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Abstract 

We consider the bullwhip problem in a multi-product scenario, specifically looking at the 
impact of product demands on production and inventory cost performance in a factory 
setting. A Vector Auto-Regressive process of the first order (VAR(1)) is used to represent 
two different demand processes. The Order-Up-To (OUT) policy is used to manage inventory 
levels and generate production orders. The two demand processes could represent two 
different products, or the same product being sold to two different retailers. In this manner we 
can quantity the impact of “inventory pooling” on performance. The two demand streams 
could be satisfied by production on a single production line (with or without a changeover), 
or production on two separate production lines. In this way we can investigate the issue of 
“capacity pooling”. We provide a real-life case study to motivate our model and support our 
technical findings. We discuss the implications of our research against the background of the 
current proliferation of “SKU customization” in the fast moving consumer goods industry. 
 
Keywords: Bullwhip Effect, Vector Auto-Regressive Demand, Safety Stocks, SKU 
customization. 

Economic Literature Codes: C02, M11 

Word Count: 6610 

 

1. Introduction  

Over the last fifteen years the bullwhip, or demand amplification, problem has extensively 
been studied in the operations management literature. The supply chain bullwhip effect, as 
described by Lee et al. (1997a), is “the phenomenon where orders to the supplier tend to have 
larger variance than sales to the buyer (i.e., demand distortion), and the distortion propagates 
upstream in an amplified form (i.e., variance amplification).” This phenomenon has been 
observed in many supply chains. To name just a few examples (see Chen and Lee 2011): 
Hammond (1994) showed large fluctuations of weekly order quantities in Barilla’s pasta 
supply chain. Lee et al. (1997b) observed excess volatility in weekly orders in both Procter & 
Gamble’s diaper supply chain and Hewlett-Packard’s printer supply chain. Fransoo and 
Wouters (2000) reported strong bullwhip effects in daily data from a supply chain of ready-
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made meals and salads. Waller et al. (2008) studied the weekly order and sales data obtained 
from a major U.S. retailer and found strong bullwhip effects in all 115 products. 
 
The bullwhip effect has a number of highly undesirable cost implications. In his seminal 
paper, Lee (1997b) describes how the bullwhip effect may lead to excessive inventory 
investment, poor customer service, lost revenues, misguided capacity plans, ineffective 
transportation, and missed production schedules.  
 
Disney et al. (2007) define bullwhip as the key example of supply chain inefficiency, creating 
unstable production schedules and increased inventory requirements. To measure these 
inefficiencies, it is common to define two variance ratios: the ratio of order variance to 
demand variance (the typical bullwhip measure) and the ratio of the inventory variance to the 
demand variance, since this may have a significant impact on customer service.  A high 
bullwhip measure implies highly fluctuating orders, meaning that the production level is 
changed frequently, resulting in higher average production (capacity) costs per period. An 
increased inventory variance results in higher holding and backlog costs, inflating the average 
inventory cost per period. The variance amplification in orders and inventory levels has been 
quantified by Disney et al. (2006) under a generalised order-up-to policy for i.i.d. and the 
weakly stationary auto regressive (AR), moving average (MA) and auto regressive moving 
average (ARMA) demand processes. 
 
It is worth noting that the original definition of the bullwhip effect and the variance 
amplification ratios studied in the literature are typically based on a single product and a 
single customer. It is common practice, however, to produce a group of products on the same 
production line, in which case it makes more sense to measure bullwhip on a ‘product group’ 
level, rather than on an individual product level. Indeed, from a capacity point of view, when 
different products share the same production facilities there is a pooling effect that can be 
exploited.  
 
Similarly, branded label manufacturers have the common practice of selling the same SKU to 
a variety of customers. This means that the branded label manufacturer can aggregate (or 
pool) the demands over its retail customers with a potential to reduce inventories. In this case 
the inventory variance ratio should be evaluated on the ‘customer group’ level, rather than at 
a individual customer level. Interestingly, this grouping at customer level is often not the case 
for private label suppliers, who usually sell customer-specific (customized) SKU’s. In this 
situation enormous swings in orders may hurt inventories and service levels as there is no 
aggregation or inventory pooling effect across customers. So it is also important to define 
inventory variance at the appropriate level. Farasyn et al. (2011) report on the significant 
product proliferation at Procter & Gamble: its number of finished goods has doubled over the 
past 10 years. For some business units, P&G commonly customizes packaging to match a 
customer’s unique requirements: these specialized SKU’s pass through multiple tiers of 
distribution and inventories should be kept accordingly. Depending on the supply chain 
echelon, demand can be aggregated and its relative uncertainty decreases. Clearly, the need 
for more customization will impact P&G’s inventory performance. 
 
A number of papers have discussed the level of aggregation in data and bullwhip 
measurements. For example, Fransoo and Wouters (2000) experienced that exactly the same 
basic data can lead to different measures of the bullwhip effect, dependent on the sequence of 
aggregation in the analysis. Sucky (2009) argues that pooling cannot be ignored when 
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studying the bullwhip effect.  With moving average forecasts of i.i.d. demand that is 
correlated between retailers he shows how negative correlation can reduce the bullwhip 
effect. Also, Chen and Lee (2011) show how aggregating data over longer time periods or 
aggregating across products can affect the magnitude of the bullwhip effect and its resulting 
cost implications. Hedenstierna and Disney (2012) investigate the economics of consolidating 
capacity across products and over time by considering the impact of the re-planning 
frequency on costs. 
 
In this paper we consider a multi-product setting and analyse its impact on both production 
and inventory related costs. The remainder of the paper is organised as follows. We introduce 
a real life example in the next section that will be used throughout the paper to motivate, 
illustrate and verify our findings. Our model is then described in section 3. Section 4 provides 
stability conditions for the assumed demand process, and expressions for the order and 
inventory variances are given in section 5.  Section 5 also investigates the economic 
consequences of consolidating capacity and inventory. Section 6 concludes. 
 
 
2. Motivating Example: The Chocolate Case 

We motivate the managerial impact of our model by means of a real life example. We 
analysed the sales data of an international food corporation which is, among others, active in 
the consumer packaged chocolate business. The products are strongly branded and distributed 
in the retail market, primarily in the Nordic and Baltic countries. The company faces a high 
proliferation of SKU’s, both in terms of different flavours as well as various package 
offerings, which are demanded by its retail customers. Figure 1  shows the weekly (de-
trended) sales data of two of its products.  
 

 

Figure 1. Weekly sales data of two consumer packaged chocolate SKU's 

 
We analyse the production and inventory requirements for these two SKU’s. The company 
can either produce the SKU’s each on a separate production line, or alternatively produce 
them together on the same production line. In the latter case, a changeover may be needed to 
allow the production line to be adapted to produce the new incoming product. We will ignore 
this cost as it is context specific. Furthermore in the chocolate case it can be ignored, as when 
only one product is produced on a line, the line still has to be cleaned periodically to meet 
hygiene requirements, and the change-over cost will be incurred anyhow. When both SKU’s 
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use the same production capacity, the aggregation of demands may partially cancel out the 
fluctuations in orders. This pooling effect is strongly present in case of negative correlation 
between both products, but as we will show later in this paper, also positively correlated 
demands might provide pooling benefits in capacity.  
 
Analogously, we can keep separate inventories for both SKU’s, or consolidate them to hold 
only one (virtual) inventory. Inventories can be consolidated, when e.g. the same SKU can be 
distributed in an identical form to various retail customers. This may also be when the 
customized packaging is postponed until the order is effectively received, or when lateral 
trans-shipments are used between different production sites that are producing the same 
product. In this case we may have pooling benefits in inventory since both demands are 
aggregated to hold one (combined) safety stock.  
 
 
3. Model Description 

We consider a manufacturer who supplies different SKU’s to its retail customers (the fast 
moving consumer goods business is a good setting to have in mind). Without loss of 
generality, we restrict our discussion to only two SKU’s in order to limit the size of the 
mathematical calculations. The two SKU’s are two products that allow inventory pooling 
(because they are the same product sold to two different markets) or not (because they are 
two different products).  The two SKU’s may also allow capacity pooling (they can be 
produced on the same production line with or without a changeover) or not (they have to be 
produced on two different production lines). The demands of both SKU’s are interdependent 
over time – to capture these interdependencies, we use the Vector Auto-Regressive (VAR) 
process. The use of the VAR process in supply chain studies is not new, but it is rather rare. 
Chaharsooghi and Sadeghi (2008) use a VAR model to study the bullwhip problem in 
multiple product supply chains. Ratanchote (2011) used the VAR model in a study of a 
distribution network. It is also interesting to note that Christopher Sims was awarded the 
2011 Nobel Prize in Economics for his work in applying VAR models to macroeconomic 
problems. 

The first order Vector Auto-Regressive (VAR(1)) process for the demand of SKU  1, 2k   
in period t, dk:t , is given by  

     
     

1: 1 1 1: 1 1 1 2: 1 2 1:

2: 2 2 2: 1 2 2 1: 1 1 2:

t t t t

t t t t

d d d

d d d

     

     
 

 

      


      
 (1)

 
where    1 2, N 0,     are i.i.d. random variables drawn from a normal distribution with a 
mean of zero and a standard deviation of  . We assume for simplicity that 1  and 2  are 
independent. 

k
  is the mean (average) demand for product k, 

k
  is a auto-regressive 

parameter and 
k

  is a cross-correlation parameter.  Note that 2:td  could represent the sum of 
the other 1N   SKU’s expect SKU 1.  For our sample data set portrayed in Figure 1, 
assuming beforehand a VAR(1) process exists and minimising the squared one period ahead 
forecast error of the demand process, we obtained the following VAR(1) parameters: 

1 0.2  , 2 0.56  , 1 0.65   and 2 0.15   . These parameter values are all within the 
range that intuition would predict as reasonable. SKU 1 has a mean of 1 354  , SKU 2 has a 
mean of 2 206  . The noise processes have a variance of 

1

2 8309   and 
2

2 2796  . 
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The manufacturer controls its inventory with a periodic review Order-Up-To (OUT) policy. 
The sequence of events is such that previous orders placed 1

p
T   periods ago are received at 

the beginning of the period, demand is satisfied from inventory during the period and 
inventory levels are observed and replenishment orders placed at the end of the period (see 
Figure 2). 
 

 

Figure 2. The sequence of events in the OUT policy 

 
Under this sequence of events, the inventory balance equation per SKU is given by 
 

: : 1 : 1 :pk t k t k t T k t
i i o d     , (2)

 
with ik:t the end-of-period net inventory of product k in period t. The inventory levels are 
regulated by the production orders per SKU, :k t

o , which are generated with the OUT policy,  
 

 DWIP WIPSafety stock

: : 1, : : , :1 1
Inventory feedbackForecast WIP feedback

ˆ ˆp p

p

T T

k t k t T t k t k t i t k t ji j
o d tns i d o    

     
 

 
. (3)

 
Here, : 1,

ˆ
pk t T t

d    is a forecast of demand for product k in periods 1
p

t T   made at time period 
t. The target net stock, tns, is a safety stock set to minimise piece-wise linear holding (H) and 
backlog (B) costs associated with the inventory levels, :k ti , satisfying a newsvendor fractile 
 

 1;  B
ns B H

tns z z 
   . (4)

 
Note that we denote the probability density function (pdf) of the standard normal distribution 
by  x  and its cumulative distribution function (cdf) by  x . There is also a forecast that 
sets the desired work-in-progress (DWIP). DWIP is made up of the sum of forecast in the 
periods over the lead-time. The actual work-in-progress (WIP) is the sum of the orders that 
have been placed but not yet received because of the lead-time, 

pT . An alternative, and useful 
in this paper, formulation of the OUT policy is  
 

   1 1
: : , : 1, 1 :1 1

ˆ ˆp pT T

k t k t i t k t i t k ti i
o d d d

 

    
    , (5)

 
Hosoda and Disney (2006). The replenishment orders are sent to a production line to be 
processed. We assume from now on that the planning period for capacity in production is one 
week in duration, because the natural cycle of our daily life is based on the week. The 
production line is manned by flexible labour that is equally proficient at producing 
(assembling) the order for any SKU. The production line has a nominal weekly capacity to 
produce  O

K s   units, with 
O  the weekly average order size and s is a safety capacity 

to cope with higher than average orders (s is a decision variable depending on the order 
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fluctuations). s can be changed over the long term by altering the amount of labour and 
machines in a production line. Note: s  can be negative, which means that the nominal 
weekly capacity, 

O
K  ; 0K   as long as 

O
s  . The unit capacity cost within a normal 

working week is U. This means the weekly wage is to be paid, even if the weekly orders are 
below the capacity of  O

K s   units (hence the notation U for undertime cost). If the 
orders are above the available capacity of  O

K s   units, then over-time is offered to 
produce the remaining, as yet incomplete orders. The unit overtime cost per item is charged 
at a higher price W (the notation “double U” denotes that it should be higher than U, 

otherwise it would be never optimal to invest in normal-time labour). Overtime volume can 
be (and is always) flexed to meet the required weekly production orders. This means that 
when just a few hours of overtime is required, just a few hours of overtime is used (rather 
than a whole day). Denote  t

C E C  the average weekly cost to be minimized, with the 
weekly cost Ct given by 
 

       
Guarenteed hours Over-time costs Inventory holding & backlog costs

,
t O t O t t

C U s W o s H i B i               (6)

 
with    max ,0x x

  . By taking the expected values of the cost function, differentiating it 
w.r.t. s and solving for the first order conditions we may obtain an expression for the optimal 
amount of slack capacity, above (below) a mean production order (Disney, Gaalman and 
Hosoda, 2012). It is given by 
 

* 1;  ,W U
O W

s z z         (7)
 
and when the capacity level and the safety stock has been optimised, the minimised expected 
per period costs are given by 
 

   
**

1* * * 1

NO S

W U
O O

B
O W N

CC

NS S B H
U WC C C B H     

               
. (8)

 
We notice that optimised costs are linear in both the standard deviation of the order 
fluctuations 

O  (with an offset from the origin due to 
OU ) and the standard deviation of the 

inventory fluctuations 
NS .  

 
We assume the following cost parameters in our chocolate case example, 
 1,  9,  4,  6H B U W    .  When the Target Net Stock has been set optimally then the 
critical fraction B

B H
p   of periods end with inventory on-hand. Similarly when the capacity 

level have been optimised then a fraction 1 U W U
W W

p    of periods require over-time to 
complete the production orders. It is interesting to note that the capacity requirements are 
function of the standard deviation of the order and the costs and are not solely a percentage of 
the average demand as is often advocated. Due to its prominent role in (8), Figure 3 illustrates 
how  1

p     behaves. 
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Figure 3. The behaviour of  1

p     

 

4. Stability of the VAR(1) Demand Process  

The first step to studying the dynamic behaviour of the production and inventory control 
system is to consider the question of stability. The OUT policy that we study is a stable 
policy. However the VAR(1) demand process that we are using can become unstable. By 
unstable we mean that the demand process can have an infinite variance and no natural mean. 
This obviously creates problems in a stationary cost analysis because if the demand is 
unstable so will the forecasts and also the orders. Thus we first consider the question of the 
stability of the demand process. We will do this using z-transforms.  We refer interested 
readers to a good control engineering text, for example Moudgalya (2007), for more 
information on the z-transform. The z-transform of (1) which relate each of the demands, 

t
d , 

to each of the noises, t
 , 

 
 

 
 

 
 

 
   

 
 

 
 

1 2 2 1 2 12 1

1 1 2 2

;  ;  ;  
( )

d z z z d z d z d z z zz z

z A z z A z z A z z A z

  
   

      


 (9)

 
where    2

1 2 1 2 1 2A z z z          .  A z  is in the form of 1
1 0...n n

n n
a z a z a


    with 

0na   and 2n  . We can see that the denominators of each of the equations in (9) are 
identical. As the stability criterion only depends on the denominator of the transfer function 
then this means that the stability criteria of both demands in relation to each of the noises is 
the same. That is, as we would naturally expect, there is only one set of stability criteria that 
is valid for the whole demand model.  
 
The stability boundaries can be obtained by using Inners approach of Jury (1974). Jury shows 
that the necessary and sufficient conditions for stability of a system are that  1 0A  , 
   1 1 0n

A    and (because n = 2) 2 0 0a a  . These three conditions reveal that the 
VAR(1) is stable if  
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          

        

        

                

                  

          


             
 (10) 

 
holds true. Here   is the logical “and” and   is the logical “or” function. Perhaps it is best to 
visualise the stability boundary graphically, see Figure 4. Consider first the contour plot 
where either 1 0   or 2 0   (or both 1 2 0   ), which shows that the VAR(1) demand 
process is stable when  1 21 , 1    . We would expect this result: when 1 0   or 2 0  , 
we effectively have two independent Auto Regressive (AR) processes which are well known 
to be stable when the AR parameter is within 1 1    (Box et al., 1994). When 

1 21 0    , then the stable area is a single area bounded by six curves in the  1 2,   plane. 
At 1 2 1    , this stable area splits into two distinct areas each bounded by three curves that 
become smaller and drift apart when 1 2   becomes more negative. When 1

1 2 2 10       , 
then there is only a single stable area in the  1 2,   plane bounded by two curves. This stable 
area gets smaller as 1

2 1    from below. Figure 4 also shows the stability boundary near the 
parameter setting for our chocolate example.  
 

 
Figure 4. The stability region for VAR(1) demands  
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5. Determining the OUT Policy Variance Ratios 

In this section we highlight how the different variance ratios are obtained. First we consider 
the demand variance, which illustrates the main steps in the analysis procedure. Then we turn 
our attention to the variance of the production orders and the variance of the inventory levels. 
We illustrate our results throughout this section with the chocolate case example, introduced 
in section 2. This industrially relevant numerical example will also serve as a validation case 
to verify our theoretical findings.  
 
 
5.1. Variance of the Demand Process 

The z-transforms that link each of the demands to each of the noises were previously given in 
(9). In order to determine the variance of a particular demand, we need to add the two 
demand variances from each of the two sources of noise together. This is a consequence of 
our assumption that the two noises are independent. In general terms, the ratio of the variance 
of the systems output (the demand, forecast, orders, inventory, etc.) to the variance of the 
systems input (the noise) when the input is a white noise random process can be obtained 
using the Inners approach of Jury (1974), 
 

2
Output

2
White noise input

.b

na




 n+1 n+1

n+1 n+1

X + Y
X + Y

 (11)

 
Using (11) the variance ratio is calculated from the determinants of matrices. Determinants 
can always be obtained and it is easy to automate this procedure on computers: we used 
Mathematica in this research. To use Jury’s Inners approach we first write the nth order 
transfer function,  F z , in standard form 
 

 
1

1 1 1 0
1

1 1 01

... ,  0

...

n i n n
ii n n

nn n ni
n nii

b z b z b z b z b
F z a

a z a z a z aa z


 




   
  

   



, (12)

 
from which we identify the coefficients of z in the transfer function’s numerator 
 0 1,  ,  ... ,  

n
b b b  and denominator  0 1,  ,  ... ,  

n
a a a . We then construct the following matrices 

based on the coefficients of the denominator 
 

1 0 0

1 1

0

0 1

0 0
0 0 0

,  

0 0

n n

n

n n

a a a a

a a a

a

a a a a

    
   
              

n+1 n+1X Y

 
 

      
 

 (13)

 
and use these to obtain the  n+1 n+1X + Y  matrix. Another matrix  

bn+1 n+1X + Y  is obtained by 
replacing the last row of  n+1 n+1X + Y  with  2

1 1 1
2 ,  2 ,  ,  2 ,  2 n

n o i i n i i ii
b b b b b b b      . 

Finally the required variance ratio can be obtained from  
 

2
Output

2
White noise

b

na




 n+1 n+1

n+1 n+1

X + Y
X + Y

. (14)
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For illustration let’s consider the variance ratio between 1d  and 1 . The transfer function was 
given in (9). It has the following coefficients of z, 
 

 2 1 2 0 2 1 1 2 0 1 2 1 21,  ,  0,  1,  ,  b b b a a a                . (15)
 
Collecting together the coefficients of the denominator for the 1nX  and 1nY  matrix yields 
 

1 2 1 2 1 2 1 2 1 2

1 1 2 1 1 2 1 2 1 2

1 2 1 2 1 2

1 0 0
0 1 ,  0
0 0 1 1

n n

       
      

    
 

       
             
        

X Y  (16)

 
which we sum together to yield 
 

 
 
 

1 2 1 2 1 2

1 1 1 2 1 2 1 2

1 2 1 2 1 2

1 2
0 1 2

2
n n

    
    

    
 

   
       
    

X Y . (17)

 
The  

bn+1 n+1X + Y matrix is  
 

 
 
 
 

1 2 1 2 1 2

1 1 1 2 1 2 1 2

2
2 2

1 2
0 1 2

0 2 2 1
n n b

     
     

 
 

    
      

    

X Y . (18)

 
Finally from (14), (15), (17) and (18) we may obtain the following expression that describes 
the contribution of 

1

2
  to 

1

2
d

 . 
 

        
    

1

1

2
1 2 1 2 1 2 1 2 2 1 2 1 2

2 2 2
1 2 2 1 2 2

1 1 1 1 1
1 1 1

d



           
     

        


   
. (19)

 
In a like manner we can obtain the variance ratio expression between 

2

2
  and 

1

2
d

 . We do 
this by departing from the relevant transfer function in (9), the third one. We notice that only 
the coefficients of z in the numerator change,  0 2 1 10,b b b    . This implies that  
 

 
 
 

1 2 1 2 1 2

1 1 1 2 1 2 1 2
2

1

1 2
0 1 2
0 0 2

n n b

    
    


 

   
       
 
 

X Y . (20)

 
from which, together with (14), (17) and 2 1

n
a a   from (15) yields 

 
      

 
1

2

2
1 2 1 2 1 2 1 2 1 2 1 2 1 2

2 2
1 1 2 1 2

1 1 1 1
1

d



           
     

        


 
. (21)
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Finally we may obtain the expression for the variance of demand process 1d  by adding 
together (19) and (21) because the two noise processes are independent: 
 

       
         

2 1

1

2 2 2 2 2
1 1 2 1 2 1 2 2 2 2 1 22

1 2 1 2 1 2 1 2 1 2 1 2

1 1 1 1

1 1 1 1 1d

             


          

       


       
. (22)

 
Following the same procedure for the demand process 2d  leads us to  
 

     
         

1 2

2

2 2 2 2 2
2 1 2 1 2 1 2 1 1 1 2 12

1 2 1 2 1 2 1 2 1 2 1 2

1 (1 ) 1 1

1 1 1 1 1d

              


           

       


       
. (23)

 
We notice in (22) and (23) that there is symmetry between the two equations. That is, to 
obtain the variance of demand process 2, we simply make the substitutions { 1 2  , 

1 2   and 
1 2

2 2
   } in the variance expression for demand process 1. This symmetry 

always exists in the variance expressions and because of this we will now only present one of 
the two required variance expressions in order to save space. For our chocolate case example, 
we find that the demand variance of SKU 1, 

1

2 10799.2
d

   and for SKU 2, 
2

2 4134.5
d

   
from (22) and (23) respectively. 
 
 
5.2. Transfer Functions for the OUT Policy and its Forecasts 
 
In order to generate the production orders with the OUT replenishment policy we need to 
specify two forecasts. The first forecast is a forecast of the demand in the next period. This is 
used as the Desired WIP within the OUT policy, see (3), as we assume the lead-time is one 
period long. The second forecast that the OUT policy requires is a forecast of the demand two 
periods ahead – a forecast of the demand in the period after the lead-time. Let’s consider the 
one period ahead forecast first. The conditional expectation of demand one period ahead in 
the time domain is given by 
 

   
   

1: 1, 1 1 1: 1 1 2: 2

2: 1, 2 2 2: 2 2 1: 1

ˆ

ˆ
t t t t

t t t t

d d d

d d d

    

    




     


     
. (24)

 
The impulse responses of (24) can be described by the following set of z-transforms, 
 

 
 

  
 

 
   

 
   

 
 

  
 

2 2
1 2 1 21: 1 2: 1 1: 1 2: 1

1 1 2

1 2 2 12 1

2

ˆ ˆ ˆ ˆ
;  ;  ;  t t t t

d z d z dz z z zz z

A z A z A z A

z d z

z z z z z

   
  

    


   
  

   
 


 

 (25)
 
which describe the contribution of each of the noises processes to each of the one period 
ahead demand forecasts. The forecast of the demand two periods ahead is also required for 
the OUT policy when 1

p
T  . The time domain difference equations are  
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   
   

1: 2, 1 1 1: 1, 1 1 2: 1, 2

2: 2, 2 2 2: 1, 2 2 1: 1, 1

ˆ ˆ ˆ

ˆ ˆ ˆ
t t t t t t

t t t t t t

d d d

d d d

    

    

  

  

     


     

. (26)

 
(26) can be described by the following set of z-transforms, 
 

 
 

    
 

 
   

 
   

 
 

    
 

1: 2 2: 2

1 1

1: 2 2:

2 2
1 2 1 2 1

2

22
1 2 2 2

1
2

2 2

1

ˆ ˆ
;  ;

ˆ ˆ
 ;  

1

1

t t

t t

d z d z

z A z z A z

d z d

z z z z
z

zz

z

z zz
z

A z z A z

   












 



 


 

 

    
   

 

   
  







 


 



.
 

(27)

 
The transfer function that relates the orders in the OUT policy for product k to each of the 
noises driving the demand processes,  1, 2j  , can then be obtained from  
 

 
   1 : 1 : 2

ˆ ˆ( ) ( ) ( )1
( ) ( ) ( )

k k t k t k

j j j j

o z d z d z d z
z

z z z z   
  

 
     

 
 (28)

 
as highlighted by Li and Disney (2012). Finally the transfer function that relates the inventory 
levels maintained by the OUT policy for each product k to each of the noises driving the 
demand processes,  1, 2j  , can then be obtained from 
 

 
 

 
     

 
1

1
k k kTp

j j j

ns z o z d zz
z

z z z z  
 

 
     

. (29)

 
We will now use these transform functions to derive the variance ratio expressions for the 
inventory and order variance in four settings. We consider the cases where either production 
or inventory (or both) can be consolidated, or kept separate. The variance ratio expressions 
for the inventory and the order variance can be derived using Jury’s Inners approach as we 
have illustrated in Section 5.1. We will not present the detailed mathematics involved in order 
to save space. It is however a fairly straightforward procedure with no deviations from the 
already presented method – we just start from different transfer functions. 
 
 
5.3. The Case of Separate Production Capacity and Separate Inventory 
 
We first consider the case where both products are produced on separate production lines, 
and inventory is kept accordingly. Note that this is the common setting for bullwhip and 
inventory variance definitions in many papers. For the order variance we use (25) and (27) in 
(28), to obtain the transfer functions that relates the production orders for each product to 
each of the two noise processes. These four transfer functions are 
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 
     

 
 
   

 
   

 
     

 

3 3
1 2 22

1 2
1 1

33
1 2 12

1 2
2 2

1 1 ;  1 ;

1 ;  1 1

o z z z o z z
z z z

z A z z A z

o z o z z zz
z z z

z A z z A z


 

 


 

 

 
            


             
  

 (30)

 
Then from each of these transfer functions, using Jury’s Inners approach we may obtain the 
following variance ratio expression that relates each of the production orders to each of the 

noises, see (31). This can be obtained by rearranging the two variance ratios  2 2
1 1

2 2
1 2

,  O O

 

 

 
 for 

1

2
O and adding them together.  2 2

1 1
2 2
1 2

,  O O

 

 

 
 are acquired from  

 
 
  1 1

1 2
,  o z o z

z z   using Jury’s Inners 

approach. 
 

 
      

  
  

        
  

     

1 2

2

1 2

1 1

1 2

2

2 2 2
1 2 1 12 2

1 2 2 2
1 2 1 1 2 1 1 2 1 2

22 2 2
2 12 2 2

1 1 1 2 12 2
1 1 1 2 1 1 2 1 2

22 2 2 2
1 2 12 2

1 1

1 1 2 2

2

1

1

2
2

1 1 1

1
2 2 1

1 2 1 1 1 1

1
2

2 1 1 1

1
O

 


 



 



     
  

         

    
      

        

    
  

    


 

     

  
              

 


      2
1 2 1 1  

 
 
 
 
 
 
 
 
 
 
 
  
 

 

 (31)
 
The behaviour of (31) is illustrated in Figure 5 when 

1 2

2 2 1    . The first graph in Figure 5 
shows that when 1 2 0   , 

1

2
O  (and 

2

2
O  with the proper substitutions) is only influenced 

by 1  ( 2 ). When 1 20.5,  0.5    , 
1

2
O

  has a single minimum at 1 0.601785,    
2 0.0303873    of 

1

2 0.319776.O   However we note (but have not shown) that when 
1 21 0     there could be two minimums in the stability range as 1 2 1    from above. 

When 
1

1
1 2 20       then there is only one minimum. We have also illustrated the 

variance of 
1

2
O  for the chocolate case in the last graph in Figure 5. For our actual chocolate 

case example, the order variance of SKU 1 is 
1

2 14771.7O   and for SKU 2 it is 
2

2 9345O   
(remember that in the actual chocolate case 

1

2 8309   and 
2

2 2796  , whereas Figure 5 
assumes 

1 2

2 2 1    ). 
 
Using (9) and (30) in (29) we may obtain the following transfer function that relates the 
inventory levels    ;  1, 2kns z k  to each of the noises from the demand process,  ;j z  

 j 1, 2 : 
 

 
 

 
 

 
 

 
 

1 1 2 21 1 2 2

1 2 1 2

1 1;  ;  ;  
ns z ns z ns z ns zz z

z z z z z z z z

   
   

            


. (32)
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Then, after acquiring  2 2
1 1

2 2
1 2

,  NS NS

 

 

 
 from  

 
 
  1 1

1 2
,  ns z ns z

z z  , rearranging the two variance ratios 

 2 2
1 1

2 2
1 2

,  NS NS

 

 

 
 for 

1

2
NS and adding them together we arrive at the variance of the inventory 

levels. It is 
 

 
Figure 5. Variance of the orders for product 1 with separated capacity 

 
  

1 2 1

2 2
1

2
1

2 2
12 1

NS         , (33)
 
which is interesting as the inventory variance of each product is independent of the other 
products auto-regressive and cross correlation coefficients. We also note that the inventory 
variance is finite, even in the presence of an unstable demand process. Figure 6 plots the 
variance of the inventory levels when the demand noise term is 

1 2

2 2 1    . Counter-
intuitively we note that the inventory variance also increases for negative cross-correlation. 
The inventory variance has a minimum at  1 20,  0    and  1 21,  1      of 

 1 2

2 21,  1
NS NS

   . For our chocolate case example, it turns out that the inventory variances 
are 

1

2 146.48NS   and 
2

2 98.93NS  . 
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Figure 6. Contour plot of the variance of separate inventory levels  

 
Using (4), (7), (8), (31) and (33) we may verify our theoretical findings with a simulation (of 
one million time periods) and calculate the cost implications for our chocolate case example, 
as shown in Table 1. We note that the optimal safety stocks, *

TNS , slack capacity, *
S  and the 

corresponding costs, require the additional assumption that the forecast errors are normally 
distributed. The variance ratio expressions do not require this assumption (only that the two 
noises are independent). 
 

Cost * */TNS S  Cost Formula Chocolate case cost 
Theory Simulation 

Inventory 
cost for 

product 1 

 
1

* 1
1

187.717

B
NS B H

TNS  
 


    

1 1

1 B
NS NS B H

C B H  
      257.06 257.26 

Inventory 
cost for 

product 2 

 
2

* 1
2

126.785

B
NS B H

TNS  
 


    

2 2

1 B
NS NS B H

C B H  
      173.62 173.76 

Capacity 
cost for 

product 1 
1

* 1
1

52.35

W U
O W

S       
 

 
1 1 1

1 W U
O d O W

C U W             1681.15 1681.60 

Capacity 
cost for 

product 2 
2

* 1
2

41.83

W U
O W

S       
 

 
2 2 2

1 W U
O d O W

C U W             1035.91 1035.74 

Total cost of case 1 = 3147.73 3148.36 
Table 1. Cost optimisation and validation of the separated inventory, separated capacity 

case 
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5.4. Aggregated Production Capacity with Separated Inventory 

In this scenario we consider that both products are produced on the same production line, 
while keeping two separate inventories. It could be that a set-up cost is required to change the 
production line from producing one product to producing the other product (which we ignore 
in our analysis, for reasons explained in section 2). It could also be that a single product is 
produced, but packaging requirements are different and thus two different inventories are 
maintained. It could also be the case that a single product is produced, but the inventory is 
sent to two different geographical locations to serve remote markets and lateral trans-
shipments are not allowed (or are uneconomic). 

To obtain the variance of the order when both SKU’s are produced on the same production 
line then we must add the two transfer functions  

 
 
  1 2

1 1

o z o z

z z   together to yield 

 

 
 

 
 

     
          

 

2 2
2 1 1 2 1 2 1 1 2 1 1 2

2
2 2 2 1 2 1 2 1 2 2 11 2

2
1 1 1 2 1 2 1 2

1 1 1

1 1 1 1

z

zo z o z

z z z z

          

          

      

 
 


          

       
 

  




   

(34)

 
from which we obtain 
 

       

     
      

   
     

  
     

1 2

1

3
1 2 1 2 2 2 1 2 1 2 2

2 2 2 2 1 22
2 1 2 2

1 2 2 1 2 1 2 1 2 2

2 2
2 2 2 2 2 2

2 2
1 2 2 1 2 1 2 1 1 2 1 2 1 1 2 2

2

2

1 1 1 1 1

12
1 2

1 1 1

1 1 1 1

2 1 1 1 2 1 1 1

O O



          

     
 

        

     

   



          







           
 
    

  
      

 

     


  



        

 
 
 
 
 
 
 
 
 
 

 

 (35)
 
which together with 

1 2 2

2 2
O O    yields the variance of the combined production orders  

 
     

          
 

  
   

      

2

1

1 21

2

2 2
1 2 1 1 1 1

2 2 2 2
1 1 2 2 1 1 1 1 2 2 1 1 1

2 22 2 22
2 1 1 12 2 1

2 22
1 1 2 1 1 2 1 1 1 2 2 1 22

2 1 1 1 11
1 2 1 1 2 1 1 1 2 1 1

1 11
2

1 1 2 1 1 1 1
TO

      

             

        


             


      
  
             

      
   
            







 



       
      

    
       

2 1

2 2

1 2

1

2 2
1 1 2 1 1 2 12 2 2 3

1 2 2 2 2
1 2 1 1 2 1 1 2 1 2

2 22 2 2
1 1 2 12

2 2
1 1 2 1 1 2 2 1 2

2 1
2 1 2 2

1 1 1

1 1
2

2 1 1 1 1

        
    

        

     
 

        

 
 
 
 
 
 
 
 
 
    
    
      
 
      

       
 

 
 

 



. 

 (36)
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In Figure 7 we have plotted (36) when 
1 2

2 2 1    . For our specific chocolate case example, 
we obtain a combined order variance of 2 30710.2

TO  .  
 
 

 
Figure 7. Variance of the combined orders 

 
Table 2 shows the resulting impact on the capacity costs. In this specific example, we find 
that consolidating the capacity reduces the total costs by 3% when compared to case 1, the 
separated inventory separate capacity scenario. 
 

Cost * */TNS S  Cost Formula Chocolate case cost 
Theory Simulation 

Inventory 
cost for 

product 1 

 
1

* 1
1

187.717

B
NS B H

TNS  
 


 

   
1 1

1 B
NS NS B H

C B H  
      257.06 256.99 

Inventory 
cost for 

product 2 

 
2

* 1
2

126.785

B
NS B H

TNS  
 


 

   
2 2

1 B
NS NS B H

C B H  
      173.62 173.59 

Capacity 
cost to 

produce 1 & 
2 on same 
production 

line 

* 1

78.48
T

W U
T O W

S       
 

 
 1 2

1T

T

d d

O
W U

O W

U
C

W

 

   

  
 
       

 2622.31 2621.82 

Total cost of case 2 = 3052.99 3052.40 

Table 2. Cost optimisation and validation of the separate inventory, consolidated 
capacity case 
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5.5. Consolidated Inventory Levels and Separate Production  
 
In this scenario we consider a consolidated inventory for both SKU’s and separate production 
lines. This may mean that the same product is produced on two different lines, and its 
customized packaging is postponed until the order is effectively received, or that lateral 
transhipments are used between the different production sites, to allow the inventory to be 
considered as a single (or virtual) inventory. 
 
The order variance for each of the two products that are produced on separated production 
lines was already given in (31). The inventory variance for the combined inventory levels is a 
little more tedious to obtain but can be found with the following procedure. First we find, for 
each noise process  ,  1, 2

j
j  , the transfer function of the inventory levels. It can be 

obtained from 
 

 
 

 
 

 
 

 
 

 
 

1 2 1 21

1
d dT Tp

j j j j j

o z o zns z d z d zz
z

z z z z z z    
 

    
                

, (37)

 
which lead to the following pair of transfer functions, 
 

 
 

 
 

1 2 2 1

1 2

1 1,  T Tns z ns zz z

z z z z

   
 

           
  

. (38)

 
Then, using Jury’s Inners Approach we find the contribution of each noise process to the 
variance of the combined inventory levels. These variance expressions are then added 
together to yield the following expression describes the variance of the total inventory levels. 
 

       1 2

2 2 2 2 2 2 2
2 1 2 2 1 1 2 1 1 22 1 1 2 1 1

TNS                            (39)
 
When 

1 2

2 2 1     (39) shows that the Net Stock variance has a circular nature with a 
minimum of 2 2NS   at  1 2 2 11 ,  1         . In order to visualise the behaviour of the 
five dimensional space in (39) we have provided Figure 8 where we have plotted the function 

   2 22 1 1m n m m n          (where    , 1, 2 ,  m n m n  ) due to the repeated structure of 
(39). 
 
Returning to our industrially based numerical example we see from Table 3 that inventory 
pooling results in a 25% reduction in inventory costs (whilst offering the same 90% service 
level). In our numerical example, consolidating the inventory has a slightly bigger economic 
impact than consolidating the capacity, providing a cost reduction of 3.6%. The net stock 
variance is now 2 33921.6

TNS
  . 

 
5.6. Consolidated Inventory and Aggregated Production Capacity 
In our last scenario we consider the case when both capacity and inventory can be pooled. 
The required variance expressions have already been presented in (36) and (39). The resulting 
costs for our chocolate case are given in Table 4 which show that when we pool both 
inventory and capacity then the lowest costs from all four scenarios are obtained. 
 



Boute, R.N., Dejonckheere, J., Disney, S.M. and Van de Velde, W., (2012), “Bullwhip in a multi-product production setting”,  
Tijdschrift voor Economie en Management – Review of Business and Economic Literature, Vol. 57, No. 3, pp351–377. 

19 

 

 
Figure 8. Components of the combined inventory variance  

 
 

Cost * */TNS S  Cost Formula Chocolate case cost 
Theory Simulation 

Inventory cost 
for product 1 
& 2 when the 
inventory is 
consolidated 

 * 1

236.03
T

B
T NS B H

TNS  
 


    1

T T

B
NS NS B H

C B H  
      323.23 323.18 

Capacity cost 
for product 1 

1

* 1
1

52.35

W U
O W

S       
 

 
1 1 1

1 W U
O d O W

C U W             1681.15 1680.99 

Capacity cost 
for product 2 

2

* 1
2

41.83

W U
O W

S       
 

 
2 2 2

1 W U
O d O W

C U W             1035.91 1035.87 

Total cost of case 4 = 3040.29 3040.05 
Table 3. Cost optimisation and validation of the consolidated inventory and separate 

production capacity case 

5.7. The question of when to consolidate 
Consolidation results in a lower capacity cost if 

1 2
0

TO O O
     . Using (31), (36) and (8) 

to model these variances, results in a complex expression but we can numerically evaluate it 
efficiently, see Figure 9, where we assumed 

1 2

2 2 1    . We see that in virtually all regions, 
capacity costs can be reduced by consolidating the capacity. Only in the case when 2 1    
are there instances where capacity consolidation is not desirable. Similarly, it is economically 
beneficial to consolidate inventory if 

1 2
0

TNS NS NS
     . As the required expressions (33) 

and (39) are much simpler we can obtain the following expression that describes the 
1 2

0
TNS NS NS

      boundary, 
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Cost * */TNS S  Cost Formula Chocolate case cost 
Theory Simulation 

Inventory cost 
for product 1 
& 2 when the 
inventory is 
consolidated 

 * 1

236.03
T

B
T NS B H

TNS  
 


    1

T T

B
NS NS B H

C B H  
      323.23 323.38 

Capacity cost 
to produce 1 
& 2 on same 
production 

line 

* 1

75.48
T

W U
T O W

S       
 

 
 1 2

1T

T

d d

O
W U

O W

U
C

W

 

   

  
 
       

 2622.31 2622.36 

Total cost of case 4 = 2945.54 2945.74 
Table 4. Cost optimisation and validation of the consolidated inventory and aggregated 

capacity case 

         
 

2 2
1 2 2 2 2 1 2 2 2 2 2

1
2 2

1 2 2 2 2 2 2

2 2

          


 

           


 
. (40)

 
1  is complex, meaning that the consolidated inventory is always less than the separated 

inventory, if 
 

     2 2
1 2 2 2 2 22 2 2 2 0              (41)

 
which is easy to see is always true when  1 2 2, ,    . Numerical investigations also verify 
that it is always beneficial to consolidate inventory for the settings in Figure 9.  
 

6. Discussion and Concluding Remarks 
We have used order and inventory variances as inputs into a cost function to measure and 
evaluate the performance of a factory setting in a multi-product environment. High bullwhip 
implies wildly fluctuating production orders, meaning that significant safety capacity should 
be maintained when planning production. The higher the inventory variance, the more safety 
stock is required to guarantee a target availability of product. Using a Vector-Autoregressive 
VAR(1) demand process for two SKU’s, we gathered variance expressions on an individual 
SKU basis and when combined together, and we demonstrated the impact of pooling SKU’s 
in production and / or inventory. Typically, bullwhip is to be defined at the level of a “group 
of products”, since the SKU’s may share the same production or distribution facilities. In 
some cases, inventory variance may also be aggregated, for instance when the SKU’s are 
supplied in identical packaging to different customers. However, in the other case of 
customer specific packaging, inventory is to be defined at the level of the “individual 
product”.  
 
Using real-life case data from a consumer packaged chocolate supplier, we illustrated the 
impact of defining the variance amplification ratios at the appropriate level. Clearly, when 
orders are aggregated for production on the same production capacity, the bullwhip effect 
must be defined accordingly. Its measure will be different from the traditional bullwhip 
measure defined at the SKU level, and so will its production capacity requirements. Needless 
to say that it is not always the case that several products can be aggregated on the same line. 
In our chocolate example for instance, chocolate with nuts is not produced on the same line 
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as chocolate without nuts for safety reasons.  In other situations the changeovers may be too 
time and / or cost intensive. Hence the bullwhip consequences are incurred on an individual 
SKU basis, which will result in higher safety capacity requirements. 
 

 
 

Figure 9.  Capacity cost benefit from consolidation 

 
Table 5 summarizes the results of our chocolate case example. Consolidating both products 
on the same production line reduces the production costs by 3% compared to the dedicated 
production lines, due to the reduced (aggregated) bullwhip effect over both products. 
Aggregating inventories to hold one safety stock for both SKU’s reduces the inventory 
requirements by 25% (to guarantee a 90% availability).  
 
Our analysis also sheds light on the differences between private label and branded A-product 
suppliers. For private labels we usually only have one customer for a given SKU. The 
enormous swings in orders hurt inventories & service levels. From a capacity point of view, 
there might be a balancing effect when multiple customer demands can be satisfied on the 
same production line. Traditionally, branded labels have the benefit to pool across different 
customers and, depending on the demand parameters, can reap substantial inventory 
reductions. However, a recent trend in the branded label industry shows that retail customers 
also demand their own customized SKU’s, very similar to the private labels. From the above 
analysis it is clear to what extent this may increase their inventory requirements. When 
retailers would additionally impose their individual quality specs in production, then 



Boute, R.N., Dejonckheere, J., Disney, S.M. and Van de Velde, W., (2012), “Bullwhip in a multi-product production setting”,  
Tijdschrift voor Economie en Management – Review of Business and Economic Literature, Vol. 57, No. 3, pp351–377. 

22 

 

suppliers would also lose their pooling benefits in production and more safety capacity is 
required. The increased production and inventory costs introduce a tension between retailers 
and suppliers, potentially hurting overall supply chain profitability. 
 

Costs 
Case 1 Case 2 Case 3 Case 4 

Separate inventory 
& separate capacity 

Separate inventory 
& shared capacity 

Combined inventory 
& separate capacity 

Combined inventory 
& shared capacity 

A
bs

ol
ut

e 
co

st 

Inventory 430.7 430.7 323.2 323.2 

Capacity 2717.1 2622.3 2717.1 2622.3 

Total 3147.7 3053.0 3040.3 2945.5 

Co
st 

in
de

x 
 

Inventory 100% 100% 75% 75% 

Capacity 100% 97% 100% 97% 

Total  100% 97% 96.6% 93.6% 
Table 5. Summary costs in the chocolate case 
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