
Multidisciplinary Ophthalmic Imaging

Relationship between Retinal Layer Thickness and the
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PURPOSE. To quantify and compare the structural and functional
changes in subjects with early age-related macular degenera-
tion (AMD), using spectral-domain optical coherence tomog-
raphy (SD-OCT) and microperimetry.

METHODS. Twenty-one eyes of 21 subjects with early AMD were
examined. MP-1 10-2 visual fields (VFs) and SD-OCT line and
detail volume scans were acquired. The thicknesses of the
outer segment (OS; distance between inner segment ellipsoid
band and upper retinal pigment epithelium [RPE] border) and
RPE layers and elevation of the RPE from Bruch’s membrane
were measured using a computer-aided manual segmentation
technique. Thickness values were compared with those for 15
controls, and values at locations with VF total deviation defects
were compared with values at nondefect locations at
equivalent eccentricities.

RESULTS. Sixteen of 21 eyes with AMD had VF defects. Compared
with controls, line scans showed significant thinning of the OS
layer (P¼ 0.006) and thickening and elevation of the RPE (P¼
0.037, P ¼ 0.002). The OS layer was significantly thinner in
locations with VF defects compared with locations without
defects (P¼ 0.003). There was a negligible difference between
the retinal layer thickness values of the 5 eyes without VF
defects and the values of normal controls.

CONCLUSIONS. In early AMD, when VF defects were present,
there was significant thinning of the OS layer and thickening
and elevation of the RPE. OS layer thinning was significantly
associated with decreased visual sensitivity, consistent with
known photoreceptor loss in early AMD. For AMD subjects
without VF defects, thickness values were normal. The results
highlight the clinical utility of both SD-OCT retinal layer
quantification and VF testing in early AMD. (Invest Ophthalmol

Vis Sci. 2012;53:7618–7624) DOI:10.1167/iovs.12-10361

Age-related macular degeneration (AMD) is the third leading
cause of blindness worldwide, accounting for 8.7% of

blindness in the global population.1 Due to the increase in the
average lifespan of the elderly population, it is expected that
17.8 million individuals in the United States will be affected by
2050.2 In view of the relevance of AMD as a public health
issue, it is important to understand the changes that occur in
the early stages of disease, which may lead to improved future
intervention strategies.

There has been recent interest in the use of fundus
perimetry, also known as microperimetry, as an outcome
measure in clinical trials of macular disease.3–7 Functional loss
due to AMD was previously demonstrated by findings of
reduced visual field sensitivity in retinal locations with drusen
compared with nondrusen locations, using scanning laser
ophthalmoscope (SLO) perimetry and microperimetry.8–11 In
contrast, other studies reported no difference in sensitivity
between drusen and nondrusen areas.12

Optical coherence tomography (OCT) is a noninvasive
imaging technique that provides cross-sectional images of
retinal layer structure, useful for visualization of pathology.13

Spectral-domain OCT (SD-OCT) has been demonstrated as a
useful technique in the characterization of AMD.14–16 Previous
investigations of the relationship between these structural and
functional measures in patients with early and late AMD, using
SLO microperimetry combined with SD-OCT, have shown
significant correlations between retinal sensitivity and drusen
volume11 and between sensitivity and integrity of the inner
segment/outer segment junction11,17 (herein called the inner
segment ellipsoid [ISe] band18). Another study described an
association between retinal thinning and rod-mediated light
sensitivity in nonexudative AMD.19 Others reported moderate
correlation between segmented OCT scans and visual acuities
in subjects with early and advanced dry AMD.20

AMD is a disease primarily affecting the outer retina.21 The
sequence of events in AMD is said to begin with preliminary
damage to the outer retina and related structures: the retinal
pigment epithelium (RPE), photoreceptors, and choroid.22,23

Therefore, our measures targeted outer retinal structure,
specifically the RPE and outer segment (OS) layers.

The aim of the study was to quantify the changes in outer
retinal structure associated with visual field defects in subjects
with early AMD. Areas in the central macula with visual field
defects identified using microperimetry were compared with
those without defects.

METHODS

Subjects

Twenty-four subjects with a diagnosis of early AMD were recruited for

the study. Digital color fundus photographs were obtained and graded

according to the definitions of the International Classification and

Grading System,24 and the stage of disease was determined.25 Each

subject had one of the following stages of severity of AMD: stage 1a
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(soft distinct drusen ‡ 63 lm only), stage 1b (pigmentary abnormal-

ities only, no soft drusen ‡ 63 lm), stage 2a (soft indistinct drusen ‡
125 lm or reticular drusen only), stage 2b (soft distinct drusen ‡ 63

lm, with pigmentary abnormalities), or stage 3 (soft indistinct drusen

‡ 125 lm or reticular drusen with pigmentary abnormalities).25 Two

subjects had reticular pseudodrusen. In addition, all subjects had

steady foveal fixation, as assessed by the MP-1 (Nidek Instruments, Inc.,

Padua, Italy). Subjects were excluded if they had unsteady central or

eccentric fixation, refractive errors exceeding 65.00 diopters (D)

sphere or �2.00 D cylinder, significant lenticular opacities (graded at

NC3, NO3, C1, P1, or worse, according to the Lens Opacity

Classification System III26), pseudophakia, any other ocular pathology

such as an epiretinal membrane, any systemic or neurological disease, a

history of any other ocular disease or ocular surgery, or if they were

taking medications known to affect the visual field. Of the 24 subjects,

3 were unable to complete the visual field tests reliably and had to be

excluded. All subjects had received an eye examination less than 3

months prior to their study visit. Test procedures were performed on

the dominant eye of each subject, as determined by the hole-in-the-card

test.27 Briefly, the subject holds a card with a small hole, through which

a distant object is viewed with both eyes open. Then by alternately

closing each eye, the dominant eye is determined. Fifteen age-similar

healthy subjects (i.e., subjects without any retinal signs of AMD, as

confirmed by fundus examination and SD-OCT imaging), who

conformed to the above criteria were recruited as controls.

The study adhered to the tenets of the Declaration of Helsinki for

research involving human subjects, and the protocol was approved by

the Columbia University Medical Center Institutional Review Board.

Each participant gave informed consent prior to enrollment in the

study.

Optical Coherence Tomography

Structural changes to the central macula were evaluated with SD-OCT

(Spectralis HRAþOCT; Heidelberg Engineering, Heidelberg, Germany),

using high-resolution settings and automated tracking (ART). For each

study eye, a 9-mm line scan along the horizontal meridian centered at

the fovea was obtained as an average of 100 scans, for maximal signal-

to-noise ratio. Detail volume scans of the central retina (4.3 mm 3 2.8

mm or 158 3 108) comprising 25 to 49 B-scans (40–51 averaged frames

per B-scan) were also acquired. To ensure image quality, scans were

excluded if the signal-to-noise ratio was less than 25 dB. Examples of

SD-OCT scans are shown in Figure 1.

SD-OCT images were segmented using a computer-aided, manual

segmentation technique, described previously.28,29 The segmented

borders were the following: ISe: marked by a line through the center of

the hyperreflective band defined as the ISe; OS/RPE: border between

OS and RPE, the upper border of the hyperreflective band defined as

the RPE; lower RPE border: the lower border of the RPE band; BM/

choroid: the border between Bruch’s membrane (BM) and the choroid.

Using the locations of these boundaries, we defined two retinal layers

as shown in Figure 2: receptor outer segment (OS), the distance

between ISe and OS/RPE; and the RPE, the distance between OS/RPE

and the lower RPE border. In areas without drusen, the lower RPE

border was equivalent to the BM/choroid border, because the

resolution of SD-OCT does not allow distinction between BM and the

lower RPE border. In areas with drusen, where there were elevations of

the RPE and BM was visible, we measured the elevation of the RPE

from BM, the distance between the lower RPE border and BM/choroid.

All segmentation was performed by a trained observer masked to

the visual field results and the severity of disease based on fundus

grading, although in some cases the severity of disease was obvious to

the observer based on the appearance of the OCT image. This

technique was previously shown to have good reliability.29 All scans

were also inspected by a second observer for agreement of border

placement. Where disruptions of the ISe band interfered with accurate

border placement—for example, where the ISe band appeared to

disappear over large drusen or in association with hyperreflective

foci—the OS layer thickness values were treated as missing data.

Microperimetry

Visual field sensitivities, preferred retinal locus (PRL), and fixation

stability were assessed in all subjects with AMD, using the MP-1 (NAVIS

software version 1.7.3; Nidek Instruments, Inc.). Subjects were tested

following pupil dilation of the dominant eye with 1% tropicamide and a

15-minute adaptation period to the 1.27 cd/m2 background. The

nontested eye was occluded. Identical instructions were given to each

subject, and one examiner conducted all testing. A 10-2 pattern similar

to the 10-2 pattern of the Humphrey visual field was used to assess visual

field sensitivities. The pattern consisted of 68 test locations in the central

208, with a separation of 28. White test lights (stimulus size Goldmann

III, 200 ms in duration) were presented on a 1.27 cd/m2 white

background using a 4-2 threshold strategy. Subjects were asked to

maintain fixation on a 28 red cross and fixation was monitored by an

infrared fundus tracking device of the MP-1 to ensure central fixation

during testing. Catch trials were performed during testing, in which a

presentation is made to the physiologic blind spot and all visual fields

had fewer than 15% false positives. All subjects had recent experience of

at least one visual field test performed on a microperimeter within the

last 6 months and were given a brief practice session prior to the start of

testing. Results were compared with a recently collected normative

database consisting of 50 subjects (age range: 18–68 years), from which

prediction limits were calculated using a linear Bayesian model,30 to

derive total deviation (TD) defects. The TD analysis represents the

sensitivity difference between the measured sensitivity value and the

age-corrected normal value, for each location in the visual field. TD

defects represent the values that have a probability of occurring in 5%,

2%, and 1% of the age-similar population. Global indices were calculated

using the sensitivity values at each location in the 10-2 pattern: mean

sensitivity (MS; the average sensitivity value across the 10-2 visual field),

mean deviation (MD; the average sensitivity difference between the

measured value and the age-corrected normal value at each location),

and pattern standard deviation (PSD; the SD around the mean that

constitutes the MD, a measure of variability, sensitive to localized loss).31

Analysis

Mean retinal layer thicknesses of the foveal line scans were compared

between subjects with AMD and control subjects without AMD. In

volume scans, RPE and OS layer thicknesses at locations with visual

field defects were compared with thicknesses at nondefect locations at

equivalent retinal eccentricities, to account for changes in retinal

thickness measures with eccentricity. Pairs of defect and nondefect

locations were selected randomly at parafoveal locations, given that

previous studies have noted that the greatest deficit in retinal function

in AMD occurs in the parafovea at 2 to 58 eccentricity,32,33 and this is

also consistent with the retinal location of photoreceptor loss in

AMD.21 MP-1 visual field data were mapped to SD-OCT data, assuming

289 lm equals 18 (Fig. 3).
FIGURE 1. OCT images in eyes with AMD. Characteristics of early AMD
are shown in two different subjects (top, stage 2a; bottom, stage 3).
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RESULTS

The 21 subjects with AMD (mean age: 72.8 6 6.6 years; range:

58–81 years; 4 males, 17 females) had best-corrected visual

acuities (BCVAs) ranging from 20/20 to 20/40 in the test eye.

Eight eyes were graded at stage 1a, 2 at stage 1b, 7 at stage 2a,

and 4 at stage 3. The 5 AMD eyes without MP-1 visual field

defects were all stage 1a. The 15 control subjects (mean age:

63.3 6 10.7 years; range: 51–80 years; 4 males, 11 females) had

BCVAs of 20/20 or better. There was a significant difference in

age between the two groups of subjects (unpaired t-test: t ¼
3.21, P ¼ 0.003).

MP-1 Findings

Sixteen eyes had visual field defects and a mean MS of 14.9 6

2.4 dB, and 5 eyes had no defects and a mean MS of 19.5 6 0.4

dB. The mean MDs for eyes with defects and eyes without

defects were �4.2 6 2.4 and 0.32 6 0.5 dB, respectively, and

the mean PSDs were 2.9 6 1.0 and 1.3 6 0.1 dB. For the 16

FIGURE 2. Segmented OCT images from a normal eye (top) and an eye with AMD (bottom). Segmented images are shown in (A, B), in which the
following layers have been demarcated (from inner to outer retina): ISe, the line through the center of the hyperreflective band defined as the inner
segment ellipsoid band (blue line); OS/RPE, border between outer segment and retinal pigment epithelium, the upper border of the hyperreflective
band defined as the RPE (green line); lower RPE border, the lower border of the RPE band (yellow line); BM/choroid: the border between Bruch’s
membrane and the choroid (red line). The following retinal layers were measured: receptor OS, the distance between ISe and OS/RPE; and the RPE,
the distance between OS/RPE and the lower RPE border. In areas of drusen, we measured the elevation of the RPE from BM, the distance between
the lower RPE border and BM/choroid. (C–F) shows an enlarged view of the sections in (A, B) outlined by white broken lines. (C, D) are raw
images; (E, F) are segmented images. The eye with AMD (bottom) was graded at stage 2a.

FIGURE 3. MP-1 visual field with SD-OCT scans superimposed. The MP-1 visual field sensitivity values and TD probability map are shown in (A).
Two SD-OCT slices of a volume scan are shown in (B, C) and correspond to the upper (B) and lower (C) white horizontal lines depicted in (A). The
pair of stimulus locations compared is marked by white boxes in (A) to show one location with a TD defect and one location of normal sensitivity, at
equivalent eccentricities. The white boxes in (B, C) indicate the sections of the scans corresponding to the stimulus positions (sensitivity values 4
and 20, corresponding to white boxes in [A]) and diameter (0.438) and show the retinal layer segmentations. The eye was graded at stage 3. The red

cross at the fovea in (A) shows the fixation cross during MP-1 testing and the blue points overlying the cross represent the fixation pattern during
testing.
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eyes with defects, the mean number of TD defects was 17.8 6
14.2. The number of TD defects was significantly correlated
with logMAR (logarithm of the minimum angle of resolution)
visual acuity (Pearson’s r ¼ 0.549, P ¼ 0.012, r2 ¼ 0.300).

SD-OCT

The following changes characteristic of early AMD were
observed in the line and volume scans (see Fig. 1): RPE
elevations corresponding to drusen were seen in all 21 eyes
with AMD; disruptions of the ISe band were seen in 17 of 21
eyes; hyperreflective foci were seen in 11 eyes; and the RPE
appeared to be thickened and uneven in all 21 eyes. All SD-
OCT scans in the 15 control eyes were unremarkable.

OS and RPE Thickness Measurements and RPE
Elevation

Figure 4 shows the thickness values for the 21 eyes with AMD
in foveal line scans. In the 5 eyes without MP-1 visual field
defects, thickness values were within the 95% confidence
interval (CI) for normal subjects. However, for the 16 eyes with
defects, these values tended to fall outside the 95% CI for
normal subjects; the OS layer was abnormally thinned and the
RPE was abnormally thickened and elevated.

When eyes were grouped according to the stage of disease,
eyes at stages 2 and 3 tended to show more OS thinning, more
RPE thickening, and greater RPE elevation than eyes graded at
stage 1. Notably, there were eyes at stage 1b that demonstrated
thinning in the OS layer, in the absence of RPE changes.

The mean thickness values for the RPE and OS retinal layers
and RPE elevation are shown in the Table for normal eyes,
AMD eyes without visual field defects, and AMD eyes with
defects. A statistically significant variation between these three
groups of subjects was found in RPE layer thickness (one-way
ANOVA: F ¼ 4.784, P ¼ 0.015), OS thickness (F ¼ 8.447, P ¼
0.001), and RPE elevation (F ¼ 12.461, P < 0.001). Post hoc

analysis (Games–Howell test) revealed that, in AMD eyes with
defects, the RPE was thickened (P ¼ 0.037) and elevated (P ¼
0.002), and the OS layer was thinned (P ¼ 0.006), compared
with normal eyes. In AMD eyes without defects, the RPE
elevation was significantly greater than that in normal eyes (P¼
0.005), but the RPE and OS layer thicknesses were not
significantly different from those in normal eyes (P ¼ 0.866;
P ¼ 0.718).

Relationship between Retinal Layer Thicknesses
and the MP-1 Global Visual Field Indices

The correlation between retinal layer thicknesses from foveal
line scans and global visual field indices was examined (see Fig.
5) for all 21 eyes. The number of TD defects represents the

FIGURE 4. OS and RPE thickness plots. Foveal line scan thicknesses of the RPE and OS layers, as a function of retinal eccentricity for normal subjects
(black lines) and for each subject with AMD (colored lines). The black dotted lines indicate the 95% confidence interval around the mean normal
values (for n¼15 normal controls). The left panel shows eyes without MP-1 visual field defects (n¼5) and the right panel shows eyes with defects
(n¼ 16).

TABLE. RPE and OS Layer Thicknesses and RPE Elevation Measure-
ments in Foveal Line Scans for Normal Eyes, AMD Eyes with Visual Field
Defects, and AMD Eyes without Defects

Mean Thickness,

lm SD, lm

RPE

Normal eyes 16.6 1.8

AMD eyes with defects 19.9 3.3

AMD eyes without defects 16.7 1.2

OS

Normal eyes 34.9 2.8

AMD eyes with defects 28.5 6.4

AMD eyes without defects 36.2 3.5

RPE elevation

Normal eyes 0 0

AMD eyes with defects 12.0 10.5

AMD eyes without defects 0.2 0.1
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proportion of the 68 visual field locations in which there were
defects (i.e., the extent of the scotoma). As expected, the data
points (pale gray) for the 5 eyes without TD defects had the
least severe values in each scatterplot. There were significant
relationships between thinning of the OS layer and worsening
of the visual field, where significant correlations were found
between the OS layer thickness and the MS (Pearson’s r ¼
0.622, P¼ 0.003), the MD (r¼ 0.633, P¼ 0.003), and the PSD
(r ¼ �0.617, P ¼ 0.004). Around 40% of the proportion of
variance in OS thickness was associated with the global
indices. Thickening of the RPE was significantly correlated
with worsening MS (r ¼ �0.448, P ¼ 0.047) and MD (r ¼
�0.454, P ¼ 0.045), and 20% of the proportion of variance in
RPE thickness was attributed to the MS and the MD. The
magnitude of RPE elevation did not have any significant
relationships to the visual field measures.

The TD defects used in the above analyses were defined as
having a probability of 5% or worse. To compare the effect of
the depth of TD defect, we compared OS thickness values with
the number of TD defects with a probability of <2% and <1%.
There were significant correlations between the OS layer
thickness and the number of TD defects <2% (Pearson’s r ¼
�0.617, P ¼ 0.004, r2 ¼ 0.380) and the number of TD defects
<1% (r ¼�0.648, P ¼ 0.002, r2 ¼ 0.420).

Comparison between Locations with and without
Visual Field Defects

In volume scans, the thicknesses of the RPE and OS layers at
locations with defects were compared with those without

visual field defects at equivalent eccentricities in the 16 eyes
with defects. An example of the locations of comparison in one
subject is shown in Figure 3. The OS layer was thinner in
locations with defects in 14 of 16 eyes, and this difference
(mean difference ¼ 9 lm) was statistically significant (inde-
pendent samples t-test: t ¼ 3.20, P ¼ 0.003).

In locations with defects, the RPE was thicker in 7 eyes and
showed greater elevation from Bruch’s membrane in 8 eyes.
However, these differences (RPE mean difference¼ 2 lm; RPE
elevation mean difference ¼ 13 lm) did not reach statistical
significance (RPE: t ¼ 1.09, P ¼ 0.286; RPE elevation: t ¼
�1.573, P ¼ 0.126; Fig. 6).

DISCUSSION

In this study of subjects with early AMD, we quantified
structural changes in the thickness of the outer retina and
evaluated these changes in association with functional loss in
the visual field. An obvious pattern emerged in our data, in
which eyes with visual field defects had different structural
findings when compared with eyes without visual field defects,
and this pattern was in agreement with the stages of severity of
AMD. In eyes with visual field defects and early AMD, we
demonstrated abnormal thinning of the OS layer and a
thickening and elevation of the RPE. In addition, when we
compared locations with visual field defects to locations
without defects, the OS layer was thinner in defect locations.
However, in eyes without visual field defects, there were
negligible differences in retinal layer thickness values from
normal.

Histopathologic studies of tissue sections in the macular
region have shown that RPE and photoreceptor cell changes
arise early in the sequence of events in AMD.21,34 The
structural changes associated with drusen are decreased
photoreceptor density over the drusen35 and deflected and
shortened photoreceptor outer segments overlying drusen.34

Our OCT results are in agreement with these histopathologic
findings. A possible explanation for our finding of thickening of
the RPE in early AMD could be due to the presence of basal
laminar deposits beneath the RPE36; however, these may also
result in differing reflectivity levels adjacent to the RPE and
may have confounded segmentation of the lower RPE border.
Alternatively, the RPE layer itself could thicken if there were
changes in cell shape. The presence of heaped and sloughed
RPE cells has been reported in a recent study of a grading
system for RPE degeneration based on donor eyes with
geographic atrophy.37 Our findings are also consistent with a
previous clinical study, in which thinning of the photoreceptor

FIGURE 6. Comparison of mean retinal layer thicknesses between
locations with and without visual field defects. Error bars represent 1
SE.

FIGURE 5. Relationship between layer thicknesses and MP-1 indices.
Scatterplots showing the significant relationships between retinal layer
thicknesses and the MP-1 visual field. The 16 AMD eyes with TD
defects are shown in dark gray, and the 5 AMD eyes without TD
defects are shown in light gray.
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layer overlying drusen was found on SD-OCT imaging in
patients with AMD.16 In this previous study, the authors
measured the photoreceptor layer, defined as the distance
between the top of RPE and the outer plexiform layer, as
opposed to OS thickness (distance between the upper RPE
border and the ISe) in our present study.

We observed a range of functional deficits within the same
stage of disease. Despite the relatively good visual acuities of all
subjects in our study, their visual field results ranged from
normal to significant defects. This finding emphasizes the
inadequacy of visual acuity as an assessment of visual loss and
the clinical importance of additional functional testing, such as
microperimetry. Clinically, our technique may be useful to
differentiate between subjects within the same stage of disease,
but with differing functional losses.

When we compared the OCT findings with microperimetry,
we found significant relationships between OS layer thickness
values and visual field loss and stronger relationships were
present for more severe visual field defects. This is in
agreement with previous studies that have described a
relationship between retinal sensitivity and SD-OCT changes
in AMD.11,17,19,38 However, these earlier studies did not
quantify retinal layer thicknesses or evaluate visual field
defects in comparison with a normative database.

Several previous studies determined that rod system
sensitivity loss exceeded that of cones in AMD21,32,33,39;
however, other studies also found significant cone dysfunction
in early AMD.40,41 At the mesopic background luminance of the
MP-1 (1.27 cd/m2) increment thresholds may be mediated by
mixed rod–cone system responses, or by a mainly cone system
response (Crossland MD, et al. IOVS 2012;53:ARVO E-Abstract
4822). The nature of the response will also vary depending on
damage due to retinal disease and intricate photoreceptor
interactions.42–44 It will vary further with stimulus spectral,
spatial, and temporal properties as well as with retinal
eccentricity according to rod and cone distributions.42,45

The limitations of our study include the small number of
subjects in each group, the difference in mean age between
subjects with AMD and controls, and the lack of follow-up of
subjects over time. Longitudinal evaluation of a larger number
of subjects in the subcategory of AMD subjects without
functional loss would be of interest to confirm whether
thinning of the OS layer or other structural change precedes
visual loss.

In summary, in early AMD subjects with visual field defects,
we observed significant thinning of the OS layer and a
thickening and elevation of the RPE. Thinning of the OS layer
was significantly associated with decreased visual sensitivity.
The results suggest that comparisons between outer retinal
layer thickness measurements and microperimetry have
potential clinical utility for monitoring progression in early
AMD.
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