisation all lead to a substantial increase in survivors.  Similarly, by treating more patients in the 

community, reducing proportion of conveyance per category (scenario 4), performance is 

improved for both response and survival measures.   
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9.1.4 Investigative Conclusions and Considerations 

It is indeed possible, as initially hoped, to improve response, survival, patient service and 

performance within an EMS system.  The tools provided by OR and applied by OR analysts can 

assist in the development process for individual EMS Trusts, utilising insight and designs gained 

from this and similar research.   

Performance has been shown to improve with sophisticated fleet positioning and that optimising 

allocation with respect to patient outcome produces better EMS results than for response target led 

optimisation.  The scale of these responses does vary with fleet size, but a good level of efficiency 

can be maintained without increasing capacity or number of operational vehicles per shift.  Such a 

discovery contradicts the original notion voiced by WAST employees in section 2.3.7 that the 

ambulance service lacks resources. 

The objective of this study has not been to recommend a solution of when or where to increase staff 

or operational crews, as this demands an increase in monetary investment; instead, the suggestions 

hold at their heart the understanding that performance can improve if the resources are just utilised 

more effectively, as hidden slack often exists in system capacity.  It is demonstrated (Figure 9.1 and 

in Chapter 8) that indeed, an immediate solution would be to increase the number of operational 

vehicles by two or three crews per shift (simulation scenario 8c), but with just a reduction in 

turnaround time (scenario 5b), the performance can be improved to an even greater degree.   

 

Figure 9.1 Comparison of additional survivors (proportion and numerical) per category for a 

typical week, resulting from scenario 5a and 8c compared with benchmark scenario 0 
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If turnaround time could be improved, the overall performance of the system would benefit.  

Perhaps one of the most potentially influential findings of this study is the fact that turnaround time 

reduction in fact has more of an impact on system user survival than allocation.  A small decrease in 

turnaround time at hospitals, relieving EMS resource blockages at this point in the system, reduces 

utilisation, increasing vehicle availability and so subsequently impacts response time.  By simply 

improving turnaround time (although, pragmatically, this will not be an easy task), all other system 

phases benefit due to less strain on the resources, leading to better overall system conduct and so 

consequently a higher degree of favourable patient outcome. 

As system managers know, removing strain from one aspect often leads to an increase in pressure 

elsewhere.  In this case, a quick fix to relieve WAST’s turnaround problem would shift the problem 

to Accident and Emergency (A&E) departments across the country.  The EMS turnaround issues 

actually originate from the congestion problems within hospitals and the inability to transfer quickly 

the care of the patient from paramedics to A&E doctors. 

“Barriers to swift handovers come in the form of capacity issues, patterns of accessing services and 

bed management across the whole of the NHS system” – Audit Committee (2009). 

Such blockages at hospitals increase the likelihood of EMS diversions (Fatovich et al. 2005), which 

have already been shown to reduce survival probability of critical patients, generating a vicious 

cycle of detriment.   

Community treatment policies for certain emergency conditions (as explored in scenario 4, 

Chapter 8), alleviate some of the lost ambulance hours during transfer at hospital, ultimately saving 

more lives than default transportation rules.  This simultaneously improves A&E congestion 

problems, where other non-critical patients now experience smaller waiting times at A&E and 

patients reside temporarily in corridors due to a shortage of emergency beds.   

Previous studies have shown that cardiac outcomes were better in a targeted response system where 

paramedics only service critical incidents, compared with a uniform system where every incident 

receives a paramedic staffed ambulance (Persse et al. 2003); this is also supported by the findings of 

scenarios 1a and 1b of this experimentation process.  Additionally, it is argued (Thakore et al. 2002) 

that by sending paramedic ‘lights and sirens’ responses to only critical patients  the risk of EMS 

vehicles and crews becoming involved in road accidents themselves is reduced. 
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Conveyance minimisation policies (simulation scenario 4) combined with the reduction of double-

dispatches (scenario 1b – RRVs only sent to category A patients) would lead to a significant increase 

in the number of category A patients using the simulation results, Figure 9.2; yet, of course, the 

lower priority patients do appear worse when applying the same survival function to all categories.   

 

Figure 9.2 Comparison of additional survivors (proportion and numerical) per category for a 

typical week, resulting from scenario 1b and 4 compared with benchmark scenario 0 

If information could be obtained so that the possibility of modelling fully integrated systems with 

OR was attainable, rather than individual components, swift transition of care between systems 

could be greatly improved.  However, overall, it is likely the turnaround time issues faced by 

WAST and the congestion problems occurring at many of the country’s hospitals can be reduced, if 

not solved, without the need for, nor implementation of, sophisticated analysis or mathematical 

modelling tools.  Stephen Thornton’s insightful personal view published in the British Medical 

Journal (2007) highlights the issues surrounding London’s provisions for stroke victims, stating that 

interaction between hospitals and ambulance services is necessary when making arrangements for 

treatment in the community or for urgent conveyance.  It is also recommended better local clinical 

pathways are needed – communication between ambulance services and GPs – to increase the 

uptake of thrombolysis in the community, helping patients chances of recovery (Bloe et al. 2009) . 

Better communication between separate Trusts and NHS departments, and the formation of 

alliances between Trusts should be encouraged and assisted by common targets instead of system-

selfish motives.  If communication and cooperation between systems could improve, if patients 
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were the foundation of evaluation measures, then each system may be able to perform to its best 

with little change.   

OR offers the means to finding the best operational, strategic and tactical solutions, but final 

absolute achievements can only be obtained through client buy-in and the understanding of the 

power of OR by practitioners.  Without convincing industry managers that even the simplest 

models can be effective, there will be slim chance of implementation of high-level, cutting edge 

technological advances from the research community.  Here lies the difficulty in firstly bridging the 

gap with practitioners (Brailsford et al. 2013) and gaining acceptance by healthcare managers.  This 

problem is accentuated by constant changing roles of healthcare professionals.  The support of a 

‘champion’ from within the service is essential if successful academic research is to be implemented 

in practice.  Communication between Operational Researchers and service managers is just as vital 

as communication between services.  

This research builds on the idea of making the developed models as generic as possible, so that the 

tools are not problem specific.  Gaining support from the original and project based users, may lead 

to the implementation of the research, results or tools.  If this is successful, the generic 

characteristics of the models expedite the simple application to other EMS systems.  Even use of the 

location models and simulation to other location and priority queueing type problems, in fields such 

as transportation and logistics, would require minimal additional work to make them suitable.   

 

9.2 Model Limitations  

Travel Time Matrix Generator 

Since Google Maps restricts the number of requests made by a user to around 25,000 per day (at a 

certain rate), its use is limited practically by the level of granularity and size of the region explored. 

The Google Maps API algorithm for calculating journey time between two locations is unknown, 

and there exist inaccuracies in the WAST journey data, so it is not possible to completely validate 

the travel time values obtained and utilised in the modelling process.  Additionally, the speed 

assumed by Google Maps in the calculation process applies only to regular vehicles.  The application 

of the developed regression models and determined scalar values to other EMS regions is therefore 

somewhat limited.      
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Some adjustments (via trial and error) were necessary in the simulation model in order to scale 

estimated travel times to EMS vehicle travel, which must also differentiate between EA and RRV 

travel as the nature of these sub-fleets implies rather different travel patterns over the network.  

However, on comparing predicted journey times with Google Maps calculated times (Chapter 7, 

Figure 7.5) and validating simulated response journey travel times against the original data (Chapter 

7,  Figure 7.19) the estimation methods are deemed adequate enough for the purposes of this study. 

 

Location Analysis 

Given that the multi-objective optimisation is dependent upon the weights used in the objective 

function, the results are sensitive to changes in these values.  Since the decision for the value of 

these preference weights is entirely subjective – the choice is down to the user – if these models are 

to be applied to multiple EMS Trusts in the UK, it would be best to make use of a standard 

weighted preference so that comparisons can be made for the implemented service strategy in the 

optimisation process.  This however, leads to an ethical dilemma as to the importance of patients 

within each service group and is not a straightforward quantifiable decision.   

An alternative approach is that of ‘non-composite’ multi-objective optimisation, which does not 

make use of preference weights, but still requires the user to choose the best overall Pareto-optimal 

solution.  Again, if more than one Trust were to use the models, problems arise in the subjective 

decision of the ‘best’ solution; however, at least in this case the best option is chosen with all 

knowledge of outcomes by the analyst, whereas with a weighted objective function, the scale of 

category preferences are input without all outcome information, unless extensive sensitivity analysis 

is conducted.  The discussions of section 6.8.7 (Chapter 6) allude to the difficult decision in patient-

class importance and the assigned preference values used in the investigations of this study.  

To gain full compliance tables for a network, the models all have large run times (anywhere from a 

couple of hours to several days, dependent upon the selected model and problem size).  Instead, to 

be more useful practically, the non-iterative versions can be run in around 15 minutes for a given 

fleet size – although this is still a substantial time period and so shows how these tools are best used 

for planning purposes not dynamic decision making. 

A second limitation in implementing these tools within an EMS Trust is the use of a software 

package general purpose GA.  For the user to run the location models, the Palisade Evolver package 
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is required.  However, to get around this problem, it might be possible to code a purpose built GA, 

or implement an alternative and more easily accessible heuristic. 

Finally, the deterministic nature of the location models means their potential insight is limited and 

so should ideally be used in conjunction with further modelling approaches, such as the developed 

simulation.  

 

Simulation 

The main drawback to the simulation model is the amount of data and input required in the tool.  

Although much of this information can be loaded from a pre-generated default file, for the model 

to be representative of the investigative region, many parameters would ideally need to be adjusted.   

Both the location models and simulation ignore the requirement of a vehicle being staffed by a 

suitable crew when assigning an EMS unit to an emergency incident.  In reality, the decision for 

dispatch is not based upon availability of a vehicle alone, nor solely in addition to the correct 

vehicle type, but also that the chosen vehicle is also manned by the suited crew type.  For practical 

implementation of such modelling tools in an EMS trust, some indication of operational vehicles, 

categorised not only by vehicle type but also by crew type should be considered.  This would 

necessitate the use of rostering tools alongside the suite of tools provided by this research.   

  

9.3 Model Extensions  

Location Analysis 

Unfortunately, the heterogeneous fleet models are limited to just two vehicle types.  An immediate 

extension to the MESLMHPHF model of Chapter 6 would be to include more than two sub-fleets.  

The formulation of this model would be similar, but further mathematical exploration of the 

interactions between sub-fleets and information regarding the dispatch and service policies they 

follow would be required for instances where combinations of heterogeneous vehicles are used to 

serve different incident types.  

The primary difficulty in this extension is that EMS Trusts may have contrasting operational policies.  

Many of the service strategies are designed and approved by the individual Trust managers.  For the 
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purposes of this study, the location model design was maintained at a more generic and simple level 

in order to allow possible widespread usage.  

A variety of survival functions for the different emergency categories could be included in the 

models in order to more realistically predict population survival rates for fleet capacities and 

allocation.  More specific functions per category would better reflect the actual outcomes of the 

patients of each group, meaning evaluation of survival within the location and simulation models 

would not necessarily portray such large scale detriment to the lower priority classes as seen in 

Figures 9.1 and 9.2.  The choice of coefficients in the survival function however, should remain 

constant if comparisons across systems are to be made (Eisenberg et al. 1991). 

Average service time per vehicle type was implemented in the models.  Given the deterministic 

setup of the model, segregation of service components and the inclusion of category dependent 

service times in the modelling process would give results matching more closely with reality.  

During data analysis stages, travel time was found not to be dependent upon category, but some 

discrepancy exists between service times and so the location model could be made more accurate 

with such information.  Differentiation between category services is rarely witnessed in the 

literature and a general service time approximation still gives suitable solutions to the models used 

in this capacity.  

 

Simulation 

The very nature of simulation means that some simplifying assumptions of the real-world system are 

made during modelling design stages.  In most cases these are suitably representative; however, in 

some instances, the inclusion of further information of the real system would be beneficial to the 

validity of experimental conclusions and scope of insight.   

Aspects of an EMS system that have not been included in the simulation study, but lend themselves 

to such experimentation structures, include: 

 dynamic events – updates to schedule throughout the run to represent dynamic demand; 

 dynamic redeployment – to provide consistently equitable service; 

 reallocation – interrupt service to reassign vehicles to higher priority calls; 

 special practitioner service. 
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Search algorithms within the simulation program could be altered to provide different experimental 

dispatch and service strategies as desired by the Trust.  For example, the current method only 

searches free or returning vehicles for dispatch to a newly arriving call; however, in calendar-queue 

DES, many future vehicle events are already scheduled.  If an anticipated clearing event of a vehicle 

at a nearby hospital is due to follow soon after logging the new incident, the response time 

(including the waiting period) may be shorter for this clearing vehicle than for response by any 

currently available vehicles.  In reality, it is probable that control-room operators’ judgement and 

experience does influence such dispatch decisions. 

Instead of searching through all stations in the region for the best available responder option every 

time a vehicle is required, a selective search could also heighten efficiency.  For example, if only 

ݔ ∈ ℤ  closest stations, or those within a specific time standard were searched for free and 

interruptible fleet members, simulation run-time would be reduced; however, paramedics are 

known (NISCHR February 2013) to attend emergencies anywhere in Wales if they are the only or 

best available vehicle – the current simulation operational procedure abides by this policy for a 

modelled region.  

An important consequence of the search processes is choosing whether to interrupt vehicles, i.e. 

interrupting vehicles returning to base and assigning instead to new calls, or making low priority 

response journeys interruptible.  The algorithm would need to ensure the same vehicle, crew and 

incident are not interrupted recurrently.   

Alternative dispatching rules may also be investigated.  Bandara et al.(2012) discovered that patient 

survival probabilities can be increased by not automatically sending the closest vehicle but basing the 

choice upon call priority.  

Systems Dynamics (SD), as mentioned in Chapter 7, section 7.3, looks quantitatively at the 

interaction of systems.  A larger region could easily be investigated in one model due to the high-

level data requirements and a non micro-simulation approach.  It would deal easily with the non-

symmetric flows of service across regions and trust boundaries.  Such a manner of modelling would 

enable investigation of the contribution of EMS to hospital admissions (Lane et al. 2000) and impact 

on other NHS systems – a more integrated system approach (Brailsford et al. 2004).  There have 

even been efforts to implement hybrid methods in healthcare, combining SD and DES (amongst 
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other) techniques, to enlighten as to the interaction between separate NHS systems (Brailsford et al. 

2010). 

 

9.4 Implementation 

There are three main means of OR implementation (Robinson et al. 2009): 

 implement findings of a study; 

 implement a model; 

 implement as learning. 

It seems from the small number of academic papers that show successful implementation of work in 

industry or public sectors, or even support from such organisations at the outset of any study, that 

the hardest of these three types is implementing models.  Learning is commonly shared with 

academic communities and findings are regularly presented back to organisations where 

collaboration exists at the outset, which may even lead to future process changes for a particular 

scenario modelled.  However, getting developed models to be regularly used within the workplace 

by controllers and analysts, after the conclusion of the study, is often much more difficult.  

At the time of writing, discussions with WAST with regards to implementation of the resultant 

tools of this study were underway.  The mention of trialling the tools in resource planning 

departments in the country and the engagement of the WAST informatics team throughout the 

research process has been encouraging.  An arranged forthcoming meeting promises hopeful 

collaboration in the future between the Trust and OR academics.  Hope lies that these tools will be 

able to offer foundations for regular experimentation of new suggested policies and ideas for WAST.  

 

9.5 Final Reflections 

The original posed question of this study asks, can mathematical modelling and OR techniques 

enable an EMS system to operate at a higher level, improving service to patients and increasing the 

probability of a positive clinical outcome?  In this applied research study, developed models and 

tools are demonstrated to work successfully in this endeavour for the South East Wales EMS Trust.  
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Frequently, it is discovered through OR investigations that the examined system could cope well 

with new proposals or alterations in its current state, and that better understanding would alleviate 

the need for restructure, redesign or further investment.   

Given the discussed conclusions, it would be all too easy for blame to be placed with A&E 

departments for EMS underachievement; instead the findings should be in a positive manner by 

both parties – improving turnaround time would relieve blocking outside A&E, which is not only a 

problem for WAST in terms of lost ambulance hours, but the congestion issue also gives individual 

hospitals bad publicity and puts pressure on staff dealing with the daily chaos.  Ultimately, this study 

shows that better EMS fleet utilisation and so response performance (by whichever measure) can be 

achieved through reduction of automatic double-dispatches, better allocation, increased community 

treatment prevalence and careful consideration of need for conveyance. 

Connected systems should not be operated entirely independently (Chen and Decker 2005), 

especially where the service user – the most important element in the system – and information 

flow from one to another.  Follow-up of discussed policy changes should lead EMS Trusts into 

partnership with A&E departments and other NHS Trusts – often, a new way of thinking of an 

existing system, rather than a new idea in a new system, can enhance performance and benefit the 

service user. At the forefront of healthcare decision processes and OR modelling projects should be 

the ideas of continuity of care, cooperative objectives and consolidated insight. 
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Appendix 

Appendix 4.1 WAST 2009 emergency service data set: field headers and details 

Data set Header Description Range of Variable 
Values 

Incident Date Date (dd/mm/yyyy) operators log call 01/01/2009 - 31/12/2009 

Incident Time Time (hh:mm) operators log call 00:00:00 - 23:59:00 

Unique ID Code given to an incident for all response vehicles 174,665 unique entries 

Vehicle Order Order in which multiple vehicles are dispatched From 1 to 11 

Vehicle Type Type of vehicle dispatched 17 types observed 

Vehicle Station 
Station at which vehicle is allocated (not 
positioned) 

170 unique observed 

Postcode 
District 

Origin of the emergency as provided by the caller  50 unique observed 

Nature Initial medical details given on the emergency type Various 

MPDS Priority Priority based on colour codes used by WAST Red/Amber/Green 

Time Allocated Vehicle instructed to attend an incident Time (hh:mm) 

Time Mobile Crew and vehicle begins the response journey Time (hh:mm) 

Time at Scene Arrival of vehicle at the scene of the emergency Time (hh:mm) 

Time Left 
Scene 

Vehicle leaves the scene with or without patient Time (hh:mm) 

Hospital 
Attended 

Assigned hospital based on proximity to incident 170 unique observed 

Time at 
Hospital 

Vehicle and patient arrive at the assigned hospital Time (hh:mm) 

Time Clear 
Vehicle becomes free to attend subsequent 
incidents 

Time (hh:mm) 

Incident Type Type of emergency: emergency, urgent or routine AS1/AS2/AS3 

PCT Code Primary Care Trust in which the incident originates 25 codes observed 

Stood Down Does vehicle stop service before completion Yes/No 

Reason Stopped 
Reason why vehicle or incident process was 
stopped 

Text  
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Appendix 4.2 Hospital preference proportion of postcode districts for commonly used facilities 

Division PC 
Area UHWC RGHN RGHP PCHM NHHA LLAN POWB Proportion 

of Division 
Total 

Proportion 

SE1 

NP11  93.88   5.99   17.74  NP12  90.51  5.76 3.73   15.79  NP13  1.31   98.65   11.00  NP22    49.71 49.82   13.25  NP23     99.59   19.62  NP25  2.03   97.97   6.37  NP7  8.93   91.07   13.50  NP8  0.70   99.30   2.73 92.82 

SE2 

NP10  99.60      6.48  NP15  5.96   94.04   1.99  NP16  95.77   4.23   5.46  NP18  99.27   0.73   4.39  NP19  99.57      17.34  NP20  98.71   1.29   24.09  NP26  99.19   0.81   6.34  NP4  50.71   49.29   16.03  NP44  97.40   2.60   17.88 92.96 

SE3 

CF44    99.74    20.00  CF45    100    9.35  CF46    99.54    5.17  CF47 14.86   84.95    12.46  CF48    99.93    11.83  CF81  2.71  96.90    8.09  CF82 2.13 6.83  91.04    8.23  CF83 78.34 21.52      22.27  NP24    99.54    2.58 87.45 

SE4 

CF31       100 2.81  CF32       100 1.89  CF35       99.67 5.21  CF37   100     20.37  CF38   100     6.62  CF39   99.85     14.47  CF40   100     13.01  CF41   100     6.31  CF42   99.95     7.80  CF43   100     6.79  CF61       99.84 2.63  CF71   39.83    60.17 2.56  CF72   96.83    3.17 9.55 94.18 

SE5 

CF10 97.85     2.15  10.82  CF11 76.18     23.82  9.01  CF14 89.17     10.83  14.58  CF15 93.61     6.39  2.21  CF23 96.93     3.07  7.29  CF24 95.52     4.48  11.86  CF3 96.12     3.88  8.57  CF5 72.09     27.91  14.31  CF62 59.12     40.88  8.22  CF63 66.63     33.37  5.13  CF64 67.70     32.30  8.00 93.63 
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Appendix 5.1 Travel Matrix Generator Tool Pseudo Code 

> Access text files 
> Create empty location list 
> For each location entry in text file 
>  Add to location list 
> Loop 
 
> For index i = 1 to location list length 
>  origin = address of location list item i  
>  For index j = 1 to location list length 
>   destination = location address of location list item j 
>   Key = location pair (origin, destination) 
>   Send Key to Google Maps API 
>   Google Maps returns Route with: 
>    Route Key = Key 
>    Route time = fastest journey time between origin and destination 
>    Route distance = equivalent journey distance between origin and destination 
>   Add Route to Matrix for display purposes 
>  Next j 
> Next i 
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Appendix 5.2 Scatter plots of Google Maps distance against average travel time data for demand 

to hospital routes per category and vehicle type 
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Appendix 6.1 MSE of input utilisation and resulting utilisation after an iteration of MESLMHP-I 

for an experimental subset of the South East dataset 

 

Appendix 7.1 Class diagram for entities and all associated classes (blue) and enumerators (purple) 

in the simulation model (inheritance is implied by arrows) 
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Appendix 7.2 Class diagram for non-object associated classes (blue) and enumerators (purple) in 

the simulation model (inheritance is implied by arrows) 

 

Appendix 7.3 Example of text template file require as input to simulation model with load input 

option 

  



Appendix 

270 

Appendix 7.4a Call generation pseudo-code 

> Calculate appropriate amount of demand using run length: 
>  number of weeks = round up (run length / 10080) 
>  For 1 to number of weeks 
>   randomly sample total demand 
>   For 1 To total demand 
 
>    generate incidents: 
>     create new incident 
>     sample priority 
>     sample arrival hour: 
>      random value = (random number between 0 and 1)*100 
>      hour of call = top-hat sample using random value 
>      minute of call = (decimal part of random number)*60 
>     sample location 
>     sample on scene length 
>     sample pre-travel delay 
>     sample transportation decision 
>     If transportation = yes 
>      choose hospital: 
>       Optional: closest facility based on minimum distance 
>      sample turnaround time at hospital 
>      calculate transport travel time 
>     End If 
>     Add new incident to incident list 
 
>   Next 
>  Next  
>  Sort incident list by arrival time and incident priority 
>  For Each incident in incident list  
>   If arrival time > run length 
>    remove incident from list 
>   End If 
>  Next 
 

 

Appendix 7.4b Simulation logic pseudo-code 

> Set clock = time zero; 
> Do Until clock > run-length 
 
> If clock = time scheduled for first object in event-list 
>  Do While event time = clock  
>   If event type = arrival 
>    Do arrival tasks: 
>     If incident type requires 1 vehicle 
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>      Search for the closest available (or returning) EA 
>      If an available vehicle exists 
>       arrival time at scene = call arrival time + waiting time 
        + pre-travel delay time + travel length 
>       Create new event with event type = arrival at scene 
>       Add new event to event list  
>      Else  
>       Create new event with event type = incident awaiting EA 
>       new event time = time of next event in event list  
>       Add event to event list 
>       Optional: increase incident priority If wait > limit  
>      End If 
>     Else If incident type requires 2 vehicles 
>      Search for the closest available (or returning) RRV and EA 
>      If available vehicles exist 
>       arrival time at scene = call arrival time + waiting time 
        + pre-travel delay time + travel length 
>       Create new events with event types = arrival at scene 
>       Add new events to event list 
>      Else 
>       Create new event(s) with type(s) = incident awaiting EA/RRV 
>        new event time = time of next event in event list  
>       Add event(s) to event list 
>       Optional: increase incident priority if wait > limit  
>      End If 
>     End If 
>    End Do 

     
>   Else If event type = arrival at scene 
>    Do service tasks: 
>     If vehicle type = EA 
>      cancel RRV if due but not already on scene 
>      leave scene time = arrival time at scene + EA scene length 
>      If transportation required 
>       arrival time at hospital = leave scene time + transport length 
>       leave hospital time = arrival time at hospital + turnaround length 
>       finish time = leave hospital time 
>      End If 
>     Else If vehicle type = RRV 
>      leave scene time = arrival time at scene + RRV scene length 
>      finish time = leave scene time 
>     End If 
>     response time = minimum arrival time at scene – call arrival time  
>     Create new event with event type = returning to base 
>     new event time = finish time 
>     Add new event to event list 
>    End Do 
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>   Else If event type = returning to base 
>    Look-up travel distance of route from current location back to station 
>    return travel time = route distance converted to time 
>    vehicle status = returning 
>    create new event with type = vehicle clear 
>    new event time = finish time + return travel time 
>    Add new event to event list 
 
>   Else If event type = vehicle clear 
>    vehicle status = free 
>    vehicle location = station 
 
>   Else If event type = incident awaiting RRV 
>    Do waiting tasks: 
>     Search for the closest available (or returning) vehicle 
>      If an available vehicle exists 
>       Determine time vehicle will arrive at scene 
>       Create new event with event type = arrival at scene 
>       Add new event to event list  
>      Else  
>       Create new event with event type = incident awaiting vehicle 
type 
>        new event time = time of next event in event list  
>       Add event(s) to event list 
>       Optional: increase incident priority if wait > limit  
>      End If 
>    End Do 
 
>   Else If event type = incident awaiting EA 
>    Do waiting tasks (as above) 
 
>   Else If event type = vehicle starts shift 
>    Do on-shift tasks:   
>     vehicle status = free 
>     vehicle shift start-time = clock 
 
>   Else If event type = vehicle ends shift 
>    Do off-shift tasks: 
>     If vehicle status = free or returning 
>      vehicle status = off-shift 
>      total vehicle on-shift length = total + (clock - vehicle shift start-time) 
>     Else If vehicle status = busy or interrupted 
>      Create event with type = vehicle ends shift  
>      new event time = next time step with an event in event list 
>      Add event to event list 
>     End If 
>    End Do 
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>   Go To next event in event-list 
>   End  
 
>  End Do 
> End If 
 
> Increment clock one step 
> Loop Do 
 
 
 
Appendix 7.4c Available vehicle search pseudo-code 

> For an incident 
> Best route distance = null 
 
> For each station in station list 
 
>  If suitable vehicle is available  
>   Current route = route from station to incident location 
>   If current route distance < Best route distance 
>    Best route = current route 
>    Best vehicle = vehicle 
>  Else if vehicle is returning 
>   Current route = route from estimated vehicle location to incident location 
>   If current route distance < Best route distance 
>    Best route = current route 
>    Best vehicle = vehicle 
>  End  
 
> Next station 
 
> Best vehicle status = Busy 
>  Travel time = best route distance converted to time 
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Appendix 7.5a On-scene service distributions for data (left) compared with simulation results 

(right) 

 

Appendix 7.5b On-scene service distribution, for category A, B and C combined for EA vehicles, 

for data compared with simulation results 

  

Appendix 7.5c Transportation journey time distributions for data (left) compared with 

simulation results (right) 
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Glossary 

 

A&E Accident and Emergency 

ABS Agent Based Simulation 

ALS Advanced Life Support 

AMPDS Advanced Medical Priority 

Dispatch System 

API Application Programming 

Interface 

AVLS Automatic Vehicle Location 

System 

BLS Basic Life Support 

CAD Computer Aided Dispatcher 

CPR Cardiopulmonary Resuscitation 

DES Discrete Event Simulation 

EA Emergency Ambulance 

ED Emergency Department 

EMD Emergency Medical Dispatcher 

EMS Emergency Medical Service 

EMT Emergency Medical Technician 

FIFO First-in, first-out 

GA Genetic Algorithm 

GIS Geographical Information Systems 

GP General Practitioner 

GPS Global Positioning System 

HDU High Dependency Unit 

KPI Key Performance Indicator 

LHB Local Health Board 

MSLP Maximum Survival Location 

Problem 

NHS National Health Service 

OOP Object Oriented Programming 

OR Operational Research 

PCS Patient Care Service 

RRV Rapid Response Vehicle 

SD System Dynamics 

SP Special Practitioner 

WAST Welsh Ambulance Service NHS 

Trust 
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