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Summary

This thesis is concerned with the development of numerical methods for
free surface problems. In particular, the die-swell problem is analyzed for
Newtonian and viscoelastic fluids. For several materials comparisons with
experiments are presented. The viscoelastic models explored are the Upper
Convective Maxwell model, single and multi-mode Oldroyd-B and the single

and multi-mode eXtended Pom-Pom models.

The numerical method employed is based on a spectral element method.
The time marching scheme follows a pseudo-transient approach. Discretiza-
tion in time is performed by means of the Operator Integration Factor Split-
ting method of first and second order. The free surface evolves according
to an Adams-Bashforth scheme of order three. Comparison with first and
second order schemes are also presented for the Newtonian case. The vis-
coelastic scheme is uncoupled. The fully discretized constitutive equation
is solved using a Bi-Conjugate Gradient Stabilized method, while the mass
and momentum equations are solved simultaneously by means of the Conju-
gate Gradient method. Preconditioners are used to accelerate the inversion

process.

The die-swell of a Newtonian fluid is investigated. The physical interpre-
tation of the phenomenon for Newtonian fluids is also revisited, with the
goal of reanalyzing findings from the literature and enrich them by means
of specifically addressed numerical simulations. The effect of inertia and
surface tension are considered. Analysis of convergence is performed and

comparison with available results are presented.

Numerical simulations of viscoelastic die-swell are performed for the UCM,
Oldroyd-B and XPP models. The effect of elasticity is analyzed through the
stress fields, normal stress difference, pressure drops and swelling ratios. For
the Oldroyd-B and XPP models, several materials are fully characterized for
quantitative comparisons. For the XPP model, the effect of orientation and

polydispersity on extrusion is discussed.
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Chapter 1

Introduction

In this very first chapter of the thesis we provide a background to the field
of rheology. An historical review of rheology is given in in §1.1; the rapid
developments in numerical methods following the increase in computational
power over the past few decades is then highlighted in §1.2. In the same
section the framework and the aim of the research in this thesis is presented.
In §1.3, a general description of the numerical algorithm and the computer
code developed is summarized. Finally, in §1.5 the content of the thesis is

summarized, addressing the main problems that will be studied.

1.1 A brief history

The word Rheology comes from the Greek ”pe.”, meaning "flows”. While
in philosophy the concept of "everything in a state of flux” is attributed to
Heraclitus, the name Rheology was coined by E. C. Bingham, Professor of
Chemistry at Lafayette College, Pennsylvania. He introduced the concept

of yield stress explained in §2.4; the Bingham plastic is named after him.

The idea was that every substance can either deform elastically or flow
viscously depending on the timescale of the phenomenon. In other words,
everything flows if we wait long enough. Bingham, together with another
Professor of Chemistry at the University of Reading, G. W. Scott-Blair, and

a mathematician from Israel, M. Reiner, were among the founders of the



Society of Rheology in 1929. This had a great impact in the recognition of

Rheology as a distinct branch of fluid mechanics.

It is not surprising that the call for a scientific effort towards the systematic
study of rheology came from chemists, since the explanation for the rheolog-
ical behaviour of fluids like polymer melts or concrete lies in the molecular
structure of the material. The key was (and still is) to understand how,
when following neither Newton’s equation of viscosity nor Hooke’s elastic
law, a certain material would react when a stress is applied. Once again,

this initiated the search for appropriate models.

Despite empirical evidence that led scientists like Maxwell and Lord Kelvin
(see §2.6) to deduce their constitutive relations already in the nineteenth
century, it was not until the second post-war period that a rigid and ax-
iomatic approach to constitutive modelling was proposed. J. G. Oldroyd
[90] made a huge contribution in suggesting several principles to be satisfied
by a constitutive relation, and eventually proposed one himself, the so-called
Oldroyd model (see §2.6). Following Oldroyd, W. Noll [89] provided an al-

ternative and axiomatic framework which is still widely used.

Since the 1950’s several modelling philosophies flourished. They were usu-
ally the outcome of either new challenges posed by new materials or an in-
crease in computational power. For instance, different models arise whether
we analyze a material at a microscopic level (molecular dynamics), or at a
macroscopic level (continuum mechanics); whether we need a description of
the recent past of the flow (differential models) or its whole history (integral
constitutive equations). Entire families of models have been developed, and,
as always happens, there is no best model, but only models that are more
suitable than others for a certain problem. Chapter 2 describes in detail a

few differential macroscopic models.

1.1.1 The High Weissenberg Number Problem (HWNP)

Computational power has dramatically increased over the last three decades.

The task of solving numerically any of the models, and therefore the asso-
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ciated fluid mechanics problems, is the remit of the field of Computational
Rheology. This represents in fact the combined effort of understanding and
investigating the dynamics of non-Newtonian fluids by means of numeri-
cal analysis and computational methods. The monograph of Owens and
Phillips [94] records the evolution of computational rheology, analyzing the
biggest challenges this new branch of computational fluid dynamics poses.
A vast part of the book reviews benchmark problems and how a whole va-
riety of numerical approaches has been more or less successful in simulating
those test flows. A whole chapter of the book is then devoted to what is
seems to be the nightmare of every computational rheologist: the so-called
High Weissenberg Number Problem (HWNP). As soon as enough powerful
computational resources became available to scientists in order to set up a
detailed and constructive development of numerical algorithms, the simu-
lations of Non-Newtonian fluid flows revealed themselves being unable to
investigate flows over a (often frustratingly low) threshold for Wi (or De).
Above a certain value of the Deborah (or Weissenberg) number the algo-

rithms simply did not converge.

A detailed analysis of the HWNP can be found, for instance, in Owens
and Phillips [94]. Here we highlight the main issues related to it.

Twenty five years ago Mendelson et al. [81] first attempted to classify differ-
ent possible ways of how a variable, say Y, in the flow, could vary with De,
and how existence and stability properties could depend on a certain criti-
cal value De..;; . Apart from the ideal situation in which Y is a one-to-one
function of De, a bifurcation De..;; has been hypothesized, in correspon-
dence of which two families of solutions are possible for Y. The authors also
identified a turning point situation, where De,;; is a maximum limit point,
but solutions could still be found going back to lower De. An ”ultimate
limit” configuration, in which the limit De,;; marks the very last chance of
observing a solution whatsoever has been then highlighted by Brown et al.
[18] and Keunings [62].

It is broadly accepted that the reasons behind the HWNP are to be sought

11



in the numerical approximation of viscoelastic problems. Among the several
causes identified as responsible for numerical breakdown above a threshold
value of the Weissenberg number, some do not depend on the particular flow
we are looking at (as it could be for a flow with steep boundary layers or
singularities). First of all, the system of equations governing the flow, in
the most general case, is of mixed hyperbolic/elliptic/parabolic type. This
is itself a problem because some numerical schemes are not appropriate for
mixed systems of PDEs. Moreover the choice of finite dimensional spaces
in which the variables are approximated has to be chosen carefully, other-
wise spurious oscillations could propagate into the flow domain. In fact,
compatibility has to be satisfied between velocity and pressure fields [2, 17]
and between velocity and stress fields [41, 40]. Moreover, finite dimensional
compatible spaces are also required [73]. Last, but not least, although the
constitutive equation does preserve the positive definiteness of the extra
stress tensor (or the conformation tensor) in its continuous version, numer-
ical algorithms often cannot ensure this property is satisfied by the discrete
solution. This observation, together with the fact that polynomial-based al-
gorithms tend to create oscillations when trying to approximate the highly
steep stress profiles often occurring in viscoelastic flows, have been the main
reasons behind the idea of approximating, rather than the conformation ten-
sor itself, its matrix logarithm. Fattal and Kupferman [34] first proposed
this approach in 2004 and a year later supported it with numerical results
tested on the lid driven problem [35]. Later on, together with Hulsen [55],
they applied such a formulation to perform simulations of the flow past a
cylinder using a discrete stress splitting technique together with discontin-

uous Galerkin method.

A lot of effort has been devoted to computational rheology in the last decade,
mainly because most of the problems involving viscoelastic fluids are the-
oretically intractable due to the complexity of the constitutive equations.
Moreover, the availability of accurate predictions, aided more and more by a
huge increase in computational power, has had an enormous influence on the
fields. However, this is not preventing researchers from carrying on investi-

gating different fluids and proposing more and more accurate mathematical
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representations of their chemical and physical properties, as described in
§2.7.4.

1.2 Framework of this research and aim of the the-
Sis

The numerical simulation of viscoelastic flows is of primary interest because
of they pervade our everyday lives. Non-Newtonian models have been de-
veloped to help us achieve a more realistic understanding of the physics of
most liquids whose structure cannot be approximated at all by Newton’s
law of viscosity. To give a generic flavour of the world spinning around com-
putational rheologists we describe some of the benchmark problems Owens
and Phillips [94] presented in their monograph. We will not present many
details at this stage, because these phenomena are not the particular subject
of the present work. The interested reader will find a deep analysis and an

exhaustive list of references in [94] to gain further insight into the problems.

Vortex region

Fully developed
Poiseuille flow

Di

Vortex region

Figure 1.1: Flow through an abrupt contraction.

The first is the abrupt contraction flow. A fluid flows in a channel whose
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width suddenly decreases. This is a very common geometry that is used
in industry to extrude polymers. It is also present in various rheometric
devices, e.g. the capillary rheometer. The most commonly used contraction
ratios are 4 : 1 and 8 : 1. This problem involves a whole range of flow
types: due to the pressure drop across the contraction, along the centreline
a highly extensional region appears. On the other hand, a shear flow pre-
vails at the walls. Finally, vortices arise in the corners. The response of an
elastic fluid to these phenomena is anything but trivial. Investigating the
response of a fluid to changes in flow rate and geometry generates a gold
mine of information about the nature of the liquid. For example, the vortex
activity increases with both contraction ratio and flow rate, and is reduced
by rounding the re-entrant corner. Obviously, changes to the fluid char-
acteristics have a great impact on the process. Increasing elasticity leads
to a higher extensional response along the centreline, and might lead to a

breakdown of the symmetry of the flow.

wall
) H
Poiseuille inflow
—
N —
wall

Figure 1.2: Flow past a cylinder in a confined channel.
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The absence of geometrical singularities links the other three problems.
The attention to the problem of flow past a cylinder arose principally to
better understand the behavior of probes or sensors in an elastic fluid. Once
again every sort of flow type is encountered: strong shear flow in the gap
between the walls and the cylinder; highly extensional flow along the cylin-
der axis upstream and in the wake of the cylinder; formation of cavities
behind the obstacle. Changes in elasticity and flow conditions once again
are reflected through the drag coefficients, the streamline patterns, even-
tual breakdown of symmetry , length of the wake and so on. In particular,
simulations with different models highlight the several configurations poly-
mer chains can attain in different regions of the flow due to the different
mechanisms different models are able to describe. Accurate computations
of the stress boundary layers in the gaps between the cylinder and the walls

remains a difficult problem.

The aforementioned boundary layers are concentrated along streamlines
downstream of flow stagnation points. As far as polymer solutions are con-
cerned, the effect of the concentration of the diluted particles on the flow
downstream of a stagnation point has been studied by Harlen et al. [47].
They observed a sequence of birefringence structures which appear for val-
ues of the polymeric concentration above a certain threshold. In the case
of a Finitely Extensible Non-Linear Elastic (FENE) model, they calculated
the modification of the flow due to the transition from solid birefringent
streamlines to pipe streamlines. They also determined the thickness of the
birefringent strands as a function of the polymer concentration. Their cal-

culations are in qualitative agreement with the experiments.

A similar problem is flow past a sphere, which is actually represented by
a sphere falling in a tube filled with a liquid. Settling of suspensions and
rheometry are two major applications. One of most fascinating features of
this flow is the formation of so-called megative wakes. The vortex activity
taking place in the wake of the falling sphere quickly decays to zero for New-
tonian fluids; reversal flow, often several radii downstream, might instead be

observed in the viscoelastic case. Different explanations have been proposed
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N

wall wall

Falling sphere

[

Figure 1.3: Sphere falling in a liquid.

for the formation of negative wakes. A few people thought the mechanism is
due to the geometry of the flow, while the majority agree that both elasticity
and shear-thinning are necessary for the presence of negative wakes. Again
we refer to [94] and references therein for further details.

The last benchmark problem comes from automotive industry, and aims
to assess the performance of lubricants over a range of engine operating con-
ditions. The flow between eccentrically rotating cylinders, also known as the
journal bearing problem, became important in computational rheology when
it was thought that the introduction of elasticity in lubricating oils could
have a beneficial effect on the load-bearing characteristics of the bearing.
Results from Li et al. [67] showed that, especially when the eccentricity ra-
tios are large (i.e., when the journal is really close to the bearing), elasticity
tends to increase the minimum oil film thickness (MOFT), producing a sort
of safety cushion. Moreover, due to the large negative pressures produced

in the journal bearing, the lubricant oil vaporizes, leading to cavitation.
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0,

Figure 1.4: Flow between eccentrically rotating cylinders. The different

angular velocities of the journal and the bearing are ¢y and ¢p respectively.

Another problem which is considered a benchmark problem by some is the
so-called stick-slip problem. A fluid flows in channel in which, at a certain
position, the no-slip boundary condition is removed. Therefore the particles,
from sticking to the wall start slipping. The velocity profile then changes
from parabolic to becoming flat, a plug flow. Even if this thesis is not di-
rectly related to any benchmark problem, the die-swell problem shares with
the stick-slip problem the sudden removal of the no-slip condition at the
exit. In the die-swell case the wall is also removed. In §4.2 a few remarks on
the stick-slip problem will be made, particularly related to the occurrence

of the singular point which marks the change in the boundary condition.

The present work investigates free surface flows of Newtonian and non-
Newtonian fluids. Free surface flows are encountered in every type of in-
dustrial application. Bubble dynamics in foams, droplet deformation in gas

dynamics, lubrication, injection moulding, surface wetting and coating, me-
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teorology and many others. Moreover, free surface flows are at the core of
two of the most commonly used procedures in rheometry: filament stretch-
ing, performed by means of the extensional rheometer, and extrusion, where

a capillary rheometer is used in most cases. We give here a review of the

most significant issues regarding the filament stretching problem. Roughly

[

Initial configuration

Plates pulled
apart at a constant

rate

Fluid
Plates sample %

Buiyoless pini4

l

Figure 1.5: A sample of fluid is stretched.

speaking, the extensional rheometer is an instrument in which two plates
which have a sample of fluid between them are pulled apart. This happens
quite often in industrial polymer processing as well as in rheometry. In
the latter case, the main goal is to reproduce a flow which is almost ide-
ally extensional. Some extensional rheometers keep the bottom plate fixed
while pulling only the top one. Others proceed with both symmetrically.
The whole process is clearly started by velocity fields applied to the plates.
Usually the plates are pulled apart at an exponential rate, and their motion

obeys evolution equations of the following type:

L(t) = Lo exp(%ét) V() = %éL(t). (1.1)

Looking at Fig. 1.5 it is obvious that the second equation in (1.1) provides
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the only Dirichlet boundary conditions the problem requires. The rest of
the boundary is free . On the fluid boundary, force balance free surface
conditions will be applied. In the interior of the domain the field equations
i.e. the mass and momentum conservation laws will hold, together with the

choice of constitutive equation.

In Fig. 1.6 the filament has been stretched over a certain period of time
t. On the basis of the new positions of the plates, namely the length of
the filament L(t), a strain rate é can be determined using equations (1.1).
The relevant quantity, called the Hencky strain, can then be calculated as
function of the new position L(t):

e=1In %z) = ét. (1.2)
The first equality in (1.2) is actually the definition of the Hencky strain. It is
also called natural strain, and it comes from integrating small increments of
strain, say d0l, over the total length. The larger the Hencky strain, the larger
is the stretch that the fluid undergoes. A key point to underline regarding

| Configuration at time t |

TV(t)
‘ Initial configuration (t=tg) ‘

y \

Free
surface
O L(t)

/

Lo

iva)

Figure 1.6: The evolution of the flow at time ¢.
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this approach is that what happens in theory is that, if measurements are
based only on the position of the plates, the whole column of fluid seems to
experience the same strain rate, which would clearly be é. Unfortunately,
this is not what really happens. Different regions of the filament undergo

different strain rates, so the flow is not homogeneous.

The approach described above is mostly used in industrial simulations. The
reason is that in these tests the fluid dynamics is more relevant than the
rheological properties of the fluid. On the other hand, if the ideal uniax-

ial extensional flow needs to be reproduced, a little bit more care is required.

The main purpose of an ideal uniaxial extensional flow is the measurement
of the transient Trouton ratio. It is defined as the ratio of the extensional

and zero shear viscosity:

+ .
t
T — w (1.3)
Tshear
For Newtonian fluids its value is always three, due to the nature of New-

ton’s law of viscosity. For viscoelastic fluids it might be orders of magnitude
larger. In other words, this is a non-dimensional measure of the extensional
viscosity as a function of the strain rate and time. When the measurement
of this material function is of primary importance, then it has to be recalled
that the filament stretching flow, as described above, is not ideal. In fact, the
filament stretching rheometer suffers from an intrinsic problem. The ideal
uniaxial extensional flow is achieved when the configuration is shear-free.
This means that a perfectly elongated filament should look like a cylinder.
When the plates are pulled apart, the initial cylinder obviously loses its con-
figuration because of incompressibility and no-slip on the plates. Therefore,
necking effects caused by shear flows show up near the plates. On the one
hand enough strain rate is required to avoid these influencing the flow in the
middle of the filament: on the other hand, larger strain rates mean longer
filaments, which in turn means a smaller radius. In other words, the price to
pay to obtain an almost ideally extensional flow in the middle of the filament

is stronger and steeper necking effects near the plates.
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Over the last fifteen years a substantial effort has been expended study-
ing the extensional rheology of different fluids. The research group at the
University of Wales, Swansea [22, 77, 116, 137], has focused on the prediction
of filament stretching by means of their hybrid finite element /finite volume

code, to test and compare different numerical techniques.

An extensive experimental research programme has been carried out in the
past decade by a group in the Danish Polymer Centre based in Lyngby.
They performed [4, 87, 88, 100] a number of experiments to investigate the
extensional response of different types of polymers. Moreover they ana-
lyzed [48, 101, 5] different mechanisms for the growth of three dimensional
instabilities in both experiments and simulations by distributing equally a
number of perturbations on the circular rim on the bottom plate. Then they

recorded pictures of the development of the instabilities.

Yao, Spiegelberg, McKinley and other collaborators [114, 115, 139, 140,
141] at Harvard and the M.L.T. focused on the dynamics of weakly strain-
hardening fluids in stretching experiments. They also analyzed and reported
failure and decohesion of the fluid sample from the plates under severe strain
conditions. On the other hand, they paid particular attention to the influ-

ence of shear flow in the vicinity of the solid/liquid interface.

Another important centre of research on extensional rheology is Monash
University, Australia, where in 1993 Tirtaatmadja and Sridhar [122] first
proposed a type of extensional rheometer which has been widely used ever
since. Research moved forward and focused on the investigation of the exten-
sional properties of different constitutive models [123, 11]. Not surprisingly

joint efforts from some of these groups also appeared [78, 11].

In this thesis, we focus our attention on the second phenomenon we men-
tioned, and which represents at the same time a challenging physical prob-
lem and a flow of industrial relevance: die swell of Newtonian fluids and

extrusion of polymer solutions and melts.
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1.2.1 The swelling phenomenon

Extrusion is a process which takes place every time a fluid is pushed through
a die of a certain length. When the fluid leaves the tube it is said to be ex-
truded. This process is performed daily in factories to extract food dough,
concrete, polymer liquids. It also happens at much smaller scales in ink jet
printers. Accurate numerical predictions of this type of flow aids engineers
in optimizing both flow characteristics and design of extrusion devices. This
obviously results in enhanced performances as well as massive savings in
time and expense. Extrusion is also performed to collect data and analyze
material functions and rheometric characteristics of various non-Newtonian

fluids. The capillary rheometer is the most commonly used device.

This phenomenon is also referred to as die-swell. The reason is that the
fluid expands when leaving the die. The measurement of this expansion,
together with the tracking of the fluid surface, is of the utmost importance.
The pressure drop is another quantity which is usually measured to better
understand the physics of the flow. The investigation of these quantities,
and their response to changes in geometrical and physical flow conditions
and fluid characteristics are the ultimate aim of every simulation. This is

exactly what is pursued in the present work.

Swelling takes place in every type of fluid. It is much more evident and
significant in viscoelastic fluids, with peaks of well above 200%. On the
other hand Newtonian fluids experience swelling in the range 13% — 19%.
Middleman and Gavis [84] first provided experimental evidence of swelling
of a Newtonian fluid in the 1960’s. They eventually found that a Newtonian
fluid can also contract if the flow rate is sufficiently high. Since then the
Newtonian case has been mostly used to test numerical schemes and used
as a stepping stone to investigate the corresponding viscoelastic problem.
For example, this was the approach of Batchelor et al. [7] and Nickell at al.
[86] , who developed a finite element based code. Also Chang et al. [23] and
Omodei [91, 92] pursued a similar approach, although the latter produced
a remarkable number of simulations for many different flow conditions. Ho
and Patera [50] tested their spectral element code while Horsfall [53] used
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a finite difference approach. At the end of the day it turns out that the
Newtonian die swell is not fully understood. The first half of Chapter 5 ad-
dresses this problem. A novel physical interpretation is proposed, supported

by a complete set of numerical predictions.

The situation is slightly different for the viscoelastic case. The industrial
importance of the problem energised the search for theoretical and numeri-
cal predictions. Almost forty years ago, Tanner [117] proposed a theoretical
approach to the problem. The author revisited the theory recently and
modified it to deal with different types of fluids [118, 120]. Together with
Crochet and Keunings [28, 29], he was the pioneer of numerical studies on
extrusion. On top of this, numerical and experimental work has been carried
out over the last three decades. Liang [68, 69, 70, 71] analyzed experimental
data of different types, tests several fitting equations, with the outcome of
providing a remarkable set of informations and sources. Dangtungee and
his collaborators [31, 30] do similarly, while Tomé and coauthors [124, 125]
focused in the last years on extrusion as a benchmark free-surface problem
for their marker-and-cell (MAC) code.

The second part of Chapter 5 is devoted entirely to the numerical simulation
of extrusion of polymeric liquids. Different flow conditions are analyzed and
different models are used. The Oldroyd-B [90] and the Upper Convected
Maxwell fluids model polymer solutions. The eXtended Pom Pom model
from Verbeeten et al. [132] is considered when investigating polymer melts.
Whenever possible, numerical results are compared with predictions avail-

able in the literature and from experiments.

1.3 General description of the numerical code de-
veloped

The code developed to perform our simulations is written using Fortran

language. Parts of the code, mainly involving iterative solvers and precon-

ditioners, were developed by Xavier Escriva, Marc Gerritsma and Roel Van

Os in Aberystwyth. A whole new scetion has been developed and imple-
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mented to deal with free surface problems.

All the simulations were run either on the Condor network using a Visual
Fortran compiler or on the Merlin servers at the Centre for Advanced Re-

search in Computing at Cardiff (ARCCA) using an Intel Fortran compiler.

1.4 Notation used in the thesis

In this thesis, plain characters are used for scalar variables, arrows denote
vectors (e.g. F) and bold characters denote tensors (e.g. T). The only
operations specified by symbols are the scalar product - (between vectors),
the tensor product ® and the dyadic product :(between tensors). When no
symbol is used, it is assumed that the standard product between two object
of the same type is used. For example, multiplication between scalar or row-
by-column multiplication between second order tensors. All the remaining

symbols and notations used are specifically defined.

1.5 Contents of the thesis

This work is organized as follows. In Chapter 2 the continuum mechanics
background is provided. The mathematical description of fluids in terms
of the conservation laws is presented, together with physical explanations
of the main variables involved. A review of models then follows, from the
Navier-Stokes equations to more sophisticated models for polymer melts
including mechanisms such as constraint release and chain stretch. The nu-
merical methods we employ is the subject of Chapter 3. The spatial and
temporal discretization of the problem is explained in depth, together with
the description of the preconditioning and upwinding techniques utilized.
Compatibility and stability issues are addressed and the numerical algo-
rithm is described, with particular attention to the treatment of the free
surface. Chapter 4 is devoted to the Newtonian die swell problem. A novel
physical interpretation of the purely viscous phenomenon is proposed and
supported by numerical simulations. Numerical simulations of the extrusion

of polymer solutions and melts are presented in Chapter 5. Comparison with
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theory and other numerical results are reported. A possible interpretation of
the non-dimensional parameters related to chemical structure of the fluid is
investigated. A quantitative approach is finally attempted in Chapter 6. A
few materials are characterized and quantitative comparisons are performed.
A discussion on the relationship between the fitted dimensional parameters
and the chemical structure of the materials is presented, often interfacing

with the previous chapter. Finally, conclusions are drawn in Chapter 7.
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Chapter 2

Modelling Continuum

Mechanics

This chapter is devoted to the description and analysis of different models
used to represent continuous media. A first definition and classification of
fluids will be given in the introduction. In §2.2 some theoretical fundamen-
tals will be described, on which most of the physics described in the models

rely.

Different constitutive equations leading to different models will be then pre-
sented. Section §2.3 deals with the Newtonian constitutive law, and the
corresponding Navier-Stokes equations. Non-Newtonian fluids will be char-
acterized in Section §2.4, and particular care will be given to viscoelastic
fluids, which will be analyzed in Sections §2.6 and §2.7.

2.1 Introduction

In this thesis the approach adopted for modelling fluids is macroscopic. This
means that the portion of fluid we will be analyzing will always be large
enough for the distance between different molecules to be neglected. Another
way of putting this is calling the medium a continuum, so the first thing we
briefly turn our attention to in this chapter is the word continuum. The

definition of a continuum material depends on the mathematical property
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of continuity of its density; precisely, if we call V' a small volume of the
material corresponding to a certain region S, and m its mass, then the

density of that material in the region S will clearly be

p= v
Mathematical continuity of this quantity will simply mean that if we squeeze
the volume to an infinitely small value V,, then the following limit has to

exist:

lim p.
V-oVe P

To be fair, this would mean that our medium is a continuum with respect to
the density. For our purposes we will assume that our media are continua
with respect to all the quantities involved in our problem; we will not really
take into account temperature because all the phenomena analyzed will
be isothermal. This is also the reason why, among the conservation laws
described in the next section, the principle of conservation of energy will
not be mentioned.

Any continuous medium can be subject to two different types of forces:
body and surface forces. Body forces are usually effects of external causes
acting from a certain distance, such as gravity, or magnetic fields. Surface
forces act instead on any surface defined within the fluid. If we think of a
point A and a small surface S surrounding it, then we define the average
stress to be the ratio between the surface force F' acting on S and the surface
itself:

T =

Wl

Since the surface S has two sides, one will be uniquely determined by its
outward normal 7i; then the component of the stress aligned with 7 is called
the normal stress, while the component lying in the tangential direction is
named the shear stress. We can now state the definition of a viscous fluid;
we remark that such a definition does not apply to viscoelastic fluids, and

will be the starting point of our primary classification.
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fluid sample

Figure 2.1: Shear stress experiment.

A fluid is a continuous medium which cannot support any shear

stress while at rest.

This definition can be better understood with reference to Fig. 2.1. In the
figure there is a sample of a material at rest, between two parallel plates.
If F is a generic stress applied to the top plate, then the material is a
fluid if the plate moves in the same direction as the stress, no matter how

small the stress applied is. In other words, a fluid cannot support any stress.

Immediately, and fairly intuitively, we wonder how the stress applied re-
lates to the velocity of the plate. The stress is proportional to the plate
velocity V', and inversely proportional to the distance between the plates h

through a constant called dynamic viscosity, i.e.

v
T=ps (2.1)

Since the shear stress is a surface force, equation (2.1) applies also to

two different but very close layers of fluid moving at a different speed; if dy
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is the distance between them, and du is the gradient of velocity, then (2.1)

becomes
du
= u—-. 2.2
" (2.2)
In general, for a multi-dimensional flow, (2.2) is replaced by
T = u(Vii + Vi), (2.3)

A detailed description of the stress tensor, its properties and its relation to

the deformation tensor will be given in §2.2 and §2.2.2.

Equation (2.3) is called Newton’s law of viscosity, and fluids obeying this
law are therefore called Newtonian. On the other hand (2.3) is a mathe-
matical statement, and no one can be sure that it holds for all the fluids on
earth. The first distinction comes out then: Non-Newtonian fluids are fluids
to which (2.3) does not apply. This class of fluids is by far the broadest
in nature; in fact, in §2.4 it is explained why no fluid is really Newtonian.
On the other hand, for example, air, water and petroleum, the three most
abundant fluids, agree really well with (2.3), and therefore are considered to

be Newtonian from a physical point of view.

Viscoelastic fluids are a particular case of Non-Newtonian fluids. Their
feature is to experience partial elastic recovery a certain amount of time
after the stress has been removed. They are called sometimes fluids with

memory, as if they could remember to recover.

Generally Non-Newtonian fluids are all those for which the viscosity pu is not

constant but is a function of the rate of deformation tensor d = %(V?’H—VQT).

Mathematical fundamentals, properties and models are described in the rest

of the chapter.
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2.2 Fundamentals

In this section, the equations governing the balance between different forces
acting on a fluid are derived. The description of the stress is given, and the
momentum equations will be deduced from investigating a small volume of
fluid of cubic shape; the concept of stress in a point will be then pointed
out through the analysis of an elementary tetrahedron of matter. This will
help in defining the concept of stress as a tensor, which is crucial to under-
standing the meaning of constitutive equations. Together with the analysis
of deformation and the application of conservation laws, the fields equations

will be finally derived.

We remark again that in the constitutive equation lies the physical dif-
ference between Newtonian, Non-Newtonian and viscoelastic fluids. This

will be explained and analyzed in Sections §2.3-§2.7.

2.2.1 The elementary cube

The basis of the momentum equations is Newton’s second law:

mi =G + 8, (2.4)

where G and § represent the body and surface forces respectively.

In Fig. 2.2 an infinitely small cube of fluid is highlighted in a Cartesian
frame of reference, and T:,; is the stress acting on the surface perpendicular
to normal Z, namely the x direction. By the definition of stress as force per
unit area, the force in the z direction on that surface can be expressed in

terms of the Cartesian components of T, as follows:

Fo(z 4 Az) = (iTyy + Ty + ETy,) AyAz. (2.5)

Repeating the same analysis for all the sides, we have the resultant surface

force acting on the whole cube, whose z-component is
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dx

Figure 2.2: Elementary cube of fluid.

(T + Az) —Tpp(z) | Tye(y + Ay) — Tya(y)
Sz = ( Ax + Ay + (26)
Ty(z+ Az) — Typ(2)
AzAyAz. 2.
+ — JAsayAz (27)
This force wis added to the body force
Gy = gzpArAyAz (2.8)

to balance the rate of change of momentum in the system expressed by

mag = azpArAyAz. (2.9)

Now squeezing the cube to a point, namely taking the limit as the length of
the sides approach zero, we can finally express the balance in the momentum
equation:

pai = pgi + &Zza (2.10)
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Figure 2.3: Elementary fluid tetrahedron.

in which the range and summation conventions are used and z; =z, 9 =y

and z3 = z.

2.2.2 The stress tensor

We now turn our attention on how to derive the stress on a generic plane
provided the components T;; are known on the other three sides of the
tetrahedron (see fig. 2.3). We keep the index convention, so fz, the stress
acting on the plane orthogonal do the y-direction is known, as well as T
and f3. If A, is the area of the plane P, on which fn is acting, then the

force acting on the system is

—Ti(m A1) — Ta(naAs) — Ts(nsAs) + Tn Ay + pV 3, (2.11)

where 77 = (n1,n9,n3) is the normal to P,. If we now apply Newton’s second

law and divide by A, with 4~ = h, /3, we obtain

b7 . . . -
w =T, —Tin1 —Tong — T3ns.
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As h,, approaches zero we finally obtain the following compact relation, in

which the index notation is used again:

T,j = Tijni. (2.12)

Equation (2.12) expresses the stress vector T acting on the generic plane
P, by mean of the components T;; of the stress vectors acting on the planes
orthogonal to the Cartesian frame of reference. The 3 x 3 matrix Tj; is called

the stress tensor.

If we return to Fig. 2.3, we see that the stress acting on P, has not been
chosen to align with the normal 77 to give a generic description; but we can
clearly rotate our frame of reference in such a way for this to happen. Of
course, our directions will not be the original x1, xo and z3, but we will have
new directions, always orthogonal, called principal directions of the stress

tensor. From an algebraic point of view this means that

T, = A\,
or, in terms of the stress tensor,
(Th1 = A) Ty T3
det Ty (T22 - )\) T23 =0. (213)
T5 Ty (T35 — A)

Once the three eigenvalues A1, Ao, A3 are found, then the corresponding
principal directions can be derived, and in this new frame of reference the
stress tensor will clearly be diagonal with entries exactly A1, Ag, A3, namely
the principal stresses. From an algebraic point of view, finding the principal
stresses is a problem of diagonalizing the stress tensor by similitude with

principal directions as eigenvectors.

According to the definition of a fluid, we note that a fluid at rest is a case
in which all the directions are principals, because no shear stress, namely,
no extra-diagonal terms are allowed in the stress tensor. This being true

in all frames of reference, we can deduce that for a fluid at rest the normal
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stress components have the same value, which is negative and it is called

the pressure. Another way to express this concept is Pascal’s law:

In a fluid at rest, the pressure part of the stress tensor at a point

18 the same in all directions.

More details on fluid statics can be found, for example, in Chapter 3 of
the book by Pnueli and Gutfinger [99].

2.2.3 The conservation law and the fields equations

The description of a fluid in motion is clearly more difficult than the descrip-
tion of a rigid body, because within the domain we are trying to analyze a
fluid that can have completely different characteristics at different points.
The key concept to tackle this issue is the idea of investigating a problem
of fluid dynamics following the system; the mathematical theorem which

expresses this idea is the Reynolds transport theorem.

Anyone interested in describing phenomena involving a thermodynamic sys-
tem needs to know what is happening in that system at different times;
mathematically this is translated into the knowledge of the rate of change
of the relevant quantities with time. We express a quantity, say B, inside a

volume V' as the integral of its value per unit mass, say b

B= /V (pb) dV. (2.14)

The rate of change of B would simply be %—? in a rigid body, namely the rate
of change of B in the volume V. However, when we are dealing with fluids
we are following the system, and so we have also to take into account the
flux of B from the volume V', which is caused by the fact that fluid particles
are moving at a certain speed #. These two features are elegantly merged
by the concept of material derivative, D%, defined as

— (o) = —(o) + 4 - V(o) (2.15)
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By means of (2.15), the rate of change of a quantity is then calculated

using the Reynolds transport theorem:

D [ 9(pd) / Lo
D1 V(pb) dV—/V 5 dv + S,Obu 7 dS. (2.16)

The two quantities whose rate of change with time we are interested in are

mass and momentum, and the application of Reynolds transport theorem

will give us the two conservations laws we need.

Conservation of mass simply requires b to be replaced by 1 in equation
(2.16), since the mass per unit mass is clearly one; and since mass can
neither be created nor destroyed, then we state the conservation law of

mass:

%/‘/pdV—i-/Spﬁ-ﬁdS:O. (2.17)

On the other side, momentum can be added or removed to the system,
but always according to Newton’s second law; this means that, expressing
the rate of change of the momentum by Reynolds transport theorem, and
balancing it with the resultant of body and surface forces, we can state the

conservation law of linear momentum:

g/pﬁdV+/p17(ﬁ-ﬁ) dsz/pgdv+/fds. (2.18)
ot Jy s v s

The two conservation laws above are integral laws, namely global laws, and
despite their invaluable meaning, quite often are of no use if pointwise in-

formation are required. Thus field equations are introduced.

The concept of field comes from the idea of ”sitting” on a point with coordi-
nates (x1,x9,x3) and seeing what happens there at all times. The relevant
quantities then become dependent variables, while spatial and temporal co-
ordinates are independent. A flow field will then have been completely
described once the relevant fields, say velocity, pressure and stress of the
fluid, are known at each point at all times. The field equations are derived
from the two conservation laws (2.17)-(2.18) by applying the divergence the-

orem to the surface integrals, and removing the integral since the laws will
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hold for any arbitrary control volume dV'.

The conservation law of mass will then become the continuity equation:

dp

(o) = 0. 2.19
LV (ol (219)
We will deal with incompressible flow, namely with constant density. Equa-

tion (2.19) will then simply become

V-i=0. (2.20)

Moreover the conservation law of momentum will translate into the field

equation of momentum

oi | .
p(g + (@ V)u) —pj+ V-0 (2.21)
or
(M (@-V)d@) = —Vp+pj+ V- T (2.22)
1Y E"ﬁ‘ U U] =—Vp—+pg—+ . .

In Eq. (2.22) the stress tensor has been split into pressure terms, and the
so called eztra-stress (or deviatoric) tensor T, namely, & = —pI + T where
I= (5z‘j)i,j:1,...,3 . The unknowns of our problem are now clear: the pressure,
which is a scalar, the velocity of the fluid, which is a vector, and the extra-
stress tensor. We only have the two field equations so far, so to close the
system a third relation is required. This is the constitutive equation,
which relates the extra-stress tensor to the rate of strain tensor, namely,
to the gradient of the velocity. This is the equation which actually contains
information about the nature of the matter we are studying, and it will be

the subject of the rest of the chapter.

2.3 Newtonian fluids

A fluid has been defined as a continuum which cannot support a shear
stress while at rest; this has to be true with respect to all the coordinates
systems. A change of coordinate system can always be performed by means

of shifting and angle-preserving rotations, this type of motion being exactly
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rigid-body-like motion. This means that a bulk of fluid undergoing such
type of motion, which is nothing more that a change of coordinates, will
keep zero shear stress. For a fluid to exhibit shear stress a deformation (or
strain) is needed. If @ is again the velocity of the fluid particles, we define

the rate of strain tensor by

d= %(Vﬁ + (V). (2.23)

A brief analysis of deformation is provided for example by Pnueli and Gutfin-
ger in [99] (chapter.5) while for a detailed description of the fundamental

elastic properties of a continuum we refer to the monograph of Gould [44].

We are now in the position to extend the one-dimensional equation (2.2)
to its three-dimensional generalised version; this is the first constitutive

equation we find, and it defines a Newtonian fluid:

T = 2ud. (2.24)

In this constitutive relation the extra-stress tensor depends linearly on the

rate of strain tensor.

2.3.1 The Navier-Stokes equations and the Reynolds number

We now combine the constitutive equation (2.24) with the field equation
of momentum (2.22) to remove the stress from the problem. The outcome
is one of the most famous equations in physics, which is named after the
French scientist and engineer Claude-Louis Navier and the Irish physicist

and mathematician George Gabriel Stokes:

o . R
p(% ¥ (i - v)u) = —Vp+ pj + plNi. (2.25)

In the literature this is very often coupled with the continuity equation
(2.20), and, due to their tensorial nature, the Navier-Stokes equations are

interpreted as a system of nonlinear PDEs.

In the rest of the thesis we make a wide use of the dimensionless equations,

particularly when numerical simulations are required to provide qualitative
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results. Hence, when needed, we will describe the non-dimensionalization
process and the dimensionless quantities involved. For the Navier-Stokes
equation, if U is a characteristic velocity and L is a characteristic length

scale, then we define the Reynolds number as

_ pUL
o
Two different non-dimensionalization processes lead to two particular equa-

Re (2.26)

tions in fluid mechanics. On the one hand, non-dimensionalizing Eq. (2.21,

without splitting the total stress o, leads to

Re(% + (@ V)ﬂ) ~V.o. (2.27)

If, in Eq. (2.27), Re — 0, the corresponding equation models the so-called

creeping flows, which are considered insertialess.

On the other hand, if Eq. (2.25) is made non-dimensional, the following
equation is retrieved:

ou I 1, .
<E + (@ - V)u) = ~Vp+ - (2.28)

In this case, if Re — oo, we have the inviscid Euler equation.

A third possibility is the existence of a critical value for the Reynolds num-
ber which marks the boundary between laminar and turbulent flows. The
investigation of these particular cases are outside the scope of this thesis.
The literature on these topics is very broad; detailed analysis of creeping
flows can be found for instance in Pnueli and Gutfinger [99] (chapter 9) as
well as in the classic book by Landau and Lifshitz [64] (chapter 2). We
refer to the same monographs regarding flows at high Re; precisely they are
described and investigated in [99] (chapter 10 and 11) and [64] (chapter 2).
Finally, the reader interested in turbulence will find once again the same
books useful: [99] (chapter 12) and [64] (chapter 3).

We conclude this by section mentioning that, although there are quite a

few problems for which an exact solution has been found (see for example
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Figure 2.4: Shear viscosity versus shear rate.

[99] (chapters 5,6), and [64] (chapter 2), a complete analytical solution of
the three dimensional Navier-Stokes equations is one of the seven millennium

problems and beyond the scope of this thesis!

2.4 Non-Newtonian fluids

Fluids not obeying the constitutive equation (2.24) are called non-Newtonian.
Among these there are fluids exhibiting elastic properties, like stretching or
elastic recovery; these will be investigated in Sections §2.6-§2.7.

The aim of the present section is to describe different types of fluids
exhibiting nonlinear viscous effects. This could be expressed by a generalized

constitutive equation in which the viscosity is a function of the rate of strain:

T =2u(d)d. (2.29)

Since equation (2.29) is a relation between the two tensors T and d, then to
preserve the rank of the equation, p(d) has to be a scalar, namely a tensor

of rank zero; but this is possible only if x(d) is function of the invariants of
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Figure 2.5: Shear stress versus shear rate.
d
L = tr(d) (2.30)
I, = d:d (2.31)
Is = detd. (2.32)

For incompressible fluids I; = 0, so the viscosity would be a function of
I, and I3. But we also note that for shear flows, or two-dimensional flows
in general, I3 also vanishes. This gives an explanation as to why generalized
non-Newtonian fluids of this type are suitable for simple shear flows only.

In this case the constitutive equation becomes

T =2u(|d])d, (2.33)

where | d |= d : d is called the generalized shear rate. Only the second
invariant, the norm of the rate of strain tensor, will count. When (in ex-

tensional flows, for instance) elastic effects become relevant, and they are
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Figure 2.6: Shear stress vs shear rate for different model fluids.

mainly represented by the normal stress difference, then different constitu-
tive relations are required.

A classification of nonlinear generalized Newtonian fluids relies on how
the viscosity changes with the shear rate. In Figs. 2.4 and 2.5 the shear
viscosity and the shear stress behaviour are depicted for a shear-thinning or
pseudo-plastic fluid. The viscosity decreases until it reaches a plateau. This
has been observed experimentally for most non-Newtonian fluids, although
there are a few shear-thickening or dilatant fluids exhibiting the opposite

feature.

The Bingham plastic is an example of what is known as yielding fluid. It
does not flow below a certain threshold value of shear stress, above which is

a Newtonian fluid. In Fig. 2.6 the different curves are summarized.
Finally, thizotropic and rheopectic fluids are examples of fluids in which

the shear viscosity changes also with time, because at constant shear rate

these fluids lose or gain structure, respectively; this leads to a decrease or
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an increase of viscosity with time.

2.5 Viscoelastic fluids

The characteristic of viscoelastic fluids is that, if a stress is applied, some
time is required for the fluid to completely return to its equilibrium configu-
ration. Another way of explaining this is that the fluid experiences a partial
elastic recovery a certain amount of time after a deformation occurs. These
time intervals are called relaxation time and retardation time, respectively.
They are two different two concepts and indeed two key quantities for un-

derstanding viscoelastic fluids.

We start our analysis by describing what happens when a sudden, or instan-
taneous, deformation is applied to a material. The following step function

will represent this strain:

0, t<0
_ 0 _
0=1 4 t=0 (2.34)
0, t>0.

For a Hookean elastic solid with Young’s modulus G, the shear stress is

proportional to the deformation, so the following equation will hold:

Ty = GOH (t). (2.35)

On the other hand, for a Newtonian fluid with dynamic viscosity 7, the

shear stress is proportional to the rate of strain:

Toy = TOH (1). (2.36)
Since H(t) = &(t), the Dirac-delta function, and looking at Figs. 2.7 and

2.8, we can now understand the meaning of the first concept stated at the
beginning of the section: the relazation time. The relaxation time is zero
for a Newtonian fluid, while it is infinite for a Hookean solid. The truth is
that for all fluids in nature the relaxation time is a finite amount of time,
i.e., nothing is really a Newtonian fluid or a Hookean solid. On the other

hand, some materials are very accurately approximated by these models.
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Figure 2.7: Shear stress never relaxes for a Hookean solid.

In the so called Mazwell model, Young’s elastic modulus and Newtonian

viscosity are combined in the following relation:

1d 1 ,
Gai™y T = Ve (2.37)

In this model the time derivative of the shear stress also depends on the rate

of strain through G. Integration leads to

t —
7 t—5\)\.
Tey(t) = —exp| — s) ds, 2.38
:vy( ) /OO A p( ( A ))'ny( ) ( )
which, integrated again by parts gives

T (t) = t—_ (— (t 8)) ( )d (2 39)
ex S S. .

Ty )\% p )\1 Yy

In (238) and (239), )\1 = —Z is the relaxation time. Equation (239) tells

us that the stress at a certain time depends on the whole strain history. At

the same time, this dependence is modulated by the memory function

B _i _t—s
M{(t s)—)\%exp< . ) (2.40)
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so the further we move back in time, the less the strain contributes to the
stress at the current time. Moreover, it can been seen that zero and infinite
relaxation times in (2.40) recover the Newtonian and Hookean approxima-

tions, respectively.

A parameter which is used to measure the influence of the relaxation time
whenever it is neither zero nor infinite is the Deborah number. It is the
ratio between the relaxation time of the material and the time length of the

observed phenomenon:
. )\1
= =.

The Deborah number is a dimensionless measure of the elasticity of a vis-

De (2.41)

coelastic fluid and also explains why the same fluid has a different behaviour
in different experiments: if the time of the experiment is small compared
to the relaxation time, it means that the matter has had not enough time
to exhibit relaxation and will respond as a solid. In the opposite case the
fluid-like behaviour will be dominant due to the time available to the stress
for a complete relaxation. This is the reason why when punching a bulk of
a 9 to 1 mixture of corn starch and water your fist will bounce back, but
when gently pouring it on a hand it will flow through the fingers.

As we mentioned at the beginning of the section, we can also apply a

sudden stress of the type

0, t<0
Tay(t) = { - is0 (2.42)

and observe the consequent deformation process following the Kelvin model

Tzy (t) = GYay + MVay> (2.43)

where 7y;, and 7, are the deformation and the deformation rate, respec-
tively. The Kelvin model simply combines linearly Hookean and Newtonian

dependence. The solution of this equation is
T t
Yay(t) = el (1 — exp ( - )\—2>> (2.44)
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Figure 2.8: Shear stress instantaneously relaxes for a Newtonian fluid.

In this context Ay = % is the retardation time.

Apart from these time constants, which are zero for a purely viscous fluid,
the other important features of viscoelastic fluids are the normal stress dif-
ferences. In the shear flow of a Newtonian fluid the three normal components
of the stress tensor, 7,4, 7yy and 7,,, are the same. In fact, are simply a third
of the pressure field, there being no deviatoric normal stress. For polymeric
liquids, this is not true. A first and a second normal stress difference in the
polymeric extra-stress 7, where T' = 2ud + T, are reported in the experi-
ment, N1 = 7yy — Tz and No = 7., — 7y, respectively, with No ~ 0.1NV;
in modulus. Such features are related to the anisotropic response of a poly-
meric liquid to an applied strain. In such materials, which are able to oppose
a certain amount of elastic resistance to a strain, the stress tensor deforms
with the velocity fields, therefore showing a non isotropic response. In vis-
coelastic models a first normal stress is always predicted, while Ny usually
requires a quadratic term in the stress tensor in the constitutive equation.
For example, the XPP model, the Giesekus model and some K-BKZ models
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incorporate such terms and predict No, while other models, such as Oldroyd-
B and the Pom-Pom model do not.

In the remaining two sections of the chapter, two very important types
of industrial viscoelastic fluids will be analyzed: disperse and concentrated

polymer mixtures.

2.6 Modelling disperse polymer solutions

Disperse polymer solutions are mixtures in which the molecules are sup-
posed to be far enough from each other such that only the interactions be-
tween them and the surrounding fluid is taken into account in the modelling
process. In some way, this allows a microscopic approach to the modelling
being discarded, because a global description of both the elastic contribution
from the particles and the viscous contribution from the solvent is possible.
Nonetheless for the Oldroyd-B model, an equivalence between macroscopic

and microscopic approach will be highlighted.

2.6.1 The UCM and Oldroyd-B models

The Upper Convective Maxwell model is the simplest description of a vis-
coelastic fluid. Mathematically, is the constitutive tensorial equation corre-
sponding to the Maxwell model (2.37), described in the previous section, in

which viscosity and elasticity are combined in series:

v
T+ )\ T=2nd, (2.45)

v
with T defined as the upper-convective derivative as follows:

= —(Vi)T - T(Vi)". (2.46)

The replacement of the time derivative in (2.37) by the upper-convective
derivative is required because the non- affine deformation of the fluid molecules
has to be taken into account. What happens is that the material derivative
% in Eq. (2.46) accounts for the dependence of the stress on the entire

strain history. Moreover, the last two terms in (2.46) are responsible for
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the deformation to which the stress tensor is subject simply because of the
effect of the rate of strain tensor. For these reasons in viscoelastic flows, the

upper-convective derivative replaces the material derivative.

The Oldroyd-B model [90] is a combination of the Maxwell model (2.37)
and the Kelvin model (2.43);

v v
T+ X\ T= 217(d + A9 d) (2.47)

Upper-convective derivatives of both stress and rate of strain are considered.
Physically, a Newtonian viscosity is also considered in the Oldroyd-B model.
We can then split the extra-stress tensor into its polymeric part 7, namely
the one due to the elasticity of the dumbbells, and its viscous part 27.d,
obeying Newton’s law of viscosity. The total viscosity is then split into 7,,
the polymeric viscosity, and 7, the pure viscosity of the Newtonian solvent.
By means of this, the solvent contribution of the extra-stress, obeying New-
ton’s law of viscosity, can be inserted into the momentum equation in the
same fashion as for the Navier-Stokes equations. This is not possible for the

polymeric part. The full system will then read

V-d = 0, (2.48)

ou ., R
p(a —i—u-Vu) = —Vp+ V-1 +nAd, (2.49)
T, +M T = 2nd, (2.50)

or, in its dimensionless form,

Vi = 0, (2.51)
Re<%+ﬁ-Vﬁ = —Vp+V 1+ pAG, (2.52)
T+Wit = 2(1-p)d. (2.53)

In Eq. (2.52)-(2.53) the following dimensionless parameters have been used:

A2 Ns s
B=22= = , 2.54
>\1 Ns + Tp Ntotal ( )
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is the viscosity ratio parameter, and

U
L

is the Weissenberg number !, a crucial parameter in all rheological prob-

Wi (2.55)

lems. Sometimes it is assimilated to the Deborah number, if the timescale
of the experiment can be deduced from the ratio between the characteris-
tic length and characteristic velocity. The Weissenberg number is another
way of measuring the elasticity of a material. If in the Oldroyd-B model
the Kelvin approach is discarded, namely the retardation time Ay = 0 (or

B = 0) we recover the UCM model, as we expect.

The Oldroyd-B models presents some advantages: it is the only macroscopic
model with a perfectly equivalent microscopic representation in which the
polymeric part is represented by Hookean elastic dumbbells in which the
beads are connected by a vector Q and their interaction with the solvent is
described by Brownian forces through a probability density function (Q, t).
A full description based on the Fokker-Planck equation can be found in the
book by Owens and Phillips [94] (chapter 2). Also, analytical solutions for
channel flow have been derived by Waters and King [136].

On the other hand, the application of the Oldroyd-B model to real industrial
problems is very limited. One reason is that for shear flow, despite predict-
ing a non-zero first normal stress difference, the model leads to a constant
shear viscosity. However, the main drawback of the Oldroyd-B model is its

inability to describe accurately extensional behaviour.

We already mentioned that elastic effects in a fluid manifest mostly in ex-

tensional flows. An extensional flow is described, for example, by a velocity
field of the form

U= (ex, —%y, —%z), (2.56)

!Throughout the thesis Wi denotes the Weissenberg number while We the Weber
number defined in Chapter 4.
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where € is the extensional rate. If we apply the Oldroyd-B constitutive

equation and compute the first normal stress difference, we find

2(1 — 2)\26) 1+ )\26) . (257)

Tm_Tyy:ne( 1—2)\e 1+ Me
Looking at the definition of extensional viscosity, we realize that a singu-
larity arises for € = 1/(2X;). This means that the Oldroyd- model predicts
the unphysical phenomenon of infinite extensibility of the fluid, which is
caused by a possible infinite stretch of the Hookean springs connecting the
dumbbells modelling the molecules. This problem, which limits the real
applicability of the Oldroyd-B model to low rate flows, is circumvented by
Finitely Extensible Nonlinear Elastic (FENE) models.

2.6.2 The FENE models

The models described in this section, based on the hypothesis of finite ex-
tensibility of the dumbbells spring, have been proposed by Warner (original
FENE) [135], Peterlin (FENE-P) [97] and Chilcott and Rallison (FENE-
CR) [24]. For a detailed investigation of different features, together with
the analysis of other types of dumbbells, the monograph by Bird et al. [12]
is exhaustive. The aim of this section is to highlight the different versions

of the model and their characteristics.

In the microscopic description of the Oldroyd-B model, the molecules are
depicted as beads connected by a Hookean spring; so the elastic force is
proportional to the extension. The stress tensor is then related to this force

by the Kramers relation

T = —nkTI + pgy + n(QF), (2.58)

where n represents the density of the dumbbells, T is the temperature, &
is a constant and @ is again the vector connecting the beads. Finally, the

notation (-) is the ensemble average defined as

(@)= | [(Q)¥(Q,1)dQ. (2.59)

R3
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The Hookean force F' = hQ is only one of the possible choices for F', and
as we have seen leads to unphysical consequences. A first alternative was

proposed by Warner [135]; the choice of the elastic spring force

hQ
F=—_- "
1-(Q%/Q3)
leads to the FENE model. In (2.60) Q = tr(QQ) and Q) is a constant which

represents the limiting value for the extension of the spring.

(2.60)

The FENE-P model is an approximation to the FENE model with force
law defined by the closure law proposed by Peterlin:

_ hQ
=1

This model is shear-thinning and the extensional viscosity u. exhibits con-

(2.61)

tinuous dependence on the extensional rate € in extensional flows (see Bird
et al. [12] for details). Clearly in both FENE and FENE-P models when
Qo — oo the Oldroyd-B is recovered.

To describe the last of the three FENE models, we first write down the

Giesekus expression which relates the stress tensor to the vector Q:

T = mﬁm(QQ), (2.62)

where (;,1 = 1,2 are the friction coefficients arising from the Stokes’ drag
law applied to the beads. Combining (2.58), (2.61) and (2.62) we obtain the
relation

kT 1 v

7 (QQ) = (I~ f(Q)(QQ), (2.63)

where f(Q) is the scalar function

1
- 1-(Q%/Q5)
The so-called FENE-CR model empirically replaces the term

f(Q)

(I - 1(Q)(QQ))
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in (2.63) by f(Q)(I— (QVQ)). This model is similar to the Oldroyd-B in pre-
dicting constant shear viscosity and a quadratic first normal stress difference,
but also ensures that the extensional viscosity is bounded and continuous
extensibility as the other FENE models.

We conclude by remarking that the FENE models are naturally more use-
ful in investigating extensional flows rather than shear flows, even if the
FENE-P presents a shear-thinning characteristic which makes it suitable to
describe polymer mixtures in shear flow. Comparisons of these three differ-
ent models in transient elongational flow has been performed by Keunings
[63].

2.7 Modeling concentrated polymer melts

In the models describing disperse polymer solutions, the physics of a single
molecule is not affected by surrounding ones. As we have seen the assump-
tion is that these molecules are far enough from each other such that only
the interaction between them and the solvent is relevant. When the solu-
tions are concentrated, as is the case of polymer melts, this assumption is
not valid anymore. In order to investigate polymer melts it is essential to

represent in a proper way the entanglement between molecules.

In this section we will describe the most popular models for polymer melts.
The PTT model [98] was proposed by Phan-Thien and Tanner in 1977, and
it looks at the polymer molecules and at their interaction as a network.
Strands are linked through rigid junctions, and the idea is that the rate of
change of a probability distribution of strands is balanced by the difference
between the rate of creation and destruction of junctions. The two versions

of this model, linear and exponential, will be described in §2.7.1.

The other models we will describe are based instead on the so called ”tube”
molecule. The influence of surrounding molecules manifests itself by means
of a constrained lateral displacement. Thus this displacement is limited to a

maximum value which is identified with the diameter of an imaginary tube

ol



junctions

Figure 2.9: An example of a network of polymers.

along whose axis the molecules move. The original tube model was proposed
by Doi and Edwards in 1978 (see the monograph [33] for instance), and only
included the mechanism of reptation. Further developments came twenty
years after with the Pom-Pom model of McLeish and Larson [79] and the
XPP model of Verbeeten et al. [132], who, with the introduction of stretch
of the backbone to support the appended arms, aimed to reproduce the rhe-
ology of branched polymers. A further step was then represented by the
mechanism of convective constraint release proposed by Marrucci [75] and
further developed by Marrucci and Ianniruberto [75, 76]. Such a mechanism
has been included, among the others, in the full SCCR model by Graham et
al. [46], whose a simplified version is represented by the Rolie-Poly model
by Likhtman and Graham [72]. Differently from the XPP model, the full
SCCR aims to reproduce the behaviour of entangled, linear polymers over

a wide range of flow regimes.
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2.7.1 The PTT models

The idea that forms the basis of the PTT model is to represent polymer
molecules as a network. They cross each other forming junctions, and the
segments between two junctions are the strands. The junctions are identified
by position vectors, and the strands by an end to end vector, say Q (see fig.
2.9). Assuming that slip is the cause of dynamics of the strands, then an
evolution equation in Q is written, which at first order reads

o0 da ~

oL+ —Q@. 2.64
at or (2:64)
da

The tensor - is the slip tensor, whose representation will be the key differ-

ence between the different models presented in this section, as we will see

in §2.7.2 and §2.7.3. In the PTT model the slip tensor is assumed to be a

function of the rate of deformation d and Q. Equation (2.64) then becomes
od

% _1G- G- ona (2.65)

Let f be the probability distribution of junctions. As we already mentioned
in the PTT model the total rate of change of f, which is a function of
time, space and the strand end-to-end vector Q, is balanced in the following

conservation law:

of . Of 15 o D
A (LQ — C1Q — CodQ) - 8_Q =9(Q) — hQ)f, (2.66)

— -

where ¢(Q) and h(Q) represent the rate of creation and the rate of de-
struction of the junctions, respectively. Multiplying both sides by (j and
averaging over configuration space, the following constitutive equation is

derived, where F is a constant:

A
Xo 7 +(1+Etr(T))T =2 Godo
1-Cy

We refer to the paper of Phan-Tien and Tanner [98] for the details and the

derivation of equation (2.67). We remark here that a different type of deriva-
<

(d - %Cg(d + dT)) . (2.67)

tive (-), the so-called GordonShowalter convected derivative, is involved be-

cause the choice of the slip tensor described earlier leads to a deformation
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factor which is not the usual velocity gradient but the so-called effective

velocity gradient Vi — Cod. Then the following relation holds:

T=1 +Cy(dr + 7d").

This is a consequence of assuming that the end-to-end vector Cj obeys the

non-affine transformation (2.65).

The PTT model predicts shear thinning and bounded extensional viscos-
ity, addressing some of the limitations of the Oldroyd-B. It also reproduces
fairly well the stress overshoots at high strain rates in elongational flow, jus-
tifying the credit gained in simulating flows of polymer melts. However, the
presence of the GordonShowalter convected derivative, which occurs when
Cs # 0 and is required if a non-zero second normal stress difference has to

be predicted, causes unstable behaviour of the model in transient flows [65].

We conclude by mentioning the exponential version of the PTT, whose mod-

ified equation reads

GoXo (d 1

No 7 +(=1+ exp(Btr(r)))T = 272 G (d= 50+ dT)).

2
2.7.2 The tube model

The tube model developed by Doi and Edwards [33] translates the interac-
tions between molecules that are close to each other as topological con-
straints. The presence of other chains surrounding a test molecule will
confine the allowed configurations within a tube of a certain diameter, a.
The test molecule is represented as a chain of entangled segments, with end
points connecting single molecules with a molecular weight over a certain
threshold. When dense polymer melts are described, then this constrained
perpendicular displacement is discarded, because the predominant effect is
the reptation along the axis of the tube, and the molecule is depicted as an
end-to-end segment.

The molecule is then allowed to slide, or reptate, leaving the original tube

for another one. In Fig. 2.10 such a tube is depicted, and AB is called a
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Figure 2.10: The Doi-Edwards tube model.

Figure 2.11: A part of the primitive chain leaves the tube.
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primitive chain, whose length is L. This chain is allowed to move to the left
or to the right, so the ends A and B will slide. To model this reptation Doi
and Edwards use a diffusion equation for the function 9(¢, ¢; s), namely the
probability that the primitive chain slides within the tube of a curvilinear
segment £ without A and B reaching C' and D, s being the length of the arc
C'D. When this happens, the dotted part of the tube disappears, as shown in
Fig 2.11. This dynamics is translated into the the following initial-boundary

problem:

oY %9
9(E,058) = 4(s), (2.69)
I t;8) = 0 for E=sand & =s— L. (2.70)

In Eq. (2.68) the right-hand side includes only a diffusive term, which is
respounsible for the reptation of the chain. If this problem is solved averaged

in space, the its solution is independent of L and reads

L s—L
=7 [ [ et ds = ¥ S ew-ptt. )

p odd

In Eq. (2.71)

3p4
e SN o)
is the time required for the primitive chain to disentangle from the original
tube, namely for the segments AC and BD to disappear. In (2.72), ¢ is
the average of the friction coefficients due to the Brownian forces, b is the
average length of the entanglements, kp is the Boltzmann constant and T is

the absolute temperature. If we compare it with the Rouse relaxation time

_ (N%?
N 37T2kBT
which comes from the Rouse chain in which there are no displacement con-

Tr

straints, a stronger dependence on the number of entangled segments N is
evident in the tube model. This is clearly due to the fact that in the Doi-

Edwards tube, due to the presence of surrounding chains, not all possible
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configurations are allowed for the chain.

The key of the tube model is all in the function (), which microscopically
represents the dynamics of the reptation with respect to the displacement
constraints. Thus, when viscoelasticity is considered, the reptation dynam-
ics will be responsible for the change of conformation of the primitive path
and for the stress calculation from such conformations. The stress is not
directly linked to the rate of deformation but to the orientation tensor QQ as

follows:

o = GQ(E)Y(). (2.73)

In (2.73), E is the deformation gradient and G is proportional to the Boltz-
mann constant and the temperature T, and inversely proportional to a?.
The tube model is the key for understanding the models described in the
rest of the chapter, where the level of sophistication has been increasing with
the introduction of additional mechanisms such as constraint release, chain
stretch and contour fluctuations. We refer to Doi and Edwards [33] for all
the details.

2.7.3 Modelling branched polymers: the PP and the XPP
models

Following the tube idea, McLeish and Larson [79] developed the Pom-Pom
model in 1998. The pom-pom molecule, shown in Fig. 2.12, is a branched
polymer whose branches are attached to the ends of a primitive tube chain
like the one proposed by Doi and Edwards [33]. The primitive chain is the

backbone of the pom-pom molecule.

This model describes very accurately the two main features of low den-
sity polyethylenes (LDPE), whose irregular branches give rise to high levels
of shear thinning and strain hardening. Nonetheless, some drawbacks are
present in the Pom-Pom models, which will be highlighted later on; these
drawbacks have been the reason for the pursuit of improvements, which are

mainly represented by the Blackwell modification and the XPP model.
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Figure 2.12: The pom-pom molecule.

In order to deal with the discontinuities in the gradient of the extensional
viscosity, Blackwell [14] proposed a modification to the original Pom-Pom
model. This change allows for the arms to start reptating themselves and
thus to withdraw into the tube even if the stretch of the backbone is not at
its maximum value, namely, even if A < ¢q. A smoother approach to the limit
value A = ¢ is achieved by smoothing the arm stretch relaxation time from
Ts to Tsexp(—v(A — 1)), thus leading to the removal of the discontinuous

peaks in the gradient of the extensional viscosity.

The mathematical modelling of the pom-pom molecule deals with three
issues: the orientation of the tube segments in the deforming melts; the dy-
namics of stretch of the backbone; the dynamics of the arms of the molecule.
Evolution equations are derived from the Doi-Edwards tube model. One
equation is needed for the stretch A(¢), and a similar equation follows the
evolution of the arms a;,% = 1,...,q. On the other hand, the total stress
o is not directly related to the rate of strain but to the deformation gra-

dient through the orientation tensor S(t), whose evolution requires another
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equation. These equations are summarized here:

1) Evolution equation for the orientation tensor:

s(t)z/t W op (_/tt’ dt” )<| = 1 (B0 B i

—oo To(t) Ty(t") £, 1) - i ]) | E(t,t') - |
(2.74)
2) Evolution equation for the backbone stretch:
o 1
— =XMK:8)—-—=—(\—-1 A 2.
GoAMKS) = Z0=1) for A<q  (279)
3) Evolution equation for the motion of the arms:
Js. Sp 1
— = (q— K:S8)—— =q. 2.
5 = a5 Ts)(K:S) 3T (0] for  A=gq (2.76)
4) Derivation of the stress tensor:
Sp Sp 9 2qs.(t) )
= A2(t — t). 2.
7 C2qsa+sb(2qsa+sb ( )+2qsa+sb S(#) (2.77)

In the above equations, K is the rate of deformation tensor, while E is the
deformation gradient; @ is the orientation; the quantities s, and s, are the
molecular weights of the arms and the backbone, respectively, scaled by the

molecular weight of the entanglement.

The part of the arms withdrawn is s.(¢), and we remark that in the pom-
pom model this can happen only if the backbone stretch is at its maximum
value, namely g. This means that the maximum stress the backbone can
support is the stress caused by the arms. The relaxation times of backbone
orientation, arms and backbone stretch are Ty, T, and Ty respectively. The
constant C'is proportional to the relaxation modulus plateau. The evolution
equations (2.74) -(2.76) are uncoupled and are solved to then calculate the
stress through (2.77).

There is general agreement on the fact that the pom-pom model repre-
sents a turning point in viscoelastic modelling, mainly because the inclusion
of the mechanism of chain stretch, by means of attaching arms to the tube
backbone, gives a correct qualitative response in both shear and extensional

viscoelasticity of low density polyethylene melts (see Inkson et al. [57] and
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Bishko et al. [13], for instance). On the other hand the model presents three
drawbacks: first, the already mentioned discontinuities which occur in the
gradient of the viscosity in the steady state extensional flow; second, at
high strain rates the evolution equation (2.74) for the orientation stress is
unbounded; finally, a zero second normal stress difference is predicted. The
eXtended Pom Pom (XPP) was introduced in 2001 by Verbeeten et al.

[132] to circumvent these problems.

First, the Blackwell modification [14] is retained in the XPP model to avoid
overshoots in the velocity gradient. Secondly, a different approach in deal-
ing with the slip along the backbone is instead the reason behind the bound
for the orientation tensor. Doi and Edwards [33] adopted a microscopic
approach to describe the slip of the entangled segments of the backbone;
the slip was derived by solving a Fokker-Planck type diffusion equation for
1. Here 1) represents the probability that a segment of the primitive chain,
and therefore of the tube, disappears as consequence of the reptation. As
described in §2.7.2 the stress tensor, as well as the relaxation modulus, were

then derived from the solution of this equation.

In the XPP model the slip tensor is instead a function of the averaged
macroscopic stress tensor, which is quadratic in A, namely the stretch. This
direct correlation between the slip tensor (and then the orientation tensor)
and the stretch has two consequences. First, it allows for the XPP model
to have a constitutive equation in the classical sense, namely, a stress-rate
of strain relation. Moreover, the orientation phenomenon is limited by the
stretch effects also being bounded. To better understand this process we
write the set of equations for the XPP model:

1) Viscoelastic stress:
7 +X1) ' = 2GoD (2.78)
2) Relaxation time tensor:

_ 1 o _ _ _
A(7) 1:>\—Ob(G—OT+f(T) T+ Golf(r) — 1)) (2.79)
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3) Extra function:

1,2 1 1 al,,
— -+ —a-%r 2.80
A ( A) WO R (2.80)

4) Backbone stretch and stretch relaxation time:

A= 1/1+I—T, As = Ao s exp(—v(A — 1)), v=2/q. (2.81)
3Gy ’

In Eqgs. (2.78)-(2.81), Gq is the zero-shear modulus, « is the anisotropy
parameter, Ao is the orientation relaxation time of the backbone, Ao is
the initial stretch relaxation time, ¢ is the number of arms, A is the back-
bone stretch. We also define here the ratio r = ig—:’s’, which will be widely
used throughout the thesis. If we now have a look at the two terms on the
right-hand side of the extra function, we realize that the first vanishes when
A = 1, namely when the backbone is subject to no stretch. On the other
hand, the second vanishes when the strain rate is dominant. This has the
following meaning: the effects of the backbone tube orientation are dom-
inant in the flow process at low strains (when no stress coming from the
arms has to be supported, therefore the backbone is not strecthed); on the
other hand at high strain rates (when unbounded orientation was found in
the pom-pom model), the orientation process is totally dominated by the
stretch, circumventing the problem of unbounded orientation tensor. In this
case the second term in the right-hand side. of (2.80) vanishes. This obser-
vation connects well to the discussion we raise in Chapter 6 and 7, where
the effect of the flow rate on the orientation and stretch relaxation times is

investigated through the analysis of the extrusion process.

The second normal stress difference, which is clearly observed in experi-
ments for different types of polyethylene melts, is also lacking in the pom-
pom model. The introduction of the quadratic term I in (2.80) appears

to remedy this.

Finally, we remark that another difference from the pom-pom is clear by
looking at equation (2.81). The stretch is not calculated anymore through

its evolution equation, but it is updated from the stress. An open issue in
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the XPP investigation is the physical meaning of some imaginary values for

A which sometimes arise in the numerical simulations using this formula.

2.7.4 Fine modelling of entangled linear polymers: inclusion
of constraint release, interchain pressure effects and
stretch

The introduction of the Pom-Pom molecule and the consequent PP and
XPP models certainly represent a step forward in the modelling of branched
polymers. However, in the past decade a remarkable effort has been made
to tune more and more finely models based on the Doi-Edwards theory for
linear, entangled chains. We summarize here the most important steps in
this direction and the developments over the past few years. Since these
models are not the main subject of this thesis, we will not focus on the very
mathematical details, for which we refer to the relevant papers. Instead,
this section is intended to underline the direction towards which theoretical
modelling is heading nowadays, and the different mechanisms thought to

contribute to different aspects of the physics of polymers.

A great push in this direction was represented by the experimental work
carried out in Lyngby by Bach, Nielsen, Rasmussen and other collaborators
under the coordination of Hassager [3, 4, 87, 88, 100]. Six years ago Bach et
al. [3] reported experimental data for the highly nonlinear regime present
in an extensional rheometer. The two polystyrene melts that were analyzed
showed a monotonic decreasing steady-state extensional viscosity up to ex-
tensional rates of the order of ¢ =~ 103%, where 7,4 is the relaxation time
associated with the reptation mechanism. Such a relaxation time predicts
quite successfully the departure from the Newtonian value Tr = 3 (T'r is the
Trouton ratio defined in Eq. (1.3)), but is representative exclusively of the
mechanism of the reptation, namely, the only mechanism included in the
original model from Doi and Edwards described earlier. Therefore, when
the flow rate scales at values well beyond 7,4, different relaxation processes
have to be taken into account, together with different relaxation times. In
fact, the main shortcoming from the Doi-Edwards model is arguably the

prediction of a minimum in the steady extensional viscosity for values of
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extensional rates just above 1/74, more precisely around 1/7g, where Tg
is the Rouse time of the chain. The physical reason behind this is related
to the instant chain retraction in the Doi-Edwards model when ¢ > 7. In
other words, the absence of a stretch contribution in the Doi-Edwards model

prevents it from being reliable when highly nonlinear regimes occur.

The second mechanism which has been proposed is related to a dynamic
change of configuration for the chain surrounding the tube. Precisely, due
to flow, the entanglements between the chains are more readily untied, there-
fore dynamically releasing some of the constraints. Constraint release might
be produced by diffusion or convection. The former case, suggested by
Graessley [45], is in a way related to the reptation of the chain. Therefore,
at least in principle, a mechanism already accounted for in the tube the-
ory. On the other hand, the latter, introduced by Marrucci [75], was absent.
The Convective Constraint Release (CCR) was introduced as a mechanism
that came into play in the highly nonlinear regime, whereas it should be
negligible in the other cases. In particular, it arose from the observation
that experimental data showed a substantial difference in the measures of
the extensional viscosity between the uniaxial and biaxial elongations. In
the former case, a strain hardening behaviour occurs, while something very

similar to a shear-thinning response characterizes the biaxial experiment.

Marrucci and Tanniruberto [76] were also among the people considering the
experimental data from Bach et al. [3] a sort of crisis of the standard model.
They proposed as a remedy a third mechanism called interchain pressure ef-
fect. This concept states that the diameter of the tube in which the chain
lives evolves in time due to a pressure exerted towards its walls, namely,
in the direction normal to the flow. The evolution equation squeezes the
tube diameter, because the motion of the walls of the tube is affine with the
deformation. Intuitively, the higher the flow rate, the faster the squeezing
process. However, such a decrease of the tube diameter cannot continue
indefinitely. In other words, the tube cannot have a zero diameter. The in-
terchain pressure explains why this squeezing stops at some point, with the

diameter reaching a steady state value. The authors then link the interchain
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pressure to the CCR mechanism through the rate at which the diameter de-
creases. They argue that, the better the CCR works, the less the tube needs
to squeeze. Again this is very reasonable indeed, because, in the ideal situ-
ation where all the topological obstacles are removed, the tube could easily
keep its original diameter. The relaxation process associated to this radial
contraction led Marrucci and lanniruberto to introduce a new relaxation
time, say 7p, which turned out to be higher than the corresponding Rouse
relaxation time. In fact, they estimated that a reasonable comparison with
T4 can be made, although, since they scale differently with the molecular

mass, different estimates would be obtained for different materials.

The introduction of models including chain stretch and CCR mechanisms,
together with the original reptation, led to significant improvements, es-
pecially from a quantitative point of view. The introduction of the CCR
originally proposed by Marrucci [75] is able to reproduce the difference be-
tween uniaxial and biaxial elongation. In this regard, we have to remember
that, in the filament stretching, one of the bigger problems arises from the
shear flow induced next to the plates. Such flows become much more rel-
evant when the elongation is biaxial, and the higher the strain rate, the
stronger the effect of the CCR. In fact, it acts as an aid for the shear flow
close to the plates, where otherwise the chains would become totally aligned
to the shear direction, and the shear stress will fall to zero, being completely

dominated by the extensional flow.

The SCCR (Stretch and Convective Constraint Release) model introduced
by Graham et al. [46] shows an excellent agreement across the full range
of deformation rates. However, such a model, together with its simplified
version, the Rolie-Poly model, introduced by Likhtman and Graham [72], is
not satisfactory in the steady extensional regime. The authors believe this is
due to the fact that the spring coefficient of proportionality associated with
the chain, which is responsible for the stretch in the model, is assumed to
be linear. Therefore, when highly nonlinear deformations are analyzed, the
model fails. A different way of treating the stretch term is proposed in a 2D

model by Ianniruberto and Marrucci [56], even though no analysis of steady
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elongation is reported. More successful in this direction are the results from
the application of the interchain pressure effect. The results reported by
Marrucci and Ianniruberto [76] confirm the experimental data by Bach et
al. [3]. The extensional steady-state viscosity is monotonically decreasing
with the extensional rate, and the slopes of the curves are very close. One
suggestion the authors draw is that the Rouse time is overestimated, which
would imply that the experiment simply did not hit the real Rouse time, at
the reciprocal of which signs of an upturn should appear. A different option
would be to revisit the interchain pressure effect as a stretch mechanism.
The evolution of the diameter of the tube, together with affine, volume pre-
serving deformations, might indeed be looked at as a means to account for
stretch in the tube. Obviously further investigation in this direction is re-
quired. The consistency and validation of such models is outside the scope
of the present thesis. Nonetheless, we will refer to several of these aspects
throughout the thesis, in an attempt to provide a sufficiently wide research

context in which to interpret our results.
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Chapter 3

From the Continuous to the
Discrete: Temporal and

Spatial Approximation

3.1 Introduction

The spatial and temporal discretizations used to solve the governing flow
equations are described in this chapter. In section §3.2 of this chapter we
will derive the mathematical formulation of the physical problem. The con-
ditions under which this approach is known to be well posed are discussed
in §3.2.1 for the continuous case and in §3.2.3 for the discrete formulation.
The incorporation of boundary conditions is explained in §3.2.2. Some is-
sues regarding the stability estimates are discussed in §3.2.4. The temporal
and spatial discretization techniques are then presented in §3.3 and §3.4,

respectively.

Every time scientists make use of mathematical tools to describe a physical
phenomenon, a model is derived which ideally aims to capture and predict
the physics underlying the process, both qualitatively and quantitatively.
The pursuit of these two goals usually relies on analytical modelling and

numerical simulations.
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So far we have presented and discussed several models to investigate flows
of viscoelastic fluids, which is the object of our research. In this chapter
we turn our attention to the next step: the discretization of such models
and the subsequent iterative solution of the resulting systems of algebraic

equations.

Unsteady problems such as fluid flows need to be discretized in time and
space. Temporal discretization is usually performed by means of a finite
difference scheme which replaces the time or material derivative by some
approximation. Once the continuous time dependence has been removed,
the equations are fixed for each time coordinate and the resulting equation
is said to be semi-discrete. The spatial dependence has then to be approxi-
mated. The spatial discretization process for a system of partial differential
equations consists in determining values of the flow variables at some points
of the domain (called nodes), rather than their analytical expressions. Two
basic distinctions have to be made in order to give a rough classification of
discretization methods. The first one is geometrical: we can try to solve
our problem just once for all on the whole domain, over which we place our
nodes; or we can decompose it into smaller parts called elements and ap-
ply our numerical methods to each of them. The latter technique has been

named domain decomposition.

Once we have decided how to treat our geometry, then we need to choose
what to do with the equations. In the second distinction, this time numer-
ical: one can take the differential (strong) formulation of the problem and
directly replace the functions and derivatives involved by approximate values
at the nodes; this is the approach usually used to deal with time derivatives.
A second approach is instead to transform the differential problem to its
weak formulation (variational form) and evaluate the integrals appearing

using some quadrature rule on a certain grid.
Spectral Element Methods are domain decomposition methods and approx-

imate the variational form of the continuous problem. When applied to a

system already semi-discretized in time, they give rise to a linear system at
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each time step which can be inverted to yield the solution at that time.

3.2 Mathematical formulation

The first step in the application of spectral element methods to the solution
of a system of partial differential equations is the transformation of the
problem from its strong, differential form into the weak formulation. We
will present a general description of the application of the method to the
Stokes problem. There are some theoretical results that are available for the

Stokes problem and these will be presented here.

3.2.1 Continuous Stokes problem: compatible spaces and
compatibility conditions

There are two primitive variable formulations, the 2-fields and 3-fields formu-
lations, respectively, of the equations governing Stokes flow, the particular
case of a steady flow without convection. Let €2 be a bounded and connected
subset of R with a Lipschitz continuous boundary 8. Let F € [H~1(Q)]2
and dp € [H/2(Q))? such that

/ ﬁr -1 ds = 0, (3.1)
oN
where 71 is the unit outward normal to 9.

e 2 fields formulation of the Stokes problem: the unknowns are velocity

and pressure

—nV%i+Vp = F, in Q (3.2)
Vi = 0, inQ (3.3)
U = dur, on 0N2. (3.4)

e 3 fields formulation of the Stokes problem: the unknowns are velocity,

pressure and stress
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Vp—-V-T = F, inQ (3.5)
V-d = 0, inQ (3.6)

T = 2nd  inQ (3.7)

u = dur, on 09. (3.8)

Note that in three dimensions the first is a problem in terms of four scalar
unknowns, as opposed to the ten scalar unknowns for the second problem.
Obviously, the equations have to be supplemented by the corresponding
boundary conditions for the particular flow. The last equation in both cases
is a boundary condition on the velocity. Finally d = 1[Vi + Vi) is the

rate of deformation (strain) tensor.

The two formulations above are strong formulations of the Stokes prob-
lem. They involve the existence of the derivatives of the unknown functions
pointwise up to a certain order. Since spectral element methods are based
on a Galerkin approach, the following weak formulation will be analyzed.
Let

[Hh()]? = {@ € [H'(Q)]? : @ =i on 00}. (3.9)

In this notation, superscripts indicate the weak regularity of functions in
the space while subscripts, where present, the value of the functions on the
boundary. So for example, the space defined in 3.9, comprises the func-
tions which are weakly differentiable up to the first order, and attain a
certain, specified value on the boundary. Also, let @ € [H{(Q)]?, ¢ € L3(Q)
and T € [L%(Q)]! (subscript s means that T is in the space of symmetric
tensors), be test functions for the velocity, pressure and stress in the cor-
responding spaces. So we multiply (3.5), (3.6), (3.7), respectively, by these
test functions, and integrate over 2. We can now state the weak formulation
of the 3-fields Stokes problem:

find (p, @, T) € [LE(Q)] x [HE(Q)]? x [L2(2)]4 such that, for all (¢,,2) €

S

L2()] x [HE(OQ)]2 x [L2(2)]4, the following equations are satisfied:
[ 0 0 ) g €q
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b(p, @) + d(T,d) = I(d), (3.10)
b(g. @) = 0, (3.11)
co(T,z) = d(z,u), (3.12)

where b, ¢, d and [ are, respectively, three bilinear forms and a linear func-

tional defined as follows:

b: L3(Q) x [HY(Q)]?, b(r, D) :/Q(v-a) r dS); (3.13)
c: [L2(]F x [L2()]E,¢(S,T) :/QS:TdQ; (3.14)
d: (L2 x [HYQ)2 , d(S, i) = /Q Vi do (3.15)

L [HYQ)P ,l(ﬁ):/ﬂﬁ-ﬁdﬁ. (3.16)

While (3.11) and (3.12) are just derived by integration by parts, (3.10)

requires the use of the following differential relations:

S:Vi=V-(Tw)—w-(V-T)
V - (wp) = p(V - W) + @ - Vp.

The divergence theorem is then used exploiting the fact that the velocity

test function w vanishes on the boundary.

Now that the problems have been set and a weak formulation is available,
we turn our attention to well-posedness issues. If we have a look at either
(3.2)-(3.4) or (3.5)-(3.8), we realize they are both mixed problems, namely,
their solutions belong to different spaces. There are two different spaces in
the two fields case, and three for (3.5)-(3.8). Some conditions relating the
different spaces are then required. We will first analyze the two fields prob-
lem, whose detailed analysis is given, for example, by Brenner and Scott [16]
(chapter 12 ) or Schwab [113] (chapter 5).
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The weak form of (3.2)-(3.4), which is derived in exactly the same way
as (3.5)-(3.8) by multiplying (3.2) and (3.3) by test functions @ and g, re-
spectively, reads: find i € [H},(Q)]? and p € L3({2) such that

U/V'EL’:V'LD'dQ—/(V-QD')de
@ @ (3.17)

—

:/F-w Vi € [H1 (Q)]2
Q

/(v )qdQ=0 Vg€ L*Q). (3.18)
Q

We just remark that, in this case, an integration-by-parts has been per-

formed to rewrite the second-order term on the left-hand side of (3.2).

If we now define the space

Z = {i € [H}()]? : /Q(v -@)p dQ = 0}, (3.19)

the problem, in which # is determined, is then equivalent to finding @ € Zp
such that

n/va:vwdaz/ﬁ-w Vi € Z, (3.20)
Q Q
where

Zp = {ii € [Hb(Q)]? - /Q (V- @)p d2 = 0}

The existence and uniqueness of a velocity field satisfying the problem can
be found by applying the Lax-Milgram theorem and the Poincaré-Friederichs

inequality to prove the coercivity of the bilinear form

a:[HE(Q)]? x [HE(Q)]? , alid, @) = / Vi : Vi dS).
Q

We now turn our attention to the existence of a solution for the pressure,

which clearly has to be coupled with the velocity field. After a velocity field
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inflow: free surface: no traction

v=0 and no penetration
Poiseuille profile
wal:u=v=0
Y

—

- ~__

— outflow:

U,=V,=0

Figure 3.1: Fluid jet from a die.

i € Z has been determined by solving (3.20) , we need now to find p € L3(9)
such that

n/va:vwda—/(v-w)pdaz/ﬁ-w Vi e HY(Q).  (3.21)
Q Q Q

Babugka [2] and Brezzi [17] proved independently that existence and unique-
ness for (3.21) is guaranteed provided that the following condition, called
the compatibility condition or inf-sup condition, holds:
up 0TI . (3.2
aer@)2 |l @)2 0
The constant § > 0 is sometimes called the inf-sup constant. The proof
comes from the algebra of abstract operators, and details can also be found
in Brenner and Scott [16] (chapter 12), in which the Riesz representation
theorem is widely used, and Schwab [113] (chapter 5) who solves a saddle
problem by mean of the closed range theorem.
In the case of three fields formulation, it is clear that something more is
required; intuitively the stress field, which does not appear in the two fields
case, should obey some kind of coupling condition. The theory on which

such an analysis relies was proposed by Fortin and Fortin [37]. Successively,
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based on this approach, Gerritsma and Phillips [40] also derived an extra
inf-sup condition coupling stress and velocity. To guarantee existence and
uniqueness of the problem (3.10)-(3.12), together with the Babugka-Brezzi
condition (3.22), the following has to hold:

L % > B Ny, ¥ 4 € [HA(Q)P. (3.23)
A similar compatibility analysis was performed by the rheology group at
the University of Swansea [9, 8]. Their work also started from the theory of
Fortin and Fortin [37] and was developed to ensure compatible approxima-
tion of velocity and stress in the case of an alternative sub-cell discretization

scheme.

3.2.2 Incorporating boundary conditions and surface tension

effects

The following boundary conditions are satisfied on the free surface. First, we
have the kinematic condition that no fluid particles can cross the interface.
This means that the normal component of the mesh velocity ¢ is that of the

interface, i.e.

§-i=a-, (3.24)

where 71 is the unit outward normal to the free surface. At steady state, the

mesh velocity vanishes and the no-penetration condition

@-ii=0, (3.25)

is satisfied. Secondly, the force balance due to surface tension

T = oK, (3.26)
where k represents the curvature of the free surface, which for a plane curve
y = f(z) is given by

1

“= T
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and o is the dimensionless surface tension parameter. Finally, the zero-
traction condition requires that the shear stress, 7y, has to be zero on the
free surface. As shown in Fig. 3.1, the usual Neumann conditions are ap-

plied at the outflow.

If surface tension is neglected (0 = 0), then the right hand side of Eq.
(3.26) vanishes. Not all of the conditions on the free surface can be im-
posed. Later in this section we explain which one we impose, why, and in
which way. On the other hand, in the numerical simulations we check that

the boundary conditions which are not imposed are satisfied.

We write down the momentum balance in terms of the stress tensor when
the external forces are neglected. We follow the idea originally developed by
Ruschak [107] and then extended to a spectral framework by Ho and Patera
[61] and Ho and Regnquist [52]. We denote 0€2(t) as the boundary of the
time-dependent domain Q(¢). In particular, T'p(¢) and T'x(¢) are the parts
of the boundary where Dirichlet and Neumann conditions on the velocity

apply, respectively. Moreover, we define

[Hp(Q1))]? = {id € [H'(Qt)]* : @ =1iponTp(t)}.

Multiplying the semi-discrete equation by a test function (in the space of

the velocities) and integrating over the domain €2 we obtain:

/Q(t) [Re(% + (@ v)ﬁ)}w dQ(t) = — /Q(t)(Vp)'u_)' A0 (t) + /Q(t)(v )

+/ F@ dQ(t), VYoeWw
()
(3.27)

The boundary of €(¢) is split into I'p(¢), where Dirichlet conditions are ap-

plied, and I'y(¢), where homogeneous Neumann conditions hold.

We now transform the two integrals featuring a differential operator on the
right-hand side of Eq. (3.27) by applying a vector-scalar and a vector-tensor

identity, respectively. The first reads as follows:
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/Q(t)(Vp L@ dO(t / V- (pid) dQ(t) — /() (V- ) A1)

then, by means of the divergence theorem for the first term on the right-hand

side

/Q (¥ 7400 = / RGN /Q RASULEC

Note that the test function vanishes on the Dirichlet part of the boundary.

In the same fashion, we use the tensor-vector relation:

/Q(t)(V'T St / V- (rd) dO(t) ~ /()(r:w)dﬁ(t)

and apply the divergence theorem to the first integral on the right-hand side
of Eq. (3.27) to obtain

/Q(t)(v-f) - dQ(t) = /FN(t)(nv) - dDy (t) — /Q(t)(f L Vi) dQ(t).

Thus we can recast Eq. (3.27) in the following form:

[ [+ 9] a0 [ 5 aote

+/ p(V - 15) dQt) = / (74@) - 7 dTw (1) — / (pii - /) dTw (1)
Q(t) 'y (1) I (t)

(3.28)
The right-hand side incorporates all the Neumann boundary integrals and
resembles the weak normal jump in the total stress. This is a natural means

for incorporating the boundary condition for the normal stress jump accord-
ing to Eq. (3.26):

/FN(t)(ﬂD')-ﬁdFN(t)—/FN(t)(pU?-ﬁ) dFN(t):/ T 7= 0. (3.29)



When surface tension, say o, is relevant, this condition is made dimensionless
by means of the Weber number defined as We = % and the normal stress

jump is balanced as follows:

/ T i dUx (1) = (G ) / Wi dDx (D). (3.30)
N0 We/ Jryw

A similar procedure can be performed starting from the two fields formu-
lation, where an integration by parts of the integral of the Laplacian will
give rise to a boundary integral featuring the normal velocity which van-
ishes on the free surface. Therefore, it is a natural means to include the
no-penetration condition (3.25) rather than (3.26). See [15] for further de-
tails. Since surface tension is neglected here there is no contribution from

the integral in Eq. (3.29), and the two approaches are equivalent.

3.2.3 Discrete Stokes problem: compatibility conditions

We revert our attention again to the weak formulation of the two fields
Stokes problem: find @ € [H{(Q)]? and p € L2(Q) such that

n | Vu:VidQ— [ (V-d)p dS2
/“ /9 (3.31)
_ / Fod  vae [H(Q]],
Q
/(v @)gdQ=0 Vg€ L*Q). (3.32)
Q

One approach is the one described in §3.2.1; we solve the problem for the
velocity in the space defined in (3.19) and then we analyze the behavior of

the pressure. A second approach would be the other way around. The space

Z={we Hy(Q) : /Q(v -)p dQ = 0}, (3.33)

can be seen as the kernel of the weak divergence operator acting on the

velocity. If we consider instead the space

Sy ={q € L3(Q) : /Q(v - i) q dQ = 0}, (3.34)
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this is the kernel of the operator dual to the weak divergence operator. This
is the weak gradient acting on the pressure. The second approach then

would be to look for a pressure solution in the space S:-

', hamely the space

which is orthogonal to the dual space of Z. This restriction is also equivalent
to (3.22) (see Babuska [2] or Brezzi [17], for instance).

Maday et al. [73] used this approach to derive the discrete compatibil-
ity condition which ensures that the discrete velocity and pressure fields
are coupled correctly, with no presence of so called spurious modes for the
pressure. These modes, which are physically meaningless, are absent if the
polynomials approximating the pressure are two degrees lower than the ones
approximating the velocity. This condition has been derived by Maday et
al. in [73] and it reads:

the spaces (Py ® Py)? and Py_3 ® Py_2, as approximation spaces for the
velocity and pressure fields respectively, are compatible with respect to the
condition (3.22).

In the aforementioned condition, ® is the tensor product. Once this condi-
tion has been satisfied, the approximation process can be performed. The
velocity and pressure fields have to be approximated, not in the original infi-
nite dimensional spaces [H'(€2(¢))]% and L?*((#)), but in finite dimensional
subspaces. The physical domain Q(t) is divided into M non-overlapping
spectral elements Q,,(t), 1 <m < M, such that UM_,Q,,(t) = Q(t). We de-
note by Py (2,,,(¢)) the space of all polynomials on €2,,,(¢) of degree less than
or equal to N, and further define Py (Q2(t)) = {¢ : dla,, () € Pn(Qm(t))}-
Each of the spectral elements is mapped onto the parent element D =
[-1,1] x [—1,1], where each point (£,n7) € D is associated with a point
(z(&,m),y(&,n)) € Qk(t). The dependent variables are approximated on D
using Lagrangian interpolants of degree N in both spatial directions, based
on the Gauss-Lobatto-Legendre points. These interpolants are given explic-
itly by
(1 —9*)Liy(8)

MO TN DI TN 6

7



and

hi(€) = — (1= &)y (W) i=1,...,N—1. (3.36)

N(N + 1)Ly (&)(€ = &)

and satisfy the conditions h;(§;) = d;j, 4,5 =0,..., N and ﬁi(fj) =0ij, 4,J =
1,..., N —1. This creates a Gauss-Lobatto-Legendre grid inside the spectral

elements. The representations for the velocity, pressure and stress on the

parent element are

N
N, Q) = > T i) (Q), (3.37)
4,7=0
Nil ..
pr(,0) = > pRhi(¥)h;(0), (3.38)
7,7=1
N P
v, ¢) = Y TN hi()Rs(Q). (3.39)
1,j=0

The whole discretization process involves two different kinds of errors: the
first comes from the approximation of L3(Q2) by Iy, [H}]? by Ay and
[L2(2)]* by Y. This is exactly the error incurred by projecting the so-
lution from the infinite dimensional space on to the N-dimensional space.
The second is the quadrature error in computing the integrals. The error

estimates finally read as follows:

1@ —in N < NG e @ps (3.40)

Ip—pn 2 < eN* (|l @ llgm@yz + I p lgm-1q))- (3.41)

Equations (3.40) and (3.41) clearly require that p € H™ Y(Q) and 4 €
[H™(Q)].

Details on this error analysis for the Stokes problem can be found, for in-
stance, in Bernardi and Maday [10] or Schwab [113], while the reader in-
terested in a more general treatment of the polynomial approximation and
error estimation in Sobolev spaces will again find useful Brenner and Scott
[16] (chapter 4).
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Compatibility and error analysis for the three fields case has been performed
instead by Gerritsma and Phillips in [40], and the authors determined that
the following condition has to hold in order for the discrete problem to be

well posed:

the space (Py ® Py)%, together with the spaces (Py ® Py)? and (Py_2 ®
Py_4) are compatible spaces for the approximation of the stress, velocity

and pressure fields, respectively.

The corresponding error estimates read
I —=7n5 2@ < N7 iz + 1@ o)) (3.42)

I'd = an g p< N0 7 lzz@pe + 1 @ g ye)], (3.43)

3
2

I p=pn 2@ < eIN> 7" 7 ez + 1@ Iy y2 + 1P 2] (3-44)

Note that (3.44) is not optimal, but it’s sharper by a factor 1/2 compared
with (3.41), and the reason behind it is that Bernardi and Maday [10] used
the space (Py_2® Py_9) to approximate the pressure, while in the practical
computation of the error, (Py ® Py) is the space used by Gerritsma and
Phillips in [40].

3.2.4 Stability estimates for the stress tensor

This section is mainly devoted to the derivation of a stability estimate for

the extra-stress tensor in the three formulation of the Stokes problem.

Stability estimates measure how the norm of the solution depends on the
norm of the data. Stability clearly means that a small perturbation of the
data does not affect the solution. For the two fields Stokes problem, stability
estimates for the velocity and the pressure read as follows (see, for instance,
Bernardi and Maday [10] ):
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| dn iy < el Fllm-1a)2s (3.45)
Ion 2y < Byt I F -1 a2 - (3.46)
The difference between these two inequalities is the factor By, which de-

pends on N. Therefore, for the pressure, stability depends on the order of

the approximating polynomials.

In order to derive an estimate analogous to (3.45)-(3.46), we write down
again the compatibility conditions involving velocity and stress derived by
Gerritsma and Phillips [40] :

o:Vi
sup 1197>ﬂ||w||H1 2‘v’w€[H0( )2 (3.47)
L2())

This condition has been derived with an abstract approach, namely, using
the closed range theorem; if D is the operator arising from the form d

defined in the weak formulation as

d: [L*(Q)]* x [H' ()] /ns Vi dS, (3.48)
and D’ is its adjoint, the abstract condition

e
up L4 D) |
25 15

results in the compatibility condition (3.47), since Ker D' = {0} in [H} (Q)]2.

> p || W H Z/KerD's Vi €E, (349)

According to the closed range theorem (see, e.g., Schwab [113] for the de-
tails) we can swap velocity and stress without changing our constant 3, in

order to obtain

e H%H. > B oy ¥ & € [ (@) (3.50)
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This condition still holds when we approximate the problem in the subspace,

and it reads as follows:

oy : V¥,
sup fQ N N

= >0 ” ON ”[LQ(Q)]4,V ON € (PN ®PN);1, (3.51)
onePyepry)? || N )2

with 3; = 3/C and C is the continuity constant for the L? orthogonal pro-

jector for the stress field.

The momentum equation in the weak 3-fields formulation is

/(V"l—)'N)p—F/&N:VﬁN:/F"ﬁN VﬁNE(PN®PN)2ﬂ[H&(Q)]2
Q Q Q

(3.52)
SO we can write
N _ — [ (V- ON)p+ [, F-Tn
o gy < 67 sup oV TPt g (353)
Tx E(Py@Py)? | N a1 ()2
—n [ Vi :Viy+2 [, F-7

=B sup Mo Vin  ViN 2] 0x -y o)

x E(Py@Py)? | On llia ()2
< Byt (1Ceont | AN Ny +2 | F lliz2(ay2) (3.55)
< B (CeontCotan | F lliz2cz +2 11 F lliz2(a2) (3.56)
< B (1CeontCltap + 2] | F l22(2yp2 - (3.57)

In the second inequality above we used the continuity of the bilinear form a

in the 2-fields weak formulation, namely,

a: [HY ()] x [Hy(D)]? , a(it, @) :/va:vw dQ,
Q

and Ciopy 18 the corresponding continuity constant; while in the last inequal-
ity we applied the stability estimate for the approximation of the velocity
(basically the inequality (3.45), see Bernardi and Maday [10]), and CY, , is
the stability constant.
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So finally we obtain the stability estimate for approximation of the stress
field:

165 2@ < Chap | F 22, (3.58)

with Cfmb = [ﬁfl(nCconthab + 2)]. Note that in the stability sense the
stress has a behaviour similar to the velocity, namely, its stability constant
does not depend on N, while it does for the pressure approximation. This
is to be expected since the approximation space for the extra-stress tensor
is of the same order as the approximation space for the velocity. On the
other hand this behaviour also tells us that, for measuring the stability of
the approximated solution at the discrete level, it does not matter that the
components of the extra-stress tensor are in the same space as the pressure

in the original continuous problem, namely L2(€2).

3.3 Temporal discretization

Material derivatives are present in both the momentum and constitutive
equations. In both cases, the semi-discretization in time is accomplished
using an operator integration factor splitting (OIFS) method [74] of first or
second order, together with the employment of an Arbitrary Langrangian
Eulerian (ALE) technique. More precisely, in the case of a first-order ap-

proximation, the material derivative is approximated as follows:

DG _G"t! —(G)"!
Dt~ At ’

where @G is the solution at time ¢ = ¢"*! of the pure advection problem

(3.59)

%—f +(G" =) - VG =0, (3.60)

with initial condition G (") = G™.

A second-order approximation (OIFS2) is

DG N 3Gn+l _ 4(él)n+1 + (é2)n+1
Dt ~ 2A¢ ’

(3.61)
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where G4, G5 are solutions of the pure advection problems

% F (G =) VG =0 (3.62)
%2 @) e =0, (3.63)

respectively. In Eq. (3.60), (3.62) an (3.63) 9™ is the mesh velocity at
t" = nAt used in the ALE formulation. The method of calculating o™
is described in §3.4.3. The corresponding initial conditions are given by
G1(t") = G" and Go(t" 1) = G" ! and G* is a second-order approximation
in time for G given by

4 qn—1

* n l— tn_l n—1
G = G+ (1—T)G . (3.64)

The pure advection problems (3.60), (3.62) and (3.63) are solved numeri-
cally using an explicit 4th order Runge-Kutta method.

Both schemes are used in the numerical simulations of Newtonian die swell
in Chapter 4. A few remarks on the performance of the two schemes are also
presented. However, the second-order scheme is preferred in the numerical
simulations of extrusion of a viscoelastic fluid, in both the momentum and

constitutive equations.

3.3.1 Semi-discretized equations for different models

The application of the OIFS scheme transforms the problem from its contin-
uous form into a form which is semi-discretized in time. In the Newtonian
case, we solve the two-fields problem. The semi-discretized system of equa-

tions, when OIFS1 or OIFS2 scheme are used, reads, respectively:

i_i(ﬂn'i'l — ﬁn—l—l) = _Vpn+1 + Aﬂn—H, (3'65)
V- ,l—[n—l—l — 0’ (366)
and
Re . _ni1 2 \n+l | (2 \n+l ntl T
g BT = 4" (@) = —Vpt AT, (3.67)



Vit =o. (3.68)

The superscript indicates the time level, with n + 1 being the current time
level. In the case of viscoelastic fluids, the constitutive equation is solved
separately and OIFS2 is employed. The corresponding semi-discretized for-

mulation for a generic viscoelastic model can be written as

S (B~ A (7)) = T 4V BAT), (369

V-t =0, (3.70)

.
U S BT = AF ) = 21— AD" — BN (7, d). (3.71)

The Laplacian in Eq. (3.69) comes from the decomposition of the stress
into viscous and polymeric contributions, 7 being the polymeric part. In
Eq. (3.71)

) = fen

and

:(fnfl(Tn—l) o 1) 1W_/f8I
Wi ! (3.72)
T ﬁT"_l et w(va et

— Wi Y (varh).

_l’_

If f(o) =1 and @ =0 in Eq. (3.71) and (3.72), then the Oldroyd-B model
is obtained. Moreover, if also § = 0 in Egs. (3.69) and (3.71), then we
recover the UCM model. Finally, when f(o) takes the form described in
Verbeeten et al. [132], the XPP model is retrieved. The last two terms
in the right-hand side of Eq. (3.72) represent the deformation terms in

. . . v . .
the upper convective derivative, 7. The temporal scheme is uncoupled in
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the viscoelastic case, namely, the constitutive equation (3.71) is solved first,
therefrom the superscript n. This allows for a free choice of test functions,
as we will describe in §3.4.2. The value of the stress at the new time level is
inserted into the momentum equation. The latter is solved simultaneously

with the continuity equation.

3.4 Spatial discretization

Domain decomposition methods are certainly more flexible than methods
which solve a problem globally. This is because they give us the chance
to solve our problem more accurately where needed; simply think of singu-
larities, obstacles and anything else which could imply some steep gradient
of the quantities involved; the price to pay is in the computational cost of

storing the data.

To derive the weak formulation of a problem we need new spaces of func-
tions (test spaces), so a theoretical effort is required if we want to make
sure that the new problem is well posed. The advantage from a practical
point of view is that with the use of these test spaces, which can be more or
less arbitrarily chosen, less regularity in the solutions will be required (see
§3.2.1).

Pioneered by Patera [96], spectral element methods (SEM) are similar to
finite element methods (FEM) because of their common domain decom-
position approach and their approximation of the weak formulation of the
governing equations. The main difference lies in the choice of basis func-
tions in the approximation space: FEM uses a hierarchical basis, namely a
set of polynomials of increasing degree. In spectral element methods, Ja-
cobi polynomials are used on a Gauss-Lobatto-Jacobi grid (see §3.4.1). A
comparison between these approaches, as well as several applications, can
be found for instance in the monograph of Karniadakis and Sherwin [61].
Literature on the FEM is extensive. Brenner and Scott [16], for example,
provide an exhaustive theoretical and numerical treatment of the FEM. In

the particular case of elliptic problems, we refer the reader to the classic
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book of Ciarlet [25]. Focusing on spectral element methods, the book of
Bernardi et al. [10] goes probably the deepest, opening a wide view on the
theoretical implications of the issue of compatible spaces and conditions.
Finally, a gradual overlapping between the two methods and an abstract

approach using operator algebra is described by Schwab [113].

3.4.1 Spectral Element Methods

The spectral element method, introduced by Patera [96], is used to discretize
in space the weak formulation of the governing equations. Since the temporal
scheme we use decouples the solution of the conservation equations from
the constitutive equation, the first of these problems is effectively a two-
fields, velocity-pressure problem, with the stress known from the previous
time step. Throughout the thesis M and N denote the number of elements
and polynomial order, respectively. The weak formulation of the problem
semi-discretized in time by means of OIFS2 is: find @"*! € [H}(2)]% and
p" T e L2(Q) such that

3R
—e/a"“-wdmr/r":vwdﬁ—/(v-w)p"“da
S g (3.73)
_ E/Q(zm’;“ @y .5, Vaew

/(V i@ q dQ =0, Vq € L(Q). (3.74)
Q

The test functions @ and ¢ are chosen in W = {w € [H'(Q)]? : @ =
0 on O0p} and LE(Q) = {q € L*(Q) : [,q dQ = 0}, respectively. To
obtain a linear system, the velocity and pressure fields are approximated as
described in §3.2.3. Once this process has been completed, the discretization
of (3.73)-(3.74) results in a linear system in which the unknowns are the
values of pressure and velocity at the nodal points on the computational

grid

Dyust =0, (3.75)
(M,Cy + BEN)uN™ — Dipit = gn. (3.76)
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In this linear system, Dy is the discrete weak divergence operator, D% is its
transpose, gn contains all the discretized nonlinear terms from the material
derivative and Cy and Epy are the velocity mass and stiffness matrices,
respectively. The coefficient multiplying the velocity mass matrix is given
by M; = 3Re/(2At). To solve the system the symmetric Helmholtz operator
H = (M;Cy + BEN) has to be inverted, and this is done by means of
the conjugate gradient method using the diagonal of the spectral matrix
as preconditioner. Then, in order to exploit (3.75), we multiply (3.76) by

Dy H ™! and arrive at the pressure problem

DyH 'DLpit' = DvH gy, (3.77)

in which the Uzawa operator is U = Dy H *ID%. The pressure is found by
solving (3.77) and then the velocity is determined from (3.76). The inver-
sion of the Uzawa operator, which is symmetric, is also performed using the
conjugate gradient method, but a local finite element based preconditioner
is preferred here. The Uzawa operator is in L? and, as such, no boundary
conditions are applied directly to the pressure - boundary conditions are en-
forced in the velocity space [36]. A triangular finite element mesh, based on
the inner GLL nodes of each spectral element, is constructed. The precon-
ditioner is based on the finite element mass and stiffness matrices on local

finite element problems, MI'F and EI'F respectively. It reads

M
Pyt =FE; =Y RL (MEP + aBERP) ' Ry, (3.78)

m=1
The restriction operators R,, maps a global vector to a vector of length
equal to the number of inner GLL nodes of element €2,,,. The preconditioner
is stored in an LU-decomposition, and inverted when needed. The choice of
this preconditioner is based on the comparison of performances of a number
of preconditioners carried out by Van Os [127]. The finite element based
preconditioner provides an effective reduction in the number of iterations,
which in the case of the Uzawa operator results in a saving by a factor of
4 — 6 in the number of iterations. The coupling of this finite element based
preconditioner for the Uzawa operator with the aforementioned diagonal of

the spectral matrix for the Helmholtz operator provided the fastest combi-
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nation in terms of CPU time required to complete a time step.

Regarding the semi-discretized constitutive equation (3.71), the solution is
sought in the space of symmetric tensors of order two whose components are
in L*(Q2). We denote such a space [L?(Q)]3,,m- The polynomial order is
also N, the same as the velocity. As for the momentum and mass equations,
Eq. (3.71) is multiplied by a test tensor and integrated over 2. This leads

to the following weak problem: find 7" € [L?(Q)]4 such that

symm
(4 5) [ e —20-0) [ Do
— % /9(4'7-1 —T) o (3.79)

_ / E" Y1, 4): o, Vo € [LQ(Q)]gymM'
0

After discretization, the resulting linear system is
Snth = (1 - B)BRut" + hY, (3.80)

in which Sy is the non-symmetric discrete operator that contains all the
terms on the left-hand side of the weak form of the constitutive equation
and h'’; is the discrete form of the right-hand side, respectively. This system

is solved by means of the stabilized bi-conjugate gradient method.

3.4.2 Local Upwinding Spectral Technique

The spectral element methods are based on a Galerkin-type formulation of
the differential problem; a weak form is obtained by multiplying the differ-
ential equations by test functions, and then integrating. The choice of the

spaces for these function has been already discussed.

In the case of an uncoupled scheme although a free choice is available for
the equation solved independently from the others. In our case this is the
constitutive equation, so the test function for the stress can be freely cho-
sen. An upwinding scheme is then used. The upwinding technique takes

into account the effect of the convection not only in the the functional space
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of the solutions, but also in the test space. The stress test function is then

in the form

o—hi-Vo, (3.81)

and different choices of h, the shift factor, lead to different upwinding meth-
ods.

A popular choice is the so called Streamline Upwind Petrov Galerkin (SUPG),
which sets h = %, N being the degree of the polynomial basis. The Locally-
Upwinded Spectral Technique (LUST), proposed by Owens et al. in 2002
[93], is different because calculates the shift factors h; locally, at the element
level. Within each spectral element, the GLL grid defines smaller rectangles
with vertices formed by the GLL nodes z;;. A generic coordinate inside the

mini-element can be then identified by

Zij = .’L‘Z'j — hﬁ(:v”)

The Lagrange interpolant

Pyii(z) = (1 =) Liy(n)(1 =€) Ly ()

then has a zero streamline derivative inside the mini-element, and the fol-

lowing equality is thus satisfied:

PN+1(2,’1‘]') + W’l(ﬁ . V)PN_H (ZZJ) =0. (3.82)

Expanding Pyy1(zij) about the corner z;;, it can be found (see [93]) that
for the internal nodes the shifting factor is the positive root of the quadratic
equation
2Wz'N(N+1)( Ui + % VW2 + hij — Wi=0 (3.83)
3 1—¢2  1—p27 ‘ '

We refer to [93] for the derivation of the shift factors on the edge nodes.
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Figure 3.2: Spectral element mesh for the extrudate swell problem with
M =28 and N = 8.

3.4.3 Update of the position of the free surface

Since the Legendre polynomials are defined on the parent interval (—1,1),
each physical element needs to be mapped onto the parent element (—1,1)?
and vice versa. This is also required in the fixed domain case, where the map
is built for each element once and for all at the start of the computation.
For moving boundary problems, the map clearly needs to be reconstructed
at each time step for elements with an edge on the free surface to take into
account the update of the location of the boundary. The velocity on the free
surface is obtained as part of the solution process and so the test functions
are chosen not to vanish there, which is similar to the treatment of fixed
domain boundaries on which Neumann boundary conditions are specified.
This velocity is used to move the nodal points on the free surface.

The transfinite mapping technique, introduced by Gordon and Hall [42],
is a powerful method when an interior system of co-ordinates needs to be
generated in a quadrilateral domain from a knowledge of a geometric descrip-
tion of the edges. This is perfectly suited to the spectral element method.

In our case, a bilinear transfinite mapping is used:

F(&,m) =31(&)br1(n) + F2(€) a2 (n)

+ Y3(&)P2(n) + Y4 (&)1 (n) — F1¢1() P2(n) (3.84)
— Zapa(&)p2(n) — T3d2(n)$1(§) — Zagr (€)1 (n).
The vectors Z;, ¢ = 1,...,4, are the coordinates of the vertices, while the

functions ¥;, i = 1,...,4 map each edge (z(s),y(s)) (=1 < s < 1), of the
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physical element onto an edge of the parent element. In our case the com-
ponents of 74;, which represent the transformation in the x and y directions,
will be linear. Also the basis functions ¢;, ¢ = 1,2, are linear. The linear
blending functions ¢;, 1 = 1,2 are given by

_1-¢
==

1+4¢

$a(§) = —— (3.85)

$1(£) 5

Once the solution is found at a certain time step n, then the nodes on
the edges of those elements that lie on the free surface are moved. The
free surface is tracked according to three numerical schemes. A first-order

scheme, a simple forward Euler formula can be used, namely,

Xt X7 = g" At (3.86)

To achieve high order accuracy in time, two different Adams-Bashforth
schemes have also been implemented. More precisely, the second and third

order schemes, which read, respectively,

At

Xt X = - (=sa"+an ) (3.87)
and A
Xt - Xn = 1—; (23" — 16"~ + 5a"2) . (3.88)

Remarks on the performance of these three schemes in tracking the free sur-
face will be discussed in Section 4.4.2 for the Newtonian die swell. In the

case of viscoelastic fluids, the third-order scheme is employed.

Once the position of the nodes on the free surface has been updated in
a Lagrangian manner, edges of elements that lie on the free surface are re-
constructed using spectral interpolation. A sample mesh at an intermediate
time is shown in Fig. 3.2. The elements in the die are fixed, while elements
exterior to the die and adjacent to the free surface are free to move. After
the nodes on the free surface are moved, the transfinite mapping for those
element adjacent to the free surface are reconstructed. As a result, the GLL
nodes in these elements are also displaced. The transfinite mapping enables
the mesh velocity, v", to be computed. More precisely, if Xﬁj{l and X iny are

1

the vectors of the coordinates of the internal nodes constructed by means of
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the transfinite mapping at the current and previous time level, respectively,

then the arbitrary mesh velocity for the ¢ — th internal node is calculated as

gt = (XL X ) /A

i int,i int,i
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Chapter 4

Die Swell of a Newtonian
Fluid: Novel Physical
Interpretation and

Numerical Simulations

In the introduction of this thesis we have described the importance of free
and moving surface flows in real life: from testing biomaterials to the flow
of biofluids, from food factories to chemical industries. There are many ap-

plications of flows with a non fixed domain, or a priori unknown domain.

The rest of this thesis is fully devoted to one of these problem which despite
its harmless appearance, remains one of the most challenging in the realm
of fluid dynamics. Such phenomenon is better known to the researchers as

”die swell” or "extrudate swell” problem.

4.1 Introduction

Moving and free surface flows are pervasive in both nature and industry:
flows in the human body, and problems in oceanography, dam problems,

chemical industry, food processing industry are only a few examples of ap-
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Figure 4.1: Fluid jet from a die.

plications requiring good numerical predictions. The so-called die swell phe-
nomenon is particularly common in industries where fluids are extruded
from dies. Bread dough, concrete, molten polymers, ink are some of these
fluids. The most important and relevant swelling phenomena in real life,
such as the ones mentioned above, are related to viscoelastic fluids, which

we will analyze in the next chapter.

When a fluid leaves a die a relaxation process due to the absence of rigid
walls occurs. As a consequence of this process the fluid swells. The ratio
between the diameter of the fluid downstream when relaxation is complete
and the diameter of the die is called the swelling ratio. This quantity, to-
gether with the normal stress jump at the exit of the die and the tracking
of the free surface outside the die are the key points to understand and to
analyze in this problem. A sketch of the die swell phenomenon is depicted
in Fig. 4.1.

The literature on the Newtonian die swell problem is not extensive, and
mainly focuses on the axisymmetric case. The general trend in the develop-
ment of numerical methods for this problem has been to test the method on

the Newtonian case and then to move forward to the viscoelastic problem.
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The latter is certainly of higher interest for industrial purposes, and, perhaps
for this reason, the Newtonian die swell has not been fully understood. As
we have mentioned already, the main causes of viscoelastic swelling are the
normal stresses and the normal stress differences, together with the pressure
drop at the exit. It is widely accepted that the swelling ratio is proportional
to these quantities, and a few empirical equations have been proposed (see,
for instance, the data interpretation from Liang [68] and references therein).
From the analysis of Huang and Lu [54], the relaxation properties of the fluid
also appear to be quite relevant. In the Newtonian case, the normal stresses
and the first normal stress difference increase with Reynolds number; but
at the same time by increasing inertia the swelling decreases, causing the
extrudate to eventually contract for Reynolds numbers that are sufficiently
high. The first experimental evidence of die swell for a Newtonian fluid is
attributed to Middleman and Gavis [84], who reported decreased swelling
with increasing Reynolds numbers up to Re = 16. At higher Reynolds num-
bers the extrudate contracted after exiting the die. This tells us that the
mechanism behind the Newtonian die swell is unrelated to the viscoelastic
analogue. Therefore, a deep analysis of the extrusion of a Newtonian fluid is
needed in its own right and can provide an important insight into the under-
lying physics. The aim of the first part of this chapter is to give a complete
and detailed physical description of the die swell problem for a Newtonian
fluid, aided by high order numerical simulations in the planar case. In the
case of Newtonian fluids, the cause of the swelling is only the reorganization
of the velocity field from the fully developed Poiseuille profile within the
die to a completely relaxed plug flow far enough downstream from the exit.
This has been mentioned for instance by Jay et al. [59] in their simulations
of extrusion with slip conditions, with reference to the work of Tanner [118],
but the ideas presented in [118], as pointed out by Tanner himself, only pre-
dict changes from the Newtonian case. In fact, the equation Tanner derives
and uses to describe the swelling of second order and Maxwell fluids predicts

no swelling in the Newtonian case.

Between thirty and forty years ago, considerable effort was devoted to study-

ing the die-swell phenomenon. As powerful computers became readily avail-
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able, numerical simulations were performed, which then called for a deeper
physical interpretation. In the early sixties, Metzner et al. [82] used experi-
mental measurements of the swelling ratio to calculate the first normal stress
difference in a Poiseuille flow. In order to determine the normal stresses, they
derived a formula from the balance of momentum in the portion of fluid be-
tween the exit and the downstream relaxation region, where the fluid profile
has a constant diameter. They assumed that the flow downstream has no ef-
fect on the profile in the die. Although acceptable, this is not totally correct,
as we observe in our simulations. In fact, even when inertia is discarded,
a change in the velocity field still takes place just before the exit, as was
predicted by Horsfall [53], who solved a creeping flow problem by approxi-

mating the equations for the stream function with a finite difference scheme.

An early comparison between Newtonian and viscoelastic die swell was per-
formed by Batchelor et al. [7], who found that, for the natural rubber
Lorival R25, the swelling ratio increased significantly with increasing shear
rate, while for the Newtonian Paralac 385 it did not. This observation has
been confirmed widely, highlighting the distinction between the viscous and

elastic effects on the die swell phenomenon.

Early finite element simulations were performed by Nickell et al. [86] to con-
firm the 13.5% swelling in the axisymmetric geometry. They drew attention
to a change in the axial normal stress at the exit plane from tensile close to
the wall to compressive near the centre line. Although they understood the
relevance of this transition, they did not investigate it further. In the same
paper, the evidence of swelling in creeping flow is also supported in contrast
to Richardson [105], who argued that die swell is a phenomenon strictly
linked to inertia. Unaware of simulations or experiments for Reynolds num-
bers below the value of 2, Richardson reasonably argued that, by increasing
inertia, the fluid tends not to depart from its motion, this being the reason
for less swelling; the lower the inertia, the higher the tendency of the fluid
to fill all the possible space by swelling. He extrapolated this argument to
suggest that it is not possible for creeping flow to swell at all, an hypothesis

which proved to be incorrect. Ho and Patera [50] obtained agreement with
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the result from Nickell et al. [86], predicting a 13.26% increase for the same
geometry and an 18.4% increase for the planar case. Their simulations, as
far as we are aware are the only ones that have been performed for the plane

Newtonian die swell problem using spectral elements so far.

As part of a viscoelastic die swell analysis, Chang et al. [23] compared
collocation and Galerkin finite element methods and reported quite similar
performances for the Newtonian axysimmetric problem, while the colloca-
tion approach appeared to be superior in the case of a Maxwell fluid. This
difference has not been reported in other work that considered the same con-
figuration, such as Reddy and Tanner [102]. The latter authors used second
order fluids though, which led Chang et al. [23] to believe that the problem

was in the choice of the model rather than in the choice of numerical scheme.

Mitsoulis [85] simulated a three dimensional jet by finite elements reporting
a maximum 19% swelling in the 2 — D central section of his domain, which
would be the closest approximation to the planar, two-dimensional limit.

Swelling was then reduced to 4% at the corners of the square cross-section.

A systematic numerical study of the Newtonian die swell has been performed
by Omodei, both in the axisymmetric [91] and planar [92] cases. The effects
of inertia and surface tension have been carefully analyzed, the shapes of
different free surfaces have been investigated and checks on the satisfaction
of boundary conditions have been performed. Omodei used a Galerkin finite
element method to solve the governing equations and cubic splines to inter-
polate the free surface. Georgiou and Boudouvis [38] analyzed both planar
and axisymmetric problems comparing standard and singular finite element
methods. The effects of inertia and surface tension are investigated, and the
authors find standard FEM performing better than singular FEM when the
Reynolds number increases and capillary numbers decreases. Therefore the
authors suggest that the flow is less affected by the stress singularity at the
exit for increasing inertia and surface tension. However, in their simulations
the fluid starts contracting for Re ~ 7 (see Fig. 4 in [38]), which is less then
half the value reported by Middleman and Gavis [84]. Russo and Phillips
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[111] also focused on the validation of their numerical scheme based on the
spectral element method in a recent paper. The simulations reported in that

paper are accurate and in good agreement with previous work [92, 119].

In conclusion, it seems that the numerical simulation of the die-swell phe-
nomenon has focused so far on the performance of the numerical schemes,
without providing a convincing explanation of the decreasing swelling ratios
with increasing inertia. Tanner [119, 118] highlights the different region of
tensile and compressive stress, but there is no evidence of how such regions,
and the correlated stresses, change with inertia. In fact, for the isother-
mal Newtonian case, the idea of Tanner simply does not apply, because
no change in viscosity occurs between the compressive and tensile stress re-
gions. Moreover, neither has a full explanation been given to the contraction
process at large Reynolds number reported by Middleman and Gavis [84],
nor has an attempt been made to investigate the critical swelling Reynolds
number based on the stress balance. These are the gaps we try to fill in Sec-
tion 4.3, also investigating the role of the surface tension. The encouraging
numerical results in Russo and Phillips [111], which are the main subject of
Section 4.4, support the physical interpretation of the die swell phenomenon
presented in the present chapter, which starts with an overview of the role
of the stress singularity at the exit in the die-swell problem. A detailed
analysis of such an issue is outside the scope of this thesis. However we

believe it is too important to be left out.

4.2 Stress singularity at the exit in die-swell: an

overview

The stress singularity at the exit of the die in the die-swell problem is a
particular type flow near a sharp corner. It is one of the cases where the

corner points into the flow, this being the reason behind the singularity.

In general, the assumption is made that the stream function for the problem
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can be expressed as

P =71"fn(0). (4.1)

In the case of Stokes flow, the stream function satisfies the bi-harmonic

equation V4 = 0. Therefore, a general solution is

fm(0) = Aj cosmb + Agsinmb + Az cos(m — 2)0 + Ay sin(m — 2)0. (4.2)

The angle « of separation in this case is also an unknown quantity. The
contrast between the theoretical prediction of Michael [83], who report sep-
aration at a = 7, and the experiments suggests further research is needed.
In the case of @ = m, the exponent is real and has a minimum value of
m = 3/2. As a consequence, the stresses behave like r~1/2 near the separa-

tion point.

In the case of power-law fluids, the stress behaves approximately like pn/(ntl)
while the second-order model shows a non-integrable behaviour for the

stress, namely 7 L.

For viscoelastic fluids, the Oldroyd-B case was analyzed by Hinch [49] for
a = 37/4. He proved the assumption that the convective derivatives of
stress and rate of strain in the constitutive equation dominate to be wrong.
Therefore, it does not seem plausible to associate the Oldroyd-B fluid behav-
ior to a Newtonian fluid with an effective viscosity of g7, where 8 and 7 are
the viscosity ratio and solvent viscosity, respectively. Hinch [49] considered
instead a core region where the alternative limit case, namely a vanishing

upper convective derivative, occurs. The consequent result is that the stress
behaves like

gy o 7 217/), (4.3)

From Eq. (4.3) one realizes that the limiting cases are @ = 7, with a corre-
sponding regular solution, and o = 27 with a corresponding non-integrable

solution. For 7 < a < 27 the stress is singular and integrable. These results
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have been confirmed by Renardy [104], who matched upstream and corner
flows for a = 37 /4.

As far as numerical results near singular points are concerned, Richard-
son [106] pioneered the investigation on the Newtonian stick-slip problem
more than twenty years earlier than the study of Tanner and Huang [121],
which would have shown the exact form and strength of the singularity. The
numerical results from Richardson underestimated the strength of the sin-
gularity, while better agreement with theory was obtained by Salamon et al.

[112], who used FEM based on extremely fine meshes.

The viscoelastic stick-slip problem is much more difficult. No results are
provided by either Hinch [49] or Renardy [104] for the slip-stick case in the
case of an UCM fluid. Therefore, for the sake of comparison, Tanner [119]
reports on computations with o = 37 /4. A reasonable agreement with the
results in Renardy [104] is found with the stress behaving like r—2/3, and
velocity like (~ 72/3). Moreover, in the case of an affine PTT fluid there
seems to be a very small, roughly Newtonian region [119] near the stick-slip

point.

4.3 Physical interpretation of die swell

Throughout the whole chapter, we adopt the following choice of the param-

eters:

L=10m; d=0.4m; p = 1.0kg/m3; U=1.0m/s.

The Reynolds number scales as the inverse of the viscosity and the Weber
number as the inverse of the surface tension parameter o. In fact, for the
above choice of parameters, Re = i and We = % As we have already
remarked, most of the previous work on the Newtonian die swell problem
simply treated the problem as a stepping stone to reach the corresponding
viscoelastic problem. A complete physical explanation of the phenomenon

has yet to be provided.
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In the viscoelastic case, it is accepted that the swelling ratio is propor-
tional to the normal stresses and normal stress differences [117]. A few
equations have been proposed (see for instance the data interpretation from
Liang [68] and the references therein) relating these quantities. In Table
4.1, we simply highlight that this explanation is not valid in the Newtonian
case. Although the computed axial normal stress at the exit increases with
increasing Re, there is not a corresponding increase in the swelling ratio. In
fact, the opposite trend is observed, and the swelling ratio decreases. More-

over, the first normal stress difference for a Newtonian fluid is zero.

For a Newtonian fluid, the swelling beyond the exit of the die must be
attributable to the transition from Poiseuille flow in the die to a uniform or
plug flow far enough downstream. We define a region of transition to be
the region between the die exit and the downstream cross-section at which
a plug flow and an extrudate of constant diameter is formed. Such a transi-
tion is caused physically purely by the sudden jump in the shear stress. This
attains its maximum value, in modulus, at the wall in the die, because it has
to stick the particles to the rigid surface where no slip is applied, whereas
on the free surface it is zero. Immediately, after the exit, the particles close
to the wall are then, in some way, finally free to move when the fluid leaves
the die, resulting in an almost instantaneous acceleration.

The horizontal velocity profiles at different cross sections are shown in
Fig. 4.2. The exit plane corresponds to x = 10. The difference between the
first two curves confirms that the flow just before the exit is influenced by
the whole flow field, as was noticed by Horsfall [53].

4.3.1 Conservation of energy and downstream velocity pre-

diction

It can also be seen in Fig. 4.2 that, in the core of the fluid, the fluid par-
ticles decelerate and the axial and radial normal stresses change sign. This
is illustrated in Figs. 4.3 and 4.4. We define the outer layer to be the

region where the particles accelerate in the axial direction and 7, > 0.

'Tn this chapter, we denote with the tensor 7, whose components are Tyz, Tzy and 7y,

the extra-stress tensor introduced in Chapter 2, Eq. (2.22). In fact it is equivalent to T.
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Figure 4.2: Horizontal velocity profiles at different locations inside and out-

side the die. The solid curve is just before the exit.

Conversely, we define the core layer to be the region where the axial ve-

locity of the particles decrease.

One could argue that, as a consequence of the acceleration of particles in the
outer layer, the plug flow profile should be uniform with the velocity assum-
ing its value at the centreline; namely, the maximum velocity w,q,. This is
clearly not what is observed, and the reason for this can be explained by the
conservation of energy. In the region of transition there is no gain or loss
of energy since gravity is neglected, there is no friction on rigid boundaries
and there are no other external forces. This means that the total flow rate
at any cross-section in the die has to be the same as at any cross-section of

the plug flow.

For viscoelastic fluids instead, namely throughout the rest of the thesis, T represents the
polymeric extra-stress tensor, so that T' = 2nsd + 7.
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Figure 4.3: The core and the outer stress regions downstream of the exit of

the die. The exit is at the origin of the axis, = 10.

The flow rate at any cross-section in the die is

Que= [ wya= [ E(-2[-(2)] g

where h is the die radius and (—%) is the pressure gradient driving the

flow. In the same fashion, taking into account that the plug velocity w4

is constant, we can express the flow rate downstream as

Qplug = 2hplugupluga (45)

where hpjy, is the radius of the plug. If upjug = Upmes it is trivial to show
using (4.4) and (4.5) that Qpiug > Qdie, which is not allowed. On the other
hand wp;,g > 0, so this explains why the velocity downstream achieves a
value 0 < Upjug < Umae- This implies that the particles in the core region of

the fluid do decelerate in the region of transition.

If the final diameter hyy,, is known, equations (4.4) and (4.5) provide a
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means of predicting the downstream plug velocity. It is simply calculated as

Qdie

Uplug = .
plug
2hpiug

A comparison of the plug velocities predicted by this formula and the ones

(4.6)

obtained by numerical simulations is given in Table 4.2 for different flow pa-
rameters. The column UZSZ has the values predicted by the flow rate balance
(4.6) and the values Uppg are the results from the simulations. It is clear,
from this table, that the approximation improves with the approximation
order of polynomial and is more accurate at lower Reynolds numbers. In

this table, SR is the swelling ratio used to determine the final diameter A, .

The formula we used to compute Qg4 - and hence u%f'; in (4.6) - is ac-

tually written in terms of the maximum velocity on the centreline of the

die:

Quie = 3 tmas(2h). (@7
The reason is that, even though in reality the pressure gradient drives the
flow, initial conditions are required for the velocity rather than the pressure
in the numerical simulations. This means that the value of the pressure
gradient —ﬁ—ﬁ is computed at the end of the simulation. Thus, if we want to
apply (4.4), we would be using a quantity that is already affected by some
numerical error. On the other hand, the inlet boundary condition is exact
at the inflow boundary, and so is the maximum velocity which appears in
(4.7). The outer and the core layers are then identified by the regions with
accelerating and decelerating flow, respectively, in the axial direction, or,
in other words, by the tensile and compressive stresses, respectively. The
situation is depicted in Fig. 4.3: the acceleration of the particles close to
the wall in the z—direction results in 7, > 0; therefore, a negative 7, is a
consequence of (2.20). We remark that, for Newtonian fluids, the continuity
equation is equivalent to the condition ¢r(7) = 0. As just pointed out, the
normal stresses change sign in the core region. There are no other forces
involved. We therefore believe that it is the resultant of these competing

stresses that is the only cause of the swelling or shrinking of the fluid out-
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Re | Computed normal stress at the exit | Computed swelling ratio
1 13.048 1.1998

3 15.636 1.1710

6 22.339 1.1503

8 28.889 1.1182

10 40.001 1.0844

Table 4.1: Dependence of axial normal stress at exit and swelling ratio on

Reynolds number.

pred

Umaz | Re | SR lug u;f;ng(% err) u;)%umg(% err) u;)%umg(% err)
N =8 N =12 N =16
0.75 1 | 1.9998 | 0.4201 0.4338 0.4203 0.4204
(3.19%) (0.03%) (0.03%)
2.25 3 | 1.1347 | 1.3219 1.3008 1.3133 1.3173
(1.59%) (0.65%) (0.35%)
4.5 6 | 1.1131 | 2.6915 2.6016 2.6891 2.6927
(3.46%) (0.35%) (0.04%)
6.0 8 | 1.1006 | 3.6343 3.4688 3.6171 3.6245
(4.55%) (0.74%) (0.27%)
7.5 10 | 1.0844 | 4.6108 4.3336 4.5544 4.5727
(6.01%) (1.22%) (0.83%)

Table 4.2: Comparison of the predicted and approximated values of the plug

velocities.

105




15F
10
N /
5
:OE:::i:i:i, —
e I
Esf
E 1., Re=1
10 1,,,Re=1 |
u - — — 1,,Re=6 [
N — — — 1,,Re=6
15 TZI Re =10
o 1,,, Re=10
20F
- L1 | L1 |
0 0.5 1 15
Y

Figure 4.4: Dependence of the normal stress profiles at the exit on the

Reynolds number.

side the die. The outer layer tries to push down the core and vice-versa.
Swelling takes place as long as the total force from the core is larger than
the force exerted by the outer layer; otherwise the fluid shrinks. In Section

4.4, numerical simulations are presented that confirm this hypothesis.

4.3.2 Variations in inertia and surface tension

It is well known that increasing inertia reduces swelling. There is also a fair
amount of evidence to support this statement. For instance, the work of
Russo and Phillips [111] confirmed predictions of Omodei [92] obtained in
the late seventies for a range of Reynolds numbers.

Again, the physical reason behind this is the balance of stresses between
the core and the outer layer. The fluid exhibits swelling up to a certain value
of the Reynolds number, which we call the critical swelling Reynolds
number and denote Re., 5,. This value, according to the first experiments
of Middleman and Gavis [84], is around 16, whereas Omodei [92] predicted

a value around 18.
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Figure 4.5: The curve along which 7, = 7y, = 0.

The curves highlighting the different regions of tensile and compressive stress
are shown in Fig. 4.4 for different values of Re. The first component of the
normal stress, 7,4, is negative along a large part of cross-section at the exit
and it becomes positive around y = 1.75. The second component, according
to the continuity equation, is simply —7,,. This change of sign in the nor-
mal stress components marks a switch from compressive to tensile stress.
We also show in Fig. 4.5 a snapshot, for Re = 1, of the region of transi-
tion. Here the line along which the normal stresses change sign has been
computed numerically, and it is represented by the square symbols. In this
picture it is also clear that the continuity equation is not violated since both
Tz and 7y, change sign at the same point. It is clear from both Fig. 4.4
and Fig. 4.5 that the core layer is broader than the outer layer. Actually,
in Table 4.3 it can be seen that the core layer accounts for about twice the
area of the outer region, almost independently of the Reynolds number.
What is also clear is that the difference between the values of the stress

is much greater in the outer layer than in the core, due to the presence of
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Figure 4.6: Dependence of the difference between the forces in the core and

outer regions on Re for different values of Weber number.

the singularity at the exit. Therefore, the force pushing the fluid to swell
is smaller but acting on a larger portion of fluid, namely the core layer
whereas the force attempting to shrink the fluid is much higher but acting
on a smaller portion of fluid. When inertia increases, the stress acting on
the outer layer increases much more than its counterpart in the core; from
Re =1 to Re = 10 the stress on the centreline barely rises above 1, while the
tensile stress jumps from roughly 5 to about 15. Furthermore, as we report
in Table 4.3, the size of the core layer stays the same. Thus, by increasing
inertia the tensile region gradually closes the gap and eventually dominates,
forcing the fluid to contract.

In order to have a quantitative idea of this balance, we performed some
simulations for a range of values of Re and We and numerically integrated
the values of the stress over the surface. The outcome is shown in Fig. 4.6.
Although such a calculation is not aimed to exactly quantify the critical
swelling Reynolds number, and being conscious of the errors in the numeri-

cal approximation, this graph is still significant. The resultant of these forces
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Figure 4.7: Influence of surface tension on the swelling ratio for different

values of Re.

decreases with increasing Reynolds number. A positive resultant, according
to our interpretation, means that the fluid expands beyond the die. This is
because the force in the outer layer, Fp, is less than the force in core layer,
Fe. The opposite happens when the resultant is negative. Moreover, the
presence of surface tension aids the force in the outer layer for Re < Rrep sy
, whereas the contrary happens for Re < Rr s,. In this perspective, we
notice how this increase in Fp decreases with increasing We. In fact, as
shown in Fig. 4.7, and as also reported by Omodei (see Table 1 in [92])
, the values of the swelling ratios are effectively independent on We when
Re ~ Rrersy- This happens because, if surface tension is assumed at the
liquid/air interface, there will be an active driving force which tries to min-
imize the curvature of the free surface and which acts in the same direction
as Fp. Since such a curvature decreases with increasing Reynolds number,
the driving force will decrease as well, altering Fo less and less until Fp will
not be affected anymore for Re ~ Rry g,. This idea finds full confirmation

in the formula for predicting the swelling ratio reported by Omodei (see Eq.
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Figure 4.8: Swelling ratio and resultant of forces plotted against Re for
different We..

5.2 in [92]). In such a formula, the surface tension parameter is scaled by
a factor which decreases with decreasing curvature. In fact, such a factor
vanishes for zero curvature, resulting in a null contribution from the surface
tension, even if the latter is assumed in the problem at the liquid/air inter-

face.

An attempt at quantitative prediction is shown in Fig. 4.8, for mere rea-
sons of visualization, the curve representing the resultant of forces has been
shifted vertically one unit. The graph suggests that the swelling ratio drops
below 1 roughly when the resultant force falls below 0. This tells us that for
Re ~ 20 the direction of the resultant is reversed due to a sufficiently high
normal stress in the tensile region, which causes the fluid to contract after
the die exit.

Another relevant effect which occurs on increasing inertia is the vertical
velocity overshoot just before the exit. In Fig. 4.2 we showed the profiles of

the horizontal component of velocity at different cross sections, with the exit
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Figure 4.9: Vertical velocity overshoots along the line y = 1.6. The die exit

is at z = 10.

located at « = 10. Thus the difference between x = 9.8 and x = 10 means
that the flow at the end of the die is affected by the flow in the transition
region. This was observed by Horsfall [53] in his simulations. We investi-
gate this further, and in Fig. 4.9 the overshoots in the vertical component
of velocity around the exit are shown. This plot is along the line y = 1.6,
which is the point in the cross-section at the exit where the vertical velocity
component is maximum. As inertia increases, so does the peak in the verti-

cal velocity component just before the exit.

Once again this can be explained by the sudden change in the horizon-
tal velocity of particles in the different layers. The particles in the core and
outer layers decelerate and accelerate in the axial direction, respectively.
The outer layer is then a region of high extensional flow. An extreme but
significant comparison is an entry flow. The cross section at the entry in-
cludes a vertical wall, which clearly causes the particles to decelerate. In the

die swell configuration, the counterpart is the core region in the cross-section
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Figure 4.10: Shear stress along the cross section at the die exit for different

values of Re .

at the exit. On the other hand, in the entry part of the cross-section in a
contraction geometry, namely, where the smaller channel begins, the parti-
cles accelerate, experiencing an extensional flow. In the die swell problem,
the region where the flow is extensional can be represented by the outer
layer of fluid beyond the exit.

In the die swell problem, increasing inertia results in a larger jump in the
shear stress 7., at the exit as shown in Fig. 4.10. This causes an increase
in the acceleration of the particles in the outer layer in the axial direction
and hence larger overshoots in 7., as shown in Fig. 4.4. In this way the
extensional effect in the outer layer increases. Similarly, to increase the ex-
tensional nature of the flow at the entry region in a contraction problem,
where the width of the channel suddenly decreases, a higher contraction ra-
tio is required. The vertical velocity overshoots are then shown in Fig. 4.11
for two different contraction geometries. Fig. 4.11 can be also compared
with Fig. 4.9, where the peaks in the value of the vertical velocity increase
with increasing inertia. This is obviously a purely qualitative comparison.

The point we wish to make here is that, in the transition region of the ex-
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Figure 4.11: Vertical velocity overshoots on the centreline around the con-

traction region.

trusion flow, the outer layer of fluid suddenly goes into extension, while the
core tends to decelerate. This can definitely be compared to an entry flow in
terms of the physical nature of flow regions; and indeed the two phenomena

show the same features with respect to the vertical velocity overshoots.

Therefore, we believe that, by means of our interpretation, the region of
transition in the extrusion flow can be compared with an entry flow. This
would explain why, in the die swell problem, the overshoots in vertical ve-
locity just before the exit increase with inertia; and for the same reason,
why in the entry flow problem the peaks in the vertical velocity increase
just before the contraction region at higher contraction ratios in the entry

flow.
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Re | Core layer region (%)
1 64.7783

3 64.8243

6 64.8333

8 64.9476

10 65.0127

Table 4.3: Dependence of the percentage of fluid in the core region on the

Reynolds number.

Level U

6 7 0.656298
5  0.468784
3 028127

4 1 0.0937568
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Figure 4.12: Horizontal velocity contours for Re =1, M = 4, N = 12, with

surface tension neglected.
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Figure 4.13: Vertical velocity contours for Re = 1, M = 4, N = 12, with

surface tension neglected.

4.4 Numerical simulations

In this section, the numerical algorithm described in Chapter 3 is used to
perform accurate simulations of the plane die swell of a Newtonian fluid.
In particular, all the characteristic features of this problem are reproduced.
These features are a consequence of the stress balance effect fully explained
in this chapter.

To verify the general features of the die swell problem, the velocity and
stress contours for Re = 1 are shown in Figs. 4.12-4.15. It can be seen that
the horizontal component of velocity approaches a constant value down-
stream and that the vertical component increases instantaneously just after
the exit before relaxing downstream. Streamlines shown in the next section
help to clarify the picture. The shear stress contours shown in Fig. 4.14 are
in very good agreement with those reported by Tanner [119]. The stress has
a singularity at the point z = L, y = R, where for the problem considered
L =10 and R=2.

The shear flow in the die and the plug flow downstream mean that the
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Figure 4.14: Shear stress contours for Re =1, M =4, N = 12.

normal stresses 7, and 7y, are zero everywhere apart from around the exit.
The discontinuity in stress at the die exit is physical, and it seems to be quite
well reproduced. We have followed the idea of Gerritsma and Phillips [39]
and allowed the stress approximation to be discontinuous across elements.
On the other hand, the velocity components are enforced to be continuous

across elements.

4.4.1 Boundary conditions

In this section we check that the boundary conditions which are not imposed
a priori are satisfied in our simulations. On the free surface all the stress
components have to vanish. The axial normal stress is shown in Fig. 4.16
for Re = 1 and N = 12. Here surface tension was neglected. For 0 < z < 10
it is also zero on the wall; then the discontinuity is evident at the exit, where
a discontinuous approximation proposed by Gerritsma and Phillips [39] is

used across elements.

Similar behaviour is shown by the shear stress in Fig. 4.17, with the differ-

ence that on the wall its value is the constant given by the Poiseuille flow in
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Figure 4.15: Axial normal stress contours for Re =1, M =4, N = 12.

the die. Finally, when steady state is achieved, the normal velocity has to
be zero on the free surface for the no penetration condition to be satisfied.
The L?-norm of velocity is plotted in Fig. 4.18 against time. This figure

shows that this condition is satisfied when steady state is attained.

4.4.2 Analysis of convergence

In this section we discuss the spatial and temporal convergence properties
of the numerical scheme presented in this thesis. Concerning the spatial
convergence, we focus on the convergence of the location of the free surface
and the horizontal velocity profiles at various cross-sections in the interior of
the flow domain. First, a mesh convergence study of the location of the free
surface as a function of the polynomial order is performed. This is shown
in Fig. 4.19. The location of the free surface clearly converges as the order
of the polynomial approximation is increased. A spectral approximation
with N = 10 is sufficient to provide a converged position of the free surface
independent of the temporal scheme used.

The velocity profiles are then plotted at different channel cross-sections.

The die exit in our simulations is located at x = 10. In Fig. 4.20, the
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Figure 4.17: Shear stress profile on the free surface.
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Figure 4.18: L?-norm of the normal velocity on the free surface against time.

profiles at £ = 8 and £ = 10.2 are plotted as a function of polynomial
order. The profiles for N = 10 and N = 12 are in close agreement for
both cross-section locations. Further downstream, the profiles tend towards
a profile characteristic of plug flow. This is shown in Fig. 4.21, where
the convergence with respect to the number of elements is investigated at
z = 12.6 and z = 14. For this particular problem, a small number of spectral
elements, M = 4, coupled with a polynomial approximation of order N = 12,
is sufficient to obtain a converged approximation to the solution of this flow
problem.

The OIFS scheme, which was described in §3.3, has been used for the
temporal approximation of the momentum equation. Both the first and sec-
ond order variants of this scheme have been employed in the simulations.
The position of the free surface is tracked using the Adams-Bashforth meth-
ods of order k, for k = 1,2,3. The first-order Adams-Bashforth method
is just the forward Euler method. The Adams-Bashforth method of order
three is conditionally stable. The time-dependance of the relative errors

in the extra-stress and velocity approximations are shown in Fig. 4.22 for
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Figure 4.19: Location of the free surface for different values of N using
different temporal schemes for the update of the location of the free surface.
Forward Euler (top), AB2 (middle), AB3 (bottom). At =103, M = 4.
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Figure 4.20: Horizontal velocity profiles at z = 8 (top) and z = 10.2 (bot-
tom) with M =4, Re = 1.

121



different combinations of the two temporal approximations. The combina-
tion that provides the most accurate approximation in time is OIFS2/AB3.
The increased computational overhead of using a high-order rather than
a low-order scheme to track the free surface is negligible compared to the
overall cost of the simulation. The use of OIFS2 instead of OIFS1 for the
discretization of the material derivative in the momentum equation results
in an increase of around 25% in computational time to compute the source
term in the momentum equation at each time step.

The influence of the time step on the location of the free surface is now
investigated for each of the three Adams-Bashforth schemes. This is shown
in Fig. 4.23 for time steps in the range [107*,107!]. A time step of 10!
is clearly inadequate in all cases to obtain a converged location of the free
surface. Furthermore, there are signs of instability when the forward Euler
method is used, which is not unexpected. For all three schemes a time step
of At = 1073 is required to obtain a converged solution in terms of the free
surface location. One can observe the superior convergence properties of
AB3 in the lower graph in Fig. 4.23 in that the free surface profile obtained
with At = 1072 is very close to the temporally converged profile. Further-
more, in conjunction with an increase in the spatial order of convergence, as
shown in Fig. 4.19, AB3 performs extremely well. The free surface profile
in the case of AB3 has almost converged for N = 8. However, the obvious
gain from this decrease in the polynomial order has to be traded off against
convergence of the velocity profiles shown in Fig. 4.20. It is clear that the
Poiseuille profile upstream (top picture) is insensitive to changes in the poly-
nomial order, at least for sufficiently high large values of N. The situation
is different just after the exit (bottom picture). Here the approximation
obtained using N = 8 has not converged, the reason being the proximity of
the singularity at the exit of the die. In most practical applications, espe-
cially with viscoelastic fluids, the main issue during extrusion is an accurate
prediction of the swelling of the extrudate rather than a fully detailed de-
scription of the flow inside the domain. From this point of view, the gain in
using a polynomial approximation with N = 8 would be quite significant.

In this respect, AB3 provides an accurate as well as a stable approximation.
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Figure 4.24: Streamlines for Re = 1 (top) and Re = 10 (bottom). Here
M =4, N =12.

4.4.3 Effect of inertia

The effect of increasing Reynolds number is to inhibit swelling. As explained
in Russo and Phillips [109], this is caused by two regions of the fluid exhibit-
ing contrasting forces. Just as an example, the streamlines at steady state
for Re = 1 and Re = 10 are shown in Fig. 4.24, respectively. The free sur-
face profiles are shown in Fig. 4.25 for different values of Reynolds number.
These profiles clearly demonstrate that swelling is inhibited as the Reynolds
number is increased.

The dependence of the swelling ratio on Reynolds number is shown in
Fig. 4.26 and the predictions obtained using the scheme described in this
paper are compared with results reported in the literature. Surface tension
is neglected in these simulations. The effect of inertia is clear; here R/L =
0.2. The different schemes give almost the same prediction, when inertia

is discarded, with the spectral simulations from Ho and Rgnquist [52] just
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Figure 4.25: Influence of inertia on the free surface profiles. M =4, N = 12.

underestimating the value of SR = 1.198. A clear pattern is present as
the Reynolds number increases, and there is a very good agreement with
the swelling ratios obtained by Omodei [92], particularly for Re = 1 and
Re = 10.

The exact values of the swelling ratios from different sources are reported
in Table 4.4 and 4.5. Moreover, the effect of mesh refinement is also con-
sidered in Tables 4.6 and 4.7. It is worth noticing how the mesh refinement
becomes more evident with increasing Re. In fact, for Re > 7, a polynomial
order N = 14 is required to ensure the same accuracy of convergence that,
for lower Reynolds number, is obtained already at N = 10.

Another consequence of increasing inertia is an increase in the normal
stress jumps, due to a higher acceleration required for the fluid particles to
achieve a plug flow configuration. Detailed values of these jumps are given
in Table 4.8. We remark that, although the values of 7., and 7,, on the cen-
treline, are approximately equal and opposite, since the continuity equation
requires mass to be conserved in a Newtonian fluid, we cannot expect the

same close to the wall, where the solution exhibits singular behaviour. This
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Figure 4.26: Comparison of influence of Re on swelling ratios with results
in the literature. Our results have been obtained with M =4, N = 12.

Re Source Present work | Omodei, 1979
0 1.193 1.191
1 1.198 1.191
2 1.177 NA
3 1.164 NA
4 1.158 1.160
6 1.147 NA
7 1.134 1.122
8 1.109 NA
10 1.0844 1.078

Table 4.4: Dependence of swelling ratio on inertia without surface tension.

Comparison with Omodei [92].
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Present work 1.193
Omodei [92] 1.191

Tanner [119] 1.192
Mitsoulis (3-D limit) [85] 1.190
Ho and Renquist [52] 1.184
Georgiou and Boudouvis [38] | 1.186

Table 4.5: Dependence of swelling ratio on inertia without surface tension

in the case of creeping flow (Re = 0). Comparison with previous results.

. fiel 1 2 3 4 6 7 8 | 10
6 1.189 | 1.190 | 1.167 | 1.156 | 1.148 | 1.132 | 1.120 | 1.089 | 1.064
8 1.192 | 1.197 | 1.172 | 1.163 | 1.156 | 1.139 | 1.129 | 1.098 | 1.072
10 1.193 | 1.198 | 1.177 | 1.164 | 1.157 | 1.146 | 1.131 | 1.104 | 1.079
12 1.193 | 1.198 | 1.177 | 1.164 | 1.158 | 1.147 | 1.134 | 1.109 | 1.084
14 1.193 | 1.198 | 1.177 | 1.164 | 1.158 | 1.147 | 1.135 | 1.110 | 1.083
16 1.193 | 1.198 | 1.177 | 1.164 | 1.158 | 1.147 | 1.135 | 1.110 | 1.083
Table 4.6: Influence of mesh refinement (polynomial order) on the calculated
swelling ratios for different values of Re .
y Rel g 1 2 | 3 | 4 | 6 | 7 | 8 | 10
1.192 | 1.197 | 1.175 | 1.162 | 1.152 | 1.141 | 1.130 | 1.103 | 1.075
1.193 | 1.198 | 1.176 | 1.164 | 1.156 | 1.146 | 1.132 | 1.108 | 1.084
1.193 | 1.198 | 1.177 | 1.164 | 1.158 | 1.147 | 1.134 | 1.109 | 1.085

Table 4.7: Influence of mesh refinement (number of elements) on the calcu-

lated swelling ratios for different values of Re. .
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Figure 4.27: Trace of the stress tensor along the exit cross-section (z =
10), for different Reynolds numbers. The values are calculated using the

approximations in the downstream element. M =4, N = 12.

is even clearer in Fig. 4.27. Here the trace of the stress tensor is plotted
against y at the exit of the die. It is zero everywhere, as it should be for
a Newtonian fluid, except in the proximity of the singularity. In Fig. 4.28
we show how this singularity is better captured with higher order polyno-
mials. The figure shows the values of T,; at x = 10, y = 2 as a function
of Re. The distance downstream at which relaxation of the extrudate is
accomplished is shown in Fig. 4.29. As expected, the extrudate takes longer
to relax to a downstream plug flow as Re increases. Eventually, it settles
down after around 2.5 multiples of the radius of the die. This value is in
the range reported in the simulations of Tanner [119]. Again the predictions
with N = 10 and N = 12 are close. It is not a principal aim to investigate
the maximum Reynolds number attainable before numerical breakdown oc-
curs. Nevertheless, we run a few simulations for higher values of Re to check
that contraction occurs when inertia is large enough and also to support the
findings reported in Russo and Phillips [109] regarding the physical reason
behind the Newtonian die-swell. In particular, we report on predictions ob-
tained for Re = 100, We =0 and N = 12.
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Re | 143 (FS) | 7yy (FS) | 74 (CL) | 7y (CL)
1 5.027 -8.021 -0.43282 | 0.43193
6.275 -9.361 | -0.497581 | 0.497521
9.279 -13.16 | -0.685647 | 0.685665
12.041 -16.848 | -0.855826 | 0.855317
10 17.121 -23.88 -1.13528 1.13625

Table 4.8: Dependence of normal stress jumps at the exit at the free surface
(FS) and the centreline (CL) on Re.
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Figure 4.31: Comparison of the free surface locations. Surface tension is

neglected. In the present simulations M =4, N = 12.

The mesh is shown in Fig. 4.30, and the profile of the free surface is shown
in Fig. 4.31 and compared with the results from Omodei [92]. We can
conclude that the numerical scheme can produce satisfactory results over a

significant range of Reynolds numbers.

4.4.4 FEffect of surface tension

In the previous simulations, surface tension was neglected. If it is included in
the mathematical model through (3.29), the result is a decrease in swelling,
as expected. In Fig. 4.32, the convergence of the location of the free surface
with respect to the polynomial order is shown. Once again, the stable, third
order Adams-Bashforth scheme seems the most reliable. Convergence with
respect to the time step is shown in Fig. 4.33.

The effect of surface tension on the free surface profiles is shown in Fig.
4.34 for Re = 1 for different values of We. In Fig. 4.35, the swelling
ratios predicted by the method described in this paper and the method
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Figure 4.32: Location of the free surface for different values of N using
different temporal schemes for the discretization of the temporal derivative.
Forward Euler (top), AB2 (middle), AB3 (bottom). At = 1073, M = 4.

Surface tension is included, We = 2.5.
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Surface tension is included, We = 2.5.
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Figure 4.34: Free surface profiles for different values of surface tension for
Re=1and N = 12.
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Figure 4.35: Swelling ratio vs inertia: surface tension included with We =
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oo | 2.500 | 1.000 | 0.625 | 0.467

Re
1 1.196 | 1.164 | 1.130 | 1.118 | 1.083
3 1.164 | 1.141 | 1.125 | 1.100 | 1.075
10 1.084 | 1.082 | 1.081 | 1.080 | 1.079

Table 4.9: Dependence of swelling ratio on inertia and surface tension.

described in Omodei [92] are compared. In the simulations of Omodei [92],
in the same fashion as Goren and Wronski [43], a parameter is used which
is not simply an indicator of the surface tension, but of the surface tension

versus inertia. In our formulation of the problem the usual definition of the

2 . . .
Weber number, We = 2 UU L , is used and, with our choice of the parameters,

effectively We = 1/0. More precisely, the surface tension parameter in [92]

is defined as

h
g =270
W
Since in [92] p =1 and hg = 1, then
R
S = UTe (4.8)

This means that, when the Reynolds number is fixed, a corresponding value
of S is recovered from each value of o and such values of o change with
Re. The reason behind the choice of increasing S with Re is the attempt
to highlight the effect of the surface tension also for Re ~ Rry ,, when
effectively the surface tension becomes negligible (see §4.3.2). However, the
ratio 0 = 25/Re changes very little with Re and 0. Therefore we decided
to use o € [0.4,2.4] for our calculations, which corresponds to Re = 1 in
Table 1 in [92]. For comparison purposes, if the corresponding exact value
of S does not appear in Table 1 in [92], namely, if the corresponding swelling
ratio is not reported, then an extrapolation is performed. For example, for
Re = 10 we have S = 5 from (4.8), while simulations in [92] have been
performed for S = 0,6,12. Corresponding to S = 5 we then extrapolated

the value for the swelling ratio SR = 1.08. A quantitative summary of the
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effect of surface tension on the changes of inertia is highlighted in Table
4.9. As previously pointed out, the effect of the surface tension decreases
with increasing inertia. In fact, the opposite effect is also true; the effect
of inertia decreases with increasing surface tension. This is not a surprise,
because, when inertia acts in support of the normal stress balance, i.e., when
Re ~ Rrep sw, the curvature of the free surface tends to flatten. Therefore
the driving force which tries to minimize the curvature of the free surface

produces a less evident effect.

Simulations at higher Re including surface tension have been performed
by Omodei in [92], and they show that above the value of the Reynolds
number at which the fluid starts shrinking, the effect of surface tension is
to increase the final diameter. This is confirmation that, in the attempt to
minimize the curvature of the free surface, the presence of surface tension
counteracts both tendencies of the fluid to expand or contract (depending

on whether the Reynolds number is below or above the threshold value).
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Chapter 5

Extrusion of Viscoelastic
Fluids: Numerical

Simulations

5.1 Introduction

The extrusion of viscoelastic fluids is common in a range industrial processes
such as blow moulding and injection moulding. In the case of viscoelastic
fluid, the phenomenon can be explained by an elastic recoil process, which
results in much larger swelling ratios than the Newtonian case. In fact, the
elastic energy stored in the fluid in the die is responsible, for values of the
swelling ratio even up to twice the radius of the die once the fluid exits the
die. As the polymer melt is sheared through the die, the molecules become
extended with the greatest orientation near the wall. The elastic energy
stored in the stretched molecules in the die is relaxed once the fluid leaves
the confines of the die causing the molecules to coil up. Thus the molecules
contract in the flow direction and expand in the lateral direction. In the die,
there is a tension along the streamlines associated with the normal stresses.
When the fluid exits the die, the tension along the streamlines will relax by
contracting in the longitudinal direction. For an incompressible fluid, this

gives rise to a lateral expansion of the fluid.
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An early physical interpretation of elastic and inelastic die swell was pro-
posed by Tanner [117, 118]. In the inelastic case, Tanner [117] divided the
flow into two regions: an inner core region and and an outer layer. Russo
and Phillips [109] followed this approach to provide an explanation of the
Newtonian die-swell mechanism. Inelastic non-Newtonian fluids are char-
acterized by a viscosity that is dependent on the shear-rate. Tanner [117]
derived an expression for the swelling ratio that is dependent on the ratio
of the viscosity of the fluid in the outer layer to the viscosity of the fluid
in the core region. Swelling of the extrudate is predicted by this theory
when the ratio is greater than unity, i.e. for shear-thinning fluids. The same
expression for the swelling ratio is also used by Tanner [117] for a Maxwell
fluid, where the viscosities in the two regions are calculated in terms of the

relaxation time and the average extensional rate.

In the elastic theory, the swelling ratio is calculated from the so-called recov-
erable stress. This is a measure of the elastic energy stored in the molecules
which can be recovered once the fluid leaves the die. Mathematically, this
can be expressed as the ratio between the first normal stress difference and
the shear stress at the wall in the die. Tanner [120] revisited this theory
some thirty-five years later and modified it in order to treat more complex
constitutive models such as the PTT or XPP models. Both theories, quoting
Tanner himself, are clearly simplified versions of the real problem but which,
nevertheless, have proved themselves to be very useful predictive tools. They
aid an understanding of the die-swell problem and also provide quantitative
data which, especially in the past, were lacking from experiments. Recently,
more experimental results have become available, and these will be discussed

later in Chapter 6.

Crochet and Keunings [28, 29] performed finite element simulations using
the UCM and Oldroyd-B models. In the case of the UCM model, they fo-
cused on the dependence of the swelling ratio on the Deborah number. For
the Oldroyd-B model, they mainly computed swelling ratios against the re-
coverable shear parameter in order to compare their results with Tanner’s

theory. The recoverable shear is defined as the ratio of the first normal stress
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difference to the shear stress, both calculated at the wall of the die. We de-
fine it as Ry = (N1, /Tyy)w, and represents what can actually be recovered
from the extra tension in the direction perpendicular to the streamlines.
This is a feature typical of elastic fluids and it is, for instance, highlighted
in the tilted trough experiment. In this experiment, a polymeric liquid is
confined in the interior of a tetrahedral block with a U-cross section and
flows due to gravity when the block is tilted at one end. During the flow,
the interface between the polymer and the air is not flat, but is pulled in
the direction normal to the flow due to the extra tension mentioned earlier.

In their calculations, Crochet and Keunings [28, 29] report swelling ratios
of up to 100% for Ry = 4. Their results are in good agreement with Tan-
ner’s formula up to Ry, = 2. However, their numerical predictions are well
above the theoretical ones for Ry > 2. This does not necessarily mean that
the numerical simulations are incorrect, since Tanner’s theory is based on a
simplified analysis in which certain assumptions have been made. It seems
reasonable to argue that Tanner’s theory is not completely satisfactory for
models with more than one time constant. In fact, the theory was developed
from an integral constitutive equation with only one temporal characteris-
tic quantity. The departure of numerical predictions from Tanner’s theory
reported in Crochet and Keunings [28, 29] and Russo and Phillips [108] is
also noted by Tomé et al. [124, 125], who used a finite difference technique
in which the convective terms were discretized using a VONOS upwinding
scheme. The computation of the polymeric extra-stress tensor on the rigid
boundaries uses a change of variables to smooth the stress tensor in the
constitutive equation. The free surface is tracked using a marker-and-cell
(MAC) method. A maximum swelling of almost 110% is reported for both
planar [125] and axisymmetric [124] jets. In the latter case, a remarkable
50% jump in the swelling ratio takes place around Ry = 2, which corresponds
to Wi = 0.5625 in that simulation. In planar extrusion, the growth rate of
the swelling ratio suddenly increases around the same value. Clearly, further
investigation is needed to better understand this feature, which seems to be
typical of an Oldroyd-B fluid.

Tuna and Finlayson [126] focused on the calculations of the exit pressure
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loss in the extrudate swell. They used a Galerkin finite element method to
solve the extrudate swell problem for an Upper Convected Maxwell fluid.
They confirm the increase in the swelling ratio with increasing Weissenberg
number. The exit pressure loss is also proportional to the elastic response
of the fluid. In the same fashion as Reddy and Tanner [103], they propose
a formula to calculate the pressure loss as a function of the R, although it
is not clear whether this formula calculates the pressure at a point L units
upstream from the exit or the effective exit pressure loss. We will discuss
this point further in §5.3.3.

On the other hand Reddy and Tanner [103] analyzed the die swell of a sec-
ond order fluid with the assumption of a creeping flow. Finite elements were
the basis of the numerical method. They reported values of swelling ratios
very similar to the ones obtained using an Upper Convected Maxwell fluid,
and proposed the aforementioned formula for calculating the exit pressure

loss which we will describe in §5.3.3.

5.2 Viscometric behaviour of UCM-type and XPP-
type models

Among the several, nonlinear constitutive models describing viscoelastic flu-
ids, the ones we chose to analyze in this thesis may be located at the opposite
ends of the spectrum in terms of level of refinement, at least as far as nonlin-
ear models are concerned. The Oldroyd-B model [90] can be considered the
first nonlinear constitutive equation based on the assumption that the non-
linearity of the rate of change in the deviatoric stress tensor T is required
in order to satisfy the objectivity principle. Such a principle states that
the scalars, vectors and tensors involved in a constitutive model have to be
invariant under the change of reference frame. However, as described in §
2.6.1, the Oldroyd-B model predicts constant shear viscosity, a zero second
normal stress difference and unbounded extensional viscosity. Therefore, it

is useful only to describe Boger fluids at small shear rates.

On the other hand, the XPP model [132] is rather sophisticated and predicts
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several features of polymer melts. In simple shear flow (Fig. 3 in [132]), the
dimensionless viscosity is monotonic at small shear rates and shows a maxi-
mum at large shear rates. In both cases a plateau is reached asymptotically
as ¥ — oo. Moreover, in steady shear flow the model is shear thinning. This
behaviour in shear flows is observed in real melts and is due to the effect of

the orientation of the molecules.

If we then look at elongation flow (Fig. 3 in [132]), the transient Trouton ra-
tio in response to increasing Hencky strain is also predicted. Moreover, the
stretch in the extensional case occurs almost instantaneously and is twice
the stretch as in shear flow. The reason for this is that the molecules do not

need to orientate before starting to stretch, as they do in shear flows.

The XPP model has in total four independent free constants per mode which
can be fitted to experimental data. The Maxwell moduli and relaxation
times are linear parameters while the number of arms and orientation-to-
stretch ratios are nonlinear parameters. It might be argued that four free
constants are too many, but the capability of the XPP model to fit ex-
perimental data from different materials is considerable. The quantitative
predictions for the branched low density polyethylene Lupolen 1810H as
well as for the high density polyethylene Statoil 870H ( Figs. 5 — 8 and 10,

respectively, in [132]) are to be considered a remarkable achievement.

5.3 Numerical simulations of polymer solutions:
UCM and Oldroyd-B models

The aim of this section is to present our numerical simulations of extru-
sion of polymer solutions. We focus on the typical features of Oldroyd-B
and UCM fluids. Despite presenting some unphysical characteristics, these
models are non-trivial to be solved. In fact, they are much less stable than
more complex models such as PTT or Giesekus [1, 143]. However, they still

approximate polymer solutions quite well in the limit of small shear rates.

The mathematical details of these models have been described in Chap-
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ter 2. The UCM model is the limit case of the Oldroyd-B for § = 0. In this
case the whole contribution for the viscosity is polymeric. As a result, there

is no dissipation related to a solvent viscosity.

5.3.1 A summary of the problem

We recall that swelling in elastic fluids is caused by the elastic recovery of the
molecules when the fluid leaves the die. Those molecules undergo swelling
in the radial direction as a consequence of stress relaxation. The relaxation
process takes place as a result of the remove of the shear load outside the
die. It can be seen as an effect of the memory of the fluid, as underlined
by Huang and Lu [54] in their comparison of K-BKZ fluids. Tanner [117]

also used a K-BKZ constitutive equation to derive his classical equation
Nl,u)

Tw

relating swelling ratio, SR, to the recoverable shear parameter Ry =
where Ny, and 7, are the first normal stress difference and the shear stress,
respectively, both calculated at the wall.:

)2} 024 [1 + %Rg} Y e

SR=02+ 14 (T

This formula was derived for planar extrusion. The constant 0.2 is the vis-

Tw

cous swelling ratio, while the second term on the right-hand side represents
the departure from the Newtonian swelling due to the elastic recoil mecha-

nism. A slightly modified form was proposed for the axisymmetric geometry.

Many numerical simulations and experiments have been carried out on this
problem. Various constitutive models and real melts have been tested, and

there is general agreement on the following aspects:

e the swelling ratio increases with the elasticity of the fluid; such elas-
ticity is generally represented by the relaxation time (or times, for

multimode fluids);

e consequently, swelling is proportional to the first normal stress differ-

ence and the shear stress at the wall in the die;
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e the swelling is proportional to the pressure drop at the exit of the die;

e for low Reynolds number, the effect of inertia is negligible compared

to the effect of elasticity;

e in experiments performed in capillary rheometers, the flow induced
by the contraction has a strong extensional component which relaxes
within the die; therefore, only for dies which are long enough, can
the flow really be considered parabolic when it reaches the exit. This
observation clearly does not apply to numerical simulations if a fully

developed Poiseuille profile is assumed inside the die.

The computational domain is as follows: the die is [0,10] x [0,d] and the
downstream region is, at the time ¢ = 0, is [10, 16] x [0, d] and [10,20] x [0, d]
for Wi = 0.25 and Wi = 0.50, respectively. In our simulations the exact
parabolic profile is imposed at inlet (0 < y < d,d = 2). The profile for an
Oldroyd-B fluid is

w=gos(- 2 [E- (4] wo=un=0 =0

ou\ 2 ou
ree = 2ma = 22(50) 0 T =ma( ) =0 (63)

Therefore, noticing that 4, =| g—z ly=d, and defining Wi = A1, from Egs.
(5.3) and (2.54) we have

Rs = 4(\1 — Ao = 4(1 — B)Wi. (5.4)

We remark that the definition above of the Weissenberg number is equiv-
alent to scaling lengths with d and velocities by 4,42, as can easily be
verified by combining (5.2) and (5.3). Here w4, is the maximum velocity
in the channel along the centreline given by

Ap d?

= — . 5.5
Umax A 877tot/8 ( )
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Figure 5.1: Convergence of the location of the free surface with the number
of spectral elements M. Here N = 8 and At = 10~*. Oldroyd-B model:
Wi=0.5,8=1/9.

Scaling lengths with d and velocities with 8u,q, leads us to set the modulus

1
QUmaz

of the density as p = to keep the Reynolds number constant and equal

to 0.5.

Unless stated otherwise, all the simulations in § 5.3.2 have been performed
for Re = 0.5, Wi = 0.5 and § = 1/9. In § 5.3.3, we present results for
a range of values of Wi and 8. Comparisons with available results in the

literature will be presented.

5.3.2 Analysis of convergence and contour plots

In the same fashion as in the Newtonian case [111], we analyze the conver-
gence of the location of the free surface for the Oldroyd-B model in order to
find the optimal values for the spatial and temporal discretization parame-
ters. The free surface profiles are shown in Figs. 5.1-5.3.

The numerical scheme used for updating the position of the free surface
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Figure 5.2: Convergence of the location of the free surface with the number
of polynomial approximation N. Here M = 24 and At = 10~*. Oldroyd-B
model: Wi =0.5, 8=1/9.

is the third-order Adams-Bashforth scheme. A converged profile of the free
surface is achieved for the values of N = 8, M = 24 and At = 10~*. These
are the values of the spatial and temporal discretization parameters used
in all the calculations for Oldroyd-B and UCM models, although for large
values of Wi, convergence of the location of the free surface is checked again.

The contour plots of the horizontal velocity, normal stress and shear
stress and shown in Figs. 5.4 and 5.5 for Wi = 0.25 and Wi = 0.5, respec-
tively. A few remarks can be pointed out from the contour plots.

The increase in elastic response is clear looking at a number of factors,
including the values of the swelling ratio and the normal stress. The ratio
between the values of the normal and shear stress is roughly 2 : 1 for Wi =
0.25 and 4 : 1 for Wi = 0.5. Also, the value of the shear stress at Wi = 0.50
is roughly twice as much as its corresponding value at Wi = 0.25, whereas
the normal stress increases almost quadratically. This is in agreement with

the analytical solutions summarized in Eq. (5.2)-(5.3).
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The contour plots shown in Fig. 5.4 and 5.5 reproduce closely the trend
reported in the literature. For example, our results are very similar to the
ones in the classical papers of Crochet and Keunings [28, 29] and the mono-
graph of Tanner [119]. In particular, the contour levels become extremely
dense near the exit. This is to be expected, since a steep boundary layer
occurs because of the presence of the stress singularity. In Tables 5.1-5.2 the
comparison between the numerical and analytical results for the Poiseuille

flow in the channel is summarized for the sake of completeness.

Unaz Ny Tay
Analytical | 0.80 | 1.42 | —1.60
Numerical | 0.78 | 1.43 | —1.56

Table 5.1: Comparison of the values of the velocity at the centreline and the
stress at the wall. Oldroyd-B model: Wi = 0.25, 5 =1/9.

Unaz Ny Try
Analytical | 1.60 | 5.68 | —3.20
Numerical | 1.59 | 5.67 | —3.27

Table 5.2: Comparison of the values of the velocity at the centreline and the
stress at the wall. Oldroyd-B model: Wi = 0.50, 5 =1/9.

5.3.3 Analysis of the extrusion process

The main purpose of this section is to analyze the most important features
that are present in the extrusion process. In the first part we analyze the die
swell of an Oldroyd-B fluid. A few results for a UCM fluid are also presented
in the last part of the section. We mainly focus on the following aspects of

the problem:
e location of the free surface;
e exit pressure loss;

e swelling ratio;
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B
i 1/9 | 1/2 | 8/9
0.25 0.89 | 0.50 | 0.11
0.5 1.77 | 1.00 | 0.22
0.66 2.34 | 1.32 | 0.29
0.75 2.66 | 1.5 | 0.33
1 355 | 2 |0.44

Table 5.3: Values of the recoverable shear stress Rg.

e normal stress difference at the exit.

The Weissenberg number varies in the range (0.25,1) and 5 =1/9,1/2,8/9
are the choices for the viscosity ratios. This allows for comparison with
results in literature, such as those reported in the papers of Crochet and
Keunings [28, 29] and the monograph of Tanner [119], together with results
from Tuna and Finlayson [126] and the finite difference based study of Tomé
et al. [125].

The location of the free surface is shown in Fig. 5.6 for different values of
Wi and . Moreover, comparison of computed swelling ratios with available
results in literature are shown in Fig. 5.7. The predicted swelling ratios ob-
tained in the different simulations are quite close, although it is important
to note that Crochet and Keunings [29], as well as Tanner [119] assumed
creeping flow, i.e, Re = 0. Tomé et al. [125] assumed Re = 0.5. Tomé et al.
[125] suggested that this was the likely reason for their results lying closer
to Tanner’s formula than the ones from Crochet and Keunings [29]. On
the one hand this seems reasonable, bearing in mind that the swelling ratio
decreases as inertia increases. On the other hand, for low values of Reynolds
number, the effect of inertia is considered to be negligible compared with
the effect of elasticity and Tanner’s formula already includes a Newtonian
factor of 0.2 and is independent, at least directly, on the Reynolds num-
ber. This is confirmed in Fig. 5.7, which the swelling ratios calculated for
creeping flows are almost the same as for the case Re = 0.5. However, we

have not fully understood the way in which Rg is calculated in Tomé et al.
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[125]. The recoverable shear parameter, being defined as the ratio of two
stresses, is a non-dimensional quantity. However, Tomé et al. [125] calcu-
late it as Sp = Wz'g—z, ! which has the dimensions of shear rate, namely
sec™'. We suppose that the equations and the calculations in [125] are non-
dimensional. However, it is rather surprising that in the end the value of

Sr is independent of S.

Crochet and Keunings [29] adopted a mesh containing 75 elements and 357
nodes, with 1889 unknowns. On the other hand Tomé et al. [125] used a
280 x 120 structured mesh with uniform cell size of 1/40 of the slit width.
Our spectral mesh has 24 elements and the polynomial order used is 8. The
smallest element of the mesh is square and placed with the corner at the
exit, is 1/4 of the slit width in size and its smallest subcell is 1/80 of the
slit width. The total number of nodes is 1617, of which 65 are placed on
the known boundary (either wall or inlet). Therefore, the total number of
scalar unknowns is 9312.

In our calculations the swelling ratio increases with increasing Weis-
senberg number. Also, the swelling decreases with increasing (3. This is to
be expected since, adding solvent viscosity to the solution results in enhanced
dissipation and reduced elastic response. Our results are in agreement with
predictions of Bush [19] and Clermont and Normandin [27]2, who solved the
axisymmetric problem. Of course it is a qualitative agreement due to the
different nature of the geometry. Nevertheless, it is worth noting that the

trend in the elastic response of the fluid is the same in all three works.

The values of Rg corresponding to different W4 and 3 are summarized in
Table 5.3. As predicted by the formula (5.4), Rg increases linearly with Wi
for a fixed value of 8. As 8 — 1, it still increases linearly with W+ but its
value is much lower. This is to be expected, since in the limit case 3 = 1 the

Newtonian model is recovered. However, due to the quadratic expression

!Rs in this thesis is the same as Sg in [125].
For the sake of clarity, we remark that in [19] and [27] 3 is defined as 8 = 2. In

Ntot
fact, in their tables the swelling ratios increase with increasing 8. This way, if we call

their parameter 3, and our s, then 8, =1 — f,.
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in Eq. (5.1), for § = 8/9 Tanner’s formula predicts a swelling ratio that
is almost independent of W+i. This does not seem realistic, since polymeric
viscosity should have an effect, especially because the larger the value of
Wi, the more the swelling ratio is sensitive to changes in the viscosity ra-
tios. In Fig. 5.8 the comparison between our computed swelling ratios and
the predictions of Tanner’s formula according to the values of Rg in Table
5.3 are shown. The discrepancy is obvious, as also reported by Bush [19].
It has to be remembered that Tanner’s formula was derived using a KBK-Z
integral constitutive equation with a single, relaxation time constant [117].
Therefore, it is reasonable to expect some departure if a retardation time is
introduced in a model such as the Oldroyd-B case. When such a retardation
time Ay is comparable to the relaxation time A; (as in the case § = 8/9), the
flat curve in Fig. 5.8 suggests that Tanner’s formula is not completely suit-
able for the Oldroyd-B model. The determination of the range of validity of
Tanner’s formula is outside the scope of this work. Nevertheless it is worth
pointing out its intrinsic exemplification, as well as its valuable usefulness,

when used for comparison purposes.

In Fig. 5.9, where we define AR = L/d, we superimpose the extrudate
shape for different values of d, the cross-section diameter of the slit die. For
all three cases, we keep Wi = 0.5 by adjusting *,, accordingly. As expected,
since the flow rate has not been altered, the value of the swelling ratio lies
between 62% and 63% in all three cases.

Another important feature of the extrusion process is the pressure loss.
In experiments, as well as in the capillary rheometer, the flow in the die is
induced by pushing the fluid from a reservoir through a contraction. There-
fore, the pressure loss is calculated as the sum of the entry loss, due to
the contraction, and the exit loss at the exit of the die. In the numerical
simulations, when the flow is assumed fully developed in the die, only the
exit loss is considered. Moreover, the entry loss for an UCM-type fluid is
considered unreliable, due to reported values which are smaller than the
equivalent measure for a Newtonian fluid and generate a total pressure loss

almost independent of the flow rate [119]. A possible explanation is the in-
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Figure 5.7: Values of the swelling ratio with increasing Wi for an Oldroyd-B
fluid for g =1/9. (bottom).

adequacy of UCM-like models in reproducing extensional flows beyond very
small shear rates. Since extensional flow is predominant in the middle region
of the die when the fluid is pushed from the reservoir, it might be argued
that the weakness of an UCM-type model is more evident at the entry than

at the exit, where the extensional process is not as dominant.

We calculate the effective exit pressure loss using the widely used formula
(see Tanner [119] and Crochet and Keunings [28, 29])
Apeﬂrz _ Dw (0) L

27, 2Ty  d (5-6)

In Eq. (5.6) the value p,(0) is the value of the pressure at (0,d). In Fig.

5.10 the relationship between the pressure loss and the Weissenberg number

is shown. Calculations are close to earlier results for Wi < 0.7. The dash-
dotted curve with circle symbols shows the values of the pressure drops

obtained by using the alternative formula that Reddy and Tanner propose
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in [103], which reads

Apeg = 0.26R, + 0.31. (5.7)

Tuna and Finlayson [126] also used a similar formula, although they define
the quantity P, as

P = p(0,L) /27, = 0.28R, + 0.30. (5.8)

This is a bit confusing, since Eq. (5.8) is equivalent to what Tanner [119]
defines as the pressure at a point L units upstream from the exit. There-
fore, looking at Eq. (5.6), the term L/d should be subtracted. However,
at least in our calculations, this would generate a negative pressure loss for
Ry < 7.85, therefore we would assume that both formulas are intended for
the exit pressure loss. The values obtained by this formula are quite close
to the numerical results up to Wi = 0.75. For values beyond Wi = 0.75 a

sharp increase can be noticed.

The bottom box in Fig. 5.10 confirms a decreasing elastic response with
increasing solvent viscosity. It is worth remarking the asymmetry of the
computed pressure losses despite the symmetry of the values of 3. The elas-
tic energy is stored in the Oldroyd-B fluid through the springs connecting the
dumbbell and the pressure drop is proportional to this energy. The asym-
metry aforementioned then suggests that the storage of elastic energy due
to increase in polymeric viscosity is larger than the loss due to dissipation
when the solvent viscosity is predominant.

A measure that is often used to indicate the elastic response of a vis-
coelastic fluid is the first normal stress difference N1 = 7,5 — 7. In the
UCM and Oldroyd-B models a zero second normal stress is predicted. It is
known experimentally that polymer melts also show a non-zero second nor-
mal stress difference, but it is generally quantitatively much smaller than
Ny, of the order of 10% [119, 117]. However, a non-zero Ny has the tendency
to slightly shift down the swelling ratio, as reported by Huang and Lu [54]
for a class of KBK-Z integral models.
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The profile of N; just after the exit is shown in Fig. 5.11 for different
values of Wi and 8. At fixed 8, Ny increases as W+ increases. At fixed
Wi, Ny decreases with increasing Newtonian viscosity, again confirming the
correlation between the elastic response in the fluid and the viscosity ratio
8.

Similar calculations have been performed using the UCM model, where

A2
AL

in the UCM model is entirely polymeric, therefore there is no diffusion term

the retardation time Ao is set to zero, therefore g = 0. The viscosity
in the momentum equation (see Eq. (2.52)).

The location of the free surface is shown in Fig. 5.12. Again, the swelling
increases with the Weissenberg number. Comparison with available results
is presented in Fig. 5.13. We notice that our numerical predictions tend
slightly to overestimate the values from Crochet and Keunings [29] and
Tuna and Finlayson [126]. On the other hand, the corresponding values for
the exit pressure loss shown in Fig. 5.14 are more consistent with the ones

reported by Tanner [119].

Wi 0.15 | 0.25 | 0.30 | 0.50 | 0.60 | 0.75 | 0.90 | 1.05
Source
Present NA | 1.192 | NA | 1.213 | NA |1.248 | NA NA
work, N =8
Present NA | 1.192 | NA | 1.213 | NA |1.248 | NA NA
work, N =10
Crochet & NA | 1.169 | NA | 1.189 | NA | 1.236 | NA NA
Keunings [28]
Tuna & 1.170 | NA | 1.165 | 1.180 | 1.190 | 1.210 | 1.237 | 1.264
Finlayson [126]
Bush et NA | 1.175 | NA | 1.205 | NA | 1.240 | NA NA
al. (BE) [20]
Bush et NA | 1.187 | NA | 1.200 | NA | 1.216 | NA NA
al. (FE)[20]

Table 5.4: Values of the swelling ratio for different values of Wi for an UCM
fluid.
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The first normal stress difference just after the exit plane is shown in Fig.
5.15. As expected they are very similar to the Oldroyd-B profiles in Fig.
5.11, although they are smaller in absolute value. To conclude this section,
a comparison between a Newtonian, UCM and Oldroyd-B fluid is shown in
Fig. 5.16. Looking at these results, together with the earlier calculations,
the conclusion can be drawn that the overall elastic response of an UCM
fluid in extrusion is weaker than for an Oldroyd-B fluid. This is not as
straightforward to understand, because in principle one would expect that,
since the viscosity is completely polymeric (8 = 0, so 7t = 7,), the fluid
would show a stronger elastic response than the Oldroyd-B case, especially
when there seems to be agreement on the fact that, for the Oldroyd-B model,
the elastic response indeed increases as 3 approaches 1 . In fact, a frequent
assumption within the Oldroyd-B model (see Yoo and Na [142] or Tomé
et al [125] for example) is to consider the effective Weissenberg number as
Wiepp = (1 — B)Wi, the maximum value for which is 3 = 0. An idea that

could be put forward is that, for creeping flows, when 3 = 0 there is a change
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For the non-Newtonian models W3 = 0.25 has been used.
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of type in the momentum equation, from elliptic to hyperbolic. This seems
reasonable also looking at the computed swelling ratio, pressure drop and
first normal stress difference shown in Fig. 5.8, 5.10 and 5.11, respectively.
Even when the polymeric contribution is very small, the fluid is still far from
approaching a Newtonian behaviour. This might be explained by the change
in the mathematical nature of the model. A change of type of governing
equations is thought to possibly cause particular mechanisms to occur in
the dynamics of fluids. In particular, Joseph [60] suggested it as the reason

behind delayed die-swell. However, this is outside the scope of this thesis.

5.4 Numerical simulations of polymer melts: XPP

model

5.4.1 Single-mode numerical simulations

As was done in the previous section, an analysis of convergence is provided
to find the most appropriate choice of M, N and At in terms of accuracy.
The results in this section have been obtained using the single-mode XPP

model with the following values of the non-dimensional parameters:
Wi=1, Re=05 p=1/9, ¢g=4, r=1, «a=0.025.

The particular value o = 0.025 has been chosen as a consequence of the
observations about multiple solutions in the viscosity reported by Inkson
and Phillips [58]. In particular, the rule of thumb proposed by Verbeeten
et al. [132] of setting @ = 0.3/q seems to lead to multiple values of the
transient extensional viscosity . Here we then adopt = 0.1/¢, even if one
has the certainty of finding a unique solution only if @ = 0 [58]. First, a
mesh convergence study of the location of the free surface as a function of
the time step, number of elements and the polynomial order is performed.
This is shown in Fig. 5.17. The location of the free surface clearly converges
as the size of the time step is decreased, the number of elements is increased
or the order of the polynomial approximation is increased. These results
suggest that the choice of discretization parameters N = 8, M = 28, and

At =107* is sufficient to achieve a converged solution for this problem.
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Secondly, the convergence of the velocity profiles with respect to the
time step and the polynomial order are investigated at different channel
cross-sections. The number of elements does not play such an important
role as far as the convergence of the velocity profiles are concerned. The
fully developed profile in the die was achieved with as few as two elements in
that region. However, more elements are required to capture the free surface
location. The die exit in our simulations is located at z = 20. In Fig. 5.18,
the profiles at the upstream location z = 15 are plotted for different choices
of At and N. The profiles for At = 10~% and At = 107° with M = 28 and
N = 8 are in close agreement as are the profiles for N = 8 and N = 10 with
M = 28 and At = 10~*. Further downstream, the profiles tend towards
a profile characteristic of plug flow. This is shown in Fig. 5.19, where the
convergence with respect to At, M and N is investigated at z = 28. This
figure confirms the findings shown in Fig. 5.17 and provides further evidence
that converged approximations are obtained with the choice of the spatial
and temporal discretization parameters: N = 8, M = 28, and At = 1074,
All remaining results presented in this section were generated using these
values.

Finally, we present contours of the horizontal velocity component, the
shear stress and the axial normal stress in Fig. 5.20 for Wi = 1. Looking
at the stress contours, in both cases very steep gradients are present around
the singularity. We have followed the idea of Gerritsma and Phillips [39]
and allowed the stress approximation to be discontinuous across elements.
On the other hand, the velocity components are enforced to be continuous
across elements. When steady state is achieved, the normal velocity has to
be zero on the free surface for the no penetration condition to be satisfied.
This condition is not satisfied a priori. The time dependance of the L?-
norm of velocity is plotted in Fig. 5.21. This figure demonstrates that the

no-penetration condition is satisfied when steady state is attained.

5.4.2 Multi-mode numerical simulations

In the rest of this chapter numerical results derived from the prediction for
the multi-mode XPP model are presented.

One of the questions we want to address in this section is whether longer
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Figure 5.22: Dependence of swelling ratios on the Weissenberg number for

different sets of narrow discrete relaxation spectra.
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Figure 5.23: Dependence of swelling ratios on the Weissenberg number for

different sets of broad discrete relaxation spectra.

relaxation times in the multi-mode XPP model can be associated with poly-
mer melts with a high molecular weight tail. Another related question is
whether a broad discrete relaxation spectrum in the multi-mode XPP model
can be identified as an indicator of the polydispersity of the melt. In the
case of models based on elastic dumbbells, such as Oldroyd B or FENE,
this seems more readily linked to the idea of elastic springs connecting the
dumbbells. Moreover, in these models the purely elastic behaviour of the
material is almost entirely represented by the relaxation times. In more
sophisticated models, such as the XPP model, factors like the anisotropy of
the chains and the withdrawal of the branches into the tubes are taken into
account. It is of great importance to gain a deeper insight into the different
characteristics of a material that such parameters might represent from a
global perspective and to relate these to swelling behaviour in the extrudate
swell problem.

It seems to be generally accepted that for materials of comparable elas-

ticity, those which are more polydisperse tend to generate larger swelling
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Figure 5.24: Dependence of swelling ratios on Weissenberg number for differ-
ent sets of values of r;, i = 1,...,4, with A\; = 1073, Ay = 1072, A3 = 107!,
A=1

ratios when extruded. This behaviour has been observed experimentally by
Yang et al. [138] for linear LDPEs, for example, and noted by Den Doelder
and Kooopmans [32]. However, Den Doelder and Kooopmans [32] argue
that standard polydispersity indices, such as M, /M, where M,, and M,
are the weight average and number average molecular weight, respectively,
are not appropriate for predicting swelling ratios because they are based
on the molecular weight distribution rather than the rheological properties
of the material. They proposed an alternative indicator based on higher
average molar moments, which is monotonically related to the recoverable
compliance via the plateau modulus, that could be used to predict the effect
of polydispersity due to elasticity.

All the results shown in this section have been generated using the XPP
model with four modes. The dependence of the swelling ratio on the Weis-
senberg number, based on average relaxation time, is shown in Figs. 5.22

and 5.23 for narrow and broad ranges of discrete relaxation spectra, respec-

173



\\\\10.1 \\\.\100 T \\\1b1
Wi

Figure 5.25: Dependence of swelling ratios on Weissenberg number for dif-
ferent values of 7y, with \; = Ay = A3 = 1073, Ay = 5 x 1072

tively. For materials which possess the same longest relaxation time, larger
swelling ratios are obtained for those materials whose discrete spectra are
broader. The increase in swelling ratio due to a broader relaxation spectrum
is much less than the increase due to a larger value of the longest relaxation
time. This is to be expected, since the elasticity of a polymer depends on
the value of the longest relaxation time much more strongly than on the
shorter ones. This explains the jump between the top two and the bottom
two curves in Fig. 5.23.

Another interesting outcome is revealed from the numerical simulations
on investigation of different ranges of the parameters, r;, 1 = 1,...,4, the
ratios of the backbone orientation and stretch relaxation times for each of the
modes. In Fig. 5.24 the effect of orientation is highlighted. For a fixed value
of the Weissenberg number, larger swelling ratios are predicted for larger
values of ;. It seems reasonable to argue that orientation does influence the
capacity for elastic recoil in the melt; a longer relaxation time associated

with the orientation of the backbone leads to an overall higher elasticity of
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Figure 5.26: Dependence of the swelling ratios on Weissenberg number for

different values of 7y, , with Ay = XAy = A3 = 1073, Ay = 1071,

the melt. However, as the range of r; broadens, and the maximum value
increases, the effect of increasing swelling ratio with Weissenberg number
is reduced. We believe that this effect might be related to the increased
anisotropic behaviour of the model.

On the other hand, as the Weissenberg number increases, the effect of
the orientation relaxation time on elastic recoil seems to weaken, as can be
seen by the convergence of the symbols in Fig. 5.24 as one moves from left
to right. This feature may be due to the counteracting effect of an overall
larger flow rate. An increase in fluid inertia partially counteracts the effect
of larger values of r;. At higher flow rates, the molecules are literally subject
to stronger convective forces which impels them to align with the stream-
lines, thereby enhancing the anisotropy of the melt. Once the chains have
become aligned with the streamlines, they will keep their preferential direc-
tion. Hence, the relaxation process related to orientation will be complete,
leaving the chains only the possibility of stretch. Therefore, an increase in

flow rate seems to amplify the elasticity effects due to stretch and dampens
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Figure 5.27: Swelling ratios plotted against Wi for different values of r_ .,
with \j = A = A3 = 107304 = 1.

the effects due to orientation. This is in fact what the modelling of the
orientation and stretch predicts in the expression for the extra function in
Eq. (2.80). The backbone tube orientation dominates the flow process at
low rates, while the stretch takes over at higher rates.

In Figs. 5.25-5.27, where a discrete bimodal relaxation spectrum is used,
a similar reduced effect of the orientation relaxation time on the swelling ra-
tio is predicted as the Weissenberg number increases. The bimodal spectrum
has three modes associated with the shortest relaxation time, and a fourth
mode associated with the longest. The two distinct relaxation times are
increasingly separated by one, two or three orders of magnitude in Figs.
5.25, 5.26, and 5.27, respectively. The reason for this particular investiga-
tion was to study the effect of adding a high molecular weight tail to a much
lighter melt. An experimental investigation of this effect has been carried
out by Zhu and Wang [144], who monitored the extrusion of 100 K/1.5 M
polybutadienes. The swelling ratios have been measured for increasing con-
centrations of 1.5 M, from 0% to 5%. The results reported in Fig. 5.28
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clearly show an increase in the swelling ratios with increasing percentage
of the high molecular weight tail. Based on the experimental findings, a
sensible approach in the numerical simulations is to increase the number of
modes associated with the longest relaxation time. A qualitative comparison
between numerical simulations and experiments is shown in Fig. 5.28. The
qualitative agreement between the two is very good. However, there were
insufficient experimental data available for the blend to fit the parameters
in the XPP model in order to perform a quantitative comparison. In the
numerical simulations, ten modes have been used. The number of modes
associated with a relaxation time Ag;; = 1 varies from 0 to 3. The jump
in the swelling ratio, as the concentration is increased from 0% to 1% in
the experimental results is clearly due to an increase in the longest relax-
ation time. However, an increase in the swelling ratio is also reported as
the concentration is increased further. As the concentration is increased,
the longest relaxation time remains the same but an increasing number of
modes (1,2,3) are associated with it. Clearly further and deeper investiga-
tion of this issue is required. We chose not to superpose the experimental
and numerical results because this is a qualitative comparison.

For the sake of completeness, we performed systematic simulations over
five decades in the shear rate. The results are shown in Table 5.5. They
have been generated keeping the relaxation times in the range 1074 < Apo,i <
10~2. Consequently, the Weissenberg number varied as 1073 < Wi < 10. In
the case of prevalence of linear modes, no convergent solutions were achieved
for 4 = 10. This is a fairly expected outcome, since the value Wi = 10 is
already reasonably high. Once again we remark how this is still much higher
than the corresponding critical Weissenberg number for UCM-tpye models,
which is around 1.5. However, it is not entirely clear why, in the case of
branched (or mostly branched) modes, a solution was obtained. The only
idea we can put forward is that the exponential term in the extra function,
eg()‘fl), tends to be stabilized for higher values of ¢. If one linear mode is
present, it is reasonable to believe that a sort of amplification might occur,
causing the numerical code to break down. However, no systematic analysis
has been performed at this regard, being the exact value of a critical Weis-

seneberg number for the numerical calculations outside the scope of this
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Shear Rate 1 1 9 3
Modes 10 1 10 10 10
1 mode, L 28.918% | 39.550% | 50.468% | 62.354% B.D.
1 mode, B 32.628% | 42.593% | 54.899% | 65.553% | 70.489%
2 modes, LL 28.541% | 39.985% | 51.547% | 64.278% B.D.
2 modes, BB 32.785% | 42.193% | 55.023% | 66.254% B.D.
2 modes, LB 36.244% | 45.409% | 58.829% | 68.486% B.D.
3 modes, LLL 28.126% | 40.210% | 51.286% | 63.457% B.D.
3 modes, BBB 32.012% | 42.245% | 54.365% | 65.553% | 71.554%
3 modes, LLB 36.987% | 45.745% | 59.685% | 68.798% B.D.
3 modes, BBL 36.777% | 45.875% | 58.145% | 69.045% B.D.
4 modes, LLLL 28.887% | 40.014% | 50.869% | 64.869% B.D.
4 modes, BBBB 32.111% | 43.494% | 54.869% | 67.024% | 71.214%
4 modes, LLBB 36.985% | 46.109% | 58.045% | 68.789% | B.D.%
4 modes, LLLB 36.324% | 46.198% | 58.178% | 67.125% B.D.
4 modes, LBBB 37.244% | 45.855% | 58.689% | 68.486% B.D.

Table 5.5: Summary of the values of the swelling ratios for different values

of the shear rate.

thesis.

Another observation which can be made looking at the results in Table
5.5 is that, at a fixed shear rate, the largest swelling ratios are obtained
when linear and branched mode are allowed in the melt. However, such a
difference in the calculated values of the swelling ratio tends to narrow as
the shear rate increases. In this regard, it might be useful to briefly analyze
the experimental work of Liang [70], who tested an LDPE/LLDPE (Linear
LDPE molecule with no branching) melt. The highest swelling ratios are
reached when the two components in the melt are present in roughly equal
parts. The LLDPE increases the elastic storage mechanism in the blend,
and this is the reason why the swelling ratios increase from pure LDPE to
a 50% blend of LDPE with LLDPE, then decrease. When the LLDPE is in

the continuous phase, its much larger viscosity leads to higher viscous dis-
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sipation as a consequence of the large shear at the wall. This explains the
decrease in elasticity and the enhanced swelling ratios when the proportion
of LLDPE in the blend is more than 50%. However, it is not completely
clear why there is an increase in elasticity when LLDPE is added from 0%
to 50%. In this range, the elasticity due to the branched LDPE clearly di-
minishes. Moreover, the viscous dissipation due to the shear deformation,
even if not as large as for LLDPE in its continuous phase, still increases with
the addition of LLDPE up to 50%. This would explain why the elasticity
is generally higher when the LDPE is in its continuous phase, but not at
the peak at 50%. On inspection of the curves in Fig. 6 in [70], it can be
seen that, in the region where 0% < LLDPE (%) < 50%, they flatten with
increasing shear rate. On the other hand, the slope of the three curves is
the same in the region where 50% < LLDPE (%) < 100%. It is likely that
the effect of the LLDPE on the entanglement molecules in the blend is re-
sponsible for the increasing swelling ratio in the LDPE continuous phase.
A long, linear molecule and a branched one entangle more easily than two
branched molecules, but at the same time the latter combination supports
more strain than the former. This might explain why the increase in elastic
energy provided by these entanglements is more visible at lower shear rates
with an increase of linear molecules. When the rate increases, such entan-
glements are more readily untied by convective constraint release and the
increase in elasticity with the percentage of linear molecules is less evident.
Eventually, such an increase in the elastic energy is lost when the LLDPE
is in its continuous phase. Unfortunately not enough data were found to
characterize the blend and therefore no quantitative comparison could be

performed.

However, these results are also in general agreement with the numerical
simulations of Clemeur et al. [26], who used the double convected version
of the pom-pom model (DCPP) to study the flow in a capillary rheometer.
They performed finite element computations for four different DCPP mod-
els. Each model had four modes. Results showed that the highest swelling
ratio by far was achieved using the model with two linear and two branched
modes, which resembles a balanced blend of LDPE and LLDPE. Further-
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more, the purely linear DCPP had the lowest swelling ratio, which was just
below that for the four-mode branched model, as observed by Liang [70, 71]

in his experiments.
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Chapter 6

Extrusion of Viscoelastic
Fluids: Comparison With

Experiments

This concluding chapter is an attempt to provide a quantitative analysis
of the extrusion of an XPP fluid and put it in the context of experimental
research. Several materials are characterized, and the corresponding param-
eters fitting the XPP model are calculated. Comparison between numerical
and experimental results are presented. A discussion on a possible identi-
fication of the effects of polydispersity and orientation on extrusion is also

proposed.

6.1 Introduction

In an early experimental paper, Batchelor et al. [7] analyzed the extrusion of
the depolymerized natural rubber Lorival R25. An increase of the swelling
ratio with shear rate was evident, varying between 50% and 200%. More
experimental work has been carried out in the last decade, mainly focusing
on Low and High Density PolyEthylenes (LDPE and HDPE, respectively),
and their blends. The macromolecules present in these materials can be

synthesized.
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A comparison between numerical simulations and experiments has been
performed by Huang and Lu [54], in which they focused on the influence
of the relaxation properties of LDPE and extrudate swell. The nonlinear
K-BKZ integral constitutive model, in which the stress is related to the rate
of strain through functions of the invariants of the Cauchy and Finger strain
tensors, was used in the simulations. A fading memory function is present in
the K-BKZ model, together with a damping function which describes how
the memory of the fluid fades. Four different damping functions were ana-
lyzed by Huang and Lu [54]. The main outcome was that the model with
the single exponential Wagner damping function generally performed better
than the others. The explanation for this is that the Wagner damping func-
tion captures more accurately the dependence of the memory of the fluid
on the strain history. The model possesses a nonzero second normal stress
difference, which was confirmed to be responsible for a reduction in the over-
estimation of the swelling ratios. Decreasing swelling with increasing length
of the die was also reported. The results by Huang and Lu [54] are added in
this chapter to the ones from Russo and Phillips [110]. Moreover, the results
from several works about the relationship between the molecular structure
and the linear rheology of different melts (e.g. [129, 128, 130, 131, 21]) have
been analyzed. The outcome, explained in Section 6.3.1, strengthens the
power of the XPP model to perform quantitative predictions for branched
polymers. On the other hand, is less optimistic than the findings in [110]
concerning the possibility of recovering information on the molecular struc-

ture of the material by simply looking at the parameters fitting the model.

A capillary rheometer is probably the most common tool to extrude poly-
mers. In this instrument, the fluid in a reservoir is forced into a die of much
smaller diameter, usually by means of a piston. This entry flow creates a
pressure drop between the entrance and the exit of the die. The analysis of
flow within and beyond the capillary provides information about the rheo-

logical properties of the polymer.

Liang [69] used such a rheometer to test different polymeric materials. He

proposed a power law dependence of the shear viscosity on the shear rate
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and tested his theory on four different thermoplastics including HDPE and
LDPE. His predictions are consistent with the experiments over a relevant
range of shear rates (10s~! < 4 < 103s71). The most visible non-Newtonian
effects are present in the HDPE melt. This type of polymer melt has also
been used by Liang [68] to validate an equation relating swelling ratio to
pressure drop. In the analysis, the die is assumed to be sufficiently long, so
that the pressure drop at entry can be neglected, and the flow is assumed to
be inertialess. The experiments have been performed over the range of shear
rates 185571 < 4 < 6855~ L. The agreement is quite good especially at high
shear rates, where the assumption regarding the entry pressure becomes less

significant.

As we already mentioned, Liang [70] tested an LDPE/LLDPE (Linear LDPE
molecule with no branching) melt. We have already discussed the results in
terms of swelling ratios at the end of the previous chapter. We can also add
in this regard that clear patterns can be seen in the pressure drop at the
exit, especially for low shear rates. This suggests that when viscosity effects
become more significant, the shear properties of the different components
of the melt produce distinct behaviour. The swelling ratio becomes less de-
pendent on both the entry pressure drop and the shear stress at the wall,
as the percentage of LLDPE in the melt increases. There is also a reduced
shear-thinning effect when there is a lower percentage of branched molecules
present in the melt. The highest swelling ratios are reached when the two

components in the melt are present in roughly equal parts.

Further experimental work has been carried out by Liang [71], who also
tested two different tyre compounds. The compounds are natural rubbers;
one is filled with calcium carbonate, the other with carbon black. The carbon
black filled compound generally exhibited a higher response to shear effects,
including higher values of shear stress at the wall in the die. The reason is
that the carbon black particles undergo radical polymerization forming ag-
gregates which reduce the elastic response and increase the viscous response.
For the same reason, swelling ratios are lower than the calcium carbonate

filled rubber. The entry flow from the reservoir is a highly extensional flow.
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The elastic energy stored from this extension has also been taken into ac-
count, and the swelling ratios measured against it. If the die is not long
enough, the compounds show a high dependence on the entry strain en-
ergy. This indicates that long dies are required if the extensional process in
the capillary rheometer is to be fully developed before swelling takes place.
In fact, there is general agreement that the swelling ratio decreases as the
length of the die increases, until it reaches a plateau. The reason is that
the profile at the entry is far from being fully developed, due to the highly
extensional effects caused by the contraction in the rheometer. Such effects
gradually decrease along the die, and eventually, if the die is long enough,
disappear, leaving a genuine fully developed profile, where the elastic stress
due to the extension is completely relaxed. At this point, the elasticity of
the fluid becomes independent of the length, and so does the corresponding

value of the swelling ratio.

The dynamic interaction between the particles and the solvent is clearly
at the core of the fluid mechanics of solutions and melts. Experiments fre-
quently demonstrate the important processes taking place at the interface
between the particles and the solvent. The free radical behaviour discussed
by Liang [71] is a good example. Even more relevant, however, are the ex-
periments that have been performed by Dangtungee et al. [31] in which they
investigated isostatic polypropylene (IPP) filled with uncoated and coated
calcium carbonate in a capillary extrusion. The melts behave in a similar
fashion when the concentration is kept to around 5%. However, when it is
increased to 25%, the response to shear is more evident in the uncoated melt.
This is not unexpected due to the higher friction at the particle interface. On
the other hand, the presence of coated nanoparticles leads to a larger shear-
thinning effect since they act as a lubricant in the blend, and subsequently
there is less resistance to shear. Swelling and the overall elasticity of the
blend is generally reduced by the addition of particles, so long as the shear
rate is large enough. When the added particles are coated, the decrease
in elasticity is due to the same lubrication effect responsible for the shear-
thinning of the fluid. On the other hand, if uncoated particles are added,

it may be that elasticity due to the orientation is particularly reduced, be-
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cause the anisotropy of the blend would be aided by the calcium molecules.
This seems reasonable especially looking at low shear rates, where elasticity
increases with the addition of particles. In this case, when convection does
not strongly contribute to the orientation of the molecules, they are likely to
aggregate. Hence, by increasing the percentage of filler without permitting
sufficient dispersion, the aggregation adds elasticity to the blend, and this

is more evident for the uncoated filled melt.

Dangtungee et al. [30] also performed experiments on a blend of LDPE
and ethylene octene copolymer (EOC). The largest values of the shear and
extensional viscosities are obtained for the most concentrated blend (75%
LDPE, 25% EOC). It also seems that the amount of swelling the blends
experience is very sensitive to the aspect ratio; no clear pattern is observed
apart from the longest die for which the aspect ratio is 15. On the other
hand, the rheological properties of the melt seem independent on the as-
pect ratios. This confirms the observation made earlier that, in a capillary
rheometer, the swelling ratio is highly dependent on the process of storing
the strain energy subsequent to the highly extensional flow in the contrac-
tion of the reservoir. One further conclusion can be drawn. For the longest
die, the swelling ratio increases with concentration at low shear rates. At
high shear rates, the inverse trend is observed. This seems to suggest that
when the molecules are allowed to aggregate, there is a gain in the elastic
nature of the melt. Conversely, if they are dispersed, the effect is to reduce
the elasticity and increase the rigidity and viscosity of the material. We re-
mark that all the polymers analyzed do not form cross-links. If that was the
case, aggregation has the opposite effect since cross-links generate perma-
nent memory in the fluid. This would result in an increase in the plasticity

of the material, which counteracts the process of elastic stress recovery.

6.2 Characterization of the materials

Five materials have been characterized for comparison with experimental
results. Unfortunately, there is a dearth of experimental results on extrusion

of polymeric liquids suitable for comparison with numerical simulations. The
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materials which are usually extruded are not sufficiently characterized to
fit nonlinear models (quite often not even the dynamic moduli G'(w) and
G"(w) are available). On the other hand, for materials which have been
extensively characterized, such as the DSM Stamylan LD 2008 XC43 or the
BASF Lupolen 1810H (see for example Verbeeten et al. [132, 133] ) no
experimental results on extrusion have been found.

The parameters in the multi-mode XPP model were determined using
Reptate, which is an open source software package for viewing, exchanging
and analyzing rheological data. It was developed as a part of the Microscale
Polymer Processing (uPP?) project. Five polymers have been analyzed: two
linear LDPEs, LLDPE-H and LLDPE-L, which have been extruded exper-
imentally by Yang et al. [138], and the IUPAC-LDPE samples A, B and C
characterized by Meissner [80]. The experimentally measured storage and
loss moduli reported in these papers are used to calculate the linear vis-
coelastic parameters. Then the nonlinear parameters in the XPP model are
determined using the stress-strain curves in the case of the linear LDPEs
and the transient stress data for the ITUPAC samples. The model parameters
are reported in Tables 6.1 and 6.2. The linear viscoelastic has also been im-
plemented in a multi-mode version of the Oldroyd-B model with comparison

purpose.

6.3 Results

In this final subsection we present some quantitative comparisons with ex-
perimental results in the literature.

A few remarks need to be made at this stage. Unfortunately, no poly-
dispersity indices are reported by Meissner [80] for the IUPAC samples.
However, the measurements reported by Meissner [80] show that sample
A has a molecular weight which is an order of magnitude higher than both
samples B and C. Moreover, Meissner [80] describes sample A as being more
polydisperse than B and C. These latter samples seem to possess the same

degree of polydispersity.
With reference to Table 6.1, we note that, in the case of the [IUPAC-LDPE
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SAMPLE Linear parameters XPP model

i Go,i(Pa) Aoy | G T

1 2950-10° 1.620 -10%2 | 22 1.0000

[UPAC.LDPE 2 9.1792 - 102 3.239-101 | 2 1.3750
X 'Af 3 2.999-10° 6.478-10% | 1 2.5000
Sla\‘/[mPe ’;‘;m 4 50663-10"  1.295-10° | 1  1.8750
eissner [80] o300 105 2.500.107" | 1 2.5000
6 4.4792-10° 5.1798-1072 | 1 2.5000

i Go,i(Pa) Moo | G T

1 29500-10%2 2.2056-10' | 4 1.1385

2 1.6410-10° 8.2552-100 | 1 3.0000

IUPAIC'];?PE 3 2.1522-10*  3.0897-10° | 1  2.5000
S;/Im?”e ];‘:)m 4 5.5578-10%  1.1564-10° | 1 3.0000
eissner [80] ) orer 105 43281101 | 1 3.5000
6 1.4384-10° 1.6199-10~' | 1 4.0000

i Go,i(Pa) Aoy | G T

1 5.8140-102 3.3056-10' | 4 3.1385

[UPAC.LDPE 2 1.6410-10°  6.1278-10° | 2 2.0000
| 'C . 3 1.6139-10* 2.4297-10° | 1 2.5000
S;/[mpe ];(:)m 4 6.4180-10'  1.0145-10° | 1  3.0000
eissner [80] oy orer 105 6.8312.107' | 1 2.0000
6 1.2456-10° 2.1784-10"1 | 1 2.0000

Table 6.1: XPP parameters for different polymer melts.
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SAMPLE Linear parameters XPP model

i Go,i(Pa) Avosi | Qi T

1 9.0957-10 1.7437-10' | 2 5.1385

B 2 4.8454-102  5.5965-10° | 2 4.0000
N - : r‘l);r; 3 6.7390-10%  1.7962-10° | 1 3.5000
ang et al. [138] ) cone 104 57648101 | 1 3.0000
5 8.6266-10° 1.8502-10"1 | 1  2.0000

6 5.2947-10° 5.9382-1072 | 1  2.0000

i Go,i(Pa) Avosi | Qi T

1 2.8770-10° 1.8382-10' | 5 4.3750

CIDPEH f 2 1.0228-102 5.5864-10° | 4  3.5000
N - | T;,I;l 3 1.7517-10%  1.6977-10° | 2 3.5000
ang et al[138] )\ a0e 105 51594101 | 1 3.0000
5 1.5335-10° 1.5679-10"1 | 1  2.5000

6 4.8003-10° 4.7650-10"2 | 1  2.0000

Table 6.2: XPP parameters for different polymer melts.
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Figure 6.1: Comparison of the calculated swelling ratios with the experi-
mental results from Meissner [80): IUPAC-LDPE sample A (top), sample B
(middle), sample C (bottom).
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Figure 6.2: Comparison of the calculated exit pressure drops with the ex-
perimental results from Meissner [80], sample A, and predictions reported
in Huang and Lu [54].
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Figure 6.3: Comparison of the calculated swelling ratios for the three TUPAC

samples.
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Figure 6.4: Comparison of the calculated swelling ratios with the experimen-
tal results from Yang et al. [138] : LLDPE-H (top), LLDPE-L (bottom).
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samples, the discrete relaxation spectrum for sample A spans two orders of
magnitude more than samples B and C. The question of whether or not this
property can be systematically related to an eventual difference in polydis-
persity is one of the issues we are addressing in this section. A difference
in behaviour between sample A and the other two samples, was detected
in the experiments. According to the data in Meissner [80], it is natural
to associate this difference to different weight-averaged molecular weights
and molecular weight distributions. This is arguably the only discrepancy
reported by Meissner [80] that can be related directly to the fluid dynamics
of the LDPEs. The other two differences between the ITUPAC samples are
linked to the thermal stability of the melts and the amount of vinyl groups
present within them. Therefore, since the numerical simulations are isother-
mal and the presence or absence of vinyl groups has never been reported
to influence the rheological structure of a melt, it seems reasonable to con-
sider weight-averaged molecular weights and molecular weight distributions
as the only relevant source of discrepancy. Finally, the difference in melt
memory index, which is actually measured through the swelling ratios, pro-
vides similar values for samples A and B, and smaller values for the sample
C. However, the results reported in Meissner [80] clearly show that sample
A exhibits the highest swelling ratio until a certain shear rate is reached.
Then for ¥ = 10s~!, which is the largest shear rate employed in the exper-
iments, sample B shows the highest value of the swelling ratio (see Fig. 12
in [80]). This feature may be due to the anisotropic effects we highlighted
in the previous section. Whether or not such a switch in behaviour between
samples A and B is related to the orientation characteristics of the melt
is, in reality, not known. However, a couple of things can be noted from
the nonlinear viscoelastic parameters g;, r; in Table 6.1. First, the longest
relaxation time of sample A is associated with ¢; = 22, and is the only
parameter which stands out from the others. This differentiates sample A
from samples B and C, which possess similar parameters. In a way, this
confirms the findings of Meissner [80]. On the other hand, even if such value
could point to a difference in the isotropic behaviour of the melt, the values
of r; are very similar across the three samples. In fact, they are even in

slight contrast with the observations made in the previous chapter: sample
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B presents larger orientation relaxation time ratios than sample A. There-
fore, for sample B, the curve of the swelling ratios against is expected to
flatten with increasing shear rate. In a way, according to the viscoelastic
parameters in Table 6.1, we would expect sample A and B to swap their
swelling ratios! In conclusion, there is a partial difference in the parameters
between the sample A and the other two samples, but no clear pattern can
be recognized and such a difference it is definitely not strong enough to draw

conclusions on an eventual correlation with elastic effects in extrusion.

The comparison between the values of the swelling ratios calculated through
the simulations and those measured in the experiments is reported in Fig. 6.1
for the IUPAC-LDPE samples A, B and C. The results reported by Huang
and Lu [54] are also included for the IUPAC sample A. They compared dif-
ferent K-BKZ models. The Wagner model [134], without the inclusion of
a second normal stress difference, performed better than the others. We
also report the results from Barakos and Mitsoulis [6], who employed the
Papanastasiou-Scriven-Macosko (PSM) model [95] . Beside the clear failure
of the Oldroyd-B model in reproducing the behaviour of the LDPE melts, it
is also worth noticing how the predictions of Barakos and Mitsoulis, as well
as those of Haung and Lu, depart from the others at larger values of the
shear rate. In fact, all the K-BKZ models analyzed in [54], with the expec-
tion of the Wagner model, share the feature of overestimating the swelling
ratios for 4 > 1. The better agreement of the Wagner model is likely to be
attributable to its damping function being steeper than the others at larger

shear rates.

The exit pressure loss is also shown in Fig. 6.2. It is obtained once again
using the formula (5.6) employed in the previous chapter. Again, the val-
ues predicted by the Oldroyd-B model highly overestimate the experimental
data. On the other hand, the agreement of our predictions for the XPP
model with previous numerical and experimental results is reasonably good,
even if, in our numerical simulations, sample A exhibits the highest swelling
ratio at all shear rates, as can be seen in Fig. 6.3. It remains an open issue

whether or not the switch found in the experiments in the swelling ratios
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for samples A and B for ¥ = 10s~" is really due to the presence of strong
orientation of the polymer chains at higher flow rates. On the other hand,
the numerical predictions of the swelling ratios in Fig. 6.3, together with
the other simulations in Section 5.4, seem to support the hypothesis that

broader relaxation spectra mimic the effect of polydispersity in extrusion.

Regarding the two samples extruded by Yang et al. [138], the low density
polyethylene LLDPE-H is more polydisperse than LLDPE-L, as we can see
from the values of the polydispersity indices in Table 1 in [138]. However, no
substantial difference is observed between the parameters extracted from the
linear LDPEs analyzed [138]. The two samples have significantly different
polydispersity indices. Therefore, this does not support the hypothesis that
information on polydispersity can be inferred from the relaxation parame-
ters. However, the XPP model has been derived for branched rather than
linear polymers and therefore it is not surprising that numerical simulations
using the XPP model are unable to predict the experimental behaviour seen
in Fig. 6.4.

6.3.1 Discussion on polydispersity and orientation

At the beginning of §5.4.2 we posed two questions: first, whether or not the
discrete relaxation spectrum might be an indicator of polydispersity of the
material. Second, in which way larger values of the shear rate affect the
orientational relaxation process by aiding the anisotropy of the fluid. These
topics are obviously related to the molecular structure of the fluid, therefore
constituting two specific problems on their own, even without involving any
specific fluid dynamics. However, since the swelling ratio has always been
thought to be (and sometimes used as, see Meissner [80]) a measure of the
memory and elasticity of a melt, it might be worth having a look at whether
or not our findings can be inserted in a wider framework. In the last decade a
notable amount of work has addressed to the direct and inverse problems of
relating the molecular structure of polymeric liquids, and in particular their
molecular mass distribution, to their rheological properties. In a series of
papers Van Ruymbeke et al. [129, 128, 130, 131] embarked on the task to re-

cover the dynamic moduli G', G” from the molecular weight distribution for
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several materials, including polystyrene, polybutadiene and poly-isoprene.
Several models based on the reptation theory are investigated, and other

mechanism such as fluctuation or constraint release are also considered.

On the other hand, the effect of the orientation of the macromolecules in
a polymeric liquid is one of the main topics in constitutive modelling, as
it is known to be one of the key relaxation processes, together with repta-
tion, stretch and constraint release, taking place in viscoelastic fluids. From
what we observed in our numerical simulations and from the experimental
data it seems clear that, as far as the extrusion process is concerned and
the nonlinear models that are used in the numerical simulations, these two
mechanisms have to be considered together. In other words, it makes more
sense to merge the two questions mentioned above, for the simple reason
that the discrete relaxation times belong to the family of linear viscoelastic
parameters, whereas orientation is a nonlinear process. In the XPP model,
as well as in any other constitutive model based on the upper-convective
derivative, the linear viscoelastic parameters are calculated practically from
the theory of the linear Maxwell modes. This means that, in the limit of
linear viscoelasticity, the XPP model does not differ from the UCM model.
Bearing this in mind, it becomes clear that the analysis of the discrete relax-
ation spectrum alone cannot provide any more information than an UCM
or Oldroyd-B model. However, from the molecular approach of the original
pom-pom theory of McLeish and Larson [79], on which the XPP model is

based, the backbone relaxation time is calculated as
4 9
Ap = ﬁsb%)\a(o)q (6.1)

In Eq. (6.1), s, is non-dimensional molecular weight of the backbone, ¢y is
the fraction of the backbone segment which is fixed due to entanglement,
Aq(0) is the relaxation time of the arms at the endpoints and ¢ is the num-
ber of arms. Therefore it seems quite intuitive to associate longer relaxation
times to heavier molecules. However, the conclusion that a broader relax-
ation spectrum corresponds to higher polydispersity is not straightforward.
In fact, the IUPAC-LDPE sample A, together with other three polymer
melts, [UPAC X, LDPE B and Melt 1, have been analyzed by Inkson et al.

196



[67] using the pom-pom model. Among these polymers, IUPAC sample A
and Melt 1 have the highest polydispersity indices (22 and 24.6, respectively)
and molecular weights (see Laun [66]). LDPE B is has a polydispersity in-
dex around 15. However, looking at table 11, I11 and VI in Inkson et al.
[57], IUPAC A presents parameters very similar to LDPE B rather than to
Melt 1. The latter spans over 7 relaxation time decades, while the spectrum
for TUPAC A and LDPE B narrows to 5 decades. What is different between
IUPAC sample A and Melt 1 are the ratios :—’; between backbone orientation
and stretch relaxation times, respectively. This can be seen, for instance,
in Figs. 17 and 18 in [57]. In the case of sample A, these ratios are almost
independent on the relaxation time, whereas for Melt 1 they decrease with
increasing relaxation time. In a way, for Melt 1, the longer the mode (i.e.

the heavier the molecule), the faster its orientation.

In conclusion, our simulations suggest that larger orientation relaxation
times do contribute to the overall elasticity of the melt and such contri-
bution becomes less relevant at larger shear rates. However, no clear pat-
tern could be identified, by fitting the XPP model, in relating the corre-
sponding viscoelastic parameters to the orientation relaxation process and
polydispersity of the samples we investigated. At the end of the day, even
if several procedures have been proved to be satisfactory in recovering the
viscoelastic characteristics of a sample from its molecular structure (see,
e.g., [129, 128, 130, 131, 21]), no clear pattern is recognized even for the
distribution of the dynamic moduli G’ and G”. For example, van Ruym-
beke et al. [130] analyzed a vast amount of polystyrene, polybutadiene and
poly-isoprene melts, with different molecular conformation (linear, star) and
different polydispersity indices. The prediction of the dynamic moduli, ob-
tained by means of a tube-based model including reptation, fluctuation and
constraint release, are quite accurate, but only by looking at the master
curves of G’ and G” there are no hints towards the class of polymeric liquid
they belong. It would be practically impossible that such a thing would hap-
pen after fitting G’ and G” to find the corresponding discrete viscoelastic

parameters.
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Chapter 7

Conclusions and future work

In this thesis the die-swell problem has been investigated. The three-fields
formulation of the problem has been treated in the weak form. A few re-
marks on this mathematical formulation have been addressed. In particular,
a stability estimate for the stress tensor is proposed, following the same ap-

proach used for velocity and pressure.

The physical interpretation of the die-swell phenomenon for a Newtonian
fluid has been revisited, in the attempt of supporting the well-known idea of
readjustment of the velocity fields using numerical simulations specifically
aimed to clarify a few aspects [109]. In particular, we numerically calculated
the tensile and compressive stress in the outer and core layers of the fluid,
respectively. These are the competing forces trying to expand and contract
the fluid. In our simulations they seem to balance for Re ~ 20. This is
an important confirmation that the Newtonian swelling is entirely caused
by the competition of these two components. In fact, in the experiments
a value of Re around 18 has been reported as the critical swelling value,
namely, the value of Re at which no swelling occurs. Moreover, if surface
tension is included, the driving force which tends to minimize the curvature
of the free surface acts in favour of the stress in the outer layer. However,
this effect decreases with increasing Reynolds number and eventually, for
Reynolds number very close to the critical swelling value, it disappears. In

fact, for Reynolds number very close to the critical swelling value, the stress
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balance is independent on the surface tension.

An algorithm based on the spectral element method has been implemented
to predict the swelling of Newtonian and viscoelastic fluids. Two time-
marching schemes are employed in the field equations, a first and second
order OIFS. Both are employed for Netwonian fluids, whereas the second
order is preferred in the simulations of viscoelastic fluids. Three different
schemes for the update of the location of the free surface have been used in
the Newtonian case. The stable, third order Adams-Bashforth scheme is re-
tained for the simulation of the viscoelastic models. The viscoelastic models
investigated are the UCM, Oldroyd-B and XPP models. Convergence with
respect to temporal and spatial discretization steps has been studied for the
different models. In the Newtonian case, the effects of inertia and surface

tension have been considered.

As expected, the swelling ratio decreases with increasing inertia, until the
aforementioned critical swelling Reynolds number is reached. Beyond it,
the fluid contracts. A few simulations for larger values of Re have been also
performed. The findings are in good agreement with previous works.

Last, the effect of surface tension has been investigated. The role of sur-
face tension, through the action of the capillary forces, is to try to keep the
fluid particles as aggregated as possible. Therefore, at fixed Re, the swelling
ratio is less when capillary forces are present. This has also been reported
in previous works. This work has been published in Computers and Fluids
[111].

Numerical simulations of extrusion using UCM and Oldroyd-B models have
then been performed for We € [0.25,1]. Beside swelling ratios, standard
quantities related to the elasticity of the fluid, such as the normal stress dif-
ference and pressure loss, have been analyzed. They increase with increasing
Weissenberg number, as expected. The agreement with previous work and
the theory of Tanner [117] is reasonably good, and a few observations on the
range of validity of Tanner’s formula are reported. Flow fields and free sur-

face profiles are also reported. In particular, the latter is a sensitive quantity
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against which we tested the convergence properties of the algorithm.

In the last part of this thesis, the XPP model has been employed to model
branched polymer melts. The single mode version has been used to test the
convergence of our algorithm. Numerical simulations have then been per-
formed over a range of different modes and parameters. Since the swelling
ratio is a measure of elasticity, a link between the changes in the values of
the swelling ratios and such parameters seemed intriguing. The effect of a
broader discrete relaxation spectrum and larger orientation parameters have
been explored. The idea that a broader discrete relaxation spectrum could
represent a more polydisperse sample has been discussed. Further studies
on the relation between the molecular characteristics of a sample and its
rheology were analyzed, but no bottom line could be drawn. However, our
simulations confirm a couple of things: first, larger orientation relaxation
times do contribute to the overall elasticity of the melt, as it is predicted by
all the models for entangled polymeric liquids; second, in the XPP model,
such contributions becomes less relevant at larger shear rates, where the
stretch mechanism is predominant. This is also evident by looking at the

set of equations for the XPP model.

Several materials have also been characterized for quantitative comparisons.
As expected, the XPP model predicts accurately the behaviour of branched
LDPEs but fails in predicting linear LDPEs. Again, from the viscoelastic
parameters, no clear pattern was discovered regarding the polydispersity of
the three ITUPAC LDPEs analyzed. TUPAC sample A is more polydisperse
than sample B and C, and indeed displays a broader discrete relaxation
spectrum. However, the behaviour of ITUPAC sample A compared with the
TUPAC Melt 1 discussed at the end of Chapter 6 seems to suggest a contrary
behaviour. This work was presented at the 5th Annual European Rheology
Conference in Cardiff, April 2009, and it is in press on Rheologica Acta in
the proceedings of AERC 2009 [110]. The failure of the Oldroyd-B model
in predicting the flow of polymer melts is also reported. This is well-known
and is most likely due, among other things, to its inadequacy in describing

extensional flow and to the absence of shear-thinning effect and mechanisms
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such as entanglement and orientation, as also explained in §5.2.

Future work in the direction of this thesis would be mainly addressed to
the improvement of the numerical algorithm. It could be made more dy-
namic, in the sense of using adaptive mesh refinement in particular regions
of the domain. A parallel implementation would be extremely useful, since
every single problem in each element could be diverted to a different pro-
cessor and then assembled through the edges at the end of each time step.

The extension to three dimensions is another option.

As far as the relationship between viscoelastic data and molecular struc-
ture of polymer melts is concerned, this has been investigated for a number
of years already. It seems that no clear pattern is foreseen in relating the
master curves of G' and G” recovered from the molecular structure of the
polymer to the polymer itself. In this regard some light could be shed by
a systematic and homogeneous approach in fitting, understanding and test-
ing the discrete linear and nonlinear viscoleastic parameters for different

models.
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