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Abstract

Health information technologies facilitate the collection of massive quantities of patient-level data. A growing body of
research demonstrates that such information can support novel, large-scale biomedical investigations at a fraction of the
cost of traditional prospective studies. While healthcare organizations are being encouraged to share these data in a de-
identified form, there is hesitation over concerns that it will allow corresponding patients to be re-identified. Currently
proposed technologies to anonymize clinical data may make unrealistic assumptions with respect to the capabilities of a
recipient to ascertain a patients identity. We show that more pragmatic assumptions enable the design of anonymization
algorithms that permit the dissemination of detailed clinical profiles with provable guarantees of protection. We
demonstrate this strategy with a dataset of over one million medical records and show that 192 genotype-phenotype
associations can be discovered with fidelity equivalent to non-anonymized clinical data.
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Introduction

Routine clinical care generates detailed, longitudinal informa-

tion about a patient’s health, medications, allergies, and treatment

response. Recording and preserving these data, typically through

an electronic medical record (EMR), can enable greater efficiency

and effectiveness in the actions of care providers [1–3]. In the

hopes of realizing the full potential of health information

technology, the past several years has witnessed dramatic growth

in the quantity and quality of clinical data [4], which, in turn, has

become an invaluable resource for a wide range of secondary (i.e.,

not direct care) endeavors [5,6], including public health [7,8],

quality assessment [9], and medical research [10,11]. With regard

to the latter, EMRs are increasingly linked to biorepositories to

enable large cost-effective association studies between genomes

and an expanding range of phenotypes [12–15], such as

atrioventricular conduction [16], white [17] and red [18] blood

cell traits, hypothyroidism [19], and, more recently, the study of

pharmacogenetic traits, including clopidogrel-response [20] and

warfarin dose [21]. To facilitate transparency and enable reuse,

collections of genotypes and DNA sequences tied to clinical

knowledge are shared beyond the originating healthcare institu-

tions, such as through the Database of Genotypes and Phenotypes

(dbGaP) at the National Institutes of Health [22].

The majority of datasets currently shared via dbGaP, and

similar environments, enable validation of known findings [23],

but they lack the phenotypic detail necessary to support novel

scientific investigations, thus slowing or preventing innovative

biomedical research. A major obstacle to dissemination of

clinically-rich datasets is the concern that disclosure of detailed

records can cause privacy breaches, particularly in the form of

patient re-identification [24,25]. Indeed, a growing number of

studies illustrate how simple patient-specific data, such as

demographics [26–29], hospital visit patterns [30], or insurance

billing codes [31] – which correspond to International Classifica-

tion of Diseases - 9th Revision (ICD-9) and are a core element of

clinical phenotype specifications [13] – can be exploited for

identification purposes. An additional concern is the contention

that DNA sequence information is inherently identifiable [32],

although patient-specific sequence databases to create such

vulnerabilities are not (yet) generally available [33].

Concerns over re-identification can be mitigated through

pragmatic governance models that integrate ethical, legal, and

technical controls [34–37]. From a technical perspective, various

approaches for the anonymization of patient-specific data have

been proposed [38,39], but they are limited in their scope by

considering unrealistically strong attackers. Of particular impor-

tance for the dissemination of clinical data, Loukides et al.
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introduced an anonymization method for billing codes [40], but

assumed the recipient of the data knows that a specific patient is a

member of the cohort. While such a threat is plausible, it is not

always likely and, in many situations, it is prudent for healthcare

institutions to assume more realistic adversaries: for example, a

recipient may only know that an individual was a patient at the

hospital and not that they were a member of a specific research

cohort [41,42]. We hypothesize that using larger populations for

anonymization will yield more accurate biomedical knowledge

discovery.

To investigate this hypothesis, we developed methods to

anonymize datasets that contain a large amount of clinical data

that account for varying degrees of a recipient’s knowledge. To

assess our models, we conducted an evaluation with three datasets

derived from the EMR system of the Vanderbilt University

Medical Center (VUMC), covering over one million patient

records. Our findings illustrate that making more pragmatic

assumptions on the capabilities of the recipient enables the

dissemination of significantly greater quantities of patient-specific

data in comparison to prior approaches. We find this method

enables the dissemination of privacy-protected clinical data that

support the discovery of phenome-wide associations equal to those

previously published using non-protected information [43].

Results

We evaluated the influence of anonymization on two distinct

types of knowledge discovery criteria. First, we summarize the

quantity of clinical information retained in the anonymized

datasets in comparison to the original resource. This provides a

general sense of the quantity of clinical knowledge that can be

disseminated. Second, we conducted Phenome-wide Association

Studies (PheWAS) to characterize the extent to which phenotype-

genotype associations are retained. In this scenario, all of our

assessments are performed on the DEMO dataset.

Retention of General Clinical Information
Table 1 summarizes the quantity of clinical information

retained in the anonymized datasets. We represent the changes

through the use of two measures: Diagnosis Coverage (DC) and

Code Coverage (CC). Diagnosis Count is a general measure of

how many unique diagnoses are contained in the anonymized

data, while Code Count is a measure of how many unique ICD-9

codes appear in the anonymized data. First, we examine the

changes to the datasets resulting from anonymization process. It

can be seen that SD-Anon yields the best retention of clinical

information (99.99% DC and 99.98% CC) and BioVU-Anon has a

slightly higher DC than DEMOD (99.99% and 99.57%,

respectively). However, DEMOD has a higher CC than BioVU-

Anon (80.78% and 77.02%, respectively). It is worth noting that

this finding is influenced by the difference in CC and DC in the

initial subsets (i.e., DEMO and BioVU). If the counts are considered

in relation to the original SD, then BioVU-Anon has a DC of

19.71% and a CC of 67.65%, while DEMOD has a DC of 2.02%

and a CC of 46.80%, showing that BioVU-Anon retains more

information than DEMOD overall.

Next, we compare the information retained in the three

Demonstration groups. Again, we see that DEMOS , the SD

anonymization, performs better than either of the other anon-

ymizations (99.99% DC and 99.93% CC). Additionally, we find

that DEMOD performs better than DEMOB in DC (99.57% and

91.50%, respectively), whereas the reverse is true for CC (80.78%

and 96.84%, respectively).

In combination, these findings partially confirm our earlier

hypothesis. DEMOS , which is derived from the largest population,

results in the best retention of general clinical information among

the DEMO anonymizations. However, neither DEMOB nor

DEMOD clearly outperforms the other, which we discuss below.

In Tables 2 and 3, we show the full results we measured

following the anonymization. In Table 2, we report the expanded

DC information. In the left part of the chart, we report our

findings without generalization - that is, if codes which occur in

fewer than k records are removed from the set, rather than

aggregated. For this, we report three measures. First, the count of

diagnoses in the data set. Second, the as a percentage of the count

to the total number of diagnoses in the SD (SD%). This measure

allows us to determine how much information this anonymization

retains of the entire population data set. Finally, we report the

ratio of the count to the total number of diagnoses in its similar,

non-anonymized data set. For example, for BioVU-Anon, the Local

% measure compares to BioVU. As we hypothesized, we see in that

even without generalization, SD-Anon still represents the highest

retention of data of the SD (99.97%). We further see that BioVU-

Anon and DEMOD each have lower percentages of the SD, as is

expected. However, we also see that they each contain less

Table 1. Summary statistics and information retention for the
datasets in this study.

Original Dataset
Anonymized
Version Code Count Diagnosis Count

Population
Size

Synthetic

Derivative(SD)* 15,115 – 13,432,263 – 1,366,786

SD-Anon 15,112 99.98% 13,431,347 99.99% 1,366,552

BioVU* 13,275 – 2,647,056 – 104,904

BioVU-Anon 10,225 (77.02%) 2,646,872 (99.99%) 104,790

Demonstration

Group (DEMO)* 8,734 – 272,080 – 5,994

DEMOs 8,747 (99.93%) 272,043 (99.99%) 5,994

DEMOB 8,476 (99.93%) 248,925 (91.50%) 5,595

DEMOD 7,071 (80.78%) 270,867 (99.57%) 5,971

Code Count and Diagnosis Count are the number of unique ICD-9 (or
generalized set of ICD-9 codes) and total number of diagnoses for all records in
the anonymized dataset, respectively. In this table, *corresponds to the original
(i.e., non-anonymized) datasets.
doi:10.1371/journal.pone.0053875.t001

Table 2. Full Diagnosis Count information retained.

Dataset Diagnosis Count Diagnosis Count

without Generalization with Generalization

Count SD % Local % Count SD % Local %

SD-Anon 13428542 99.97% 99.97% 13431347 99.99% 99.99%

BioVU-Anon 2639298 19.65% 99.71% 2643872 19.68% 99.88%

DEMOD 269868 2.01% 99.20% 270867 2.02% 99.57%

DEMOs 271970 2.02% 99.97% 272043 2.03% 99.99%

DEMOB 248467 1.85% 91.33% 248925 1.85% 91.50%

doi:10.1371/journal.pone.0053875.t002

Association Discovery w/o Sacrificing Anonymity
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information with respect to their original dataset as well (99.71%

and 99.20%, respectively).

If we turn our attention to a comparison of the three

Demonstration datasets, we see that DEMOS is still, as expected,

the best performing. We note that our earlier observation about

the divergence from our expectation degrading DEMOD and

DEMOB still holds true here.

Next, in Table 3, we show the extended CC information

retained. Similarly to Table 3, we report the original count and use

the same additional measures to determine the information

retention.

Here, we note several interesting findings. First, while the DC

without and with generalization (99.97%, 99.99%) were similar,

this is not the case with CC. Without generalization, SD-Anon

retains only 89.48% of codes, while with generalization this

retention is 99.98%. Considering these two statistics together, we

see that by generalizing, we are able to release information about

10.5% of codes - approximately 1,500 codes – that, while

generalized in the release, would be completely absent from the

data were we to simply suppress them. We see similar, though less

dramatic, results from the other two data sets.

If we again turn our attention to a comparison of the three

DEMO sets, we see that, again, DEMOS clearly has more

information retention than the other two DEMO sets. Most

strikingly, DEMOS , using the Local % measure, retains almost

30% more codes in the anonymized set (approximately 4,500

codes) over DEMOD even without generalization. If we also

consider generalized codes, DEMOS keeps approximately 19%

more codes over DEMOD.

Again, we note that the difference in retention between

DEMOD and DEMOB that was visible in the DC measure does

not appear in the Code Count measure. Instead, we see that, as

hypothesized, the larger the original set of data that is

anonymized, the more information we retain in the anonymized

data set (as measured by number of codes available for evaluation).

Even though DEMOB performs better using this measure, the

clearly superior data set is DEMOS .

Retention of Genotype-Phenotype Associations
A Phenome-Wide Association Study (PheWAS) [19,44,45]

assesses which clinical phenotypes from across a collection of

concepts (in this case, a set of related billing codes grouped

according to semantic similarity) are associated with a specific

genomic region of interest. Patients are marked as either cases or

controls according to the presence and absence of certain billing

codes. In its simplest form the analysis determines the genotype

distributions and calculates a x2 statistic, with an associated p-

value and an odds-ratio. Conditions with pƒ0:05 corrected for

multiple comparisons are considered significant. We note that the

point of the analysis in this paper is to determine the level of

information loss resulting from anonymization of this dataset;

specifically, we acknowledge that each of the conditions labeled as

significant here only indicate a potential significance in a PheWAS

discovery analysis, and are not necessarily conclusive. To conduct

the present analysis, we focus on the anonymized demonstration

cohorts and the six single nucleotide polymorphisms (SNPs)

analyzed in the original PheWAS study of Denny et al. [43].

Table 4 compares the associations discovered in the anonymized

and original datasets.

We first look at Type I errors, which we refer to as lost

associations. These correspond to conditions determined to be

significant in the original PheWAS study on DEMO, but were

found to have pw0:05 in an anonymized dataset. It can be seen

that only DEMOS yields no lost associations across all SNPs. By

contrast, DEMOD has only a single SNP (rs1333049) where there

were no lost associations. Every other SNP has at least one lost

association. DEMOB sustained lost associations in each SNP.

Notably, DEMOB sustained a larger number of lost associations

than DEMOD for every SNP.

Next, we turn our attention to Type II errors, which we refer to

as false associations. These correspond to conditions with pw0:05
in the original study, but pƒ0:05 in the anonymized dataset. It

can be observed that DEMOS is the only anonymization which in

all cases has no additional significant associations reported.

Similarly, DEMOD has one SNP (rs6457620) which has no new

associations, though this is not the same SNP that sustained no lost

associations. Again, DEMOB yielded new associations for each

SNP.

PheWAS Case Studies
Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, and Figure 6

illustrate how p-values change for the phenotype associations

across all SNPs in the form of QQ-plots. A perfect similarity would

be represented by the line y~x, such that points along this line

indicate the value in the original and anonymized analysis are

equivalent. By contrast, points that deviate from this line indicate a

change in the p value, such that the distance to the line indicates

the magnitude of change. It can be seen that the DEMOS results

lie consistently along the basis line, indicating that the values

calculated in the original and anonymized PheWAS were

approximately equivalent. For DEMOB and DEMOD, however,

there are more differences in the p-values between those derived

from the original and anonymized datasets. Below, we highlight

some specific changes in each PheWAS study conducted.

The plots in Figure 7, Figure 8, Figure 9, Figure 10, Figure 11,

and Figure 12 depict the change in {log10(p)-values. It can be

seen that DEMOB resulted in value changes of various

frequencies, but that the DEMOS remained consistent across

the association studies, with nearly 700 conditions (i.e., ICD-9

groupings) retaining their original p-value. We can also see that

DEMOD, while having fewer and smaller changes, those changes

were significant enough to alter the effects of the significant

conditions.

rs1333049. Figure 1 indicates there were at least three

associations expected between approximately 0.5 and 1. Yet, in

the anonymized dataset, the p-values for these associations were all

close to 0, indicating a high likelihood of association. An example

of a condition in this affected region is 440.00 atherosclerosis. There

were also lost associations, such as condition 486 pneumonia,

unspecified organism which, in the original PheWAS, was

considered a significant association, but DEMOB has a changed

p-value such that the condition is now non-significant.

Table 3. Full Code Count information retained.

Dataset Code Count Code Count

without Generalization with Generalization

Count SD % Local % Count SD % Local %

SD-Anon 13525 89.48% 89.48% 15112 99.98% 99.98%

BioVU-Anon 9785 64.74% 73.71% 10225 67.65% 77.02%

DEMOD 6952 45.99% 79.42% 7071 46.78% 80.78%

DEMOS 8681 57.43% 99.18% 8747 57.87% 99.93%

DEMOB 8179 54.11% 93.44% 8476 56.08% 96.84%

doi:10.1371/journal.pone.0053875.t003

Association Discovery w/o Sacrificing Anonymity
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rs2200733. Figure 3 indicates there was an association which

was anticipated to have a p-value of approximately 1.6. Yet, in the

anonymized dataset, the p-value for this association was close to 4,

indicating a high likelihood of association.

rs2476601. Figure 2 indicates there was an association which

was anticipated to have a p-value of approximately 0.5. Yet, in the

anonymized dataset, the p-value for condition 762 was close to 2,

indicating a high likelihood of association.

rs3135388. Figure 4 indicates that condition 134 would

originally have a lower likelihood of association. However, the

anonymization, its p-value has sufficiently changed for it to be

considered significant. Similarly, in DEMOB, condition 223

originally had a value of approximately 1.6. In the anonymization,

however, this value decreased to approximately 0.3, making it far

less likely to be labeled significant.

rs6457620. Figure 5 indicates an expected value of at least

0.75 for a number of conditions, including 761, 976, 828, and 127,

that, when anonymized, appear to be at or near 0.

rs17234657. Figure 6 indicates an expected value of at least

1.5 for two conditions, 976 (1.5) and 140 (3.6), when anonymized,

appear to be at or near 0, completely removing them from

significance.

Summary of Findings
In terms of general information retention, DEMOS always

outperformed DEMOD and DEMOB. This result suggests that

the larger the initial set from which the subset is drawn, the more

likely it is that deidentification can retain associations that are

being sought. In terms of PheWAS, DEMOS exactly matched the

evaluation performed on DEMO the non-anonymized Demon-

stration cohort. We have also shown that, when compared to the

Table 4. Results of anonymization on PheWAS Analysis for six SNPs.

SNP Phenotype Associations at pƒ0:05 in PheWAS

Original number of
associations Lost Associations False Associations

(Type I Error) (Type II Error)

DEMOD DEMOB DEMOS DEMOD DEMOB DEMOS

rs1333049 30 0 9 0 1 13 0

rs2200733 27 2 8 0 1 7 0

rs2476601 33 1 4 0 4 6 0

rs3135388 39 4 12 0 2 9 0

rs6457620 35 3 7 0 0 12 0

rs17234657 28 3 9 0 1 6 0

Total 192 13 49 0 9 53 0

DEMOD , DEMOB , and DEMOS are the Demonstration group when anonymized, extracted from the BioVU anonymization, and extracted from the SD anonymization,
respectively. Original is the number of significant associations (p 0.05) found in the PheWAS when conducted on pre-anonymized data. Identical is the number of
associations which were the same between studies. Lost is the number of associations that were lost in the anonymized study. False is the number of associations that
were determined as significant in the new study but were not in the original.
doi:10.1371/journal.pone.0053875.t004

Figure 1. Changes in p-values for associations between clinical conditions and SNP rs1333049 presented as a QQ-plot for left)
DEMOD, middle) DEMOB, and right) DEMOS. Descriptions of the annotated conditions in the plots are provided in Table 5.
doi:10.1371/journal.pone.0053875.g001

Association Discovery w/o Sacrificing Anonymity
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total amount of information in the original data (i.e., the SD),

DEMOB outperforms DEMOD, but that when anonymized data

is compared to its non-anonymized data, the opposite is true in

some of our measures. Additionally, DEMOB has a much greater

number of lost and false associations than DEMOD (or DEMOS ).

The relationship between DEMOB and DEMOD is not quite as

paradoxical as it may appear. In BioVU, when generalizing codes,

some records have repeated incidents of related, low-frequency

conditions. For example, consider record 49532 in Figure 13a.

Notice that in one visit, both codes 401.00– malignant hypertension -

and 401.01– benign hypertension - are present. However, in

Figure 13b, the codes have been replaced with S401:00,401:01T
(read as: ‘‘400.00 and/or 400.01’’). Considering just these codes,

the DC in the original dataset equals two. However, once these

codes are transformed into S400:00,400:01T, the result is a single

generalized code, which halves the number of diagnoses in the

anonymized dataset, yielding a DC of one. While the expectation

was that BioVU would yield better results due to its significant

increase in size, DEMOs population was selected to satisfy several

specific phenotypes. As a result, records in DEMO were much

more similar than records within BioVU. Consequently, less

generalization was necessary to obtain DEMOD than DEMOB.

This does not indicate that the anonymization strategy is

ineffective. Instead, we have shown that it is important for the data

holder to anticipate how the post-anonymization data will be used.

If the data is intended to assist in hypothesis validation for a very

specific cohort, then use of DEMOD may be sufficient. If,

however, the data is intended to support hypothesis generation,

then the use of DEMOB may be preferable. Regardless of the end

use, however, DEMOS provides the most benefit to either task. As

an additional merit to the use of DEMOS , any further cohort that

is drawn from SD-Anon is subject to the same protection, which

Figure 2. Changes in p-values for associations between clinical conditions and SNP rs2476601 presented as a QQ-plot for left)
DEMOD, middle) DEMOB, and right) DEMOS. Descriptions of the annotated conditions in the plots are provided in Table 5.
doi:10.1371/journal.pone.0053875.g002

Figure 3. Changes in p-values for associations between clinical conditions and SNP rs2200733 presented as a QQ-plot for left)
DEMOD, middle) DEMOB, and right) DEMOS. Descriptions of the annotated conditions in the plots are provided in Table 5.
doi:10.1371/journal.pone.0053875.g003

Association Discovery w/o Sacrificing Anonymity
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means that if a user is grouped into two different cohorts, the exact

same information will be revealed about this user to both groups.

Separate anonymizations for data selections may not hold this

property. Further research is necessary to determine what privacy

claims, if any, may hold over repeated anonymizations of separate

cohorts.

Discussion

The anonymization method proposed in this paper is a

significant improvement over prior approaches. It enables

healthcare institutions to account for adversaries of varying

strengths. Moreover, our analysis illustrates that when an

adversary is aware that a patient was a member of the hospitals

general population (as opposed to as a specific cohort), the utility of

the anonymized cohort is virtually equivalent to the pre-

anonymized results. These results suggest that when reasonable

adversarial models are applied in the context of large medical

facilities, phenome-wide annotation of clinical populations could

be anonymized, allowing public sharing of such data, without

sacrificing research findings. Adoption of such a principled

approach could enable much greater utility of extant research

data sets such as currently stored within dbGaP.

This finding indicates that rather than selecting the smallest

possible subset of data that may need to be released, there is

significant value in anonymizing the entire body of data at an

institution. Release of even subsets of these data provide far more

data to subsequent researchers, while still maintaining a high

standard of privacy for the patients reflected in these data. This

implies that institutions may be able to publicly release large, dense

datasets for various research purposes with provable privacy

guarantees.

Figure 4. Changes in p-values for associations between clinical conditions and SNP rs3135388 presented as a QQ-plot for left)
DEMOD, middle) DEMOB, and right) DEMOS. Descriptions of the annotated conditions in the plots are provided in Table 5.
doi:10.1371/journal.pone.0053875.g004

Figure 5. Changes in p-values for associations between clinical conditions and SNP rs6457620 presented as a QQ-plot for left)
DEMOD, middle) DEMOB, and right) DEMOS. Descriptions of the annotated conditions in the plots are provided in Table 5.
doi:10.1371/journal.pone.0053875.g005

Association Discovery w/o Sacrificing Anonymity
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Our study does include limitations, which can serve as

guidelines for future research. First, from a technical perspective,

the clinical code generalization strategy employed by the

anonymization algorithm does not guarantee minimizing the

amount of information loss incurred by the anonymization. For

example, our algorithm chooses only one potential generalization

from among many options. We chose this method of generaliza-

tion because it is known to be computationally intractable for such

Figure 6. Changes in p-values for associations between clinical conditions and SNP rs17234657 presented as a QQ-plot for left)
DEMOD, middle) DEMOB, and right) DEMOS. Descriptions of the annotated conditions in the plots are provided in Table 5.
doi:10.1371/journal.pone.0053875.g006

Table 5. Descriptions for the condition codes presented in the QQ-plots.

Code Condition

127 Other intestinal helminthiases

134 Other infestation

140 Malignant neoplasm of lip

223 Benign neoplasm of kidney and other urinary organs

242 Thyrotoxicosis with or without goiter

264 Vitamin A deficiency

307.1 Eating disorders

392 Rheumatic chorea

411 Ischemic heart disease

458 Hypotension

558 Other and unspecified noninfectious gastroenteritis and colitis

676 Other disorders of the breast associated with childbirth and disorders of lactation

714 Rheumatoid arthritis and other inflammatory polyarthropathies

738 Other acquired musculoskeletal deformity

743 Congenital anomalies of eye

761 Fetus or newborn affected by maternal complications of pregnancy

762 Fetus or newborn affected by complications of placenta, cord, and membranes

764 Slow fetal growth and fetal malnutrition

771 Infections specific to the perinatal period

777 Perinatal disorders of digestive system

778 Conditions involving the integument and temperature regulation of fetus and newborn

779 Other and ill-defined conditions originating in the perinatal period

828 Multiple fractures involving both lower limbs, lower with upper limb, and lower limb(s) with rib(s) and sternum

976 Poisoning by agents primarily affecting skin and mucous membrane, ophthalmological, otorhinolaryngological, and dental drugs

doi:10.1371/journal.pone.0053875.t005

Association Discovery w/o Sacrificing Anonymity
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data to be produced in a manner that minimizes information loss

[46,47]. Nonetheless, we suspect that additional heuristics may be

devised which can provide improvements or alternatives to our

results.

Second, from an implementation perspective, it is important to

note that certain healthcare institutions may be more likely to be

attacked than others. As a consequence, we recommend that a

healthcare institution assess the anticipated capabilities of their

data recipients before adopting an anonymization strategy such as

the one presented in this manuscript. For instance, healthcare

institutions may choose a weaker adversarial model if they

anticipate that the data recipient is a credentialed scientific

investigator as opposed to an unknown individual in the general

public [33]. Similarly, healthcare institutions manage vastly

different volumes of data. While we have shown here that the

utility and privacy impact on data of this magnitude are beneficial,

further work is needed to determine what volume of data is

necessary to obtain similar findings.

Methods

Study Overview
A summary of the datasets analyzed in this study are reported in

Table 1, while their relationships are visually depicted in Figure 14.

The first dataset corresponds to a HIPAA de-identified (see

Methods) version of all VUMC patient records, called the

Synthetic Derivative (SD) [48], which contains 1,366,786 records.

The second dataset corresponds to a subset of this resource for

which the VUMC collected de-identified DNA samples, called

BioVU (n = 104,904). The third dataset, referred to as DEMO

(n = 5,944), is a subset of BioVU records that were previously

analyzed to demonstrate the feasibility of phenome-wide associ-

ation studies (PheWAS), using specific genotypes, via information

Figure 7. Distribution of p-value changes for associations between clinical conditions and SNP rs1333049 for left) DEMOD, middle)
DEMOB, and right) DEMOS.
doi:10.1371/journal.pone.0053875.g007

Figure 8. Distribution of p-value changes for associations between clinical conditions and SNP rs1333049 for left) DEMOD, middle)
DEMOB, and right) DEMOS.
doi:10.1371/journal.pone.0053875.g008
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in existing EMRs [43]. In this dataset, each patient record is

divided into a series of visits made to VUMC-affiliated healthcare

providers. Each visit is characterized by the clinical activities that

transpired, including diagnoses made, medications prescribed, and

laboratory test results. An example of the structure of such records

is depicted in Figure 13a. For this study, we anonymize the ICD-9

billing codes in the records, but we remark that our method is

sufficiently general to apply to any standardized vocabulary of

clinical events.

To model how cohorts are disseminated for validation and

reuse, we developed a novel anonymization strategy that enables a

subset of the SD to be shared for research purposes. In short, this

strategy yields a patient record composed of diagnoses across all

their visits. The information is anonymized, such that for any set of

disclosed ICD-9 codes obtained at any one visit, there are at least k

records in the anonymized resource with this combination of codes

across all visits. For illustration, Figure 13b depicts a fictional

example of anonymized records, with k set to 2. In our evaluation,

we set k to 5, which is a level of protection commonly applied in

practice [41].

There are several ways in which data can be anonymized to

account for the knowledge of the recipient. Figure 14 depicts the

various strategies. We begin with all data contained within the SD,

from which we select two subsets. The first subset is BioVU and

the second is DEMO. Each of the three datasets is then

anonymized to create SD-Anon, BioVU-Anon, and DEMOD,

respectively. To examine the effect that each of the anonymiza-

tions have on subsequent analysis, we then extract the records

which are in DEMO from SD-Anon and BioVU-Anon, creating

DEMOS and DEMOB, respectively. Note, DEMOS , DEMOB,

and DEMOD each contain the same records, but the specific

Figure 9. Distribution of p-value changes for associations between clinical conditions and SNP rs2476601 for left) DEMOD, middle)
DEMOB, and right) DEMOS.
doi:10.1371/journal.pone.0053875.g009

Figure 10. Distribution of p-value changes for associations between clinical conditions and SNP rs3135388 for left) DEMOD,
middle) DEMOB, and right) DEMOS.
doi:10.1371/journal.pone.0053875.g010
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clinical codes within those records are different due to the

anonymization process.

Privacy Models and Methods
There are a variety of computational models that have been

proposed for protecting biomedical data. Most recently, random-

ization strategies, notably those based on differential privacy

[49,50], have been suggested. These approaches perturb records

through a controlled, but random, process (e.g., addition of codes

not originally diagnosed). Such a framework provides strong

proofs of privacy, but may be insufficient to support new studies at

varying levels of granularity. Moreover, if care is not taken in its

design, this strategy could lead to strange data representations

(e.g., juvenile patients diagnosed with Alzheimers disease), and in

the co-occurrence with a chance rare genetic event (e.g., a rare

functional mutation in an exon), could lead to an erroneous

association. Thus, we focused on data protection models that

remain true to the underlying data. To do so, we adopted a

variation of the k-anonymization principle [51], which states that

any combination of potential identifiers in the resultant dataset

must match at least k records. This principle has been applied to

various types of patient-level data, such as demographics [41], as

well as clinical codes [40]. To achieve privacy in our setting, we

enforced a constraint which states that, for each visit of a patient,

there are at least k patients who have the same set of diagnosis

codes from some visit in the resulting dataset. This model allows us

to represent an adversary with a moderate, but manageable, level

of knowledge regarding patient information released by the

institution.

Figure 11. Distribution of p-value changes for associations between clinical conditions and SNP rs6457620 for left) DEMOD,
middle) DEMOB, and right) DEMOS.
doi:10.1371/journal.pone.0053875.g011

Figure 12. Distribution of p-value changes for associations between clinical conditions and SNP rs17234657 for left) DEMOD,
middle) DEMOB, and right) DEMOS.
doi:10.1371/journal.pone.0053875.g012
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Health Data De-identification According to Federal
Regulation and Residual Risks

Our goal is to enable biomedical analysis with patient-level

records while thwarting re-identification attempts. Returning to

Figure 13, the SD is de-identified according to the Privacy Rule of

the Health Information Portability and Accountability Act of 1996

(HIPAA). This was accomplished by removing eighteen specific

features of the data, including direct identifiers (e.g., patient names

and residential address), quasi-identifiers (e.g., dates of birth,

death, and healthcare provider visits), and specific identification

numbers or codes (e.g., medical device identification numbers).

Despite the removal of such information, many records may be

uniquely distinguishable based on the combination of their

diagnosis codes. [31] For instance, imagine that an attacker knows

a patient, say ‘‘Alice’’ (49532), was assigned billing codes 427.31

atrial fibrillation and 401.00 hypertension in a hospital visit. Then,

according to the depiction to the left of Figure 13, Alice will be

uniquely identified in the original dataset. This means that the

attacker learns Alice was additionally diagnosed with code 695.40

systemic lupus (as well as any other codes or DNA sequences in the

released dataset). However, in the anonymized version of the table

to right of Figure 13, an attacker would be unable to determine

whether this patient is Record 1 or Record 4.

Clinical Concept Anonymization Process
To satisfy anonymization requirements, we invoke a system of

code generalization. The generalization replaces a specific ICD-9

code with a group of codes which are semantically similar. For

example, to successfully anonymize a dataset, we may need to

generalize the code 810.01 closed fracture of sternal end of clavicle to the

code ‘‘810.00 and/or 810.01’’ closed fracture of clavicle, sternal and/or

unspecified. However, this generalization introduces the need for

guidelines on what codes may acceptably be generalized together,

which are called utility constraints. For instance, generalizing

Figure 13. A fictional example of patient-specific records of diagnosis codes in the a) original resource and b) corresponding 2-
anonymized result. The braces (‘‘{ ldots }’’) demarcate the set of diagnoses received in a visit to a healthcare provider, while the brackets (‘‘S . . . T’’)
denote codes that have been generalized in accordance with the anonymization discussed herein.
doi:10.1371/journal.pone.0053875.g013

Figure 14. Datasets used for comparison of anonymization strategies. The DATA SELECT process is an extraction of some records of the SD
into a smaller, specific dataset, such as BioVU or a demonstration cohort. The ANONYMIZE process is the anonymization algorithm described in this
manuscript. The DEMO EXTRACT process selects the remaining records associated with the Demonstration cohort from a larger, anonymized dataset.
The resultant datasets are as follows: anonymized version of the Synthetic Derivative (SD-Anon); anonymized version of BioVU (BioVU-Anon); SD-
Anon, from which the demonstration group is extracted (DEMOS); BioVU-Anon, from which the demonstration group is extracted (DEMOB); and
the anonymized version of the demonstration cohort (DEMOD). DEMOS , DEMOB, and DEMOD each represent different anonymizations of the
Demonstration group.
doi:10.1371/journal.pone.0053875.g014
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810.01 to ‘‘940 and/or 810.01’’ burns or closed sternal fracture of the

clavicle would have introduced an entirely new condition ‘‘burns’’

instead of simply obscuring the specific region of the clavicle which

had been broken. To prevent such occurrences, we use a hierarchy

that defines what generalizations are allowed. For this work, we

use the hierarchy described in [43], which is a complete mapping

of all ICD-9 codes developed for clinical phenotype-genotype

association studies.

For the anonymization, our approach generalizes ICD-9 codes

with frequency (i.e., the number of records that contain the code in

one or more visits) below a threshold k within the dataset together.

First, we place each code in a bin corresponding to its frequency.

For instance, all codes assigned to only one patient are stored in

the first bin. For each bin with value less than k, the process

generalizes the codes within that bin as permitted by the utility

constraints. Next, the support is calculated for the new,

generalized code, which is moved into the appropriate bin. On

each subsequent iteration, we group adjacent bins together (i.e.,

bins one and two are grouped together, bins three and four are

grouped together) until all bins representing frequency less than k

have been grouped together. Note that by merging adjacent bins

(such as one and two), the result does not necessarily get moved

into bin three. Instead, the frequency is recalculated for all patients

who would have the new, generalized code. After this point, any

codes remaining with frequency less than k are suppressed.

At this point, the dataset satisfies the k-anonymization require-

ment and can be shared. However, assuming that the institution

holding the data does not wish to release the entire anonymized

dataset, this is the point at which subsets may be drawn from the

data. For example, suppose that external researchers were

interested in patients who had ischemic heart disease. Records

of specific interest could be extracted from the anonymized data

and then released to these researchers.

Computation of Diagnosis Count and Code Count
In Figure 15, we show an example computation of Diagnosis

Count (DC) and Code Count (CC). In the left part of the figure,

we show a non-anonymized example data set containing six

conditions, 053.11, 290.11, 427.31, 401.0, 695.4, and 810.03, and

four records - A, B, C, and D. We represent the datum that

Record B was diagnosed with condition 053.11 in some visit as a

‘‘Y’’ (also shown as a green cell highlight). The absence of this

diagnosis is represented as an ‘‘N’’ (also shown as a grey cell

highlight), as shown in the cell represented by condition 053.11

and Record A.

As shown, Diagnosis Count is simply the number of times that a

particular diagnosis is assigned across all patients in the set. Since

Record B is the only one that contains the diagnosis 053.11, its

Diagnosis Count is 1. Alternatively, Code Count is a count of the

number of codes that have positive diagnoses in that data set. As

shown in Figure 15, code 290.11 has no records with that

diagnosis. As such, its Code Count is 0. Since each other code has

at least one record with a positive diagnosis, each other count is 1,

giving the data set a Code Count of 5.

On the right side of Figure 15, we show a possible change in our

measures following anonymization. In this instance, the anonymi-

zation has suppressed Record 2’s diagnosis of 053.11 (now

represented as ‘‘N’’ in a red cell highlight). Because this decreased

the number of diagnoses in the data set, the Diagnosis Count

decreased by 1. However, since this was also the only diagnosis of

condition 053.11, that code is no longer represented in the data;

thus, the Code Count also decreased by 1.
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