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Abstract

The purpose of this paper is to show how continuous wavelet analysis can
be used to establish natural models for the continuous relaxation spectrum of
a polymeric material. A method of wavelet regularization is proposed for the
practical recovery of the continuous spectrum over a limited range of relaxation
times. Working with logarithmic variables (log-frequency and log-time), it may
be seen that the loss modulus is a scaling function transform of the continuous
relaxation spectrum. It is shown how the decomposition formula of Calderón
and Mallat may be used to reconstruct the spectrum from measurements of
storage and loss moduli. At practical levels of resolution, the spectrum may
be represented as a finite sum of hyperbolic scaling functions. There are two
principal regularization mechanisms, namely, sparsity (the number of terms in
the sum), and scale (which controls both resolution and smoothness). The
method of wavelet regularization is illustrated by recovering spectra from both
synthetic and real data.

Keywords: continuous wavelet transform, regularization, wavelet dictionaries,
continuous relaxation spectrum, sparse approximation, resolution.

1. Introduction

In an incompressible shear deformation, Boltzmann’s general linear integral
model for viscoelastic materials [1] relates the stress σ(t) to the strain-rate γ̇(t)
in the form

σ(t) =

∫ t

−∞
G(t− t′)γ̇(t′)dt′, (1.1)

where G(t) is a monotonically decreasing relaxation function. In keeping with
the principle of fading memory [2], the memory function is also monotonically
decreasing, which means that the first derivative dG

dt is monotonically increasing.
Bernstein’s theorem [3] states that successive derivatives of G(t) of all orders
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are alternately monotonically increasing and decreasing if and only if G(t) is
the Laplace transform of a positive measure. Under this constraint G(t) is said
to be completely monotone and may be written in the form

G(t) = Ge +

∫ ∞

0

H(τ)e−
t
τ
dτ

τ
, (1.2)

where Ge is a material constant, given by

Ge = lim
t→∞

G(t), (1.3)

and H(τ) is an un-normalized non-negative density function associated with a
continuous range of relaxation times τ . In a generalized Maxwell model H(τ)dτ
may be thought of as the viscosity associated with a Maxwell element with
relaxation times between τ and τ+dτ . Equation (1.2) serves as a mathematical
definition of the continuous relaxation spectrum, H(τ). The total viscosity η of
the material is then given by

η =

∫ ∞

0

H(τ)dτ <∞. (1.4)

In an oscillatory shear experiment [4,5], an applied strain

γ(t) =

{
γ0e

iωt if t ≥ 0;

0 if t < 0,
(1.5)

with constant angular frequency ω enables equation (1.1) to be written in the
form

σ(t) = G∗(ω)γ(t), (1.6)

where G∗(ω) is a complex shear modulus given by

G∗(ω) = Ge + iω

∫ ∞

0

[G(t′)−Ge]e
−iωt′dt′. (1.7)

Under the transformation z = iω−1 it follows from equation (1.7) that G∗(ω) is
related to the continuous relaxation spectrum by the following complex Steiltjes
transforms

G∗(ω) = Ge +

∫ ∞

0

iω

1 + iωτ
H(τ)dτ = Ge +

∫ ∞

0

H(τ)

τ − z
dτ. (1.8)

If G∗(ω) were measurable at all frequencies 0 < ω < ∞, then in principle the
transform (1.8) can be inverted to yield the spectrum for all relaxation times
0 < τ < ∞. The oscillatory shear experiment, however, can be repeated only
for a limited range of sampled frequencies, which means that exact inversion
formulae based on semi-infinite intervals become problematic. Furthermore,
when z is pure imaginary, as is the case in equation (1.8), then recovering
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the spectrum from the complex modulus is an exponentially ill-posed inverse
problem, and is highly unstable to small perturbations in the data.

Splitting G∗(ω) into its real and imaginary parts, the storage and loss moduli
are given by the pair of Fredholm integral equations

G′(ω) = Ge +

∫ ∞

0

ω2τ2

1 + ω2τ2
H(τ)

dτ

τ
(1.9)

G′′(ω) =

∫ ∞

0

ωτ

1 + ω2τ2
H(τ)

dτ

τ
. (1.10)

The sampling localization algorithm [6] based on the exact inversion formula

H(τ) = lim
ϵ→0

∫ ∞

−∞

∫ ∞

−∞
G′′(ω) cosh

(π
2
p
)
e−

1
2 ϵ

2p2eip ln(ωτ)dp d lnω

(1.11)

shows that it is not necessary to have knowledge of the complex modulus at
all frequencies in order to determine the spectrum in a limited time range. In
particular, if the storage and loss moduli are given for a limited range of frequen-
cies, ωmin < ω < ωmax, say, then (1.11) determines the spectrum in the reduced
reciprocal range of relaxation times ω−1

maxe
π/2 < τ < ω−1

mine
−π/2. Renardy [7]

points out that since G′ and G′′ are real analytic functions, then if they are
known in a finite interval, in principle they are immediately determined for all
positive frequencies by analytic continuation. However, Renardy also points out
that this observation is of limited value since no practical algorithm exists for
performing the analytic continuation to any acceptable degree of accuracy.

In this paper we will set the constant Ge to zero. This is the relevant case
for viscoelastic liquids. The case for viscoelastic solids, with Ge > 0, can be
treated by means of a slight modification of the theory.

It is an inherent premise in the Boltzmann formulation of linear viscoelas-
ticity that, for shear deformations at fixed temperature and pressure, every
material has a unique continuous relaxation spectrum. This is not the case for
discrete spectra of the form

H(τ) =
∑
n

ηnδ(τ − τn). (1.12)

Methods for determining discrete spectra include the use of nonlinear regres-
sion [8,9], Tikhonov regularisation [10], maximum entropy regularisation [11],
sampling localisation [12,13] and Prony series [14]. Different methods can give
rise to different discrete spectra. There is no unique discrete spectrum for any
given material. Malkin [15] states that: “The discrete relaxation spectrum is
just a convenient way of representing experimental data... It has no basic phys-
ical meaning”. Chow and Zukoski [16,17] state: “No line spectrum - produced
by whatever method - is ever the true spectrum”. Dealy and Larson [18] also
outline certain disadvantages in working with discrete spectra.

Previous work in approximating continuous spectra has relied exclusively
on parametric curve fitting models. We cite Winter [19], Anderssen [20] (who
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advocates Kohlrausch (stretched exponential) functions), Bailly & Stadler [21],
Stadler [22] (who advocate piecewise cubic Hermite splines) and Malkin [23].
There is no theoretical foundation for relating these empirical models directly
to the mathematical theory of linear viscoelasticity. The aim of this paper
is to show that wavelet analysis establishes natural models for the continuous
relaxation spectrum. In particular, we show that there exist scaling function
transforms which are intrinsic to the theory of linear viscoelasticity, which give
rise to natural representations for the continuous spectrum.

The paper is structured as follows. In §2 we establish a link between contin-
uous wavelet transforms and the theory of linear viscoelasticity. In particular,
we prove that the error term in the approximation due to Fuoss and Kirkwood
for the continuous relaxation function is a wavelet. This enables us to devise,
in §3, an approximation and regularization strategy for the continuous spec-
trum. This is based on the decomposition formula due to Calderón and Mallat.
Scale and sparsity are presented as regularization parameters, and resolution
is analyzed in terms of effective bandwidths. Transformed dictionaries which
provide new bases for representing storage and loss moduli are introduced in §4,
together with a basic search algorithm for selecting terms from the dictionary
to fit the dynamic data. Continuous spectra recovered by the method of wavelet
regularization from both synthetic and real data are discussed in §5. The use
of minimum total curvature as a selection criterion for choosing the scale of the
approximation is demonstrated. Conclusions are drawn in §6.

2. Wavelet Transforms in the Theory of
Linear Viscoelasticity

2.1. The storage and loss moduli in convolution form

Using the substitutions

H(τ) = h(t), G′(ω) = 1
2g1(x), G′′(ω) = 1

2g2(x) (2.1)

where x = lnω and t = − ln τ, (2.2)

the real and imaginary parts of (1.8) may be written in convolution form as

g1(x) = [1 + tanh(x)] ⋆ h(x) (2.3)

g2(x) = sech(x) ⋆ h(x), (2.4)

where ⋆ denotes convolution, i.e.

(f ⋆ g)(x) =

∫ ∞

−∞
f(x− s)g(s)ds. (2.5)

We will assume throughout this article that h(x) ∈ L2(R), which implies that

its Fourier transform ĥ(p) exists. Throughout the paper we use the following
convention for the Fourier transform

ĥ(p) =

∫ ∞

−∞
h(t)e−iptdt. (2.6)
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Since the Fourier transform of sech(x) is πsech
(
π
2 p

)
, it follows from the convo-

lution theorem for Fourier transforms that

ĝ2(p) = πsech
(π
2
p
)
ĥ(p). (2.7)

Inverting equation (2.7), we obtain

ĥ(p) =
1

π
cosh

(π
2
p
)
ĝ2(p). (2.8)

Our assumption that h(x) ∈ L2(R) means that ĝ2(p) must tend to zero faster
than sech

(
π
2 p

)
as |p| → ∞. The factor multiplying ĝ2(p) in (2.8) has exponential

growth (with index π
2 ) as |p| → ∞. Any noise present in g2 will have its Fourier

transform amplified by a factor e
π
2 |p| as |p| → ∞, which proves that the problem

of determining the continuous relaxation spectrum from the loss modulus is
exponentially ill-posed with index π

2 .
Equations (1.9) and (1.10), and their logarithmic counterparts (2.3) and

(2.4), are intimately linked to continuous wavelet transforms, where the wavelets
are constructed from simple hyperbolic functions. This link is established by a
study of the term, E(τ), in the equation

H(τ) =
2

π
G′′ (τ−1

)
+ E(τ). (2.9)

Ferry [24] attributes the approximation

H(τ) ≈ 2

π
G′′ (τ−1

)
(2.10)

to Fuoss and Kirkwood [25]. We shall show that the correction term E(τ) is a
wavelet.

2.2. Wavelets and continuous wavelet transforms

A wavelet is a function in the shape of a small wave with zero area. In Fig.
1, a wavelet ψ(x) is shown, together with its scaling function ϕ(x) which we
define below. We shall be concerned with two classes of wavelets, Ω and Ω+. Ω
will consist of real-valued functions ψ ∈ L2(R) with the following properties

(i) ψ(x) = ψ(−x), (ψ is even); (2.11)

(ii)

∫ ∞

−∞
ψ(x)dx = 0, (the graph of ψ has zero area); (2.12)

(iii) there exists a constant Cψ such that

0 < Cψ =

∫ ∞

0

|ψ̂(p)|2

p
dp <∞. (2.13)

Under the constraints (2.11)-(2.13), for each ψ ∈ Ω, there exists a unique real
valued scaling function ϕ ∈ L2(R) whose Fourier transform is defined by

ϕ̂(p) =

[∫ ∞

p

|ψ̂(ξ)|2

ξ
dξ

] 1
2

(2.14)
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Figure 1: A wavelet ψ(x) ( ) and its corresponding scaling function ϕ(x) ( ).

and which has non-zero area given by

ϕ̂(0) = (Cψ)
1
2 . (2.15)

ψ is sometimes called a mother wavelet with corresponding father wavelet ϕ. If
ψ ∈ Ω then it is easily shown that

(iv) ϕ is an even function; (2.16)

(v) ψ ⋆ ψ ∈ Ω, (the autoconvolution is a wavelet); (2.17)

(vi) (ψ ⋆ ψ)(x) =
d

dx
[x(ϕ ⋆ ϕ)(x)]; (2.18)

(vi) (ϕ ⋆ ϕ)(x) =

∫ ∞

−∞

{∫ ∞

1

ψ

(
t

s

)
ψ

(
x− t

s

)
ds

s3

}
dt. (2.19)

Equation (2.19) shows that the scaling function is a function made up of all
wavelet scales s ≥ 1.

The wavelet class Ω+ extends Ω to include real-valued wavelets that are not
even. ψ ∈ L2(R) is in Ω+ if properties (2.12) and (2.13) are satisfied. In Ω, ψ

is real-valued and even, and its Fourier transform ψ̂ is real-valued. In Ω+, ψ is
real-valued, but need not be even, and so ψ̂ can be complex-valued.

The continuous wavelet transform of h ∈ L2(R) at the frequency x and scale
s is defined by the convolution product

[Wh](s, x) = (h ⋆ ψs)(x), (2.20)

where ψs(x) =
1√
s
ψ
(x
s

)
, ψ ∈ Ω, s > 0. (2.21)
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The wavelet transform [Wh](s, x) localizes the function h(t) in the vicinity of
t = x. In particular, when 0 < s < 1, a peak in h(t) at t = x will be sharpened
by the transform [Wh](s, x). The smaller the scale s the more pronounced the
sharpening of the peak will be.

The corresponding scaling function transform of h ∈ L2(R) is given by

[V h](s, x) = (h ⋆ ϕs)(x), (2.22)

where

ϕs(x) =
1√
s
ϕ
(x
s

)
, s > 0. (2.23)

The scaling function transform behaves in a totally different way to the wavelet
transform, since [V h](s, x) is a low-pass filter applied to h. Whatever the value
of s > 0, a peak in h(t) at t = x will be broadened by the transform. The larger
the value of s the more pronounced the broadening of the peak will be.

Equation (2.4) shows that in terms of log-frequency, the loss modulus g2(x)
is a scaling function transform of the continuous relaxation spectrum, at unit
scaling s = 1, i.e.

g2(x) = [V h](1, x) = (h ⋆ ϕ)(x) (2.24)

with

ϕ(x) = ϕ1(x) = sech(x) = sech(lnω). (2.25)

It is possible to quantify the amount of broadening induced by the transform
(2.24). Let ĥ(p) decay exponentially like sech

(
1
2σπp

)
as p→ ±∞, where σ > 0.

Then, from the convolution theorem for Fourier transforms, ĝ2(p) decays like
sech

[
1
2 (σ + 1)πp

]
as p→ ±∞. This means that if h(t) has a peak of scale σ at

t = t0, then g2(x) has a peak of scale σ+1 at x = t0. The problem of recovering
the spectrum from the loss modulus can therefore be viewed as a problem in
reduction of scale of the loss modulus.

Equation (2.24) is a fundamental observation which motivates the main re-
sults of this paper. The scaling function ϕ(x) = sech(x) and its associated
mother wavelet ψ(x) are plotted together in Fig. 1. ψ(x) has been calculated
numerically since it cannot be expressed in closed form.

2.3. Calderón-Mallat decomposition and the link with linear viscoelasticity

Let (ψ̃, ϕ̃) be an arbitrary mother-father wavelet pair with ψ̃ ∈ Ω. Following
an original theorem of Calderón [26], Mallat [27] has shown that any real-valued
function h ∈ L2(R) can be represented as follows

h(t) =
1

Cψ̃

∫ σ

0

(h ⋆ ψ̃s ⋆ ψ̃s) (t)
ds

s2
+

1

Cψ̃σ
(h ⋆ ϕ̃σ ⋆ ϕ̃σ)(t). (2.26)

We shall refer to equation (2.26) as the Calderón-Mallat decomposition of h.
It is customary to think of (2.26) as an inversion formula for h in terms of
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the wavelet transforms h ⋆ ψ̃s over the range of scales 0 < s ≤ σ, and the
single scaling function transform h ⋆ ϕ̃σ. The first (integral) term in (2.26) is a
projection of h into a subspace of L2(R). When σ is small this term represents
the high resolution components of h. The second term in (2.26) constitutes a
low-pass filter applied to h. It belongs to the complementary subspace of L2(R)
and incorporates the sum of (lower resolution) components over the remaining
scales s ≥ σ.

In this paper we use the Calderón-Mallat decomposition (2.26) in a different
way from the customary approach outlined above. First, we regularize the
inversion by omitting small scales (high resolution terms) from (2.26). We then
use the remaining terms as a model for the continuous relaxation spectrum, at
a chosen scale σ. In this sense the scale σ acts as a regularization parameter.

Let ψ⋆ = ψ̃ ⋆ ψ̃ and ϕ = ϕ̃ ⋆ ϕ̃. Then ψ⋆ is a wavelet in Ω which has a
non-negative Fourier transform with a zero of even multiplicity at the origin
p = 0. Also, ϕ will be a scaling function which is associated with a wavelet ψ
which is different from the wavelet ψ⋆. The scaling function ϕ has a positive
Fourier transform by definition.

The Calderón-Mallat decomposition (2.26) may then be expressed in the
form

h(t) =
1

Cψ̃

∫ σ

0

[W ⋆h](s, t)
ds

s2
+

1

Cψ̃σ
[V h](σ, t), (2.27)

where

[W ⋆h](s, t) = (h ⋆ ψ⋆s )(t), (2.28)

[V h](σ, t) = (h ⋆ ϕσ)(t), (2.29)

and

ψ⋆s =
1√
s
ψ̃s ⋆ ψ̃s, (2.30)

ϕσ =
1√
σ
ϕ̃σ ⋆ ϕ̃σ. (2.31)

We are now in a position to make the connection between the Calderón-
Mallat decomposition and the theory of linear viscoelasticity. Making the spe-
cific choice of scaling function

ϕ(t) = sech(t), (2.32)

we can express equation (2.27) as

h(t) =
1

π

∫ 1

0

(h ⋆ ψ̃s ⋆ ψ̃s) (t)
ds

s2
+

1

π
g2(t), (2.33)
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since it may be shown that Cψ̃ = π. In physical variables, this reads

H(τ) =
2

π
G′′ (τ−1

)
+ E(τ), (2.34)

where

E(τ) =
1

π

∫ 1

0

(h ⋆ ψ̃s ⋆ ψ̃s) (t)
ds

s2
, t = ln

(
τ−1

)
. (2.35)

Clearly, E(τ) is the error term in the Fuoss and Kirkwood approximation (2.10).
Theorem 1: Let h(t) ∈ L2(R), i.e. let∫ ∞

−∞
[H(τ)]2d ln τ <∞. (2.36)

Then E(τ) is a wavelet in Ω+ in the logarithmic variable t = ln
(
τ−1

)
. Further-

more:

E(τ) =
1

π

∫ 1

0

(h ⋆ ψ⋆s ) (t) s
−3/2ds, (2.37)

with

ψ⋆(t) = sech(t) [1− t tanh(t)] . (2.38)

Proof. From (2.24) and (2.34), we have

E(τ) = h(t)− 1

π
(h ⋆ ϕ)(t). (2.39)

Hence the logarithmic Fourier transform is given by∫ ∞

−∞
E(τ)e−iptdt = ĥ(p)

[
1− 1

π
ϕ̂(p)

]
, (2.40)

where ϕ̂(p) = πsech
(
1
2πp

)
. To show that E(τ) is a wavelet in Ω+, we must

show that properties (2.12) and (2.13) are satisfied. Writing p = 0 in (2.40) we
immediately see that ∫ ∞

−∞
E(τ)dt = 0, (2.41)

which satisfies (2.12). Finally, it can be seen that∫ ∞

0

|ĥ(p)|2
|1− 1

π ϕ̂(p)|
2

p
dp <∞, (2.42)

since p−1
[
1− sech

(
1
2πp

)]2
is bounded and

∫∞
−∞ |ĥ(p)|2dp < ∞. That the

wavelet E(τ) takes the form (2.35) follows from (2.33), where

ψ⋆(t) = ψ̃(t) ⋆ ψ̃(t) =
d

dt

[
tϕ̃(t) ⋆ ϕ̃(t)

]
=

d

dt
[tsech(t)]. (2.43)
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Figure 2: ψ⋆(x) ( ), ϕ(x) ( ).

(ψ⋆, ϕ) are plotted together in Fig. 2.
The above theorem demonstrates, through the choice of hyperbolic scaling

function ϕ(x) =sech(x), that there is a direct connection between the theory of
linear viscoelasticity and continuous wavelet analysis. We now move on to the
practical details of recovering H(τ) from the storage and loss moduli, by means
of the inversion formula (2.27). Throughout the rest of the paper we restrict
attention to the hyperbolic scaling function (2.32), which provides a natural
dictionary from which a sparse approximation of the continuous spectrum can
be selected.

3. Approximation and Regularization Strategy

3.1. Scale and sparsity as regularizers

Suppose that the relaxation spectrum h(t) consists of a single peak of scale
σ, e.g. the unimodal spectrum

H(τ) =
2τ2

1 + τ4
(3.1)

may be written as h(t) = sech(2t) with a scale of σ = 1
2 . The loss modulus may

then be written as

g2(x) =

∫ ∞

−∞
sech(t)h(x− t)dt ≈

∑
k

akh(x− ka), (3.2)

where ak = a sech(ka) and a > 0 is a sampling rate. Since the loss modulus
has a larger scale than that of h(t), equation (3.2) demonstrates that a function
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of larger scale may be expressed as the sum, with positive coefficients ak, of
translates of a function of a smaller scale. Furthermore, since

E(τ) = h(t)− 1

π
g2(t), (3.3)

we deduce that a function containing scales smaller than σ may be expressed
as a sum of translates of h(t), where all but one of the coefficients are negative.
Since E(τ) has zero area, we may deduce that∑

k

ak ≈ π or
∑
k

sech(ka) ≈ π

a
. (3.4)

The approximations in (3.2) and (3.4) can be made as accurate as we wish, by
choosing a sufficiently small.

The above discussion is easily extended to spectra with more than one peak.
As a possible basis for h(t), consider the set of translated scaling functions

ϕσ,k(t) = ϕ

(
t− tk
σ

)
, (3.5)

taken over all integers k, where

tk = t0 + kµ, (3.6)

µ is an integer multiple of the sampling rate a, and ϕσ,0 is centred at t0. This set
spans a subspace Vσ of L2(R), whose resolution is governed by the scale param-
eter σ. The projection of h(t) onto the subspace Vσ constitutes a regularized
approximation hσ(t) to h(t) of the form

hσ(t) =
∑
k

bkϕσ,k(t). (3.7)

hσ(t) contains projections from both parts of (2.27), and consequently contains
negative components from the wavelet terms. This means that while hσ(t)
should be positive for all t, the coefficients bk themselves are not constrained to
be positive.

The representation in (3.7) still offers an infinite number of degrees of free-
dom. In the field of sparse signal decomposition the set of functions

D = {ϕσ,k(t) : k an integer;σ > 0, a > 0} (3.8)

is called a redundant dictionary, since only a few of its terms may be needed in
determining a good approximation. Detailed reviews of wavelet dictionaries and
their use can be found in [27,28]. Each element of the dictionary is called an
atom. In this paper we will focus on constructing m-sparse approximations for
the continuous relaxation spectrum h(t) by selecting atoms from the dictionary
for specific values of σ and a. When 0 < σ < 1 then them-sparse approximation
takes the form

hσ(t) =
∑
k∈Λm

bkϕσ,k(t), (3.9)
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where Λm is an index set with m entries. Sparsity is an important regularizer
in its own right in the field of signal processing [27]. For example, sparsity is
the sole criterion in the parsimonious approach advocated by Baumgaertel and
Winter [8] in their recovery of discrete relaxation spectra.

3.2. Real-Time Integrability

Every viscoelastic material possesses a finite total viscosity. This imposes
an integral constraint on H(τ) and h(t), given by∫ ∞

0

H(τ)dτ =

∫ ∞

−∞
h(t)e−tdt <∞. (3.10)

We define any function h ∈ L2(R) which satisfies (3.10) to be real-time integrable
(RTI). In particular, an atom in the dictionary D is RTI if∫ ∞

−∞
sech

(
t

σ

)
e−tdt <∞, (3.11)

which is satisfied only when 0 < σ < 1. For other values of σ, it is possible to
combine three or more atoms in the dictionary to obtain a real-time integrable
basis element. In particular, when 0 < σ < 3 the three atoms ϕσ(t), ϕσ(t − b)
and ϕσ(t+ b), where b is a non-zero integer multiple of a, are configured into a
triplet

ϕ[b]σ (t) =
ϕσ(t)− 1

2ϕσ(b) {ϕσ(t− b) + ϕσ(t+ b)}
1− ϕ2σ(b)

. (3.12)

The cancellation introduced by the negative terms in (3.12) means that the
combination of all three terms decays like e3t/σ as t → −∞, and consequently
is RTI.

It is easily shown that the basis element ϕ
[b]
σ (t), with b ̸= 0, is positive for

all values of t. Combinations of atoms of this kind can always be made so that
the resulting basis is RTI for any positive value of σ.

3.3. Effective Bandwidth and Effective Bandlimit

Consider the gaussian function e−
1
2x

2/σ2

. Its scale is given by the standard
deviation σ. It is well known that approximately 99.7% of the area under the
curve is contained in the interval [−3σ, 3σ]. Since the Fourier transform of a
gaussian is a gaussian with standard deviation σ−1, then approximately 99.7%
of the area of the Fourier transform is contained in the interval [−3/σ, 3/σ]. We
may therefore define the effective bandwidth of the gaussian to be 6/σ and the
effective bandlimit to be 3/σ.

For a general function h ∈ L2(R), there is more than one way of defining an
effective bandwidth. For consistency, however, we choose the same definition
as we have taken for the gaussian, i.e. h ∈ L2(R) has an effective bandlimit
β if approximately 99.7% of the area under the absolute value of its Fourier
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transform is contained in the interval [−β, β]. A simple calculation reveals that
we can conveniently attribute an effective bandlimit of 3.86/σ to an atom ϕσ in
D. The unit of measurement is a reciprocal unit of natural log-frequency or a
reciprocal unit of natural log-time.

In §3.2 we have shown that not all atoms in D are RTI. We therefore choose
an alternative basis for V0, for which each element is RTI. Such a basis is pro-
vided by atoms in the dictionary

D+ =
{
ϕ
[b]
σ,k(t) : k an integer; 0 < σ < 3, 0 < a, 0 < b ≤ ∞

}
. (3.13)

For 0 < σ < 3, the atoms in D are also atoms of D+, since ϕσ,k = ϕ
[∞]
σ,k .

However, the converse is not true, although with b < ∞ the atoms in D+ are
combinations of those inD. In the new basis, the approximation (3.9) is replaced
by the m-sparse approximation

hσ(t) =
∑
k∈Λm

bkϕ
[b]
σ,k(t). (3.14)

In §3.1 we remarked that the resolution of the subspace V0 is governed by the
scale parameter σ. The dependence on σ of the resolution can now be quantified
very precisely by the function β(σ−1b), where β is the effective bandlimit of an

atom ϕ
[b]
σ in D+. This function has been computed numerically for σ = 1 and

is shown in Fig. 3. For general values of σ we deduce from the figure that

3.75

σ
< β(σ−1b) <

5.81

σ
. (3.15)

The smallest bandlimit is attained when b ≃ 1.44σ and the largest bandlimit
is attained in the limit b → 0+. In the limit b → ∞, it can be seen that
β → 3.86/σ. In particular, it can be shown that

ϕ[0
+](t) = sech3(t) and ϕ[∞](t) = sech(t). (3.16)

In Fig. 4 is shown the shape of the atom ϕ
[b]
σ (t) for a range of values of

b with σ = 1. We note that the width of each atom increases with b and, in
consequence, the highest resolution is attained when b = 0+, and the lowest
when b = ∞. For practical purposes, the shape of the atom is unchanged when
b > 5. Although the parameter b affects the resolving power of the atom, it

does not affect the decay rate of ϕ
[b]
σ (t) as b→ ±∞. The decay rate of ϕ

[b]
σ (t) is

sech(3t/σ), which is independent of the value of b. b should therefore be viewed
as a tuning parameter, which fine-tunes the resolution at a fixed scale σ.

We have defined an effective bandlimit for any function h ∈ L2(R). Suppose
that the effective bandlimit of the continuous spectrum h is βh and the effective
bandlimit of its approximation hσ is βreg. If βreg > βh, then the approxima-
tion hσ exhibits model-induced super-resolution. If βreg is significantly larger
than βh then super-resolution can result in a number of artificial peaks in the
approximation. This is inherent in the case of a discrete spectrum, for which
σ = 0 and βreg = ∞. If βreg < βh, then the approximation to the spectrum is
under-resolved.
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Figure 3: The bandlimit β(b) of ϕ
[b]
σ , as a function of b, when σ = 1.

Figure 4: The atoms ϕ
[b]
1 (t) for b = 0+, 1, 2, 3, 4 and ∞.

14



3.4. Splitting the Atom: An Illustration of Discrete Calderón-Mallat Decompo-
sition

A simple example of discrete Calderón-Mallat decomposition is afforded by
splitting the atom

ϕ
[1]
1,0(t) =

(
α2

α2 − 1

)
ϕ(t)− 1

2

(
α

α2 − 1

)
[ϕ(t− 1) + ϕ(t+ 1)] , (3.17)

where α = cosh(1). With h(t) = ϕ
[1]
1,0(t), equation (2.9) gives the exact split

h(t) =
1

π
g2(t) + E(τ), (3.18)

where g2(t) = sech(t) ⋆ ϕ
[1]
1,0(t). As indicated in Section 2.3, equation (3.18)

is an exact Calderón-Mallat decomposition of the continuous spectrum, and is
shown in Fig. 5 (continuous lines). A discrete Calderón-Mallat decomposition is
obtained by projecting in turn each of the two terms on the right of (3.18) onto
the 3-dimensional subspace spanned by {ϕ(t), ϕ(t − 1), ϕ(t + 1)}. A projection
which preserves the total viscosity η and the total rigidity G′(∞) of the model
is given by

1

π
g2(t) ≈ c0ϕ(t) + c1ϕ(t− 1) + c1ϕ(t+ 1), (3.19)

where c0 and c1 are positive coefficients given by

c0 = − α

(α2 − 1)

[
1 +

2α(1− αβ)

πβ(α− 1)

]
, (3.20)

c1 =
1

2

α2

(α2 − 1)

[
1 +

2(1− αβ)

πβ(α− 1)

]
, (3.21)

where β = sinh(1), and

E(τ) ≈ c2
[
ϕ(t)− 1

2 (ϕ(t− 1) + ϕ(t+ 1))
]
, (3.22)

where

c2 =
α

(α− 1)

[
1 +

2α(1− αβ)

πβ(α2 − 1)

]
. (3.23)

The approximations (3.19) and (3.22) are depicted by the point symbols in Fig.
5. Although the individual approximations (3.19) and (3.22) are not RTI, the
sum of the two is RTI. In Fig. 6 the Fourier transforms of these approximations
is shown. Observe that in Fig. 5, the resolution afforded by the wavelet is
greater than that of the loss modulus, while in Fig. 6 the wavelet is seen to
provide the necessary effective bandwidth needed to recover the spectrum.

15



Figure 5: Splitting the atom ϕ
[1]
1,0(t) (σ = 1, t0 = 0) into its constituent parts (3.18). On the

scale of the figure, the approximations (3.19) and (3.22) (� � �, � � �) are indistinguishable from
their exact counterparts ( , ).

Figure 6: Splitting the atom ϕ
[1]
1,0(t) (σ = 1, t0 = 0) in Fourier space.
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4. Fitting the G′, G′′Data

4.1. Transformed Dictionaries for G′ and G′′

We have seen that (3.14) provides a regularized model for the continuous
relaxation spectrum in terms of atoms from the dictionary D+. From equations
(2.3) and (2.4), corresponding models for the storage and loss moduli are given
by

G′(ω) = g1(x) =
∑
k∈Λm

bkϕ
[b]
σ,k(x) ⋆ [1 + tanh(x)], x = lnω, (4.1)

G′′(ω) = g2(x) =
∑
k∈Λm

bkϕ
[b]
σ,k(x) ⋆ sech(x). (4.2)

The convolution terms in (4.1) and (4.2) are the real and imaginary parts of
complex atoms in the transformed dictionary

T+ =
{
ϕ
[b]
σ,k(x) ⋆ [sech(x) + i(1 + tanh(x))] : k an integer;

0 < σ < 3, 0 < a, 0 < b ≤ ∞
}
. (4.3)

The atoms in T+ are themselves combinations of simpler convolutions of the
form

ϕσ(x) ⋆ [1 + tanh(x)] and ϕσ(x) ⋆ sech(x). (4.4)

For rational values of σ, the required convolutions can be evaluated in closed
form using residue calculus. The resulting formulae for various values of σ are
listed in Tables 1 and 2. In Fig. 7 we have plotted the convolutions (4.4) for
σ = 1

2 .

σ sech(σ−1x) ⋆ [1 + tanh(x)]

2 2π
[
1 + tanh(x)−

√
2sech(x) sinh

(
1
2x

)]
1 π[1 + coth(x)− cosech(x)] (x ̸= 0)

π (x = 0)

1/2 1
2π[1 + tanh(2x)]− 2xsech(2x)

1/4 π
4

(
1 + sech(4x)

[
sinh(4x)− 2

√
2 sinh(2x) + 8

πx
])

Table 1: Atoms in the transformed dictionary for G′ data.

The coefficients bk in (3.14) can now be determined by fitting the models
(4.1) and (4.2) by weighted least-squares regression to measured values of G′

and G′′.
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σ sech(σ−1x) ⋆ sech(x)

2 2πsech(x)
[√

2 cosh
(
1
2x

)
− 1

]
1 2xcosech(x) (x ̸= 0)

2 (x = 0)

1/2 πsech(2x)[
√
2 cosh(x)− 1]

1/4 πsech(4x)
[
A cosh(3x)−B cosh(x) + 1

]
Table 2: Atoms in the transformed dictionary for G′′ data, where A =

√
1− 1/

√
2 and

B =
√

1 + 1/
√
2.

4.2. Search Algorithm

We assume that the available data G′(ωj), G
′′(ωj) are measured at N values

of frequency ωj , j = 1, ..., N . There are many choices of algorithm for fitting
the data by constructing m-sparse approximations from atoms in a dictionary
such as T+. This is a rich area of research, known as basis pursuit [28,29].
For the purpose of this paper it is sufficient to use a simple search algorithm,
which performs one regression per parameter selection on a 3-dimensional grid
of parameters.

Let µ be a spacing parameter, which is an integer multiple of the sampling
rate a. For a fixed parameter selection {σ, µ, b}, only atoms in T+ which are
separated by log-frequency µ are selected. Typically, an initial 3-dimensional
grid of parameters {σ, µ, b} will contain no more than 43 selections. Regressions
are performed with selections from the grid for different values of m. The value
of t0 is initially selected so that there is a value of tk close to a local maximum
of g2(x). The value of t0 is then refined as part of the search algorithm. In
particular, the weighted sum of squared residuals

S =
∑
j

[
∆1(xj)

G′(ωj)

]2
+
∑
j

[
∆2(xj)

G′′(ωj)

]2
, (4.5)

where

∆1(xj) = G′(ωj)− g1(xj), (4.6)

∆2(xj) = G′′(ωj)− g2(xj), (4.7)

with xj = lnωj is minimized, and the root mean square error (RMS) evaluated:

RMS error =

√
1

2N
S × 100%. (4.8)

We compare the data fits and their associated spectra hR(t) for different
values ofm and σ, and select the smallest value ofm compatible with acceptable
RMS error levels.
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Figure 7: Scaling function convolutions from Tables 1 and 2 (σ = 1
2
).

5. Results and Discussion

In this section we reconstruct continuous relaxation spectra from both real
and synthetic data. For the case of synthetic data, we use two separate double
log-normal distributions, one of which is noise-free (DLN1) and one which has
added noise (DLN2).

5.1. Double Log-Normal Spectrum Approximation

We first give an example of how well our models can fit synthetic data that
do not contain any noise. The first example (DLN1), which was proposed by
Stadler & Bailly [21], is the double log-normal spectrum

H(τ) = h(t) =

1∑
k=0

ak exp

[
−1

8
(t− t⋆k)

2

] (
t = ln

(
τ−1

))
, (5.1)

where the two peaks are centred at t⋆0 = 4 − 3 ln 10 ≈ −2.91 and t⋆1 = 4, with
equal heights a0 = a1 = e2/

(
2
√
2π

)
≈ 1.47.

G′(ω) and G′′(ω) are sampled at 33 values in the range −8 ≤ lnω ≤ 8, with
a sampling interval of 0.5. We approximate the spectrum as a sum of two atoms
in the dictionary D+. This approximation has the form

hσ(t) =
1∑
k=0

bkϕ
[b]
σ,k(t). (5.2)

The storage and loss moduli are fitted with atoms from the transformed dic-
tionary T+, for values of σ given in Tables 1 and 2. With the second atom
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centred at t1 = 4, the search algorithm determines an optimal set of parameters
σ = 2, µ = 6.9, b = 4 and heights b0 = b1 = 1.49. With m = 2 the fit to the
storage and loss moduli has an RMS error of 1.0%, and is shown in Fig. 8. The
reconstructed spectrum is shown in Fig. 9 as a linear-log plot of h(t) versus −t,
which corresponds to a linear-linear plot of H(τ) against τ . This convention is
used throughout the paper.

The effective bandlimit of the model (5.2) is βreg = 2, while the effective
bandlimit of the DLN1 spectrum is βh = 1.5. It may be seen therefore that
the search algorithm, which selects the model to minimize the RMS error (for
a fixed value of m) does not necessarily select the model with least bandlimit.
The reconstructed spectrum exhibits a very small amount of model-induced
super-resolution. This is consistent with the observation that the peaks in the
recovered spectrum are slightly higher and slightly narrower than the true spec-
trum [Fig. 9].

Figure 8: DLN1 data and fit with sech triplet reconstruction (equation 6.2).

Next we consider the double log-normal spectrum (DLN2) proposed by Hon-
erkamp & Weese [10]. This is of the form

H(τ) = h(t) =
1∑
k=0

ak exp

[
−1

2
(t− t⋆k)

2

] (
t = ln

(
τ−1

))
, (5.3)

where the two peaks are centred at t⋆0 = − ln 5 ≈ −1.61 and t⋆1 = ln 20 ≈ 3.00,
with equal heights a0 = a1 = 1/

(
2
√
2π

)
≈ 0.20.

Honerkamp & Weese provide G′(ω) and G′′(ω) data at 30 values of ω in
the range −6.91 ≤ lnω ≤ 6.91, with a sampling interval of approximately
0.48. They add white noise with a standard deviation of 4% to the sampled
values. To recover the spectrum we again use a two atom model of the form
(5.2). Selecting transformed atoms from Tables 1 and 2, the search algorithm
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Figure 9: DLN1 spectrum (� � �). sech triplet reconstruction ( (equation 6.2)).

determines an optimal set of parameters σ = 1, µ = 4.64, b = 1.75, and heights
b0 = 0.237 and b1 = 0.238, with the two atoms centred at t0 = −1.62 and
t1 = 3.02. The fit to the storage and loss moduli has an RMS error of 5.1%,
which is consistent with the noise level of 4% in the data. The data fit is shown
in Fig. 10 and the reconstructed spectrum is shown in Fig. 11.

The effective bandlimit of the recovered spectrum is βreg ≈ 3.9, while the
effective bandlimit of the DLN2 spectrum is βh = 3. The reconstructed spec-
trum again exhibits a small amount of model-induced super-resolution, which
is evident from Fig. 11. The amount of super-resolution as determined by the
ratio βreg/βh is essentially the same in both cases. The recovered spectrum for
DLN2, however, is less accurate due to the presence of noise.
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Figure 10: DLN2 data with two-atom fit.

Figure 11: DLN2 spectrum (� � �). Two-atom reconstruction ( ).
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5.2. Real data

The recovery of the spectra in the synthetic cases DLN1 and DLN2 is rela-
tively straight forward. There are two reasons for this. First, the range of the
G′, G′′ data available is sufficient to determine the whole spectrum, i.e. the
data sets in each case are essentially complete. Secondly, the clear bimodal
shape of g2(x) = G′′(ω) makes it relatively easy to determine the scale of the
atoms chosen from the transformed dictionary. When dealing with real data the
situation need not be so straight forward. For real data the range of frequencies
is limited and the shape of G′′ may not give any clues as to the shape of the
spectrum.

In our third and final example we compare the results from wavelet regular-
ization with a spectrum recovered from real data by Honerkamp & Weese [10]
using Tikhonov regularization. The data in question correspond to a polybuta-
diene polymer blend, which we denote by PBD1.

For this set of data the level of noise is not known. To achieve an RMS error
of less than 5% for a range of scales 0 ≤ σ < 2, the least value of m required by
the search algorithm is m = 4. To obtain an RMS error level less than 2% we
require σ < 1. This leads to an estimate for the continuous relaxation spectrum
of the form

hσ(t) =
3∑
k=0

bkϕσ,k(t) (b = ∞). (5.4)

For thism-sparse approximation, the parameter values which minimize the RMS
error for different values of σ are given in Table 3, and the fits to the data
together with their recovered spectra are shown in Figs. 12-15, for σ = 1

2 ,
1
3 ,

1
6 and 0, respectively. With σ > 1

2 , our search algorithm failed to identify a
positive sparse approximation which fitted the data to a tolerance of less than
2%. It is not obvious from these results what is the optimal choice of scale σ.
Given that the amount of super-resolution increases with decreasing σ, however,
a comparison of Figs. 12 and 13 would suggest that super-resolution sets in for
a value of σ in the range 1

3 < σ < 1
2 . The recovered spectra in Figs. 12-15

differ significantly in shape: the number of peaks in the spectra vary from 2 to
4, depending on the value of σ. Furthermore, each recovered spectrum gives
rise to models of storage and loss moduli (equations (4.1) and (4.2)) which fit
the data to an acceptable tolerance. From the point of view of fitting the data,
there is very little to distinguish between the spectra. Sparsity alone (m = 4)
clearly cannot determine the shape of the spectrum: an additional criterion is
required for choosing the scale σ.

Tikhonov and entropy regularization induce smoothness in the recovered
spectrum by imposing penalty constraints. Such penalties are essentially a
priori mechanisms for regularization. In implementing wavelet regularization,
it is convenient to use instead an a posteriori criterion based on minimum total
curvature.
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σ t0 µ b0 b1 b2 b3 RMS
error (%)

1/2 2.95 1.20 -0.57 6.14 -1.92 3.87 2.0
1/3 2.47 1.52 -0.10 6.23 1.54 3.71 1.6
1/4 2.20 1.72 -0.02 7.69 3.48 4.36 1.4
1/6 3.77 1.27 9.47 5.08 3.41 5.56 1.2
1/7 3.73 1.23 10.48 6.26 3.54 6.77 1.3
0 3.61 1.16 3.96 3.34 1.12 3.34 1.4

Table 3: Parameter values which minimize the RMS error for different values of σ (m = 4).
The bk should be multiplied by 105 for their true value.

Figure 12: PBD1 data and fit. Sub-optimal 4-mode continuous spectrum. σ = 1
2
, RMS

error=2.0%.
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Figure 13: PBD1 data and fit. Super-resolved 4-mode continuous spectrum. σ = 1
3
, RMS

error=1.6%.

Figure 14: PBD1 data and fit. Super-resolved 4-mode continuous spectrum. σ = 1
6
, RMS

error=1.2%.
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Figure 15: PBD1 data and fit. 4-mode discrete spectrum (σ = 0). RMS error=1.4%.

5.2.1. Minimum total curvature as a method for choosing σ.

Starting with the premise that spectra are necessarily smooth, we choose
the smallest value of m and a value of σ which together give the smoothest
spectrum that fits the data to an acceptable tolerance. An examination of Fig’s
12-15 would suggest that an acceptable tolerance in the PBD1 data would be
an RMS error between 1% and 2%. The criterion of minimum total curvature
normally determines the spectrum with the smallest number of peaks that gives
an acceptable fit to the data.

The curvature, kσ(t), of a spectrum hσ(t) at the point t is given by

kσ(t) =
|h′′σ(t)|

(1 + [h′σ(t)]
2)3/2

(5.5)

and the total curvature of the spectrum, Tσ, is given by

Tσ =

∫ ∞

−∞
kσ(t)dt. (5.6)

Tσ is readily evaluated for any value of σ, and it is easily found that Tσ is
minimized for a value σ in the range 1

3 < σ < 1
2 .

To allow interpolation between the values of σ = 1
2 and σ = 1

3 we define a
linear homotopic approximation

h+

σ = 3(1− 2σ)hσ|
σ=

1
3
+ 2(3σ − 1)hσ|

σ=
1
2
, (5.7)

and minimize Tσ as a function of σ in this range.
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Tσ is minimized when σ = 0.45. For this value of σ the recovered spectrum
determined by (5.7) and the corresponding storage and loss moduli are shown
in Fig. 16. The RMS error in fitting the data is 1.8%.

In Fig. 17, the recovered spectrum with σ = 0.45 is normalized and com-
pared with the normalized spectrum obtained by Honerkamp & Weese [10] us-
ing Tikhonov regularization. The vertical lines denote the error bars in the
Honerkamp & Weese spectrum. The overall shapes of the two recovered spec-
tra are consistent. The peaks in the homotopic approximation are centred at
τa = 1.2 × 10−3 and τb = 1.7 × 10−2, while those obtained by Honerkamp &
Weese are τa = 8×10−4 and τb = 2×10−2. The negative lobes appearing in the
Honerkamp & Weese spectrum are a consequence of the Tikhonov filter, which
results in an abrupt cut-off in the SVD. The hyperbolic filter inherent in the
homotopic approximation has a much gentler rate of decay.

Figure 16: PBD1 data and fit. Optimal homotopic approximation via minimum total curva-
ture criterion. σ = 0.45, RMS error=1.8%.
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Figure 17: PBD1. Normalized homotopic spectrum obtained via minimum total curvature
( ); Honerkamp & Weese spectrum

( )
.

6. Conclusions

In this paper we have presented a dictionary of hyperbolic scaling functions
for representing the continuous spectrum, together with its transformed dictio-
nary of convolutions for representing the corresponding storage and loss moduli.
Sparsity and scale are used as key parameters in constructing the spectrum, and
the criterion of minimum total curvature is used to select an appropriate scale
parameter σ.

The problem of recovering continuous spectra from storage and loss moduli
is exponentially ill-posed. In consequence, there are a vast range of models of
different shapes and parameterizations which can fit the dynamic data equally
well over a limited range of measured frequencies. For example, all five models
shown in Figs 12-16 reproduce the dynamic data to within an accuracy of 1.2%
to 2.0%, yet they display a varying number of peaks and different distributions
of concentration of viscosity. There is extreme sensitivity in the shape of the
spectra to small changes in the parametrization.

It can be deduced from equation (2.4) and the analysis of §3.3 that the ef-
fective bandlimit of the loss modulus of any viscoelastic material cannot exceed
3.86 units of reciprocal log-frequency. On the other hand, there need be no
limit on the effective bandlimit of any noise in the dynamic data. The effective
bandlimit of an atom in the dictionary D is inversely proportional to the scale
parameter σ, while the effective bandlimit of an atom in the transformed dic-
tionary is inversely proportional to σ + 1. The smaller the value of σ then the
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greater the capacity for fitting noise in the data. The smoother the spectrum
then the greater the value of σ and the capacity for fitting the noise is reduced.

Given the extreme sensitivity of shape to parametrization, it is crucial that
other tests and observations are used to impart confidence in the predicted ap-
proximate spectrum. In particular, if the spectrum is accurate in a limited range
of relaxation times then G′ and G′′ must be accurate over a range of frequen-
cies larger than the reciprocal range of the spectrum. This is an immediate
consequence of the sampling localization demanded by equation (1.11).

In Fig. 16 we may infer from (1.11) that for frequencies in the range 0.9 <
lnω < 9.0, the spectrum is determined in the range of relaxation times −5.5 <
ln τ < −2.5. This tells us that we may place confidence in the higher peak but
not in the lower. Confidence in the existence of the second peak would require
a knowledge that the extrapolated dynamic data were accurate in the range
−0.7 < lnω < 10.6.

It is interesting in this context to examine the variation in the predicted
plateau modulus G′(∞). When 0 < σ < 1

6 then the predicted value of G′(∞)
varies between 1.177 × 106 and 1.232 × 106, a variation of almost 5%. When
1
6 < σ < 1

3 then the predicted value of G′(∞) varies between 1.192 × 106 and
1.232× 106, a variation of over 3%. When 1

3 < σ < 1
2 then the predicted value

of G′(∞) varies between 1.181× 106 and 1.192× 106, a variation of under 1%.
These observations are entirely consistent with our earlier conclusion that the
greater the value of σ the capacity for fitting noise in the data is reduced.
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