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Abstract  
We develop a z-transform transfer function model of the Damped Trend forecasting mechanism from which we 
determine its stability boundary. We show that the Damped Trend forecasting mechanism is stable for a much 
larger proportion of the parametrical space than is currently acknowledged in the literature. We incorporate the 
Damped Trend forecasting mechanism into an Order-Up-To (OUT) replenishment policy and investigate the 
frequency response of this system. We prove that Naïve, Exponential Smoothing and Holts forecasts, when used 
within the OUT policy, will always generate bullwhip, for every possible demand process, for any lead-time. 
However, the Damped Trend forecasting mechanism, when used within the OUT policy, behaves differently. 
Sometimes it will generate bullwhip and sometimes it will not. Bullwhip avoidance occurs when demand is 
dominated by low frequencies in some instances. In other instances bullwhip avoidance happens at high 
frequencies. We are also able to demonstrate a complex odd-even lead-time effect exists. Bullwhip may be 
avoided when the lead-time is odd for a particular demand pattern, but re-appears when the lead-time changes to 
an even number. 
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1.  Introduction 
The Damped Trend (DT) forecasting method developed by [1] has often been promoted as the 
most accurate forecasting technique in the so-called M-competitions [2]. [3] find the DT 
method is the best method for 84% of the 3003 time series in the M3 forecasting competition 
when using local initial values. It was the best method 70% of the time when using global 
initial values. [4] also conclude that DT forecasting can “reasonably claim to be a benchmark 
forecasting method for all others to beat”. The great virtual of DT is that future forecasts are 
not simply flat line extensions of the current, next period forecast. It is able to detect and 
forecast trends and future forecasts change with these trends. The DT forecasting 
methodology also contains at least eleven different forecasting methods when all parameters 
are selected from the real  1,0  interval, [3]. This makes it a powerful and very general 
forecasting approach as tuning the DT parameters effectively automates model selection.  
 
The frequency response approach that we take is particularly powerful as we are able to 
generate results that are applicable for any demand processes. This is because all demand 
processes can be decomposed into a set of harmonic frequencies via the Fourier Transform. 
By understanding how the system reacts to the complete set of harmonic frequencies (via the 
Amplitude Ratio within the frequency response graph) we are than able to gain insights and 
draw conclusions that are valid for all possible demand pattern. Many of the results that we 
obtain are also valid for any lead-time. Our findings strengthen, sharpen and refine the 
arguments of [6]. 
 
In this paper we derive a discrete-time transfer function of the DT mechanism in section 2. In 
section 3 we identify the stability boundaries of DT forecasting mechanism via Jury’s Inners 
Approach [5]. Section 4 describes the replenishment policy used. We incorporate the DT 
forecasting methodology into the Order-Up-To (OUT) replenishment policy, develop a 
discrete-time z-transform transfer function representation of the combined forecasting and 
replenishment system and analyze its frequency response plot. Section 5 provides summary 
numerical results, confirming our theoretical findings. Section 6 concludes.  
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2.  The Damped Trend forecasting method 
DT forecasts [1] are generated by 
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Here td  is the time series being forecasted. ta  is the current estimate of the level, 
exponentially smoothed by the constant . tb  is the current estimate of the trend, 
exponentially smoothed by the constant  . 0b  is the initial value of the trend, assumed to be 
zero, 0 0b  .   is the damping parameter that can be interpreted as a measure of the 
persistence of the trend. k  is the number of periods ahead that the forecast is required to 
predict. ,

ˆ
t t kd  , is the forecast, made at time t of demand in the period t k . 

 
Several well-known forecasting approaches are encapsulated within the DT model. These 
include Holts method where there is no damping of the trend component when 1 , Simple 
Exponential Smoothing (SES) when 0   and Naïve forecasting when 1  and 0 , see 
Table 1. 
 
Forecasting 

method 
Parameter 

settings 
Notes 

Holts 
method 

1  
By setting 1  , ttktt bkad ˆˆˆ

,   results. The future forecasts 
then becomes a linear extrapolation of the current estimate of 
the trend.  

Simple 
exponential 
smoothing, 

SES 

0  

0  implies that 0tb 0t . It then follows that 

ttt daa   1ˆ)1(ˆ . This in turn means tktt ad ˆˆ
,  . Here we 

have made explicit the fact that the SES forecast of all future 
forecasts ( k  periods ahead) is simply the forecast of the next 
periods demand. Ignoring the subscript that gives information 
on which period we are forecasting yields the common SES 
formula, ttt ddd   1

ˆ)1(ˆ . 

Naïve 
forecasting  

0 , 
1  

This is easy to see from the exponential smoothing formula as 
these parameters yields tktt dd ,

ˆ . 

 
Table 1. Three popular forecasting methods encapsulated with the Damped Trend method 

 
Transfer functions are useful tools for studying linear systems, as they allow convolution in 
the time domain to be replaced by simply algebra in the complex frequency domain. In the 
frequency domain there is also a wide range of tools developed by control engineering 
theorists for understanding the dynamic behaviour of such systems. It is a relatively simple 
task to develop a block diagram of (1) and manipulate it to obtain the transfer function of the 
DT forecasting mechanism (Figure 1). We refer interested readers to [7] for information on 
how to achieve this. 
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Figure 1. Block diagram of Damped Trend forecasting 

 
The discrete time transfer function of (1) is given by 
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which, is in standard form as coefficients of the z-transform operator,  

0

n

n
z x n z

 


 . We 
note from (2) that the co-efficient of the highest power of z in the denominator is positive 
when 1  and negative when 1 . This is important as Jury’s Inners approach, which will 
be exploited in the next section, requires this to be positive [5].  
 
3.  Stability of Damped Trend forecasts via Jury’s Inners Approach 
The question of stability is a fundamental aspect of dynamic systems. A stable system will 
react to a finite input and return to steady state conditions in a finite time. An unstable system 
will either diverge exponentially to positive or negative infinity or oscillate with ever 
increasing amplitude. A critically stable system will fall into a limit cycle of constant 
amplitude to any finite input. Oscillations in the forecasts and order rates in supply chains are 
costly. So, as a first step to dynamically designing a supply chain replenishment rule, we must 
ensure that a replenishment rule and all the components (such as the forecasting system) are 
stable. [5] shows that the necessary and sufficient conditions for stability of a linear discrete 
system are given by: 0)1( A , 0)1()1(  An , and the matrices 111 


  nnn  are 

positive innerwise. 
 
For the system we are studying here, )(zA  is the denominator of (2), and the co-efficient of 
the highest power of z – in this case 2a , see (3) – must be positive. This can be easily 
achieved by multiplying both numerator and denominator by 1 . However, it is interesting to 
note that no matter whether we need to do the multiplication or not, the values of the 
coefficients in the denominator )(zA  always remain the same. Therefore, before using Jury’s 
approach, we rewrite the denominator of (2) by substituting 1  with its absolute value 

1  to simplify future analysis. Then, )(zA  can be expressed as 
 


20 1

2( ) 1 (1 ) 1 ( 1 ) 1
aa a

A z z z                  , 
(3)

 
and 

 1n  are simply scalars as the original transfer function (2) is only of second order 
( 2n ). Specifically 

 1n  are 
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 )1(11021 
 aan . 

(4)

 
Taking each criteria in turn: 
 )1(A  must be greater than zero: 

1
)()1(




z
zAA , that is )1(A  is given by (3) with the z  is 

replaced with 1, 
 

 (1) 1 1 ( 1) 0A         . (5)

 
(5) splits the   ,  parametrical plane into quarters along the lines given by 0  and 

 )1(  . 
 

 0)1()1(  An  must be greater than zero. In the same manner as above, )1()1(  An  is 
given by (3) with the z  is replaced by 1  and 2n , 

 

  ( 1) ( 1) 1 2 2 0n A               (6)

 
 (6) divides the   ,  parametrical plane along the curve  )22(  , 
which has an asymptote at 0 . 
 

 111 

  nnn  must be positive innerwise. A matrix is positive innerwise if its 

determinant is positive and all the determinants of its Inners are also positive. Because the 
order of the transfer function 2n , then the 

 1n  matrices only contain one element [8]. 
To ensure that the elements are positive innerwise, it is enough that 
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The criteria 

 1n  divides the parametric plane along  1    , 
 1n  divides the 

parametric plane along  1    . 
 
Figure 2 provides a conceptual map of the stability boundary and how it changes for different 

. It is common practice in exponential smoothing models to restrict the smoothing 
parameters to the  1,0  interval [9],[10]. A series of papers [1],[11] have also proposed the 
damping parameter is restricted to 10   . However, it is interesting to note that there are 
stable DT forecasts for a much broader range of parameter values than those usually 
recommended in the literature. Similar findings were observed for Holts method and SES. 
When 1 , when we have the Holts method, the stability conditions are 20   , 

 )24(0  . When 0 , the SES stability boundary can be observed, 20   . 
 
4.  Using Damped Trend Forecasting within the Order-Up-To Policy 
A single retailer first receives goods in each period t . He observes and satisfies customer 
demand within the replenishment period, td . Any unfilled demand is backlogged. The retailer 
observes his inventory level and places a replenishment order, to , at the end of each period. 
There is a fixed time period of pT  between placing an order and receiving that order in stock. 
We assume that the retailer follows a simple Order-Up-To inventory policy. In an OUT policy, 
orders are placed to raise the inventory position tip  up to an OUT level or base stock level ts , 
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Figure 2. The Damped Trend Stability region 
 

t t to s ip  . (8)
 
The inventory position is the amount of inventory on-hand   inventory on-order   backlog. 
The amount of inventory on-hand minus the backlog is the net stock tns  level. The inventory 
on-order is also known as the Work-In-Progress (WIP), twip . The inventory position at time 
period t , tip  is given by 
 

t t tip ns wip  . (9)
 
The OUT level is often estimated from the observed demand. It can be written as 
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where 1,

ˆ
 pTttd  is the forecasted demand in period 1 pTt  made in period t. The Target Net 

Stock, tns, is a safety stock used to ensure a strategic level of inventory availability. tns is a 
time invariant constant. Under the assumptions of normally distributed forecast errors and 
piece-wise linear convex inventory holding (h) and backlog costs (b) then it is common to 
assume 1;  b

ns b htns z z 
      . Here ns is the standard deviation of the net stock levels and 

 1 x  is the inverse of the cumulative normal distribution function evaluated at x. The time 
varying Desired Work In Progress, ,1

ˆpT

t t t ii
dwip d 

  is the sum of the forecasts, made at time 
t in the periods from 1t   to pt T . [12] show the order decision can be rewritten as 
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The z-transform transfer function for the order rate, expressed in a manner in which the 
forecasting system has been left unspecified, is given by  
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(12) is a useful departure point for further analysis as the forecasting components can be 
simply “slotted” into  1

ˆ
pTD z  and  DWIP z  to yield the system transfer function. We notice 

in (11) and that the OUT policy requires two forecasts. One of these forecasts is a prediction, 
made at time t of the demand in the period 1pt T  . Adapting the DT forecast to achieve this 
is done with  
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The other forecast required by the OUT policy is a prediction, made a time t, of demand over 
the lead-time. That is, the demand in periods 1, 2,..., pt t t T     . In the time domain this is  
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Figure 3 shows that the transfer functions of the DT forecast and WIP target can be built up 
from 2 auxiliary variables,  a z  and  b z . These are 
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Figure 3. Block diagram of OUT policy with Damped Trend forecasts 
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The z-transforms of the two DT forecasts required by the OUT policy are  
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The transfer functions of the two required forecasts when Holts Method is used are  
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As the trend component of the demand process is not explicitly forecasted in the SES and the 
Naïve forecasting models, the majority of scholars consider the DWIP term to be simply the 
product of the lead-time and the most recent forecast [6], [13]. The transfer functions of 1

ˆ
pTD    
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and DWIP for SES are then 
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The transfer functions of 1
ˆ

pTD   and DWIP and Naïve forecasting methods are 
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Once we have the transfer functions of these two forecasts, we can substitute them into (12) to 
obtain the order rate transfer function. The order rate transfer function is important as it 
contains information on the well-known bullwhip effect. The bullwhip effect is present if the 
variance of the orders is greater than the variance of the demand. If customer demand is 
independently and identically distributed (i.i.d.) then the following relationship holds, 
 

    
2 22 1
2 0 0
o

tt t
d

Bullwhip o Z O z



  
 

       . (21)

 
In (21)  1Z x  is the inverse z-transform operator. Via Parseval’s theorem, we can make the 
link between the bullwhip effect and the frequency response.  
 

  22 1 1
2 20

Amplitude Ratio, AR

( ) ( ) ( )i i i
tt

o O e d O e O e d
   

  
  

  
     . (22)

 
Here ( )O z  is the z-transform of to  and   represents the angular frequency of to . If we 
investigate the Amplitude Ratio (AR) of different frequencies we are able to gain insight into 
how the forecasting and replenishment system behaves to any demand pattern. This is because 
all demand patterns can be decomposed into a set of harmonic frequencies. i.i.d. demands 
mean that all frequencies are present with equal density in the demand signal. The frequency 
response of discrete time systems is a function with a periodicity of 2 . However, we only 
need to study the AR for frequencies in the period  ,0 , as the frequency response plot on 
 0,  is a simple reflection of  ,0  about the origin. Furthermore we note that 

0
1AR


  

and d
d 0

0AR
 

  for all systems. Let’s now take a look at the frequency response for the OUT 
policy with different forecasting mechanisms. 
 
4.1 Frequency Response of the OUT Policy with Naïve Forecasts. The AR is strictly 
increasing in   as  22 3 2 sindAR

p pd T T    , 
0

1AR


  and  2
3 2 pAR T

 
   within the 

interval  0, , see Figure 4a. 
 
4.2 Frequency Response of the OUT Policy with SES Forecasts. For stable SES forecasts 
(Figure 4b) the AR is a strictly increasing within the frequency interval  0,  as 
 

    
    

3

22

2 1 2 sin
0

2 cos 2 2 cos

p pT TdAR

d

  

      

 
 

   
. (23)
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Together with 
1

1AR


  we can deduce that the value of AR is always greater than 1 for all 
frequencies. In another words, the OUT policy with SES forecasting will always produce 
bullwhip for all demand patterns for all lead-times. This finding is consistent with the results 
in [6], but they failed to completely characterise the frequency response.  
 
4.3 Frequency Response of the OUT Policy with Holts forecasting. For stable Holts forecasts 
the AR originates at 

0
1AR


  and ends at 

 

   
 

2

4 2 2 2 2
1

2 4

p pT T
AR

 

  

 

     
     

, (24)

 
see Figure 4c. However, in between these two points there are two different AR responses. 
Either the AR is strictly increasing in   or, when )22(4 2  , there is a stationary 
point within the  0,   interval. Then the AR is an increasing function in   until 

    2arccos 2 2              at which point it becomes a decreasing 
function until   =  . The stationary point, if it exists, will be a maximum. Using these facts 
we are able to prove that the Order-Up-To with Naïve, SES and Holts forecasts will, for any 
demand patterns and all lead-times, always generate bullwhip. 
 
4.4 Frequency Response of the OUT Policy with Damped Trend Forecasting.  
The DT frequency response is more complex than those previously considered. We first 
investigate two situations: low-frequency responses (  near 0) and high-frequency responses 
(  near  ). We then pay attention to frequencies between 0  and  . Although 0 1AR    
and d

d 0
1AR

 
  the second derivate can be positive, zero or negative. The sign of the second 

derivate has geometrical implications. If the second derivate is positive, the graph of AR will 
be convex near 0  with a local minimum at 0 . If the second derivate is negative, the 
AR curve will be concave near the origin and the point at 0  is a local maximum. A 
concave AR will imply that the DT forecast enabled OUT policy will be able to avoid 
generating bullwhip for low frequency demand. The lowest-order non-zero derivative is 
always of even order for any of the DT settings. This means that a stationary point at 0  
cannot be an inflection point when the second derivate is zero - it has to be either a local 
maximum or a local minimum. This fact also concurs with common knowledge of the 
periodicity of the frequency response. 

 

 
Figure 4. Frequency response of the OUT policy with (a) Naïve, (b) SES and (c) Holts 

Method forecasting 
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Consider low frequency behaviour when 1pT . With 11   , 
2

2
d
d 0

0AR
 

 . This means 
that these settings will always generate bullwhip when   is near 0 . When 1 , the AR near 

0  is always concave, implying bullwhip is avoided at low frequencies. However when 
1 , the second derivate can be positive, negative or zero. Figure 5 maps out the areas of 

the parametric plane where the bullwhip effect can be avoided when the demand process 
contains low frequency harmonics. The curves which separate out the different classes of 
bullwhip behaviour for when 3 1     are 1

  and  12 , 
    . When 5 3     

the  4 2 1, 
     and  12 , 

     determine the different classes of bullwhip behaviour. 
These were all obtained by setting 

2

2
d
d

0AR


  and solving for the relevant variables. 
 
Consider high frequency bullwhip behaviour near    when 1pT . DT forecasts with 

1  or 3  always generate bullwhip for high-frequency demands as 1AR
 

 . If 
1 , then 1AR

 
 . There are also some circumstances that the 1AR

 
 , see Figure 6.  

When 1AR
 

  the DT enabled OUT policy avoids inducing the bullwhip when the demand 
processes contain only high frequency harmonics. This bullwhip avoidance occurs for:  
0 1   when 1 0

     and 1 1
    ; 1 0    when 10 

    and 11 
     ; 

 

 
Figure 5. Concavity of AR near 0  for 1pT  
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3 1     when 1    and 
  

 
2 1 1

1 2

 
     

   .  

 
When the lead-time increases, for low frequencies near 0   and 1   the influence of the 
parameters’ settings (Figure 5a) remains exactly the same. That is AR < 1 near 0  . For 
high frequency demand near    when 10   to the area of the parametrical plane that 
is able to avoid the bullwhip effect will become smaller. When 1 0   , the region within 
the parametrical plane where bullwhip is attenuated changes in a complex manner. It has 
different shapes when the lead-time changes from an odd number to an even number. When 

1   , bullwhip avoiding areas of the parametrical plane for both low-frequency and high 
frequency demand will disappear and reappear in sophisticated manners when the lead-time 
switches between an odd number and an even number.  
 
So far we have not been able to determine the characteristics of the two stationary points 
within the interval  ,0 . However the results that we have obtained at  0,   indicates 
that for some demand patterns the OUT policy with DT forecasting mechanism is able to 
avoid the bullwhip effect. This is a type of dynamic behaviour that is not present when the 
Naïve, SES and Holts Method is used as a forecasting method within the OUT policy. 
 
5.  Numerical verification 
We constructed an Excel based simulation of the OUT policy with DT forecasting and unit 
lead-times. Demand was assumed to be made up of a single sine wave with a mean of 10, unit 
amplitude and a frequency of  0.02,3.1  radians per period. We determined the bullwhip 

2

2
o

d




 and net stock variance amplification ratio, NSAmp = 
2

2
ns

d




 from 4000 periods after an 
initialisation period of 1000 periods. Sample numerical results are given below in Table 2. 
They verify that the OUT policy with DT forecasting can indeed eliminate the bullwhip effect. 
It is interesting to note that whilst we have not studied the NSAmp measure from a theoretical 
standpoint in this paper, the numerical results in Table 2 hint at the possibility that not only is 
bullwhip reduced with DT forecasting, but there appears to be good control over inventory 
levels as well.  
 
6.  Concluding remarks 
We have studied the stability and bullwhip behaviour of an OUT policy that incorporates DT 
forecasting. We have demonstrated that the DT forecasts are stable over a much broader range 
of parameter values than is usually recommended in the literature. We have shown that the 
OUT with three different types of forecasts, Naïve, SES and the Holts method forecasts, will 

 

 
 

Figure 6. Possible settings that result in 1AR  near   when 1pT . 
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Demand Frequency 
  (radians per period) 

0.02 0.02 0.02 0.02 3.1 3.1 3.1 

  0.14 1.6 1.1 1.1 -0.5 2 1.4 
  0.14 1.6 1.1 1.1 -1 2 0.45 
  1.1 -1.5 -4.5 -5.5 0.6 -0.6 -2 

Bullwhip 2 2
o d   0.9768 0.9964 0.9824 0.9624 0.4278 0.5389 0.1697

NSAmp 2 2
ns d   0.3626 0.0056 0.1781 0.8542 0.0309 0.0180 0.1997

 
Table 2. Numerical results from a 4000 period simulation verifying our theoretical results 

 
always generate bullwhip, for any demand patterns and for all lead-times. For the DT 
forecasting method, we have shown that for some demand patterns the OUT replenishment 
policy with DT forecasting mechanism is able to avoid generating bullwhip. This is a 
qualitatively different bullwhip behaviour that is not present with other, more traditional 
forecasting policies. This suggests that the DT forecasting methodology deserves much more 
attention in the OR/OM literature than it currently receives. 
 
6. References 
[1] Gardner, E.S. Jr, McKenzie, E., 1985. Forecasting trends in time series. Management 

Science, 31 (10), 1237-46. 
[2] Makridakis, S., Hibon, M., 2000. The M3-competition: results, conclusions and 

implications. International Journal of Forecasting, 16 (4), 451-76. 
[3] Gardner, E.S. Jr, McKenzie, E., 2011. Why the damped trend works. Journal of the 

Operational Research Society, 62 (6), 1177-80. 
[4] Fildes, R., Nikolopous, K., Crone, S., Syntetos, A., 2008. Forecasting and operational 

research: a review. Journal of the Operational Research Society, 59 (9), 1-23. 
[5] Jury, E.I., 1971. Inners approach to some problems of system theory. IEEE Transactions 

on Automatic Control, 16 (3), 233-40. 
[6] Dejonckheere, J., Disney, S.M., Lambrecht, M.R., Towill, D.R., 2003. Measuring and 

avoiding the bullwhip effect: a control theoretic approach. European Journal of 
Operational Research, 147 (3), 567-90. 

[7] Nise, N.S., 2004. Control systems Engineering 4th ed. Hobeken, New Jersey: John Wiley 
& Sons. 

[8] Disney, S.M., 2008. Supply chain aperiodicity, bullwhip and stability analysis with Jury’s 
inners. IMA Journal of Management Mathematics, 19 (2), 101-16. 

[9] Winters, P.R., 1960. Forecasting sales by weighted moving averages. Management 
Science, 6 (3), 324-42. 

[10] Holt, C.C., 2004. Forecasting seasonals and trends by exponential weighted moving 
averages. International Journal of Forecasting, 20 (1), 5-10. 

[11] Gardner, E.S. Jr, McKenzie, E., 1989. Seasonal exponential smoothing with damped 
trends. Management Science, 35 (3), 372-76. 

[12] Hosoda, T., Disney, S.M., 2006. On variance amplification in a three-echelon supply 
chain with minimum mean squared error forecasting. OMEGA: The International Journal 
of Management Science, 34 (4), 344-58. 

[13] Chen, F., Ryan, J.K., Simchi-Levi, D., 2000. The Impact of exponential smoothing 
forecasts on the bullwhip effect. Naval Research Logistics, 47 (4), 269-86. 

 
 


