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Abstract

Critical Care Units (CCUs) are one of the most complex and expensive of all medical resources
and hospital managers are challenged to meet the demand for critical care services with adequate
capacity. The pressure on critical care beds is continuously increasing as new medical equipment
provides the opportunity to save more patients lives. It is therefore crucial that beds are managed
well and used efficiently. This thesis describes two major projects, the first undertaken in conjunc-
tion with the CCU at the University Hospital of Wales in Cardiff (UHW); and the second with two
CCUs from the Aneurin Bevan Health Board.

In the first project data has been analysed to determine the flow of patients through the Unit. Admis-
sions to CCUs were categorised under two headings: emergency, and elective. The length of stay
in the CCU is heavily dependent on the admission category. In this thesis, both computer simula-
tion and theoretical queueing models have been considered, which show how improvements in bed
management may be achieved by considering these two categories of patients separately. The vast
majority of previous literature in this field is concerned only with steady-state conditions, whereas
in reality the processes are time-dependent. This thesis goes some way to addressing this deficiency.

The second project relates to work undertaken with managers from the Royal Gwent Hospital in
Newport and at the Nevill Hall Hospital in Abergavenny. Data from both hospitals have been anal-
ysed to define arrival and service processes. A state-dependent theoretical queueing model has
been considered which has been used to investigate the significance of combining the two units.
The model has been also utilised to advise on the number of beds the new combined unit should
have in order to satisfy targets quoted by the hospital managers.

In the final part of the thesis, consideration has been given to the impact of collaboration, or lack
thereof, between hospitals using a game theoretical approach. The effect of patient diversion has
been studied. To formally investigate the impact of patients transfers, a Markov chain model of
the two CCUs has been set-up, each admitting two arrival streams: namely, their own patients and
transfers from other hospital. Four different models were considered and for each model the effect
of targets, demand and capacity were studied. The efficiency of a system which degrades due to
selfish behaviour of its agents has been measured in terms of Price of Anarchy.
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Chapter 1

Introduction

Operational Research (OR) is a relatively new sub-field of mathematics. It is thought to have been
conceived in the efforts of military planners during World War II. The objective was to find the most
effective utilisation of limited military resources by the use of quantitative techniques. In the years
after the Second World War the application of OR moved toward more domestic concerns. By the
early 1950s over forty Operational Research sections, which ranged in size and speciality, had been
established in Great Britain (Goodeve, 1953 [61]). Many were based in the private sector whilst
others could be found in government departments or research associations. Various applications of
the discipline were studied; agriculture, civil aviation, the textile industry, property development,
and healthcare. The paper entitled “Operational Research in Medicine” (Bailey, 1952 [10]) is
perhaps the earliest publication that considers the application of OR in healthcare. Since then
research within this field has been constantly increasing. Operational Research provides numerous
methodologies and solution techniques for tackling healthcare problems such as: how many nurses
should a hospital employ? How many beds should a hospital have to provide adequate care for all
patients? OR offers a systematic approach to problem solving and allows for the characterisation
of activities of an existing system using mathematical modelling.

1.1 Introduction to Critical Care Units

A Critical Care Unit (CCU), also sometimes known as an Intensive Therapy Unit (ITU) or Intensive
Therapy Department, is a special ward that is found in most acute hospitals. It provides intensive
care (treatment and monitoring) for people who are critically ill or are in an unstable condition.
People in CCUs need constant medical support to keep their body functioning. They may not be
able to breathe on their own and they have at least one organ failure. There are many different
conditions and situations that can cause organ systems to fail. Some of the most common include:
a severe accident, such as a road accident, a serious acute health condition, such as a heart attack
or stroke, a severe infection, such as pneumonia or blood poisoning (sepsis). More importantly,

1
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patients after major surgeries are also admitted into the CCU; this can either be a planned admission
as part of recovery after surgery, or an emergency measure if there are complications during surgery.
Medical equipment takes the place of failed organ functions while the person recovers. Patients who
are able to breathe unaided and no longer need critical care will be transferred to a different ward
to continue their recovery. The time it takes to recover completely varies greatly from person to
person, and will also depend on a variety of factors such as age, overall level of health and fitness
and the severity of the patients’ condition.

1.1.1 Critical Care Unit Beds

The CCU beds are very expensive and a limited resource because they provide specialised moni-
toring equipment, a high degree of medical expertise and constant access to highly trained nurses.
It was estimated by the Department of Health (DOH) in 2005-2006 that each CCU bed costs the
National Health Service (NHS) around £1,800 a day, including the nursing cost (DOH2006, [129]).
However, in 2006-2007 the DOH (DOH2007, [130]) changed their costing policy and now calcu-
lates the cost per CCU patient according to the number of organ failures they have rather than the
average cost of a bed.

1.1.2 Critical Care Unit Nurses

Due to the severity of the illness of patients in the CCU, the general policy in the United Kingdom
is to allocate one nurse to each critical care patient at all times. One nurse may care for two less
sick patients, and occasionally a particularly sick patient may require two nurses. Elsewhere in Eu-
rope the nurse to patient ratio is usually 1:2 or 1:3, although the units are larger and have a higher
proportion of low risk patients. Currently in the UHW CCU there are 24 nurses scheduled per shift.
Many critical care nurses will have completed a specialist training programme and have extensive
experience and expertise. Not surprisingly, nursing salaries comprise the largest component of the
intensive care budget. It was estimated that a high percentage of CCU bed costs are the nursing
costs ([129]).

However, a shortage of qualified staff exists, which leads to refused admissions, cancellation of
major elective operations, and a heavy and stressful workload for the existing nurses. To ease this
problem, healthcare assistants are being increasingly used to undertake some of the more routine
tasks.
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1.2 Problems that Critical Care Units are Facing

There are a few problems associated with the CCU. The first problem that the CCU has to deal with
is the shortage of beds. On average, 8% of patients are refused admission to a CCU because the
Unit is full (Audit Commission Report, 1999 [6]). The CCU occupancy rates for some hospitals
are reportedly very high (Smith, 1995 [151] and Mitchell, 1995 [126]) and a shortage of beds has
been identified throughout the UK.

Shortages of CCU beds can cause unwanted consequences to patients, some of which may prove
fatal. The greatest impact of the insufficient number of CCU beds is on potential patients await-
ing elective surgery. These patients are considered to be low priority patients. Major operations
may be cancelled, often at a very short notice, because there is no available CCU bed in which the
patient can recover post-operatively. In addition to the unnecessary stress generated by a surgery
cancellation, the delay may have serious medical consequences. On average, the CCUs report three
cancelled operations for every 100 patients who they were not able to admit (Audit Commission
Report, 1999 [6]).

The second problem associated with critical care is a shortage of CCU trained staff. The sever-
ity of illness of critical care patients generates the need for a 1:1 nurse to patient ratio. Thus, the
provision of more CCU beds would necessitate the employment of more CCU nursing staff. The
specialist and high-skilled nature of critical care generates the requirement for a high proportion of
nurses with relevant training. Many trusts have reported a distinct shortage of critical care nurses,
particularly those trained to the English National Board For Nursing standard (ENB), which is the
specialist training in critical care nursing (Audit Commission Report, 1999 [6]).

Further problems that CCUs have to deal with are costs. The cause and effects of shortages of
resources, namely beds and nurses, were examined previously. An intuitive solution to these prob-
lems would be the provision of more resources. However, the relative benefits of providing more
critical care beds and employing more nursing staff must be weighed up against the cost to the
NHS. The provision of critical care is more expensive than other types of healthcare due to a higher
staffing requirement, specialist equipment and therapeutic interventions. In fact, a study has shown
that provision for a critical care patient can cost up to six times more than a patient on the general
ward (Royal College of Anaesthetists and Royal College of Surgeons, 1996 [140]). The annual UK
bill for critical care was estimated at £675-725 million in 1997 [46], with the conjecture that it is
increasing at the rate of 5% each year. This increase in expenditure comes as a result of new inter-
ventions and medical advances, requiring more costly equipment. In addition, staff costs contribute
to over 50% of the total CCU expenditure, with approximately 90% of this utilised to employ nurses
([6]).
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One approach, based on mathematical modelling, that successfully addresses problems in the
healthcare systems is queueing theory.

1.3 Queueing Theory

Queueing theory is one of many sub-disciplines of OR. Much of the initial work on queueing the-
ory is attributed to Erlang. The author in his 1909 paper entitled “The Theory of Probabilities
and Telephone Conversations” [47] analysed waiting times for call connections on the Copenhagen
telephone system. The author continued his studies into the next decade and in 1917 published
some of his most influential work. The paper “Solution of some Problems in the Theory of Proba-
bilities of Significance in Automatic Telephone Exchanges” [48] established formulae for loss and
waiting time - these have since become prominent results in the field.

Much of the theory is devoted to the derivation of performance measures evaluating characteristics
such as the throughput, probability of delay, number of queueing items and the expected waiting
time of customers in the queue (see, for example Stewart, 2009 [152]). Queueing theory may be
utilised to ensure that queues do not build up excessively, whilst servers are active a reasonable
proportion of time.

In the context of queueing theory, one may think of a service system as comprising of two elements:
the service facility itself, which may be staffed by a number of servers; and a queue for service
(except in specific cases where it may be specified that queueing is not permitted). At each facility,
customers arrive and queue for some activity. Such a situation is depicted in Figure 1.1:

Figure 1.1: The fundamental diagram of queueing theory

Every queueing network is characterised by two major components: the arrival process and the ser-
vice process. Queueing theory involves setting up mathematical models corresponding to Figure
1.1, analysing the system, and evaluating various performance measures. Since these processes are
usually stochastic by nature, queueing theory is based on probabilistic analysis. The main charac-
teristics are outlined below, and further details are given in Stewart, 2009 [152].

The arrival process defines how customers arrive at the service facility (e.g. singly or in batches)
and how these arrivals are distributed in time. Throughout this thesis it is assumed, if not otherwise
stated, that customers arrive at random with mean arrival rate λ, in a Poisson manner, so the inter-
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arrival times are independently and exponentially distributed.

The queue discipline describes the order in which customers enter and leave the queue. This may be
on a “first-in-first-out” (FIFO) basis, “first-in-last-out” (FILO) basis, “random-in-random-out”
(RIRO) basis or in terms of priority.

The service mechanism outlines the resources needed for service to occur. The service time distri-
bution defines how long the service will take, whilst other parameters such as the number of servers
available, and whether the servers are in series (each server has a separate queue) or in parallel (one
queue for all customers), must all be known in advance before analysis may be performed. In
systems where the exponential distribution is assumed to provide an accurate representation of the
distribution of service times, its Markovian (memoryless) property allows one to map the system
to a continuous-time Markov chain which can be solved analytically. Similarly to the Poisson dis-
tribution, the exponential distribution is defined by a single parameter. To distinguish between the
mean service time and the mean service rate, it is common to denote the mean service rate by µ, so
that 1

µ
represents the mean service time.

Additional notation commonly used in the literature to analyse queueing systems, and that will be
followed throughout this thesis, may be outlined as follows:

• Pn, n = 0, 1, 2, . . . : the probability that there are n customers in the system

• c: the number of service channels

The quantity ρ = λ
cµ

, which is referred to as server utilisation rate, traffic intensity or load per
server, is a common measure of interest that represents the behaviour of the queue over time. Es-
sentially, if ρ < 1 then the servers are able to process customers faster than the rate at which they
arrive, on average, so the queue will not grow infinitely long. If the system runs with ρ < 1 for
an adequate period of time with stable mean service and inter-arrival rates, then all systems char-
acteristics will eventually settle down and the system will run at a consistent level, considered as
‘stable’ or ‘stationary’. When the system reaches this point of time, it is said to be operating in
a steady-state fashion. It is this steady-state behaviour which has been intensively researched and
is well-understood in the literature, since closed-form formulas have been derived to evaluate per-
formance measures under these stationary conditions. The analysis of systems with non stationary
arrival rates is however far more complex (Green et al., 2006 [71]) and an overview of the literature
on this topic is given in Section 4.2.1.

In 1953, a standard for the characterisation of queues was introduced by Kendall [98]. Kendall’s
notation provides a convenient classification of a queueing system in the form A|B|C|D|E where:

(A) The inter-arrival distribution:
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• M represents exponential, independent and identically distributed (IID) inter-arrival
times;

• D represents deterministic (constant) IID inter-arrival times;

• Ek represents Erlang (with parameter k) IID inter-arrival times;

• G represents general IID inter-arrival times;

(B) The service time distribution (again commonly categorised as M,D,Ek or G. Phase-type dis-
tributions may also be used to specify systems with inter-related Poisson processes occuring
within phases);

(C) The number of servers;

(D) The capacity of the system;

(E) The queue discipline e.g. FIFO, FILO or RIRO;

For example in the M |M |1|∞|FIFO queueing system, M typically denotes Markovian inter-
arrival / service times (i.e. exponentially distributed) and FIFO denotes the queue discipline
first-in first-out, with no restriction on the capacity of the system and one server.

Kendall’s notation is commonly simplified to list only the first three characters A|B|C. In this
format it is assumed that the queue discipline is FIFO, and no limits are imposed on the system
capacity.

The M/M/c model is one of the most widely researched models in the classic queueing literature
since it is simultaneously capable of capturing randomness in arrival and service times. This permits
the number of servers to be greater than one, and has the appealing benefit of a tractable steady-
state solution. It represents a system with a single queue in which customers arrive at, and possibly
queue, before being served by one of c servers. Arrivals occur according to a time-homogeneous
Poisson process with a constant rate, and the service rate has an exponential distribution with a
constant mean time. Such a system may be modelled as a basic birth-death process as described
below (Stewart, 2009 [152]).

A birth-death process can be considered as a continuous time stochastic counting process
{N(t), t ≥ 0}. Letting Pn(t) = Prob{N(t) = n} be the probability that the system is in state n at
time t, the transition diagram of the birth-death process is illustrated in Figure 1.2. When a birth
occurs, the system goes from state n to n+ 1 and when a death occurs it conversely goes from state
n to n− 1. The process is specified by birth rates {λi}i=0,...,∞ and death rates {µi}i=1,...,∞
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Figure 1.2: State diagram of a birth-death process

In queueing systems that directly model the behaviour of people, who arrive at a service facility
requiring a specific service to be performed, the number of customers in the system is an appropriate
state variable; Pn(t) can be used to denote the probability that there are n customers in the system
at time t. If λn does not depend on the number of customers in the system, then λ can be used
to represent the mean arrival rate of customers. If µ represents the mean service rate provided
at each of the c identical servers at all points in time, then µn = cµ for n ≥ c and µn = nµ

for 1 ≤ n < c. Under these conditions, the state probabilities evolve according to the following
differential-difference equations (Stewart 2009 [152]):

dP0(t)

dt
= −λP0(t) + µP1(t),

dPn(t)

dt
= −λPn−1(t) + (n+ 1)µPn+1(t)− (λ+ nµ)Pn(t), 1 ≤ n < c, (1.1)

dPn(t)

dt
= −λPn−1(t) + cµPn+1(t)− (λ+ cµ)Pn(t), n ≥ c.

Equation 1.1 is often referred to as the balance or Chapman-Kolmogorov forward differential equa-
tions. As the behaviour of the system settles to steady-state (as t → ∞) then P0(t) and Pn(t) are
independent of time, so dPn(t)

dt
= 0 for n = 0, 1, . . . , giving:

− λP0 + µP1 = 0,

λPn−1 + (n+ 1)µPn+1 − (λ+ nµ)Pn = 0, 1 ≤ n < c, (1.2)

λPn−1 + cµPn+1(t)− (λ+ cµ)Pn, n ≥ c.

The steady-state probabilities defining the mean number of customers in the system are given by
Equation 1.3 (for derivation of the summary measures, see Stewart 2009 [152]).

P0 =
[∑c−1

n=0
λn

n!µn
+
∑∞

n=c
λn

cn−cc!µn

]−1
Pn =

 λn

n!µn
P0, if 1 ≤ n ≤ c− 1

λn

cn−cc!µn
P0, if n ≥ c.

(1.3)

The characteristics of M/M/c systems permit relatively simple derivation of the number of cus-
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tomers in the queue (Lq), the expected waiting time in the queue (Wq). While these measures both
give insights into the degree of congestion that exists within a system, the distribution of the queue-
ing time, and in particular the probability of waiting greater than time x in the queue P (Wq > x)

is often of greater interest, although more difficult to obtain analytically (Utley and Worthington,
2011 [158]).

Numerous authors such as Hershey et al., 1981 [86] and Artalejo and Lopez-Herrero, 2001 [5]
have since progressed Erlang’s analysis of steady-state systems through deriving additional mea-
sures, including the moments of the length of a busy period and expected utilisation for constrained
network facilities. In service systems governed by targets that specify minimum required standards,
models can be set up to provide the performance of the system under various staffing levels and to
find the minimum number of staff required to ensure the expected measures exceed the threshold
levels (see Section 4.4). Yet, since the steady-state formulas are only capable of giving a single
recommendation of an optimal nursing level (as they can only be applied to situations where the
arrival of customers is strictly stationary), the earlier papers tend to place greater emphasis on sys-
tem insights than the use of performance measures for this type of exploratory investigation.

Whilst much literature is devoted to the analysis of service systems with constant mean arrival and
service rates (Green and Kolesar, 1991 [66]), most actual systems today are subject to time-varying
demand, where arrival rates and the number of servers vary throughout the period of operation.
Since admissions of elective patients to Critical Care Units are time dependent, Section 4.2.1 will
provide more insight to time-dependent queueing theory.

1.4 Queueing Theory in Healthcare and Similar Environments

The use of queueing theory in a healthcare setting was rarely used until the pioneering work of
Bailey, 1952 [10] appeared. In this paper queueing theory was used to develop an out-patient
clinic scheduling system that gave acceptable results for patients (in terms of waiting time) and
staff (in terms of utilisation). Homogeneity of patients was assumed as far as their service time
distributions were concerned, and also it was assumed that all patients arrived for appointments
on time. In more recent years, a vast number of queueing models have been developed for use in
healthcare settings. Soon after, in 1954, a paper entitled “Queuing for Medical Care” was published
by Bailey [11]. The author relates his study of an inpatient facility to Erlang’s work on telephony
by considering patients as telephone calls and hospital beds as telephone channels. The length of
stay (LoS) is equivalent to the duration of the call. The author deduced the average waiting time
(through Erlang’s formula) and calculated the optimal number of beds required in the hospital. In
subsequent years and decades, research interest in healthcare modelling through queueing theory
has developed and there now exists a multitude of studies.
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A considerable body of research has shown that queueing theory can be useful in real-world health-
care situations, and some reviews of this work have appeared. McClain, 1976 [121] reviewed re-
search on models for evaluating the impact of bed assignment policies on utilisation, waiting time,
and the probability of turning away patients. Nosek and Wilson, 2001 [131] reviewed the use of
queueing theory in pharmacy applications with particular attention to improving customer satis-
faction. Customer satisfaction is improved by predicting and reducing waiting times and adjusting
staffing levels. Preater, 2002 [136] presented a brief history of the use of queueing theory in health-
care and points to an extensive bibliography of the research that lists many papers (however, it
provides no description of the applications or results). Green, 2006 [65] presented the theory of
queueing as applied in healthcare. The relationship between delays, utilisation and the number of
servers was discussed, including the basic M/M/c model, its assumptions and extensions, and the
applications of the theory to determine the required number of servers. Fomundam and Herrmann,
2007 [53] summarised a range of queueing theory results in the following areas: waiting time and
utilisation analysis, system design, and appointment systems. Their goal was to provide sufficient
information to analysts who were interested in using queueing theory to model a healthcare process
and who wanted to locate the details of relevant models.

The next section is an overview of research into using queueing theory as an analytical tool to pre-
dict how particular healthcare configurations affect delay in patient service and healthcare resource
utilisation.

1.4.1 Waiting Time and Utilisation Analysis

In a queueing system, minimising the time that customers have to wait and maximising the utili-
sation of the servers or resources (doctors, nurses, hospital beds, etc.) are conflicting goals. This
section is an overview of research into using queueing theory as an analytical tool to predict how
particular healthcare configurations affect delay in patient service and healthcare resource utilisa-
tion.

1.4.1.1 Reneging

When a patient is waiting in a queue, they may decide to leave the system because they do not wish
to wait any longer. Death on the waiting list is also an example of reneging. The probability that a
patient reneges usually increases with the queue length and the patient’s estimate of how long they
must wait to be served. In systems where demand exceeds server capacity, reneging is the only way
that a system attains a “state of dysfunctional equilibrium” (Hall et al., 2006 [79]).
An important example of such a system is an emergency department. Broyles and Cochran, 2007
[19] calculated the percentage of patients who left an emergency department without getting help
based on factors such as arrival rate, service rate, utilisation and capacity. From this percentage,
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they determined the resulting revenue loss.

It is possible to redesign a queueing system to reduce reneging. A common approach is to separate
patients by the type of service required. Roche et al., 2007 [139] found that the number of patients
who leave an emergency department, without being served, is reduced by separating out non-acute
patients and treating them in dedicated fast-track areas. Most of their waiting would be for tests or
test results after having first seen a doctor.

1.4.1.2 Bulking

Queueing system in which multiple customers arrive simultaneously and / or are served in groups
of random size are called Bulk Queueing Systems (sometimes Batch Queueing Systems).

Batch service
The concept of batch service was introduced by Bailey, 1954 [11]. In his influential study, it was as-
sumed that the inter-arrival rate followed the χ2 distribution and utilised imbedded Markov chains
to find the solution. He studied waiting times for an out-patient appointment with a hospital con-
sultant and concluded that if a clinic was held once per week and the consultant was prepared to
see at least one more patient than the average demand per week, then the average waiting time for
an appointment would not be greater than one week.

The following year, Downton, 1955 [42] published results which were complementary to the work
of Bailey. Dovnton calculated the variance of the waiting time distribution and was the first to
publish tables of summary statistics for waiting times.

In 1976, Griffiths and Cresswell [73] applied the theory of batch service queues to a Pelican cross-
ing. In this, the first application in this domain, several different aspects of the system mechanism
were considered, such as the distribution of the queue of cars and pedestrians.

Chaudhry et al., 1987 [25] considered the M/G(a, b)/1 queueing system. They employed the sup-
plementary variable technique to find the post-departure and arbitrary time instant probabilities,
and then used the results to find various summary measures including the mean queue length and
the mean waiting time in the system.

Griffiths, 1995 [72] applied batch service queueing theory to the Suez Canal in a case study paper.
The capacity of the Suez Canal was increased by 44%, by simply changing the cycle times from 24
to 48 hours.
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Batch arrival
One of the first researchers to study batch arrivals was Donald Gaver, 1959 [59]. He considered
the system whereby groups of customers arrived at a single service facility according to a station-
ary compound Poisson process and utilised embedded Markov chains to investigate the busy period.

Hawkes, 1965 [84] was the first to consider the time-dependent solution of a queue with bulk ar-
rivals operating with a priority setting. Laplace transforms were used to consider a case for two
classes of arrivals (priority and non-priority) and derived the equilibrium distribution (steady-state)
for both classes of arrivals, as well as the distribution of the number of customers remaining in the
system immediately after a departure occurred. The mean queueing times were also calculated for
the case where the service time distribution was Negative Exponential.

One of the first explicit case study papers using the batch arrival queueing in a clinical setting was
published by Lopezsoriano et al., 1981 [114]. Different hospital departments released their staff
at different times for their lunch, enforcing a batch arrival queueing scenario. The authors sought
to optimise the system such that long queues and excessive waiting times for customers during the
lunch period were minimised. ‘What if’ type scenarios were tested and the performance of the
system was evaluated.

Jacob et al., 1988 [94] discussed a queueing system with General inter-arrival and service times,
one service facility and finite waiting space. The authors suggested two different rejection strategies
which come into force when a batch arrives while there is not enough space in the buffer: either the
entire batch is rejected or only the excess is rejected. The rejection probabilities were calculated
and the waiting time distribution was considered.

Banik and Gupta, 2007 [12] investigated the system whereby customers arrived in batches to a finite
buffer single server queue. The time between batch arrivals had a General distribution and the batch
size was random. The service process was described as a Markovian service process. This model
was then used to analyse two customer rejection policies, namely partial batch rejection and total
batch rejection. Steady state distributions were developed at specific and arbitrary time instants.
They obtained performance measures including the blocking probabilities and summary measures
including waiting times.

1.4.1.3 Variable Arrival Rate

Although most analytical queueing models assume a constant customer arrival rate, many health-
care systems have a variable arrival rate. In some cases, the arrival rate may depend upon time but
be independent of the system state. For instance, arrival rates change due to the time of day, the



Chapter 1 INTRODUCTION 12

day of the week, or the season of the year (see extended literature review in Section 4.2.1). In other
cases, the arrival rate depends upon the state of the system (see Chapter 6).

Worthington, 1987 [169] presented an M(λq)/G/c model for service times of any fixed probabil-
ity distribution and for arrival rates that decreased linearly with the queue length and the expected
waiting time. The arrival rate may increase over time due to population growth or other factors.
Rosenquist, 1987 [141] studied how an increase in patient arrival rate affected waiting times and
queue length for an emergency radiology service.

A system with congestion discourages arrivals. Worthington, 1991 [170] suggested that increasing
service capacity (the traditional method of attempting to reduce long queues) had little effect on
queue length because as soon as patients realize that waiting times would reduce, the arrival rate
increases, which increases the queue again.

1.4.1.4 Priority Queueing Discipline

In most healthcare settings, unless an appointment system is in place, the queue discipline is either
first-in-first-out or a set of patient classes that have different priorities (as in Critical Care Units,
which treats emergency patients with life-threatening injuries before elective patients).

Taylor et al., 1969 [155] modelled an emergency anaesthetic department operating with priority
queueing discipline. They were interested in the probability that a patient would have to wait more
than a certain amount of time to be served.

Haussmann, 1970 [83] investigated the relationship between the composition of prioritized queues
and the number of nurses responding to inpatient demands. The authors found that a slight increase
in the number of patients assigned to a nurse and / or a patient mix with more high-priority demands
resulted in very large waiting times for low priority patients.

McQuarrie, 1983 [123] showed that it is possible, when utilisation is high, to minimise waiting
times by giving priority to clients who require shorter service times. This rule is a form of the
shortest processing time rule that is known to minimise waiting times. It is found infrequently in
practice due to the perceived unfairness (unless that class of customers is given a dedicated server,
as in supermarket check-out systems) and the difficulty of estimating service times accurately.
Worthington, 1991 [170] analysed patient transfer from outpatient physicians to inpatient physi-
cians. The patient was assigned one of three priority levels. Based on the priority level, there was a
standard time period before which a referred patient should be scheduled to see the inpatient physi-
cian. The model assumed sufficient in-patient capacity to treat the highest priority category within
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its standard time, and proposed sharing the remaining service capacity amongst the lower priority
levels in such a manner that they each exceeded their standard target times by the same percentage.

Siddhartan et al., 1996 [150] proposed a priority discipline for different categories of patients and
then a first-in-first-out discipline for each category. They found that the priority discipline reduces
the average wait time for all patients; however, while the wait time for higher priority patients re-
duced, lower priority patients endured a longer average waiting time.

Tuft and Gallivan, 2001 [157] used a computer simulation to compare three years’ operation of
different admission strategies: a first-come-first-served booking system, a triage booking system,
and a waiting list system in which admissions were strictly ordered according to priority stratum.
It was shown that the most effective system for minimising priority weighted delay is, at the time
of outpatient assessment, to schedule surgery for the high priority patients for the first available
operating slot, while assigning low priority patients to the most delayed slot that is feasible.

When arriving patients are placed in different queues, each of which has a different service prior-
ity, the queue discipline may be preemptive or non-preemptive. In the latter, low priority patients
receive service only when no high priority patients are waiting, but the low priority patient who
is receiving service is not interrupted if a high priority patient arrives and all servers are busy. In
the preemptive queue discipline, however, the service to a low priority patient is interrupted in this
event. Green, 2006 [65] presented models for both queue disciplines.

Fiems et al., 2007 [52] investigated the effect of emergency requests on the waiting times of sched-
uled patients with deterministic processing times. It was a pre-emptive repeat priority queueing
system in which the emergency patients interrupted the scheduled patients and the latter’s service
was restarted as opposed to being resumed. The authors modelled a single server queue and di-
vided time into equally long slots. During periods when there is an emergency interruption, it was
assumed that no server was available for non-emergency patients.

1.4.1.5 Blocking

Blocking occurs when a queueing system places a limit on queue length. For example, an outpa-
tient clinic may turn away walk-in patients when its waiting room is full. In a Critical Care Unit,
where patients can wait only in a bed, the limited number of beds may prevent a Unit from accept-
ing patients.

Kabak, 1968 [95] was the first to consider c service facilities in this context when he developed the
M(n)/M/c batch arrival queue (with n arrivals in each batch). He examined the blocking prob-
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abilities for a loss system and a delay system, and calculated the mean and variance of the delay
time along with other numerical results.

McManus et al., 2004 [122] presented a medical-surgical Intensive Care Unit where critically ill
patients can not be put in a queue and had to be turned away when the facility was fully occupied.
This is a special case, where the queue length can not be greater than zero, which is called a pure
loss model (Green, 2006 [65]).

Koizumi et al., 2005 [104] found that blocking in a chain of extended care, residential and assisted
housing facilities resulted in upstream facilities holding patients longer than necessary. They anal-
ysed the effect of the capacity in downstream facilities on the queue lengths and waiting times of
patients waiting to enter upstream facilities. System-wide congestion could be caused by bottle-
necks at only one downstream facility.

Chydzinski and Winiarczyk, 2008 [28] considered the blocking probability in a finite-buffer queue
with arrivals following a batch Markovian process (BMAP). Firstly the authors gave a compre-
hensive description of the BMAP under consideration. They then derived an expression for the
transform of the blocking probability and demonstrated time-dependent and steady state character-
istics from this expression. Numerical results were provided for two different types of BMAP.

More detailed literature review specific to bed blocking subject will be included in Sections 5.2.4
and 6.5.4.2.

The second approach that succesfully addresses problems in the healthcare systems is simulation.

1.5 Simulation

Many previous researchers have developed simulation and queueing models to help manage bed
capacities in hospitals (Harper and Shahani, 2002 [82]; Gallivan and Utley, 2011 [57]; Dumas,
1984 [45]; Gorunescu et al, 2002 [62]; Cooper and Corcoran, 1974 [34]). The remainder of this
discussion of relevant previous research will now focus in particular on simulation models devel-
oped specifically for CCUs.

Discrete event simulation has been widely utilised in modelling Intensive Care Units (ICUs); for
example, Kim et al, 1999 [100] utilised a simulation model and queueing theory to describe activi-
ties in an ICU at a hospital in Hong Kong. Objectives of the initial study were to determine whether
the ICU has sufficient capacity. The authors concluded that the current ICU capacity of 14 beds is
sufficient to handle patients at the current arrival rates. Also, the reservation of some of the Unit’s
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beds for the sole use of elective patients was considered. Subsequent to this research, the simulation
model was updated and used to evaluate methods of managing the existing beds more efficiently
(Kim et al, 2000 [101]). It was found that the elective surgery patients caused the most disruption
to the Unit and so a number of bed reservation schemes were evaluated. It was suggested that some
ICU beds could be reserved for the exclusive use of elective surgery patients. It was proposed that
this would reduce the number of cancelled elective surgeries and the simulation model supported
this proposition.

The simulation model was utilised to explore the possibility of using elective surgery quotas (for
example one per day) in conjunction with a scheduling window (one or two weeks) to reduce the
demand fluctuations of patients requiring intensive care following elective surgical procedures and
thus reducing elective surgery cancellation rates (Kim et al, 2002 [99]). It was determined that the
combination of a daily quota schedule and reserving beds exclusively for elective surgery patients
can greatly reduce the number of cancelled surgeries with minimal negative consequences for the
other patients.

Classification and Regression Tree (CART) analysis is a very useful tool for the creation of similar
patient groups and has been utilised in many simulation models. Shahani et al, 2008 [148] utilised
CART analysis to create homogeneous groups of patients to feed into a simulation model. Several
‘what if’ scenarios were tested including an increase in capacity and the transfer of long stay pa-
tients onto a different ward.

Costa et al, 2003 [35] also used CART analysis to generate similar patient groups in the CCU.
Their model gave emergency patients priority status over elective patients. Also they showed that
capacity planning in the CCU can not simply be based on averages as this may generate an under-
estimation of resource needs during busy periods.

A dynamic simulation model was built of the CCU at the Cincinnati VA Medical Centre, Ohio by
Cahill and Render, 1999 [22] to model the time varying behaviour of a system. They tested several
alternative bed configurations to see whether a high bed occupancy level (81%) could be reduced
to something more acceptable. It was found that the addition of telemetry and respiratory care beds
would result in improved availability of ICU beds and that the addition of heart Emergency Room
(ER) beds would resolve the ICU access problems. Unexpectedly, the increased ICU bed availabil-
ity resulted in increased hospital bed utilisation and increased length of stay on the hospital service.
It was therefore concluded that targeted reductions in length of stay would be needed before the
implementation of the new plans.

In the Netherlands, Litvak et al, 2008 [113] constructed a model of several CCUs in the locality
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and tested the scenario of reserving a pooled number of beds across the region for emergency ad-
missions. The model could predict the optimal number of regional beds required for any given
acceptance rate of emergency admissions.

The question of the maximum number of elective surgeries administered each day to avoid diversion
or cancellations of surgeries was addressed by Kolker, 2008 [106]. The Unit under consideration
was large (51 beds), and the optimal number of surgeries scheduled each day was deemed to be four.

Optimal nursing requirements were addressed in [75] by Griffiths et al, 2004. A discrete event
simulation model of an ICU was built in Simul8 and various ‘what if’ scenarios relating to nurse
numbers were investigated.

1.6 Conclusions

Literature contained in this chapter has a general character and it highlights where and how queue-
ing theory can be used in healthcare environment. A more detailed literature review specific to
subjects described in this thesis is included in later sections:

• Simulation modelling of hospitals with special emphasis of modelling Critical Care Units
(Section 1.5)

• Time-dependent aspects in queueing theory (Section 4.2.1)

• Staff requirements (Section 4.4.2)

• Resource planning and bed allocation (Section 6.5.2)

• Game theory (Section 7.2)

1.7 Outline and Structure of Thesis

The primary objective of this study is to show how a mathematical modelling approach is able to
provide quantitative evidence to aid decision making in a critical care environment. Thus math-
ematical models of the Critical Care Unit (CCU) environment will be developed. Furthermore,
consideration will be given to the impact of collaboration or lack thereof between hospitals using a
game theoretical approach.

The research included in this thesis can be divided into three main parts as shown in Figure 1.3.
The first part will carry out an analysis of data provided by the University Hospital of Wales in
Cardiff (UHW) to determine arrival and service patterns, resource numbers and the flow of patients
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Figure 1.3: Thesis structure

through the Unit. Both computer simulation and theoretical queueing models will be considered.
The models will be utilised to suggest improvements to the running of Unit, potential cost-saving
measures, and the consequences of implementing certain new procedures such as admitting extra
elective patients at non-busy times.

The second project describes work undertaken with managers from the Royal Gwent Hospital in
Newport and at the Nevill Hall Hospital in Abergavenny. Data from both CCUs will be analysed to
define arrival and service processes. A theoretical queueing model will be considered which will be
used to investigate the significance of combining the two units. The model will be also utilised to
advise on the number of beds the new combined unit should have in order to satisfy targets quoted
by the hospital managers.

In the final part of the thesis, a game theoretical model will be proposed of two CCUs to study the
effect of patient diversion. To investigate the impact of patients transfers, a Markov chain model
of the two CCUs will be set-up, each admitting two arrival streams: namely, their own patients and
transfers from other CCU.



Chapter 2

Summary Statistics of Patients’ Flow
Through the Critical Care Unit at the
University Hospital of Wales

2.1 Introduction and Objective of the Study

It is intended that this chapter gives an insight of how the Critical Care Unit (CCU) at the Univer-
sity Hospital of Wales in Cardiff (UHW) operates. It will describe the importance of having critical
care resources, including accessible beds and nurses available. The work described in Section 2.3
analyses the actual data from the CCU at the UHW to determine arrival and service patterns, re-
source numbers and the flow of patients through the Unit. Also, the main highlight of this chapter is
that elective patients have very different profiles of admission and duration of stay from emergency
patients; therefore any analysis should account for two different patient categories.

The primary objective of this project is to develop a mathematical model of the critical care envi-
ronment. Computer simulation and theoretical models will be utilised to suggest improvements to
the running of Unit, potential cost-saving measures, and the consequences of implementing new
procedures.

2.2 Background

This part of the thesis investigates activities at the CCU at the UHW, which is the amalgamation of
the previous ITU and HDU (High Dependency Unit). This amalgamation occurred in 2003 and the
Unit has been running as a combined Unit ever since. The beds in the Unit can either be used as
HDU or ITU beds. The CCU, which is the largest in Wales, consists of 24 beds with five additional
beds that can be utilised in periods of peak demand. The five additional beds, which are based in

18



Chapter 2 SUMMARY STATISTICS OF PATIENTS’ FLOW IN THE CCU AT THE UHW 19

the Unit, are only utilised in very exceptional circumstances. These beds are currently unfunded,
which means that to use any of them requires the employment of an agency nurse due to 1:1 or 1:2
nurse to patient ratio for most patients required in such a ward. Since it is the largest CCU in Wales,
very often patients from all over Wales are treated at this Unit. The CCU beds are very expensive
and a limited resource because they provide specialised monitoring equipment, a high degree of
medical expertise and constant access to highly trained nurses.

2.2.1 Patients

The CCU at the UHW is the largest CCU in Wales it provides specialist care for a great percentage
of the Welsh population. Patients are admitted onto the Unit from 6 different sources; Emergency
Surgery, Elective Surgery, A&E, the Wards, Other Hospital and X-Ray.

Intensive care beds are occupied by patients with a wide range of clinical conditions, but all have
a dysfunction or failure of at least one organ, particularly respiratory and cardiovascular systems.
Patients usually require intensive monitoring, and most need some form of mechanical or phar-
macological support such as mechanical ventilation or renal replacement therapy. As patients are
admitted from most of departments in the hospital, staff in the CCU need to have a broad range of
clinical experience and a holistic approach to patient care.

2.2.2 Data

The data set used in this study was provided by technical staff at the CCU of the UHW; it has fairly
complete records for a period of six years; between 1st of January 2004 and 31st of December 2009.

As of June 1989, the collection of data at the UHW has followed guidelines proposed by the Riyadh
ICU program (RIP), Medical Associated Software House Ltd, London, UK. The Riyadh predictive
algorithm was first developed at the Riyadh Armed Forces Hospital, Saudi Arabia in 1984. The
Riyadh ICU program formed the basis of the method by which many CCUs, including the CCU at
the UHW, collate their data currently.

There are two main databases contained within the Riyadh ICU program. The first contains detailed
patient information which is collected on the patients’ admission to the Unit and on their departure.
The second database contains data that is recorded on each day that the patient spends in the Unit.

Example of the information collected on admission to the CCU is: the patients’ personal details
(name, address, etc.). Note that personal details were not provided in our data set due to patient
confidentiality; individual patients are identified using their CCU identification number. Other in-
formation collected are: patient demographics (age, gender, etc.), the source of the patient’s arrival,
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date and time of arrival and over a hundred of physiological factors detailing the patient’s previous
and current health status such as body temperature or blood pressure, measured on each day the
patient stayed in the CCU. Data collected when the patient is discharged from the Unit includes
date and time of discharge, whether or not they have survived, and the destination to which they
are being discharged.

In the UHW there is a separate Paediatric Critical Care Unit, so only data on patients aged sixteen
or over were used in this analysis. With these restrictions, and the condition regarding date of ad-
mission (each patient must be admitted on or before the 31st December 2009) the data set available
for use in the analysis has 8433 patients records.

2.3 Summary Statistics

The main objective of the work described in this section is to determine appropriate statistical
distributions that could accurately represent the profile of arrivals to the CCU and lengths of stay
in simulation and queueing models, which will be described in Chapter 3.

2.3.1 Arrivals and Discharges

Recall that patients are admitted to the CCU from six different sources. They are: Emergency
Surgery, Elective Surgery, A&E, the Wards, Other Hospital and X-Ray. The percentages of patients
who were referred from each source of admission are presented in Figure 2.1.

Figure 2.1: Source of admission

The largest source of admission is Elective Surgery which accounts for 31% of admissions. The
smallest source of admittance is X-Ray which accounts for only 0.8% of all admissions.
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While categorisation of patients by source of admission may be useful for hospital administration
purposes, it is not entirely suitable from a modelling perspective. Categorising the patients ac-
cording to whether or not their admission was planned would be much more revealing. Thus, for
the remainder of this project the source of admission will be sub-classified into two groups; emer-
gency and elective admissions. Emergency admissions are the unplanned admissions, over which
the hospital has very little, or no, control. The second group are elective admissions, the planned
admissions that hospital has control over.

It is not clearly apparent from the data set whether an admitted patient is an emergency or elective
case, but some of the variables from the data set enable the patient type to by judged. The criterion
that patients must satisfy to be classed as an elective patient are as follows. The surgery type must
be elective, or post operative monitoring must have been planned. Also according to the Director
of the CCU, 20% of patients admitted from wards, other hospitals or X-Ray following surgery are
elective patients. Elective admissions account for 2687 cases, which is 31.86% of all admissions.
The rest of the patients are emergency cases and they account for 5746 cases, which is 68.14% of
all patients admitted.

The day of the week was considered for each admission. Table 2.1 indicates the percentage of
arrivals on each day of the week during the study period (312 weeks). The Unit is facing the high-
est influx of patients on Thursday and Friday following by the lowest proportion of patients being
admitted on Saturday and Sunday. To understand why this is the case, arrival data was split into
emergency and elective category of arrival and subsequently into day of arrival (Monday-Sunday).
The daily admittance patterns of patients by patient type are represented graphically in Figure 2.2.

Table 2.1: Percentage of admissions on each day of the week

Day of the week Percentage, %
Monday 13.92
Tuesday 15.22

Wednesday 15.16
Thursday 17.31

Friday 16.36
Saturday 11.31
Sunday 10.72

Clearly, the number of elective arrivals is dependent on the day of the week. There is a large num-
ber of admissions on Wednesday, Thursday and Friday, with very few admissions on the weekend.
This result is of course in accordance with expectations since surgeons would be required to work
antisocial hours to operate on elective patients admitted on weekends. Also, from Monday through
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Figure 2.2: Daily arrival patterns for emergency and elective patients

to Friday, on average more than one elective arrival occurs each day.

By investigating emergency arrivals it can be seen that they are fairly equally distributed during the
week. Recall that emergency patients are unplanned, possibly following a serious accident or rapid
deterioration in condition. Therefore, distinct patterns in daily arrival times would not be expected
for these patients.

Figure 2.3: Hourly peaks of emergency and elective admissions

Any hourly admission trends are also examined. Figure 2.3 displays the percentage of admissions
of emergency and elective patients, according to various hours of the day. There is an obvious
hourly arrival trend for elective patients. The majority of admissions of patients following elective
surgery are in the afternoon or evening, between 4pm and 9pm. The majority of surgeries are sched-



Chapter 2 SUMMARY STATISTICS OF PATIENTS’ FLOW IN THE CCU AT THE UHW 23

uled to start in the morning or afternoon and correspond to arrivals at the CCU in the afternoon or
evening, depending on the duration of the surgical procedure. However, there is no obvious hourly
trend for emergency patients except that there are very few admissions between 3am and 11am.

The arrival process needs to be analysed for later modelling purposes. Summary statistics for the
daily arrival numbers at the CCU are given in Table 2.2. On average 3.83 patients get admitted to
the CCU every day, but on some occasions data showed up to 12 admissions on one day.

Table 2.2: Summary statistics for the number of patients (elective plus emergency) admitted on
each day

Summary statistic Value
Mean 3.8312

Median 4
Standard Deviation 2.1136

Minimum 0
Maximum 12

On inspection of the frequencies of the number of admissions per day, it was suggested that the
distribution may be modelled by a Poisson distribution. Analysis was carried out to investigate
whether this was reasonable. The next task was to determine values for the parameter α which
would provide the most appropriate fit to the distribution of the number of arrivals at the CCU each
day. This was achieved using the optimisation tool: Microsoft Excel Solver. For the remaining of
this thesis it will be called Solver.

Solver uses the simplex method to solve linear problems. The optimal solution is generated via
an iterative method, where each solution has a lower objective function value than the previous.
Hence, the solution becomes closer to the optimal after each iteration. However, care must be taken
when searching for a global optimal solution, since local optima may be produced.

Consider now the formulation of the problem to be solved. Recall that values for the parameter
α which would provide the most appropriate fit to the distribution of the number of arrivals at the
CCU each day are required. The frequencies of the number of arrivals at the CCU on each day
have been obtained from the data. Corresponding probabilities from the Poisson distribution were
calculated by the probability distribution function (PDF):

P (X = x) =
e−ααx

x!
x = 0, 1, 2, ...

Using an Excel spreadsheet, the deviations squared of these probabilities generated from the Pois-
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son distribution and from the probabilities calculated from the actual data are evaluated. Finally, a
calculation is made of the sum of the square of the deviations, and input into a single cell.

Solver is utilised to find the optimum values for α . The derived value of α = 3.7611 gives a value
for the sum of deviations squared of 0.00104, hence a good fit. In this case and for the remaining
of this thesis no formal statistical tests will be performed to assess goodness of fits. The decision
whether the distribution describes the data well will be based on graphical representation and the
low value of the sum of deviations squared. An interesting observation was made by Raftery, 1995
[137], where he claimed that P-values and the tests based upon them give unsatisfactory results,
especially in large samples.

Figure 2.4 displays a frequency of the number of admissions on each day along with the fitted Pois-
son distribution. Visibly, the Poisson distribution underestimates the frequencies of low numbers
of admission and also high numbers of admissions, and consequently overestimates the frequency
of a mid-number of admissions per day. Thus, the Poisson distribution in its present form is not
quite suitable as a representation of the distribution of the number of daily arrivals to the CCU.

(a) PDF (b) CDF

Figure 2.4: Poisson fit to the distribution of all admissions

It is decided to consider the Weighted Poisson Distribution, which could increase the probability
of small and high number of admissions per day and decrease the probability of mid-number of
arrivals per day. Corresponding probabilities of the number of arrivals from the Weighted Poisson
distribution were calculated by the PDF:

P (X = x) = ω
e−α1α1

x

x!
+ (1− ω)

e−α2α2
x

x!
x = 0, 1, 2, ...

The Weighted Poisson distribution requires specification of three parameters, namely ω, α1, α2

where ω must be the number between 0 and 1 and α1, α2 must both be positive. Solver is used
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to minimise the sum of the squares of the deviation of the fitted distribution from the data. The cor-
responding optimum values are ω = 0.4518, α1 = 2.9022, α2 = 4.5958, giving a value for the sum
of the deviations squared of 0.00011. Figure 2.5 displays a frequency distribution of the number of
admissions on each day along with the fitted Weighted Poisson distribution. The Weighted Poisson
Distribution gives a much better fit than the standard Poisson Distribution.

(a) PDF (b) CDF

Figure 2.5: Weighted Poisson fit to the distribution of all admissions

Admissions to the CCU appear to occur at random, with the exception of elective patients. On
average 2.61 emergency patients and 1.22 elective patients are admitted every day. Since these
means differ significantly, the arrival process needs to be considered separately for emergency and
elective patients.

2.3.1.1 Emergency Admissions

Recall that distinct patterns in daily and hourly emergency arrival times are not noticeable. Table
2.3 gives the summary statistics for the number of emergency admissions per day.

Table 2.3: Summary statistics for the number of emergency admissions

Summary statistic Value
Mean 2.6081

Median 2
Standard Deviation 1.6852

Minimum 0
Maximum 10

The Poisson arrival assumption has been shown to be a good one in studies of unscheduled arrivals
(Young, 1965 [173]). However, on assessment of the frequencies, it is suggested that the presented
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distribution again may be modelled by a Weighted Poisson distribution. Values for the parame-
ters ω, α1, α2 which would provide the most appropriate fit to the distribution of the number of
emergency arrivals at the CCU each day were determined using Solver. The optimum values are
ω = 0.0333, α1 = 0.5918, α2 = 2.6540, which give a value for the sum of deviations squared
of 0.000049, confirming the goodness of fit. Figure 2.6 displays a frequency distribution of the
number of emergency admissions on each day, along with the fitted Weighted Poisson distribution,
which provides a very good fit.

Figure 2.6: Weighted Poisson fit to the distribution of emergency admissions

2.3.1.2 Elective Admissions

Table 2.4 summarises statistical results for the number of elective admissions per day. On average
1.22 patients following elective surgery will be admitted every day for post-operative monitoring,
but that number can rise to as high as seven.

Table 2.4: Summary statistics for the number of elective admissions

Summary statistic Value
Mean 1.2231

Median 1
Standard Deviation 1.2689

Minimum 0
Maximum 7

On examination of the frequencies, it is suggested that the presented distribution may also be mod-
elled by a Weighted Poisson distribution. The parameters are determined using Solver. The mini-
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mum sum of deviations squared of 0.000025 is obtained for the values: ω = 0.3534, α1 = 0.3891,
α2 = 1.6704. The suggestion that a Weighted Poisson Distribution would give very good fit to the
data is correct. Figure 2.7 displays a frequency distribution of daily elective admissions along with
the fitted Weighted Poisson distribution, which evidently gives a near perfect fit.

Figure 2.7: Weighted Poisson fit to the distribution of elective admissions

2.3.1.3 Discharges

The main objective of the work described in this section is to determine appropriate statistical
distributions that could accurately represent the profile of discharges from the CCU. Patients are
discharged from the CCU to four different destinations. They are: other wards, other hospitals,
home or they are discharged as a result of death. Mortality in the CCU during the study period
was on average 15.93% (the lowest mortality, 13.77%, being in year 2007, and highest, 18.94%,
in year 2009) with approximately a further 6.1% dying on the ward after discharge from the CCU.
Consider all discharges from the CCU. The percentages of patients’ destinations are presented in
Figure 2.8.

Figure 2.8: Post CCU destination
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Alive patients can be discharged from the CCU for many reasons. The four main reasons are:

• The patient does not need any sort of life support and is fit enough to be discharged to a ward.
47.44% of all patients are discharged for that reason.

• The patient get transferred to a different hospital (6.65%).

• The patient or patient’s family made a decision that they do not want to stay in the CCU any
longer (16.74%).

• Existing critical care patients are sometimes discharged in order to accommodate higher pri-
ority patients (2.25%).

Patient’s discharge could be delayed, because no beds were available on the destination ward
(28.62%).

Similarly to admissions, discharges are considered by day of the week. Figure 2.9 indicates the
percentage of discharges on each day of the week during the study period.

Figure 2.9: Daily discharge patterns

Visibly, there are fewer discharges on Saturday, Sunday and Monday, and the highest probability
of discharge is on Friday. The reason could be that during the weekend there are fewer qualified
clinicians in the Unit to decide whether the patient is fit enough to be discharged to a ward.

Any hourly discharge trends are now examined. In the data set the time of discharge was unavail-
able for 3 patients. It was assumed that these 3 patients were discharged at midday. Figure 2.10
displays the percentage of discharges, according to various hours of the day.
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Figure 2.10: Hourly discharge patterns

There is obviously an hourly discharge trend. The majority of patients will be discharged in the af-
ternoon between 2pm and 5pm and almost no discharges will appear in the night and early morning,
between 11pm and 10am. Duke et al, 2004 [44] investigated the link between the time of discharge
from CCU and mortality. Using Logistic regression, it was found that patients discharged during
the night had a higher mortality rate.

As noted in Section 2.3.1, most of patients will be admitted between 5pm and 9pm; hence most
discharges appear before 5pm in order to make a physical space for coming patients.

The number of patients that get discharged from the CCU each day was calculated; 24 patients
discharged after the study period (01/01/2004-31/12/2009) were not taken into consideration. Table
2.5 presents the summary statistics for the number of patients discharged each day.

Table 2.5: Summary statistics for the number of discharges each day

Summary statistic Value
Mean 3.8280

Median 4
Standard Deviation 2.1434

Minimum 0
Maximum 13
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2.3.2 Inter-arrival Time

The time between consecutive arrivals is defined as an inter-arrival time. The data set contains
time of admission, to the nearest minute, and the date of admission of each patient. After some
manipulation, this enables the inter-arrival times to be calculated to the nearest minute.

Summary statistics of the emergency patient inter-arrival times are calculated and are displayed in
the Table 2.6. The inter-arrival times are calculated to the nearest minute and then converted into
hours for ease of presentation.

Table 2.6: Summary statistics for the emergency inter-arrival times

Summary statistic Value (hours)
Mean 9.20

Median 6.08
Standard Deviation 9.53

Minimum 0
Maximum 78.75

The inter-arrival time distribution for emergency patients is modelled well using a Negative Expo-
nential distribution. The result is not unexpected since arrivals often follow a Negative Exponential
distribution (Coats, 2001 [30]) due to the random nature of emergency arrivals.

Figure 2.11 shows the comparison of the emergency inter-arrival distribution with the fitted Nega-
tive Exponential trendline.

Figure 2.11: Emergency patients inter-arrival times
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Next, consideration is given to the planned (elective) admissions; inter-arrival times are time-
dependent in nature as visible in Figure 2.12.

Figure 2.12: Elective patients inter-arrival times

Figure 2.12 shows that for many elective arrivals the inter-arrival time is between zero and four
hours. Another peak occurs between 22 and 26 hour, and then other smaller peaks at approxi-
mately 24 hour intervals. These observations are consistent with the practice of elective surgery
being performed at specific sessions spaced at 24 hour intervals. Inspection of the hour at which
each elective patient arrives to the CCU showed that the majority of arrivals occur in the early
evening with very few in the early hours of the morning.

Summary statistics of the elective patient inter-arrival times are calculated and are displayed in
Table 2.7.

Table 2.7: Summary statistics of the elective patient inter-arrival times

Summary statistic Value (hours)
Mean 19.62

Median 13.17
Standard Deviation 24.73

Minimum 0
Maximum 210

2.3.3 Length of stay

Length of stay (LoS) in CCU varies widely (Gallivan et al., 2002 [58]). Some patients may require
support for several weeks or months. These patients often have multiple organ failure. Patients
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whose surgery had been planned are likely to experience a shorter recovery period with more posi-
tive outcomes. Most elective patients are discharged within 1-2 days, after post-operative monitor-
ing. The outcome of patients who required emergency surgery is less predictable.

It is necessary to obtain more detailed observations to get an appropriate distribution of LoS. This
is possible by making use of information contained within the data set. The data set provides in-
formation regarding the dates and times of arrival and discharge of each patient. This enables the
LoS of each patient to be calculated, accurate to the nearest minute. In order to accurately calculate
duration of stay, date of admission and discharge first need to be converted to an integer value using
Excel function datevalue which converts a date in the form of text to a number that represents the
date in Excel. Secondly, time of admission and discharge also needs to be converted to a number
between 0 and 0.999988426 (0 is 12:00:00AM and 0.999988426 is 11:59:59) using Excel function
timevalue, which converts a text time to an Excel serial number for a time. The duration of time
spent in the CCU for each patient, in minutes, is calculated by subtracting converted admission
time from converted discharge time. For ease of presentation, these values are converted into days,
accurate to four decimal places.

The principal objective of this section is to determine a distribution that may accurately generate
the duration of time that each patient spends receiving critical care therapy. Consider the frequency
distribution of LoS of all patients in the CCU, presented in Figure 2.13. Each bar represents a
two day period. 148 observations with LoS greater than 40 days are excluded from the graph
for presentation purposes. Highly skewed LoS distributions have been observed in the literature
previously (Faddy and McClean, 1999 [50]; Gorunescu, 2002 [62] and Marshal and McClean,
2003 [118]).

Figure 2.13: Length of stay frequency distribution
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The data contains a vast range of values (from a minimum of 10 minutes to a maximum of 557
days). A number of relevant summary statistics of the data are considered; these are presented in
Table 2.8.

Table 2.8: Summary statistics of LoS (days)

Summary statistic Value (days)
Mean 5.8227

Median 2.1875
Standard Deviation 15.1485

Minimum 0.0069 (approx. 10 minutes)
Maximum 557.64

On assessment of the frequencies displayed and further analysis of the coefficient of variation (CV),
which is a normalized measure of dispersion of a probability distribution, it is deduced that the Neg-
ative Exponential would not provide a very good fit. The coefficient of variation is defined as the
ratio of the standard deviation to the mean, and for a Negative Exponential distribution the coeffi-
cient of variation is 1 or very close to 1. Clearly, CV = 15.1485

5.8227
= 2.6016 is greater than that of an

Exponential distribution, suggesting that a Weighted Negative Exponential Distribution might give
a better fit.

A Weighted Exponential, also known as a two-term mixed-exponential (Gorunescu et al., 2002
[62]), has the probability distribution function of the random variable x as follows:

f(x) = ωβ1e
−β1x + (1− ω)β2e

−β2x, x > 0 (2.1)

This distribution often deals adequately with data which has a significant probability of obtaining
a small value and a small probability of obtaining a large value (i.e. long tails).

Figure 2.14: A Weighted Negative Exponential queueing system

A pictorial representation of a Weighted Negative Exponential distribution is illustrated in Figure
2.14. Customers arrive singly and form a queue. With a probability ω, they enter the top branch
of the service facility where they will be served according to the Negative Exponential distribu-
tion with a mean rate β1. With a probability (1 − ω) they will enter the bottom branch of service
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where they will be served according to the Negative Exponential distribution with a mean rate β2.
The service rate for each branch has been chosen in order to ensure that the overall service rate is
β = 1

mean LoS .

The queueing system demonstrated in Figure 2.14 looks very similar to the Hyper-exponential
system with two phases; however, the mean service rates are different (as shown in Figure 2.15).
Customers enter the top branch of the service facility with probability ω and they will be served
according to the Negative Exponential distribution with a mean rate 2βω. They will enter the
bottom branch of service with probability (1 − ω) where they will be served according to the
Negative Exponential distribution with a mean rate 2β(1− ω). The service rates are influenced by
the probabilities that each branch is chosen, i.e. they both contain an element ω.

Figure 2.15: The Hyper-exponential queueing system with two phases

The probability distribution function of the random variable x having a two phase Hyper-exponential
distribution is:

f(x) = ω(2µω)e−2µωx + (1− ω) (2µ(1− ω)) e−2µ(1−ω)x, x > 0 (2.2)

The Weighted Negative Exponential provides a better fit than the Hyper-exponential distribution.
The Weighted Negative Exponential distribution requires specification of three parameters, namely
ω, β1, β2 where ω must be a number between 0 and 1 and β1, β2 must both be positive. The Hyper-
exponential distribution is less flexible as it has only two parameters ω and β. The next task is to
determine values for the parameters which would provide the most appropriate fit to the distribution
of the length of stay in the CCU. This is achieved using Solver.

Consider now the formulation of the problem to be solved. The frequencies of the length of stay in
the CCU for 0-2 days, 2-4 days, etc. were obtained from the actual data. Corresponding probabili-
ties from the Weighted Negative Exponential distribution are calculated by integrating the probabil-
ity distribution function (Equation 2.1) between the relevant limits (0-2, 2-4, 4-6, etc.), considering
any suitable values for the parameters of the distribution at this stage. Using an Excel spreadsheet,
the deviations of these probabilities generated from the Weighted Negative Exponential distribution
from the data are calculated. Finally, the sum of the squares of the deviations are calculated, and
input into a single cell.
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Solver is utilised and the determined parameter values are: ω = 0.5528, β1 = 0.1549, β2 = 0.6935,
which give a value for the sum of deviations squared of 0.000098. The Weighted Negative Expo-
nential distribution with the aforementioned parameters provides a near perfect fit to the distribution
of the length of stay in the CCU.

Although LoS data is a continuous variable, the simplest method for comparing the data with the
fitted distribution is to plot their respective frequency distribution on a single axis. Consider Figure
2.16, which presents the distribution of the length of stay in the CCU against the Weighted Negative
Exponential distribution.

Figure 2.16: Length of stay frequencies with fitted Weighted Negative Exponential distribution

The Weighted Exponential distribution provides a very good fit to the LoS distribution. This is a
significant contribution to the study of CCU LoS distributions since a number of authors (see, e.g.
Harper and Shahani, 2002 [82]) have commented on the difficulty of selecting an appropriate theo-
retical distribution to match CCU LoS observations. The physical interpretation of the two-branch
layout, inherent in the weighted-exponential systems, could well be that acute patients would be
observed in one branch, while longer stay patients would move through the other branch.

Recall that the expected length of stay in the CCU is dependent on the patients’ type. Thus, emer-
gency patients and elective patients length of stay will now be considered separately.

2.3.3.1 Emergency Patients

Emergency patients are admitted to the CCU following a severe accident or unforeseen complica-
tion. The recovery period for those patients in comparison with those whose surgery is planned
is expected to be longer. Also, the number of emergency patients who stayed in the CCU for a
long period of time (longer than 40 days) is much higher than the number of elective patients (133
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emergency patients compared to 15 elective patients).

Consider some summary statistics of the data regarding the length of stay that emergency patients
spent in the CCU.

Table 2.9: Summary statistics of the length of stay (days) for emergency patients

Summary statistic Value (days)
Mean 7.1109

Median 3.0468
Standard Deviation 17.6808

Minimum 0.0069
Maximum 557

The distribution of the length of stay that emergency patients spent in the CCU is now considered.
As previously suggested, the Weighted Negative Exponential distribution might provide a good fit.
Using Solver the optimum values of ω = 0.3381, µ1 = 0.0929, µ2 = 0.3366 are obtained and they
provide a very good fit to the distribution of the length of stay in the CCU for emergency patients.
The results in Figure 2.17 show a good fit to the data which the Weighted Negative Exponential
distribution gives. For most of the groups, the theoretical fit compares favourably with the actual
data.

Figure 2.17: Length of stay distribution with data and the Weighted Exponential fit for emergency
patients



Chapter 2 SUMMARY STATISTICS OF PATIENTS’ FLOW IN THE CCU AT THE UHW 37

2.3.3.2 Elective Patients

Patients admitted to the CCU following elective surgery are usually expected to make a quick
recovery. The mean LoS of patients in this category is 3.06 days compared with the overall average
of 5.81 days. Summary statistics of LoS in the CCU for these patients is presented in Table 2.10

Table 2.10: Summary statistics of the length of stay (days) for elective patients

Summary statistic Value (days)
Mean 3.0678

Median 1.0208
Standard Deviation 6.3725

Minimum 0.0243 (approx. 35 minutes)
Maximum 74.5520

Consider now the distribution of the length of stay that a patient recovering from elective surgery
spends in the CCU. As before, Solver is used to determine values for the required parameters. They
are ω = 0.4452, β1 = 0.2415, β2 = 1.5062, which give a value for the sum of deviations squared
of 0.0002. Again, the length of stay for elective patients is obtained from the Weighted Negative
distribution and results, together with the data are presented in Figure 2.18. For most of the groups,
the observed values compare favourably with the theoretical ones.

Figure 2.18: Length of stay frequencies with the Weighted Exponential fit for elective patients

Further analysis on whether the day of the week when the patient is admitted to the CCU has
an influence on elective patients’ length of stay is undertaken. It is concluded that if a patient is
admitted to the CCU on Saturday or Sunday their length of stay will be on average 2 days longer
comparing the length of stay of elective patient admitted on a weekday. In general, very few
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elective admissions take place at the weekends suggesting that their condition is very serious and
those patients very likely will require longer hospitalisation.

2.3.4 Bed Occupancy

The measure of bed occupancy is not provided directly by the Riyadh CCU Program, but can be
evaluated by examining the admission and discharge times. An initial daily bed occupancy pro-
file is developed using the date of the patients’ arrival and date of discharge. However, it became
obvious that this method generated an overestimation in the actual bed occupancy. Consider the
situation, where a patient is discharged from the CCU at 10am, leaving an empty bed. If the next
admission is at 4pm the same bed might be occupied. In this situation the number of beds occupied
for that day would be recorded as two even though this is clearly not the case. Thus a different
method of calculating bed occupancy is proposed.

A program written in Visual Basic reads in the number of patients that were in the Unit every
hour from 01/04/2004 to 31/12/2009 and bed occupancy just before midnight is output to an Excel
worksheet. The reason for omitting a period of three months (01/01/2004 to 31/03/2004) is to avoid
underestimation; patients could have been admitted for example on 31/12/2003 and stayed in the
Unit for a month. Records of that patient would not be included in the data set and therefore the
fact that the patient occupied a bed would have been skipped. The number of beds occupied on
each day from 01/04/2004 to 31/12/2009 is presented in Figure 2.19.

Figure 2.19: Midnight bed occupancy from January 2004 to December 2009

The mean number of beds occupied in the study period is 21.85 and standard deviation 3.65. Vis-
ibly, the number of beds occupied fluctuates dramatically, rising to 35 during busy periods and
dropping to as low as 9 at quiet times. The CCU has 24 beds with an additional five available for
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use at times of high demand. Initial analysis revealed that on 24% of occasions there were more
than 24 beds occupied and on 1.32% of occasions more than 29 beds occupied. On this 1.32% of
occasions, patients were most likely admitted onto so called ‘virtual beds’ in the Recovery Room
or in the Cardiac Intensive Care Unit. Also, another reason for that high bed occupancy could be
that when a patient dies it takes time for the nurses to prepare that bed for the next patient, which
means that patient would feasibly be waiting on a trolley for a period of time.

The weekly trends of bed occupancy are investigated and results are presented in graphical form
in Figure 2.20. Evidently, there is a pattern; the weekend bed occupancy is lower than during the
weekdays. Seasonal trends are also investigated; it appears that the CCU experiences an influx
of patients during the winter months (January, February, March) and have on average the highest
bed occupancy (22.86 beds occupied). During the summer months (July, August, September) the
CCU is not expected to experience such high bed occupancies; on average 20.62 beds are occupied
during the summer, compared with the spring, 21.34 beds and the autumn 22.63 beds.

Figure 2.20: Bed occupancy depending on the day of week

Year 2007 appeared to be the busiest year; the average number of occupied beds was 23.78, which
is 1.93 beds more than the overall mean. The next year, 2008, was the quietest; only 19.88 beds
were occupied on average.

Consider the frequency distribution of the bed occupancy in the CCU during the study period,
presented in Figure 2.21.
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Figure 2.21: Bed occupancy frequency distribution

One of the main difficulties which the Director of the CCU faces lies in the unpredictability of the
number of beds which will be occupied on any particular day. Figure 2.19 and 2.21 show a large
degree of variation in daily bed occupancy over a five years and 8 months period. As was noted
before, daily occupancy can be as low as 9, and as high as 35. This high degree of variability has
many important implications. For example:

• If all beds are occupied when an emergency admission occurs, then that patient’s condition
may worsen while action is taken to find a bed, possibly in another hospital some distance
away.

• If the number of nurses employed on a particular shift is insufficient, then agency nurses have
to be employed at a cost of about three times that of the hospital’s own nurses.

2.4 Conclusions

The main highlight of this chapter is that elective patients have very different profiles of admission
and duration of stay from emergency patients; therefore any analysis accounted for two different
patient categories. This chapter provided adequate fits to data which describe arrival processes and
durations of stay in the Unit for each patient category. It has been shown that the Weighted Poisson
distribution provided better fit for the daily number of arrivals than the Poisson distribution. Also,
the Weighted Negative Exponential provided closer fit than the Negative Exponential to the dura-
tion of stay in the CCU.

Information included in this chapter will be used in the next chapter to consider aspects of theoret-
ical and practical applications of mathematical modelling of the CCU.



Chapter 3

Mathematical Modelling of the Critical Care
Unit at the University Hospital of Wales

3.1 Introduction

Mathematical modelling is a tool used to investigate situations whereby actual experiments would
be impractical; for example, the modelling of future events or situations where cost would be an is-
sue. Both simulation modelling and theoretical queueing techniques will be utilised in this chapter,
which can help to improve the unit’s capacity utilisation at relatively low cost and at little risk.

Two main aims of this chapter are to suggest measures which may be implemented to increase the
throughput of patients in the Critical Care Unit (CCU) at the University Hospital of Wales (UHW),
and to determine ways in which the degree of variation in daily bed occupancy may be reduced.

3.2 Simulation Model of the Critical Care Unit

The variability of the CCU environment must be considered when planning and managing re-
sources. The development of a simulation model of the environment is thus an ideal approach.
Experimentation with new policies may be easily implemented at low cost and at little risk.

The principal objective of this section is to develop a model that is sufficiently detailed mathemati-
cally yet easily comprehensible to hospital managerial staff. The simulation model of the CCU was
built using Visual Basic for Applications for Excel (VBA). The model seeks to simulate the bed
occupancy of the CCU as well as considering various ‘what if’ scenarios. The main goals of ‘what
if’ scenarios were reducing variation of bed occupancy and increasing throughput of patients in the
CCU.

41
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The model was constructed to allow emergency and elective patients to arrive at the CCU. Each
patient type had a different arrival process and different length of stay profile. Detailed information
about admission patterns and duration of stay profiles used for this model is described in Section
2.3.1 and 2.3.3.

In order to replicate the real-life situation in the CCU, the simulation model contains a total of 29
(24 funded and 5 unfunded) CCU beds. As shown in Section 2.3.4 on some occasions there were
more than 29 beds occupied when patients were most likely have been admitted into so called ‘vir-
tual beds’. The simulation model does not allow any elective admissions when all beds are full and
it allows fewer emergency patients to be admitted.

The simulation model generates the arrival of emergency and elective patients at the CCU, with
each type of patient having a separate arrival process, as described in Section 2.3.1. To generate
the number of arrivals of emergency and elective patients per day a Weighted Poisson distribution,
with probability distribution function (PDF):

P (X = x) = ω
e−α1α1

x

x!
+ (1− ω)

e−α2α2
x

x!
x = 0, 1, 2, ...

is used, where ω is probability of given distribution and must be a number between 0 and 1; α1, α2

are the distribution parameters and both must be positive.

In the model, if a patient arrives at a time where there are unoccupied beds, they are admitted to the
CCU. If an arriving elective patient finds that all beds are occupied, their surgery is cancelled and
they are lost to the system (queueing is not allowed). If an arriving emergency patient finds that all
beds are occupied they are admitted to a different ward, for example Cardiac Care Unit, or are held
in the Recovery room following surgery.

Consider now the method by which the number of elective arrivals is generated in the model. As
shown in Section 2.3.1, the number of arrivals is dependent on the day of the week. Additional
analysis is necessary to obtain the appropriate distribution of the number of elective arrivals de-
pending on the day of the week. It is concluded that a Weighted Poisson Distribution is appropriate
to model the number of elective arrivals on each day of the week. The parameter values are found
using Solver by minimising squares of deviation between data and model, and are detailed in Table
3.1.

The ω parameter value for Wednesday, Saturday and Sunday are either very close to 0 or to 1 sug-
gesting that for these three days a simple Poisson Distribution would be appropriate. However, for
consistency reasons it is decided to sample the number of admissions from the Weighted Poisson
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Table 3.1: Parameter values for elective admissions depending on the day of the week

Day of the week Parameter values
Monday ω = 0.0869, α1 = 2.4948, α2 = 2.6540
Tuesday ω = 0.5156, α1 = 1.8343, α2 = 1.0505

Wednesday ω = 0.001, α1 = 1.7057, α2 = 1.7057
Thursday ω = 0.0393, α1 = 0.001, α2 = 2.0442

Friday ω = 0.9379, α1 = 1.5988, α2 = 3.2566
Saturday ω = 0.001, α1 = 0.4572, α2 = 0.4549
Sunday ω = 0.999, α1 = 0.2839, α2 = 2.0071

distribution.

Sampling from a Weighted Poisson distribution is not direct since it is a weighted sum of two
Poisson distributions with different parameters. The simulation model samples from the Poisson
distribution with parameter α1 with probability ω and from the Poisson distribution with parameter
α2 with probability (1 − ω). The simulation model generates a random number ∈ (0, 1] from the
Uniform distribution; then, if that random number is less than or equal to ω sampling from the
Poisson distribution with parameter α1 is undertaken; otherwise, sampling from the Poisson distri-
bution with parameter α2 is employed. Then, the next random number is generated to decide how
many arrivals should occur, if any. Using the theoretical cumulative distribution function for the
number of arrivals on each day of the week the number of admissions can be found. Depending on
the value of the random number and on the day of week, the number of elective admissions varies
from 0 up to 8 per day. Note that there is a restriction regarding admission of elective patients.
For example, if the bed occupancy on the previous day was 24 and the simulated number of emer-
gency admissions on the current day was four and the simulated number of elective admissions was
three, only one elective admission would be allowed, so that the bed occupancy does not exceed 29.

Consider now the emergency arrivals. An analysis of these arrivals, detailed in Section 2.3.1, did
not highlight any daily trends, thus there is no need to find the different parameters for each day of
the week. The values of parameters that describe the Weighted Poisson distribution are obtained
to be as follows: ω = 0.333, α1 = 0.5918, α2 = 2.6540. If there are 29 beds occupied less
emergency admissions will be permitted. Additional analysis was necessary to obtain an appropri-
ate distribution of the number of emergency arrivals when the bed occupancy on the previous day
exceeded 29. A separate distribution was fitted and it was concluded that the Poisson Distribution
was appropriate to model the number of those arrivals; the PDF is as follows:

P (X = x) =
e−ααx

x!
x = 0, 1, 2, ...
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The required α parameter that is found using Solver is α = 2.6624. To obtain the number of emer-
gency admissions per day the same procedure was used as explained above for elective patient case.
The number of emergency admissions varies from 0 to 11 per day, and lies between 0 and 6 if the
previous day bed occupancy was 29 or more.

Once the number of arrivals is calculated for each day it is necessary to simulate the length of stay
for each patient admitted. The duration of stay that each patient is expected to spend receiving
treatment in the CCU is highly dependent on the patient type, as described in Section 2.3.3. The
distributions of the length of stay for emergency and elective patients are considered in detail in
Section 2.3.3.1 and 2.3.3.2. The Weighted Negative Exponential distributions that were found to
provide the best fit to the actual data are utilised in the simulation model. The PDF of the random
variable x is:

f(x) = ωβ1e
−β1x+ (1− ω)β2e

−β2x, x > 0

The parameters that are used are displayed in Table 3.2.

Table 3.2: Parameter values for the length of stay distribution

Patient type Parameter value
Emergency ω = 0.2993, β1 = 0.1656 (days), β2 = 0.9811 (days)

Elective ω = 0.2566, β1 = 0.0636 (days), β2 = 0.3039 (days)

The simulation model samples from the Negative Exponential distribution with parameter β1 with
probability ω and from the Negative Exponential distribution with parameter β2 with probability
(1− ω). The simulation model samples a random number, then if that random number is less than
or equal to ω sampling from the Negative Exponential distribution with parameter β1 is undertaken
and the length of stay (LoS) is rounded to the nearest integer, where LoS was generated using the
inverse distribution method, as follows

LoS =

(
− 1

β1

)
log(u)

where u is a random number in the range (0,1]. If the random number generated is zero then the
simulation model re-samples it, since log(0) is not allowed.

If the generated random number is greater than ω then sampling from the Negative Exponential
distribution with parameter β2 is undertaken and the length of stay is LoS rounded to the next
nearest integer, where

LoS =

(
− 1

β2

)
log(u)
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Once the arrival day and length of stay is generated for each patient, the discharge date can be easily
obtained.

And, finally, the bed occupancy on each day is calculated by the following formula:

bed occupancy at midnight today = bed occupancy at midnight yesterday + number of emergency

admissions today + number of elective admissions today - number of discharges today.

3.2.1 Validation of the Simulation Model

Prior to obtaining results from the simulation model and drawing conclusions based on these re-
sults, assurance that the model provides good representation of the real-life situation is required.

The simulation model can not start with an empty system (i.e. no patients occupying any of the
beds). This is not representative of the real-life situation; the CCU is not emptied at the end of
each year. Therefore, the number of beds occupied at the beginning of each run would be dispro-
portionately low. In order to prevent these early readings influencing the overall mean outputs, it
was decided to start the system with some beds occupied; the integer random number between 0
and 29 was generated by the simulation model. As stated before, on average 2

3
of all patients are

emergency, so the number of beds that are occupied by emergency patients is the integer part of the
product 2

3
×(random number between 0 and 29). The number of beds that are occupied by elective

patients is simply that generated by the above random number, and then subtracting the number of
emergency patients. In a similar way, as explained previously, the length of stay is generated for
both patient types.

Running the simulation model for an insufficient number of days may produce unreliable results.
This is because each run of the simulation model, using different random numbers, produces vary-
ing results. To allow the model to enter steady state conditions, a warm up period equivalent to
3 months is included. Obviously, the greater the number of runs in a trial, the more accurate the
results. It is decided to run the model for 1,000,000 days to ensure stability in the results. It is a
sufficiently long period given the time to run.

As described previously, the model was constructed so that two types of patients arrive at the CCU
and are served according to a statistical distribution based on patient type. The arrivals and LoS of
each patients’ type will be considered independently.

3.2.1.1 Emergency Number of Arrivals

The distribution of the number of emergency admissions was analysed from the simulated numbers
of arrivals on each day and compared with the data. These are presented graphically in Figure 3.1.
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Figure 3.1: Distribution of the daily emergency admissions

Clearly, the simulation model gives a very good fit to the distribution of emergency arrivals. From
the data, the mean number of emergency admissions per day is 2.61 which compares favourably
with the simulation mean of 2.59. It can be concluded that the Weighted Poisson Distribution does
provide a very good fit to the data.

3.2.1.2 Elective Number of Arrivals

The distribution of the simulated number of elective admissions is compared with the data. These
are illustrated in Figure 3.2.

Figure 3.2: Distribution of the daily elective admissions

The simulation model slightly overestimates the number of days when there were no elective ad-
missions. From the data, the mean number of elective admissions is 1.22 and 1.09 from simulation.
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However, it is concluded that the overall number of elective admissions distribution is modelled
sufficiently using the Weighted Poisson distribution.

Overall it is concluded that the simulation model provides satisfactory arrival numbers for both
emergency and elective patients. The length of stay distribution for emergency and elective patients
will also be considered separately.

3.2.1.3 Emergency Length of Stay

The distribution of length of stay of emergency patients was produced from the simulated lengths
of stay and compared with the actual data. These are presented graphically in Figure 3.3.

Figure 3.3: Distribution of emergency length of stay

Visually, the simulation model gives a very good fit to the distribution of emergency length of
stay. From the data, the average length of stay is 7.00 days which compares favourably with the
simulation mean of 6.93. It can be confirmed that the Weighted Negative Exponential distribution
does fit the data very well.

3.2.1.4 Elective Length of Stay

The distribution of simulated elective length of stay is compared with the data. These are illustrated
in Figure 3.4. Clearly, the simulation model provides a very good fit to the distribution of elective
length of stay. From the data, the average length of stay is 3.08 days which compares favourably
with the simulation mean of 2.93. It can be concluded that the Weighted Negative Exponential
distribution does fit the data very well.
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Figure 3.4: Distribution of elective length of stay

3.2.2 Results of the Simulation Model

Having developed a simulation model of the CCU based on actual data and having validated some
key outcomes of the model, it can now be utilised as an operational research tool.

The final result consists of comparing the bed occupancy profile from the data with the output from
the model. The model is run with 29 beds available. This resulted in 74% bed occupancy utilisation
rate compared with observed rate of 75%. Recall that on 1.32% of occasions there were more than
29 beds occupied. In the simulation model it appeared that on 2.27% of occasions bed occupancy
was higher than 29, and in fact there were as many as 36 patients at any one time. The main reason
for this is the same as in the data, patients are allowed to queue on trolleys if the hospital staff know
there will be a bed available in the CCU shortly.

The measures that are examined are: mean and standard deviation of bed occupancy. The mean and
the standard deviation of bed occupancy, according to the data, was 21.85 and 3.65 respectively,
compared with 21.51 and 4.28 respectively, according to the simulation. The results of the simula-
tion model are compared with the data and are presented in Figure 3.5.

The bed occupancy distribution displayed in Figure 3.5 is comparable with the actual bed occu-
pancy profile, and hence it is concluded that the simulation model provides a reasonably accurate
representation of the real-life CCU activities. However, the simulation model overestimates the
low bed occupancy (between 0 and 18) and high bed occupancy (between 27 and 35) and under-
estimates mid-valued bed occupancy, which is the reason for a slightly higher standard deviation
comparing with the actual data. In order to investigate that variation in bed occupancy further,
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Figure 3.5: Distribution of bed occupancy

several ‘what if’ scenarios will be considered.

3.2.3 ‘What if’ Scenario #1

The previous section detailed some initial results of the simulation model; however, no major alter-
nations were made to the model; arrival rates and duration of stay remained unchanged.

This section will examine the effect of implementing some new policies regarding cancellation of
elective surgeries. As has been previously mentioned, the CCU has an insufficient number of beds
to accommodate demand on all occasions, and sometimes elective surgeries may require cancella-
tion. Recall that the main method of control over the rate of admissions to the CCU is by means
of changing the admission rates of elective patients. A principle of the design of the simulation
model is that it does not allow any elective admissions when bed occupancy reaches high levels.
A point at which elective arrivals are beginning to be cancelled will be called the ‘cut-off’ point.
Since the number of funded beds in the CCU is 24, when bed occupancy is 24 or higher no elective
admissions are allowed. The proposed rule for the cancellation of elective procedures during busy
periods is incorporated into the model. If on any one day after admitting priority emergency pa-
tients, the number of occupied beds was greater or equal to 24, the number of elective admissions
was set to zero. It means that all planned elective surgeries for that day are cancelled and those
patients are lost to the system, since in this model no queueing is allowed.

The effect of that ‘what if’ scenario is highly influential. The measures that were again examined
are: mean and standard deviation of bed occupancy. The mean number and the standard deviation
of bed occupancy, according to the simulation, is 20.24 and 3.73 respectively. Unsurprisingly, the
average bed occupancy is now lower than in the data, since the model does not allow as many
elective admissions as previously. This is shown in Figure 3.6.
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Figure 3.6: Distribution of number of elective admissions with cut-off at 24

Clearly, the percentage of days when there were no elective admissions is very high (64%) and the
effect on bed occupancy is presented in Figure 3.7.

Figure 3.7: Distribution of bed occupancy with cut-off at 24

High bed occupancies are no longer overestimated by simulation, but clearly the proportion of low
bed occupancy is overestimated. This would be undesirable since each bed is a very expensive
and limited resource, and there are many people who have to wait to be admitted to the CCU for
post-operative treatment. Also, if for example, there are 20 nurses employed per shift and only ten
beds are occupied, there is potential for a large wastage in nursing cost. To rectify this problem a
second ’what if’ scenario is considered.

The implication of changes in the mode of operation of the CCU is now considered. Recall also
that the main method of control over the rate of admissions to the CCU is by means of changing
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the admission rates of elective patients. Recall that two of the principal aims of this study are
to increase the throughput of patients, and to reduce the variation in bed occupancy levels on a
day-to-day basis, so that more stability may be observed in the numbers of nurses needed per shift.

3.2.4 ‘What if’ Scenario #2

The second ‘what if’ scenario investigates the effect of increasing the number of elective admissions
by up to 4 per day whenever there are less than 24 beds occupied. That is, whenever there appears
to be sufficient spare bed capacity, then allowing extra (up to four) elective patients to be admitted
is suggested. For example, if there are currently 22 beds occupied, only two extra elective patients
would be allowed, since the cut-off at 24 beds. However, if there are 20 or less beds in use four extra
admissions are allowed. The question arose: is it realistic to expect patients facing elective surgery
to have that surgery brought forward at short notice (typically three days)? Discussions with clinical
staff indicate that this indeed may be possible. For example, transplant patients are aware that they
may be called for surgery at a very short notice if a donated organ becomes available. Likewise,
it may be possible to set up a pool of patients waiting for more general surgery, with agreement
reached beforehand with patients that their surgery may be performed sooner if they agree to join
the pool for call-up at three days or so notice.

Figure 3.8: Distribution of bed occupancy with cut-off at 24 and extra elective admissions at non-
busy times

The results of the simulation model are compared with the data and are illustrated in Figure 3.8.
Visibly, very low and very high bed occupancy levels are no longer overestimated and mid-valued
bed occupancy levels are higher than in the actual data. The mean bed occupancy increases to 22.6,
a 3.5% increase and the standard deviation is reduced to 3.00, a 17.8% decrease. The variation
of bed occupancy levels on a day-to-day basis was reduced significantly, which makes the system
more stable and decisions regarding the number of nurses needed per shift are easier to make. The
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throughput is increased from 1406 to 1473 patients per year, a 4.8% increase. Thus, a relatively mi-
nor increase in admissions of elective patients at non-busy times shows a improvement in variability
and throughput at no extra cost to the hospital.

3.2.5 Conclusions

The principal objective of this section was to develop a model that is sufficiently detailed mathe-
matically and easily comprehensible to hospital managerial staff. It is believed that this objective
has been achieved. Detailed analyses of arrival and length of stay profiles, presented in Section 2.3,
provided results of the simulation model of the CCU that correspond relatively well with the actual
CCU data.

Consider now a theoretical approach, whose objectives are the same as of the simulation model.

3.3 Analytical Model

3.3.1 Introduction

From the previous discussion, it is suggested that any mathematical model must cater for the two
categories of patients, both with regard to their admission rate and length of stay. Further, the
hospital states that it never permits a queue to occur for admission to the CCU. At first sight, this
appears to be an unlikely scenario. The explanation is that to avoid a queue forming the hospital
would either temporarily cancel elective admissions, make attempts to divert a potential admission
elsewhere, or create a ‘virtual bed’. This can be described as a trolley bed, possibly located outside
the CCU environment. With these matters in mind, a simple service model with no queueing al-
lowed is initially proposed.

This section will commence by considering a so called M2/M2/c/c/FIFO queue, taken to be a
system with random arrivals from two different streams and corresponding negative exponential
service times (length of stay) depending on patients’ type, c service channels (beds), capacity of
the system c and first-in-first-out queueing discipline.
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3.3.2 The Queueing Model M2/M2/c/c/FIFO

Figure 3.9: Schematic diagram illustrating the principal features of the queueing model

Figure 3.9 illustrates the system. Emergency patients arrive at random at mean rate λ1, and elec-
tive patients arrive at random at mean rate λ2. The mean length of stay of an emergency patient
is denoted by 1

µ1
, while that of elective patients is denoted by 1

µ2
. There are c service channels

(beds) available. Later, the application of this queueing model will be shown when there are 29
service channels available. No queues are allowed to form. The objective at this stage therefore is
to determine how daily bed occupancy varies, and importantly to investigate how that occupancy is
distributed amongst emergency and elective patients.

Let Pi,j(t) denote the probability that i emergency and j elective patients are present in the system
at time t. The various states of the system are denoted by the double suffix (i, j) for 0 ≤ i+ j ≤ c

and i, j ∈ N, where i corresponds to the number of emergency patients and j corresponds to the
number of elective patients. If there were no beds in use the only possible state of the system would
be: (0, 0), so zero emergency and zero elective patients. If there was one bed in use, the two possible
states of the system would be: (1, 0) or (0, 1), so one emergency and no electives or no emergencies
and one elective patient. If there were two beds in use, the three possible states are: (2, 0), (1, 1)

or (0, 2). If there were three beds in use, the four possible states are: (3, 0), (2, 1), (1, 2) or (0, 3).
Therefore if the system had only 3 beds available, the number of possible states of the system would

be: 1 + 2 + 3 + 4 = 10. As there are c beds available, this leads to
c∑

r=0

(r + 1) = (c+1)(c+2)
2

possible

states of the system. For example for 29 beds there are 465 possible states of the system. The
overall bed occupancy probability, Pn(t), at time t is given by:

Pn(t) =
n∑
i=0

Pi,n−i(t) for n = 0, 1, 2, ..., c
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The differential-difference equations to describe the system for c service channels (number of

beds) are set-up. The
c∑

r=0

(r + 1) equations can be categorised into seven types of the differential-

difference equations describing the system. They depend on the values of i and j and are as follows:

(1) For i = j = 0:

P0,0(t+ δt) =P0,0(t)[1− λ1δt][1− λ2δt]

+ P1,0(t)[1− λ1δt][1− λ2δt]µ1δt

+ P0,1(t)[1− λ1δt][1− λ2δt]µ2δt+ o(δt)

(2) For 1 ≤ i ≤ (c− 1) and j = 0:

Pi,0(t+ δt) =Pi,0(t)[1− λ1δt][1− λ2δt][1− iµ1δt]

+ Pi−1,0(t)[λ1δt][1− λ2δt][1− (i− 1)µ1δt]

+ Pi+1,0(t)[1− λ1δt][1− λ2δt](i+ 1)µ1δt

+ Pi,1(t)[1− λ1δt][1− λ2δt][1− iµ1δt]µ2δt+ o(δt)

(3) For i = 0 and 1 ≤ j ≤ (c− 1):

P0,j(t+ δt) =P0,j(t)[1− λ1δt][1− λ2δt][1− jµ2δt]

+ P0,j−1(t)[1− λ1δt][λ2δt][1− (j − 1)µ2δt]

+ P0,j+1(t)[1− λ1δt][1− λ2δt](j + 1)µ2δt

+ P1,j(t)[1− λ1δt][1− λ2δt][µ1δt][1− jµ2δt] + o(δt)

(4) For i+ j ≤ (c− 1) and i, j 6= 0:

Pi,j(t+ δt) =Pi,j(t)[1− λ1δt][1− λ2δt][1− iµ1δt][1− jµ2δt]

+ Pi−1,j(t)[λ1δt][1− λ2δt][1− (i− 1)µ1δt][1− jµ2δt]

+ Pi,j−1(t)[1− λ1δt][λ2δt][1− iµ1δt][1− (j − 1)µ2δt]

+ Pi+1,j(t)[1− λ1δt][1− λ2δt][(i+ 1)µ1δt][1− jµ2δt]

+ Pi,j+1(t)[1− λ1δt][1− λ2δt][1− iµ1δt][(j + 1)µ2δt] + o(δt)

(5) For i = 0 and j = c:

P0,c(t+ δt) =P0,c(t)[1− cµ2δt]

+ P0,c−1(t)[1− λ1δt][λ2δt][1− (c− 1)µ2δt] + o(δt)
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(6) For i = c and j = 0:

Pc,0(t+ δt) =Pc,0(t)[1− cµ1δt]

+ Pc−1,0(t)[λ1δt][1− λ2δt][1− (c− 1)µ1δt] + o(δt)

(7) For i+ j = c and i, j 6= 0:

Pi,j(t+ δt) =Pi,j(t)[1− iµ1δt][1− jµ2δt]

+ Pi−1,j(t)[λ1δt][1− λ2δt][1− (i− 1)µ1δt][1− jµ2δt]

+ Pi,j−1(t)[1− λ1δt][λ2δt][1− iµ1δt][1− (j − 1)µ2δt] + o(δt) (3.1)

At this point, only the steady-state solutions of these equations are considered; the time-dependent
aspect will be considered later in Section 4.2.

The steady-state equations may be written in the form shown below:

(1) For i = j = 0:

(λ1 + λ2)P0,0 = µ1P1,0 + µ2P0,1

(2) For 1 ≤ i ≤ (c− 1) and j = 0:

(λ1 + λ2 + iµ1)Pi,0 = λ1Pi−1,0 + (i+ 1)µ1Pi+1,0 + µ2Pi,1

(3) For i = 0 and 1 ≤ j ≤ (c− 1):

(λ1 + λ2 + jµ2)P0,j = λ2P0,j−1 + (j + 1)µ2P0,j+1 + µ1P1,j

(4) For i+ j ≤ (c− 1) and i, j 6= 0:

(λ1 + λ2 + iµ1 + jµ2)Pi,j = λ1Pi−1,j + λ2Pi,j−1 + (i+ 1)µ1Pi+1,j + (j + 1)µ2Pi,j+1

(5) For i = 0 and j = c:

cµ2P0,c = λ2P0,c−1

(6) For i = c and j = 0:

cµ1Pc,0 = λ1Pc−1,0
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(7) For i+ j = c and i, j 6= 0:

(iµ1 + jµ2)Pi,j = λ1Pi−1,j + λ2Pi,j−1 (3.2)

Theorem 3.3.1. The steady-state probability that there are i emergency and j elective patients

present with different arrival rates (λ1 and λ2) and different service rates (µ1 and µ2) in the system

is given by:

Pi,j =
1

i!j!
θ1
iθ2

jP0,0 (i = 0, 1, ..., c; j = 0, 1, 2, ..., c− i)

where

θk =
λk
µk
, k = 1, 2

P0,0 =
1

c∑
i=0

c−i∑
j=0

1
i!j!
θ1
iθ2

j

Proof.
The proof of this result is relatively straightforward, using an inductive approach. The required
algebraic manipulation for each of the steady-state Equations 3.2 is given below.

(1) For i = j = 0:

P0,0 =
µ1P1,0 + µ2P0,1

λ1 + λ2
using steady-state equation (1)

=
µ1θ1P0,0 + µ2θ2P0,0

λ1 + λ2
using the expression of Theorem 3.3.1

=
µ1

λ1
µ1

+ µ2
λ2
µ2

λ1 + λ2
P0,0

=
λ1 + λ2
λ1 + λ2

P0,0

=P0,0 �
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(2) For 1 ≤ i ≤ (c− 1) and j = 0:

Pi,0 =
λ1Pi−1,0 + (i+ 1)µ1Pi+1,0 + µ2Pi,1

λ1 + λ2 + iµ1

using steady-state equation (2)

=
λ1

1
(i−1)!θ1

i−1P0,0 + (i+ 1)µ1
1

(i+1)!
θ1
i+1P0,0 + µ2

1
i!
θ1
iθ2P0,0

λ1 + λ2 + iµ1

=
1
i!
θ1
i( iλ1
θ1

+ µ1θ1 + µ2θ2)P0,0

λ1 + λ2 + iµ1

=
1
i!
θ1
i(iµ1 + λ1 + λ2)P0,0

λ1 + λ2 + iµ1

=
1

i!
θ1
iP0,0 �

(3) For i = 0 and 1 ≤ j ≤ (c− 1):

P0,j =
λ2P0,j−1 + (j + 1)µ2P0,j+1 + µ1P1,j

λ1 + λ2 + jµ2

using steady-state equation (3)

=
λ2

1
(j−1)!θ2

j−1P0,0 + (j + 1)µ2
1

(j+1)!
θ2
j+1P0,0 + µ1

1
j!
θ1θ2

jP0,0

λ1 + λ2 + jµ2

=

1
j!
θ2
j( jλ2

θ2
+ µ2θ2 + µ1θ1)P0,0

λ1 + λ2 + jµ2

=

1
j!
θ2
j(jµ2 + λ2 + λ1)P0,0

λ1 + λ2 + jµ2

=
1

j!
θ2
jP0,0 �

(4) For i+ j ≤ (c− 1) and i, j 6= 0:

Pi,j =
λ1Pi−1,j + λ2Pi,j−1 + (i+ 1)µ1Pi+1,j + (j + 1)µ2Pi,j+1

λ1 + λ2 + iµ1 + jµ2

using steady-state equation (4)

=

λ1
(i−1)!j!θ1

i−1θ2
j + λ2

i!(j−1)!θ1
iθ2

j−1 + (i+1)µ1
(i+1)!j!

θ1
i+1θ2

j + (j+1)µ2
i!(j+1)!

θ1
iθ2

j+1

λ1 + λ2 + iµ1 + jµ2

P0,0

=

1
i!j!
θ1
iθ2

j
(
iλ1
θ1

+ jλ2
θ2

+ µ1θ1 + µ2θ2

)
λ1 + λ2 + iµ1 + jµ2

P0,0

=

1
i!j!
θ1
iθ2

j(iµ1 + jµ2 + λ1 + λ2)

λ1 + λ2 + iµ1 + jµ2

P0,0

=
1

i!j!
θ1
iθ2

jP0,0 �
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(5) For i = 0 and j = c:

P0,c =
λ2P0,c−1

cµ2

using steady-state equation (5)

=
λ2

1
(c−1)!θ2

c−1P0,0

cµ2

=
1

c!
θ2
cP0,0 �

(6) For i = c and j = 0:

Pc,0 =
λ1Pc−1,0
cµ1

using steady-state equation (6)

=
λ1

1
(c−1)!θ1

c−1P0,0

cµ1

=
1

c!
θ1
cP0,0 �

(7) For i+ j = c and i, j 6= 0:

Pi,j =
λ1Pi−1,j + λ2Pi,j−1

iµ1 + jµ2

using steady-state equation (7)

=
λ1

1
(i−1)!j!θ1

i−1θ2
jP0,0 + λ2

1
i!(j−1)!θ1

iθ2
j−1P0,0

iµ1 + jµ2

=

1
i!j!
θ1
iθ2

j
(
iλ1
θ1

+ jλ2
θ2

)
iµ1 + jµ2

P0,0

=

1
i!j!
θ1
iθ2

j (iµ1 + jµ2)

iµ1 + jµ2

P0,0

=
1

i!j!
θ1
iθ2

jP0,0 � (3.3)

This shows that the expression of Theorem 3.3.1 is a solution to the steady-state equations. Unique-
ness of this solution follows from the fact that the solution to these equations correspond to the
stationary distribution of the continuous Markov chain which can be expressed in matrix form as:

πQ = 0 with πe = 1

for the corresponding stochastic matrix Q. A continuous-time Markov chain can be discretized
since π(Q∆t + I) = π and hence π is the eigenvector corresponding to the eigenvalue λ = 1 for
the transition probability matrix of a finite discrete-time Markov chain. Therefore by the property
of stochastic matrix there exist unique π such that

∑n
i=1 πi = 1 [152].
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Now the results obtained for Pi,j (probability of having i emergency patients and j elective patients)
are compared with the data in Figure 3.10.

Figure 3.10: Comparison of analytical results with the data for Pi,j

It might be visually difficult to compare both graphs, therefore the difference between the data and
analytical results is obtained, and Figure 3.11 presents the difference.

Figure 3.11: Difference between analytical results and the data for Pi,j

Figure 3.10 shows close agreement when comparing the results from Theorem 3.3.1 and the data
for probability of having i emergency patients and j elective patients present in the system. Figure
3.11 confirms it; the maximum absolute value of the difference is 0.00704.
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An application of Theorem 3.3.1 is offered in Section 3.3.4.

The probability of the number of beds occupied, Pn, (irrespective of whether the occupants are
emergencies or electives) is obtained below:

Pn =
n∑
i=0

Pi,n−i

=
n∑
i=0

1

i!(n− i)!
θ1
iθ2

n−iP0 (using Theorem 3.3.1)

=
1

n!
P0

n∑
i=0

(
n

i

)
θ1
iθ2

n−i

=
1

n!
P0(θ1 + θ2)

n

=
1

n!
θnP0 (3.4)

where:
θ = θ1 + θ2, θ1 =

λ1
µ1

, θ2 =
λ2
µ2

P0 may then be evaluated in the usual way, using the fact that:

c∑
n=0

Pn = 1

Therefore:
P0 =

1∑c
n=0

1
n!
θn

Now, the obtained results for Pn are compared with the data. A program written in Visual Basic
calculates Pn for n = 0, 1, 2, . . . , 29 using Formula 3.4. The parameters that are needed are: λ1, λ2,
µ1 and µ2. The arrival and service rates that were described in Section 2.3 are now given in Table
3.3.

Table 3.3: Parameter values

Parameter Value
λ1 2.6081
λ2 1.2231
µ1 0.1406
µ2 0.3260

The results are now compared in Figure 3.12, which shows close agreement in the overall bed
occupancy levels when comparing the analytical results using Formula 3.4 with the actual data.
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Figure 3.12: Comparison of analytical results with the actual data

Note that the maximum bed occupancy is 29. However, as mentioned before in Section 2.3.4 it
can be as high as 35, thus the data needed standardising, so that the bed occupancy probabilities
between 0 and 29 sum to one.

By standardizing the data, the mean and standard deviation of bed occupancy change. They are now
21.73 and 3.52 respectively, which compares favourably with the analytical results (mean of 21.59
and standard deviation of 4.04); however, the variation in bed occupancy is now slightly higher.

Note that Formula 3.4 is in fact Erlang’s Loss Formula for the M/M/c/c queue (Stewart, 2009
[152]). Further investigation is undertaken regarding the connection between Pn and Pi,j . In fact,
the two independent admission streams (emergency and elective) may be combined into a single
input. Also, the two service rates may also be combined into a single service rate.

As previously stated λ1 and λ2 are two different arrival rates. Given the parameters, the overall
mean arrival rate is λ = λ1 + λ2. The mean service rate µ can be obtained by observing that the
mean service time 1

µ1
is experienced by a patient with probability λ1

λ1+λ2
, and 1

µ2
by a patient with

probability λ2
λ1+λ2

and so the mean service time is:

1

µ
=

1

µ1

λ1
λ1 + λ2

+
1

µ2

λ2
λ1 + λ2

(as a weighted mean)

=
λ1µ2 + λ2µ1

µ1µ2(λ1 + λ2)

=

λ1
µ1

+ λ2
µ2

λ1 + λ2

=
θ1 + θ2
λ

(letting λ = λ1 + λ2 and θk =
λk
µk

for k = 1, 2) (3.5)
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This gives the mean service rate:

µ =
λ

θ1 + θ2

and the steady state probabilities for the total number of customers in the system can be obtained
using well known results for the M/M/c/c queue with θ = θ1 + θ2.

3.3.3 The queueing model M2/M/c/c+m/FIFO

It has been seen from the data on bed occupancy that on some occasions (1.32%) the number of
beds occupied exceeds the number of beds available in the CCU. The CCU manager explained that
this could be due to a number of possibilities. For example, a patient could be treated in a general
ward temporarily with a critical care nurse in attendance, or a patient having finished surgery is held
in the Recovery room with an anaesthetist in attendance. For this reason, it is therefore worth look-
ing at the following type of queueing system: M/M/c/c+m/FIFO, wherem is small andm ∈ N.

Patients arrive at random at mean rate λ, where λ = λ1+λ2 and the overall mean LoS is denoted by
1
µ

and is given by Formula 3.5. There are c service channels and m available spaces in the queue.
Let Pn denote the probability that n patients are present in the system. As there are c + m beds
available, this leads to c + m + 1 states of the system. They can be categorised into five types of
the differential-difference equations describing the system with c service channels and additional
m spaces in the queue. The formula for Pn is known and given in Stewart, 2009 [152] and is as
follows:

Pn =

 1
n!
θnP0 if 1 ≤ n ≤ c

1
cn−cc!

θnP0 if c ≤ n ≤ c+m

and
P0 =

1
c−1∑
n=0

1
n!
θn +

c+m∑
n=c

1
cn−cc!

θn

where
θ = θ1 + θ2 =

λ1
µ

+
λ2
µ

A more complex system with two separate arrival streams of patients and combined service rate
will be now considered. The system is similar to the system illustrated in Figure 3.9, but now pa-
tients are allowed to be admitted even if all beds are occupied. Emergency patients still arrive at
random at mean rate λ1, and elective patients still arrive at random at mean rate λ2. The overall
mean LoS is denoted by 1

µ
and is given by Formula 3.5. There are c service channels available with

additional m spaces in the queue.
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Let Pi,j(t) denote the probability that i emergency and j elective patients are present in the system at
time t. The various states of the system are denoted by the double suffix (i, j) for 0 ≤ i+j ≤ c+m

and i, j ∈ N. As there are c + m beds available, this leads to
c+m∑
r=0

(r + 1) = (c+m+1)(c+m+2)
2

states

of the system.

The
c+m∑
r=0

(r + 1) equations can be categorised into 13 types of the differential-difference equations

describing the system with c service channels and additional m spaces in the queue. They depend
on the values of i and j and are as follows:

(1) For i = j = 0:

P0,0(t+ δt) =P0,0(t)[1− λ1δt][1− λ2δt]

+ P1,0(t)[1− λ1δt][1− λ2δt]µδt

+ P0,1(t)[1− λ1δt][1− λ2δt]µδt+ o(δt)

(2) For 1 ≤ i ≤ (c− 1) and j = 0:

Pi,0(t+ δt) =Pi,0(t)[1− λ1δt][1− λ2δt][1− iµδt]

+ Pi−1,0(t)[λ1δt][1− λ2δt][1− (i− 1)µδt]

+ Pi+1,0(t)[1− λ1δt][1− λ2δt](i+ 1)µδt

+ Pi,1(t)[1− λ1δt][1− λ2δt](i+ 1)µδt+ o(δt)

(3) For i = 0 and 1 ≤ j ≤ (c− 1):

P0,j(t+ δt) =P0,j(t)[1− λ1δt][1− λ2δt][1− jµδt]

+ P0,j−1(t)[1− λ1δt][λ2δt][1− (j − 1)µ]δt]

+ P0,j+1(t)[1− λ1δt][1− λ2δt](j + 1)µδt

+ P1,j(t)[1− λ1δt][1− λ2δt](j + 1)µδt+ o(δt)

(4) For i+ j ≤ (c− 1) and i, j 6= 0:

Pi,j(t+ δt) =Pi,j(t)[1− λ1δt][1− λ2δt][1− 2(i+ j)µδt]

+ Pi−1,j(t)[λ1δt][1− λ2δt][1− (i+ j − 1)µδt]

+ Pi,j−1(t)[1− λ1δt][λ2δt][1− (i+ j − 1)µδt]

+ Pi+1,j(t)[1− λ1δt][1− λ2δt](i+ j + 1)µδt

+ Pi,j+1(t)[1− λ1δt][1− λ2δt](i+ j + 1)µδt+ o(δt)
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(5) For i = 0 and j = c:

P0,c(t+ δt) =P0,c(t)[1− λ1δt][1− λ2δt][1− cµδt]

+ P0,c−1(t)[1− λ1δt][λ2δt][1− (c− 1)µδt]

+ P1,c(t)[1− λ1δt][1− λ2δt]cµδt

+ P0,c+1(t)[1− λ1δt][1− λ2δt]cµδt+ o(δt)

(6) For i = c and j = 0:

Pc,0(t+ δt) =P0,c(t)[1− λ1δt][1− λ2δt][1− cµδt]

+ Pc−1,0(t)[λ1δt][1− λ2δt][1− (c− 1)µδt]

+ Pc+1,0(t)[1− λ1δt][1− λ2δt]cµδt

+ Pc,1(t)[1− λ1δt][1− λ2δt]cµδt+ o(δt)

(7) For i+ j = c and i, j 6= 0:

Pi,j(t+ δt) =Pi,j(t)[1− λ1δt][1− λ2δt][1− 2cµδt]

+ Pi−1,j(t)[λ1δt][1− λ2δt][1− (i+ j − 1)µδt]

+ Pi,j−1(t)[1− λ1δt][λ2δt][1− (i+ j − 1)µδt]

+ Pi+1,j(t)[1− λ1δt][1− λ2δt]cµ

+ Pi,j+1(t)[1− λ1δt][1− λ2δt]cµ+ o(δt)

(8) For c+ 1 ≤ i ≤ c+m− 1 and j = 0:

Pi,0(t+ δt) =Pi,0(t)[1− λ1δt][1− λ2δt][1− cµδt]

+ Pi−1,0(t)[λ1δt][1− λ2δt][1− cµδt]

+ Pi+1,0(t)[1− λ1δt][1− λ2δt]cµδt

+ Pi,1(t)[1− λ1δt][1− λ2δt]cµδt+ o(δt)

(9) For c+ 1 ≤ j ≤ c+m− 1 and i = 0:

P0,j(t+ δt) =P0,j(t)[1− λ1δt][1− λ2δt][1− cµδt]

+ P0,j−1(t)[1− λ1δt][λ2δt][1− cµδt]

+ P1,j(t)[1− λ1δt][1− λ2δt]cµδt

+ P0,j+1(t)[1− λ1δt][1− λ2δt]cµδt+ o(δt)
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(10) For c+ 1 ≤ i+ j ≤ c+m− 1 and i, j 6= 0:

Pi,j(t+ δt) =Pi,j(t)[1− λ1δt][1− λ2δt][1− 2cµδt]

+ Pi−1,j(t)λ1δt[1− λ2δt][1− cµδt]

+ Pi,j−1(t)[1− λ1δt][λ2δt][1− cµδt]

+ Pi+1,j(t)[1− λ1δt][1− λ2δt]cµδt

+ Pi,j+1(t)[1− λ1δt][1− λ2δt]cµδt+ o(δt)

(11) For i = 0 and j = c+m:

P0,c+m(t+ δt) =P0,c+m(t)[1− cµδt]

+ P0,c+m−1(t)[1− λ1δt][λ2δt][1− cµδt] + o(δt)

(12) For i = c+m and j = 0:

Pc+m,0(t+ δt) =Pc+m,0(t)[1− cµδt]

+ Pc+m−1,0(t)[λ1δt][1− λ2δt][1− cµδt] + o(δt)

(13) For i+ j = c+m and i, j 6= 0:

Pi,j(t+ δt) =Pi,j(t)[1− 2cµδt]

+ Pi−1,j(t)[λ1δt][1− λ2δt][1− cµδt]

+ Pi,j−1(t)[1− λ1δt]λ2δt[1− cµδt] + o(δt)

The steady-state equations for each of the 13 categories may be written in the following form:

(1) For i = j = 0:

(λ1 + λ2)P0,0 = µP1,0 + µP0,1

(2) For 1 ≤ i ≤ (c− 1) and j = 0:

(λ1 + λ2 + iµ)Pi,0 = λ1Pi−1,0 + (i+ 1)µPi+1,0 + (i+ 1)µPi,1

(3) For i = 0 and 1 ≤ j ≤ (c− 1):

(λ1 + λ2 + jµ)P0,j = λ2P0,j−1 + (j + 1)µP0,j+1 + (j + 1)µP1,j
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(4) For i+ j ≤ (c− 1) and i, j 6= 0:

[λ1 + λ2 + 2(i+ j)µ]Pi,j = λ1Pi−1,j + λ2Pi,j−1 + (i+ j + 1)µPi+1,j + (i+ j + 1)µPi,j+1

(5) For i = 0 and j = c:

(λ1 + λ2 + cµ)P0,c = λ2P0,c−1 + cµP1,c + cµP0,c+1

(6) For i = c and j = 0:

(λ1 + λ2 + cµ)Pc,0 = λ1Pc−1,0 + cµPc+1,0 + cµPc,1

(7) For i+ j = c and i, j 6= 0:

(λ1 + λ2 + 2cµ)Pi,j = λ1Pi−1,j + λ2Pi,j−1 + cµPi+1,j + cµPi,j+1

(8) For c+ 1 ≤ i ≤ c+m− 1 and j = 0:

(λ1 + λ2 + cµ)Pi,0 = λ1Pi−1,0 + cµPi+1,0 + cµPi,1

(9) For c+ 1 ≤ j ≤ c+m− 1 and i = 0:

(λ1 + λ2 + cµ)P0,j = λ2P0,j−1 + cµP1,j + cµP0,j+1

(10) For c+ 1 ≤ i+ j ≤ c+m− 1 and i, j 6= 0:

(λ1 + λ2 + 2cµ)Pi,j = λ1Pi−1,j + λ2Pi,j−1 + cµPi+1,j + cµPi,j+1

(11) For i = 0 and j = c+m:

cµP0,c+m = λ2P0,c+m−1

(12) For i = c+m and j = 0:

cµPc+m,0 = λ1Pc+m−1,0

(13) For i+ j = c+m and i, j 6= 0:

2cµPi,j = λ1Pi−1,j + λ2Pi,j−1 (3.6)
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Theorem 3.3.2. The steady-state probability that there are i emergency and j elective patients

present with different arrival rates (λ1 and λ2) and combined service rate µ in the system where

queue of size m is allowed is given by:

Pi,j =

 1
(i+j)!

θ1
iθ2

jP0,0 if 1 ≤ i+ j ≤ c

1
ci+j−cc!

θ1
iθ2

jP0,0 if c ≤ i+ j ≤ c+m

where

µ =
λ

θ1 + θ2
, λ = λ1 + λ2

θk =
λk
µk
, k = 1, 2

Proof.
The proof of this result is relatively straightforward, using an inductive approach. The required
algebraic manipulation for each of the steady-state equations in Formula 3.6 is given in Appendix
A. �

P0,0 is calculated in the usual way using the fact that
c+m∑
i=0

c−i∑
j=0

Pi−j,j = 1.

P0,0 =
1

c∑
i=0

c−i∑
j=0

1
i!
θ1
i−jθ2

j +
c+m∑
i=c+1

c+m−i∑
j=0

1
ci−cc!

θ1
i−jθ2

j

3.3.4 Connection Between M2/M2/c/c/FIFO and M/M/c/c/FIFO

Recall Section 3.3.2 where two independent admission streams were combined into a single input
and similarly two service rates combined into a single service rate. There is a clear connection
between M2/M2/c/c/FIFO and M/M/c/c/FIFO type of queueing model. A simple derivation
of the steady state probabilities for the M/M/c/c/FIFO queue with two different arrival streams
and two different service rates will be presented in this section.

Consider the M/M/c/c queue with the following parameters:

λ the arrival rate

µ the service rate

c the number of servers

θ =
λ

µ
the service intensity

Pn the probability of having n beds occupied
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The following steady state probabilities are known (Stewart, 2009 [152]) to be:

Pn =
1

n!
θnP0 (3.7)

Consider the slight generalisation of this model, so that two service types are allowed. For each
service type an arrival rate is as follows: λ1 for type I customers, λ2 for type II customers and a
service rates: µ1 for type I customers and µ2 for type II customers. Let Pi,j denote the probability
of having i type I customers and j type II customers in the system.

Recall, as shown in Section 3.3.2, the mean arrival rate is given by λ = λ1 + λ2, and the mean
service rate:

µ =
λ

θ1 + θ2

The steady state probabilities can be obtained for the total number of customers in the system using
Formula 3.7 with θ = θ1 + θ2 (where θ1 = λ1

µ1
and θ2 = λ2

µ2
).

Using the definition of conditional probability:

Pi,j|i+j =
P(i,j)∩(i+j)

Pi+j
=

Pi,j
Pi+j

(3.8)

Rearranging Formula 3.8:
Pi,j = Pi+j × Pi,j|i+j (3.9)

where Pi,j|i+j is the probability of having i type I customers and j type II customers given i + j

customers in the system.

As discussed previously, Pi+j is given by Formula 3.7. Thus an expression for Pi,j|i+j is required.
Let p denote the probability that a server is used by a type I customer and q denote the probability
that a server is used by a type II customer. Then:

Pi,j|i+j =

(
i+ j

i

)
piqj =

(
i+ j

j

)
piqj (3.10)

as ordering of servers is not important.

Both p and q are functions of λ1, λ2, µ1, µ2 so that p = p(λ1, λ2, µ1, µ2) and q = q(λ1, λ2, µ1, µ2).
By rescaling, the problem can be reduced to the case µ1 = µ2 = 1, i.e. occupancy of the bed by
emergency and elective patient is the same in both cases, therefore:

p(λ1, λ2, µ1, µ2) = p(λ̂1, λ̂2, 1, 1)
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Thus, the expressions for λ̂1, λ̂2 are required. Type I customers arrive at rate λ1 and stay in the
system for 1

µ1
length of time. If their length of stay was now 1, the arrival rate would have to be

increased by a factor of 1
µ1

. Giving λ̂1 = λ1
µ1

, or equivalently λ̂2 = λ2
µ2

.
Therefore:

p =

λ1
µ1

λ1
µ1

+ λ2
µ2

and q =

λ2
µ2

λ1
µ1

+ λ2
µ2

(3.11)

Combining Equations 3.10 and 3.11, gives:

Pi,j|i+j =

(
i+ j

i

)( λ1
µ1

λ1
µ1

+ λ2
µ2

)i( λ2
µ2

λ1
µ1

+ λ2
µ2

)j

=

(
i+ j

i

)
(θ1)

i

(θ1 + θ2)i
(θ2)

j

(θ1 + θ2)j
(3.12)

=

(
i+ j

i

)
(θ1)

i(θ2)
j

(θ1 + θ2)i+j

Therefore Formula 3.9 gives:

Pi,j = Pi+j × Pi,j|i+j

=
1

(i+ j)!
(θ1 + θ2)

i+jP0
(i+ j)!

i!j!

(θ1)
i(θ2)

j

(θ1 + θ2)i+j

=
1

i!j!
(θ1)

i(θ2)
jP0 (where P0 = P0,0) (3.13)

as required.

3.3.5 The Multi-Class Mk/Mk/c/c/FIFO Queue

This section is a generalisation of Section 3.3.4, where only two service types were allowed. This
section will consider k ∈ Z service types. Each service type has an arrival rate λi and a service rate
µi for i ∈ [k]. Pj1,...,jk denotes the probability of having ji ∈ Z customers of type i in the system
for i ∈ [k].

Given the above parameters the mean arrival rate is: λ =
k∑
i=1

λi. The mean service rate µ can be

obtained by observing that a mean service time 1
µi

is by a customer with probability λi∑k
i=1 λi

and so
the mean service time is:
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1

µ
=

n∑
k=1

λk

µk
∑k

i=1 λi

=

∑n
k=1

λk
µk

∑k
i=1 λi∑k

i=1 λi∑k
i=1 λi

(as a weighted mean)

=

∑k
i=1

λi
µi∑k

i=1 λi

=

∑k
i=1 θi
λ

(letting θi =
λi
µi

for i ∈ [k]) (3.14)

this gives:

µ =
λ∑k
i=1 θi

and the steady state probabilities for the total number of customers in the system can be obtained
using Formula 3.7 with θ =

∑k
i=1 θi.

To obtain the Pj1,...,jk Formula 3.8 gives:

Pj1,...,jk = Pj1+···+jk × Pj1,...,jk|j1+···+jk (3.15)

As discussed before, Pj1+···+jk is given by Formula 3.7. Thus an expression for Pj1,...,jk|j1+···+jk
needs to be obtained. Let pi denote the probability that a server is occupied by a customer of type i
then:

Pj1,...,jk|j1+···+jk =

(
j1 + · · ·+ jk
j1, . . . , jk

) k∏
i=1

pjii (3.16)

as ordering of servers is not important and
(
j1+···+jk
j1,...,jk

)
is the multinomial coefficient of order k.

Since pi = pi(λ1, . . . , λk, µ1, . . . , µk) it is straightforward to obtain:

pi(λ1, . . . , λk, 1, . . . , 1) =
λi∑k
i=1 λi

Without loss of generality λi can be rescaled to get:

pi(λi, . . . , λk, µ1, . . . , µk) = pi(θ1, . . . , θk, 1, . . . , 1)
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and so:
pi(λi, . . . , λk, µ1, . . . , µk) =

θi∑k
i=1 θi

Combining Equations (3.7, 3.14 - 3.16) gives:

Pj1,...,jk =
1(∑k
i=1 ji

)
!

(
k∑
i=1

θi

)∑k
i=1 ji

P0

( ∑k
i=1 ji

j1, . . . , jk

) k∏
i=1

(
θi∑k
i=1 θi

)ji

=
1(∑k
i=1 ji

)
!

(
k∑
i=1

θi

)∑k
i=1 ji

(∑k
i=1 ji

)
!∏k

i=1 ji!

∏k
i=1 θi

ji(∑k
i=1 θi

)∑k
i=1 ji

P0

=
1∏k
i=1 ji!

k∏
i=1

θi
jiP0 (3.17)

(where P0 = P0,...,0) as required.

Therefore, the probability of having ji ∈ Z customers of type i in the system for i ∈ [k] having an
arrival rate λi and a service rate µi for i ∈ [k] is given by:

Pj1,...,jk =
1∏k
i=1 ji!

k∏
i=1

θi
jiP0

3.3.6 Queueing Model with Cut-off

Using the Formula 3.5 for the combined service rate µ, consideration is given to reducing variation
by not allowing any elective admissions when the bed occupancy reaches a pre-determined cut-off
point. The cut-off point is denoted by k. Consider the case when there is a restriction on the number
of patients allowed in the system. When considering the CCU, a restriction may well be placed on
the queue, with patients being referred elsewhere when bed occupancy levels become too high.
The differential-difference equations were set up to describe the system with c service channels
available. The difference between the differential-difference equations derived earlier (Formula
3.1) is that the formula for Pn, the probability of the number of beds occupied is considered, not
Pi,j as before. These equations can be categorised into five types as shown below.

(1) For n = 0:

P0(t+ δt) =P0(t)[1− λ1δt][1− λ2δt]

+ P1(t)[1− λ1δt][1− λ2δt]µδt+ o(δt)
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(2) For 1 ≤ n ≤ (k − 1):

Pn(t+ δt) =Pn(t)[1− (λ1δt+ λ2δt)][1− nµδt]

+ Pn−1(t)[λ1δt+ λ2δt][1− (n− 1)µδt]

+ Pn+1(t)[1− λ1δt](n+ 1)µδt+ o(δt)

(3) For n = k:

Pk(t+ δt) =Pk(t)[1− λ1δt][1− kµδt]

+ Pk−1(t)[λ1δt+ λ2δt][1− (k − 1)µδt]

+ Pk+1(t)[1− λ1δt](k + 1)µδt+ o(δt)

(4) For (k + 1) ≤ n ≤ c− 1:

Pn(t+ δt) =Pn(t)[1− λ1δt][1− nµδt]

+ Pn−1(t)[λ1δt][1− (n− 1)µδt]

+ Pn+1(t)[(n+ 1)µδt] + o(δt)

(5) For n = c:

Pn(t+ δt) =Pn(t)[1− nµδt]

+ Pn−1(t)[λ1δt][1− (n− 1)µδt] + o(δt) (3.18)

The steady-state equations are given below.

(1) For n = 0:

µP1 = (λ1 + λ2)P0

(2) For 1 ≤ n ≤ (k − 1):

(λ1 + λ2 + nµ)Pn = (λ1 + λ2)Pn−1 + (n+ 1)µPn+1

(3) For n = k:

(λ1 + nµ)Pn = (λ1 + λ2)Pn−1 + (n+ 1)µPn+1
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(4) For (k + 1) ≤ n ≤ c− 1:

(λ1 + nµ)Pn = λ1Pn−1 + (n+ 1)µPn+1

(5) For n = c:

nµPn = λ1Pn−1 (3.19)

Theorem 3.3.3. The steady-state bed occupancy probabilities, with a restriction on the number of

customers allowed in the system, with a cut-off point k is given by:

Pn =

 1
n!
θnP0, if n ≤ k

1
n!
θ1
n−kθkP0, if n > k

where

θ = θ1 + θ2 =
λ1 + λ2

µ

and

θ1 =
λ1
µ

; θ2 =
λ2
µ

Proof.
The proof is similar to that of Theorem 3.3.1 and is again done using an inductive approach. The
required algebraic manipulation for each of the Equations 3.19 is given in Appendix B. �

P0 was calculated in the usual way using the fact that
c∑

n=0

Pn = 1.

P0 =
1

1 +
∑k

r=1
1
r!
θr + θk

∑c
r=k+1

1
r!

(θ1)r−k

A program written in Visual Basic calculates the probabilities of each bed occupancy, Pn, where
n = 0, 1, . . . , 29, for different values of the cut-off parameter k. The arrival and service rate pa-
rameters used are given in Table 3.4. Note that elective service rate µ2 is not included since before
the cut-off both patients’ types are served, so the overall value of µ is used, and after cut-off only
emergency patients are served with rate µ1.

The results of the model are explored for different values of cut-off points, from 19 to 24. Figure
3.13 illustrates the comparison of observed bed occupancy probabilities with analytical results for
the cut-off chosen to be at 24 beds. As expected, high bed occupancy probabilities are no longer
overestimated.
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Table 3.4: Parameter values

Parameter Value
λ1 2.6081
λ2 1.2231
µ1 0.1406
µ 0.1718

Figure 3.13: Comparison of analytical results with the cut-off point at 24 and the original data

The effect of that ‘what if’ scenario is highly influential. The measures that are again examined
are: the mean and the standard deviation of the bed occupancy. These measures found for cut-off
points between 19 and 24 are presented in Table 3.5.

Table 3.5: Mean and standard deviation of the bed occupancy from the model for different values
of cut-off point

Cut-off point Mean Standard Deviation
19 18.57 3.12
20 19.03 3.17
21 19.47 3.24
22 19.89 3.34
23 20.27 3.45
24 20.62 3.57

Unsurprisingly, as the cut-off point increases, the mean and standard deviation of the bed occupancy
rise.
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3.3.7 Queueing Model with Cut-off and Extra Admissions

It is now necessary to consider the implications of the different changes in the mode of operation
of the CCU. Recall that the main method of control over the rate of admissions to the CCU is by
changing the admission rates of elective patients. The relationship between elective admissions and
bed occupancy levels has been studied before with the purpose of developing improved elective ad-
missions schedules (Gallivan and Utley, 2005 [56]).

The number of patients admitted (throughput) averaged 1406 per year and there was a considerable
degree of variation in the bed occupancy levels with a standard deviation of 3.57 beds. This section
will investigate a further model that allows for the increase of the average number of elective ad-
missions whenever there are between a and b beds occupied. That is, whenever there appears to be
sufficient spare bed capacity, then it is suggested that extra (here two) elective patients be admitted.
No elective admissions are allowed when there are more than k (cut-off point) beds occupied. New
differential-difference equations were set up again to describe the system. The system works in the
following way:

• If there are more than a and less than b beds occupied, the number of elective admissions is
increased by 2. The new mean elective arrival rate is denoted by λ′2.

• If there are more than b beds occupied and less than k, the number of elective admissions is
not changed.

• If there are more than k beds occupied, the number of elective admissions is set to zero.

The system with c service channels available is described by the set of the differential-difference
equations given in the following Equations 3.20.

(1) For n = 0:

P0(t+ δt) =P0(t)[1− λ1δt][1− λ2δt]

+ P1(t)[1− λ1δt][1− λ2δt]µδt+ o(δt)

(2) For 1 ≤ n ≤ (a− 1):

Pn(t+ δt) =Pn(t)[1− λ1δt][1− λ2δt][1− nµδt]

+ Pn−1(t)[λ1δt+ λ2δt][1− (n− 1)µδt]

+ Pn+1(t)[1− λ1δt][1− λ2δt](n+ 1)µδt+ o(δt)
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(3) For n = a:

Pn(t+ δt) =Pn(t)[1− λ1δt][1− λ′2δt][1− nµδt]

+ Pn−1(t)[λ1δt+ λ2δt][1− (n− 1)µδt]

+ Pn+1(t)[1− λ1δt][1− λ2δt](n+ 1)µδt+ o(δt)

(4) For (a+ 1) ≤ n ≤ b:

Pn(t+ δt) =Pn(t)[1− λ1δt][1− λ′2δt][1− nµδt]

+ Pn−1(t)[λ1δt+ λ′2δt][1− (n− 1)µδt]

+ Pn+1(t)[1− λ1δt][1− λ2δt](n+ 1)µδt+ o(δt)

(5) For n = b+ 1:

Pn(t+ δt) =Pn(t)[1− λ1δt][1− λ2δt][1− nµδt]

+ Pn−1(t)[λ1δt+ λ′2δt][1− (n− 1)µδt]

+ Pn+1(t)[1− λ1δt][1− λ2δt](n+ 1)µδt+ o(δt)

(6) For (b+ 2) ≤ n ≤ (k − 1):

Pn(t+ δt) =Pn(t)[1− λ1δt][1− λ2δt][1− nµδt]

+ Pn−1(t)[λ1δt+ λ2δt][1− (n− 1)µδt]

+ Pn+1(t)[1− λ1δt][1− λ2δt](n+ 1)µδt+ o(δt)

(7) For n = k:

Pk(t+ δt) =Pk(t)[1− λ1δt][1− kµδt]

+ Pk−1(t)[λ1δt+ λ2δt][1− (k − 1)µδt]

+ Pk+1(t)[1− λ1δt](k + 1)µδt+ o(δt)

(8) For (k + 1) ≤ n ≤ (c− 1):

Pn(t+ δt) =Pn(t)[1− λ1δt][1− nµδt]

+ Pn−1(t)[λ1δt][1− (n− 1)µδt]

+ Pn+1(t)[1− λ1δt][(n+ 1)µδt] + o(δt)
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(9) For n = c:

Pn(t+ δt) =Pn(t)[1− nµδt]

+ Pn−1(t)[λ1δt][1− (n− 1)µδt] + o(δt) (3.20)

The steady-state equations may be written in the form shown below in Equation 3.21.

(1) For n = 0:

µP1 = (λ1 + λ2)P0

(2) For 1 ≤ n ≤ (a− 1):

(λ1 + λ2 + nµ)Pn = (λ1 + λ2)Pn−1 + (n+ 1)µPn+1

(3) For n = a:

(λ1 + λ2
′ + nµ)Pn = (λ1 + λ2)Pn−1 + (n+ 1)µPn+1

(4) For (a+ 1) ≤ n ≤ b:

(λ1 + λ2
′ + nµ)Pn = (λ1 + λ2

′)Pn−1 + (n+ 1)µPn+1

(5) For n = b+ 1:

(λ1 + λ2 + nµ)Pn = (λ1 + λ′2)Pn−1 + (n+ 1)µPn+1

(6) For (b+ 2) ≤ n ≤ (k − 1):

(λ1 + λ2 + nµ)Pn = (λ1 + λ2)Pn−1 + (n+ 1)µPn+1

(7) For n = k:

(λ1 + nµ)Pn = (λ1 + λ2)Pn−1 + (n+ 1)µPn+1

(8) For (k + 1) ≤ n ≤ (c− 1):

(λ1 + nµ)Pn = λ1Pn−1 + (n+ 1)µPn+1



Chapter 3 MATHEMATICAL MODELLING OF THE CCU AT THE UHW 78

(9) For n = c:

nµPn = λ1Pn−1 (3.21)

Theorem 3.3.4. The steady-state bed occupancy probabilities with cut-off point k and increase of

elective admissions for bed occupancy levels between a and b is given by:

Pn =



1
n!
θnP0, if 0 ≤ n ≤ a

1
n!
θa(θ1 + θ′2)

n−a P0, if (a+ 1) ≤ n ≤ (b+ 1)

1
n!
θn−b+a−1(θ1 + θ′2)

b−a+1 P0, if (b+ 2) ≤ n ≤ k

1
n!
θk−1−b+aθ1

n−k(θ1 + θ′2)
b−a+1 P0, if (k + 1) ≤ n ≤ c

where

θ1 =
λ1
µ

and θ2 =
λ2
µ

and θ′2 =
λ′2
µ

and

θ = θ1 + θ2 =
λ1 + λ2

µ

P0 =
1

a∑
r=0

1
r!θ

r + θa
b+1∑

r=a+1

1
r! (θ1 + θ′2)

r−a + (θ1 + θ′2)
b−a+1

k∑
r=b+2

1
r!θ

r−b+a−1 + θk−1−b+a(θ1 + θ′2)
r−b+a−1

c∑
r=k+1

1
r!θ

r−k
1

Proof.
The proof is similar to that of Theorem 3.3.1 and again utilises an inductive approach. The required
algebraic manipulation for each of the Equations 3.21 is given in Appendix C. �

The effect of admitting more elective patients at non-busy times is analysed and the analytical
results obtained are compared with the original data. A program written in Visual Basic calculates
the probabilities for each bed occupancy Pn, where n = 0, 1, ..., 29. Values for the parameters a
and b can easily be changed. For purpose of this thesis results are obtained for the parameters given
in Table 3.6.

Table 3.6: Parameter values

Parameter Value
a 1
b 22

k (cut-off) 24

The result of the analytical model with cut-off at 24 and two extra elective patients when bed occu-
pancy is between 1 and 22 is presented in Figure 3.14. It shows higher probabilities of mid-value
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bed occupancy levels and small probabilities of low and high bed occupancy levels. As an objec-
tive of this project was to decrease variation of the system, to confirm the effect of that scenario the
mean and the standard deviation are investigated. The mean bed occupancy increases to 22.15, a
2% increase and the standard deviation was reduced to 2.81, a significant decrease of 20.2%.

Figure 3.14: Reduction in variability and increase in throughput

As mentioned before, throughput of patients is of a great interest; it is increased to 1701 patients per
year, again significant increase of 21%. Thus, a relatively minor increase in admissions of elective
patients at non-busy times shows a marked improvement in variability and throughput.

A sensitivity analysis is undertaken to check how the throughput changes for different values of
a ∈ {1, 2, . . . , 22} and b ∈ {a + 1, . . . , 23}. It can be concluded that the bigger the difference
between these values the higher the throughput, but also the throughput is constant if a ≤ 8 for any
given value of b.

If the elective patient increase is changed from two to four per day at non-busy times, then the
corresponding reduction in standard deviation is 31.6% (2.41), and the increase in throughput is
39% (1958).

3.4 Conclusions

This chapter started with a simple simulation of the CCU, followed by two ‘what if’ scenarios. The
first scenario investigated the effect of not allowing any elective admissions when bed occupancy
reached a pre-determined cut-off level. The second scenario was an extension to the first one, where
extra elective patients were admitted at non-busy times.
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Section 3.3 concentrated on setting up and solving the relevant queueing equations. In Section
3.3.2 a loss queueing model was developed to find probabilities of having multiple customer types
with different arrival and service rates. In Section 3.3.3 a queueing model with multiple arrival rates
and a combined service rate was developed, where a small number of patients are allowed to queue.

Figure 3.15 summarizes the work undertaken in Section 3.3.2 and Section 3.3.4, which is a connec-
tion between two different probabilities. It has been shown that knowing one allows one to obtain
the other.

Figure 3.15: Diagram of connection between Pn and Pi,j

Section 3.3.6 considered a queueing model where restrictions are placed on admissions, with elec-
tive patients being referred elsewhere when bed occupancy levels reach a cut-off point. Finally,
Section 3.3.7 extended the queueing model with a cut-off point, to model additional elective pa-
tients being admitted at non-busy periods.

The queueing models described in this section have not been developed in the literature and thus
are considered to be original research contributions in this thesis.



Chapter 4

Further Applications of Mathematical
Modelling at the Critical Care Unit in
University Hospital of Wales

4.1 Introduction

This chapter will investigate further applications of mathematical modelling. Since the nature of
elective admissions is time-dependant, Section 4.2 will give a non-stationary study of the bed occu-
pancy. Section 4.3.1 will question of whether it is possible to predict the number of beds occupied
at future days knowing today’s day of the week and current bed occupancy. Finally, but very impor-
tantly from an operating point of view, Section 4.4 will provide a model that optimises the number
of nurses to be employed per shift.

4.2 Time-Dependent Aspects

4.2.1 Literature Review

Figure 2.2 illustrates a weekly average profile of elective patients admissions to the CCU. Unlike
emergency arrivals, elective demand is dependent on day of the week. The majority of elective
admissions occur on Thursday with very few on the weekend.

Whilst much literature is devoted to the analysis of a service system with constant arrival and ser-
vice times (Green and Kolesar, 1991 [66]; Pollaczek, 1934 [135]), most actual systems are subject
to time-varying demand, where arrival rates and the number of servers vary throughout the period
of operation. Computer systems, road traffics, telecommunications networks, banks, airports, toll
booths and hospitals systems are just a few examples of facilities with time-varying demand pro-

81
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cesses. The steady-state theory developed by Erlang was inadequate for time-dependent systems,
and began numerical investigations into the behaviour of the system during a finite interval. The
study of time-dependent queues remains a vibrant area of research. The process involved are far
more complex and as a consequence more sophisticated mathematical procedures are necessary
(Channouf at al., 2007 [24]; Holcomb and Sharpe, 2007 [87]; Feldman et al., 2008 [51]; Bekker
and de Bruin, 2010 [13]; Caiado, 2010 [23]; Izady and Worthington, 2012 [92]). Analytical models
for such situations are often intractable, but in addition to numerical approaches, approximation
methods have been developed, that provide reliable results in suitable scenarios (Green et al., 1991
[66]).

Several approximation methods have been proposed in the literature which use series of tractable
stationary models to estimate the time-dependent nature of a system. These methods, however only
give reliable results under certain conditions. They do not consider non-stationary and transient
effects, so will only be accurate if the rate of change of the arrival rate relative to the throughput
of the system is sufficiently low to allow the system to quickly achieve the steady state associated
with any arrival rate (Utley and Worthington, 2011 [158]).

Two methods, which make use of compartmentalized steady-state models to find the minimum
number of servers required to meet a desired service target in each planning period are the stationary
independent period-by-period approach (SIPP) and the pointwise stationary approximation (PSA).
Whilst variants of these methods have been developed in the literature over the last four decades
(Kolesar et al., 1975 [105]; Green and Kolesar, 1991 [66], 1997 [68]; Green et al., 1991 [67], 2001
[69], 2006 [71]; Ingolfson et al., 2007 [90]), an alternative method known as the modified-offered-
load (MOL) has also been investigated (Massey and Whitt, 1994 [119], 1997 [120]; Ingolfsson et

al., 2007 [90]).

Whilst approximation methods provide instant solutions, the numerical approaches are able to offer
solutions with a higher degree of accuracy at the expense of computational time.

In the literature, there exist four numerical approximations to the solution of differential equations;
thus theM(t)/M(t)/c(t) time-dependent equations can be solved using one of the following meth-
ods:

• Euler’s method;

• Runge-Kutta method;

• the randomization method;

• the discrete time modelling (DTM) method;
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Further details regarding the theoretical underpinnings of the numerical methods used to solve the
time-dependent equations is provided in Gross and Harris, 1998 [77].

The randomization method (described in Grassmann, 1977 [63]) is a method to compute transient
solutions of finite state continuous-time Markov chains. The method involves the constructions
of an analogous discrete time Markov chain, where transitions occur according to an exponential
distribution with the same parameter in every state. The method provided similar results as the
Runge-Kutta (Ingolfsson et al., 2007 [90] ), but was more computationally efficient.

The DTM method produces accurate results at a much faster time than several approximation meth-
ods (Wall and Worthington, 2007 [165]). The approach uses discrete-time models to approximate
the behaviour of continuous time queues by dividing the time of operation of the system into a
set of non-overlapping intervals. The technique creates a transition matrix to take account of the
various states that occur at each time step, and evaluate the probabilities associated with each state.

Euler’s and Runge-Kutta methods are general approaches for solving ordinary differential equa-
tions. The Runge-Kutta approach provides solutions that are referred to as ’exact’ since the only
approximations required are the approximation of the infinite set of equations with a finite set, and
those inherent in any numerical solution of ordinary differential equations. Euler’s method, how-
ever has the advantage that it may be implemented to provide solutions at a quicker rate and does
not require an ordinary differential equation solver (Izady, 2010 [91]).

Euler’s method considers the slope of the tangent line to approximate the solution at each inter-
val. It approximates the solution by evaluating the equations at a starting value, and then at steps
separated by small time intervals δt (between which the solution is not expected to have changed
greatly). Smaller step sizes generate solutions with higher accuracies, but this comes at a greater
computational cost (Izady, 2010 [91]). This method is investigated in the form of case study in
Section 4.2.2.

4.2.2 Time-Dependent Bed Utilisation

It was noted in Section 2.3.1 that the admission of patients undergoing elective surgery depends on
day of the week. The importance of incorporating the time-dependent nature of these arrivals has
been highlighted (Costa et al., 2003 [35]). It was noted that the difference in the arrival rates during
weekdays is not as visible as between weekdays and weekend. Therefore this section will adapt the
mathematical model to take this factor into account and allow for different elective arrival rates for
weekdays and weekend.
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The differential-difference equations given in the set of Equations 3.1 are solved using a numerical
iterative method (Euler’s method), described in Section 4.2.1. A step-length of δt = 0.01 (hours)
was used, and the process is initially run to produce bed occupancy levels for 1 week (168 hours).
The iterative process is implemented in Visual Basic, linked to an Excel spreadsheet, which enables
key variables to be altered quickly and easily. The Visual Basic program calculates the required
probabilities, and outputs these to a table in Excel. The mean and the standard deviation of the
number of beds occupied are also calculated and included in the results.

Consider the results evaluated when using the parameters obtained from the data and which are
given in Table 4.1.

Table 4.1: Parameter values

Parameter Parameter name Parameter Value
c Number of service channels (beds) 29

λ1 Emergency arrival rate (per day) 2.6081

λ2 Elective arrival rate at weekdays (per day) 1.5808

λW2 Elective arrival rate at weekends (per day)) 0.3542

µ1 Emergency service rate (days) 0.1411

µ2 Elective service rate (days) 0.3262

δt Time increment (hours) 0.01

The appropriate values of λ2, are used for the first 120 hours of the week (i.e. Monday to Friday),
and then the reduced value for λW2 are used over the period 120-168 hours (Saturday and Sunday).

Initially (at time t = 0), P0, the probability of having an empty system is set equal to 1 with all
other initial probabilities (Pn, where n = 1, . . . , 29) being set to 0. In this way, it is assured that the
initial assignment of probabilities sums to one. This process is repeated and a new set of probabili-
ties are generated with every increment of δt, using the probabilities at time t to calculate the new
probabilities at time t+ δt. At every time interval probabilities are output to a spreadsheet, so that
their behaviour over time can be monitored.

As mentioned previously, the program is initially run for 1 week (168 hours), but to make sure all
probabilities get to steady-state solution, it should be run for a longer period of time. The program
is therefore run for 4 weeks (672 hours) and results from the last week are shown in Figure 4.1. For
illustration purposes, only a few selected probabilities are shown. As expected, over the weekend
(120-168 hours), the probabilities of lower bed occupancy increase (e.g. P8, P16 and P20), and the
probabilities of higher levels decrease (e.g. P24 and P29).
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Figure 4.1: Probabilities of beds occupancies over the week

It is also of an interest how the mean and standard deviation of the bed occupancy change over the
week, as shown in Figure 4.2.

Figure 4.2: Variation in bed occupancy over the week

The blue line in Figure 4.2 indicates the mean of bed occupancy, while the red line indicates the
standard deviation. As expected, the mean bed occupancy decreases on the weekend (from 22.36
to 19.40), but surprisingly, the variation increases (from 3.93 to 4.17).

The effect of increasing elective admissions on the weekend is also investigated. Very interestingly,
if it is increased by 1 patient per day on the weekend, the mean and standard deviation of the bed
occupancy remain almost the same throughout the whole week; it decreases from 21.52 to 22.22
and the standard deviation increases from 4.002 to 3.954.
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Going one step further, and increasing elective admissions on the weekend by 1.5 patients per day
would increase the mean bed occupancy by over 1 bed (from 21.52 to 22.51) and decrease the stan-
dard deviation from 4.002 to 3.91.

The transient times (times required to get from one steady-state to another steady-state level) are
also obtained. If the incremented difference is less than 0.01% it is assumed that the system is at
steady-state. The overall transient time was the lowest (approximately 20 hours) for bed occupancy
levels between 19 and 22, which confirms what was said earlier, that the probability of having 20
beds occupied remains almost the same throughout the whole week.

The quantitative information presented is of obvious importance to the CCU Director in informing
their decision making regarding bed management over the seven day cycle. The next section will
investigate forecasting of future bed occupancies with probabilistic models.

4.3 Analytical Model of Bed Occupancy Predictions

A number of questions arise regarding the feasibility of ‘what if’ scenarios considered in Section
3.2.4 and 3.3.2. Is it possible to predict the number of beds that will be occupied in n-days time,
given the bed occupancy today? Is it possible to find the most probable split between the numbers
of emergency and elective patients at future days?

To accurately predict future occupancy levels based on current occupancy level, the heterogeneous
nature of admissions and discharges must be taken into account. Table 4.2 gives the arrival and the
discharge rates for different patient categories on each day of the week.

Table 4.2: Parameter values for admissions and discharges on each day of the week

Day of the Elective Emergency Elective Emergency
week admissions admissions discharges discharges

Monday 1.1186 2.6442 0.6006 2.5399

Tuesday 1.4227 2.6795 1.0671 3.0511

Wednesday 1.6442 2.4519 1.3642 2.8785

Thursday 2.0192 2.6603 1.6656 2.8758

Friday 1.6891 2.7339 1.7508 3.0511

Saturday 0.4455 2.6124 1.5559 2.0192

Sunday 0.2628 2.6346 0.5559 1.8403
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In the mathematical model the following notation is used:

Bn bed occupancy at midnight on day n

an the number of arrivals on day n

dn the number of departures on day n

cn the net increase (decrease) in bed occupancy during day n

Therefore, the number of beds occupied on day n can be expressed as:

Bn = Bn−1 + an − dn
= Bn−1 + cn

and:
B0 = bed occupancy at start of day 1
B1 = B0 + c1

B2 = B1 + c2

= B0 + c1 + c2

B3 = B2 + c3

= B0 + c1 + c2 + c3

In general:
Bn = B0 + c1 + . . .+ cn

= B0 +
∑n

i=1 ci

Value of ci can take one of the three forms:

ci =


> 0 if ai > di,

0 if ai = di,

< 0 if ai < di;

The probability that on day i there will be the same number of beds occupied as on day i − 1 is
equivalent to having the same number of arrivals as departures on day i, and it can be expressed as:

P (ci = 0) = P (ai = 0)× P (di = 0) + P (ai = 1)× P (di = 1) + P (ai = 2)× P (di = 2) + . . .

=
∞∑
k=0

P (ai = k)× P (di = k) (4.1)

The probabilities of having ci > 0 can be written as:
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P (ci = 1) = P (ai = 1)× P (di = 0) + P (ai = 2)× P (di = 1) + P (ai = 3)× P (di = 2) + . . .

=
∑∞

k=1 P (ai = k)× P (di = k − 1)

P (ci = 2) = P (ai = 2)× P (di = 0) + P (ai = 3)× P (di = 1) + P (ai = 4)× P (di = 2) + . . .

=
∑∞

k=2 P (ai = k)× P (di = k − 2)

...

And in general:

P (ci = m) = P (ai = m)× P (di = 0) + P (ai = m+ 1)× P (di = 1) + P (ai = m+ 2)× P (di = 2) + . . .

=
∞∑
k=m

P (ai = k)× P (di = k −m) where m = 1, 2, ... (4.2)

And similarly, the probability of having ci < 0 can be written as:

P (ci = −1) = P (ai = 0)× P (di = 1) + P (ai = 1)× P (di = 2) + P (ai = 2)× P (di = 3) + . . .

=
∑∞

k=1 P (ai = k − 1)× P (di = k)

P (ci = −2) = P (ai = 0)× P (di = 2) + P (ai = 1)× P (di = 3) + P (ai = 2)× P (di = 4) + . . .

=
∑∞

k=2 P (ai = k − 2)× P (di = k)

...

And in general:

P (ci = −r) = P (ai = 0)× P (di = r) + P (ai = 1)× P (di = r + 1) + P (ai = 2)× P (di = r + 2) + . . .

=
∞∑
k=r

P (ai = k − r)× P (di = k) where r = 1, 2, ... (4.3)

Since the arrivals and departures on each day of the week are assumed to be Poisson distributed,
let a be the mean of the Poisson distribution for admissions and d be the mean of the Poisson
distribution of the number of departures, thus:

P (m admissions on day i) =
ame−a

m!
m = 0, 1, 2, ...

P (r departures on day i) =
dre−d

r!
r = 0, 1, 2, ...

Therefore Equation 4.1 can be rewritten as:
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P (ci = 0) =
∞∑
k=0

P (ai = k)× P (di = k)

=
∞∑
k=0

ake−a

k!
× dke−d

k!

=
∞∑
k=0

akdke−(a+d)

k!k!

= e−(a+d)
∞∑
k=0

(ad)k

k!k!

= e−(a+d)
(

1 +
ad

1!1!
+

(ad)2

2!2!
+

(ad)3

3!3!
+ . . .

)
= e−(a+d) (u0,0 + u0,1 + u0,2 + u0,3 + . . .) (4.4)

where
u0,n =

(ad)n

n!n!
, n = 0, 1, 2, ...

Equation 4.2 can be rewritten as:

P (ci = m) =
∞∑
k=m

P (ai = k)× P (di = k −m)

=
∞∑
k=m

ake−a

k!
× dk−me−d

(k −m)!

=
∞∑
k=m

akdk−me−(a+d)

k!(k −m)!

= e−(a+d)
∞∑
k=m

akdk−m

k!(k −m)!

= e−(a+d)
(
am

m!
+

am+1d

(m+ 1)!1!
+

am+2d2

(m+ 2)!2!
+ . . .

)
= ame−(a+d)

(
1

m!
+

ad

(m+ 1)!1!
+

a2d2

(m+ 2)!2!
+ . . .

)
= ame−(a+d) (um,0 + um,1 + um,2 + . . .) (4.5)

where:
um,n =

(ad)n

(m+ n)!n!
, n = 0, 1, 2, ...

And similarly, Equation 4.3:
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P (ci = −r) =
∞∑
k=r

P (a = k − r)× P (d = k)

=
∞∑
k=r

ak−re−a

(k − r)!
× dke−d

k!

=
∞∑
k=r

ak−rdke−(a+d)

(k − r)!k!

= e−(a+d)
∞∑
k=r

ak−rdk

(k − r)!k!

= e−(a+d)
(
dr

r!
+

adr+1

1!(r + 1)!
+

a2dr+2

2!(r + 2)!
+ . . .

)
= dre−(a+d)

(
1

r!
+

ad

1!(r + 1)!
+

a2d2

2!(r + 2)!
+ . . .

)
= dre−(a+d) (vr,0 + vr,1 + vr,2 + . . .) (4.6)

where:
vr,n =

(ad)n

n!(r + n)!
, n = 0, 1, 2, ...

Using the information shown in Table 4.2 and the obtained Formulas: 4.4, 4.5 and 4.6 it is possible
to obtain the probabilities of a given change in bed occupancy given the current day of the week. It
is observed that the maximum number of all admissions on one day regardless of patient type was
12, and the maximum number of discharges on one day was 13, therefore it is decided to obtain
P (ci = s) where s ∈ [−13, 13] and s ∈ Z. Figure 4.3 shows how probabilities of a given bed
occupancy change differs on each day of the week.

Figure 4.3: Probabilities of a given change in bed occupancy on each day of the week

The most likely bed occupancy change is 0 for most of the days with exception for Saturday, where
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most likely change is -1; and for Monday, where it is 1. The expected bed occupancy change on

each day of the week is also calculated using the formula:
13∑

k=−13
kP (ci = k) and, as expected, the

results are significantly close to the result of the calculation: mean number of admissions - mean

number of discharges on each day of the week and are presented in Table 4.3.

Table 4.3: Expected bed occupancy change on each day of the week

Day of the week Average bed occupancy change
Monday 0.60
Tuesday -0.05

Wednesday -0.19
Thursday 0.09

Friday -0.39
Saturday -0.55
Sunday 0.48

Results from Table 4.3 show that the increase in bed occupancy is most likely to happen on Monday,
Thursday and Sunday. The increase in bed occupancy on Thursday is caused by the fact that the
percentage of elective admissions was highest on Thursday. Sunday and Monday had the lowest
discharge rates in whole week hence increase in bed occupancy is expected. Using information
obtained in this section, it is possible to obtain most likely bed occupancy three days hence, which
will be shown in the following subsection.

4.3.1 Most Likely Bed Occupancy at Future Days

Having information about the probabilities of a given bed occupancy change on each day of the
week, it is decided to investigate the probability of a given bed occupancy a few days in advance.
As said previously, the model can produce expected bed occupancies n-days in advance; however,
for the purpose of this thesis it is decided to explore bed occupancies only three days in advance.
If the CCU manager wants to admit extra elective patients, when bed occupancy is low then the
hospital would like to do it at a short notice, but long enough for patients who might need to make
any arrangements before the planned operation.

As an illustration of the methodology, the model is demonstrated assuming a current occupancy of
23 beds. This occupancy is the most likely occupancy. Figure 4.4 illustrates how probabilities of
bed occupancies change three days hence for each day of the week given today 23 beds occupied.
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Figure 4.4: Probabilities of a given bed occupancy 3 days hence for each day of the week assuming
23 beds today

In Figure 4.4 the orange line, for example, which is marked as Friday shows how bed occupancy
probabilities change three days hence. In other words, it shows Monday’s bed occupancy proba-
bilities given it is Friday today and there are 23 beds occupied today. Clearly, if the CCU Director
would like to admit extra elective patients it should be done on the days when probability of high
bed occupancy level is low. In this case, the lowest probability of high utilisation is for lines marked
as Tuesday, Wednesday and Thursday. This means, that on those three days the decision regarding
extra admission of elective patient should be made, because in three days time (Friday, Saturday
and Sunday correspondingly) the bed occupancy is likely to be the lowest.

Hospital managers might be more interested in the most likely number of patients in the Unit
at future days, rather than in probabilities of given bed occupancies. Figure 4.5 provides bed
occupancy predictions together with the data results.

Figure 4.5 shows prediction of the most probable number of beds occupied three days hence for
each day of the week. For example, if today is Monday and there are 23 beds occupied, in three
days time i.e. on Thursday most likely there were 22 beds occupied according to data and model
predicts 23 beds as most likely occupancy. The model gives very close predictions; the difference
between the model predictions and the data is not greater than one bed for each day of the week,
therefore the model can be claimed as reliable.

On Friday and Saturday there are two data bars (two shades of red) meaning that there are equally
probable. Figure 4.5 also confirms what was said previously, the hospital managers should make
a decisions of admitting extra elective patients on the beginning of the week, since the expected
occupancy is the lowest three days hence from Tuesday and Wednesday.
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Figure 4.5: Most likely bed occupancy 3 days hence given 23 beds occupied today

The next subsection will use the same mathematical model to provide information on most likely
number of emergency and elective patients at future days for each day of the week.

4.3.2 Most Probable Split Between the Numbers of Emergency and Elective
Patients at Future Days

If the Director of the CCU knew today that there are, for example, 26 beds occupied, but 18 beds
are occupied by elective patients an extra elective patient could be admitted in two or three days
time since elective patients are very likely to stay in the CCU for a short period of time, and many
of these 18 elective patients would be discharged by then. The most probable split between the
numbers of emergency and elective patients at future days is explored. Again, it is dependent on
day of the week today and the current split.

The notation that will be used for the current or future split is: x/y, where x denotes the number
of emergency patients and y denotes the number of elective patients. Assume again that today
there are 23 beds occupied in the CCU, the possible splits are: 0/23, 1/22, 2/21, . . . , 23/0. The
mathematical model described in Section 4.3 is utilised to find the most probable split of patients
at future days. It is again decided to only show occupancy predictions three days hence, however it
can easily be extended to n-days. It is also assumed that today’s split is 19/4, since combination of
19 emergencies and 4 electives had the highest probability for given bed occupancy of 23. Figure
4.6 illustrate how prediction for each patient category changes for each day of the week. It shows
how for each day of the week the expected number of emergency and elective patients changes for
a given current split: 19 emergency and 4 elective patients. Clearly, the lowest expected number



Chapter 4 FURTHER APPLICATIONS OF MATHEMATICAL MODELLING 94

of elective patients is 3 and is three days hence from Wednesday, Thursday and Friday. Hence, as
expected, the lowest number of elective admissions falls on Saturday, Sunday and Monday. When
planned admissions have the lowest expected number, the unplanned admissions have the highest.

Figure 4.6: Expected number of emergency and elective patients 3 days hence given today’s split
is 19/4

Note that, if today is Monday and 19 beds are occupied by an emergency patients and 4 beds by an
elective patients in three days time the most probable number of emergency patients is 18, the most
probable number of elective patients is 5, but this does not necessarily imply that the most probable
total bed occupancy will be 23.

4.3.3 Conclusions

The described mathematical model produces expected levels of bed occupancies on a ‘later day’
basis dependant on the day of the week today and on current bed occupancy. Information obtained
in this section might be useful to the Director of the CCU to help make a decision regarding admis-
sion of extra elective patients at future days if current bed occupancy is relatively low. Also, the
model provides information regarding most likely number of emergency and elective patients at fu-
ture days. Different patient types require different patient to nurse ratio. Informations provided by
this model can also be helpful in making decisions regarding nursing requirements on each shift.
The next section will investigate the nursing levels required on each day of the week using two
different approaches.
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4.4 Nursing Requirements

4.4.1 Motivation of the Work

The efficient management of resources in the CCU is particularly important due to the high costs
involved. The nature of the treatment administered in the CCU generates the need for costly spe-
cialist equipment and highly skilled staff. The largest proportion of the operating cost in a CCU is
nursing staff (DOH 2006, [129]).

In Chapter 2 it was stated that some patients require a 1:1 nurse to patient ratio, whilst the less
seriously ill require a 1:2 ratio. The Director of the CCU is faced with the difficult decision as to
how many nurses to employ per shift. If too many nurses are employed, then there is a potential for
large wastage in nursing costs. If too few nurses are employed, then serious consequences could
arise in terms of patient care, unless the shortfall is made up by employing agency nurses. However,
agency nurses can cost up to three times as much as the hospital’s own nurses. As a general rule,
hospital-employed nurses need to know their shift rotas significantly well into the future. The
current practice is that nurses are rostered on 13-hour shifts (this allows for a 1-hour overlap with
incoming nurses at the shift changeover). Two cost models to optimise the number of nurses to be
employed per shift are proposed.

4.4.2 Literature Review

A literature search revealed not much previous work studies whereby staff costs are considered.
Griffiths et al., 2004 [75] used a mathematical model to determine the number of rostered nurses
that are required to minimize overall nursing staff costs. It was concluded through use of a simu-
lation model that nursing staff costs would have been reduced if 16 nurses have been rostered per
shift rather than 14.

Harper et al., 2010 [81] focused on planning the size and skill-mix of inpatient nursing teams us-
ing the capacity simulation tool, PROMPT. The approach utilises both discrete event simulation
combined with a stochastic program add-on to produce optimal nursing needs by staff grade. The
optimisation accounts for costs incurred for both hospital based staff and agency staff taking into
account fluctuations over time of patient demands.

A growing body of research confirms the link between nurse staffing and patient outcomes. The
effect of nurse staffing levels were tested against various variables, e.g. patient mortality (Aiken
et al., 2012 [3]), the quality of care in hospitals (Needleman et al., 2002 [128]), adverse events,
morbidity, medical cost (Cho, 2003 [27]), patient outcomes (Sasichay-Akkadechanun, 2003 [145]
and Blegen, 1998 [16]), post-surgical adverse events (Kovner, 2002 [109]). A literature review un-
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dertaken by Coombs and Lattimer, 2007 [33], focussed on organisational issues, found that staffing
levels and skill mix within the CCU team can have an impact on patient outcome.

The aim of the study of Sznajder et al., 2004 [154] was to propose a tool that would estimate the
direct costs of stays in ICUs, which would be very useful for resource allocation inside a hospital.
The model appeared to be simple and a relevant indicator which helped to organise nursing require-
ments.

The research of Rothberg et al., 2005 [143] was conducted to determine the cost-effectiveness of
various nurse staffing ratios ranging from 8:1 to 4:1. Incremental cost-effectiveness was calculated
for each ratio and sensitivity and Monte Carlo analyses performed. They concluded that as a patient
safety intervention, patient to nurse ratios of 4:1 are reasonably cost-effective and in the range of
other commonly accepted interventions.

Section 4.4.5 contains a further literature review regarding time-dependent nursing requirements.

Finding the required number of nurses is a very complex task. For the purpose of the next Section,
based on discussion with hospital managers, some realistic levels on nurse to patient ratios are
chosen.

4.4.3 Nurse to Patient Ratio Required is 1:1

4.4.3.1 Model that optimises an actual expected cost

Suppose that at any particular time there are n beds occupied, and that the nurse to patient ratio
required is 1:1 for all patients regardless of patients’ type. The number of hospital-based nurses
employed per shift is denoted by x. Let q be the cost of employing a hospital-based nurse per shift,
and the cost of employing an agency-based nurse be kq. Then, the total nursing cost, C(x, n), may
be expressed as:

C(x, n) =

qx, if x ≥ n

qx+ (n− x)kq, if x < n

and the expected cost, where Pn is the probability of having n patients present in the system and c
is the system capacity, is therefore given by:

E(cost|x) =
c∑

n=0

PnC(x, n)

=
x∑

n=0

Pnqx+
c∑

n=x+1

Pn (qx+ (n− x)kq) (4.7)
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The probabilities of having n beds occupied are taken from the data (but analytical expressions can
also be used) and nursing costs are obtained for appropriate values of x, where x = 10, 11, ..., 29. It
is assumed that q = 1 (cost of hospital-based nurse) and k = 3 (cost of employing an agency-based
nurse is three times more expensive than the hospital-based nurse). Figure 4.7 displays the expected
nursing cost for different number of hospital-based nurses. The optimal number of hospital-based
nurses that should be employed per shift is 23.

Figure 4.7: The expected nursing cost for different number of hospital nurses

4.4.3.2 Newsboy Model

It is worth noting that this problem of nurse staffing can also be approached using a stochastic in-
ventory model. Indeed, the Newsboy Model (Winston, 1998 [168]) models a stock control problem
to which is associated Co, the cost of having too many hospital-based nurses (oversupply cost) and
Cu, the cost of having not enough hospital-based nurses (undersupply cost). Let F (x) be the cumu-
lative distribution function (CDF) of the number of beds occupied. Then, by the Newsboy Model
the expected cost is minimised by the x which satisfies:

F (x− 1) <
Cu

Cu + Co
≤ F (x)

The problem can be modelled with Cu = k − 1 and Co = 1, in this case k = 3. Therefore
Cu

Cu+Co
= 2

3
. Table 4.4 shows the CDF and it can be seen that the Newsboy Model approach to this

problem also recommends 23 nurses.
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Table 4.4: Cumulative distribution function representing the demand for nurses

x F (x)

20 0.361

21 0.461

22 0.559

23 0.671
24 0.770

25 0.850

26 0.912

4.4.4 The Nurse to Patient Ratio is Variable

4.4.4.1 Model that Optimises an Actual Expected Cost

When a patient is admitted, a decision is made on the basis of the information available as to
the level of care required. A Level 3 patient requires a 1:1 ratio, while Levels 1 and 2 require
1:2. However, patients’ conditions may deteriorate or improve during their stay in the CCU, and
hence the required level of nursing may also change. A reasonable proxy is to assume that elective
patients require Level 1 or 2 care (i.e. one nurse is required to two elective patients), and emergency
patients require Level 3 care (i.e. one nurse to one emergency patient). Therefore, the probabilities
of having i emergency patients and j elective patients, Pi,j , as determined by Equation 3.12, needs
to be employed. The number of nurses required is then given by i +

⌈
j
2

⌉
i.e. one nurse to an

emergency patient and a half nurse to an elective patient. The number of required nurses, r, is
given by:

r = r(i, j) = i+

⌈
j

2

⌉
=

i+ j
2
, if j even

i+ j+1
2
, if j odd

Consequently, the total nursing cost is:

C(x; i, j) =

qx, if x ≥ i+
⌈
j
2

⌉
qx+ (i+

⌈
j
2

⌉
− x)kq, if x < i+

⌈
j
2

⌉
Therefore, the probability that exactly r nurses are needed is given by:

P (r) = Pr,0 +
r−1∑
i=0

(
Pi,2(r−i) + Pi,2(r−i)−1

)
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and so the CDF for the nurse demand is given by:

F (r) = P (X ≤ r) =
r∑

m=0

(
Pm,o +

m−1∑
i=0

(
Pi,2(m−i) + Pi,2(m−i)−1

))
(4.8)

The expected cost of employing x nurses on each shift is now given by:

E(C(x; i, j)) =

c∑
i=0

c−i∑
j=0

Pi,jC(x; i, j)

=
c∑

r=1

Pr,0C(x; i, j) +

(
r−1∑
i=0

Pi,2(r−i)C(x; i, 2(r − i)) + Pi,2(r−i)−1C(x; i, 2(r − i)− 1)

)

=

x∑
r=1

(
Pr,0qx+

r−1∑
i=0

(
Pi,2(r−i)qx+ Pi,2(r−i)−1qx

))
+

+

c∑
r=x+1

(
Pr,0 (qx+ (r − x)kq) +

r−1∑
i=0

(
Pi,2(r−i) (qx+ (r − x)kq) + Pi,2(r−i)−1 (qx+ (r − x)kq)

))
(4.9)

Using historical data, the probabilities of having n = i+j beds occupied are obtained and therefore
probabilities of having i emergency and j elective beds, Pi,j , occupied are found using Formula
3.12. Again, it is assumed that q = 1 and k = 3. Figure 4.8 displays the expected nursing cost for
different number of hospital-based nurses.

Figure 4.8: The expected nursing cost for different number of hospital nurses

It can be seen, that the optimal number of the hospital-based nurses that should be employed per
shift is now 22, which gives the minimum expected cost of 23.80. As expected, the optimal number
of nurses is lower than previously when the nurse to patient ratio was 1:1 irrespective of patient
type.
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4.4.4.2 Newsboy Model

The Newsboy Model can be used to solve the nurse staffing problem when the number of required
nurses depends on the number of emergency, i and elective, j patients. Recall, the expected cost is
minimised by the x which satisfies:

F (x− 1) <
Cu

Cu + Co
≤ F (x)

The associated costs, Co and Cu have not changed, so the ratio is still Cu
Cu+Co

= 2
3
.

Also recall Formula 4.8 that the CDF is as follows:

F (x) = P (≤ x) =
x∑

m=0

(
Pm,0 +

m−1∑
i=0

Pi,2(m−i) + Pi,2(m−i)−1

)

Table 4.5 shows values for the CDF and it can be seen that the Newsboy Model approach to this
problem also recommends 22 nurses.

Table 4.5: Cumulative Distribution Function representing the demand for nurses

x F (x)

19 0.417

20 0.525

21 0.637

22 0.743
23 0.833

24 0.900

25 0.948

The difference in these two approaches is that the first optimises an actual expected cost, whereas
the Newsboy model optimises the expected wastage costs.

4.4.5 Time Dependent Nursing Requirements

The scheduling of nurses is not a trivial task. This is due to the large fluctuations in numbers re-
quired during the quiet and busy periods. It is assumed that a fixed number of nurses is scheduled
per shift, regardless of the actual number required. Recall that bed occupancy, as well as the number
of elective admissions depends on the day of the week. Intuitively, the number of nurses required
on the weekend should be lower than during the week. This section will investigate how nursing
requirements change during the week.
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Whitt, 2007 [166] produced a comprehensive review of time-dependent staffing requirements lit-
erature. Setting staffing requirements of a service system with time varying demand is a major
challenge. It has attracted a significant body of research over the last three decades, and a few ap-
proaches have been developed as a result; Vassilacopoulos, 1985 [160] used a deterministic model
for allocation physicians to weekly shifts in an A&E department. They set physician levels propor-
tional to the hourly mean arrival rates. Coats and Michalis, 2001 [30] used simulation to compare
two different shift patterns with the existing one in A&E. Green et al., 2006 [71] modelled a lo-
cal emergency department in the US as a single station queueing system to determine physicians
staffing. Vile, 2012 [163] developed time-dependent priority queueing system to determine the op-
timal staffing levels for the WAST (Welsh Ambulance Service Trust). Whilst most of the research
has concentrated on single service systems, Izady and Worthington, 2012 [93] proposed staffing
algorithm which relies on infinite server networks to compute the resources’ time dependent work-
loads. The authors showed how queueing models equipped with simulation can be used to alleviate
the congestion problem of emergency departments by modifying the staffing profiles. Agnihothri
and Taylor, 1991 [2] sought the optimal staffing at a hospital scheduling department that handled
phone calls whose intensity varies throughout the day. The paper grouped periods that receive simi-
lar call intensity and determines the necessary staffing for each such intensity, so that staffing varies
dynamically with call intensity.

The time-dependent optimal nursing requirement is found using Euler’s method. The program that
was written in Visual Basic to solve the time-dependent equations is adjusted so that at every time-
step δt = 0.05 (hours) it calculates the number of required nurses by optimising the cost given by
Formula 4.9, which depends on the number of emergency and elective patients present at time δt.
As said previously, the number of elective admissions is dependent on the day of the week. For
each day of the week different value of λ2 (number of elective admissions) is used. The parameter
values are presented in Table 4.6. The program is run for 4 weeks in order to get to steady-state
solution and results from the last week are displayed in Figure 4.9.

As expected, the number of nurses that are required to work during weekends is 21 and is lower than
during the weekdays, when 22 nurses are required. Throughout weekdays no variation is observed
in the number of nurses required.
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Table 4.6: Number of elective admissions dependent on day of the week

Day of the week Value of λ2
Monday 1.1118
Tuesday 1.4249

Wednesday 1.6326
Thursday 2

Friday 1.6837
Saturday 0.4441
Sunday 0.2619

Figure 4.9: Time dependent number of required hospital-based nurses

4.5 Conclusions

The objective of this chapter has been to consider many aspects of theoretical and practical ap-
plication of mathematical modelling in the CCU setting. This chapter considered time-dependent
aspects of bed probabilities. The presented information regarding prediction of future bed occupa-
tion is of great importance to the Director of the CCU. Also, very importantly from a cost point of
view the problem of how many nurses should be employed per shift was addressed in this chapter.
Two cost models to optimise the number of nurses have been proposed. Both models recommended
the same number of nurses required on each shift.



Chapter 5

Data Analysis of Two Data Sets From the
Royal Gwent and the Nevill Hall Critical
Care Units

5.1 Introduction and Motivation of the Study

The project described in the next two chapters was initiated by managers from the Aneurin Bevan
Local Health Board. The initial proposition of the project was to investigate the effect of bed block-
ing and patients’ transfers between the Royal Gwent and the Nevill Hall hospitals using queueing
theory and similar methods to those described in Chapters 2 and 3. The study described in Section
6.5 was a consequence of an ongoing NHS project of building a new hospital, that will replace both
existing hospitals.

This study describes the project undertaken with the managers from the Aneurin Bevan Local
Health Board, which is an NHS Wales organization in South Wales, that serves 21% of the to-
tal Welsh population ([89]). Critical care is delivered on two sites, at the Nevill Hall hospital in
Abergavenny and at the Royal Gwent hospital in Newport. For the remaining of this thesis, the
Royal Gwent hospital will be referred to as RG and the Nevill Hall hospital as NH.

The data used for analysis was provided by the Intensive Care National Audit and Research Centre
(ICNARC) and refers to patients admitted to CCUs in RG and NH, and includes the period of three
years, from the 1st January 2009 till the 31st December 2011. The ICNARC system was established
by clinicians and it collects detailed information; about half of all CCUs across England and Wales
currently use this system. The data set contains information about a patient’s source of admission,
date and time of admission, date and time of discharge, CCU outcome and delay to discharge. In
NH, the smaller of the two hospitals, there were 8 beds available throughout the analysed period. In
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RG the bed capacity changed twice. In the beginning of the analysed period the Unit had 14 beds.
In September 2010, after 20 months, the bed capacity was increased by one, to 15, and in October
2011 it was increased by one, giving a total bed capacity of 16.

When planning CCU capacity, most units have to take into account emergency and elective admis-
sions; however, as informed by the hospital managers the percentage of planned admissions in NH
and RG is very low (below 5%), hence the split will not be taken into account in this case.

The initial objective of this chapter is to analyse the actual data from both CCUs to determine
admission and service patterns, delay to discharge and flow of patients through the Units. Any
analysis described in this chapter will account separately for RG and NH. The primary objective of
this study is to develop a valid mathematical model of the CCUs, which can be used as a tool for
management.

5.2 Data Analysis

The aim of this part of the project is to understand the current system of CCUs, and to expand on
this by modelling new scenarios and forecasting the outcome. By analysing the data provided by
the CCUs, it is possible to establish the admission rates and service rates of patients, which charac-
terise the flow of patients through the Units.

The NH data includes information regarding 1640 patients and the RG data regarding 2458 pa-
tients. NH CCU receives patients from 27 different sources, but the majority of patients come from
Recovery / Theatre (30%), A&E (24%) and Emergency and Assessment Unit (11%). Patients from
76 different sources are admitted to RG CCU, with a majority from Recovery / Theatre (31%),
A&E (26%) and Medical Assessment Unit (5%). Information was only available for patients that
were admitted to the Unit, information regarding patients rejected due to insufficient number of
beds was not available.

This section will consider four different aspects for both CCUs and the structure is as illustrated in
Figure 5.1.
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Delay to discharge
Nevill Hall

Royal Gwent

Bed Occupancy
Nevill Hall

Royal Gwent

Length of Stay
Nevill Hall

Royal Gwent

Arrival Process
Nevill Hall

Royal Gwent

Figure 5.1: Structure of the data analysis section

5.2.1 Admission process

This section describes analysis of the data, so that the nature of admissions to the CCUs can be ex-
plored in greater depth. The main objective is to determine the appropriate statistical distributions,
that would represent the profile of admission to the CCUs in both hospitals in the queueing model.
Admission processes to each CCU will be considered separately.

5.2.1.1 Nevill Hall

The hourly admission pattern is represented graphically in Figure 5.2. It displays the proportion of
admissions according to various hour of the day.

Figure 5.2: Proportion of admissions at each hour of the day
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There is a visible hourly arrival pattern; there are very few admissions in the morning hours with
mainstream of admissions in the afternoon or evening, with highest peaks between 3pm and 4pm
and between 6pm and 7pm. Most surgeries are scheduled to start in the morning and correspond to
admissions at the CCU in the afternoon, hence the peaks.

Figure 5.3 displays the daily admission patterns. It shows that the admission process does not differ
very much from Monday to Friday; the weekday average is 1.62 patients per day. On the weekend,
however, there are fewer admissions, 1.18 on average, suggesting that the clinicians prefer not to
work at the weekends.

Figure 5.3: Mean number of admissions on each day of the week

The monthly average admissions are also considered, and the rates range from 1.35 (in August) to
1.63 (in February) patients per day, which are most likely related to the weather conditions. Harper
et al., 2012 [80] showed that accurately forecasting of number of hospital admissions is signifi-
cantly improved by incorporating meteorological information.

Summary statistics for the daily number of arrivals at the CCU in NH are given in Table 5.1.

Table 5.1: Summary Statistics for the number of admissions on each day

Summary statistic Value
Mean 1.4977

Median 1
Standard Deviation 1.1653

Minimum 0
Maximum 6
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The frequencies and similar values for the mean and variance indicate that the admission process
could be modelled as a Poisson process. The next task is to determine a value for the parameter
λ which would provide the appropriate fit to the distribution of daily admissions. This is achieved
using the Excel plug-in: @Risk, a distribution fitting software. A value of λ = 1.5245 is found,
which gives a very low value (0.001187) for the sum of the squares of the deviations. Figure 5.4
displays a frequency distribution of the number of admissions on each day along with the fitted
Poisson distribution, confirming goodness of fit.

Figure 5.4: Poisson fit to the distribution of admissions

The pattern of discharges by time of day and day of the week are also examined. Patients are
mostly discharged in the afternoon. This is explained by the fact that staff would have had enough
time to assess patients’ conditions, and ensure there is available bed in an ordinary ward, where
patients will be transferred. Only 8% of the total discharges occur between midnight and 9am, and
a majority of those discharges happened as a result of death. It appears that discharges’ hourly
peaks are shifted to the left of admissions’ hourly peaks. This is because the CCU managers want
to accommodate beds for the coming surgery patients. Profile of weekly discharges shows that
the average number of discharges is steady throughout the weekdays, with average of 1.64, and
reaches its maximum on Thursday (1.77). The mean number of discharges decreases to 1.13 on the
weekends confirming again the fact that there is fewer qualified staff working on the weekends.

5.2.1.2 Royal Gwent

Similar consideration regarding admissions to the CCU at RG will now be undertaken. Recall that
the bed capacity in RG was changed twice, therefore each of the three periods will be considered
separately.
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The hourly admission pattern was initially considered for each period. However, the pattern was
found to be very similar across the three periods, hence the overall hourly admission pattern is
considered for the whole study period. Figure 5.5 displays the proportion of admissions according
to various hour of the day.

Figure 5.5: Hourly proportion of admission times

There is a visible pattern in the time of admission, as for NH. Very few admissions during the morn-
ing hours and a majority of admissions during evening hours. The highest peaks of admissions are
between 6pm and 7pm and between 8pm and 9pm, so both peaks are slightly shifted to the right
compared with NH times of admissions.

Any daily admission trends are also examined; Figure 5.6 illustrates them.

Figure 5.6: Daily average number of admissions
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Figure 5.6 shows characteristic pattern of admissions: the average number of admissions increases
in the beginning of the week and starts to decrease towards the weekend. The average number of
admissions on the weekdays and weekends differs by nearly one patient per day; on average 2.50
patients per day on weekdays compared with 1.61 on weekends.

The monthly admissions shows that on average there are more admissions in the winter months
(September-December). The rates ranged from 2.11 (in May) to 2.42 (in September), again sug-
gesting that admissions are dependent on the weather conditions. As mentioned previously, this
has been investigated previously by Haper et al., 2012 [80].

The admission process needs to be considered for modelling purposes. Summary statistics for the
daily admission numbers at the CCU in RG, separately for each of the three periods and overall are
given in Table 5.2.

Table 5.2: Summary Statistics for the number of admissions on each day

Summary Statistic Period 1 Period 2 Period 3 Overall
Mean 2.3026 2.1722 2.1739 2.2447

Median 2 2 2 2

Standard Deviation 1.4523 1.3763 1.298 1.4131

Minimum 0 0 0 0

Maximum 8 7 6 8

The overall average number of admissions is 2.24 and there is a little variation across the three pe-
riods. Intuitively, having more beds available would increase the number of admissions; however,
it has not been observed. In the first period, which lasted 52% of the time, the daily admission rate
is 2.30 and it is marginally decreased to 2.17 in Period 2 and remains very close in Period 3.

As the mean number of admissions in the three periods is similar, it is decided that the combined
overall frequencies will be considered. An inspection of the frequencies and similar values for the
mean and variance suggest that the number of daily admissions may be modelled by a Poisson
distribution. The found parameter λ = 2.2556 provides the most appropriate fit to the distribution
of daily admissions, giving a very low value (0.00086) for the sum of the squares of the deviations.
Figure 5.7 demonstrates a frequency distribution along with the fitted Poisson distribution.

The pattern of discharges by time of day and day of the week are also analysed. Patients are mostly
discharged in the afternoon and evening. Between midnight and 9am there were only 8.6% of
the total discharges and it is found that the majority of those discharges happened as a result of
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Figure 5.7: Poisson fit to the distribution of admissions

death. There is first a peak of discharges between 4pm and 5pm, followed by peak of admissions
between 6pm and 7pm. Attention is taken to the profile of weekly discharges, the average number
of discharges steadily increases from Monday to Friday to reach its maximum (2.82 discharges) on
Friday, and there is a big reduction in discharges at the weekends (1.5 discharges). The peak of
discharges on Friday suggests that the staff prepare the Unit in case of a big influx of patients on
the weekend.

Finally, it is checked whether admission day has an impact on day of discharge. It is concluded that
for all days except for Saturday, the most probable day of discharge is the next day of the week; for
example if a patient is admitted on Monday, their most likely discharge day will be Tuesday. The
exception is Saturday, when a patient is equally likely to be discharged on Sunday or Monday.

5.2.2 Length of Stay

Patient’s LoS varies widely; some patients are discharged within 1-2 days, after post operative
observation, others require life support machines for several weeks or even months. The main ob-
jective of this section is to determine distributions for each hospital that may accurately generate
the length of stay (LoS) in the CCU.

The LoS can be influenced by the CCU bed occupancy level. This fact is confirmed by the hospital
managers, who claim that some of their decisions are dependant on the number of occupied beds.
This finding was also highlighted by Mallor, 2011 [117].

The data sets provide information for each admitted patient regarding date and time of admission
and date and time of discharge. LoS is calculated for each patient, and the LoS profile for patients
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in each hospital will be considered separately.

5.2.2.1 Nevill Hall

A number of relevant summary statistics of the data are considered and are presented in Table 5.3.

Table 5.3: Summary statistics for LoS in NH

Summary statistic Value (days)
Mean 3.8245

Median 1.7100
Standard Deviation 6.5326

Minimum 0
Maximum 86.7535

Clearly, the data contains a vast range of values as indicated by the standard deviation of 6.53 days;
on average patients stayed in the CCU for 3.82 days; however, some patients required life support
for as long as 86.75 days.

After inspection of the mean and standard deviation for the overall LoS the initial suggestion is
that a Negative Exponential distribution would not provide a reasonable fit, since the mean is not
similar to the standard deviation. However, the lowest value of the sum of the square of the deviation
(0.002) is achieved for the Negative Exponential distribution with the parameter µ = 0.4096, which
is accepted as a good fit. Consider Figure 5.8, which presents the distribution of the LoS in the CCU
against the fitted Negative Exponential distribution. Each bar represents a one day period; 2.98%
of observations (LoS greater than 20 days) are excluded from the graph for presentation purposes.

Figure 5.8: Length of stay distribution with Negative Exponential fit
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The average LoS for different age groups is considered; patients in the age group between 61 and
70 years, which accounts for 21% of total admissions, have the longest average LoS (4.68 days).
The shortest average LoS (0.23 days) is observed for patients in the age group between 0 and 10
years, however, that group accounts for only 3% of the total admissions.

In the first part of this thesis, consideration was given to the average LoS for emergency and elective
patients. It was shown that elective patients needed support for significantly shorter period of time.
In the current project the average LoS is found for patients admitted from the most common three
sources of admission: Recovery / Theatre, A&E and Emergency Assessment Unit (EAU) which in
total account for 64% of all admissions. Table 5.4 shows the three different admission sources with
their average LoS for each source in an increasing LoS order.

Table 5.4: Average length of stay in NH for different admission sources

Admission source Probability of admission from given source Average LoS (days)
Recovery / Theatre 30% 2.3645

A&E 24% 3.1960

EAU 10% 4.7109

other 36% 5.1908

The recovery process is dependent on admission source; patients admitted following surgery are
expected to make a quick recovery. The mean LoS of patients in this category is below average
(2.36 days compared with the overall average of 3.82 days). Patients are referred to the EAU by a
doctor in the Emergency Department for a specialist medical opinion on their condition; mean LoS
in this category is above overall average, 4.71 days.

There is no clear reason why patients who are admitted on one day of the week should stay in CCU
longer than those admitted on any other. Having said that, patients who are admitted on Sunday
have the longest average stay in hospital, while patients admitted on Wednesday usually have the
shortest stay (4.76 days on Sunday compared with 3.03 days on Wednesday). This could be ex-
plained by the fact that Sunday has the smallest probability of admission, and probably only the
most ill patients who require longer life support are admitted to the CCU. The found results are
the reverse of results found in the Bed Management Audit Commission Report, 2003 [7], where
patients admitted on Thursday had the longest stay in CCU while patients admitted on Sunday usu-
ally had the shortest stay.

Next, consideration will be taken to patients’ LoS admitted to RG.
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5.2.2.2 Royal Gwent

Recall, the data set was divided into three periods, summary statistics of LoS (in days) of patients
admitted in each of the three periods to RG CCU are presented in Table 5.5.

Table 5.5: Summary statistics for the length of stay in RG (days)

Summary statistic Period 1 Period 2 Period 3 Overall
Mean 4.5264 5.7989 5.4346 5.0447

Median 2.3854 3.1 3.3 2.8

Standard Deviation 8.9936 9.3329 7.8261 9.0388

Minimum 0.0208 0 0 0

Maximum 193.0938 152.4 61 193.0937

The data shows high variation across the three periods. Intuitively, having more beds should not
increase patient’s duration of stay, however this is observed. The average LoS in Period 1 is 4.53
days and it is increased by 1.27 days in Period 2. In Period 3, the average is marginally decreased
by 0.37 days to 5.43 days. The data contains a very wide range of values; on average patients
stayed in the CCU for 5.04 days; however, there were patients who required life support for over
six months.

After inspection of the mean and standard deviation for the overall LoS the initial suggestion is that
a Negative Exponential distribution would not provide a reasonable fit, since the mean is not sim-
ilar to the standard deviation. However, the lowest value of the sum of the square of the deviation
(0.00127) is achieved for the Negative Exponential distribution with the parameter µ = 0.26087,
which is accepted as a good fit. Consider Figure 5.9 which presents the distribution of the LoS in
the CCU against the fitted Negative Exponential distribution. 1.01% of observations (LoS greater
than 40 days) are excluded from the graph for presentation purposes.

The average LoS for different age groups is considered; patients in the age group between 51 and
60 years, which accounts for 15% of the total admissions, have the longest average LoS (6.21 days).
The shortest average LoS (2.5 days) is observed for patients in the age group between 11 and 20
years; however, that group accounts for only 2.4% of the total admissions. Elderly patients are
more likely to stay longer as inpatients compared to younger ones. They are more prone to hospi-
talisation related complications such as infections or worsening of their condition.

It is also checked whether the source of admission has an effect on LoS. The average LoS is
found for patients admitted from the three most common sources of admission, namely: Recov-
ery/Theatre, A&E and MAU, which in total account for 62% of all admissions. Table 5.6 shows the
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Figure 5.9: Length of stay distribution with Negative Exponential fit

three different admission sources and the average LoS for each source in an increasing LoS order.

Table 5.6: Average length of stay in RG for different admission sources

Admission source Probability of admission from given source Average LoS (days)
Recovery / Theatre 31% 4.2801

A&E 26% 4.3183

MAU 5% 5.5087

others 38% 6.1004

Visibly, recovery process in RG is dependent on the admission source; patients admitted for post
operative monitoring are expected to stay in the CCU the shortest time, 4.28 days on average. Pa-
tients admitted from A&E are also expected to make a fairly quick recovery. The mean LoS of
patients in this category is below average (4.31 days compared with the overall average of 5.04
days). Patients admitted from other, less likely, sources are expected to stay in the CCU for longest
(6.10 days), on average one day longer than the overall average LoS.

Finally, it is checked whether day of the week when patients are admitted has an impact on their
LoS. Patients admitted on Thursday have on average longest LoS, which confirms findings quoted
in the Bed Management Audit Commission Report, 2003 [7]. The shortest average LoS is observed
for patients admitted on Monday, though it is unlikely that their cases are less complex. There is
no justifiable reason why that happens.
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5.2.3 Bed Occupancy

Bed occupancy measure is not provided directly by the data set, but can be obtained by examining
the admission and discharge dates and times. A program written in VBA read in the number of
patients present in the Unit every hour from 01/04/2009 to 31/12/2011 and the bed occupancy is
output to a worksheet. The reason for omitting a period of three months is to avoid underestimation;
patients could have been admitted for example on 31/12/2008 and stayed in the Unit for a month.
Records of that patient would not be included in the data set and therefore the fact that the patient
occupied a bed would have been skipped. Occupancy census for each CCU will be measured
separately.

5.2.3.1 Nevill Hall

Nevill Hall is the smaller of the two considered hospitals, and the CCU consists of 8 beds. The
number of beds occupied at every hour in study period is illustrated in Figure 5.10.

Figure 5.10: Hourly bed occupancy at NH (April 2009-December 2011)

The average number of beds occupied in the study period is 5.67 with standard deviation of 1.47.
Very often hospital managers use the term utilisation rate instead of the average number of beds oc-
cupied. Utilisation rate is the ratio of mean bed occupancy to the bed capacity. In NH, the average
utilisation rate is 70.9%, which is considerably low, since the most quoted bed occupancy target in
the literature is 85% ([64]). The number of beds occupied fluctuates up to 9 during busy periods
and dropping to as low as 1 at quiet times. An initial analysis reveals that on 0.3% of occasions
there are more than 8 patients in the Unit, being probably treated in the Recovery Room after their
surgery until a CCU bed becomes available. The orange increasing trend-line in Figure 5.10 sug-
gests that the bed utilisation rates are increasing with time.
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The data is investigated to check for any time dependencies; whether on particular days of the week
it is more likely that occupancy will be lower or higher than on others. The weekly trends of bed
occupancy are investigated and there are no visible trends. The average bed occupancy fluctuates
between 5.60 (on Saturday) and 5.72 (on Sunday). Also, hourly trends are examined; it appears
that on average a day starts with the lowest average bed occupancy (5.55 beds), it then steadily
increases to reach its maximum at 2pm (5.80 beds) and then starts to decrease again towards the
evening.

Consider the frequency distribution of the bed occupancy in the CCU during the study period, pre-
sented in Figure 5.11. Clearly, the most likely bed occupancy is 6, with corresponding probability
of 26.6%. The Unit was full to its capacity on 9.6% of occasions.

Figure 5.11: Bed occupancy frequency distribution

The frequency distribution from Figure 5.11 will be used later for comparison between the data and
the mathematical model.

5.2.3.2 Royal Gwent

Royal Gwent is the larger of the two hospitals. Bed capacity was changed twice in the study period
and therefore each period will be considered individually, since having 14 beds occupied during
Period 1, when there were 14 beds available is not comparable to having 14 beds occupied in Pe-
riod 3, when bed capacity was 16. The number of beds occupied at every hour in the study period
is illustrated in Figure 5.12. The periods are separated by vertical lines.

Summary statistics of bed occupancy in each of the three periods in RG is presented in Table 5.7.
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Figure 5.12: Hourly bed occupancy at RG (April 2009-December 2011)

Table 5.7: Summary statistics for bed occupancy in RG

Summary statistic Period 1 Period 2 Period 3 Overall
Mean 10.57 12.43 13.3 11.54

Median 11 13 14 12

Standard Deviation 1.84 1.74 1.57 2.06

Minimum 4 4 8 4

Maximum 16 17 16 17

The overall average bed occupancy is 11.54 with standard deviation of 2.06; however, the variabil-
ity across the periods is significant. As the bed capacity is increased the mean bed occupancy is
also increased. In Period 1, on average 10.57 beds were used on each day, giving a utilisation rate
of 75.5%. In Period 2, the average is increased to 12.43 (utilisation 82.8%), and again in Period
3 to 13.3 (utilisation 83.1%). The red trend-line in Figure 5.12 also shows an increasing trend,
especially on transition between Period 1 and Period 2. The number of beds occupied fluctuates up
to 17 during busy periods and dropping to 4 at quiet times. An analysis reveals that on 0.26% of
occasions in Period 1 and on 1.64% in Period 2, bed occupancy exceeded total bed capacity. It is
observed that in Period 3 bed occupancy never exceeded the bed availability.

The data is investigated to check for any time dependencies. The data is split into the three periods
for this purpose. Similar trends are observed in Period 1 and Period 2, the highest average bed oc-
cupancy on Wednesday (11.01 beds) in Period 1 and on Tuesday (12.86 beds) in Period 2 with the
lowest average on Saturday (10.30 beds) in Period 1 and Friday (12.05 beds) in Period 2. Period 3
has a very different weekly trend: the average bed occupancy fluctuates between 14.01 on Saturday
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and 12.44 on Wednesday. The hourly trends are examined for each of the period. The results are
very similar across the whole study period; it appears that on average the day starts with the lowest
average bed occupancy, it then steadily increases to reach its maximum around midday and then
start to decrease again towards the evening.

Consider the frequency distributions of the bed occupancies in the CCU during each period, pre-
sented in Figures 5.13a, 5.13b and 5.13c. The bed occupancy profiles look similarly across the
three periods: small proportion of low bed occupancies, high probability of bed utilisation around
70-85% and low proportion of very high bed occupancies. The median value varies across the three
periods, it starts with eleven, then increases to 13 and increases again to 14 in Period 3.

(a) Period 1 (b) Period 2 (c) Period 3

Figure 5.13: Bed occupancy frequency distribution for each period

This bed occupancy representation is not functional for later modelling purposes, therefore it is
decided to examine utilisation rates or percentage distribution, i.e. on how many occasions are
there 0 − 10%, 11 − 20%, 21 − 30% etc. beds occupied. It is done in the following way: the
possible number of beds occupied are divided by the bed capacity in each period and then grouped
in eleven classes: 0−10%, 11−20%, . . . , 90−100%, > 100%. Consider the percentage frequencies
displaying the bed occupancy proportion in the CCU during each period, presented in Figures 5.14a,
5.14b and 5.14c.

(a) Period 1 (b) Period 2 (c) Period 3

Figure 5.14: Bed occupancy frequency distribution for each period

The three frequency distributions are combined into one by taking the proportion of time each
period lasted; Period 1 lasted 17 months; Period 2, 13 months and Period 3, 3 months. Each bar in
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the overall bed occupancy percentage distribution is obtained in the following way:

P (x%− y%) =
3∑
i=1

P ( Period i)× P (x%− y% in Period i)

Figure 5.15 illustrates the overall bed utilisation frequencies. The overall utilisation rate is 79%,
and a bed utilisation of 71− 80% has the highest probability of occurrence (35%). It is noteworthy
that on 20% of occasions bed utilisation exceeds 90%, which means that the Unit is running at a
very high occupancy level 20% of the time. The frequency distribution from Figure 5.15 will be
later used for comparison between the data and the model.

Figure 5.15: Overall bed occupancy frequency distribution at RG (April 2009-December 2011)

After inspection of the data sets it is noted that some patients were occupying beds even though
they did not require life support any longer but, for example, because there was no free bed for them
in an ordinary ward, and those patients were blocking CCU beds. Section 5.2.4 will investigate the
occurrence of delayed discharges.

5.2.4 Delay to Discharge

Critical care services are very expensive, so it is very important to keep costs as low as possible
without any compromise of the quality of care. This section examines the occurrence of delayed
discharges.

Delay in discharge is defined as a difference between the moment the patient is ready for discharge
and the actual discharge. Patients should be discharged from a CCU when the specialised care is
no longer required. Sometimes, however, some issues cause a delay in a patient’s discharge. The
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factors contributing to the delay of discharge are unspecified in the data set; however, the main
reason quoted by the hospital managers was unavailability of ward beds. Other quoted reasons
included: medical complications, transport problems (transferring patient to another hospital) or
lack of ward nursing staff with adequate skills. Some delays to discharge happen as a result of
the ‘human factor’; i.e. if there was no pressure on CCU beds, the CCU manager would make a
decision to delay patient’s discharge even though medically the patient was ready to be transferred
to an ordinary ward. The term delayed discharge in the literature is also sometimes known by the
term ‘bed blocking’.

The reported estimates of the extent of delayed discharge vary between studies because of variation
in methodology (e.g. restriction of study to particular ward or age groups). Coast, 1996 [29] esti-
mated that 15-25% of all admissions and 60% of all bed days were potentially inappropriate. Victor
et al., 1993 [162] reported that 19% of those aged 65 and above in two inner hospitals were defined
by staff as ‘bed blockers’, which represented 8% of all acute beds. However, the same study also
indicated that delayed discharge was not a problem exclusively associated with older people, as
they represented only about half of delayed patients. Healy et al., 1999 [85] examined the extent
of delayed discharge amongst patients in three hospital elderly care units in England, and analysed
the factors associated with such delays using the conceptual model of individual and organisational
factors (e.g. disagreements between health and social services).

Victor et al., 2000 [161] in their study of three hospital elderly care units showed that among older
patients in geriatric units, factors such as age and frailty are not causes for a delay in discharge.
The authors concluded that the major cause of delay is organisational / administrative, which is
compounded by constrained social services budgets.

Williams and Leslie, 2004 [167] examined the prevalence and reasons for delayed discharge in
ICU. The majority (81%) of delays happened as a result of unavailable ward beds. Delays due
to medical reasons only accounted for 8.5% of the patient delays from the ICU. The authors also
showed that patients who were more severely ill on admission were more likely to be delayed and
that most delays occurred during the weekend.

Maessen et al., 2008 [116] designed a study to assess the influence of an ERAS (enhanced recovery
after surgery) program on the proportion, appropriateness, and extent of delay in discharge. The
degree of delay in discharge decreased significantly from a median of two days to a median of one
day in the ERAS group.

Lim et al., 2006 [112] observed that elderly patients are more likely to stay longer as inpatients
compared with younger ones even after their acute medical problems have been resolved. They are
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more prone to hospitalisation-related complications, like infections or worsening function.

The following two sections will examine the delay in discharge from the CCUs at NH and RG and
what factors might influence patients’ delays to discharge.

5.2.4.1 Nevill Hall

In the study period there were 1640 discharges from NH CCU, including 79% of patients who ex-
perienced any delay in their discharge. Patient discharge delay time ranged from 10 minutes to 21
days (mean, 9.25 hours; standard deviation, 20.25 hours; median, 3.83 hours). The delay times are
grouped into 8-hourly time periods. The majority of delayed patients (71%) are discharged within
eight hours of the decision to discharge and 84% within 24 hours.

Since there are 8 beds available, it gives a total of 8760 bed-days in the three year study period.
The total delay to discharge time is 632 days, which implies that 7.21% of beds were blocked on
each day. Given that there are 8 beds, implies that on average 0.58 beds are blocked per day, which
seems relatively high for such a small CCU.

As said previously, critical care services are very expensive. The cost of an additional 632 bed-
days in the study period cost the NHS approximately £1.1 million, calculated using the average
daily cost of CCU bed as £1800 ([129]).

It is decided to investigate whether CCU bed occupancy had an influence on patient delays. In-
tuitively, if the Unit is busy, there is more pressure to free up beds, therefore the delay should be
significantly lower than when bed utilisation is low. Using the data it is found on what day and what
time each patient was ready to be discharged, simply by taking away the delay to discharge time
from the actual discharge time. Then, it is checked how many beds are occupied in the time that
patient was ready to be discharged and the mean delay was found for each bed occupancy. Figure
5.16 illustrates how the mean delay in discharge changes for different bed occupancies together
with probabilities of a given occupancy (orange line with the scale on the right hand side).

As expected, the mean delay to discharge time is highest (on average 11 hours) when the Unit is not
very busy. When bed utilisation reaches 75% the mean delay time starts to rapidly decrease. De-
lays decrease as occupancy increase to maximum capacity, which may reflect increasing discharge
effort in order to ensure beds were free for new admissions.

The data is also investigated to check any time dependencies, i.e. to test whether the day of the
week had an influence on the delay to discharge. Figure 5.17 demonstrates any existing time de-
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Figure 5.16: Mean discharge delay at NH for given bed occupancy when patient is ready for dis-
charge

pendencies together with probabilities of the delay happening on each day of the week (scale on
the right hand side).

Figure 5.17: Mean discharge delay at NH for given day of the week when patient is ready for
discharge

The most delays occurs on Wednesday (17% of all delays), closely followed up by Tuesday (16%)
and Monday (15%), with longest delays on average (16.6 hours). Sunday has the lowest probability
of delay to discharge (11%), but the average delay time was second highest (13 hours).

Other factors that could possibly be associated with postponement of discharge is patient age. As
observed by Lim et al., 2006 [112] elderly patients’ discharges are more likely to be delayed. The
relationship between age and delay time is investigated. All patients are grouped into 10-year age
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groups; patients in the age group 71-80 accounts for most delays (23% of all delayed patients) and
young patients group (younger than 20 years old) for only 6% of all delayed patients. Excluding the
patients in age group below 20 and above 90, who in total accounted for only 6% of all admissions
the longest average delay to discharge have patients in the age group 21-30 (15 hours) and the
shortest patients in the age group 81-90 (8.3 hours). It can be concluded that elderly patients’
discharges are more likely to be delayed; however, on average the delay time is below overall
average.

5.2.4.2 Royal Gwent

In the analysed study period there were 2458 patients who were discharged from the CCU at RG, in-
cluding 60% of patients who experienced any delay in their discharge, which compares favourably
with NH, where 79% of patients were discharged with delay. Patients’ discharge delay time ranged
from 10 minutes to 16.2 days (mean, 20.3 hours; standard deviation, 35.6 hours; median, 4.5 hours).
The delay times were grouped into 8-hourly time periods. The majority of delayed patients (35%)
were discharged within 8 hours of the decision to discharge.

Recall, the number of available beds in RG has changed twice during the study period. For the
first 20 months there were 14 beds, for the next 13 months 15 beds, and in the last three months
16 beds available; this gives the total of 15,929 bed-days in the three year study period. The total
delay to discharge sums up to 2081 days. Each period is considered separately to check whether
bed capacity has an influence on the discharge delay. Table 5.8 shows summary statistics and a few
calculated variables.

Table 5.8: Summary statistic for discharge delay in each period in RG

Variable Period 1 Period 2 Period 3
Mean 15.3 hours 25.3 hours 36 hours

Median 2.2 hours 7 hours 6.7 hours
Mode 0 0 0

Standard deviation 1.2 days 1.7 days 2.2 days
Minimum 0 0 0
Maximum 9.3 days 16.2 days 10.4 days

Percentage of delayed patients 54% 67% 75%
Total delay 761.5 days 900.4 days 301.7 days

Number of beds available 14 15 16
Number of bed-days 8522 5935 1472

Average percentage of blocked beds per day 8.94% 15.17% 20.5%
Mean number of blocked beds per day 1.25 2.28 3.28
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Table 5.8 shows very interesting results: increasing bed capacity increases:

• the number of delayed patients (54% in Period 1, 67% in Period 2 and 75% in Period 3).

• the average delay time (15.3 hours in Period 1, 25.3 hours in Period 2 and 36 hours in Period
3).

• the percentage of blocked beds (8.94% in Period 1, 15.17% in Period 2 and 20.5% in Period
3) .

It is clear, that the bed capacity has an impact on discharge delays. It is examined whether the bed
occupancy had an influence on patient delays. Figure 5.18 demonstrates how the mean delay in
discharge changes for different bed occupancies for the whole period of three years, together with
probabilities of given occupancy (red line with the scale on the right hand side).

Figure 5.18: Mean discharge delay at RG for given bed occupancy when patient is ready for dis-
charge

Surprisingly, Figure 5.18 shows very different results to the CCU at NH (Figure 5.17). As bed oc-
cupancy increases, the average discharge delay time increases. The highest mean delay is observed
for bed occupancy of 16; however, the proportion of time that bed occupancy was 16 was very low
(0.9%). Nevertheless, looking only at bed occupancies with probability of occurrence greater than
5% (i.e. bed occupancy between 9 and 15), an increasing trend is evident. Thus, the bed occupancy
is not found to be a major factor in discharge decisions in RG.

The RG data is also investigated to check for any time dependencies. Figure 5.19 demonstrates any
existing time dependencies together with probabilities of delay happening on each day of the week.
Similarly as in NH, most delays occur on Wednesday (16% of all delays), closely followed up by
Friday (15.6%). Sunday has the lowest percentage of delays to discharge (11%), but on average
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longest delays (39.2 hours). The shortest delays on average were experienced on Thursday (29
hours).

Figure 5.19: Mean discharge delay at RG for given day of the week when patient is ready for
discharge

The last factor investigated is patient age, to check whether delay to discharge is related to it. As
observed in NH, elderly patients’ discharges are more likely to be delayed; it is found that patients
in the age group 71-80 accounted for most delays (24% of all delayed patients) and young patients
(younger than 20 years old) for only 2% of all delayed patients. Excluding the patients in age group
below 20 and above 90, who in total account for only 3% of all admissions, the longest average
delay to discharge is patients in the age group 41-50 (22.3 hours), closely followed up by patients
in the age group 71-80 (22 hours), and the shortest patients in age group 21-30 (16.8 hours). It can
be concluded that elderly patients’ discharges are more likely to be delayed and delays are fairly
significant.

5.2.4.3 Conclusions

Proactive management of early discharge planning with the attention on the changing care needs
of the patient and better utilisation of ordinary ward beds is essential to reduce delays in discharge
from CCUs. Reducing delays in the discharge process would free up beds for other admissions;
which would benefit patients and would result in cost savings for the hospitals. Delays in discharge
have cost implications; additional nursing time is needed. By reducing delayed discharge a more
cost-effective health care system can be provided.

Section 5.2.4 determined the occurrence of discharge delays in the CCUs discharge and identified
some factors that influence the postponement. It was shown that bed occupancy in NH could
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sway discharge decisions, however this was not observed in RG. Also, there were visible time
dependencies in both hospitals, i.e. day of the week has an impact on discharge delay. The study
also confirmed the work of Lim et al., 2006 [112] which showed that elderly patients’ discharges
are more likely to be delayed.

5.3 Conclusions

The main aim of this chapter has been to investigate patient flow including the admission process
and length of stay profile in the CCUs at the Nevill Hall and the Royal Gwent Hospitals. Adequate
distributions which accurately described admission processes and duration of stay in the Units were
provided. An interesting conclusion was that increasing bed capacity did not increase the number
of admissions, but increased patient duration of stay, which then caused greater bed utilisation rates.
Other important factor influenced by increased bed capacity was delay to discharge.

Information provided in this chapter will be used in Chapter 6 to consider aspects of theoretical
applications of mathematical modelling of the CCUs.



Chapter 6

Mathematical Modelling of the Nevill Hall
and the Royal Gwent Critical Care Units

6.1 Introduction

The purpose of this chapter is to develop and validate a mathematical model of bed occupancies at
Critical Care Units (CCU) at Royal Gwent and Nevill Hall. In Section 6.4, sensitivity of the model
will be tested by a few ‘what if’ scenarios, including transfer of patients and beds from one CCU
to other. In Section 6.5, sensitivity of the model will be explored through changes to the combined
Unit size.

6.2 The Queueing Model

Any queueing model is dependent on the accurate assessment of three variables: arrival rate, service
time and the number of channels in the system. Bed occupancy is initially modelled using Erlang’s
Loss Formula for the M/M/c/c queue, which previously proved to accurately model the CCU at
the University Hospital of Wales in Cardiff (Section 3.3). The analytical results for the Nevill Hall
(NH) and the Royal Gwent (RG) however, do not provide a satisfactory fit, as can be seen in Figures
6.1a and 6.1b. For NH the model shows a lower frequencies of bed occupancy values five, six and
seven, and higher frequencies at both ends of the distribution. For RG the model underestimates bed
utilisation above 70%, and overestimates low bed occupancy. The possible explanation for these
discrepancies is that the system does not work as “smoothly” as its mathematical model; therefore,
a more complex bed occupancy model has to be considered. It is suggested, that the number of
admissions might be dependent on current bed occupancy levels; therefore, in this study queueing
theory is used to develop a new mathematical model of patient flow with cut-off points. The model
allows for different admission rates for various bed occupancy levels, hence is an extension to the

127
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model described in Sections 3.3.6 and 3.3.7. The cut-off points are not strict guidelines to hospital
managers, but they reflect on behavioural aspects.

(a) NH (b) RG

Figure 6.1: Initial bed occupancy model for each CCU

A system, in which the mean service rate depends on the state of the system was described in
Stewart, 2009 [152]. The case in which the server works at rate µ1 until there are k customers in
the system, at which point it changes to a different rate µ2 was considered. The hospital managers
might not have great control of patients LoS, but they have control over patient admissions. There-
fore this part of the project concentrates on state-dependent arrivals.

Section 1.4 considered queueing systems with variable arrival rates. Gong et al., 1992 [60] con-
sidered the M/G/1 queue with queue-length dependent arrival rates. Courtois and Georges, 1971
[37] generalised the M/G/1 queueing process by considering the arrival and the service rates as
being arbitrary functions of the current number of customers in the system. The existing literature
on state-dependent queueing systems mainly considers systems with a single server, while a CCU
is a multi-channel system.

The CCUs are modelled as a multi-channel, single-stage system with identical parallel servers
where queueing is not allowed (loss queue). If all beds are occupied, then an arriving patient is
transferred to a different hospital or to an alternative ward within the hospital. Those patients are
referred to as ‘turn away’ or rejected. Each CCU bed is treated as one server and a FIFO (first-
in-first-out) queueing discipline is assumed. Let Pn be the steady-state probability that there are n
patients in the system and let:
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k1, k2 cut-off number 1, 2 (k2 > k1)

λa the arrival rate if bed occupancy ≤ k1

λb the arrival rate if k1 < bed occupancy ≤ k2

λc the arrival rate if bed occupancy > k2

µ the service rate

c the number of channels (beds)

A diagrammatic representation is given in Figure 6.2.

Number of beds occupied
0 1

Figure 6.2: State dependent queueing model

The system with c service channels available can be described by the set of the differential-difference
equations:

(1) For n = 0:

P0(t+ δt) =P0(t)(1− λaδt)

+ P1(t)(1− λaδt)µδt+ o(δt)

(2) For 1 ≤ n ≤ (k1 − 1):

Pn(t+ δt) =Pn(t)(1− λaδt)(1− nµδt)

+ Pn−1(t)λaδt (1− (n− 1)µδt)

+ Pn+1(t)(1− λaδt)(n+ 1)µδt+ o(δt)

(3) For n = k1:

Pn(t+ δt) =Pn(t)(1− λbδt)(1− nµδt)

+ Pn−1(t)λaδt (1− (n− 1)µδt)

+ Pn+1(t)(1− λbδt)(n+ 1)µδt+ o(δt)
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(4) For (k1 + 1) ≤ n ≤ (k2 − 1):

Pn(t+ δt) =Pn(t)(1− λbδt)(1− nµδt)

+ Pn−1(t)λbδt (1− (n− 1)µδt)

+ Pn+1(t)(1− λbδt)(n+ 1)µδt+ o(δt)

(5) For n = k2:

Pn(t+ δt) =Pn(t)(1− λcδt)(1− nµδt)

+ Pn−1(t)λbδt (1− (n− 1)µδt)

+ Pn+1(t)(1− λcδt)(n+ 1)µδt+ o(δt)

(6) For (k2 + 1) ≤ n ≤ (c− 1):

Pn(t+ δt) =Pn(t)(1− λcδt)(1− nµδt)

+ Pn−1(t)λcδt (1− (n− 1)µδt)

+ Pn+1(t)(n+ 1)µδt+ o(δt)

(7) For n = c:

Pn(t+ δt) =Pn(t)(1− nµδt)

+ Pn−1(t)λcδt (1− (n− 1)µδt) + o(δt) (6.1)

The steady-state equations may be written in the form shown below:

(1) For n = 0:
µP1 = λaP0

(2) For 1 ≤ n ≤ (k1 − 1):
(λa + nµ)Pn = λaPn−1 + (n+ 1)µPn+1

(3) For n = k1:
(λb + nµ)Pn = λaPn−1 + (n+ 1)µPn+1

(4) For (k1 + 1) ≤ n ≤ (k2 − 1):

(λb + nµ)Pn = λbPn−1 + (n+ 1)µPn+1
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(5) For n = k2:
(λc + nµ)Pn = λbPn−1 + (n+ 1)µPn+1

(6) For (k2 + 1) ≤ n ≤ (c− 1):

(λc + nµ)Pn = λcPn−1 + (n+ 1)µPn+1

(7) For n = c:
nµPn = λcPn−1

Theorem 6.2.1. The bed occupancy probabilities with two cut-off points k1 and k2, where k2 > k1

which are dependent on bed occupancy levels (as described by Figure 6.2) are given by:

Pn =


1
n!
θa
nP0 if 0 ≤ n ≤ k1

1
n!
θa
k1θb

n−k1P0 if (k1 + 1) ≤ n ≤ k2

1
n!
θa
k1θb

k2−k1θc
n−k2P0 if (k2 + 1) ≤ n ≤ c

where

θa =
λa
µ

and θb =
λb
µ

and θc =
λc
µ

and

P0 =
1

1 +
k1∑
r=1

1
r!

(
λa
µ

)r
+
(
λa
µ

)k1 k2∑
r=k1+1

1
r!

(
λb
µ

)r−k2
+
(
λa
µ

)k1 (
λb
µ

)k2−k1 c∑
r=k2+1

1
r!

(
λc
µ

)r−k2
Proof.

The proof is similar to that of Theorem 3.3.1, it is done using an inductive argument, and is in
Appendix D. �

The service rate parameter µ is taken from the data. The next task is to determine values for the
parameters k1, k2, λa, λb, λc which would give the closest representation of real-life bed occupancy
probabilities. There are no written rules for managers to determine patient admission automatically;
these decisions are subject to the judgement of the critical care consultant. The approach chosen
to model this decision-making process requires defining a set of rules to determine arrival rates,
which depend on bed occupancy levels. Since there are no official rules as to when to decrease
arrival rates, it is impossible to obtain this information from the data. It is addressed by defining an
optimization problem aimed at matching the mathematical model of bed occupancy with the data.
This is achieved using the optimisation tool: Evolver.
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Evolver is a software package build in Excel that allows users to tackle a wide variety of optimisa-
tion problems using a genetic algorithm ([54]). Applications written with Evolver can contain large
numbers of adjustable cells and it can handle complex, non-linear problems, while Solver fails for
large non-linear problems. In a genetic algorithm, each possible solution to a given problem be-
comes an independent ‘organism’ that can ‘breed’ with other organisms. The process is described
below ([49]):

1. The Evolver engine randomly generates many organisms (possible solutions), and calculates
the result each organism it produces. This entire ‘population’ of organisms is ranked from
best to worst.

2. The genetic algorithm engine then selects good organisms and swaps their variables (genes)
using crossover and mutation to produce ‘offspring’. If offspring do not produce a good
result, two more parents are selected.

3. If the offspring organism is good, it is re-inserted into the population.

As Evolver repeats steps 2 and 3, the population ‘evolves’ increasingly producing better solutions.

The mathematical program used to find model parameters is described below:

Minimise:
c∑

n=0

(dataPn −modelPn)2

Subject to:
0 < k1 < k2 < c

k1, k2 ∈ N

λa, λb, λc ∈ R+

0.9λ ≤ Λ ≤ 1.1λ

where:

Λ =

k1∑
n=1

λaPn +

k2∑
n=k1+1

λbPn +
c∑

n=k2+1

λcPn

Note, if k1 = k2, k1 = 0 or k2 = c then the problem reduces to one cut-off model, which was
considered, and did not provide a good fit. The final constraint is added to make the model as
accurate as possible, it is decided to allow the overall model arrival rate (Λ) to be within 10% of the
actual admission rate.
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6.3 Results of the Mathematical Model

Having developed a mathematical model of the CCUs based on actual data and parameters obtained
from the solution to the mathematical program, it is necessary to investigate whether the new model
provides a good bed occupancy fit. This section displays a brief outline of the results for each of
the hospitals.

Evolver is run to find parameter values that would provide the best bed occupancy fit at NH. The
objective function, sum of squared differences of the model and data bed occupancies is equal to
0.004, and is minimised for the following set of parameters:

Table 6.1: Parameter values

Parameter Value
λa 0.644
λb 1.916
λc 1.263
k1 2
k2 6

The found parameters indicate that the hospital admits on average 0.644 patients per day when bed
occupancy is 2 or lower. It might seem counter-intuitive, however the probability of having 2 or
less beds occupied was very low, suggesting there were no doctors or nurses, hence low rate of
arrivals. When there are between 3 and 6 beds occupied the arrival rate is increased to 1.916 and
then, if bed occupancy exceeds 6 the arrival rate decreases to 1.263. The overall arrival rate is
1.647, which is exactly 10% higher than the observed admission rate (1.498). The other factor that
suggests whether the model provides a good fit is the utilisation rate. The utilisation rate, which is

calculated in the following way:

c∑
n=1

nPn

c
= 0.67 compares favourably with the observed rate of 0.71.

The analytical results are now compared with the data in Figure 6.3, which shows close agreement
in bed occupancy levels when comparing the model results with the data. Recall, the total bed ca-
pacity is 8. As shown in Section 5.2.3.1 on some occasions the number of beds occupied exceeded
the total capacity; in the mathematical model the number of server channels was chosen to be 8,
therefore the data was standardised so that the maximum number of beds is 8.

The model was also run without the overall admission rate constraint and with decreased acceptance
range for the overall admission rate from 10% to 5% and then to 1%. Table 6.2 shows parameter
values for the three cases.



Chapter 6 MATHEMATICAL MODELLING OF THE NH AND THE RG CCUS 134

Figure 6.3: Comparison of analytical results with the NH data

Table 6.2: Parameter and variable values

Parameter/ Variable No overall admission Overall admission Overall admission
name rate constraint rate within 5% rate within 1%
λa 2.08 1.104 0.493

λb 1.493 1.865 1.781

λc 0.883 1.251 1.253

k1 6 3 2

k2 7 6 6

sum of squares 0.0002 0.007 0.009

overall admission rate 1.84 (23% incr.) 1.57 (5% incr.) 1.51 (1% incr.)

The model without the overall admission rate constraint provides a better bed occupancy fit; how-
ever, a 23% increase in the total admission rate is not accepted. Decreasing the acceptance range
for the overall admission rate decreases the goodness of fit.

The model was also run with higher number of cut-off points (three and four); however, the results
are not much better; therefore, for the simplicity and to avoid over-fitting of the model it is decided
to accept the model with two cut-off points.

Attention is now given to the RG hospital, which requires slightly more care since the model has
to be fitted for each of the three periods, and then combined into one with adequate probabilities.
Evolver is run to find parameter values that would provide the best bed occupancy fit for each
period. The objective function, sum of squared differences between the model and the data bed
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occupancy probabilities, is 0.000311 in Period 1, 0.000033 in Period 2 and 0.001113 in Period 3
and is minimised for the set of parameters in Table 6.3.

Table 6.3: Parameter values

Parameter Value in Period 1 Value in Period 2 Value in Period 3
λa 3.081 3.327 3.761
λb 2.462 2.628 1.754
λc 1.377 1.582 0.506
k1 11 12 14
k2 12 13 15

The obtained parameters indicate, as expected, that less patients on average are admitted when there
are more beds occupied in the CCU, i.e. arrival rates are decreased as bed occupancy is increased.
The overall arrival rates obtained from the model are compared with the observed rates and are
illustrated in Table 6.4

Table 6.4: Comparison of overall arrival rates

Period Data Model Increase
Period 1 2.3026 2.5329 10%

Period 2 2.1722 2.277 4.87%

Period 3 2.1739 2.3913 10%

The other factors that indicate whether the model provides a reasonably good fit is the utilisation
rate. The utilisation rate obtained from the model in Period 1 is 74.93%, which compares favourably
with the data rate of 75.41%; similarly in Period 2, 82.26% with 82.43%; and in Period 3, 82.55%
with 83.10%

Figures 6.4a, 6.4b and 6.4c show how analytical results compare with the actual data in each period.

(a) Period 1 (b) Period 2 (c) Period 3

Figure 6.4: RG bed occupancy model fit for each period
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In order to get the overall bed occupancy profile, bed occupancy proportions in each period are
grouped into ten classes: 0− 10%, 11− 20%, . . . , 91− 100%, and the proportion that each period
lasted for is incorporated in the following way:

Poverall(10s% < n ≤ 10(s+ 1)%) = P (Period 1)× PPeriod 1(10s% < n ≤ 10(s+ 1)%)

+ P (Period 2)× PPeriod 2(10s% < n ≤ 10(s+ 1)%)

+ P (Period 3)× PPeriod 3(10s% < n ≤ 10(s+ 1)%)

where s ∈ [0, . . . , 9]. Figure 6.5 illustrates the overall bed occupancy profile with the model fit,
which provides very accurate representation of the actual RG data.

Figure 6.5: Comparison of analytical results with the RG data

Having obtained the model that accurately describes activities in both CCUs, it is now possible to
test a few ‘what if’ scenarios, which will be described in Section 6.4. The model obtained herein
will be referred to as the base model in Section 6.4.

6.4 ‘What if’ Scenarios

The previous section detailed the validation of the base model; however, no alternations were made:
arrival rates remained unchanged. This section will examine the effect of implementing some
new policies regarding transfers of patients and beds between hospitals. It has been mentioned
previously that sometimes the Unit is busy and patients need to be admitted to an ordinary ward, or
if patients are very ill and need specialised care, they will be transferred to another CCU.
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6.4.1 Transfer of Patients Between Hospitals

This section will investigate the consequence of transferring a percentage of patients from one CCU
to the other. One of the hospitals might specialise in, for example, care of patients who undergo a
transplant operation and all patients from this Local Health Board will be transferred to that CCU.
However, the hospital that is receiving extra patients should not be experiencing overcrowding on
too many occasions. The measures that will be taken under investigation are: the probability of a
patient being rejected in both hospitals and the overall throughput of patients. The scenario, where
throughput is higher and probability of rejection is lower from the base model will be recommended
to the hospital managers.

If patients are transferred, for example form NH to RG, they will be under the care of RG and hence
it is assumed that those patients’ length of stay characteristic will be under RG, i.e. the hospital
that the patient is receiving care in.

Recall, RG bed occupancy model is a combination of three models, due to the bed capacity change.
As a result, the overall combined RG arrival rate is calculated as follows:

ΛRG = P (Period 1)× λPeriod 1 + P (Period 2)× λPeriod 2 + P (Period 3)× λPeriod 3

= P (Period 1)×

k1Period1∑
n=1

λaPeriod1Pn +

k2Period1∑
n=k1Period1+1

λbPeriod1Pn +

cPeriod1∑
n=k2Period1+1

λcPeriod1Pn


+ P (Period 2)×

k1Period2∑
n=1

λaPeriod2Pn +

k2Period2∑
n=k1Period2+1

λbPeriod2Pn +

cPeriod2∑
n=k2Period2+1

λcPeriod2Pn


+ P (Period 3)×

k1Period3∑
n=1

λaPeriod3Pn +

k2Period3∑
n=k1Period3+1

λbPeriod3Pn +

cPeriod3∑
n=k2Period1+1

λcPeriod3Pn


The overall NH arrival rate is as follows:

ΛNH =

k1NH∑
n=1

λaNHPn +

k2NH∑
n=k1NH+1

λbNHPn +

CNH∑
n=k2NH+1

λcNHPn

As an illustration, proportions of 10%, 20% and 50% of patients will be transferred, firstly from
RG to NH. The new increased NH parameters are:

λnewaNH
= λaNH + x%ΛRG, λ

new
bNH

= λbNH + x%ΛRG and λnewcNH
= λcNH + x%ΛRG.

The new decreased RG parameters for each of the periods are:
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λnewaRG
= (1− x%)λaRG , λ

new
bRG

= (1− x%)λbRG and λnewcRG
= (1− x%)λcRG .

The parameter values of k1 and k2 stay unchanged. The bed occupancy probabilities are calculated
using Theorem 6.2.1. The examined measures are: the throughput and the probability of rejection,
Pr = Pc, for each of the hospitals separately. Then the throughput at RG is added to the throughput
at NH; similarly the sum of the rejection probabilities are taken.

Similarly, the proportion of NH patients are now transferred to RG. The new increased arrival rate
parameters for RG are:

λnewaRG
= λaRG + x%ΛNH , λ

new
bRG

= λbRG + x%ΛNH and λnewcRG
= λcRG + x%ΛNH .

Correspondingly, the decreased NH parameters are:

λnewaNH
= (1− x%)λaNH , λ

new
bNH

= (1− x%)λbNH and λnewcNH
= (1− x%)λcNH .

The parameter values of k1 and k2 stay unchanged.

Figure 6.6 illustrates how throughput in each hospital changes for each scenario. Each vertical
bar represents throughput at RG (blue) and NH (purple) with the total for each scenario given at
the top of each bar. Scenario labelled, for example, ‘NH + 10% from RG’ means that 10% of RG
admissions are transferred to NH. The first three scenarios show how throughput changes when per-
centage of patients are transferred from RG to NH. The following three demonstrate changes to the
system when a percentage of NH admissions are transferred to RG. Unsurprisingly, the throughput
at hospital with reduced admissions decreases as the percentage of patients transferred increases.

Figure 6.6: Throughput for each of the six scenarios
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Consequently, the throughput at the hospital that is admitting extra patients increases as the per-
centage of transfers increases. The total throughput for the base model is 1611 patients per year;
and the total is marked in red for scenarios with throughput higher than 1611. As it can be seen, the
throughput is greater when patients are transferred from RG to NH (the first three scenarios), with
the corresponding throughput of 1635 for 10%, 1647 for 20% and 1629 for 50% of extra transferred
patients.

Increasing the throughput might increase the probability of a patient being rejected or equivalently,
the probability of all beds being full. It is therefore necessary to investigate how this measure
changes for each of the given scenarios. Figure 6.7 demonstrates how the probability of rejection
changes.

Figure 6.7: Probability of rejection for each of the six scenarios

The total probability of all beds being full for the base model is equal to 16.69%. Lower prob-
abilities are obtained for the scenario where 10% or 20% of patients are transferred from NH to
RG. Since RG is the bigger of the two hospitals it can deal better with the influx of patients. Also,
if the bigger hospital admits extra patients, the probability of rejection increases steadily (8.23%,
10.20%, 16.71%) opposed to a rapid increase in rejection if the smaller hospital receiving extra
admissions (15.74%, 21.33%, 36.43%).

Based on the two decision factors: the total throughput and the probability of rejection, improve-
ments in the whole system can be made if given scenario increased the throughput and decreased
the probability of rejection. As seen, total throughput was greater if a proportion of patients were
transferred from RG to NH; however, if the decision is based on the lowest rejection proportion it
is better to allow extra 10% or 20% of patients from NH to RG. To conclude, there does not exist a
scenario that only allowed patients’ transfers that would improve the system.
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To summarise, the total throughput is higher if a percentage of patients are transferred from the big-
ger to the smaller CCU; however, this implies a significant increase of the probability of rejection.

The next ‘what if’ scenario will investigate the effect of patients’ transfers, but this time also beds
are allowed to be transferred.

6.4.2 Transfer of Patients and Beds Between Hospitals

This section will investigate the impact of transferring a percentage of patients from one CCU to
the other, along with some beds. It is assumed that each of the hospitals have physical space for
extra beds. Again, it is assumed that patients obtain length of stay characteristic of a CCU that they
are receiving treatment in.

The measures that will be considered are again: the probability of a patient being rejected, due to
insufficient number of beds, in both hospitals and the overall throughput of patients. The scenario,
where throughput is higher and probability of rejection is lower from the base model will be rec-
ommended to the hospital managers.

If beds are transferred the following procedure is applied: assume one bed is transferred from NH
to RG, then the number of available beds is decreased in NH to 7 and the bed capacity in RG is
increased by 1. Since the overall RG model is a combination of three models, the number of beds
is incremented in each period, resulting in 15 beds in Period 1, 16 beds in Period 2 and 17 beds
in Period 3. The cut off points are now: k̂1 =

⌊
original k1

original bed capacity × new bed capacity
⌉

and similarly

k̂2 =
⌊

original k2
original bed capacity × new bed capacity

⌉
. The patients’ transfer procedure is the same as de-

scribed in the previous section.

As an illustration, it is assumed that up to 4 beds are allowed to be transferred; however, the model
can easily be extended to a greater number. The proportion of patients that will be transferred is:
0%, 10%, 20% and 50%; again, this can be easily altered. In total, 32 scenarios are performed and
Table 6.5 provides results of the throughput.

The scenario labelled, for example, ‘RG +2 beds (20% from NH)’ means that RG receives two beds
from NH and an additional 20% of admissions are transferred from NH. The overall throughput in
17 scenarios was higher than the base model; those scenarios are highlighted in red in Table 6.5.
The highest throughput of 1662 is observed for the scenario where three beds are transferred from
NH to RG, but no patient transfer take place. The lowest (1415) is experienced for the scenario of
transferring one bed and 50% of patients from NH to RG.
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Table 6.5: Throughput results for each of the 32 scenarios

Scenario
Throughput

RG NH Overall
Base model 1009 602 1611

NH +1 bed (0% from RG) 979 626 1605
NH +1 bed (10% from RG) 914 721 1635
NH +1 bed (20% from RG) 842 807 1649
NH +1 bed (50% from RG) 577 1066 1643
RG +1 bed (0% from NH) 1036 569 1605

RG +1 bed (10% from NH) 1071 508 1579
RG +1 bed (20% from NH) 1107 441 1548
RG +1 bed (50% from NH) 1214 201 1415

NH +2 beds (0% from RG) 946 584 1530
NH +2 beds (10% from RG) 885 714 1599
NH +2 beds (20% from RG) 818 815 1633
NH +2 beds (50% from RG) 569 1082 1651
RG +2 beds (0% from NH) 1060 588 1648

RG +2 beds (10% from NH) 1098 520 1618
RG +2 beds (20% from NH) 1134 447 1581
RG +2 beds (50% from NH) 1244 201 1445

NH +3 beds (0% from RG) 955 582 1537
NH +3 beds (10% from RG) 891 708 1599
NH +3 beds (20% from RG) 821 804 1625
NH +3 beds (50% from RG) 569 1060 1629
RG +3 beds (0% from NH) 1060 602 1662

RG +3 beds (10% from NH) 1098 544 1642
RG +3 beds (20% from NH) 1135 484 1619
RG +3 beds (50% from NH) 1246 279 1525

NH +4 beds (0% from RG) 972 600 1572
NH +4 beds (10% from RG) 899 729 1628
NH +4 beds (20% from RG) 823 827 1650
NH +4 beds (50% from RG) 564 1080 1644
RG +4 bed (0% from NH) 1077 566 1643

RG +4 beds (10% from NH) 1114 509 1623
RG +4 beds (20% from NH) 1150 451 1601
RG +4 beds (50% from NH) 1252 256 1508
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After reviewing the throughput of individual hospitals, it appeared that it is not only increased as
a result of a higher percentage of patients transferred, but also as more beds are transferred. For
example, throughput at RG for scenarios where 20% of patients are transferred from NH to RG
starts from 1107 for one extra bed, 1134 for two extra beds, 1135 for three extra beds and finally
increases to 1150 for 4 extra beds.

If the decision regarding the number of beds and the proportion of patients transferred was purely
based on the highest overall throughput, NH demand would remain the same with the bed capacity
reduced by three, resulting in a very high degree of rejection. As before, it is crucial to investi-
gate variation in the probability of all beds being occupied for each of the 32 scenarios. Table 6.6
presents the probabilities of rejection at individual hospitals and the overall probabilities.

The total probability of all beds being occupied in the base model is equal to 16.69%. A lower
probability is obtained for eight scenarios; those are highlighted in red in Table 6.6. The lowest
total probability of rejection of 14.04% is observed for the scenario where two beds and no patients
are transferred from RG to NH. The highest probability of rejection (44.94%) is experienced when
four beds and no patients are transferred from NH to RG.

The probability of rejection is now examined for individual hospitals. Unsurprisingly, as the smaller
hospital is transferring more beds to the bigger hospital, the probability of rejection increases very
fast in the smaller one. For example, if 10% of patients are transferred from NH to RG together with
one bed, the probability is 11.62%; for two beds 25.27%; for three 30.27% and for four it is 39.65%.

The main aim of this section is to provide recommendations to CCU managers regarding the pro-
portion of patients and beds that should be transferred in order to increase overall throughput and
decrease probability of all beds being occupied. Table 6.5 and 6.6 are used to draw these conclu-
sions. It appears that there exists only one scenario that satisfies both conditions; to transfer 20%
of RG demand to NH along with three beds. As a result, the overall reduced arrival rate at RG is
2.25, which is close to the new increased arrival rate at NH of 2.20. Not only are the arrival rates
similar, but also the bed capacities; 11, 12 and 13 in RG in the corresponding periods and 11 beds
in NH. In the recommended scenario throughput is increased by 0.87% and probability of rejection
decreased by 10.45%.

To conclude, the overall throughput is observed to be higher if the smaller hospital receives extra
beds from the bigger hospital. In addition, the overall probability of rejection is lower if the smaller
hospital gets extra beds and extra patients from the bigger hospital.
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Table 6.6: Probability of rejection for each of the 32 scenarios

Scenario
Probability of rejection, %
RG NH Overall

Base model 6.42 10.28 16.69
NH +1 bed (0% from RG) 8.06 6.83 14.89

NH +1 bed (10% from RG) 5.98 11.25 17.23
NH +1 bed (20% from RG) 4.11 16.11 20.22
NH +1 bed (50% from RG) 0.52 30.54 31.06
RG +1 bed (0% from NH) 5.07 14.85 19.92

RG +1 bed (10% from NH) 6.61 11.62 18.23
RG +1 bed (20% from NH) 8.33 8.49 16.82
RG +1 bed (50% from NH) 14.20 1.51 15.71

NH +2 beds (0% from RG) 10.06 3.98 14.04
NH +2 beds (10% from RG) 7.68 7.55 15.23
NH +2 beds (20% from RG) 5.48 11.72 17.20
NH +2 beds (50% from RG) 0.88 25.19 26.06
RG +2 beds (0% from NH) 3.97 25.27 29.24
RG +2 beds (10% from NH) 5.28 21.16 26.43
RG +2 beds (20% from NH) 6.75 16.81 23.56
RG +2 beds (50% from NH) 11.99 4.44 16.43

NH +3 beds (0% from RG) 13.47 1.72 15.19
NH +3 beds (10% from RG) 10.72 3.89 14.61
NH +3 beds (20% from RG) 8.06 6.89 14.95
NH +3 beds (50% from RG) 1.71 18.80 20.51
RG +3 beds (0% from NH) 2.74 34.25 36.99
RG +3 beds (10% from NH) 3.77 30.27 34.04
RG +3 beds (20% from NH) 4.98 25.91 30.88
RG +3 beds (50% from NH) 9.51 11.10 20.61

NH +4 beds (0% from RG) 21.76 0.97 22.73
NH +4 beds (10% from RG) 18.29 2.41 20.70
NH +4 beds (20% from RG) 14.67 4.61 19.28
NH +4 beds (50% from RG) 4.24 14.70 18.93
RG +4 beds (0% from NH) 1.40 43.54 44.94
RG +4 beds (10% from NH) 2.06 39.65 41.71
RG +4 beds (20% from NH) 2.89 35.25 38.14
RG +4 beds (50% from NH) 6.35 18.68 25.03
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It has been shown that sharing resources between hospitals is beneficial for both hospitals. The
next section will investigate whether combining two Units together to form one big Unit will also
be beneficial.

6.4.3 Consolidation of Two Units

During this project new plans for a Specialist Critical Care Centre (SCCC) to be built in Llanfrechfa
near Cwmbran in South Wales came up. The SCCC would take services from Royal Gwent Hos-
pital in Newport and Nevill Hall Hospital in Abergavenny. The purpose of this ‘what if’ scenario
is to examine the impact of consolidating two CCUs into a single unit. The first main advantage
of the consolidation would be increased bed flexibility. Centralising some services, such as criti-
cal care, in fewer large hospitals would allow patients to get access to the best care around the clock.

In order to check whether centralising critical care would prove beneficial to hospital managers and
patients, measures such as: bed occupancy variability and the probability of having all beds full
will be tested. Before these measures are examined, both data sets have to be merged into one. The
combined data set, which includes information regarding 4098 patients, will be analysed in order
to understand the current combined CCU system.

To determine the most appropriate statistical distribution to accurately represent the profile of ar-
rivals in the queueing model, initially the nature of admissions to the combined CCU will be ex-
plored. The number of arrivals on each day in the combined CCU is the sum of the number of
admissions in individual CCUs. Again, extra attention has to be put towards the fact that bed ca-
pacity changed twice. In Period 1 there were 22 beds in total, in Period 2 there were 23 beds and in
the final period 24 beds. Summary statistics for the daily number of arrivals at the CCU separately
for each of the three periods and the overall are given in Table 6.7.

Table 6.7: Summary statistics for the number of admissions in the combined hospital

Summary statistic Period 1 Period 2 Period 3 Overall
Mean 3.867 3.565 3.688 3.742

Median 4 4 3 4

Standard Deviation 2.006 1.734 2.016 1.917

Minimum 0 0 1 0

Maximum 11 8 11 11

The overall average admission rate is 3.742 patients per day and there is some variation across
the three periods; therefore, the three frequency distributions will be considered separately. @Risk

is utilised to determine the appropriate distributions; it is suggested that a Poisson distribution
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provides the best fit. The determined parameter values of λ in Period 1 is 3.874, in Period 2 it is
3.676 and 3.432 in Period 3; correspondingly giving the value of the sum of squared differences
between the data and the analytical results of 0.0014, 0.0020 and 0.0157. Consider the frequency
distributions of the number of arrivals per day during each period, presented in Figures 6.8a, 6.8b
and 6.8c.

(a) Period 1 (b) Period 2 (c) Period 3

Figure 6.8: Frequency distribution of the number of arrivals for each period

Figures 6.8a and 6.8b demonstrate the goodness of the Poisson fit. Figure 6.8c does not provide a
very good fit, as a result of very small amount of data (only 343 people admitted in Period 3 that
lasted 92 days).

The second measure that influences the flow of patients through the CCU is length of stay. The
combined data set is analysed and a number of relevant summary statistics is considered; these are
presented in Table 6.8.

Table 6.8: Summary statistics for length of stay in the combined hospital

Summary statistic Period 1 Period 2 Period 3 Overall
Mean 4.186 5.103 4.846 4.556

Median 2.042 2.6 2.8 2.193

Standard Deviation 8.147 8.385 6.951 8.150

Minimum 0.014 0.014 0.014 0.014

Maximum 193.094 152.4 61 193.094

The overall average LoS is 4.56 days and there is a significant variation across the three periods,
therefore three frequency distributions will be considered separately. As before the statistical tool
@Risk is utilised to determine the appropriate distributions; it is suggested that a Negative Expo-
nential distribution provides the most accurate fit. The determined parameter values of µ in Period
1 is 0.344, in Period 2 is 0.281 and 0.270 in Period 3; correspondingly giving the value of the
sum of squared difference between the data and analytical results of 0.0009, 0.0018 and 0.0015.
Consider the frequencies displaying LoS grouped in two day classes for each period, presented in
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Figures 6.9a, 6.9b and 6.9c. 2.51% of observations in Period 1, 2.47% in Period 2 and 2.71% in
Period 3 (LoS greater than 20 days) are excluded form the graphs for presentation purposes. The
Negative Exponential distribution clearly provides a good fit to LoS.

(a) Period 1 (b) Period 2 (c) Period 3

Figure 6.9: Length of stay frequencies for each period

Finally, the number of patients present in the combined Unit during every hour in the period from
01/04/2009 to 31/12/2011 is obtained. The number of beds occupied at every hour in the study
period is illustrated in Figure 6.10; the periods are separated by the two vertical lines.

Figure 6.10: Bed occupancy at each hour of the study period

Summary statistics of bed occupancy in each period are presented in Table 6.9.

Table 6.9: Bed occupancy summary statistics in the combined hospital

Summary statistic Period 1 Period 2 Period 3 Overall
Mean 16 18.274 19.536 17.221

Median 16 19 20 17

Standard Deviation 2.433 2.667 1.916 2.8072

Minimum 8 10 14 8

Maximum 22 25 24 25
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The overall mean bed occupancy is 17.22; however, the variation across the periods is visible. The
increase in bed capacity causes an increase in the average bed occupancy, which is also indicated
by the increasing trend-line in Figure 6.10. An initial analysis reveals that the probability of having
all beds occupied differs throughout. In Period 1 all beds were full on 0.6% of occasions, in Period
2 on 3.83% and in Period 3 on 0.09%.

As previously, the percentage bed occupancy distribution is considered rather than the typical dis-
tribution. Consider the frequencies displaying the bed occupancy percentage distribution for each
period, presented in Figures 6.11a, 6.11b and 6.11c.

(a) Period 1 (b) Period 2 (c) Period 3

Figure 6.11: Bed occupancy frequencies for each period

As before in Section 6.3, the three frequency distributions are combined into one by taking the
proportion of duration each period lasted (Period 1, 17 months; Period 2, 13 months and Period 3,
3 months). Figure 6.12 illustrates the overall bed utilisation frequency distribution, which will be
used in Section 6.5 for the comparison between the data and the model results.

Figure 6.12: Overall bed occupancy frequency distribution for the combined Unit

To decide whether consolidation of the two Units would be beneficial, two variables are examined.
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Obviously, low bed occupancy variation makes the system more stable, more predictable and less
stressful to the clinicians. The first variable that will be tested is the coefficient of variation (CV)
of bed occupancy, which is a normalised measure of dispersion; it is defined as the ratio of the
standard deviation to the mean, and is expressed as a percentage. Table 6.10 displays calculated
CVs for NH, RG and the combined Unit.

Table 6.10: Comparison of the coefficients of variation

Period NH RG Average of two individual Units Combined hospital
Period 1 26.4% 17.5% 22% 15.2%
Period 2 25.7% 14% 19.9% 14.6%
Period 3 19.2% 11.8% 15.5% 9.8%

The columns labelled ‘NH’ and ‘RG’ show how the coefficient of variation changed over the time
in each CCU. As expected, the smaller of the two Units experiences higher degree of variation. The
‘Average of two individual Units’ is an average of the CVs in NH and RG. The final column gives
the CV of the combined Unit. Evidently, it is lower in each period, by at least 5.3%.

The second examined variable is the probability of the system being full. The system, where
probability of rejection is lower is obviously preferred, not only by patients, but also by the staff.
Table 6.11 displays the percentage of occasions when the individual Units and the combined Unit
were full.

Table 6.11: Comparison of the probability of having all beds full

Period NH RG Combined hospital
Period 1 6.1% 3.3% 0.6%

Period 2 13.9% 10.4% 3.8%

Period 3 10.6% 3.5% 0.01%

Clearly, in the smaller hospital, NH, the proportion of time that all beds were occupied is higher
than in RG during every period. Most importantly, the probability of rejection is significantly lower
in the combined Unit, proving the benefits of having one big Unit.

As a result of the consolidation, it can be concluded that the bed occupancy variability is decreased,
also the probability of having all beds full is significantly decreased, implying that bed flexibility is
increased and the system is more stable and controllable.
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It has been established that a combined Unit would be beneficial, confirming the existing plans of
the SCCC to take over services at NH and RG. The question arises whether the current bed capacity
of 24 beds is sufficient for the new Unit. The next section will investigate how many beds the SCCC
should have.

6.5 SCCC Capacity Recommendations

6.5.1 Introduction

Managers in healthcare are frequently faced with decisions on re-dimensioning of services. Changes
in capacity are typically based on estimations using mean admission numbers, and mean lengths of
stay. However, deciding on how many beds to provide is not a simple task. Mathematical models
help to decide how well services perform with given bed capacity. The results however, require a
risk judgement. A balance must be struck between risk of cancellation because the Unit is full and
the economic benefits of full utilisation of resources. This predicament is becoming more preva-
lent in the healthcare community as indicated by the significant body of literature that considers
the allocation of scarce healthcare resources. Section 6.5.2 reviews work on determining system
capacity, based on desired system goals and requirements.

6.5.2 Literature Review

6.5.2.1 Bed Allocation and Planning

The demand for hospital beds can be divided into elective (scheduled) and emergency (unsched-
uled) admissions. Both categories of admissions impact on how many beds are needed to meet
demand, while maintaining reasonable bed utilisation rates. In the literature, most bed planning
queueing models attempt to overcome bed shortages or policies that lead to patient misplacement,
bumping, or rejection. Hospital managers are under pressure to reduce bed capacity and decrease
occupancy rates in the name of operational efficiency.

Young (1962a [172], 1962b [171]) proposed an incremental analysis approach in which the cost of
an additional bed is compared with the benefits it generates. Beds were added until the increased
cost was equal to the benefits.

Kao et al, 1981 [97] proposed an M/G/∞ model to periodically reallocate beds to medical ser-
vices to minimise the expected overflows in different hospital wards. A demand forecasting system
using the existing data base for generating inputs to the bed allocation model was constructed. For
each medical service, the authors established the base line requirement by requiring that the number
of beds assigned to the service should be sufficient, in terms of yearly aggregate, to accommodate a
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pre-specified amount of patient load generated by the target population. The authors distributed the
remaining beds to services with the objective of minimising the expected total average overflows
over the months in the planning horizon.

Green et al, 2001 [70] applied a queueing model approach to the hospital bed planning issue to
gain insights on the potential impact of cost-cutting strategies on patients’ delays for beds. Using a
queueing theory approach, the factors that have the greatest impact on the trade-off between hospi-
tal occupancy levels and delays were identified. It was stated that using target occupancy levels as
the primary determinant of bed capacity is inadequate and may lead to excessive delays for beds.

By integrating queueing theory and compartmental models of flow, Gorunescu et al, 2002 [62]
demonstrated how by changing arrival rates, length of stay and bed allocation influences bed oc-
cupancy, emptiness and rejection rates in departments of geriatric medicine in a London teaching
hospital. By considering an M/PH/c/n queue model, the authors showed how the provision of
extra emergency use beds could improve performance while controlling costs.

de Bruin et al, 2005 [39] applied a stationary 2-D queueing system with blocking to analyse conges-
tion in emergency care chains. The primary goal was to determine the optimal bed allocation over
the emergency care chain, given a required service level (maximum of 5% refused admissions).
The bottlenecks were identified, the impact of fluctuation in demand was described and the optimal
bed capacity distribution for cardiac patients was calculated. Cooper et al, 1974 [34] dealt with a
very similar problem extended to estimating the number of beds necessary for two units: acute and
intermediate coronary care, each of which should have a maximum turn-away rate of 5%.

Koizumi et al, 2005 [104] analysed congestion levels in the Philadelphia mental health system us-
ing a queueing network model with blocking. Their model focused on blocking between three types
of mental facilities, namely, extended acute hospitals, residential facilities and supported housing.
The authors investigated how effectively the increase in the number of supported housing beds
could reduce the steady-state congestion level in the system.

Cochran et al, 2006 [31] proposed a multi-stage stochastic methodology for analysing the flow of
patients in a whole hospital setting with multiple patient types. The authors combined queueing
network analysis and discrete event simulation to balance bed utilisation targets with the associated
benefits of reduced: waiting, patient blocking, poor bed assignment and emergency department
overflow behaviours. The methodology is applied to a 400 bed major hospital including an emer-
gency unit.

Cochran and Bharti, 2006 [31] proposed a four-stage stochastic methodology for bed planning in
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hospitals using queueing networks and discrete event simulation models. The methodology aims to
balance bed unit utilisations in an entire hospital and minimise the blocking of beds from upstream
units within given constraints on bed reallocation. The methodology included the assessment and
effect of time-dependent patterns. Queueing networks were used to assess the flows between units
and to establish target utilisations of bed units. Discrete event simulation was then used to max-
imise the flow through the balanced system including non-homogeneous effects, non-exponential
lengths of stay, and blocking behaviour.

Chaussalet et al, 2006 [26] developed a patient flow model through healthcare systems with con-
strained capacity. The model used a closed queueing network with the assumption that the system
is always full. The authors modelled the progression of patients through a geriatric department in
the UK as a set of conceptual phases. On admission, patients enter the first phase (assessment,
diagnosis, etc.), from which they are either discharged, or transferred in to the second phase (some
form of rehabilitation). In the final phase, which corresponds to long-stay care, all patients are
eventually discharged. The model assisted service managers and clinicians with decision-making
on bed allocation and on discharge policies.

de Bruin et al, 2007 [40] investigated the emergency in-patient flow of cardiac patients in a uni-
versity medical centre. The impact of variability (in both length of stay and arrivals) on capacity
requirements was described. They applied a queueing model to analyse congestion in the emer-
gency care chain. With this model, the number of beds in the care chain is determined for several
service levels, given a maximum number of refused admissions. In 2009, de Bruin et al [38] devel-
oped a decision support system, based on the Erlang loss model, which can be used to evaluate the
current size of nursing units, and to quantify the impact of bed reallocations and merging of wards.

6.5.2.2 Bed Allocation in Critical Care Units

Ridge et al, 1998 [138] presented a simulation model of anM/M/c queue that demonstrated meth-
ods for capacity planning in a six-bed ICU. They showed that there is strong non-linear correlation
between the number of beds available, mean occupancy level and the number of transfers due to
lack of free beds. The model did not allow admission of elective patients when the majority of beds
were occupied. The effect of a rudimentary deferral rule for elective patients was investigated.

Green, 2003 [64] examined data from New York State and used queueing analysis to estimate bed
unavailability in ICUs and obstetrics units. Using various patient delay standards, units that appear
to have insufficient capacity are identified. The results indicate that as many as 40% of all obstetrics
units and 90% of ICUs have insufficient capacity to provide an appropriate bed when needed. This
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contrasts sharply with what would be deduced using standard average occupancy targets. Accord-
ing to the authors, smaller ICUs should operate at much lower occupancy percentages. It was also
shown that by doubling admission rates, the standard deviation of the number of admissions is not
doubled and hence the hospital does not need to double the number of beds.

Shmueli et al, 2003 [149] presented a queueing theory model for optimising admissions to an ICU,
where the objective is to maximise the expected incremental number of lives saved from operating
the ICU. A single-queue models to find the probability distribution of the number of occupied ICU
beds were used. The authors modelled the ICU at Jerusalem Hebrew University-Hadassah Hospital
by using the proposed methodology and showed that a relative life saving improvement of 17.9%
could be achieved by reforming the ICU admission policy. Three different policies were consid-
ered: first-come-first-served, first-come-first-served for all referrals whose expected incremental
survival benefits gained from ICU admission exceed some hurdle, and first-come-first-served for
all referrals whose expected incremental survival benefits exceed a bed specific hurdle that depends
upon the number of occupied beds.

McManus et al, 2004 [122] demonstrated a queueing model, which accurately predicts the bed
occupancies in a busy ICU. The predictions from the model to the data were compared and the
sensitivity of the model to changes in the number of beds available was explored. The model was
useful in predicting both monthly responsiveness to changing demand and the overall two year
turn-away rate for the unit. It was showed that bed availability is dependant on staffing shortages or
admission of patients with a very long length of stay. A significant correlation between occupancy
and turn-away rates was presented.

Griffiths et al, 2005 [76] proposed a M/H/c/∞ queueing model of the ICU environment, with
particular emphasis on adequately representing the high variation in the patient’s length of stay. It
was anticipated that the model will be utilised as a tool for resource management. In conjunction
with the queueing model, a discrete-event simulation model enabling patients to be classified ac-
cording to source of admission was developed.

Cochran et al, 2007 [32] stated that financial data should be used and not census data for estimating
inpatient bed capacity, since it estimates true demand for service rather than the service available
to be offered. The queueing theory model was used to estimate the number of beds at a level one
trauma facility in the United States.

Seshaiah et al, 2011 [147] studied the patient flows to and between the different units of a hospital.
A queueing network model with blocking and reneging was developed to study how the number
of available beds in ICU and General Units influence the wait times in the Emergency Care Units.
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The authors studied the M/G/k queue with reneging and through approximate logical methods
and simulation the adequate bed counts in each of the two units was determined so as to guarantee
certain access standards.

The significant body of literature considered the changes in capacity, the next section will add to
this by informing as to sufficient number of beds required in the combined Unit.

6.5.3 Bed Occupancy Model

Mathematical models can help to decide how well services perform with a given bed capacity. The
results however, require a risk judgement. Assuming that no hospital is able to fund enough beds
to cover all demand peaks, a decision must be made about how often it is acceptable to allow the
Unit to be full.

Before any changes to the Unit size are explored, the bed occupancy model that accurately rep-
resent the consolidated Unit must be obtained. Having accurate arrival and length of stay fitted
distributions, described in detail in Section 6.4.3, allow to model the combined Unit using the ana-
lytical results described in Section 6.2.

The number of beds available is chosen to be 23, since it is the rounded product of the number of
beds available in each period and proportion of time each period lasted. The overall service rate is
calculated in the following way:

µ = P (Period 1)× µPeriod 1 + P (Period 2)× µPeriod 2 + P (Period 3)× µPeriod 3 = 0.219

The next task is to determine values for the parameters k1, k2, λa, λb, λc which would give the
closest representation of bed occupancy probabilities illustrated in Figure 6.12. Evolver is utilised
to find these parameters to match the mathematical model with bed occupancy probabilities, which
are grouped in ten classes: 0− 10%, 10− 20%, 20− 30% etc. In Section 6.2 Evolver was utilised
to minimise the sum of squared differences between Pdata(n) and Pmodel(n) for n = 0, . . . , c, where
n is the number of beds occupied, for each period. The mathematical program used to find model
parameters is described below:

Minimise:

c∑
i=1

(Pdata(10s% < n ≤ 10(s+ 1)%)− Pmodel(10s% < n ≤ 10(s+ 1)%))2

Subject to:
0 < k1 < k2 < c
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k1, k2 ∈ N

λa, λb, λc ∈ R+

0.9λdata ≤ Λ ≤ 1.1λdata

where:

λdata = P (Period 1)× λPeriod 1 + P (Period 2)× λPeriod 2 + P (Period 3)× λPeriod 3 = 3.742

Λ =

k1∑
n=1

λaPn +

k2∑
n=k1+1

λbPn +
c∑

n=k2+1

λcPn

s ∈ [0, . . . , 9]

The mathematical program is solved heuristically using a genetic algorithm (implemented with
Evolver) and the obtained parameters are given in Table 6.12.

Table 6.12: The parameter values for the combined hospital model

Parameter Parameter value
λa 3.675
λb 4.746
λc 2.746
k1 14
k2 19

The analytical results obtained for the set of parameters are now compared with the data in Figure
6.13. Visually, there is close agreement in bed occupancy levels. Other factors suggesting that the
model provides a good fit are listed in Table 6.13.

Figure 6.13: Comparison of bed occupancy model and data
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Table 6.13: Model validation

Variable Model Data
Overall arrival rate, Λ 4.114 3.742

Bed occupancy utilisation 74.90% 76.16%

Probability of all beds full 1.92% 1.83%

Probability of > 80% of beds occupied 38.75% 40.04%

The model variable values compares favourably with the observed values, therefore it can be con-
cluded that the model satisfactorily represents the real world system, and now it can be tested to
changes in Unit size.

6.5.4 Changes in the Unit Capacity

A decision regarding the number of beds in the SCCC will be based on how often it is acceptable
to allow the Unit to be full and how many beds on average should be occupied. The managers
from the Aneurin Bevan Health Board indicated that the Unit should be full on less than 5% of
occasions. Although the 85% bed occupancy target is the most often quoted in the literature (Green,
2003 [64]), the managers decided on 80% bed occupancy utilisation rate. Having these two targets
in mind, the base model with 23 beds will be adapted to allow bed capacity to be changed. It
is decided to test how performance of the Unit changes assuming there are 19, 20, . . . , 30 beds
available. The arrival rates λa, λb, λc and service rate, µ, remain unchanged. The cut-off points
must be proportionally adjusted in the following way: k̂1 =

⌊
original k1

original bed capacity × new bed capacity
⌉

and similarly k̂2 =
⌊

original k2
original bed capacity × new bed capacity

⌉
. For each bed capacity the collected

measures are:

• the probability of rejection, P (c);

• the utilisation rate,

c∑
n=1

nP (n)

c
;

• the probability of having more than 80% of beds occupied, P (n ≥ 80%) =
c∑

n=d80%ce
P (n);

• the probability of having more than 90% of beds occupied, P (n ≥ 90%) =
c∑

n=d90%ce
P (n).

Figure 6.14 illustrates how the measures of interest change as a result of an amendment to the
number of beds.
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Figure 6.14: Effect of bed capacity change with the base model of 23 beds

The green line, with the scale on the left hand side, shows how the bed utilisation rate is affected
by the different number of beds available. The purple and blue lines, with the scale also on the left
hand side, illustrate the change in the probability of having more than 80% and 90% of beds full
respectively. The red line, with the scale on the right hand side, shows the change in the probability
of rejection.

The utilisation rate fell below 80% and similarly, the probability of all beds being full fell below
5% for a bed capacity of 21. This suggests that, if the two Units were to be combined, the current
capacity of 23 would be sufficient to satisfy the two targets, again confirming what was concluded
in Section 6.4.3 that having one big Unit is more beneficial than two smaller ones. However, the
purple line (the probability of having more than 80% of beds occupied) suggest that on more than
50% of occasions the Unit is running on a relatively high bed occupancy, which might prove stress-
ful to the clinicians. If the percentage of time that the Unit is busy was decreased from 50% to 30%,
then the suggested number of beds would be 25. That would result in the probability of rejection
of 1.07%, the utilisation rate of 72.57% and the probability of having more than 80% of beds full
on 28% of the time.

In conclusion, the scenario proposed helps to inform the decision making regarding the most suit-
able number of beds in the combined Unit. The next two sections will investigate whether the bed
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capacity recommendation changes by altering the arrival rate or service rate.

6.5.4.1 ‘What if’ Scenario: Increased Arrivals

Having a brand new hospital might increase attractiveness and more patients might decide to choose
to be admitted there. The second aspect, that might potentially increase the number of patients ar-
riving at the SCCC is increased area coverage and also an ageing population (Office for National
Statistics, 2012 [132]). Also, the data sets provided did not include information regarding patients
that were admitted to an ordinary ward within the hospital, or were transferred to different CCU,
due to the lack of spare beds in the CCU. This section will investigate the impact on bed require-
ments by increasing the arrival rate by 2%, 5% and 10%.

The arrival parameters are changed in the following way:

λnewa = λa × (1 + x%), λnewb = λb × (1 + x%) and λnewc = λc × (1 + x%)

where x is the increase percentage. The same measures as previously are calculated, and Figures
6.15a, 6.15b and 6.15c demonstrate how the different measures are affected by the bed capacity.

(a) 2% increase (b) 5% increase (c) 10% increase

Figure 6.15: Effect of bed capacity change with the corresponding admission rate increase

If the decision regarding the number of beds was only based on 80% bed utilisation and 5% rejec-
tion rate targets, for the 2%, 5% and 10% arrival increase rate the recommended number of beds
would be 21, 21 and 22 respectively. If the constraint is added regarding having a busy Unit with
more than 80% of beds occupied on less than 30% of the time, then the suggested bed capacities
would be 26, 27 and 28 respectively. Therefore, having a small increase in the overall admission
rate implies more beds are needed to run the Unit smoothly.

6.5.4.2 ‘What if’ Scenario: Bed Blocking Reduction

The human decisions regarding admissions and discharges are based on the CCU bed occupancy
levels. Medical staff may therefore slightly delay discharge or authorise slightly earlier discharge
if the patient’s condition allows. The main outcome of interest is to investigate how varying the
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mean delay to discharge impacts the system. Green and Nguyen, 2001 [70] stated that reducing
average LoS has far more potential to reduce required capacity than reducing LoS variability. The
most sensible option for reducing average LoS is to deal with the problem of delayed discharge. A
number of authors have studied the impact of bed blocking on the number of hospital beds desired.

In systems with blocking, congestion not only increases patient waiting time, but also reduces the
throughput of the system. de Bruin et al., 2005 [39] determined the number of beds required to
achieve a maximum turn away rate of 5% at the emergency cardiac department of the university
medical centre of Amsterdam, which implements the pure loss model. Cooper and Corcoran, 1974
[34] dealt with the same problem extended to a sequence of two stations each of which should
have a maximum turn-away rate of 5%. Milliken et al., 1972 [125] sought a 1% turn-away rate in
an obstetrics department in which vaginal births have priority over scheduled caesarian sections.
The authors pointed out the benefits of economies of scale, so that larger facilities incur lower bed
investment per additional birth.

Given a desired maximum turn-away rate, de Bruin et al., 2007 [40] determined the optimal number
of beds in a cardiology department. The cardiology department was modelled as a network of three
sub-departments. The research found that too few beds downstream is the primary cause of refused
admissions upstream and that congestion effects can add 20-30% to patient length of stay in the
department. It was claimed that having a fixed target utilisation rate is unrealistic and concluded
that a downstream utilisation of 55% is necessary to attain a 2% turn-away rate. As an alternative,
departments could be merged to gain the benefits of economies of scale thereby meeting the goal
at higher occupancy rates.

Blair and Lawrence, 1981 [15] sought to design the capacity of horizontally integrated burn care
facilities throughout the state of New York, so that no more than 5% of patients are turned away
from the system. If a patient goes to a facility which is fully occupied, that facility would refer to
the patient to another which is not filled. If all facilities are fully occupied, the patient is lost to
the system. Queueing theory was used to determine the capacity of the entire system as if it were
one queueing system. This capacity is then allocated to facilities in a manner that best attains their
individual goals. They find such a system-planned approach ideal for a system with low demand
and high infrastructural costs.

In the study period of the joined hospital there were 67.7% of patients who experienced any delay
in their discharge. Patients’ delay ranged from 10 minutes to 21 days (mean 15.89 hours; standard
deviation of 1.29 days; median 4 hours).

Patient LoS can be divided into two phases: active treatment phase and bed blocking phase, hence
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the overall mean service rate is as following: µ = µactive + µblocked. The hospital does not have much
control over the active treatment time, µactive; however, bed blocking time can be reduced. The effect
of decreasing the average delay to discharge time by 10%, 20% and 50% will be inspected. The
overall mean service rate is µ = µactive + µblocked × (1− x%).

(a) 10% decrease (b) 20% decrease (c) 50% decrease

Figure 6.16: Effect of reducing bed blocking by the corresponding percentage

If the decision regarding the sufficient number of beds was only based on 80% bed utilisation
and 5% rejection rate, for the 10%, 20% and 50%, bed blocking reduction rate the recommended
number of beds would be 21, 21 and 20 respectively. If the constraint is added regarding having
a busy Unit with more than 80% of beds occupied less than 30% of the time, the suggested bed
capacities would be 25, 24 and 24 respectively. Reducing by 10% does not change the suggested
bed capacity; however, reducing the average mean blocking time by 20% or 50% reduces the
recommended bed capacity by one. If the mean delayed discharge was eradicated, the CCU would
require only 22 beds to meet both targets and the guideline regarding having more than 80% of
beds occupied on less than 30% of occasions.

6.6 Conclusions

It has been shown that a mathematical model which omits the fact of different arrival rates for
different bed occupancy levels did not adequately describe the CCU activities at the Royal Gwent
and the Nevill Hall CCUs. The influence of management policies for patient admission depends
on the bed occupancy levels. This chapter has focussed on developing a mathematical model of
patients admitted under the care of Aneurin Bevan Health Board, which included the dependency
of admission rate on actual occupancy.

Using the developed model, the potential improvement of operational efficiency by transferring
beds and patients from one Unit to other has been shown. The scenario of merging CCUs and the
benefits from it have been illustrated.

The work described in this chapter has helped to inform capacity planning decisions at the SCCC.
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A few ‘what if’ scenarios were investigated. The model has been used to explore a scenario,
which will investigate the effect of increasing the arrival rate. The issue of bed blocking has been
documented and effect of decreasing the delay time has been investigated.



Chapter 7

A Game Theoretical Consideration of
Critical Care Unit Interaction

7.1 Motivation of the Study

The work described in Section 6.4.3, where two Critical Care Units (CCUs) were combined into
one, proved that cooperation between CCUs is beneficial. It has also been shown in Chapters 5 and
6 that there are noticeable behavioural aspects apparent; for example, leaving patients for longer
in the Unit if there is no pressure on CCU beds, or admitting less patients if bed occupancy levels
are high. In this part of the thesis non-cooperative game theoretical models of two CCUs will be
proposed, where each CCU acts selfishly, to study the impact of lack of collaboration.

7.2 Literature Review

Game theory is a study of mathematical models of conflict and cooperation between intelligent
rational decision-makers. A game is a description of strategic interactions that includes the con-
straints on the actions that the players can take and the players’ interests.

The basic concepts of game theory have been discussed by a number of authors: a book by von
Neumann and Morgenstern, 1944 [164] is quoted as the first one, an early textbook by Luce and
Raiffa, 1957 [115] or a book by Schelling, 1960 [146] provide discussions of some of the main
ideas of the theory. Aumann, 1985 [8] contains a discussion of the aims and achievements of game
theory, and Aumann, 1987 [9] is an account of game theory from a historical perspective. Book by
Binmore, 1987/88 [14] is a critical discussion of game theory that makes the distinction between
the steady state and deductive interpretations. Kreps, 1990 [110] is a reflective discussion of many
issues in game theory. Roughgarden, 2005 [144] studied the loss of social welfare caused by self-
ish, uncoordinated behaviour in networks, and discussed several methods for improving the price

161
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of anarchy with centralized control.

In this chapter and the next, the type of game that will be considered will be referred to as a normal
form game. A normal form game is a model of a situation in which each player chooses his
plan of action once and for all, and all players’ decisions are made simultaneously (that is, when
choosing a plan of action each player is not informed of the plan of action chosen by any other
player). It is assumed that each decision-maker is ‘rational’ in the sense that they are aware of their
own alternatives and also those of their opponents, form expectations about any unknowns, have
clear preferences, and choose their action deliberately after a process of optimization. A normal
form game consists of:

• a finite set N (the set of players),

• for each player i ∈ N a non-empty set Ai (the set of actions available to player i),

• each player’s preferences are specified by giving a utility function U : C → R, which defines
a preference of x over y by U(x) ≥ U(y).

Some popular normal form games with just two players and each player having only two possi-
ble actions include “Battle of the Sexes” (Luce and Raiffa, 1957 [115]) and/or “The Prisoner’s
Dilemma” (which first entered the literature in unpublished papers by Raiffa in 1951 and Flood in
1952). The game is presented as follows: two criminals are arrested and imprisoned, each prisoner
is in solitary confinement with no means of speaking to the other. The police do not have enough
evidence to convict the pair on the principal charge and simultaneously question each prisoner. The
prisoners can choose between two moves, either “cooperate” or “defect”. If one prisoner defects
against the other prisoner, he will go free while the other will get three years in prison. If both pris-
oners defect against each other, both will be sentenced to two years in jail, while if both cooperate,
they will be sentenced to one year in jail. The prisoner’s dilemma is a canonical example of a game
that shows why two players might not cooperate, even if it appears that it is in their common best
interest to do so. Each cell of the matrix (Table 7.1) shows the pay-offs in a prisoner’s dilemma.

Table 7.1: The normal form game for the prisoner’s dilemma

Prisoner B stays silent (cooperates) Prisoner B betrays (defects)
Prisoner A stays silent

(1,1) (3,0)
(cooperates)

Prisoner A betrays
(0,3) (2,2)

(defects)
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Here, regardless of what the other decides, each prisoner gets a lower sentence by betraying the
other; however, if they both stayed silent each would receive a lower sentence.

Nash equilibrium is one of the most basic concepts in game theory. The notion of Nash equilib-
rium was formalised in the context of an abstract strategic game by Nash, 1950 [127], however the
basic idea goes back to Cournot, 1838 [36]. Let ai be a strategy profile of player i and a−i be a
strategy profile of all players except for player i. A strategy profile â ∈ A is a Nash equilibrium
([133]) of a strategic game with the property that for every player i ∈ N :

U(â−i, âi) ≥ U(â−i, ai) for all ai ∈ Ai

Thus for â to be a Nash equilibrium it must be that no player i has an action yielding an outcome
that he prefers to that generated when they choose âi, given that every other player j chooses
his equilibrium action âj . Briefly, no player can profitably deviate, given the actions of the other
players. In other words: for any given set of opponent’s strategies a−i, where a−i ∈ A−i define
Bi(a−i) to be the set of player i’s best actions given a−i:

Bi(a−i) = {ai ∈ Ai : U(a−i, ai) ≥ U(a−i, a
′

i) for all a
′

i ∈ Ai}.

I.e., any action in Bi(a−i) is at least as good for player i as every other action of player i, a′i, when
the other players’ actions are given by a−i. The set-valued function Bi is called the best response
function of player i. A Nash equilibrium is a profile â of actions for which

âi ∈ Bi(â−i) for all i ∈ N.

Another popular game is that of matching pennies. It is played between two players; each player
has a penny and must turn the penny to heads or tails. If the pennies match, Player 1 keeps both
pennies, if the pennies do not match, Player 2 keeps both pennies. The game can be written in a
pay-off matrix (Figure 7.1). Each cell of the matrix shows the two players’ pay-offs.

Player 2

P
la

ye
r 1 Heads

Tails

Tails

Heads

(1,-1) (-1,1)

(1,-1)(-1,1)

Figure 7.1: Pay-offs in the matching pennies games
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This game has no pure strategy Nash equilibrium since there is no pure strategy that is a best re-
sponse to a best response. Instead, the unique Nash equilibrium of this game is in mixed strategies:
each player chooses heads or tails with equal probability. In this way, each player makes the other
indifferent between choosing heads or tails, so neither player has an incentive to try another strategy.

The work included in this thesis concentrates only on pure strategy Nash equilibria, i.e. the players’
actions are deterministic. The set of pure strategy Nash equilibria of a normal form game is a sub-
set of its set of mixed strategy Nash equilibria. The notion of mixed strategy Nash equilibrium is
designed to model a steady state of a game in which the participants’ choices are not deterministic
but are regulated by probabilistic rules. Mixed equilibria are inadequate in modelling CCUs; the
bed capacity is considered to be deterministic as it is expensive and is a long term investment, so
the number of beds can not be altered from day to day.

The prisoner’s dilemma showed that if both prisoners cooperated, each would get only one year
in prison; however, since both prisoners act selfishly, both defected (Nash equilibrium) resulting
in two years in prison. A concept in game theory that measures how the efficiency of a system
degrades due to selfish behaviour of its agents is called the Price of Anarchy (PoA). The term
PoA was first used by Koutsoupias and Papadimitriou in 1999 [108], but the idea of measuring
inefficiency of equilibrium is older (Dubey, 1986 [43]).

The PoA is a measure of inefficiency due to the removal of central control and the introduction of
selfish behaviour. It is defined as the ratio of the highest Nash cost to optimal cost in a game where
players aim to reduce costs. In this thesis the overall objective is to maximise throughput; thus the
PoA is equivalently considered as the ratio of the optimal social welfare to the lowest welfare at
Nash equilibrium. Since the work included in this thesis concentrates only on pure strategy Nash
equilibria, only the pure PoA will be considered (in effect the reciprocal of the welfare as a cost
function is used in this thesis). Thus for the prisoners dilemma the PoA is 2 = 4/2. Of course,
the Nash equilibrium may not always exist; in this thesis the convention will be used that in the
absence of Nash equilibria in pure strategies, the PoA tends to infinity.

7.2.1 Game Theory in Healthcare

Most research where game theory is applied in healthcare has mainly concentrated on Emergency
Departments (EDs) and how to deal with diversions of patients and ambulances. Hagtvedt et al.,
2009 [78] considered cooperative strategies for hospitals, in order to reduce occurrences when am-
bulances are turned away due to the ED being full. These strategies lie in between the extreme of
individualism and a central planner approach. The game theory approach was used to show that
without some form of cooperative scheme, the incentives to defect are strong and will often lead
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to system-wide pre-emptive diversion. The hospitals operate under a Prisoners’ Dilemma when the
patient load is sufficient. They claimed that the penalty must be large enough to balance out the
variance of the overflow before there is a an optimal threshold. Having examined these aspects
of cooperative solutions to ambulance diversion, they believed the incentives require a centralised
agent to route patients, at least when the patient load is high.

Deo and Gurvich, 2011 [41] proposed a queueing network model of two EDs to study the network
effect of ambulance diversion. Each ED aims to minimise the expected waiting time of its patients
(walk-ins and ambulances) and chooses its diversion threshold based on the number of patients at
its location. They modelled the decentralised decision making in the network as a non-cooperative
game. Analysis of the game reveals that, at equilibrium, EDs declare diversion status defensively to
avoid getting arrivals from each other. This equilibrium undermines all potential pooling benefits
of ambulance diversion, a phenomenon labelled as the depooling effect. These results provided one
potential explanation for the evidence regarding defensive diversion and the impact of cancelling
ambulance diversion in Massachusetts in January 2009. They proposed and analysed an alternative
solution to the social planner’s problem in which the diversion thresholds are set to be equal to the
EDs’ respective capacities. When there are available beds in one ED simultaneously with queued
patients at the other, this policy routes all the “refutable” patients to the ED with available beds and
thus recovers most of the pooling benefits. In addition to its being easier to implement than the true
social optimum, it reduced the expected waiting times of both EDs.

Knight, 2012 [102] in his working paper considered a non-cooperative game, modelling a system
of two hospitals and two interacting services: the Emergency Medical Vehicle and the Emergency
Department. Using the PoA measure he showed that high levels of inefficiencies can be obtained
due to the hospitals acting selfishly.

Some other work that has not concentrated on EDs, but has healthcare implications includes:
Knight and Harper, 2012 [103] work, where results concerning the congestion related implica-
tions of decisions made by patients when choosing between healthcare facilities were presented.
Using theoretical results from routing game theory the following conclusions regarding the PoA
were proved analytically: the PoA increases with worth of service, up to a point; in a system with
insufficient capacity the PoA is low; and choice causes the highest level of inefficiency when the
capacity of the system matches the perceived worth of service.

Game theory may be useful in modelling patient and doctor arrivals by considering the conflicting
interests of both parties. It is likely that patients arrive early to beat the system or arrive late know-
ing that they will have to wait anyway. Similarly, doctors may arrive late, assuming that the first
patient will be late. There should be either some sort of mechanisms to enforce punctuality, or the
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appointment systems should be designed to account for all parties behaviour (Van Ackere, 1990
[159]). One might expect that when clinics are run under more credible appointment systems, both
patients and doctors will become more punctual.

Howard, 2002 [88] developed a model of the accept / reject decision for transplant organs and he
showed how game theory might be used in making risk / benefit decisions in diagnostic radiology
and other areas where risk / benefit needs to be considered. Howard believed that physicians would
reject a low-quality organ if the patient is relatively healthy and can wait for a better quality organ.

Roth has made significant contributions to the fields of game theory and is known for his empha-
sis on applying his economic theory to solutions for “real-world” problems, including healthcare.
Roth developed a very successful clearinghouse to facilitate the matching of doctors to residence
programs (Roth, 1984 [142]). Today this clearinghouse is called the National Resident Matching
Program. Roth along with Sonmez and Unver is a founder of the New England Program for Kidney
Exchange that pairs compatible kidney donors and recipients. Roth in 2012 won the Nobel Memo-
rial Prize in Economic Sciences jointly with Shapley “for the theory of stable allocations and the
practice of market design”.

Most of existing game-theoretic queueing models focused on a setting in which the firms’ decision
is either price / or capacity (Levhari and Luski, 1978 [111]; Cachon and Harker, 2002 [20]; Kalai
et al., 1992 [96]; Cachon and Zhang, 2007 [21]; Allon and Federgruen, 2007 [4]). In these models,
the choice of price / or capacity determines the arrival rate for each firm. The work by: Tezcan,
2008 [156], Stolyar, 2005 [153], and Adan et al., 1994 [1] is also not directly applied in healthcare
settings; however the authors studied settings in which routing decisions are made upon customer
/ patient arrival, and once the customers are assigned to a queue they cannot be rerouted, therefore
their models can be easily applied to different healthcare models.

7.3 Introduction

As mentioned before, this part of the thesis will concentrate on a non-cooperative game theoretical
models of two CCUs. It is assumed that both CCUs act selfishly and the impact of lack of collab-
oration will be studied. If CCUs are overcrowded they can declare being in “transfer” status and
patients are diverted to the other CCU if they have available beds to accept extra patients.

It is assumed that the players are the CCU managers, who assess crowding in terms of the total
number of patients in the CCU and request transfer when this crowding measure exceeds a prede-
termined cut-off. The other CCU will accept the transfer request if their bed occupancy is below
their predetermined cut-off. Otherwise, the transfer request is cancelled and depending on the
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model, either each CCU is forced to accept its own patients or patients are refused admission to
a CCU and are admitted to an ordinary ward within the hospital. Each player chooses a transfer
cut-off with the objective of maintaining the utilisation rate as close to, but below, 80%. The 80%
utilisation rate will be referred to as the target.

A Markov chain model of the two CCUs, the Nevill Hall (NH) and the Royal Gwent (RG) will be
adapted to investigate the impact of patient’s transfers. Each CCU will be admitting two arrival
streams: their own patients and transfers from the other CCU.

7.4 Basic Methodology

To formally investigate the impact of decentralised decision making, the interaction between two
CCUs is placed within a non-cooperative game framework. The interaction will be modelled
through a two dimensional Markov chain. In this section, the basic Markov model (with no ac-
tual interaction) will be described, before moving on to the next sections that modify the Markov
chain.

With no transfers, each CCU faces only one arrival stream: their own patients arriving according
to a Poisson process with rate λ1 at NH and λ2 at RG. It is assumed that the length of stay (LoS) of
a patient is Exponentially distributed with mean 1

µ1
at NH and 1

µ2
at RG. Assume the CCU at NH

has m beds, and the CCU at RG has n beds available. The underlying basic Markov chain for a
network comprising two CCUs is illustrated in Figure 7.2.

(m,0) (m,1) (m,2) (m,n)

(0,0) (0,n)(0,2)(0,1)
...

...

...

(1,2)(1,1)(1,0) ... (1,n)

............

Figure 7.2: Basic Markov chain

Each state (u, v), where u ∈ [0, . . . ,m] and v ∈ [0, . . . , n], denotes the situation where u beds are
occupied in NH and v beds occupied in RG. In total there are (m + 1) × (n + 1) states and they
are indexed lexicographically: (0, 0), (0, 1), (0, 2), etc. In general, state (u, v) is the s(u, v)th state
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where s(u, v) = u(n+ 1) + (v + 1).

The stochastic transition rate matrix Q = Q(m,n) of the continuous-time Markov chain ([152])
has the form:

Q =



−
∑
j 6=i

qi,j q1,2 q1,3 · · · q1,(m+1)(n+1)

q2,1 −
∑
j 6=i

qi,j q2,3 · · · q2,(m+1)(n+1)

q3,1 q3,2 −
∑
j 6=i

qi,j · · · q3,(m+1)(n+1)

...
...

...
. . .

...

q(m+1)(n+1),1 q(m+1)(n+1),2 q(m+1)(n+1),3 · · · −
∑
j 6=i

qi,j


where qi,j is the rate at which a transition from state i to state j occurs. A matrix Q has non-
negative off-diagonal elements; row sums are equal to zero and diagonal elements are equal to
the negated sum of off-diagonal row elements. Each row has at most four non-zero elements: for
the basic model, where transfers are not allowed, they are: uµ1, vµ2, λ1 and λ2. A diagrammatic
representation is given in Figure 7.3.

Figure 7.3: Possible transition rates between states for the basic Markov chain

The transition rates are given by:

qi,j =



uµ1 if (ui, vi)− (uj, vj) = (1, 0),

vµ2 if (ui, vi)− (uj, vj) = (0, 1),

λ1 if (ui, vi)− (uj, vj) = (−1, 0),

λ2 if (ui, vi)− (uj, vj) = (0,−1),

0 otherwise.

(7.1)

Having the transition rate matrix Q it is possible to obtain the stationary distribution of Markov
chains from the system of linear equations:

πQ = 0, π ≥ 0 (7.2)
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where
π = (π1, π2, . . . , π(m+1)(n+1))

and πs is the probability of being in a state s. By transposing Equation 7.2:

QT


π1

π2
...

π(m+1)(n+1)

 =


0

0
...

0

 (7.3)

The standard direct approaches for solving systems of linear equations are based on the method of
Gaussian elimination, which is implemented in MATLAB (and Python in Chapter 8 for reasons that
will become clear) and pseudo code is available in Appendix E.

Having probabilities of being in a state s, it is possible to convert them to probabilities of being in
a state (f(s), g(s)) using the following functions: f(s) =

⌊
s−1
n+1

⌋
and g(s) = (s− 1)mod (n+ 1),

where n is the RG bed capacity. Therefore, probabilities of a given bed occupancy for each hospital
can be obtained using the following formulas:

PNH(u) =
n∑
v=0

P (u, v) for u = 0, 1, . . . ,m

PRG(v) =
m∑
u=0

P (u, v) for v = 0, 1, . . . , n

7.5 Game Theoretic Model

The methodology described in this section will be used to solve game theoretic models in Section
7.7 and 7.8. The queueing network is embedded within a static non-cooperative game, where the
two players are CCU managers, the first player being referred to as NH and the second as RG. Each
player chooses a transfer cut-off with the objective of maintaining the utilisation rate as close to,
but below 80%.
Let:

KNH the transfer cut-off at NH KNH ∈ [0, . . . ,m]

KRG the transfer cut-off at RG KRG ∈ [0, . . . , n]

Let P (h) be the probability of having h beds occupied; thus each CCU is faced with the following
optimisation problem:
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Minimize: ( c∑
h=1

hP (h)

c
− target

)2

Subject to:
0 ≤ K ≤ c

K ∈ Z
c∑

h=1

hP (h)

c
≤ target

where: K is the cut-off, c ∈ [m,n] is the capacity of the corresponding CCU.

The general arrival rates in each region separated by the cut-off points are given below for each
CCU in Figure 7.4.

Figure 7.4: General arrival rates for each CCU at each region, where t ∈ {NH,RG}

For each possible choice of KNH , RG picks KRG for which the utilisation rate at RG is below the
specified target. A set of best RG responses is created: BRG(KNH). In a similar way, for each
possible choice of KRG, NH picks KNH , for which the utilisation rate at NH satisfy the utilisation
target. A set of best NH responses BNH(KRG) to each RG cut-off is also created. Having a set
of best responses for each CCU, a set of pure Nash equilibria can be obtained. Recall Section 7.2,
the pair (K̂NH , K̂RG) is said to be the Nash equilibrium if and only if BRG(K̂NH) = K̂RG and
BNH(K̂RG) = K̂NH .

7.6 Price of Anarchy

Throughput of patients is a natural choice of utility given that most hospitals are financially re-
warded per served patient ([134]). For each cut-off pair (KNH , KRG) the utilisation rate and
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throughput can easily be obtained for each CCU, using the following formulas:

utilisation =

c∑
h=0

hP (h)

c

throughput = µ
c∑

h=0

hP (h)

where c is the bed capacity and h is the number of beds occupied in the corresponding CCU. The
overall throughput of both CCUs is also obtained. Next, the maximum overall throughput is found,
which will be referred to as the optimal throughput. Also, the throughput at Nash equilibrium is
obtained. If there is more than one Nash equilibrium, the throughput for each Nash equilibria are
compared and, by definition (Section 7.2), the lowest is picked and will be referred to as the Nash
throughput.

The aim of the work presented is to measure the inefficiency created by the competitive interaction
between CCUs. The approach is based on the Price of Anarchy (PoA), which is the ratio of the
social optimum welfare to the welfare of the worst Nash equilibrium. That is, the ratio of the largest
social welfare, T ∗ to the smallest social welfare, T̂ , achieved at any Nash equilibrium. The social
optimum in this case is the optimal throughput, hence:

PoA =
T ∗

T̂
=

optimal throughput
Nash throughput

Since the optimal throughput will always be greater or equal to the Nash throughput, the PoA is
always greater or equal to 1; it tends to infinity in two occasions:

• if the Nash equilibrium does not exist;

• if throughput at the Nash equilibrium is equal zero.

All of the above is implemented in MATLAB (and Python in the next chapter for reasons that will
become clear) due to numerical imprecisions occurring in VBA.

The queueing model described in Section 7.4 was basic; no interaction occurred between the CCUs.
In Sections 7.7 and 7.8 this situation is modelled as a game by having transition rates dependent on
the strategies of each CCU.

7.7 Model 1

Recalling Figure 7.4, this model assumes that λc1 = λd1 = 0 and λb2 = λd2 = 0, which means that if
the bed occupancy level at both Units exceeds a predetermined cut-off, then the admission to CCU
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is cancelled and patients will be admitted to a Ward within the hospital. If each CCU chooses their
cut-off at zero, patients are not admitted at all, and, consequently both Units are closed. It is also
assumed by the motion of transfers that transferred patients will be treated under the length of stay
profile of the CCU they are admitted to. The Markov chain used to model this game is shown in
Figure 7.5.

(0,0)

(i,1)(i,0)

(0,n)(0,j+1)(0,j)(0,2)(0,1)

(i,j+1)(i,j)(i,2) (i,n)

(m,0) (m,1) (m,2) (m,j) (m,j+1) (m,n)

... ...

...

...

...

... ...

...

...

...

... ...... ...

...

... ...

...

......

... (i+1,j+1)

(1,0) (1,1) (1,2) (1,j) (1,j+1) (1,n)

(i+1,n)(i+1,j)(i+1,2)(i+1,1)(i+1,0)

... ...

...

......

Figure 7.5: Markov chain for Model 1

Formally, the arrival rates (λ̃1 at NH and λ̃2 at RG) at each CCU are given by:

λ̃1 =


λ1, if i < KNH and j < KRG

λ1 + λ2, if i < KNH and j ≥ KRG

0, if i ≥ KNH

λ̃2 =


λ2, if i < KNH and j < KRG

λ1 + λ2, if i ≥ KNH and j < KRG

0, if j ≥ KRG

Therefore, the matrix Q can be obtained from the following transition rates qi,j:

qi,j =



uiµ1 if (ui, vi)− (uj, vj) = (1, 0),

viµ2 if (ui, vi)− (uj, vj) = (0, 1),

λ1 if (ui, vi)− (uj, vj) = (−1, 0) and vi < KRG,

λ2 if (ui, vi)− (uj, vj) = (0,−1) and ui < KNH ,

λ1 + λ2 if

 (ui, vi)− (uj, vj) = (−1, 0) and ui < KNH and vi ≥ KRG or

(ui, vi)− (uj, vj) = (0,−1) and ui ≥ KNH and vi < KRG,

0 otherwise.

(7.4)
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The following set of parameters, obtained from the data, will be used:

Table 7.2: Parameter values used in the model

Parameter Parameter description Parameter value
m the bed capacity at NH 8

n the bed capacity at RG 16

λ1 the arrival rate at NH (per day) 1.498

λ2 the arrival rate at RG (per day) 2.245

µ1 the service rate at NH (days) 0.262

µ2 the service rate at RG (days) 0.198

target bed utilisation target 80%

For a given set of parameters, the best responses to a given cut-off for each CCU are obtained, and
are illustrated in Figure 7.6.

Figure 7.6: Best responses for each hospital

For example, if the RG picks KRG = 6, NH should choose KNH = 7 . Similarly, if the NH picks
KNH = 3, RG should choose KRG = 15. The two best responses overlap at (8, 16), meaning that
the Nash equilibrium is at (8, 16). Having the Nash equilibrium at both CCUs full bed capacity
means that if neither CCU turn away their patients, both Units will be running at a utilisation rate
of less than 80%. If the utilisation rate target is lowered, CCUs turn away patients earlier; for ex-
ample, if the target was changed to 70% or 60%, the Nash equilibrium would be at (8, 15) or (6, 11)

respectively.

The throughput for each pair of cut-off points at each CCU (Figures 7.7a and 7.7b) and the overall
throughput (Figure 7.7c) is evaluated.
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(a) NH (b) RG (c) Overall

Figure 7.7: Throughput at each hospital for a given pair of cut-off points

The lowest throughput (blue) at individual CCUs is observed for their choice of low cut-off; the
throughput gradually increases (red) as each CCU increases their cut off point. The highest through-
put at an individual hospital occurs at maximum bed capacity and if the other hospital’s cut-off is
at zero. This is intuitive, since if one hospital is getting all admissions, their throughput will be
highest. The highest overall throughput (Figure 7.7c) is achieved if neither of the CCUs turn away
their patients i.e. at (8, 16).

For this model there exists only one Nash equilibrium, at (8, 16), at which Nash throughput is 3.64,
the optimal throughput is also 3.64, therefore PoA = 1. Given the current rules (total rejections
allowed and 80% target), selfish behaviour of hospitals does not effect efficiency of the system.

The model is investigated to check whether the 80% target can be decreased to still maintain a PoA
of 1. As the target is increased from 10% to 100%, the PoA is non-increasing. The lowest target
for which PoA=1 is 72%.

Furthermore, the PoA will be calculated for a few scenarios where the altered variables will be:

• target and the same percentage change in demand at both CCUs;

• demand at each CCU;

• bed capacity at each CCU.

7.7.1 ‘What if’: Target and Percentage Demand Change

This Section will further investigate how the PoA changes for different targets along with different
demand change at both hospitals. The PoA will be tested for:

• target ∈ [0.1, 1] in steps of 0.05
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• demand change, x ∈ [−0.9, 2] in steps of 0.1

resulting in: λ̃1 = λ1 × (1 + x) and λ̃2 = λ2 × (1 + x)

Figure 7.8 presents how the PoA varies for different target values and demand rate changes.

Figure 7.8: PoA for different target and demand rates

Tables 7.3 and 7.4 present the throughput at the Nash equilibrium and the optimal throughput
correspondingly for a subsection of parameters.

Table 7.3: Nash throughput

Demand rate change

Ta
rg

et

0 0.1 0.2 0.3 0.4
0.55 2.80 2.72 2.56 2.59 2.61
0.6 3.09 2.87 2.93 2.97 3.01

0.65 3.20 3.32 3.27 3.13 3.17
0.7 3.60 3.58 3.41 3.49 3.54

0.75 3.64 3.85 3.82 3.81 3.70

Table 7.4: Optimal throughput

Demand rate change

Ta
rg

et

0 0.1 0.2 0.3 0.4
0.55 3.64 3.91 4.14 4.31 4.46
0.6 3.64 3.91 4.14 4.31 4.46

0.65 3.64 3.91 4.14 4.31 4.46
0.7 3.64 3.91 4.14 4.31 4.46

0.75 3.64 3.91 4.14 4.31 4.46

For any target value, as the demand increases, the PoA increases. For example, for a target of
0.65, when the total demand rate is 4.49 (20% increase) then the Nash equilibrium is at (6, 11)

resulting in a Nash throughput of 3.27 (Table 7.3), but the optimal throughput is 4.14 (Table 7.4)
giving PoA=1.26. However, at a total demand rate of 4.86 (30% increase) the Nash equilibrium
is at (5, 11) at which the throughput is 3.13 (Table 7.3) and optimal is 4.31 (Table 7.4), giving
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PoA=1.38. A higher demand causes CCUs to reject patients earlier, hence a higher rejection rate,
therefore more inefficiency is observed.

The lower the target, the rate of change of the PoA is greater. As the target increases, the PoA levels
get lower. A very high PoA is observed for a high demand and low target. Many patients arrive, but
not many are admitted, hence a very high rejection rate, therefore a high inefficiency is observed.

In general, the PoA increases with demand and decreases with the target value. For 100% target
the PoA is always 1, even for high demand increase. This is to be expected as setting a 100% target
implies that both hospitals will try to maximise throughput.

7.7.2 ‘What if’: Demand Change at Each CCU

In the previous scenario, the arrival rates were changed by the same percentage in both hospitals.
Now, the PoA is calculated for different λ1 ∈ [0.1, 4.5] and λ2 ∈ [0.1, 7] in steps of 0.1, resulting in
up to a triple increase of the original arrival rates. A target of 80% is used. Figure 7.9 demonstrates
how the PoA varies.

Figure 7.9: PoA for different demand rates at each hospital

Tables 7.5 and 7.6 present the throughput at the Nash equilibrium and the optimal throughput
correspondingly for a subsection of parameters.
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Table 7.5: Nash throughputs

RG demand rate

N
H

de
m

an
d

ra
te 2.8 2.9 3 3.1 3.2

1.3 3.84 3.89 3.95 4.00 3.95
1.4 3.90 3.95 4.00 3.96 4.00
1.5 3.95 4.00 4.05 4.00 4.036
1.6 4.00 4.05 4.10 4.04 4.07
1.7 4.06 4.10 4.04 4.07 3.95

Table 7.6: Optimal throughputs

RG demand rate

N
H

de
m

an
d

ra
te 2.8 2.9 3 3.1 3.2

1.3 3.90 3.96 4.02 4.09 4.13
1.4 3.96 4.02 4.08 4.13 4.18
1.5 4.02 4.08 4.14 4.19 4.23
1.6 4.08 4.14 4.19 4.24 4.28
1.7 4.14 4.19 4.24 4.28 4.33

The PoA increases with demand. For example, for the original NH arrival rate of 1.5 per day and
arrival rate of 3 at RG, the throughput at Nash equilibrium at (8, 15) is 4.05 (Table 7.5) and the
optimal is 4.14 (Table 7.6), implying a PoA of 1.02. The throughput at individual CCUs at Nash
equilibrium is 1.56 at NH and 2.49 at RG. If the arrival rate at RG is increased to 3.1, the throughput
at Nash equilibrium (8, 14) is 4.00 (Table 7.5) and the optimal is 4.19 (Table 7.6), implying a PoA
of 1.05. The throughput at individual CCUs at Nash equilibrium is 1.52 at NH and 2.48 at RG.
Therefore a slight increase in arrival rate:

• makes both CCUs transfer patients earlier;

• decreases throughout at Nash equilibrium at both CCUs;

• increases rejection rate;

For very high demand at both CCUs, rejections of patients are unavoidable. If λ1 = 4.5 and λ2 = 7,
the PoA is highest (1.26). A PoA of 1.26 corresponds to 26% patients rejected, which is not an
acceptable quantity.

7.7.3 ‘What if’: Bed Capacity Change at Both CCUs

This scenario will investigate the effect on the PoA of changing the number of available beds at
both CCU. The capacity at NH will vary from 1 to 16 and from 1 to 32 at RG. Figure 7.10 presents
the PoA for the various capacities.

Tables 7.7 and 7.8 present the throughput at the Nash equilibrium and the optimal throughput
correspondingly for a subsection of parameters.
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Figure 7.10: PoA for different bed capacity at each CCU

Table 7.7: Nash throughputs

RG capacity

N
H

ca
pa

ci
ty

10 11 12 13 14
6 2.66 2.80 3.09 3.20 3.38
7 2.84 3.12 3.22 3.32 3.48
8 3.15 3.25 3.34 3.49 3.55
9 3.27 3.36 3.44 3.57 3.61
10 3.38 3.46 3.58 3.62 3.65

Table 7.8: Optimal throughputs

RG capacity

N
H

ca
pa

ci
ty

10 11 12 13 14
6 2.97 3.09 3.20 3.30 3.38
7 3.12 3.22 3.32 3.40 3.48
8 3.25 3.34 3.42 3.49 3.55
9 3.36 3.44 3.51 3.57 3.61
10 3.46 3.52 3.58 3.62 3.65

In general, the PoA decreases with capacity increase. As an example, for a bed capacity at NH of
8 and 12 at RG, the throughput achieved at the Nash equilibrium of (8, 11) is 3.34 (Table 7.7) and
the optimum is 3.42 (Table 7.8), giving the PoA of 1.02. If the bed capacity is increased by 1 at
RG, the Nash equilibrium is at (8, 13), which means that neither of the CCUs would reject their
patients. Having the Nash equilibrium at CCUs’ full capacities means that the throughput at Nash
is equal to the optimal throughput and PoA=1.

In a centralised system, for a NH bed capacity of 8, as currently, RG could reduce their bed capacity
to 13, and similarly for a RG bed capacity of 16, NH could reduce their to 5, to maintain efficiency
of the system with the PoA of 1. In a decentralised system that would not be the case.
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There is a visible tipping point for a low NH capacity, between 1 and 5, and RG capacity between
7 and 8. Investigation of best responses showed that, for example, if NH had 2 beds and RG had
7 or 8 beds, the Nash equilibrium would be the same: (1, 6); therefore the throughput at the Nash
equilibrium remains the same; however, the optimum throughput increases for 8 beds at RG. As
the optimum throughput increases, so does the PoA. To better understand the reason why RG does
not increase their transfer cut-off when their bed capacity is increased, the utilisation rates are in-
vestigated. It appears that for bed capacities of 2 and 7 respectively in NH and RG, the utilisation
rate at Nash equilibrium (1, 6) is 79.84%. If an extra bed is added to RG, giving 8 in total, and RG
started rejecting patients at KRG = 7, the utilisation rate would be 81.13%, which does not satisfy
the target constraint. For KRG = 6, the utilisation rate is 69.86%, which is below the 80% target.
This has also been the case for the remaining points in that region.

This shows that in certain situations the increase of capacity could increase inefficiency in a de-
centralised system. This is in essence an instance of Braess’s Paradox (Braess, 1968 [17] (original
version) and Braess et al., 2005 [18] (translated to English version)). The result of Braess has been
used before in healthcare setting by Gallivan and Utley, 2003 [55], where the authors identified
potential operational problems that might occur once the patient choice is introduced.

In this model, there is the potential for both CCUs to reject patients at the same time, and so patients
are lost to the entire system. The following model will investigate the effect of not allowing total
rejections on the PoA.

7.8 Model 2

Recalling Figure 7.4, this model assumes that λc1 = 0 and λb2 = 0, which means that if bed occu-
pancy levels at both Units exceed a pre-determined cut-off, then transfers are not allowed and each
CCU has to accommodate their own patients. If each CCU choose a cut-off at zero, patients are not
transferred at all, and, consequently, both Units admit their own patients. The Markov chain used
to model this game is shown in Figure 7.11

The overall arrival rates (λ̃1 at NH and λ̃2 at RG) at each CCU are as follows:

λ̃1 =


λ1, if

 i < KNH and j < KRG or

i ≥ KNH and j ≥ KRG

λ1 + λ2, if i < KNH and j ≥ KRG

0, if i ≥ KNH and j < KRG

λ̃2 =


λ2, if

 i < KNH and j < KRG or

i ≥ KNH and j ≥ KRG

λ1 + λ2, if i ≥ KNH and j < KRG

0, if i < KNH and j ≥ KRG
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(0,0)
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(0,n)(0,j+1)(0,j)(0,2)(0,1)
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(i+1,n)(i+1,j)(i+1,2)(i+1,1)(i+1,0)
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...
Figure 7.11: Markov chain for Model 2

Therefore, the transition matrix Q is obtained for the following transition rates qi,j:

qi,j =



uiµ1 if (ui, vi)− (uj, vj) = (1, 0),

viµ2 if (ui, vi)− (uj, vj) = (0, 1),

λ1 if (ui, vi)− (uj, vj) = (−1, 0) and

 ui < KNH and vi < KRG or

ui ≥ KNH and vi ≥ KRG,

λ2 if (ui, vi)− (uj, vj) = (0,−1) and

 ui < KNH and vi < KRG or

ui ≥ KNH and vi ≥ KRG,

λ1 + λ2 if

 (ui, vi)− (uj, vj) = (−1, 0) and ui < KNH and vi ≥ KRG or

(ui, vi)− (uj, vj) = (0,−1) and ui ≥ KNH and vi < KRG,

0 otherwise.

(7.5)

The same set of parameter values are used as in Model 1. The best responses for each CCU, given
the chosen cut-off at other CCU, are presented in Figure 7.12.
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Figure 7.12: Best responses for each hospital for Model 2

The Nash equilibrium is at (8, 16), as in Model 1, resulting in a PoA of 1. In comparison with
Model 1, the individual best responses are decreased for low cut-off points at the competing CCU.
For example, in Model 1, BRG(KNH = 3) = 15, in this model BRG(KNH = 3) = 13. This is due
to the fact that cancellations are not allowed and the targets are reached faster.

The PoA is tested for different target values ∈ [10%, 100%] in steps of 10% and ∈ [60%, 80%] in
steps of 1%. As the target increases, the PoA decreases. The minimum target for which PoA=1 is
72%. For a 70% target in Model 1 there was only one Nash equilibrium; in this model there are
three pure Nash equilibria: (6, 12), (7, 13) and (8, 14).

Furthermore, the throughputs for each pair of cut-off points, at each CCU (Figure 7.13a and 7.13b)
and the overall throughput (Figure 7.13c) are evaluated.

(a) NH (b) RG (c) Overall

Figure 7.13: Throughput for a given pair of cut-off points for Model 2

The throughput pattern is fairly different to Model 1; the lowest throughput at the first hospital
is observed if the first CCU choose a low cut-off and the second choose a high, since the second
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hospital will be able to accommodate most of the first hospital’s demand. The throughput increases
as both CCUs choose their cut-off to be in similar capacity proportion. As expected, the highest is
reached if the first CCU choose not to reject at all and the second CCU picked a low cut-off. The
overall throughput has a very different pattern to Model 1 as well, where the lowest was for a low
pair of cut-off points. In Model 2 it is the lowest if one of the CCUs choose to reject patients at low
bed occupancy and the other choose not to reject patients at all. The optimal throughput is observed
at full bed capacity of both CCUs; therefore, if both CCUs cooperated by not rejecting patients, the
system would be efficient.

Next, the PoA will be calculated for the same ‘what if’ scenarios as in Model 1 to investigate
whether the constraint of not allowing total rejections has an impact on the PoA.

7.8.1 ‘What if’: Target and Percentage Demand Change

This Section will investigate how the PoA changes for different targets along with different demand
change at both hospitals. As in Model 1, the PoA will be tested for:

• target ∈ [0.1, 1] in steps of 0.05

• demand change, d ∈ [−0.9, 2] in steps of 0.1

resulting in: λ̃1 = λ1 × (1 + d) and λ̃2 = λ2 × (1 + d)

Figure 7.14 presents the PoA for different target values and demand rate changes.

Figure 7.14: PoA for different target and demand rates for Model 2
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Figure 7.14 illustrates the PoA in a 3D line graph; previously a surface 3D graph was used.
Throughout the rest of this chapter, both types of graph will be used interchangeably depending
on which one illustrates the situation more appropriately.

Figure 7.14 shows very interesting results; the PoA for a very small demand is low, as the sys-
tem can easily deal with a small number of arrivals. As the demand change increases, the PoA
increases; this is due to the fact that the optimal throughput increases much faster than the Nash
throughput does. As the demand change increases even further, the PoA starts to decrease, be-
cause both CCUs have to deal with a very high demand and the difference between the optimal and
Nash throughput gets smaller and smaller. The system is flooded and selfish behaviour does not
have a negative effect; this is the expected behaviour as described in Knight and Harper, 2013 [103].

For example, for a target of 80% the PoA starts to rapidly increase for demand change higher than
0.1, and starts to decrease for demand change of 0.6; this region will be investigated closely. Table
7.9 presents results for 80% target and demand change from 0.1 to 0.6.

Table 7.9: Model 2 results for target of 80%

Demand Nash Nash overall Nash NH Nash RG Optimal
PoA

change equilibrium throughput throughput throughput throughput
0.1 (8,16) 3.91 1.51 2.41 3.91 1
0.2 (8,15) 4.11 1.63 2.48 4.14 1.06
0.3 (5,10) 4.11 1.63 2.48 4.31 1.07
0.4 (4,0) 4.20 1.65 2.55 4.46 1.06
0.5 (3,0) 4.30 1.66 2.64 4.57 1.06
0.6 (0,0) 4.39 1.68 2.71 4.65 1.06

Clearly, as the demand change increases, the Nash equilibria pairs decrease, because both CCUs
are trying to transfer their patients earlier; if one CCU transfers early, the other will try as well,
and as a result the Nash equilibrium for 0.6 demand increase is at (0, 0), meaning that each CCU
takes care of their own patients. As the demand increases even further the Nash equilibria remain
at (0, 0) and the PoA decreases; hence the increase in demand is not a problem, as the problem is in
cooperation, or lack of it. Each CCU tries to be ‘smarter’ causing inefficiency in the whole system.

Assuming 100% target was acceptable, the arrival demand could be tripled to maintain PoA=1.
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7.8.2 ‘What if’: Demand Change at Each CCU

The model is now tested for a change in the arrival rates: λ1 ∈ [0.1, 4.5] and λ2 ∈ [0.1, 7] in steps
of 0.1. The target of 80% is used. Figure 7.15 demonstrates how the PoA fluctuates.

Figure 7.15: PoA for different demand rates at each hospital for Model 2

The PoA increases with demand; it remains at a value of 1 for all values in the region of
0.1 ≤ λ1 ≤ 2 and 0.1 ≤ λ2 ≤ 2.4. Due to the complexity of the graph, the PoA for each CCU,
dependent on demand at the other CCU will be investigated separately (Figures 7.16a and 7.16b).

(a) NH (b) RG

Figure 7.16: Price of anarchy for each hospital as a function of other CCU demand

Both Figures (7.16a and 7.16b) show typical patterns for low, medium and high demand at indi-
vidual CCUs. At the smaller CCU (NH), for low demand, the PoA stays low for low RG demand.
At RG, the PoA for low demand also stays low for low NH demand; it also suddenly increases,
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however, at a further point than NH. The bigger CCU can cope for longer with extra demand. The
PoA for medium demand at NH, which is very close to the true demand, increases quite fast as
RG demand increases, and then starts to decrease for large RG demand. Again, this is due to the
fact that CCUs are less likely to make a worsening decision if they have to deal with large demand.
At RG the medium demand, which is actually higher than the true demand, increases, but more
steadily than at NH. The smaller CCU can handle their own high demand, but as soon as RG in-
creases their demand the NH PoA rapidly increases to very high level, around 1.11, implying 11%
of patients are rejected. For high RG demand (much higher than the true RG demand) PoA is high
even for low NH demand, but after a certain point starts to decrease, for the same reason as in NH.

There are visible spikes on high demand in each CCU. As an illustration, an arrival rate of 4 at NH
is taken and arrival rates at RG between 1.8 and 2.4 are investigated closely; the PoA will follow a
similar pattern as shown in green in Figure 7.16a. Table 7.10 presents obtained results.

Table 7.10: Model 2 results for NH arrival rate of 4

RG arrival Nash Nash overall Nash NH Nash RG Optimal
PoA

rate equilibrium throughput throughput throughput throughput
1.8 (0, 12) 4.26 1.77 2.48 4.63 1.09
1.9 (0, 12) 4.29 1.79 2.50 4.65 1.08
2 (0, 11) 4.23 1.82 2.41 4.67 1.11

2.1 (0, 11) 4.26 1.83 2.43 4.69 1.10
2.2 (0, 11) 4.30 1.83 2.46 4.71 1.10
2.3 (0, 11) 4.33 1.84 2.49 4.73 1.09
2.4 (0, 10) 4.30 1.87 2.44 4.74 1.10

Since NH has a very high arrival rate, NH declares his cut-off to be at zero. So NH does not have to
admit RG patients, and still RG is admitting a proportion of NH patients, therefore RG has to lower
their cut-off to satisfy the 80% target constraint. The spikes are at the points where RG decreases
their cut-off, initially from KRG = 12 to KRG = 11 and then to KRG = 10. As an effect, Nash
throughput at RG decreases, decreasing overall Nash throughput and therefore increasing the PoA.

In general, Figure 7.15 shows interesting and typical behaviour: the PoA is low for low demand at
both CCU, increases for medium demand and starts to decrease for high demand at both CCUs.

7.8.3 ‘What if’: Bed Capacity Change at Both CCUs

The final scenario will investigate the effect on the PoA by changing the number of available beds
at both CCU. The bed capacity at NH will vary from 0 to 16 and at RG from 0 to 32. Figure 7.17
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illustrates the PoA as a function of changed bed capacity at each CCU.

Figure 7.17 does not clearly show what the PoA for very low NH and very low RG occupancy is,
hence the 3D line graph (Figure 7.18) is also shown.

Figure 7.17: PoA for different bed capacity at each CCU for Model 2

Figure 7.18: PoA for different bed capacity at each CCU for Model 2

The high PoA at both CCUs low bed capacities is expected, since patients are being lost due to an
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insufficient number of beds for the current demand. In order to investigate the occurrence of the
two tipping points, one at low RG capacity and NH capacity around 6 and the second at low NH
capacity and RG capacity of around 13, attention will be given to Nash equilibria at both regions.
The reason for both tipping points is in fact the same, and, as an example, for a bed capacity of 2 at
NH closer inspection will be taken of the Nash equilibria as capacity in RG increases. Table 7.11
presents the results for RG capacity of between 10 and 16.

Table 7.11: Model 2 results for NH bed capacity of 2

RG bed Nash Nash overall Nash NH Nash RG Optimal
PoA

capacity equilibrium throughput throughput throughput throughput
10 (0,0) 2.05 0.44 1.62 2.23 1.09
11 (0,0) 2.17 0.44 1.74 2.38 1.10
12 (0,6) 2.30 0.44 1.87 2.54 1.10
13 (0,8) 2.44 0.42 2.02 2.68 1.09
14 (0,9) 2.56 0.42 2.14 2.82 1.10
15 (1,11) 2.73 0.42 2.31 2.95 1.08
16 (1,12) 2.85 0.41 2.44 3.07 1.08

At a low RG capacity the Nash equilibrium is (0, 0), and as RG is receiving extra beds the equilib-
rium stays at the same level till RG has 11 beds. This is due to the fact that NH has only 2 beds
available, so NH tries to transfer some patients to RG; however, since RG does not have a sufficient
capacity to accommodate their own patients and a proportion of NH patients, RG chooses a cut-off
at 0, so they only have to admit their own patients. As the RG capacity increases to 12, the cut-off
chosen increases to 6, hence some NH patients are admitted to RG. As the Nash equilibria are
increased, the overall throughput increases, decreasing the PoA.

7.9 Conclusions

A network consisting of two CCUs has been considered. A game theory approach has been used
to quantify the effect of a decentralised system, where selfish behaviour of its agents caused in-
efficiency. To measure the ineffectiveness the price of anarchy has been used. It has been shown
that in a healthcare system with an inadequate bed capacity providing the service, a high PoA is
to be expected. In a system with the possibility of interaction, there is potential for anarchy and
cooperation should not be neglected.

In general, Model 1 shows that by rejecting patients the system’s efficiency is worsened. The PoA
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for the corresponding ‘what if’ scenarios for Model 1 are much higher compared with Model 2.
Also, Model 1 did not show the typical behaviour of PoA: it increases to a point, and then starts
decreasing, which is due to the fact that at that point CCUs had too many strategies to pick from and
the probability of picking a ‘bad’ tactic was high. After the tipping point CCUs either had enough
capacity, so were not competing, or the demand was high, meaning that the system was ‘bad’, so
the Nash and optimal throughput were not far apart.

The next Chapter will investigate more complex models, increasing the CCUs strategy choices even
further.



Chapter 8

A Further Game Theoretical Consideration
of Critical Care Unit Interaction

8.1 Introduction

In this chapter more detailed game theoretical models, where each Critical Care Unit (CCU) will
have a much larger strategy space, will be proposed. As in Chapter 7, it is assumed that both CCUs
act selfishly and inefficiency incurred as a result will be measured. In Model 1 (Section 7.7) and
Model 2 (Section 7.8) it was assumed that, when the Units were overcrowded, patients were trans-
ferred to the other CCU. In this chapter, if CCUs are running on relatively high bed occupancy
levels they declare being in “reduction” status first to later declare being in “transfer” status. The
reduction status means that only a proportion of patients will be allowed to be admitted; the per-
centage of patients that were refused admission to the CCU will be admitted to an ordinary Ward.
The transfer status means that patients will be diverted to the other CCU, assuming there are avail-
able beds to accept extra patients. As in Chapter 7, it is again assumed that patients obtain length
of stay characteristics of the CCU they are treated in.

It is assumed that the players are the CCU managers, who assess crowding in terms of the total
number of beds occupied in the CCU and declare reduction status when the number of patients
exceeds the first predetermined cut-off level. If the number of occupied beds exceeds the second
predetermined cut-off point then the players request transfer. The other CCU may accept the trans-
fer request if their bed occupancy is below their second predetermined cut-off. Otherwise, the
transfer request is cancelled, and depending on the model, either each CCU is forced to accept its
own patients or patients are refused admission to the CCU. Each player chooses a reduction and
transfer cut-off to keep the utilisation rate as close to, but below, 80%.

A more detailed Markov chain model of the two CCUs, the Nevill Hall (NH) and the Royal Gwent
(RG), each admitting their own patients and transfers will be adapted to investigate the impact of
patient’s reductions and transfers.

189
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8.2 Game Theoretic Model

The interaction will be modelled through a two dimensional Markov chain using the same method-
ology as described in Section 7.4 for Model 1 and Model 2. Assumptions regarding Poisson arrivals
and Exponential service times are still valid. The bed capacity at each CCU remains the same, i.e.
m in NH and n in RG; and the two players, as before, will be referred to as NH and RG. Each
player chooses a reduction and transfer cut-off with the same objective as previously, to maintain
the utilisation rate as close to, but below, 80%.
Let:

K1
NH the reduction cut-off at NH K1

NH ∈ [0, . . . ,m]

K2
NH the transfer cut-off at NH K2

NH ∈ [K1
NH , . . . ,m]

K1
RG the reduction cut-off at RG K1

RG ∈ [0, . . . , n]

K2
RG the transfer cut-off at RG K2

RG ∈ [K1
RG, . . . , n]

If for j ∈ {NH,RG}, K2
j = K1

j , then the problem reduces to Model 1 or Model 2 depending
on whether the total rejections are allowed or not, and the reduction stage does not exist. Also, if
K1
j = c, where c is the bed capacity in the corresponding CCU, then the model reduces to the very

basic model without any cut-off points, transfers are not allowed and each CCU admits only their
own patients, as described in Section 7.4.

Let P (h) be the probability of having h beds occupied; thus, each CCU is faced with the following
optimisation problem:

Minimize: ( c∑
h=1

hP (h)

c
− target

)2

Subject to:
0 ≤ K1

j ≤ K2
j ≤ c

K1
j , K

2
j ∈ Z

c∑
h=1

hP (h)

c
≤ target

where: K1
j , K

2
j are the cut-off points, j ∈ {NH,RG}; c is the system capacity of the

corresponding CCU.
For each possible choice of K1

NH , K
2
NH , RG picks K1

RG, K
2
RG for which the utilisation rate at RG

is below the specified target. A set of pairs of best RG responses is created:
(B1

RG(K1
NH , K

2
NH), B2

RG(K1
NH , K

2
NH)). In a similar way, for each possible choice of K1

RG, K
2
RG,

NH picks K1
NH , K

2
NH , for which the utilisation rate at NH satisfy the utilisation target. A set of
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best NH responses (B1
NH(K1

RG, K
2
RG), B2

NH(K1
RG, K

2
RG)) to each RG cut-off pair is also created.

Having a set of pairs of best responses for each CCU, a set of pure Nash equilibria can be obtained.
The quadruplet

(
K̂1
NH , K̂

2
NH , K̂

1
RG, K̂

2
RG

)
is said to be the Nash equilibrium if and only if:

• B1
RG(K̂1

NH , K̂
2
NH) = K̂1

RG;

• B2
RG(K̂1

NH , K̂
2
NH) = K̂2

RG;

• B1
NH(K̂1

RG, K̂
2
RG) = K̂1

NH ;

• B2
NH(K̂1

RG, K̂
2
RG) = K̂2

NH .

Similarly as before, throughput of patients and utilisation is calculated for each cut-off quadruple
(K1

NH , K
2
NH , K

1
RG, K

2
RG). Optimal throughput, the Nash throughput and the PoA are also obtained.

The model is very computationally expensive; for the base scenario with cNH = 8, cRG = 16, each
CCU has to consider 6885 strategies, since

cNH∑
K1
NH=0

cNH∑
K2
NH=K1

NH

cRG∑
K1
RG=0

cRG∑
K2
RG=K

1
RG

(K1
NH , K

2
NH , K

1
RG, K

2
RG)

=

 cNH∑
K1
NH=0

(K1
NH + 1)

×
 cRG∑
K1
RG=0

(K1
RG + 1)


=

(cNH + 1)(cNH + 2)

2
× (cRG + 1)(cRG + 2)

2

For comparison, in Model 1 and Model 2, each CCU had to consider (cNH + 1)× (cRG + 1) = 153

strategies. Due to the amount of strategies possible, the program is written in the programming
language Python. The code is parallelised dividing the exploration of the strategy space into parallel
jobs and is run on Merlin. Merlin is Cardiff University’s High Performance Computer, some of its
specifications include ([124]):

• consists of 2048 cores Intel Sandy Bridge processors (2.6GHz / 4GB per core / 8 cores per
processor);

• an additional 864 cores Intel Westmere (2.8GHz / 3GB per core / 6 cores per processor) as a
serial / high throughput subsystem;

• configured with 8+TB of total memory across the entire cluster, with a 50 TB global parallel
file storage.

The next two sections will describe the modified Markov chains. In Section 8.3, Model 3 will be
introduced, where total rejections are possible and in Section 8.4 Model 4 will be presented where
total rejections are not allowed.
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8.3 Model 3

This model assumes that if the bed occupancy level at both Units exceeds a predetermined transfer
cut-off, admissions to CCU are cancelled and patients will be admitted to a Ward within the hospi-
tal (as in Model 1). The underlying Markov chain for a network comprising two CCUs is presented
in Figure 8.1.

The overall arrival rates (λ̃1 at NH and λ̃2 at RG) at each CCU are as follows:

λ̃1 =



λ1a, if i < K1
NH and j < K2

RG

λ1b, if K1
NH ≤ i < K2

NH and j < K2
RG

λ1a + λ2b, if i < K1
NH and j ≥ K2

RG

λ1b + λ2b, if K1
NH ≤ i < K2

NH and j ≥ K2
RG

0, if i ≥ K2
NH

λ̃2 =



λ2a, if i < K2
NH and j < K1

RG

λ2b, if i < K2
NH and K1

RG ≤ j < K2
RG

λ2a + λ1b, if i ≥ K2
NH and j < K1

RG

λ2b + λ1b, if i ≥ K2
NH and K1

RG ≤ j < K2
RG

0, if j ≥ K2
RG

Figure 8.2 illustrates the overall arrival rates for each CCU, (λ̃1, λ̃2) in each region separated by the
cut-off points.

Figure 8.2: Arrival rate parameters for each CCU in each region
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Therefore, the transition matrix Q is obtained for the following transition rates qi,j:

qi,j =



uiµ1 if (ui, vi)− (uj, vj) = (1, 0),

viµ2 if (ui, vi)− (uj, vj) = (0, 1),

λ1a if (ui, vi)− (uj, vj) = (−1, 0) and ui < K1
NH and vi < K2

RG,

λ1b if (ui, vi)− (uj, vj) = (−1, 0) and K1
NH ≤ ui < K2

NH and vi < K2
RG,

λ2a if (ui, vi)− (uj, vj) = (0,−1) and ui < K2
NH and vi < K1

RG,

λ2b if (ui, vi)− (uj, vj) = (0,−1) and ui < K2
NH and K1

RG ≤ vi < K2
RG,

λ1a + λ2b if (ui, vi)− (uj, vj) = (−1, 0) and ui < K1
NH and vi ≥ K2

RG,

λ1b + λ2b if (ui, vi)− (uj, vj) = (−1, 0) and K1
NH ≤ ui < K2

NH and vi ≥ K2
RG,

λ2a + λ1b if (ui, vi)− (uj, vj) = (0,−1) and ui ≥ K2
NH and vi < K1

RG,

λ2b + λ1b if (ui, vi)− (uj, vj) = (0,−1) and ui ≥ K2
NH and K1

RG ≤ vi < K2
RG,

0 otherwise.

The same set of parameters as in Model 1 and 2, obtained from the data, will be used:

Table 8.1: Parameter values used in the model

Parameter Parameter description Parameter value
m the bed capacity at NH 8

n the bed capacity at RG 16

λ1a the arrival rate at NH 1.498

λ2a the arrival rate at RG 2.245

µ1 the service rate at NH 0.262

µ2 the service rate at RG 0.198

target bed utilisation target 80%

For example, for a given set of parameters, no increase in demand and a reduction rate after the first
cut-off of 10%, so that λ1b = 0.9 × λ1a and λ2b = 0.9 × λ2a, and target between 0.6 and 0.9, the
PoA is investigated, and results are presented in Table 8.2.

For 80% target the Nash equilibrium and also the optimum throughput of 3.63 is at (8, 8, 16, 16),
hence the PoA=1. Having K1

NH = K2
NH = cNH and K1

RG = K2
RG = cRG means that for the cur-

rent demand both Units can cope with the demand, so there is no need to decrease the arrival rate
after the first cut-off at both CCUs, and both CCU will be running at a utilisation rate of less than
80%. If the target is lowered to 70%, Nash equilibrium is at (8, 8, 12, 16), meaning that NH would
not have to decrease or transfer patients; however, when the bed occupancy at RG is 12, arrival
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Table 8.2: Model 3 results for reduction rate of 10% and no increase demand

Target Nash Nash overall Optimal PoAequilibrium throughput throughput
0.6 (6,6,11,11) 3.07 3.63 1.18
0.7 (8,8,12,16) 3.56 3.62 1.02
0.8 (8,8,16,16) 3.63 3.63 1
0.9 (8,8,16,16) 3.63 3.63 1

rate would be decreased by 10%, resulting in throughput at Nash of 3.56. The optimal throughput
is 3.62, giving a PoA of 1.02, meaning that 2% of all patients were turned away in a reduction stage.

Furthermore, the PoA will be evaluated for cases where the altered variables will be: target, demand
increase and reduction rate.

8.3.1 ‘What if’: Target, Demand and Reduction Rate Change

This section will investigate the effect on the PoA of changing the utilisation target and certain
parameters. The PoA will be calculated for:

• target ∈ [0.1, 1] in 0.1 steps;

• demand increase, d ∈ [0, 2] in 0.1 steps, hence λ̂1a = (1 + d)× λ1a and λ̂2a = (1 + d)× λ2a;

• reduction rate, r ∈ [0.1, 1] in 0.1 steps, hence λ̂1b = (1− r)× λ̂1a and λ̂2b = (1− r)× λ̂2a.

As an illustration, a target of 80% is chosen to illustrate how the PoA is affected by different
demand increase and reduction rates, which is presented in Figure 8.3.

Figure 8.3: The PoA for target of 80% for Model 3
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Visibly, there are some gaps for certain values; in those gaps the Nash equilibrium does not exist in
pure strategies (as discussed in Chapter 7).

In general, the PoA increases with demand increase (as in Model 1). For example, for a reduction
rate, r = 0.1 and demand rate, d between 0.1 and 0.6, the PoA is investigated, and results are
presented in Table 8.3.

Table 8.3: Model 3 results for target of 80% and reduction rate of 0.1

Demand Nash Nash overall Optimal
PoA

increase equilibrium throughput throughput
0.1 (8,8,16,16) 3.89 3.89 1
0.2 (8,8,14,16) 4.08 4.11 1.01
0.3 (8,8,14,15) 4.17 4.29 1.03
0.4 (7,7,14,14) 4.02 4.43 1.10
0.5 (7,7,14,14) 4.09 4.55 1.11
0.6 (7,7,12,14) 4.12 4.64 1.13

For a 0.1 demand increase, CCUs do not compete, as both never reduce the number of patients
coming in, or never transfer any patients; hence no inefficiency is observed and the PoA=1. As
the demand increases to 0.2, a little inefficiency can be observed, RG reduces their arrival rate
when there are 14 beds occupied. Inspection of RG utilisation rates for different RG cut-off points
showed that if RG picked K1

RG = 16 and K2
RG = 16, the utilisation would be 80.71%, hence

above the 80% target. If K1
RG was reduced to 15, the utilisation would be 80.41%, which is still too

high. For K1
RG = 14, the utilisation rate is just below 80%, i.e. 79.93%. Therefore the Nash is at

(8, 8, 14, 16). For 0.3 demand increase, RG starts to transfer some patients over to NH. As demand
increases further, NH after receiving patients from RG now also declares transfer status, and RG
reduction status starts at an even lower bed occupancy.

Note that for 0.2 demand increase, RG preferred to reduce arrivals and hence loose a proportion of
patients instead of reducingK2

RG to 15. In that case, some RG patients would have been transferred
to NH and no patients would be lost. For the (8, 8, 15, 15) strategy profile, the utilisation rate at NH
would be 76.85% and at RG 77.36%. Since RG is selfish and tries to get the utilisation rate as close
to 80%, RG would move the strategy profile to (8, 8, 14, 16), because the utilisation rate for RG for
this strategy would be 79.93%, as before. In a centralised system, the strategy profile (8, 8, 15, 15)

would be preferred.
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In general, the PoA decreases as the target value increases. As an illustration, for a reduction rate,
r, of 0.3 and target values between 0.2 and 1, the PoA is illustrated in Figure 8.4. The PoA for
a target value of 0.1 is very high (between 19.4484 for a 0 demand increase and 26.1796 for a
increase demand of 2) and therefore is excluded from the graph.

Figure 8.4: The PoA for different target values and reduction rate of 0.3 for Model 3

As before, for the cases, where the PoA→ ∞, gaps in the graph occur. Visibly, for each target
value, the PoA increases with demand. For 100% target, the PoA is always 1, even for a very high
demand. It was also observed in Model 1, and the reason is the same, setting a 100% target implies
that both CCUs will try to maximise throughput.

The next model will inspect the effect of not allowing rejections in the transfer status on the PoA.

8.4 Model 4

This model assumes that if the bed occupancy levels at both CCUs exceed a pre-determined second
cut-off level, then transfers are not allowed and each CCU has to accommodate their own patients.
The Markov chain used to model this game is shown in Figure 8.5.
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The overall arrival rates (λ̃1 at NH and λ̃2 at RG) at each CCU are as follows:

λ̃1 =



λ1a, if ui < K1
NH and vi < K2

RG

λ1b if

 K1
NH ≤ ui < K2

NH and vi < K2
RG or

ui ≥ K2
NH and vi ≥ K2

RG,

λ1a + λ2b, if ui < K1
NH and vi ≥ K2

RG

λ1b + λ2b, if K1
NH ≤ ui < K2

NH and vi ≥ K2
RG

0, if i ≥ K2
NH and vi < K2

RG

λ̃2 =



λ2a, if ui < K2
NH and vi < K1

RG

λ2b, if

 ui < K2
NH and K1

RG ≤ vi < K2
RG or

ui ≥ K2
NH and vi ≥ K2

RG

λ2a + λ1b, if ui ≥ K2
NH and vi < K1

RG,

λ2b + λ1b, if ui ≥ K2
NH and K1

RG ≤ vi < K2
RG

0, if i ≤ K2
NH and j ≥ K2

RG

Figure 8.6 illustrates the overall arrival rates for each CCU, (λ̃1, λ̃2) in each region separated by the
cut-off points.

Figure 8.6: Arrival rate parameters for each CCU in each region

Therefore, the transition matrix Q is obtained for the following transition rates qi,j:
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qi,j =



uiµ1 if (ui, vi)− (uj, vj) = (1, 0),

viµ2 if (ui, vi)− (uj, vj) = (0, 1),

λ1a if (ui, vi)− (uj, vj) = (−1, 0) and ui < K1
NH and vi < K2

RG,

λ1b if (ui, vi)− (uj, vj) = (−1, 0) and

 K1
NH ≤ ui < K2

NH and vi < K2
RG or

ui ≥ K2
NH and vi ≥ K2

RG,

λ2a if (ui, vi)− (uj, vj) = (0,−1) and ui < K2
NH and vi < K1

RG,

λ2b if (ui, vi)− (uj, vj) = (0,−1) and

 ui < K2
NH and K1

RG ≤ vi < K2
RG or

ui ≥ K2
NH and vi ≥ K2

RG,

λ1a + λ2b if (ui, vi)− (uj, vj) = (−1, 0) and ui < K1
NH and vi ≥ K2

RG,

λ1b + λ2b if (ui, vi)− (uj, vj) = (−1, 0) and K1
NH ≤ ui < K2

NH and vi ≥ K2
RG,

λ2a + λ1b if (ui, vi)− (uj, vj) = (0,−1) and ui ≥ K2
NH and vi < K1

RG,

λ2b + λ1b if (ui, vi)− (uj, vj) = (0,−1) and ui ≥ K2
NH and K1

RG ≤ vi < K2
RG,

0 otherwise.

The same set of parameters as in Model 3 are used. Assume a reduction rate of 10% is applied, so
that λ1b = 0.9 × λ1a and λ2b = 0.9 × λ2a. The best responses are obtained; the Nash throughput
and also the optimum throughput is 3.6255 and is at (8, 8, 16, 16), hence the PoA=1. For these
parameters the results are the same as in Model 3, since the CCUs are not transferring patients
due to the choice of the second cut-off point. However, if the target is lowered to 70%, the Nash
equilibrium is at (8, 8, 15, 15), meaning that a proportion of patients will be transferred to NH. The
optimal throughput is 3.6255 and the Nash throughput is 3.6075, resulting in a PoA of 1.005, which
means that 0.5% of patients are rejected.

Furthermore, similarly to Model 3, the PoA will be evaluated for cases where the altered variables
will be as before: target, demand increase and reduction rate.

8.4.1 ‘What if’: Target, Demand and Decrease Rate Change

This section will investigate the effect on the PoA of changing the utilisation target and certain
parameters. The PoA will be calculated for:

• target ∈ [0.1, 1] in 0.1 steps;

• demand increase, d ∈ [0, 2] in 0.1 steps, hence λ̂1a = (1 + d)× λ1a and λ̂2a = (1 + d)× λ2a;

• reduction rate, r ∈ [0.1, 1] in 0.1 steps, hence λ̂1b = (1− r)× λ̂1a and λ̂2b = (1− r)× λ̂2a.

As an illustration, a target of 80% is chosen to illustrate how the PoA is affected by different
demand increase and reduction rates, which is presented in Figure 8.7.
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Figure 8.7: The PoA for a target of 80% for Model 4

Visibly, there are even more gaps than in Model 3; and in fact as the target decreases, the number
of cases for which pure Nash equilibria do not exist increases.

In general, the PoA increases with demand increase. For example, for a reduction rate, r = 0.3 and
demand rate, d, between 0.2 and 0.7, the PoA is investigated, and results are presented in Table 8.4.

Table 8.4: Model 4 results for target of 80% and reduction rate of 0.3

Demand Nash Nash overall Optimal
PoA

increase equilibrium throughput throughput
0.2 (8,8,16,16) 4.07 4.07 1
0.3 (8,8,14,15) 4.12 4.25 1.03
0.4 (7,8,13,15) 4.13 4.39 1.06
0.5 (4,8,14,14) 4.17 4.50 1.08
0.6 (6,8,9,16) 4.15 4.59 1.11
0.7 (5,6,11,12) 4.15 4.67 1.13

For a demand increase of 0.2, no inefficiency is observed; both CCUs never reduce or transfer pa-
tients. As the demand is increased to 0.3, RG starts reducing and transferring patients, resulting in
a PoA of 1.03; hence 3.00% of patients are lost. As the demand increases even further, both cut-off
points for both CCUs decrease, reflecting in an increase of the PoA.
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In general, the PoA decreases with target value. As an illustration, for a reduction rate, r, of 0.9
and target values between 0.2 and 1 the PoA is illustrated in Figure 8.8. For a target value of 0.1
the PoA→∞ mainly, and therefore is excluded from the graph.

Figure 8.8: The PoA for different target values and reduction rate of 0.9 for Model 4

In general, the PoA increases with demand; however, in some cases, for example for a target of
0.2, the PoA slightly decreases as demand increases. The reason is the same as described in Sec-
tion 7.8.2. The Nash equilibria stay the same and since increase of demand, optimal throughput
increases; therefore the PoA decreases.

8.5 Conclusions

To formally investigate the impact of decentralised decision making, where each player has a choice
of two strategy points to pick, queueing network models have been developed. Two models have
been considered; one where total rejections after the transfer cut-off were allowed and the second
where there were not allowed. The inefficiency which occurred has been measured and presented
in a graphical form.

In general, in Model 4, for a lot of cases, especially for low target values, the Nash equilibrium
does not exist. It is due to the amount of feasible strategies; a very similar utilisation rate could
be obtained for a lot of different cut-off pairs, which results in non stationary behaviour from the
players (analogous to the matching pennies game shown in Figure 7.1). As an illustration assume
that NH picked (8, 8) as their strategy for an 80% target, a 0.4 demand increase and a reduction
rate of 0.2, the utilisation rate at RG for various strategies are shown in Figures 8.9a and 8.9b.
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For Model 4 it can be seen that for 11 different strategies, the utilisation rate was between 79%
and 80%, while for Model 3 this was true for only 1 strategy, due to the fact that no rejections
are allowed (ensuring high utilisation rates). To further study this model the restrictions of pure
strategies could be relaxed.

(a) Model 3 (b) Model 4

Figure 8.9: Utilisation rates for NH strategy (8,8), an 80% target, a 0.4 demand increase and a
reduction rate of 0.2

The work presented in the last two chapters has attempted to quantify the effect of selfish behaviour
of CCUs. The main message to the hospital managers would be that their selfish behaviour can
potentially decrease effectiveness of the whole system, resulting in a lower overall performance,
and that they should always consider the effect of their decisions on the whole system. With ever
increasing demand, the inefficiency of the system due to selfish behaviour is expected to increase,
but only up to the point, where the system is simply unable to cope and selfish behaviour does not
have a negative effect. It has been shown that targets can be used by policy makers to ensure low
levels of inefficiency; however, these must be chosen carefully, as they can also have a negative
effect.



Chapter 9

Final Conclusions and Further Work

This chapter summarises some of the interesting and important findings of this thesis. The research
included in this thesis can be divided into three main parts as shown in Figure 1.3. The first part,
which includes the work presented in Chapters 2, 3 and 4, carries out an analysis of data provided
by the University Hospital of Wales in Cardiff (UHW). Both computer simulation and analytical
queueing models were developed and various ‘what if’ scenarios considered. The second part,
which includes the work presented in Chapters 5 and 6, described the work undertaken with man-
agers from the Royal Gwent and the Nevill Hall Hospitals. Data from both CCUs were analysed
and a theoretical queueing model was considered. In the final part of the thesis, which includes the
work presented in Chapters 7 and 8, game theoretical models were presented. Each of the parts
will be now reviewed, the models and results will be briefly discussed, and finally an indication of
future research where appropriate will be given.

9.1 Part I

9.1.1 Summary of Chapters 2, 3 and 4

In that this part appropriate statistical distributions of inter-arrival times and lengths of stay were
determined. Very importantly, it was shown that any analysis should account for different patient
types, namely elective and emergency, since arrival and service patterns are different for both cate-
gory patients.

Two main objectives of this part of the thesis were to suggest measures which could be imple-
mented to increase the throughput and to determine ways in which the degree of variation in bed
occupancy could be reduced. Both simulation modelling and analytical queueing techniques were
utilised to address both objectives.

The simulation model which was built in Visual Basic replicated the bed occupancy levels accu-

204
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rately. The effect of implementing some new policies regarding cancellations and/or increasing
elective surgeries was examined. It was shown that by allowing extra elective admissions (up to 4
per day) when the Unit is running at a relatively low capacity, and not allowing any elective admis-
sions when the bed occupancy exceeded a predetermined cut-off level of 24, the standard deviation
of bed occupancy was reduced by 17.8% and the throughput of patients was increased by 4.8%.

A M2/M2/c/c/FIFO queueing model with random arrivals from two different streams and cor-
responding negative exponential service times depending on patients’ type was developed. The
differential-difference equations to describe the system were set up and solved. The formula for the
probability of having i emergency and j elective patients present in the system at steady state was
obtained.

Further to this, a M2/M/c/c+m/FIFO has been considered with two separate arrival streams of
patients and a combined service rate, where a queue is allowed to form. The differential-difference
equations to describe the system were set up and solved. The formula for the probability that there
are i emergency and j elective patients present with different arrival rates and combined service
rate µ in the system where a queue of size m is allowed was obtained.

A connection between M2/M2/c/c/FIFO and M/M/c/c/FIFO was established. It was shown
that the probability of having n patients in the system, Pn, can be obtained from the probability
of having i emergency and j elective patients present in the system, Pi,j . Using a combinatorial
argument it was shown that Pi,j can be obtained from Pn. More importantly, the probability of
having ji ∈ Z customers of type i in an Mk/Mk/c/c/FIFO queue having an arrival rate λi and a
service rate µi for i ∈ [k] was obtained using similar argument as for the two customer types.

Finally, two expressions were developed, one for the bed occupancy probabilities, with a restriction
on the number of customers allowed in the system, with a cut-off point k, and the second for the
bed occupancy probabilities with a cut-off point and an increase in elective admissions for the bed
occupancy between predetermined levels a and b.

The final chapter of this part of the thesis investigated further applications of mathematical mod-
elling. Since elective demand is very much dependent on the day of the week, time-dependent
aspects of bed probabilities were considered using the developed mathematical models and Euler’s
numerical method for solving differential equations. Information obtained from the mathematical
model of expected levels of bed occupancies might be useful to the Director of the CCU to advise
decision making regarding admission of extra elective patients in the near future. The final section
in this part of the thesis provided information regarding the number of nurses required on each
day of the week using two different approaches, one that optimises an actual expected cost and the
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second that optimises the expected wastage cost, using a classic model from inventory theory: the
Newsboy model. Both approaches, for two different cases where the nurse to patient ratio is 1:1
and where the nurse to patient ratio is variable, recommended the same number of nurses.

The queueing models described have not been developed in the literature and thus are considered
to be original research contributions offered by this thesis. The work from this part of the thesis has
been published in Griffiths et al., 2013 [74].

9.1.2 Limitations and Further Work

The reason for imperfect bed occupancy model could have been caused by long length of stay tails.
Effectively, there exist a third group of arrivals (patients in vegetative state). Arrival rate is small
and difficult to estimate, length of stay in extreme and their length of stay virtually impossible to
estimate. Also, in Section 4.4 assumption was made regarding nurse to patients ratios. In real life
they depend on the number of Level 3, Level 2 and Level 1 patients; however, the date was not
available with this information therefore as a proxy it is assumed that 1 emergency patient require
1 nurse, and 2 elective patients require 1 nurse.

A further possibility would be to investigate the effect of the CCU being able to “ring fence” some
of their beds for elective admissions. Currently, elective patients who require a stay in the CCU af-
ter their surgery, must first be given the green light by the CCU before their surgery can take place.
This ensures that there is adequate provision for them. The possibility of ring fencing beds could
reduce the cancellations of elective patients; however this might increase transfers of emergency
patients to other CCUs.

An extension to the work presented in Section 3.3.4 was considered for the queue
M2/M/c/c+m/FIFO. Recall, a queueing model is considered where a queue of size m is
allowed. Let Pi,j,̃i,j̃ be the probability of having:

• i emergency patients in the service

• j elective patients in the service

• ĩ emergency patients in the queue

• j̃ elective patients in the queue

Therefore i + j = c, ĩ + j̃ = m, I = i + ĩ and J = j + j̃, where I is the number of emergency
patients in the system, and J is the number of elective patients in the system.
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Following the proof in Section 3.3.4,

Pi,j,̃i,j̃|i+j+ĩ+j̃ =
P(i,j,̃i,j̃)∩(i+j+ĩ+j̃)

Pi+j+ĩ+j̃
=

Pi,j,̃i,j̃
Pi+j+ĩ+j̃

Therefore:
Pi,j,̃i,j̃ = Pi,j,̃i,j̃|i+j+ĩ+j̃ × Pi+j+ĩ+j̃

where Pi+j+ĩ+j̃ = Pc+m and the results are known and given in Stewart, 2009 [152]. Pi,j,̃i,j̃|i+j+ĩ+j̃
is the probability of having i emergency and j elective patients in the service, ĩ emergency and j̃
elective patients in the queue given i+ j + ĩ+ j̃ patients in the system. Thus:

Pi,j,̃i,j̃|i+j+ĩ+j̃ =

(
i+ j

i

)
piqj ×

(
ĩ+ j̃

ĩ

)
p̃ĩq̃j̃

where:

p =

λ1
µ1

λ1
µ1

+ λ2
µ2

probability that a server is used by an emergency patient

q =

λ2
µ2

λ1
µ1

+ λ2
µ2

probability that a server is used by an elective patient

p̃ =
λ1

λ1 + λ2
probability that there is an emergency patient in the queue

q̃ =
λ2

λ1 + λ2
probability that there is an elective patient in the queue

The case i+j ≤ c has been already considered, the only interest is now in the case when I + J > c.
Since max(0, c− J) ≤ i ≤ min(c, I),

PI,J |I+J =

min(c,I)∑
i=max(0,c−J)

(
i+ j

i

)
piqj ×

(
I + J − c
I − i

)
p̃I−iq̃J−c+i

The summation proved to be quite complicated, but obtaining a concise formula for this summation
could lead to an elegant proof of the formula for Pi,j,̃i,j̃ .

9.2 Part II

9.2.1 Summary of Chapters 5 and 6

This part of the thesis described the project undertaken with CCU managers from the two hospitals
from the Aneurin Bevan Local Health Board. Initially, data from both CCUs was analysed to de-
termine arrival and service patterns. Recall that the bed capacity in the Royal Gwent was changed
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twice, resulting in a novel consideration of each period separately and then combining them us-
ing the given weights, dependent on the duration of each period. Interesting findings were made
regarding the bed capacity change; it did not influence a change in arrival rate, but increased the
average duration of stay.

Moreover, a state-dependent queueing model was developed, where the admission rates are depen-
dent of the current bed occupancy level. A system with c service channels and cut-off points k1 and
k2 was described by a set of differential-difference equations, which then were solved to get the bed
occupancy probabilities. Since the cut-off points and corresponding arrival rates were impossible
to obtain from the data sets, an optimisation problem was defined to obtain these parameters. The
model provided an accurate representation of the data for both CCUs, and a few ‘what if’ scenarios
were considered. The first considered the transfer of patients between the CCUs, and the second
the transfer of patients along with proportion of beds from one CCU to the other. It has been shown
that sharing resources between both CCUs is beneficial not only for CCUs but also for patients.

The main ‘what if’ scenario was developed as a result of an ongoing plan for the new Specialist
Critical Care Centre (SCCC) to be built. The two CCUs were treated as one with a shared bed
capacity. The model which was fitted to the combined Unit compares favourably with the observed
values, and was used to test changes in Unit size. The main finding was that by increasing the
bed capacity by two, to 25 beds, the combined Unit would run on a relatively high bed utilisation
less than 30% of the time, with a low probability of rejection and a utilisation rate of 72.57%.
Furthermore, the model was used to explore a scenario, which investigated the effect of increasing
the demand or decreasing the average delay to discharge time.

9.2.2 Limitations and Further Work

The data set provided did not contain details about patients referred for critical care who were not
admitted due to all beds being occupied. An unfortunate consequence is that using such arrival data
in a queueing model of CCU does not correspond to the true referral rate.

In Chapter 5 bed blocking was considered: patients are considered to block a bed if they are well
enough to leave the Unit, but for some reason remain, using up a valuable, expensive and limited
resource. The model was then tested to consider changes in the average blocking time. Phase-
type distributions could be examined, as they prove to be very useful when considering blocking,
especially the two-phase Coxian distribution. The first stage is the ‘actual’ length of stay, the second
is the blocking stage. Patients in the first stage are served with rate µ1 and with rate µ2 at the second
stage. Thus, after receiving service at the first phase, the process, with probability α1, continues on
to the second phase, or with probability 1 − α1, the service process is terminated and patients are
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discharged without experiencing any delay. This is shown in Figure 9.1.

Figure 9.1: Two-phase Coxian distribution

9.3 Part III

9.3.1 Summary of Chapters 7 and 8

This part of the thesis was motivated by the fact that there were notable behavioural aspects, which
were shown in Part II, in the running of the CCUs. Part III considered non-cooperative game theo-
retical models of the two CCUs, where both CCUs acted self-interestedly. The impact of the lack
of cooperation was studied using the price of anarchy (PoA).

A review of the literature did not reveal any game theoretical work applied to the CCU environ-
ment; hence this work is considered to be an original research contribution.

Four models were considered. In the first two it was assumed that, if bed occupancy levels exceeded
a pre-determined cut-off, the CCU managers requested transfer to the other CCU, provided there
were available beds and the other CCU was not in ‘transfer’ status. Depending on the model, either
patients were refused admission to a CCU (Model 1), or each CCU was forced to accept its own
patients (Model 2).

Model 3 and 4 investigated a wider strategy space. It was assumed that if CCUs are running on
relatively high bed occupancy levels they declared being in ‘reduction’ status first, where only a
proportion of patients are allowed to be admitted, to later declare being in ‘transfer’ status as the
bed occupancy increases.

The interaction was modelled through a two dimensional Markov chain, which was accordingly
adapted to each model. The queueing network was then inserted within a static non-cooperative
game, where each CCU manager was faced with an optimisation problem. A set of best responses
for each CCU were obtained, to obtain the Nash equilibria in pure strategies. To measure the inef-
ficiency created by the competitive interaction between CCUs, the price of anarchy (PoA) was used.

In Model 1 and 2, the PoA was calculated for a few scenarios where the target, demand and bed
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capacity were altered. It was shown that in a CCU environment with inadequate bed capacity to
provide the service, a high PoA is to be expected. In Model 3 and 4, the PoA was calculated for a
scenario where the target, demand and reduction rate were altered.

An important message for hospital Directors is that in a system with the possibility of interaction,
there is potential for inefficiency to occur due to selfish behaviour. They should always consider
the impact on the whole system before any major decision is made, because as it was shown their
selfish behaviour can indeed decrease effectiveness of the whole system.

9.3.2 Limitations and Further Work

For every model it was assumed that transferred patient obtain length of stay characteristic of the
CCU that the patient is transferred to. A further model could be explored where patients carry
length of stay characteristic from the CCU they were initially admitted to.

In Model 3 and 4, after the first cut-off point, it was assumed that only a proportion of patients
was admitted, with the remaining percentage of patients being refused admission to a CCU. As an
extension, a further two models could be considered, where the proportion of patients turned away
were admitted to the other CCU, which could potentially decrease the PoA.

Another immediate extension to the work provided in Chapter 7 and 8 is to consider mixed Nash
equilibria. It was stated previously that mixed equilibria are inadequate in the modelling of CCUs.
However it would be very interesting to see how the PoA is affected from a theoretical point of view.

As a further extension, similar to the work in Roughgarden, 2005 [144], an analytical upper bound
on the price of anarchy based on system parameters could be obtained.

9.4 Final Remarks

This thesis has considered many aspects of theoretical and practical applications of mathematical
modelling in the CCU setting. The analysis has shown that by developing and applying queueing
theory, improvements can be made in the management and efficiency of the CCUs. Although this
thesis has used information and data from particular CCUs, the modelling described herein is of a
generic nature, and hence could be applied with little amendment in other settings.
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Appendix A

Proof of Theorem 3.3.2

Due to the form of Pi,j various cases are considered. The required algebraic manipulation for each
of the equations in 3.6 is given below:
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(3) For i = 0 and 1 ≤ j ≤ (c− 1):
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Appendix B

Proof of Theorem 3.3.3
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Appendix C

Proof of Theorem 3.3.4
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Pn =
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(5) For (a+ 1) < n ≤ b:

Pn =
(λ1 + λ2
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(6) For n = b+ 1:

Pn =
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(7) For (b+ 2) ≤ n ≤ (k − 1):
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(9) For n = k + 1:

Pn =
λ1Pn−1 + (n+ 1)µPn+1

λ1 + nµ

=

λ1
(n−1)!θ

n−1−b+a−1(θ1 + θ′2)
b−a+1P0 + (n+1)µ

(n+1)!
θk−b+a−1θ1

n+1−k(θ1 + θ′2)
b−a+1P0

λ1 + nµ

=

λ1
(n−1)!

(
λ1+λ2
µ

)k−b+a−1(
λ1+λ2

′

µ

)b−a+1

P0

λ1 + nµ

+

µ
n!

(
λ1+λ2
µ

)k−b+a−1 (
λ1
µ

)n+1−k (
λ1+λ2

′

µ

)b−a+1

P0

λ1 + nµ

=

1
n!

(
λ1+λ2
µ

)k−b+a−1 (
λ1
µ

)n−k(
λ1+λ2

′

µ

)b−a+1

P0

(
nλ1

(
µ
λ1

)
+ µ

(
λ1
µ

))
λ1 + nµ

=
1
n!
θk−b+a−1θ1

n−k(θ1 + θ′2)
b−a+1P0(nµ+ λ1)

λ1 + nµ

=
1

n!
θk−b+a−1θ1

n−k(θ1 + θ′2)
b−a+1

P0 �

(10) For (k + 2) ≤ n ≤ (c− 1):

Pn =
λ1Pn−1 + (n+ 1)µPn+1

λ1 + nµ

=

λ1
(n−1)!θ

k−1−b+aθ1
n−1−k(θ1 + θ′2)

b−a+1P0 + (n+1)µ
(n+1)!

θk−b+a−1θ1
n+1−k(θ1 + θ′2)

b−a+1P0

λ1 + nµ

=

λ1
(n−1)!

(
λ1+λ2
µ

)k−b+a−1(
λ1
µ

)n−1−k(
λ1+λ2

′

µ

)b−a+1

P0

λ1 + nµ

+

µ
n!

(
λ1+λ2
µ

)k−b+a−1 (
λ1
µ

)n+1−k (
λ1+λ2

′

µ

)b−a+1

P0

λ1 + nµ

=

1
n!

(
λ1+λ2
µ

)k−b+a−1 (
λ1
µ

)n−k(
λ1+λ2

′

µ

)b−a+1

P0

(
nλ1

(
µ
λ1

)
+ µ

(
λ1
µ

))
λ1 + nµ

=
1
n!
θk−b+a−1θ1

n−k(θ1 + θ′2)
b−a+1P0(nµ+ λ1)

λ1 + nµ

=
1

n!
θk−b+a−1θ1

n−k(θ1 + θ′2)
b−a+1

P0 �

229



(11) For n = c:
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Appendix D

Proof of Theorem 6.2.1

Due to the form of Pn various cases are considered. The required algebraic manipulation for each
of the equations in 6.1 is given below:

(1) For n = 0:

P0 =
µ

λa
P1

=
µ

λa

(
1

1!
θa

1P0

)
=
µ

λa

(
λa
µ
P0

)
=P0 �

(2) For 1 ≤ n ≤ (k1 − 1):

Pn =
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n+1P0
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=

1
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µ
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n!
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(3) For n = k1:

Pn =
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λb + nµ
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λa

1
(n−1)!θa
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=
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(4) For n = k1 + 1:
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(5) For (k1 + 1) ≤ n ≤ (k2 − 1):
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(6) For n = k2:
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(7) For n = k2 + 1:

Pn =
λcPn−1 + (n+ 1)µPn+1

λc + nµ

=
λc

1
(n−1)!θa
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(8) For (k2 + 1) < n ≤ (c− 1):

Pn =
λcPn−1 + (n+ 1)µPn+1

λc + nµ

=
λc

1
(n−1)!θa

k1θb
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n+1−k2P0

λc + nµ

=
1
n!
θa
k1θb

k2−k1θc
n−k2P0(nµ+ λc)

λc + nµ

=
1

n!
θa
k1θb

k2−k1θc
n−k2P0 �

(9) For n = c:

Pn =
λcPn−1
nµ

=

λc
(n−1)!θa

k1θb
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n−1−k2P0

nµ

=
1

n!
θa
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Appendix E

Gaussian Elimination Algorithm

1. The reduction step:

For i = 1, 2, . . . , (m+ 1)× (n+ 1)− 1 :

aji = −aji
aii

for all j > i

ajk = ajk + ajiaik for all j, k > i

2. The back-substitution step:

xt = 1

For i = t− 1, t− 2, . . . , 1

xi = −

(
n∑

j=i+1

aijxj

)
aii

3. The normalisation step:

norm =

(m+1)×(n+1)∑
j=1

xj

For i = 1, 2, . . . , (m+ 1)× (n+ 1) :

πi =
xi

norm
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