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ABSTRACT 

This research is devoted to the engineering of a generic, reliable and cost -

effective method for the investigation of accuracy in layer based fabrication 

technologies. It begins with a review of the causes of deviations and uncertainties 

in component parts, analyses of the existing approaches for accuracy 

investigation and their limitations and disadvantages. 

The main focus of the research is the development of an original and convenient 

methodology capable of defining the dimensional uncertainties and accuracy of 

the technologies and the distribution of dimensional errors within the entire build 

area. The Grid Methodology is based on the discretisation of the object to allow 

the measurement, calculation, visualisation and analysis of part distortion in 

terms of linear and shear deviations from nominal. A single test piece and routine 

measurement procedure are utilised to estimate the distribution of the above 

entities; calculated in a similar way to the geometrical characteristics of strains in 

solid mechanics. 

The methodology was applied to research the causes of inaccuracy in the vertical 

direction of SLS Polystyrene. The presence of a critical dimension in height from 

where the distortion changes from shrinkage to extension was revealed and 

explained. The methodology was also utilised to estimate the necessary scaling 

factors to improve part accuracy, based on the calculated distortions. 

Implementation of the Grid Method to Micro Projection Stereolithography 

resulted in the ability to describe and estimate curling distortion in terms of 

angular deviations from nominal and separate it from linear distortions. 
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Furthermore the application of the GM to the emerging micro-nano 

manufacturing sector has been shown to support the assessment of process 

capability. This provides a means of calculating process tolerances using results 

obtained from the single test piece. Investigation of the accuracy capabilities of 

three micro-processes was performed and their compatibility for designing 

process chains presented. 
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CHAPTER 1 INTRODUCTION 

 

 

1.1 Motivation 

 

11 years ago a commercial project to produce a 1200 mm tall polystyrene pattern 

for investment metal casting by Selective Laser Sintering was assigned to our 

research centre. At that time Rapid Prototyping (RP) was a novel but less mature 

technology than it is today. Our knowledge and understanding of the accuracy 

issues of the process was also somewhat limited. Nevertheless the proposal was 

accepted, analysed, successfully completed and documented. The achievement 

was a major breakthrough for understanding the capabilities of the technology. 

Unfortunately, it was later found that upon casting, the metal components 

produced from the pattern were not to the correct specification. Although the 

total height was within tolerance, the sizes and distances between some important 

features along the length of the part were far from sufficiently accurate. It 

became clear that the distribution of the distortions inside the part was not 

uniform and that further examination of this distortion was required; as a result 

appropriate corrections and corresponding non-linear scaling would have to be 

applied. Furthermore the root causes of geometrical errors within the process had 

to be determined and investigated. From this process specification limits 

(tolerances) have to be defined and considered as well. 

 

These were the initial stimuli to conduct the presented research. 

 



Chapter 1  Introduction 

 

____________________________________________________________________ 

 

- 2 - 

After the research was completed the reasons for the inaccuracies mentioned 

above became clearer (Chapter 4), but this was not so at the time of producing the 

patterns. Many commonly used approaches for investigating accuracy (Section 

2.2) were applied to reduce deviations from the nominal dimensions and yet the 

large components were rarely produced to the required tolerances. The 

limitations of the existing practice was analysed and the need to research and 

develop a new, holistic approach and a respective methodology for RP accuracy 

investigation emerged. During its development the methodology was 

progressively applied to various RP manufacturing processes, where significant 

improvements were achieved, as well as being successfully adopted to the 

Micro/Nano Technology (MNT) research area (including applications of micro 

mechanical milling, micro Stereolithography and Focus Ion Beam milling 

processes). 

 

The experiments which were conducted using the newly developed methodology 

were analysed and validated in a research capacity, with a view for commercial 

approval and use. Apart from some of the practical aspects of this research, such as 

accuracy evaluation and process calibration, it was very important to study the 

causes of the process uncertainties as well as to evaluate the process capabilities in 

terms of determining feasible tolerance limits. It also became evident that expansion 

of the research to study the compatibility and complementarity of the processes 

within specific process chains (involving layer based technologies and MNTs) was 

possible. These particular aspects of the presented research were successfully 

implemented by the author in the EC FP7 Collaborative Project and Coordination 

and Support Action EUMINAfab (Integrating European Research Infrastructures for 
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Micro-nano Fabrication of Functional Structures and Devices out of a Knowledge-

based Multi-materials’ Repertoire). 

 

1.2 Aims and objectives of the research 

 

The presented research is focussed on the following general aims and objectives: 

 

 Overview and critical analysis of methodologies for accuracy 

investigation in layering technologies. The study will look at the 

applicability and reliability of existing methods to: reflect and measure the 

part distortions and reveal their nature; estimate the geometrical 

uncertainties and their distributions; define the process deviations in 

different plains and directions. The ultimate outcome of this overview is 

to summarise the disadvantages of existing accuracy investigation 

practices and to motivate and validate the necessity of a new methodology 

that overcomes the present limitations. 

 

 Development and validation of an alternative methodology suitable for 

studying the uncertainties and capabilities of various layering and other 

technologies. The methodology should provide a more generic approach 

in the research of the above characteristics and particularly investigate the 

distribution of process errors along any direction within the entire 

operational volume. 
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 Study of SLS process phenomena that affect the distortions of components, 

particularly in the critical vertical direction. The aim of this aspect of the 

research is to analyse the factors and their influence on process 

uncertainties and investigate the possible measures to reduce them. 

Improved knowledge of the process capabilities and limitations is to be 

gathered and concluded by analysing the results obtained by means of the 

new methodological approach for process study. Implementation of the 

developed methodology for calibration of the platforms and accuracy 

improvement of the SLS processes will be enabled. 

 

 Investigation of accuracy capabilities of various MNT processes in terms 

of their compatibility and complementarities when designing process 

chains that enable production of complex MNT products encompassing 

functional and length scale integration features. Revealing and defining 

the process specification limits and related parts dimensional tolerances 

that can be achieved by specific advanced manufacturing processes as 

deployed in the micro-fabrication and micro-tooling domain. 
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1.3 Outline of the thesis 

 

The thesis consists of 8 chapters inclusive of this chapter. 

 

Chapter 2 describes the main sources of uncertainties regarding Freeform 

Fabrication processes, which are subsequently referred to in order to explain the 

observed part distortions phenomena. Measures for compensations to overcome 

deviations in sizes from the nominal are also reviewed. 

 

Chapter 3 considers how the deviation in the sizes and shapes of components are 

investigated in the current practice. The chapter’s literature review contains 

classification and analysis of the advantages and disadvantages of different types of 

test parts that are commonly used. Particular attention is focused on pyramid test 

parts, as these are the most popular and universally implemented. A critical approach 

is applied to reveal and motivate why a different methodology for accuracy 

investigation was essential. The conclusion that existing practices do not give correct 

distribution of uncertainties can be considered as a contribution to the studied area. 

 

The Grid Methodology developed in this study with the aim of improving the 

reliability of the investigations to analyse the deviations in the shape and dimensions 

of components from the nominal, is described in Chapter 4. The developed 

methodology is claimed as one of the contributions of this research, being a new 

generic and more suitable approach that can be implemented for thorough process 

accuracy investigation. 
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The results and analysis of accuracy investigation in the Selective Laser Sintering 

process using the Grid Method – one of the main objectives and contributions of the 

research - are presented in Chapter 5. The specific vertical-direction build 

phenomena, which were revealed by the study, are discussed and explained in the 

chapter. On this basis the implementation of the developed methodology for the 

calibration of platforms and improving the accuracy of the process is also illustrated. 

 

Chapter 6 deals with accuracy investigation and analysis of micro processes. The 

prominent curling phenomenon in Micro Stereolithography process is studied and 

the finding that the curling is best revealed, described and quantitatively measured 

by calculating the shear (angular) deviations considered. This is a contribution to the 

study of the process shrinkage phenomenon. The research is further extended to the 

micro milling plus micro electric discharge machining (EDM) process chain. This 

constitutes the background research for the proposed process capabilities studies in 

the next chapter. 

 

Chapter 7 proposes how the results obtained from the Grid Method for accuracy 

investigation (strains and their deviations) could be utilised for a process capability 

study. On the basis of the calculated results for strain values, the compatibility and 

complementarity of the processes in a process chain is assessed. The main outcome 

of this chapter is that the presented analysis provides a possible answer to the current 

difficulty associated with the comparison and selection of micro processes for 

compatible utilisation. 

 



Chapter 1  Introduction 

 

____________________________________________________________________ 

 

- 7 - 

Chapter 8 presents summaries and contributions to the knowledge that are concluded 

in the presented research. It also looks at future work which could be conducted on 

3D process accuracy modelling; comparison and investigations of the behaviour of 

different materials for free form fabrication; shape and size classification of the 

components based on the process ability by layering technologies. 
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CHAPTER 2  A REVIEW OF ACCURACY PROBLEMS IN THE FREE-FORM 

FABRICATION 

 

 

As one of the main objectives of this study was to develop a generic method for 

accuracy investigation, it was essential to review the possible sources of 

uncertainties and their influences on the studied part characteristics. On that 

basis, when the methodology developed in this study was applied to evaluate RP 

and other advanced manufacturing and micro/nano technological (MNT) 

processes, some important practical conclusions about possible process 

improvements could be made. Analysis of the obtained results could be focussed 

on the determination of process capability with respect to part accuracy.  

 

Many varieties of Free-form Fabrication (FF) processes have been introduced 

since the first rapid prototyping (RP) techniques became available in the late 

1980s. Today some processes are fully established and proven, whilst some are in 

the early stages of implementation and others are still in the development phase.  

 

The practical applications of RP processes are determined mainly by their 

technical capabilities and economical considerations. These can be summarised 

as follows (Masood and Soo 2002): 

 Price of the RP machine and equipment; 

 Range or type of build materials available; 

 Maximum dimensions of the part building envelope; 

 Dimensional accuracy and their consistency in the x, y and z directions; 
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 Surface finish of the built part; 

 Speed of part building; 

 Production cost of the part as a complex assessment of time, material, 

labour, success rate, etc. 

 

In all cases the selection of FF process and the specific RP platform requires 

rigorous investigation especially with regard to part accuracy, repeatability and 

quality. 

 

The dimensional and shape accuracy requirements in addition to part 

functionality play an important role in the creation of product design 

specifications (PDS), process control and the monitoring and planning of process 

chains. In the case of RP the final accuracy of the part is a function of many 

factors such as: the geometry of the part in question, the CAD model and slicing 

method, the build method, post processing methods and part finishing.  

 

 

2.1 Sources of uncertainties in the Free-form Fabrication manufacturing 

methods 

 

Although dozens of parameters contribute to the final accuracy, not all of them 

have equal effects in all RP process routes. For instance in Selective Laser 

Sintering (SLS) processes the laser system, especially the laser scanning system, 

will be one of the main sources of error formation from a hardware point of view 

(Tang et al. 2004). In addition to this the thermal nature of the process leads to 
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shrinkage, distortion and warping of the part; all of these phenomenon contribute 

to significant errors in the built parts. Therefore it is especially important to 

perform an accuracy analysis that systematically reveals the type of errors, their 

sources and magnitudes, so that improvements in the production practice can be 

implemented. 

 

Diverse classifications about sources of errors in the RP domain exist. Some 

authors (Hopkinson and Sercombe 2008) consider build position and build height 

as error sources. However, although the dimensions of parts built in different bed 

positions differ considerably, the position itself is not a source of error; the 

reason for the error is usually temperature variations in the build chamber. A 

possible general classification of error sources common for most popular FF 

processes comprises the following (Tang et al. 2004): 

 

 Errors caused by laser scanning system 

 Errors caused by material shrinkage 

 Errors caused by laser beam spot size and heat effected zone (HAZ) 

 Errors caused by Computer Aided Design (CAD), tessellation and slicing 

 Random errors 

 

The above sources of errors are discussed in separate sections below mainly in 

regards to the two RP technologies - Selective Laser Sintering and Micro 

Stereolithography (SLA). The accuracy of these processes was the subject of 

investigation in the presented research and the revealed uncertainties were 
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subsequently analysed (Chapters 5 and 6) by utilising the Grid Method (GM) 

developed in this research (Chapter 4). 

 

 

2.1.1 Errors caused by laser scanning system 

 

The nature of these errors may be illustrated in the case of Selective Laser 

Sintering RP processes. The laser sintering process builds a part by using a laser 

beam that scans and sinters powder material layer by layer. Figure 2.1 shows a 

schematic layout of an SLS system. 

 

 

Figure 2.1 A typical SLS machine layout (Kruth et al. 2004) 

 

Commercial SLS machines vary in many ways, for example: in the way the 

powder is deposited - by using roller (3D Systems DTM) or scraper recoat 

(EOS); by utilising different protective atmospheres (Ar or N
2
) and by various 

types of laser (CO
2
 laser, lamp or diode pumped Nd: YAG laser, disk or fibre 
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laser) (Kruth et al. 2004, 2003) . The scanning laser path is generated by 

reflecting a laser beam through two rotating galvano-mirrors in the X and Y 

directions. The configuration and mechanism of the two galvano-mirrors laser 

scanning system is shown in Figure 2.2. 

 

 

Figure 2.2 Two galvano-mirrors laser scanning system (Tang et al. 2004) 

 

The rotating motion system of the two galvano-mirrors affects the accuracy laser 

scan path. The laser scanning spot movement realised by the two galvano-mirrors 

can be described by angles x and y (Shakeri et al. 2007). The focus distance f 

changes with variation in  values. In order to get the laser beam focused on a 

horizontal plane, which represents the working surface (part bed), an f- lens is 

used. The f- lens has a special optical design, which allows the different parts of 

lens to have different focus distances according to the entry angle of the laser 

beam. This allows the laser beam spot to be focused on a plane as the mirror is 

rotated, albeit with a slight error. The role of the f- lens is shown in Figure 2.3. 
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Figure 2.3 Focal plane obtained through f- lens (Tang et al. 2004) 

 

The rotating motion of the two mirrors and the f- objective cause barrel-shaped 

distortions of the image field as shown in Figure 2.4. 

 

 

Figure 2.4 Barrel-shaped distortions due to laser scanning system (Tang et al.  

2004) 

 

This distortion will affect the shape and accuracy of built parts and correction 

and calibration are needed to eliminate this effect. Some additional distortions are 

caused by the mirror and lens due to their fabrication and configuration. 

Furthermore the inaccuracy of mechanical movement and inertia effects of 

moving parts can contribute to the total overall error. 
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These types of errors could be corrected and compensated at the platform design 

phase as well as during machine maintenance. Additional corrections by 

application CAM software or build preparation are possible although limited.  

 

 

2.1.2 Errors caused by material shrinkage 

 

Many RP processes are unavoidably subject to material shrinkage. The main 

reasons for shrinkage are polymerisation (photopolymerisation), temperature 

changes during and after processing and phase transformations. Specific to layer 

based technology is a combined phenomenon caused by temperature shrinkage 

and residual stresses in the layers known as curling. These four factors are 

separately described in the following sub-sections in respect to their nature, 

influence on part accuracy and countermeasures that could be implemented to 

reduce their contribution to part geometry uncertainties. 

 

2.1.2.1 Photopolymerisation 

 

In the stereolithography (SLA) process the reaction that transforms liquid resin to 

solid is photopolymerisation. The polymerisation chemical reaction of a 

monomer allows each carbon atom in the carbon-carbon double bond to form a 

new bond, typically with a carbon atom from another monomer molecule. In the 

process the molecules undergo a transformation from loose Van der Waals 

interaction with neighbouring monomers to a network of covalent bonds, thus 

many bulk properties of the resin material change. The average distance between 
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groups decreases, resulting in an increase in density leading to shrinkage. 

Polymerisation of multifunctional monomers results in a cross-linked polymer 

with even higher density. Additionally, polymerisation of some materials, such as 

acrylate based resins undergoes an exothermal reaction associated further with 

increases in temperature. Cooling after process completion causes additional 

shrinkage. Theoretical analysis of polymerisation was given in (Jacobs 1992). 

Schematically the polymerisation of a vinyl-type monomer is illustrated on 

Figure 2.5. 

 

 

Figure 2.5 Vinyl-type monomer-polymer transformation (top) and cross-linked 

monomer-polymer transformation (bottom) (Jacobs 1992) 

 

The photopolymerisation is a reaction where resins solidify by exposure to some 

electromagnetic radiation such as -rays; x-rays; UV light; visible light; e-beams. 

The UV-curable polymers, commonly used in RP consist of: reactive monomers; 

photo-initiators; fillers and/or modifiers. During photopolymerisation the photo-

initiator absorbs some photons and transforms into its excited state P, after 

undergoing several complex steps. These molecules then react with a monomer to 

form polymerisation, initiating molecules PM, which later react and form longer 
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molecules PMMMM. The process continues until a chain inhibition process 

terminates the polymerisation reaction. Schematicaly photopolymerisation is 

shown in the Figure 2.6. 

 

 

Figure 2.6 Scheme of photo polymerisation (Chua et al. 2010) 

 

Polymerisation and more particularly photo-polymerisation is one of the main 

reasons for material shrinkage and curling and it has a significant influence on 

part accuracy in SLA processes. Chapter 6 of this thesis explores the 

uncertainties and curling phenomenon in the SLA process domain due to photo-

polymerisation; on the basis of the developed Grid Method, which is new for the 

RP domain. Specific attention was given to the assessment of the geometrical 

characteristics and their distribution that best described the magnitude and type 

of part distortions revealed by the proposed method. 

 



Chapter 2  A Review of Accuracy Problems in the Free-form Fabrication 

 

____________________________________________________________________ 

 

- 17 - 

 

2.1.2.2 Temperature variations 

 

Most FF fabrication methods are accompanied with temperature change and some 

are thermally activated. In SLS significant changes in temperatures are 

intentionally induced during and after the building process. The desired 

temperatures are controlled and kept within a certain range depending on the 

material used. Process complexity can lead to non-uniform heating which 

together with differences in the mechanical and insulating systems in specific 

platform areas could lead to considerable temperature variations within the 

building chamber. Careful control of the thermal environment is critical to 

prevent undesirable growth of the part after sintering by the laser. Additionally, 

during the cooling process, thermal gradients in the part must be minimised to 

avoid geometric distortions resulting from thermally induced residual stresses 

(Diller et al. 2012). 

 

The temperature control system works within certain tolerances and due to 

process speed requirements, not all variations and changes in temperature can be 

eliminated. As a consequence part shrinkage is uneven and difficult to predict. 

Measurements of temperature variations within the build volume chamber (Shen 

et al. 2000) and (Manetsberger et al. 2001) are shown in Figure 2.7. 
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Figure 2.7 Temperature distribution in  the part bed a) by (Shen et al. 2000), b) by 

(Manetsberger et al. 2001) c) courtesy of Dr. Shwe Soe, Cardiff School of 

Engineering 

 

It can be seen that the differences in temperature in the vertical direction are from 

150K to 40K depending on the sintered material and platform. The temperature 

gradients would influence the length of time for which the various sections of the 

part remain at high temperature. This leads to differences in the shrinkage caused 

by the pressure from the material above. 

 



Chapter 2  A Review of Accuracy Problems in the Free-form Fabrication 

 

____________________________________________________________________ 

 

- 19 - 

The temperature variation over the part bed in the horizontal plane is also highly 

important. The temperature isolines presented on Figure 2.7 show more than 35K 

difference. This temperature difference would dramatically influence the thermal 

shrinkage of sintered parts or different sections of them, in regard to their 

position in the part bed. A study in the RP laboratory at Cardiff School of 

Engineering conducted by Dr. Sоe analysing non-uniform temperature 

distributions along the top of the part bed, using an EOS P700 Laser Sintering 

machine, showed that the differences in temperatures are 10K (Figure 2.7 c), 

which can lead to considerable variations in thermal shrinkage on parts. A recent 

study (Diller et al. 2012) based on the computer modelling of a build chamber 

temperature distribution shows similar variations of about 12K. Earlier studies 

(Childs and Tontowi 2001; Tontowi and Childs 2001) indicated experimentally 

and by simulation that a 4% decrease in density can be expected when the 

temperature is decreased by 4K. In the same research it was found that 

uncertainties in sizes of approximately 0.5% can be expected with a 4K 

temperature change. On that basis the authors concluded that a machine design 

target with temperature consistency of 4K could be established. Other research 

(Hopkinson and Sercombe 2008; Sercombe and Hopkinson 2006) also shows that 

in the case of indirect SLS of aluminium, the dimensions vary in the range of 1% 

depending on build position. The non-uniform temperature distribution in the 

part-bed, which is generally hotter in the centre than the edge was deemed the 

root cause for this variance.  

 

A common approach in RP practice is the application of an appropriate scaling to 

the part geometry that can compensate for the shrinkage of parts produced by FF 
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fabrication due to the temperature variations. This compensation can be applied 

using the CAD software or the machine CAM software. 

 

The important consideration in the scaling procedure is the quantitative 

knowledge about distortions and most importantly their distribution and nature. 

The methods that are used to collect and analyse the data for uncertainties in the 

current practice are not always effective and accurate enough. The reasons for 

this are clarified in Section 3.3 of this thesis. The thesis is later focused on 

developing a methodology for accuracy assessment that gives a comprehensive 

valuation of the distribution of distortions. As a result of such research it will be 

shown that the part size, part shape and orientation as well as horizontal and 

vertical position of the parts in the building chamber must be taken in 

consideration for effective part scaling. 

 

 

2.1.2.3 Phase transformation 

 

When the material temperature is altered sufficiently, phase transformations can 

occur. Distinctively, a material may be transformed from a liquid to a solid, or in 

some cases from a solid to a liquid and then back to a solid again. Within the 

field of Rapid Prototyping & Manufacturing (RP&M) phase change phenomena 

specifically occur in the following processes: 

 Stereolithography (SLA), 

 Selective Laser Sintering (SLS) and Selective Laser Melting (SLM), 

 Fused Deposition Modelling (FDM), 
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 Thermal Phase Change Inkjets (ThermoJet, Pattern Master), 

 Rapid Investment Casting. 

 

Such transformations are accompanied by changes in physical and chemical 

properties of the material (Callister 2010, William and Hashemi 2009, Edwards 

and Endean 1995). From an accuracy viewpoint the important issue is the change 

in volume due to the phase transformation that manifest as shrinkage when the 

part is cooled down. Volumetric shrinkage Sv, and linear shrinkage S are related 

in the case of isotropic shrinkage, by the expression (Jacobs 2000): 

          
 

          (2.1) 

or by the more common relationship: 

  
  

           (2.1 a) 

 

The phase transformation involves a change in the specific volume and the resulting 

shrinkage. The total volumetric shrinkage varies from process-to-process, and from 

material-to-material, for a given process (Jacobs 2000). 

 

The critical temperatures for polymeric materials to change phase are melting 

temperature (Tm) and glass transition temperature (Tg). The typical behaviour of 

volume changes in polymers when the Tg and Tm have been exceeded is 

schematically illustrated in Figure 2.8. 

 

http://www.amazon.co.uk/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&search-alias=books-uk&field-author=Javad%20Hashemi


Chapter 2  A Review of Accuracy Problems in the Free-form Fabrication 

 

____________________________________________________________________ 

 

- 22 - 

 

Figure 2.8 Change in specific volume due to phase transformation (Callister 

2010) 

 

In SLS processes amorphous, crystalline and semicrystalline materials can be 

used. The powder changes from solid phase to liquid phase and then back to solid 

phase in a three-dimensional unsteady heat transfer process. These phase change 

processes are accompanied by both the absorption and release of thermal energy. 

A moving boundary exists that separates the phases; at this boundary some 

thermal energy is either absorbed or liberated. The superheat in the melting 

powder and the latent heat liberated at the solid/liquid boundary are transferred 

across the solidified RP part and across the boundaries. In some cases, the 

powder is partly solid and partly liquid and resembles a porous medium. 

 

Tg and Tm are also important factors for determining part bed temperature and 

laser power. Above Tg the amorphous phase has a “rubbery” character. As the 

powder becomes sticky at such temperatures, which leads to aggravated layering 
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and material growth on the part surface. The part bed temperature must not exceed 

Tg for amorphous polymers. On the other hand to reduce the temperature 

differences between the sintering and after-sintering period, the part bed 

temperature must be close to Tg (Gibson and Shi 1997). In all cases the 

temperature of sintered material (after the laser beam power has been applied) 

exceeds Tg and hence the material undergoes phase transformation during the 

cooling down stage. For similar reasons, the part bed temperature should be set a 

few degrees below its melting temperature Tm for semi-crystalline polymers and 

again subsequently phase transformation will occur when cooling the melted 

polymer. 

 

In the case of sintering semicrystalline material, the part bed temperature should 

be set close to Tg. The Tg for a semicrystalline mixture can be calculated by the 

following formula (Tobolsky 1967): 

 

 

  
  

  

  
   

  

  
          (2.2) 

where, 

   and    are the weight fractions of each component in the mixture, 

  
  and   

   are glass transition temperatures of each component in the mixture. 

 

The common practice for shrinkage compensation due to phase transformation is 

scaling the CAD model in similar way as for the temperature shrinkage. The 

limited consolidation obtained with amorphous systems results in relatively low 

shrinkage (typically about 1%), but the relatively high laser powers which are 

used to make the parts can cause considerable growth. Crystalline or 
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semicrystalline materials exhibit high shrinkage (typically 3-4%) associated with 

both the material phase change and the high degree of consolidation obtained 

during processing, but the amount of growth is usually limited by the relatively 

low laser powers which are required to completely melt the material (Nelson et 

al. 1995(a)). 

 

 

2.1.2.4 Curling 

 

Curl distortion or curling can occur in all RP processes that build parts by 

fabrication of successive layers where the solidifying material undergoes 

shrinkage. Curling is one of the major sources of error even in the processes 

which are otherwise considered accurate. For instance Micro Stereolithography 

(µSLA) technologies can operate with layer thickness and voxel resolution of less 

than 25m. On that basis such manufacturing systems can be associated with 

capabilities to build parts with feature sizes of a similar dimensional range 

(Envisiontec, http://www.envisiontec.de, accessed October 2011). However due 

to the curling dimensional errors for parts particularly in lower sections, are 

substantially higher and can reach relative values of 10%. 

 

Figure 2.9 shows sequentially the steps leading to curling in SLA. A single layer 

of a cantilever will not display upward deformation but will tend to deform 

slightly downward. The second successive and subsequent layers are each bonded 

to the layer below. As the layers shrink this introduces a bending moment which 

causes upward displacement (curling) at the unsupported layers ends above the 
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liquid surface. As additional layers of liquid resin are applied, a self-correcting 

effect occurs. The build-up of layers creates a thicker section, which better resists 

the distortion, and less resin is applied to upwards-deflected regions.  

 

 

Figure 2.9 Steps in curling formation in SLA (Jacobs 1992) 

 

In the case of SLS, the recently sintered upper region layers will additionally 

experience a large drop in temperature after the cooler powder is spread across 

the top of the layer. This leads to the upper most regions of the layer undergoing 

more shrinkage than other regions in the build, causing the build to curl (Jamal 

2001) as shown on Figure 2.10. 

 

 

Figure 2.10 Curling developing in SLS process 

 

If the top and the bottom layers are not bonded together, cooling down and 

shrinking of the top layer is not restricted and thermal stresses are negligible. The 
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thermal strains caused by cooling down from temperature T0 to Tf can be 

expressed by formula as: 

T =  T0 - Tf), where       (2.3) 

 is the linear coefficient of thermal expansion (1/K), as defined by: 

  
  

    
 ,   where       (2.4) 

dl is the change in length of the material in the direction being measured, 

l is overall length of material in the direction being measured, 

dT is the change in temperature over which dl is measured. 

 

In case of proper sintering both layers are supposed to be bonded together. In this 

case the thermal strains from formula (2.3) on the top layer are restricted, which 

leads to thermal stresses. If a full restriction is applied then the resulting stresses 

are: 

 

          ,   where      (2.5) 

E - Young's modulus, 

T - change of temperature. 

 

As the operational temperature in SLS process is close to the glass transition 

temperature, the material strength is reduced to levels lower than needed to resist 

the thermal stress, which leads to permanent curling distortion. This behaviour is 

analogous to a classic bimetal strip, where the top metal of the strip shrinks more 

than the bottom metal upon cooling, resulting in upward curling of the entire 
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strip. Schematically the resulting forces and bending moments are shown in 

Figure 2.11. 

 

 

Figure 2.11 Free shrinkage of a layer (left) and forces and bending moments 

when shrinkage is restricted due to the bond between layers (right) (adapted from 

Jamal 2001) 

 

Detailed analysis of the calculations of the elastic and plastic interaction between 

layers has been reported (Townsend et al. 1987, Nickel et al. 1999, Mercelis and 

Kruth 2006) and specifically in the case of Fused Deposition Modelling (FDM) 

(Wang et al. 2007). 

 

Finite element analysis is another method capable of curling modelling (Jamal 

2001). The results from finite element analysis can be effectively and 

conveniently compared and experimentally verified by the method developed in 

this thesis; the Grid Method (GM) for accuracy investigation (Chapter 3). The 

GM uses a grid in similar way to finite element methods, which provides 

experimental data about the continuous distribution of distortions calculated for 

each individual cell. In this way the obtained values from both methods can be 

compared and analysed. 

 

http://adsabs.harvard.edu/cgi-bin/author_form?author=Townsend,+P&fullauthor=Townsend,%20P.%20H.&charset=UTF-8&db_key=PHY
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The commonly used experimental technique for curling investigation is a linear 

measurement of the lifting of the base from the horizontal level. The curled 

layers can be simplified as an arc with radius R as shown in Figure 2.12. 

 

Figure 2.12 Circular curl model (Jacobs 1992) 

 

From Figure 2.12, the curl factor, Cf,, can be calculated as a percentage by 

formula (2.6): 

    
 

 
             (2.6) 

where: 

 is the lifting from the base, 

L is the distance from the centre of the part. 

 

Investigation of curl factor variation with respect to thickness for SLS 

polycarbonate was conducted by manufacturing a series of blocks with different 
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thicknesses. Subsequently the curled bottom surface with respect to its vertical 

lift was measured (Berzin 1995). The resulting profiles are shown in Figure 2.13. 

 

 

Figure 2.13 Measured profiles of the bottom surfaces of SLS polycarbonate 

blocks with thickness of 1, 2, 10, 20 and 50 layers (Berzin 1995) 

 

Such an approach is not very informative and is not a comprehensive 

experimental study of the curling phenomenon, since the deviations and their 

distributions inside the part are not measured. 

 

The illustration in Figure 2.14 shows curling and warping distortions. Another 

terminology for the same phenomenon is in-build curling and post-build curling 

respectively (DTM Corp. 1999, 1998, 1997). It can be seen that these kinds of 

deformations are not only linear in character, but also consist of significant 

amounts of angular/shear strain components that could be even predominant. The 

strain distribution inside the part is complex and it is not possible to distinguish 

curling, warping or shrinkage by measurement of deflection in the z direction 

only, from the reference surface or any other linear dimensional variations. 
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Warping itself can be associated to a great extent with part section bending, thus 

in some cases it could be reduced or eliminated by part straightening after 

building. 

 

 

Figure 2.14 Curling, warping and associated deformation of an element from 

inside the part 

 

Depending on the process utilised there are several measures that can be applied 

to reduce final part curling. Curling can be reduced by developing new materials 

and altering materials properties, by process parameter optimisation and by 

geometrical compensation in the CAD model. 

 

In the resin based SLA process, the material properties responsible for curling 

such as polymerisation rate may be separated from other process parameters and 

tested by building a cantilever diagnostic test (Jacobs 1992). 

 

In the powder based SLS process the material deterioration (e.g. polyamide) after 

repeated exposures at high temperature has a significant effect on part curling 

and other quality factors such as strength, accuracy and surface finish. In spite of 
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this only a certain amount of fresh powder is mixed with the used powder for 

economic reasons. Investigation into the influence of powder-recycling rate on 

curling in the case of polyamide material has been was conducted (Jain et al. 

2008). In a separate study the ratio of virgin powder to used powder was found to 

have significant effect on curling (Senthilkumaran et al. 2009). 

 

The process parameters and their influence over the curling in different RP 

technologies have been discussed by several researchers. For SLA this shows that 

laser power and scan speed are responsible for cure depth, which influences the 

amount of curling (Jacobs 1992 and Patri 2004). Some measures to prevent 

curling include applying suitable support structures, choosing a favourable part 

orientation and hatch and scanning strategies. 

 

For SLS the influence of process parameters on curling has been investigated 

(Jamal 2001, DTM 1997, 1998, 1999, Nelson et al. 1995, Senthilkumaran et al. 

2009). The complexity and interdependence of process parameters used to solve 

curling problems usually leads to contradictions in the final results. Measures to 

decrease curling sometimes worsen other properties of the part. For instance 

reducing cure depth in SLA has a positive effect on the curling, however it could 

lead to weak bonds between layers and delamination of the material.  

 

The reduction of curling distortions by applying compensations to CAD models 

requires numerical data of curling considering the part size and shape, which 

makes the task rather complex. Finite Element Analysis (FEA) of curling 
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phenomenon is a possible tool to model curling and applying measures to reduce 

it (Jamal 2001). 

 

The real strain condition in complex distortions such as curling is usually a result 

of a combination of several phenomenon that manifest by linear and angular 

deviations from the nominal. These phenomenon impose the need for a generic 

method of experimental investigation to analyse the geometrical uncertainties 

that are capable of describing complex part distortions in general terms of linear 

and shear strains. The development and validation of such a method (referred to 

as the Grid method) was a major objective of this research and is described in 

Chapter 4. Implementation of the method and the results of curling investigation 

of SLA process are presented in Chapter 6. The data obtained by 

implementation of the proposed approach provide a mathematical model of 

curling distribution in the horizontal and vertical directions as well as across total 

part thickness. In this way the data acquired from the proposed experimental Grid 

Method could be used for scaling and compensation of the digital CAD part.  

 

 

2.1.3 Errors caused by laser beam spot size and Heat Affected Zone (HAZ) 

 

The errors caused by the laser beam spot must be considered when using SLA 

and SLS processes. This section describes laser spot issues and laser beam 

interaction with the powder material. Most of the paradigms regarding the laser 

spot influence on the build errors are also applicable for SLA processes. 
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The laser sintering process builds up three-dimensional shapes by consecutively 

sintering powder layers; the bottom of the layer n is sintered to the top of the 

layer n-1. Raster-scanning the powder surface with the laser beam, as shown in 

Figure 2.15, sinters individual layers. The raster pattern is comprised of 

individual scan lines, each overlapping the previous to form a continuous layer. 

The fundamental process unit of the laser sintering process is a single scan line 

formed by a laser beam spot (Schultz 2003). 

 

The beam size influences the delivered power P per surface unit and therefore the 

energy of the process as well as the geometry of the sintered layer. Schematically 

the beam and corresponding raster parameters are shown in Figure 2.15. 

 

 

Figure 2.15 A scheme of the laser beam raster pattern during the scanning 

(Senthilkumaran et al. 2009) 

 

The delivered power P can be expressed empirically as a function of the 

following parameters (Gibson and Shi 1997): 

 

P = f(Db, BS, , h, C, Tm, Tb, lf, R)     (2.7) 
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where: 

Db is the laser beam diameter on the part bed, BS is the beam speed,  is the 

density of the powder, h is the layer thickness, C is the specific heat, Tm is the 

melting temperature, Tb is the part bed temperature, l f is the latent melting heat, 

R is the surface reflectivity. 

 

The energy density delivered to the image plane is defined by Andrew Number 

AN (Nelson 1993 and Nelson et al. 1993): 

 

    
 

    
 in [J/m

2
]       (2.8) 

 

where: 

P is the laser power delivered to the surface [W], 

V - laser beam velocity [m/s], 

HS - hatch spacing [m]. 

 

Formula (2.8) is known to be useful for relating physical properties of parts built 

by SLS to the three independent process parameters - P, V, HS (Vail 1993). 

Furthermore, the delivered laser power P in the formula (2.8) depends on the size 

of laser beam Db. The influence of variable laser diameter and build speed to the 

part quality has been investigated (Deckard and Miller 1995; Williams et al. 

1996; Miller et al. 1997; Bae et al. 2007). Changing the laser beam diameter 

would require changing other sintering parameters in order to deliver the energy 

needed for successful sintering. Furthermore varying the laser spot would vary 
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the heat affected zone (HAZ) size. For that reason controlling the sintering 

process via the beam spot size is impeded and the modern SLS platforms still 

operate with a fixed laser beam diameter. 

 

The interaction of laser irradiation, the powder bed and the consecutive energy 

division is depicted in Figure 2.16 where q-rad and q-conv are radiation and 

convection energy losses; q-cond is the energy conducted into the powder bed. 

The proportion of energy q-cond is the fraction of energy responsible for the 

temperature rise in the powder and the sintering of particles (Williams and 

Deckard 1998). 

 

 

Figure 2.16 Interaction of the laser irradiation and powder bed (Williams and 

Deckard 1998) 

 

The distribution of beam energy is assumed to be a Gaussian distribution that can 

be approximated by the square shape, as shown in Figure 2.17. 
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Figure 2.17 Laser beam energy distribution (Schultz 2003) 

 

The beam spot shape is rarely circular, thus a further assumption is that the 

Gaussian beam has two normal spatial components x and y which can be 

considered separate with regard to their effect on heating the powder-bed 

(Schultz 2003). Hence, the laser beam geometry is defined by two diameters dx 

and dy.  

In the case of the SLS process the beam spot size varies from the centre to the 

periphery of the build area due to optical parallax. Geometrical assumption 

(Wang 1999) shows that the difference between the beam diameter in the part bed 

centre and that at the periphery is no more than 50 m. As this value is in the 

powder particles size range it can be ignored. The delivered energy also affects 

the area that surrounds the beam spot. Thus a bigger HAZ with an irregular and 

unspecified shape is formed that needs to be determined experimentally in order 

to apply correct beam offset compensation. In the case of the SLA process, the 

parallax effect also could be considered as negligible (Jacobs 1992). 
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Experimentally the beam offset is calculated on the basis of results obtained by 

building a standard pyramid as shown in Figure 2.18(a). The lengths of each step 

xi and yi are measured and each difference from the nominal xi = xin - xi and yi 

= yin - yi is calculated. The results can be graphically and numerically 

approximated. The extrapolated value of x and y when the pyramid step size is 

zero is interpreted as beam offsets dx and dy. The method for beam offset and 

shrinkage calculation has been described in detail (Wang 1999 and DTM 1999). 

Schematically the calculation of the beam offset is graphically depicted in Figure 

2.18(b). 

 

 

Figure 2.18 a) - Pyramid for beam offset calibration; b) - interpolation of the 

measurements and beam size determination by extrapolation of the line 

 

Measures to reduce uncertainties caused by laser beam spot size have been 

introduced for by machine manufacturers. Today’s software for laser-based 

additive manufacturing compensates for the finite laser spot dimensions by 
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insetting the contours of a solid part (Moesen et al. 2011). An offset of bx(y)/2 

should be considered as beam compensation so the edge of the beam follows the 

required CAD contour. The beam-offset value is a common parameter of modern 

applied CAM software. Schematically the compensation is illustrated in Figure 

2.19. 

 

 

Figure 2.19 Insetting the contour of a solid part according to the beam size and 

shape. (Dothev and Soe 2007) 

 

The three methods for beam compensation are normal, constant and dihedral 

(Nelson et al. 1995). In the normal offset method, a vector normal is calculated at 

each vertex based on the normals of the adjacent surfaces. The vertex is moved 

along the vertex normal to the new offset position. The normal offset method 

works best for geometries that have circular and flat surfaces because the angle 

between surfaces is large. As the angle between the facets decreases, the distance 

that the vertex is moved by the normal offset method is not sufficient to move the 

surface geometries by the desired amount. The constant offset method works best 
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for square features. In this method the vertex is offset by moving first in the x 

direction, then in the y direction, by corresponding beam offset values. An 

example of the Dihedral offset, is used by DTM (3D System) geometry tools 

software. The method uses the dihedral angle between connecting facets to 

calculate the new offset vertex position. This method adjusts for part geometry,  

making the dihedral offset method more accurate than the normal offset and 

constant offset methods. The three offset methods are graphically represented, in 

Figure 2.20. 

 

 

Figure 2.20 Comparison of the three offset methods (Nelson et al. 1995) 

 

An expected consequence of insetting the contour is that features having smaller 

dimensions could be removed. This operation may also significantly alter the 

structure of thin-walled parts as well as being a source of potential production 

errors. For that reason a development of a new algorithmic framework was 

proposed (Moesen et al. 2011). The goal is to minimise the small features loss at 

reasonable computational cost and time. Schematically the problems and 

corrections are illustrated in Figure 2.21. 
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Figure 2.21 Potential beam compensation problems and their correction via 

structural scan paths (Moesen et al. 2011) 

 

The melting and softening of material during powder sintering outside the desired 

part boundaries is known as "growth". From a practical point of view, the result 

of growth and finite beam diameter on part accuracy are indistinguishable since 

they both cause a definite increase in part dimensions. Part growth dimensions 

are adjusted for using software compensation in the same way as they are for 

beam diameter. The difference is that in the z direction, z-growth is set as a 

separate parameter. One manufacturer DTM/3D Systems calls it "bonus-z". 

 

The sources of uncertainties described in paragraph 2.1.3 above were not subject 

for investigation in this research. However they had to be considered when the 

test part geometry and features for measurement were designed. The analysis 
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presented in Chapter 3 showed that their influence on the measured parameters 

when the Grid Method was applied appeared negligible and could be ignored. 

 

2.1.4 CAD, tessellation and slicing errors 

 

Layer manufacturing considers the use of additive processes in which the 

geometry of the object to be manufactured is obtained from a CAD file. The 

geometry must be processed through several steps. First it is usually converted 

into the industry standard file format “.STL” (STL is derived from the word 

stereolithography or is taken by some authors as Standard Tessellation 

Language). It is then transformed into a series of cross-sectional layers. This 

process is known as “slicing”. These layers are then used to generate the 

numerical control (NC) code required by the platform to build the corresponding 

physical layers and stack them into the final part. Some inaccuracies through the 

steps of converting the CAD file to sliced file have been analysed by (Banerjee 

2004). 

 

The CAD file geometry can be created from model data, for an existing object 

through reverse engineering, or using mathematical data such as surface 

equations. Regardless of the source, the process can generate errors particularly 

in the case of reverse engineering or surface approximation. 

 

All current commercial RP systems require the part geometry to be prescribed in 

the .STL file format. This format has become the industry standard for two 

reasons (Tyberg 1998). First, 3D Systems, Inc. introduced the format three years 
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prior to any other company for use with their Stereolithography Apparatus. 

Second, its simplistic format for describing CAD models minimizes the cost of 

providing one-way translation. As a result, most CAD vendors have developed 

software that is capable of translating data to this format. The .STL file format 

consists of a triangular surface mesh that approximates the actual surfaces of the 

original CAD model. It is a boundary representation of 3D geometry, which in 

the case of a sphere is depicted in Figure 2.22. 

 

 

Figure 2.22 Faceted representation of a sphere (Tyberg 1998) 

 

 

Conversion to .STL can be done through a number means; some CAD software 

programs allow for the direct export of .STL files, whilst others require “add-ins” 

within the CAD software. Conversion can also be achieved by specialised .STL 

file converters. When converting to .STL files, the user is given several options 

for resolution, sometimes called chord height or triangle tolerance, etc. as shown 

in Figure 2.23. Depending upon the size of the model, the geometry of small 

details, and the overall curvature of the part, the tolerance can typically be set to 

0.0254mm for average models. Small parts or models with fine details may 
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require a tighter tolerance (Bastech Inc. 2011). In addition, the translation of 

CAD models to the .STL file format often produces errors such as missing and 

intersecting surfaces. Repairing these models is an imperfect task and could also 

be a source of errors. 

 

 

Figure 2.23 Pro/ENGINEER dialog box for .STL file tolerances setting 

 

In the next step .STL model is a subject of the slicing procedure. In this process, 

the model is intersected with a set of horizontal planes to create a series of cross 

sections, or slices, comprised of contours that represent the material boundaries 

of the part to be built. Constructing a freeform sculptured 3D geometry by a 

series of  
 

 
 D layers will inherently produce an approximate representation of 

the original surface geometry. This is commonly referred to as the stair-stepping 

effect and it influences all non-horizontal surfaces. Figure 2.24 illustrates how 
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the layer thickness affects the stair-stepping effect and resulting inaccuracy. It 

appears that, by varying the layer thickness different accuracies can be achieved, 

however this is always a compromise with build time. In addition the layer 

thickness is not only a software factor for geometry approximation, it is an 

important parameter during the physical building of parts. It is connected to the 

process, material, platform and is closely related to other build parameters in a 

multifaceted manufacturing system. 

 

 

Figure 2.24 Stair-step effect as inaccuracy source due to the thickness of the 

build layers (Sabourin et al. 1997) 

 

Research carried out on adaptive slicing shows that a compromise between 

accuracy and build time can be achieved (Danjou et al. 2010; Nezhad et al. 2010; 

Shakeri et al. 2007; Byun and Lee 2006; Pandey et al. 2003; Weiyin and Peiren 

1999; Tyberg and Bøhn 1998; Tyberg 1998). In adaptive slicing the geometry is 

first analysed and the layer thickness is applied based on the vertical slope of the 

surface. Depending on the process a variable layer thickness can be implemented 

uniformly over the total part bed or selectively to each individual part as shown 

in Figure 2.25. The second approach is possible only for processes such as FDM 

where the material is deposited by a nozzle merely over the part. 
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Figure 2.25 Identical (a) and selective (b) approaches in adaptive layering 

(Tyberg and Bøhn 1998) 

 

Another possible way to increase the resolution and accuracy in FDM is to apply 

variable nozzle The combination of adaptive layer slicing and variable nozzle 

diameter is illustrated on Figure 2.26. 

 

 

Figure 2.26 Reduced staircase effect by utilising adaptive layer slicing and 

variable nozzle diameter in FDM process (Brooks et al. 2012) 
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Theoretical analysis about improvement in horizontal accuracy and vertical 

resolution and build time when variable diameter nozzle is implemented for the 

fused deposition of polymers is described in (Brooks et al. 2012). 

 

The layer thickness influences mostly the quality and roughness of sloping 

surfaces, but in some cases important features can be lost after slicing, this is 

shown in Figure 2.27. 

 

 

Figure 2.27 Simplifying the shape and sacrificing of small features (Dolenc and 

Mäkelä 1994) 

 

Due to technological reasons variable slicing has not found a convenient 

application in RP practice so far. The slicing layer thickness is determined mostly 

by the requirements of a successful build process. It is usually an element of 

building parameters and is set by the CAM software of the hardware platform on 

which the part is to be built. 

 

Some errors are inevitable due to the slicing algorithm itself. For example, using 

a curve-fitting algorithm (interpolation and smoothing) may cause Chordal 

deviation. A staircase error in the x and y directions may occur for curved 

contours when a large scan spacing is used; these errors can be reduced by 

improving the slicing algorithm. In addition to slicing, the quality of the .STL file 
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is also important in determination of the final accuracy that can be achieved since 

a surface made of smaller triangles (i.e. greater mesh density) provide greater 

accuracy in the slicing process (Figure 2.28). 

 

Figure 2.28 Reducing the accuracy after CAD modelling, STL tessellation and 

slicing in the cases of fine (a) and rough (b) tessellation 

 

The uncertainties in the manufactured component introduced by sources that 

were subject of observation in this section were related to the RP software 

development domain and as such were not targeted for investigation by the GM 

in this study. In order to eliminate the influence of uncertainties due to the CAD 

tessellation and slicing, the resolution of STL files of the test parts were kept 

higher than the hardware resolution of the specific technological platform, which 

is usually limited by the layer thickness. 

A summary based on the review from Section 2.1.4 is given as a flow diagram in 

Figure 2.29. 
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Figure 2.29 Steps and errors due to CAD, CAM, tessellation and slicing 

processes 
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2.1.5 Random errors 

 

From the inauguration of the RP industry it was clear that for some processes 

consistent accuracy was not always achievable. Differences in shrinkage was 

observed between otherwise identical sections, of otherwise identical parts, 

prepared by the same people, in an identical manner, on the same equipment, 

using identical materials, under nearly identical environments (Jacobs 2000). 

Although no two parts and no two experiments and no two measurements within 

a given experiment are truly identical, such deviations of results which are caused 

by unknown and unpredictable changes in the experiments are known as random 

errors. 

 

Since the most important validation experiments of the Grid Methodology 

presented in this work are carried out on SLS processes, this section summarises 

some of the most obvious sources of random errors in the powder based laser 

sintering process: 

 variation in temperatures due to unpredictable dimming or manual 

cleaning of IR sensors; 

 protective gas flow instability; 

 variation in humidity and hence moisture of the powder or other types of 

build material; 

 variation in material composition and structure e.g. particle size, 

distribution and shape of the powder; 

 mixing and the density of the powder and liquid materials; 

 unpredictable variations in cooling down or post curing procedures; 
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 part handling after building; 

 variation in accuracy of mechanical systems such as part bed screw-thread 

mechanism; 

 

While these kinds of errors are difficult to predict due to the fact that the causes 

and sources are not immediately obvious, they can be represented by statistical 

means because of their random nature. Random errors often have a normal 

statistical distribution. In such cases statistical methods for data analysis are 

relatively simple. Random errors influence the precision of the process or how 

the same dimensions are equal or close to each other when they are built 

repeatedly. 

 

It was experimentally found (Jacobs 2000) that in SLA the resulting random 

shrinkage is directly proportional to the mean process shrinkage and can be 

expressed by the formula: 

 

              (2.9) 

where, 

   is the standard deviation of the random noise, K is proportionality constant for 

a given process (for SLA it is found to be 0.095) and    is the mean process 

shrinkage. 
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2.2 Summary and conclusions 

 

If the finished component produced by Free-form Fabrication methods is a part of 

a process chain then the final accuracy could be a function of the accuracy of 

many processes within the chain such as CAD, RP, casting, finishing, machining 

etc. The common variables that contribute to the final part accuracy could be 

represented in the form of a cause and effect diagram (also known as a Fishbone 

or Ishikawa Diapgram) proposed by (Nagahanumaiah and Mukherjee 2004), 

shown in Figure 2.30. The total number of parameters that influence the accuracy 

could not be defined but consideration of the most obvious accuracy influencing 

parameters total more than thirty. They might be further clustered in the five 

groups discussed in the above sections. 
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Figure 2.30 Cause and effect diagram for accuracy of a part in the case of rapid 

tooling FF application (Nagahanumaiah and Mukherjee 2004) 

 

The common RP practice deals with the uncertainties manifested as a whole, by 

applying combined compensation (that reflect all of the listed factors) through the 

CAD model. Furthermore, by setting up appropriate build parameters and by 

applying some specific practices, such as support structure, temporary additional 

structures, part orientation, etc., an acceptable accuracy for an affordable price 

and build time could be achieved. 
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The following general conclusions can be made: 

i) The sources of uncertainties are diverse. Their origin can be found in one of the 

following domains: 

- material behaviour and properties; 

- software - programs and data; 

- manufacturer hardware (platform); 

- human and random factors. 

ii) Appropriate measures for compensations to overcome deviations in sizes from 

the nominal, is possible if the sources of errors are determined correctly and 

accurately. 

iii) Distribution, magnitude and character of the uncertainties are not uniform 

within the build area of the manufacturing platforms and can vary significantly 

with part position, size and shape. This is due to the influences of various sources 

of errors. Hence the reliable and generic method for quantitative investigation of 

uncertainties and particularly their distribution is important. 

 

Based on the analysis of inaccuracy sources described above, the following 

objectives were set: 

 

1) To review the methods that are used for accuracy investigation and to evaluate 

their capabilities to reveal the distribution, magnitude and type of distortions that a 

FF process can cause to the final part. This was the subject of the next Chapter 3. 

 

2) To develop an accuracy investigation methodology that would be able to 

reflect the process shortcomings described above and to provide sufficient 
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information to analyse them and improve the process performance. The 

methodology should be able to overcome the limitations in the existing testing 

methods and could be utilised as a generic and reliable approach for studying the 

FF processes. This objective was the subject of Chapter 4. 

 

3) To study some ‘critical’ accuracy aspects of the SLS process (particularly in 

the vertical direction) in regard of polystyrene material; curling phenomenon in 

SLA and other manufacturing processes in the MNT domain, by implementation 

of the developed method. This objective was the subject of Chapter 5 and 6. 

 

4) To suggest and implement a GM based approach to study the capabilities and 

tolerance limitations of the FF and MNT processes and process chains. This 

objective was targeted in Chapter 7. 
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CHAPTER 3  METHODS AND TEST PARTS FOR ACCURACY STUDY AND 

CALIBRATION OF THE RAPID PROTOTYPING TECHNIQUES 

 

 

3.1 General approach and considerations 

 

The parts produced by FF techniques contain a variety of dimensional and shape 

deviations from the original design. The sources of deviations (errors) were 

described in Chapter 2. These errors could occur during the building stage or 

after the process is completed, e.g. during the cooling down stage. In some cases 

post processing and material aging can additionally change the part size. The 

accumulation of uncertainties influences final part accuracy. 

 

Part accuracy is a major quality characteristic and thus is in constant 

consideration by RP research and development, especially during launching and 

implementation of new platform materials or processes into industrial practice. 

For that reason reliable generic methods for the investigation of geometrical 

deviation from the nominal are necessary. Some of the applications of these 

methods include: evaluation of process capability; setting dimensional/shape 

tolerances; process benchmarking and comparison; process chain design and 

investigation. 

 

Achieving sufficient part accuracy is a complex and challenging task since the 

size and shape of the final part depends on numerous technological parameters 

specific to the RP process in question. The optimum build, depends on process 



Chapter 3  Methods and Test Parts for Accuracy Study and Calibration 

of the Rapid Prototyping Techniques 

 

____________________________________________________________________ 

 

- 56 - 

parameters including the material, part shape and size, section geometry of the 

manufactured part and many other issues. 

 

For each RP process there are common manufacturing parameters affecting 

accuracy and these have to be investigated and taken into consideration. As an 

example the list of parameters for SLS (one of the main processes considered in 

this study) includes: 

- laser power (LP); 

- laser scan speed (LSp); 

- scan spacing (SCSP) or scanning hatch step; 

- part bed temperature (Tb); 

- part piston temperature (Tp); 

- feed cartridges temperatures (Tl – left feed and Tr – right feed); 

- scanning strategy (cross-hatch or non cross-hatch); 

- sorted or unsorted scanning fill; 

- layer thickness l; 

- warm-up and cool-down times; 

- scan count number (the number of times that a layer is scanned); 

- outline scanning; 

- beam offset; 

- bonus z compensation; 

- scaling factors in x, y and z direction; 

- worm-up part bed thickness; 

- left and right feed distance; 
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- part heater inner/outer ratio. 

By changing the above parameters one can change the energy delivered to the 

material, the warm-up/cooling-down conditions, and the structure of the built part 

or surface appearance with the ultimate purpose of producing a successful and 

good quality build. 

 

The manufacturing parameters listed above have great significance on the part 

integrity, strength, density, surface quality and shrinkage for different processes 

and materials. The analysis of process parameters is therefore one of the main 

streams of RP research.  For SLS the key process elements that affect part quality 

are the beam delivery and thermal control system (Nelson et al. 1995(a)). An 

overview of the research and corresponding investigated key parameters of the 

process are given in Table 3.1. Specific laser parameters - pulse duration, pulse 

frequency and number of pulse strikes, for sintering metallic powder, are 

optimised by Liao and Shie 2007. Some authors (Cooke et al. 2011) consider the 

process parameters as commercially sensitive, and do not provide their values.  
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Table 3.1 Authors and parameters investigated for SLS 

 Tb LP LSp SCSP l 
beam spot 

size 

delay 

period 

X or Y hatch 

pattern 

Gibson and Shi 1997         

Ho et al. 1999, 2003         

Williams and Deckard 

1998 

        

Miller et al. 1997         

Nelson et al. 1995(b)         

Wang et al. 2005         

Zhu et al. 2006         

Jain et al. 2008         

Raghunath and 

Pandey 2007 
        

Tontowi and Childs 

2001 
        

Clijsters et al. 2012         

 

For the SLA domain the influence of process parameters over the part quality is 

given in (Jiang 2011; Lee and Cho 2003; Patri and Venuvinod - Weiyin Ma 2004; 

Mahesh et al. 2004) and for FDM (Pennington et al. 2005; Lee et al. 2005; Panda 

et al. 2009; Giannatsis et al. 2012; Clijsters et al. 2012). 

 

Once an optimum set of parameters are established they are kept as a material’s 

“profile”. In particular cases of unexpected changes to part quality, adjustments 

to the parameters can be made according to the experience of the machine 

operator or platform manufacturer recommendations. Some platform 

manufacturers allow greater user input over the build parameters. For example 
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3D Systems/DTM provides access to more than 20 parameters although the three 

most influential process parameters in SLS are the laser power, laser scan speed 

and the temperatures. Other technology suppliers (EOS) prefer to limit the user 

input to the choice of “build style”. In SLA and 3D printing domains the control 

of parameters from the end user is usually more constrained. 

 

In most cases of RP fabrication it is practical to set the build parameters for 

optimum part strength, surface quality and build time. On this basis the accuracy 

in size and shape of the part can be targeted by applying scaling factors, beam 

offset compensation, part orientation and arrangement in the building chamber. 

This has been described (Yang et al. 2002) in two approaches to minimise shape 

distortion: adjusting the build conditions, and assigning some allowances to 

compensate for the distortions. 

 

Essentially the practice of accuracy research in FF requires the building of 

various test parts or series of parts and evaluating the differences between their 

nominal and actual dimensions and shapes. Linear and angular dimensions, 

point’s coordinates and surface roughness are the basic entities that are used to 

assess part geometry. Based on the results from measurements the dimensional 

compensation and geometrical tolerances can be calculated. In each process, the 

achieved tolerance is related to a number of variables, such as machine precision, 

the build material, the process parameters and the skill of the operator. 

 

A methodology for accuracy investigation of FF (RP) processes can be evaluated 

by the following elements: 
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 choice of test part; 

 type and range of geometrical entity for investigation; 

 measurement instruments; 

 measurement procedures; 

 representation of the data; 

 analysis and interpretation of the results; 

 accuracy evaluation and statistical validation of the results. 

 

The elements that distinguish between different methodologies for accuracy 

studies of RP processes are test parts and the related measured geometrical entity. 

The remaining elements are similar for most methodologies since they all 

predominantly follow similar metrology approaches. For this reason the 

presented research is focused our attention on collecting information and the 

subsequent classification of existing methodologies for the assessment and 

evaluation of RP accuracy according to specifically designed and implemented 

test parts and measured entities. 

 

 

3.2 Test parts for accuracy study – overview and classification 

 

The accuracy aspects to be investigated (e.g. deviations in linear or angular 

dimensions; evaluation of tolerances etc) and the purpose of the investigation 

itself (e.g. evaluation of the scaling characteristics; benchmarking etc) usually 

determines the test part geometry to be analysed. The most common types of test 

pieces can be classified in the following 4 groups: 
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 simplified geometry akin to a pyramid or staircase; 

 specifically designed test parts with variety of geometrical features on it; 

 real part models established as a benchmark part; 

 parts for surface quality investigation and/or mechanical testing. 

 

The above four groups of test parts and the methods they support are considered 

in the sections below, using the following structure: overview of the test piece; 

examples and literature sources; applications of the test piece; advantages of the 

methodology; limitations/disadvantages of the methodology. 

 

 

3.2.1 Pyramids 

 

Overview 

These are test parts purposely designed with simple geometry. Easy handling and 

straightforward measurement dictate the shape, which inevitably consists of 

steps. The steps allow for convenient measurement landings. Most platform 

manufacturers implemented their own pyramids for calibration and recommend 

them to the end-users. The typical pyramid shapes are very common and are 

broadly spread but some modifications could also be found. 

 

Examples and literature sources 
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Figure 3.1 shows typical examples of pyramid. Step shifting of the measurement 

landings is a typical feature that distinguishes the configuration of a test part as a 

pyramid. 

 

 

Figure 3.1 – Common pyramids shapes 
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Applications 

The usual application of pyramids is basic scaling and beam offset calibration. In 

some cases pyramids are used for complex accuracy investigations including 3D 

study of shrinkage (Dotchev et al. 2007). Pyramids have been utilised for process 

capabilities studies for rapid tooling (RT) (Pham et al. 1999, 2000). 

 

Advantages 

The main advantages of pyramids are that they are a simple clear shape that can 

be easy standardised. They allow convenient and accurate measurements with 

basic equipment, and trouble-free handling and storing. For quick checking and 

machine calibration these parts have proven their practicality. 

 

Limitations/Disadvantages 

The steps of pyramids that are used for measurement are never collinear with the 

investigated direction - usually x, y or z. In fact each step gives a deviation value 

in a parallel direction but always in different position in the build chamber. For 

that reason the calculated inaccuracy is not for x, y and z-axis only, although it is 

interpreted as such. 

 

The discrete change in dimensions (caused by the step effect) has a significant 

influence over the obtained results and chances of misleading results increases 

when the process inaccuracy increases. Particularly the consequences of uneven 

material shrinkage due to existing temperature gradients in the build chamber can 

be misinterpreted using a pyramid. More detailed analysis about the weakness of 

step effect geometries is given in Section 3.3. 
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Another limitation of pyramidal geometry is that, although the patterns for 

measurement are simple regular steps, automated measurement is not a 

straightforward procedure. This geometry often requires manual measurements, 

which can be laborious in the case of experiments that require many test parts in 

order to cover large build areas and reliability and repeatability of test results.  

 

Detailed analysis of the pyramid test parts and possible incorrect results that 

could be obtained was one of the objectives of this study. The analysis is 

presented in section 3.3 below. 

 

A variation of pyramidal test piece approach is the utilisation of specific single or 

multiple test pieces in form of a bar or block with some additional features on it 

(Figure 3.2). The lack of steps in such a configuration is an important advantage 

over the pyramid. However for investigation of a large area multiple test pieces 

are built, thus the price and labour required for the test is not justifiable. 
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Figure 3.2 Modified pyramid test parts and their arrangement for investigations 

 

 

3.2.2 Specifically designed test parts (benchmark test pieces) 

 

Overview 

These parts feature a variety of simple geometrical elements such as cones, 

cylinders, ribs, holes, etc. that are designed according to the specific 

requirements of the research. Investigations are conducted by measurement of the 

distances and angles between reference points, surface finish, as well as overall 

appearance. 
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Examples and literature sources 

A typical example of a specifically designed test part is shown in Figure 3.3 

(Kruth et al. 2005). The considerations that determine test part configuration are: 

 The sloping plane and the rounded corner - to verify the stair effect; 

 The presence of the thin plane - to indicate warping and curling; 

 Small holes, cylinders and thin walls - for testing the feasible precision 

and resolution of the process; 

 Sharp edges with different angles - to check the influence of heat 

accumulation at the angle tips and to discover scanning errors; 

 The integrated circular and rectangular overhanging surfaces - to prove 

the possibility of producing overhangs without the need for support 

structures; 

 All geometrical features can be used to measure process accuracy in x, y 

and z-direction. 

 

 

Figure 3.3 Benchmark part for investigation of SLS/SLM processes (Kruth et al . 

2005) 
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A summary of frequently used geometrical features on the benchmark parts and 

their functions is given in Table 3.2. 

 

Table 3.2 Summary of geometric features and their purposes for benchmarking 

(Mahesh 2005) 

 

Benchmarking case studies done by various researches are listed in (Chua et al. 

2010). Some examples of benchmark parts that have been used for variety of RP 

processes and applications are given in Figure 3.4. 
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Figure 3.4 Examples of specifically designed benchmark parts  

 

Applications 

Benchmark test parts can be used for process limitations analysis, process 

parameter optimisation, accuracy investigation, staircase effect study, analysis of 

curling, delamination, surface roughness, orange peel phenomenon, warping, 

resolution for holes and walls etc. Additionally mechanical tests can be 

performed on specimens taken from the benchmark parts. 
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A summary of areas for investigation, by specifically designed benchmark parts 

is provided in the cause and effect diagram in the Figure 3.5. 

 

 

Figure 3.5 Possible causes of problems that can be investigated by benchmark 

test piece (Mahesh 2004) 

 

Advantages 

Benchmark parts allow for more universal applications than other kinds of test 

piece. They can be designed either for general-purpose investigation, or for 

investigation of a particular problem; thus one part can be used to study a wide 

variety of process and/or material phenomenon. The shape and sizes of the 

features on the part can be flexibly adapted to the process and materials. If a 

standard test part for RP evaluation is ever to be established it is most likely to be 

in some form of benchmark part. 

 

Limitations/Disadvantages 
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A good benchmark part has to be designed according to carefully chosen 

considerations with respect to the manufacturing process utilised, material and 

aim of the study. The procedure of part configuration design could be subjective, 

which limits the possibility of creating a benchmark part with universal 

applications. 

 

Even though some benchmark parts have been used for comparison of a number 

of processes, they are not universal with regard to material. For instance the part 

in Figure 3.4 h) is used for investigation of 5 different processes including SLS 

(Ulbrich et al. 2012), however it would be unsuitable for polystyrene SLS as 

overhanging surfaces are problematic for post processing wax infiltration. 

 

Distortions of a particular shape could be considered as a special case rather than 

as a general characteristic of the material/process combination. For instance 

curling and warping of the benchmark parts in Figure 3.4 b) were used to “fine-

tune” the parameters until the best attainable features on that particular part can 

be built (Mahesh 2004, 2005, 2006). 

 

The measurement of complex benchmark features can be difficult and exposed to 

errors; the setting up the reference points and datum(s) for measurement can be a 

source of errors also and due to complex geometries automation of measurement 

is also impeded. 
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The shape of the benchmark parts is usually not simple, thus building and 

working with many parts for investigation of the entire build chamber is a costly 

procedure and not always justifiable. 

 

 

3.2.3 Real part model 

 

Overview 

As this approach is the closest to the actual use of the RP platforms it is probably 

the best approach for general observation but not for complex analysis of 

different phenomenon and revealing all possible sources of errors. Case studies 

and illustrations about improvements and developments are usually made using 

real parts as a test piece. Using a real part can initiate the beginning of a study, as 

well as a final proofing stage. However all analysis and modifications between 

these two manufacturing stages is best conducted on a specialised test part. In 

some specific applications a real part replica is essential to estimate the process 

accuracy and build time etc. Such bespoke prototypes are typical for medical use. 

In other medical applications, such as soft tissue facial prosthetics, where 

aesthetic appearance is more important, the judgement of accuracy and surface 

quality can be done more successfully by qualitative assessment rather than a 

quantitative one on a real part test. 
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Examples and literature sources (Figure 3.6) 

 

 

Figure 3.6 Examples of real part used as a benchmark piece in RP 
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Applications 

Study of the process, material or machine using a real part could be a preferable 

approach, especially if the particular industry targeted is new to the RP domain. 

Typical examples are medical, jewellery and art applications of RP processes.  

 

Advantages 

Results from such attribute tests are fast and easy for interpretation and if a quick 

conclusion or presentation is required this is the most effective approach. If a big 

production batch is needed, as in case of rapid manufacturing, the 

process/material/shape combination is best to be evaluated with a real part test.  

 

Limitations/Disadvantages 

General conclusions about the process cannot be made as the results have only a 

limited validation for the specific test part. Phenomenon that cause inaccuracies 

are difficult to reveal and analyse. Most real parts are suitable mainly for general 

observation and important errors could be omitted. Spatial orientation of the part 

for datum settings before measurement could be awkward. 

 

 

3.2.4 Parts for surface quality investigation and mechanical testing 

 

This is a variation of specifically designed benchmark parts for surface finish 

investigation and mechanical properties investigation. For surface study it is 

important that the test piece allows investigation on planes with different angles 
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and 3D orientation. Parts for mechanical properties testing usually follow the 

standard configurations and could also be performed along specific angles of 

orientation. 

 

Examples and literature sources (Figure 3.7) 

 

Figure 3.7 Examples of test parts for surface roughness and morphology study 
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3.3 Analysis of the disadvantages of the pyramids for shrinkage, scaling and 

accuracy study  

 

As mentioned in the previous paragraphs one of the main objectives of this 

research is to study the important drawbacks when pyramid test parts are used for 

process accuracy investigation and geometrical component compensation. These 

drawbacks require a more detailed analysis which is presented in this section. 

 

Pyramidal (staircase) style test parts (Figure 3.1) have been utilised in a large 

number of experimental studies on RP process accuracy. They are the most 

universal and widely used test parts in the FF domain as was proven by the 

literature review as well as the observed in house commercial practise. They are 

also recommended by equipment manufacturers and followed by other RP 

bureaus, SMEs and research organisations. These practices were also 

implemented worldwide by numerous industrial and research partners of the 

author who were involved in EU research networks such as SARE, FASTFAB, 

4M, EUMINAFAB, COTECH etc. The methodologies that utilise this type of test 

piece are based on measurements of the staircase dimensions and calculation of 

the material shrinkage and corresponding x, y, and z scaling factors. The results 

are sometimes used for research purposes to evaluate the distribution of part 

distortion along the build volume. The practice shows that significant errors in 

the manufactured part could occur if the scaling values obtained from pyramid 

test are incorrect. The potential sources of such incorrect data and misleading 

data interpretations are described below. 
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Analysis of the directional errors when using pyramid type of test parts 

The measurement of lengths between pyramid steps in the y-direction is shown in 

Figure 3.8. The idea of such measurements is usually to determine the difference 

between the nominal dimension ln and the final dimension lf  (produced by the 

machine) usually called the error (E). It can be expressed by: 

 

                (3.1) 

Where: 

 – error, 

   – actual length, 

   - nominal length  

 

As discussed in Chapter 2 there are substantial variations in accuracy over the 

part bed (or build chamber), which is the reason for changing the position of the 

features and feature lengths to be measured. It means that the distribution of 

errors E varies over the part bed defined as a plane (x, y). In other words the error 

is a function of two variables (x and y): 

 

               (3.2) 

 

If the shrinkage were homogeneous, then relative error would be constant and 

only one length measurement for x, y or z would be sufficient for investigation. In 

general practice it is important to know the length changes either in all directions 

(producing a map of entire field of distortions) or in some particular directions. 
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The pyramidal shape can only be used for an unidirectional investigation and 

does not allow for a choice of direction; it is constrained according to a pre-set 

shape, which is an inconvenient restriction. 

 

As illustrated in Figure 3.8, the direction in which the pyramid stairs advance is 

the "actual direction” that is investigated for error distribution, which may not 

necessarily be the “desired direction” for investigation. Failure to observe this 

correctly can result in misleading directional results. When the lengths mi are 

measured, each step is shifted in a direction defined by the angle  

 

 

Figure 3.8 Lengths and directions for measurements of pyramid shape test part 
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         (3.3) 

where: 

w - width of the step, 

h – height of the step. 

 

The measured lengths mi are step-arranged in the same direction. As a result 

instead of analysing distribution of y direction inaccuracy, the measurements give 

data along the “actual direction” inclined by the angle ‘alpha’. The “actual 

direction” is determined from the ratio of the pyramid step  w/h. In a similar 

manner, using the perpendicular landings of each step, the pyramid can be used 

for the calculation of inaccuracies in the x direction. Again the obtained results 

have to be assigned to the “actual direction” instead of the “desired direction” 

(x). 

 

The total rate of change of the function (3.2) that describes the error distribution 

in the part bed plane is given by: 

 

      
  

  
    

  

  
        (3.4) 

 

A length change in y direction only of the error function (3.2), when x = const, 

can be expressed as partial differential. In an engineering case, a change of length 

in y direction of a final element with size (   x   ) can be expressed by: 

      
  

  
         (3.5) 
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For illustration purposes the geometrical interpretation of Ey is depicted by the 

line “1” on the Figure 3.9. 

Similarly a length change in x direction only of the error function (3.2), when y = 

const, can be expressed by equation (3.6) and depicted by line “2” on Figure 3.9: 

      
  

  
          (3.6) 

 

 

Figure 3.9 Illustrative picture for possible error distribution 

 

When a pyramid test-part is used, the distribution of length changes calculated as 

described above, are in a direction depicted by the line “p” on the Figure 3.9. The 

trend of the changes in this direction could be significantly different from the 
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trend in x or y direction. Hence any conclusions about trend of length changes in 

direction x and y are not valid. 

 

In the case of the most popular pyramid shapes (a, b, i) on Figure 3.1 the extent 

of misleading results is increased. The results of measurements from such 

pyramids give an error distribution along a direction perpendicular to the 

investigated direction as the angle defined by the pyramid is = 90º. 

 

Most notably, should the misleading directional results be used for scaling parts 

in order to compensate shrinkage, there is still the potential for error. The scaling 

results and accuracy is improved by implementation the more reliable, proposed 

methodology is described in details in Chapter 5. 

 

The only way to eliminate the issue of misleading directional results is to make 

the angle = 0 (formula 3.3) this could be achieved by the use of a modified 

pyramid test part (such as that depicted in Figure 3.2 a). However this approach 

does not eliminate the next disadvantage - limited scope of the investigation. 

 

Limited scope of investigation. 

Both the pyramid and the ‘pole/bar’ type test parts (as shown in Figure 3.2 a) 

give results that analyse inaccuracy along a single direction only. The test piece 

in this respect is ineffective as it occupies a large area giving limited output data. 

If a bigger part or bed/chamber area has to be investigated, then modified 

pyramids are a better choice (Figure 3.2). Using this type of test piece and 

methodology design provides a more holistic picture for strain distribution, since 
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multiple test pieces are built over the entire part bed. Additional disadvantages of 

such a testing approach are the required time, price and labour for the 

experiment. These may not be justifiable and reliability would not be satisfactory. 

 

Measurement and calculation issues. 

In all cases of accuracy investigations on RP processes considered by the author 

the application of specific test pieces stipulates a specific metrology approach to 

the measurement of dimensional deviations. The types of entity that can be 

calculated on the bases of pyramid measurements are either: the total error of a 

given length or the error within the step increment. This is illustrated in Figure 

3.10. 
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Figure 3.10 Type of measurement and corresponding result for distortion. (i) - 

total lengths to the step; (ii) change of the step length (delta) 

 

The measured error of a given length (i) is widely used and this is justifiable in 

the cases when simple factors (or one single factor) are (is) affecting the accuracy 

besides acting in the same direction (e.g. shrinking). A typical example is the 

study of thermal (or phase transformation) effects of many RP processes where 

the error in x and y directions are studied, taking into account only the shrinkage 

error-causing factor. 
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If more complex factors (for example acting in different directions – shrinking 

and extension) are involved in part distortion (e.g. z-build or curling, laser 

parallax error or tessellation problems etc.) and the research is done according to 

(i) then the important error distribution can be concealed and hence the proper 

analysis of the error source(s) is not possible. An example of this situation is the 

accuracy study in z direction of SLS processes, which is a subject of more 

detailed analysis in Chapter 5 of this thesis. 

 

Assuming that the distortion of different parts of the test piece, built in different 

areas of the part bed are different (shrinkage and extension) then the 

measurements of the change in step lengths (ii) is more informative. An 

illustration of this is depicted in Figure 3.10 where all results from (i) are 

shrinkages although only the foremost left segment shrinks while the second and 

third segments are equally extended. For this reason misinformed decisions about 

scaling and achievable accuracy could be made. Obviously the more uneven the 

distortion of the part the more prominent the difference between the two kinds of 

measurements would be. 

 

The general conclusion from the information and analysis presented in Section 

3.3 and Section 3.2.1 could be summarised in the following statement: 

Although pyramids are very useful in daily and express practices, the inherent 

limitations and drawbacks of pyramidal geometries could be a source of 

significant misleading, if a comprehensive accuracy investigation relies on the 

results from pyramid test parts only. 
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3.4 Summary and conclusions 

 

The test parts illustrated in Section 3.2 have their specific advantages such as the 

capability of analysing all three axial dimensions simultaneously and simplicity in 

handling and post-processing, but could also encompass several limitations and 

disadvantages that need to be targeted for improvement. These disadvantages may be 

summarised as follows: 

 

(i) Investigating accuracy by measuring the lengths on step shaped parts 

introduces inaccuracy, as the land measured on each step requires a directional 

shift. This approach can therefore give a misleading distribution of results 

along the desired direction, since the data obtained actually varies with the 

angle of inclination for the required directional shift, which in most practical 

cases is of no use. Examples of test parts manufactured with a pyramidal or 

stepped geometry are shown in Figure 3.1; 

 

(ii) The popular test pieces analysed in this chapter do not present continuous 

distribution of the distortions over the entire part bed or build chamber as the 

area covered by test part is usually limited or the number of reference points 

for measurement is small; 

 

(iii) If the described methodologies are used the study of process accuracy within 

the entire build volume would require a great number of test pieces; 

 



Chapter 3  Methods and Test Parts for Accuracy Study and Calibration 

of the Rapid Prototyping Techniques 

 

____________________________________________________________________ 

 

- 85 - 

(iv) The results from measurements performed on the studied test pieces are not 

generic and relate to a specific part size or shape; 

 

(v) The routine acquisition of automatic measurements and data processing are not 

always possible due to the complex geometry of the samples; 

 

(vi) The initial settings of the coordinate system and datum for part measurement 

are complicated and the results could be sensitive to the settings. 

 

The question arises: ‘Does a test part and methodology for accuracy investigation 

that overcomes all existing disadvantages exist?’ The current answer to the proposed 

question is that a test part does not exist. Thus it is evident that there is scope and a 

necessary requirement for improvement. 

 

Problems due to improper scaling caused by pyramid test parts have been 

encountered a number of times, particularly in regard to the z direction. The most 

typical examples in this study were associated with tall SLS polystyrene parts that 

were manufactured (with regards to industrial practice) at the Manufacturing 

Engineering Centre at Cardiff University. 

 

Similarly a significant amount of curling inaccuracy effects was observed in RP 

processes such as SLA, SLS, FDM and SLA. The extent, magnitude and 

distribution of this phenomenon in both the vertical and horizontal directions were 

also not easy to quantify. A number of questions regarding dimensional accuracy 

exist concerning process chain tolerances and capabilities that can be solved if 
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reliable and consistent accuracy investigations are performed for each process in the 

chain. 

 

 

Inaccuracies in components can be caused by various complex factors such as the 

method of manufacture, specific build platform used, the material type, component 

size and post-processing procedures including handling etc. These factors lead to 

different distortion phenomenon such as shrinkage, elongation, bending and curling. 

On that basis it can be concluded that a more generic description of deviations in 

dimension and shear displacements of the manufactured part compared to the CAD 

model that can reveal size and shape inaccuracy is needed. The value and sign (+/-) 

of such deviations and their distribution in different directions could be conveniently 

used for accuracy studies as well as for part tolerancing at the design stage and 

component realisation. The pyramid shape test part cannot be used effectively for 

this purpose. 

 

Based on the presented analysis of sources of uncertainties and limitations of test 

parts, the conclusion can be made that a generic and reliable method for accuracy 

study is needed. The method should overcome the drawbacks of the most popular 

pyramid test parts and provide data about the type of distortions that parts could 

exhibit after FF manufacturing. The method should also provide comprehensive 

information about the distribution of errors of the process for investigation and along 

the entire working (build) volume of a platform. 
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The development and implementation of a Grid Method (GM) for accuracy 

investigation in RP and other manufacturing processes is presented in this research 

(next Chapter 4). It was initiated from the issues mentioned above. 

 

A more detailed analysis of inaccuracy distributions and the causes of uncertainties 

are given in the following chapters after the development, adaptation and specific 

implementations of GM for studying RP and MNT (micro & nano technology) 

processes. 
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CHAPTER 4  GRID METHOD AS A TECHNIQUE FOR INVESTIGATION 

OF THE DEVIATIONS IN SHAPE AND DIMENSION 

 

 

The need for better analysis of component manufactured using FF resulted in the 

formation of the GM. The initiation of this method in the area of RP accuracy 

investigations is a new approach and its development was a main objective of the 

presented research. Its aim was to give more generic and accurate descriptions of 

inaccuracies of RP processes and produced components. This is one of the  

contributions of this research. 

 

This chapter describes the basic concepts and main components of the GM 

methodology and the steps required for its implementation. The definitions of the 

formulae used to describe the deviations in terms of strains (both linear and 

angular) are given and the methodology of measurements and the calculations 

applied are presented. All descriptions and particularities are concisely presented 

in Figure 4.8 considering the process steps in form of flow diagram, from design 

of the test part to the application of the GM method and utilising the obtained 

data for manufacturing parts with improved quality.  

 

As shown in Chapter 2 the inaccuracies in produced components can be caused 

by various complex factors such as the method of manufacture, specific build 

platform used, the material type, component size and post-processing procedures 

including handling etc. These factors lead to various types of distortions, such as 

shrinkage, elongation, bending and curling, all of which influence final part 
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accuracy. The existing geometrical deviations from the nominal dimensions and 

shape can be classified as linear and angular. They are characterised by the 

following attributes: 

 sign: plus or minus (+/-), that identifies an increase or decrease of the 

entity of interest (length or angle); 

 direction: along which the deviation is calculated; 

 magnitude of deviations: calculated by defined formula. 

 

In general terms the manufactured part can be considered as ‘deformed’ in 

relation to the nominal design. The term ‘deformed’ here is used only figuratively 

since the stresses are only one of the various factors that influence the resulting 

inaccuracy, however the final strains (relative to the nominal dimensions) can be 

measured and considered as a geometrical representation of the dimensional and 

angular deviations from nominal. They could be calculated by the same formula 

as the traditional strains but will be referenced in this research as linear and 

angular deviations. The next section specifies the formulas and the characteristics 

that are used elsewhere in the research for process accuracy characterisation. 

 

4.1 Basic definitions of strains as linear and angular deviations from nominal 

 

A  G e o m e t r i c a l  definition and calculation of the term strain was adopted in 

this research to support a geometrical description of part distortion. Other terms 

that are used elsewhere in RP domain in reference to part inaccuracies are 

shrinkage, error, percentage deviations per unit length and rarely the angular 

deviations are mentioned. To provide greater clarity of the distortions the part is 
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undergoing, linear and angular deviations from nominal in small  areas can be 

calculated the same way as strain calculations would be in mechanics of solids.  

The aim of this Section is to clarify that the term strain is used for more generic 

descriptions of size and shape deviations, of a part or a section of a part.  

 

Regardless of the cause, it can be assumed that the change of dimensions or 

shape of a body manifests itself in the same geometrical appearance as strain. 

Pure body motions such as translation or rotation do not cause the body to change 

its shape and thus no strain is encountered. (Mielnik 1991). Strain is defined as 

being linear or shear (angular). 

 

The linear strains can be defined and calculated as engineering strains (  ) or as 

true strains ( ). True strains can also be called logarithmic or natural and 

engineering strain can be called nominal strains (Hosford and Caddell 1983). The 

linear true strain   is defined as the ratio of change in linear dimension to the 

instantaneous value of the dimension: 

    
  

 
         (4.1) 

    
  

 

 

  
   

 

  
       (4.2) 

Where l is the instantaneous length and l0 is the initial (nominal) length. 

 

The linear engineering strain    is defined as the ratio of the change in length to 

the original length of the same dimension: 

    
 

  
  

  

  
  

     

  
       (4.3) 
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Where l is the final length and l0 is the original length. l0 later refers to the 

nominal length. 

 

Engineering strains often provide more meaningful results, by representing 

results as percentages. 

 

Although there are mathematical differences in calculation between the two types 

of strains it should be noted that for strains of small magnitude the two 

definitions give identical values (Dieter 1988). The example from Table 4.1 gives 

ratios of the true to engineering strains (Hosford and Caddell 1983): 

 

Table 4.1 Illustrative example about similarity in values between true and 

engineering strains 

Engineering strain in % Ratio of true to engineering strain 

                         
  

 
          

                      
  

 
         

                      
  

 
         

                      
  

 
         

                      
  

 
         

 

The values from the Table 4.1 illustrate that the two definitions of strain give 

nearly identical values for relatively small strains. For up to 5% engineering 

strain the ratio is still very close to 1 and the approximation        can be 
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considered acceptable. 5% is the maximum range of relative errors in size for 

parts produced by most RP technologies and on that basis both calculations of 

strains are equally suitable. 

 

An advantage of describing the inaccuracy of parts manufactured by FF 

processes, in terms of strains, is the possibility it allows to combine analysis of 

linear and angular deviation from nominal. The angular change in a right angle is 

known as shear strain (   and is defined as the change in angle between two line 

segments which were previously mutually perpendicular. Engineering shear strain 

is the total shear strain. Figure 4.1 illustrates the shear (angular) strains in case of 

pure shear which is defined as: 

                (4.4) 

In the general case of shear deformation x and y can be calculated separately by the 

segments a, b, c and d (Figure 4.1). 

 

 

Figure 4.1 Shear strain illustration 

 

The Grid Method (GM) described in the next Section 4.2 gives approximated 

calculations of true strain at an area so small that it could be considered as a 
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point. The strain concept of extension and shear strain at a point is illustrated on 

Figure 4.2. The geometrical relations show strains at the point “A” if the nodes 

“ABCD” transform to “abcd”. Linear and shear strain at a point are calculated by 

formulas: 

   
   

  
 

   

  
              (4.5) 

    
   

  
          (4.6) 

    
   

  
          (4.7) 

Where: x is linear strain in direction x; y is linear strain in direction y and is 

shear strain. 

 

 

Figure 4.2 Plain strain involving small distortions (Mielnik 1991) 
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4.2 The concept of the Grid Method for calculations of linear and angular 

deviations from nominal 

 

The analysis methodology is based on examining linear and shear strains at many 

points throughout a test piece - in the form of a flat plate. To expose the strains, a 

square grid is applied to the CAD model of the test piece beforehand. After the 

plate is manufactured the actual grid is measured and compared with the CAD 

model. As the produced grid differs from the nominal CAD grid it can be 

considered as deformed and therefore the strains calculated. Several ways to 

estimate the strains of a deformed object are known, however the Coefficient or 

Square Grid Method is utilised here since it has been proven as the most effective 

(Dankert and Wanheim 1979; Gagov et al. 1995). This method was introduced by 

Bredendick in (Bredendick 1967, 1969) and has been implemented in metal 

forming analysis but not in the FF sector. 

 

The initial vectors 1


 and 2


 in Figure 4.3 represent the nominal part (i.e. the 

CAD model) and upon part realisation these become vectors 1


 and 2


. The 

strains due to the manufacturing process in the region of each intersection point 

“P” of the grid can be calculated from the coordinates of these vectors, which are 

denoted as follows: 

 

             after processing becomes           
    

  ; (4.8) 

             after processing becomes           
    

  . (4.9) 
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Figure 4.3 Square grid: a) - before processing and b) - after processing 

 

The linear strains ε calculated by the method are true (logarithmic) strains. The 

agreement with engineering strains is pointed in Table 4.1 and Section 4.1. 

 

The shear strains γ are defined as the change in angle between two initially 

perpendicular lines through a point. In the case of described method this is the 

angle between the vectors 1


 and 2


. 

 

The strains at point P after the processing are given by the following relations 

(Bredendick 1967, 1969): 
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                        (4.10) 

                        (4.11) 

            (4.12) 

            (4.13) 

Where:  

        
       

        (4.14) 

        
       

        (4.15) 

          
       

      (4.16) 

          
       

      (4.17) 

               (4.18) 

                    (4.19) 

                  (4.20) 

   
      

         
   when    ; 

(4.21) 

       when    ; (4.22) 

   
      

         
   when    ; 

(4.23) 

 

The calculated strains could be any pair of εx, εy, and εz depending on the test 

plate orientation during processing (Figure 4.4). 
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One advantage of such a methodology is the simple geometry of the test-part - a 

plate with square grid. The plate can be arbitrary in size and location within the 

build chamber (Figure 4.4). It is also suitable for handling and automatic 

measuring as well as being representative of various engineering parts. 

 

 

Figure 4.4 Examples of plate orientation in the build platform for investigation 

of dimensional deviations from nominals in different directions 
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4.3. Methodology for Grid Method implementation in the study of the RP 

processes 

 

Depending on the direction(s) of the dimensional and angular deviations to be 

investigated, the rectangle plate test part can be oriented vertically, horizontally 

or in any other direction as well as being positioned in different areas of the build 

chamber (Figure 4.4). If the plate is built horizontally the deviations εx and εy 

(Figure 4.4c) can be determined, if positioned vertically then either εz and εx 

(Figure 4.4a) or εz and εy (Figure 4.4b) can be calculated. By building a set of 

plates with a given orientation and in different positions in the build chamber, a 

three dimensional concept and model of the distribution of dimensional 

deviations over the entire build envelope can be created. 

 

The test plate geometry consists of through holes, which represent the grid 

intersection points as illustrated in Figure 4.3. The plate has to be built with no 

scaling in x, y and z directions if the possible inaccuracy of the process without 

correction is to be investigated. After building the test part, it has to be cleaned 

and the holes cleared of material following the procedure recommended by the 

platform producer and associated operator experience. 

 

A coordinate measuring machine (CMM) can be used to automatically measure 

each hole centre coordinates with an optical probe (Figures 4.5 and 4.6). For the 

purpose of this research, specialised software was developed to set the datum, 

coordinate axis and to control the objective measurement movements of the 

CMM (the program code is given in Appendix 1). 
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The measuring procedure follows these steps: 

 adjustment the optical parameters (lens magnification, brightness, 

contrast, focus); 

 set the datum point; 

 align the axis; 

 start automated measurement of the reference points; 

 save the data. 

One advantage of such a methodology is that the hole centres can be measured 

routinely, within minutes, after the initial datum point and axis are set. The 

setting and the screenshot of the measuring software window are shown in Figure 

4.5 and 4.6. 

 

 

Figure 4.5 Picture of plate measuring process 
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Figure 4.6 Screen shot of the Mitotoyo QuickVision Pro software window 

 

The measured x and y coordinates of all hole centres, which represent a grid point 

after processing, are saved as a file together with their nominal values from the 

CAD file. This data is used as input data for linear and angular deviations  from 

nominal calculations in a specially created MS Excel spreadsheet program. 

Calculations of linear ε and shear γ deviations are carried out according to the 

formulas for strain calculations described in Section 4.2. The next step in data 

processing includes a specialised MatLab program that was also created in this 

research. The role of the MatLab software is to analyse the results and generate a 

3D visualisation of the distributions of linear and shear deviations over the part 

surface. The next step of the software route is to correct part geometry by 

applying some compensation value for process distortion. This could involve 
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either CAD software, specialised RP software (Magics RP) or the CAM software 

of the platform. The main components and steps sequences of the methodology 

are depicted on Figure 4.8. 

 

 

4.4 Test plate geometry considerations 

 

An important element of the methodology was the determination of test plate 

dimensions and geometry of the grid features used as reference points. This was 

the first step in methodology implementation as depicted on Figure 4.8 in the 

block "Design of the test plate". The overall sizes of the test part were determined 

by the area and volume that were the subject of accuracy investigation as well as 

the objectives and desired precision of the study. All test plate dimensions are 

governed by three critical parameters: 

 the grid density (step or cell size), 

 the hole diameter and, 

 the plate thickness. 

Determination of an optimal plate configuration may require some preliminary 

experiments and trials using the previous experience as a starting point.  The 

above parameters could depend on: 

 the process to be examined, 

 equipment used, 

 build material, 

 area of building chamber for investigation, 

 aim of research etc. 
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The appropriate grid density can be established by taking into account: 

 the specific application of the methodology, 

 the total build size, 

 the technical specification of the platform, 

 the chosen strain deviation between the neighbouring cells, 

 additional specific to the investigated process considerations, e.g. material 

properties (viscosity, strength etc.) 

 

A test piece for studying the SLS processing of Polystyrene (PS) is given below 

as an example for practical determination of the critical plate characteristics.  

The grid steps were determined to be 15 mm between hole centres, for 

investigation of the total build chamber. This step size gave a continuous 

graphical representation of the process accuracy and a practical, usable data  set. 

 

The most appropriate hole diameter, for the same PS material and process as 

above, was found to be 2.2 mm. Larger hole sizes do not correspond to the 

circular measuring tool shown in Figure 4.6 as it exceeds the viewfinder range. 

Conversely, if the hole is too small then cleaning and opening of the holes is 

impeded as the powder inside the hole partially sinters due to the increased 

temperature of the enclosure and consequently some damaging of the hole edge 

may take place, potentially increasing the error of the measurement. 

 

Trials with different plate thicknesses showed that the thinner the plate, the easier 

it was to clean and open the holes. However SLS polystyrene is a weak, porous 
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material (to allow for wax infiltration) as its main purpose is for investment 

casting patterns. For the large overall plate size of (x = 225mm; z = 330mm) the 

manageable thickness was found to be at least 8 mm. This thickness is also 

representative for the purpose of PS SLS components as sacrificial patterns for 

large body type investment casting parts. 

 

The implementation of this method for other materials and RP technologies such 

as Micro Stereolithography (μSLA) would require different dimensions to the 

above. However the considerations and underlying theory would remain the 

same. The details for the test plate geometry applied to study other processes and 

materials are given in Chapter 6. 

 

 

4.5 Non-process related errors 

 

Some unpredictable sources of errors can contribute to excessively large 

deviations of strains at a particular point on the grid. In common consideration, 

such sources can be regarded as not typical of general process accuracy. 

Examples of such sources are: 

 local contamination of the build material; 

 temporary halt of the build process; 

 software interpolation error; 

 damaged holes due to cleaning and holding etc.  
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In such cases the values of strains can be averaged to the strains in the 

neighbouring grid points. To implement this, any problematic hole was detected 

and its coordinates changed according to the adjacent hole coordinates, as shown 

in Figure 4.7. The assumption is that the hole initially lay on the intersection 

point of the diagonals will remain on the intersection point of the same diagonals 

after the approximation. 

 

 

Figure 4.7 Method of averaging the coordinates of the problematic holes 

 

The number of the reference points on the test-plate could be very large in order 

to produce smooth representation of strain distribution. This increases the 

probability of non-process related errors occurring. 

 

A typical example of non-process related errors is damaged grid features for 

measurements on the test-plate (hole, pin, cross). The hole for instance may not 

be formed concentrically or blocked by the post process cleansing. In these cases 

the above-described procedure for averaging could be applied. 
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Figure 4.8 Process flowchart for the GM methodology 

 



Chapter 4  Grid Method as a Technique for Investigation of the 

Deviations in Shape and Dimension 

 

____________________________________________________________________ 

 

- 106 - 

4.6 Accuracy analyses and statistical validation of the plate measurement 

method 

 

A statistical approach was applied to validate and analyse the uncertainty of the 

proposed experimental methodology and the cause of potential errors. The main 

objective was to estimate the uncertainty in the plate measurement and to 

compare it with the uncertainty in the strains of a studied process. 

 

Initial tests were conducted to determine the sufficient number of measurements 

required to obtain acceptable consistency of the results. After conducting five 

measurements an adequately small standard deviation of 0.0005 (confidence level 

less than 0.05) and a confidence interval of 0.0003 for strain calculation in a 

randomly selected cell were achieved. On that basis five measurements was 

considered sufficient to determine the measurement variations in all validation 

experiments described below. In addition these five experiments proved that the 

results obtained for measurement were normally distributed. 

 

The variability of the measurements in this methodology manifests itself in a 

number of ways. The Measurement System Analysis (MSA) will address the 

following issues (Bicheno and Catherwood, 2005): 

 

(i) The accuracy of the measurement system (optical or other) that was used to 

measure the grid. The absolute error in the utilised optical CMM measurement 

equipment (optical + mechanical systems) according to the manufacturer 

(Mitotoyo Quick Vision Pro) specification was 1.5 µm which is negligible (< 
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0.05%) compared to the measured distances, which was in the range of 2.5 to 15 

mm. 

 

(ii) The repeatability of the measurements of the distance between the centres of 

the holes. The repeatability of the measuring system depends on the CMM 

equipment and the software that approximates the hole contours. Since the errors 

from CMM are negligible compared to the measured values it will be salient to 

investigate only the repeatability of the software to determine if the contour of 

hole is consistently measured each time. If there are significant deviations in the 

approximations of the hole contours this will lead to errors in estimation of the 

positions of their centres and unreliable strain calculations. 

 

A plate with overall dimensions of (x=165mm; z=225mm) mm was used for the 

validation process. This plate generated a matrix of 165 through holes 

(=2.2mm), at a centre distance (also referred to as step size) of 15mm apart 

(Figure 4.9). The plate was measured 5 times after it had been positioned and 

oriented without further movement. εx and εz were then calculated for the 

existing 140 grid cells after each subsequent measurement. In order to apply a 

conservative approach (the worse accuracy scenario) the cell with the highest 

value of variations in calculated strains was chosen for repeatability evaluation of 

measurements. The results of measurements without part movement are shown in 

Table 4.2 in the columns “no move”. 
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Figure 4.9 Plate for statistical validation of measurements 

 

Table 4.2 Statistical results for strain calculations 

 εx 

no move 

εz 

no move 

εx 

with move 

εz 

with move 

Number of measurement: 5 5 5 5 

Average strains: 0.018 0.024 -0.014 0.021 

Standard Deviations (): 0.00057 0.00018 0.00067 0.00049 

Range: 3.3E-07 3.1E-08 4.5E-07 2.5E-07 

Prediction: 0.0011 0.00063 0.00095 0.00063 

Error in %: 6.3 2.6 6.9 2.9 
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(iii) Reproducibility of the system. The orientation and location (plate 

positioning and initial settings) of the plate before measurement required 

validation since the CMM requires a manual setup to define a datum point and 

coordinate axis orientation before beginning the automatic measurement process. 

The consequence of these procedures would define the sum of the repeatability 

and reproducibility (total) variations of the system especially when different 

operators perform measurements. The variation of the calculated data was 

estimated after each setting and measurement performed by a different operator 

and they were considered as total measurement variations.  

 

A similar statistical approach as in the repeatability evaluation was carried out, 

this time moving the plate and setting it up each time before it is measured. The 

results of measurements taken after part movement are shown in Table 4.2 in the 

columns “with move”. 

 

To calculate the reproducibility component (reproducibility) of the measurement 

deviations the following formula was applied: 

            
                 

                  
     (4.24) 

Where: 

repeatability is the standard deviation when the plate is not moved, 

measurement is the “total” standard deviation when the plate is moved. 
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If the maximum deviations for strains εx (repeatability = 0.00057 and 

measurement = 0.00067) are taken from Table 4.2 the overall value of the 

deviation due to the reproducibility factor would be reproducibility = 0.00035. 

This proves that the reproducibility component in the measurement deviation is 

significantly smaller than the repeatability component of the measuring process 

deviation, proving that the methodology is relatively independent from a 

measurement set up context. More over the total variation of the measurement 

system was proved to be very low. Furthermore the confidence interval 

calculated by measurement (confidence level 0.05) would be 0.00059 which is 

two orders of magnitude smaller than the absolute values of the average strains, 

presented in Table 4.2 (strains could be positive or negative). 

 

The values of the strains determined in all experiments conducted in this study do 

not exceed 0.03 (3% engineering strain). From Table 4.2 and presented 

estimations it can be seen that the variations in the measurements are at least two 

orders of magnitude smaller than the measured quantities, which in turn makes 

the errors acceptable compared to the total errors of the examined processes. 

 

Therefore, it can be concluded that the measurements are reliable and the 

dependability of the methodology is proved. 
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4.7 Summary and conclusions 

 

1. This work has shown that a single GM test piece and routine measurement 

procedure can be utilised to estimate the distribution of linear and angular 

deviations from the nominal sizes of FF fabricated parts. The calculations of the 

above entities can be done in a similar way to the geometrical characteristics of 

the strains developed in solid mechanics. 

 

2. The geometry of the utilised test piece has advantages over the stair case 

(pyramid) type test pieces since it gives correct data about inaccuracy distribution 

along a particular direction or particular axes. This is in contrast to the stair case 

where each measuring landing is located in different places of the part bed.  

 

3. When compared to the popular test pieces analysed in Chapter 3 the GM 

methodology can present the continuous distribution of distortions over the entire 

part or build chamber. Furthermore these results can be achieved with a single 

test piece. 

 

4. Statistical validation of the methodology has been completed, showing that the 

variations in the measurements are at least two orders of magnitude smaller than 

the measured quantities. This is considered to mean that the errors are acceptable 

compared to the total errors of the examined processes. Therefore, it can be 

concluded that the measurements are reliable and the dependability of the 

methodology is approved. 
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5. The routine automatic measurements and data processing are easily achieved 

due to the simple geometry of the samples. The initial settings of the coordinate 

system and datum for part measurement are not complicated and the test results 

are less sensitive to the settings compared to the conventional test-piece 

approach. The fundamental reason for this advantageous of GM is that the strains 

are estimated on measurement of the difference in distances or angles rather than 

measurements of their absolute values. This also means that the methodology is 

less sensitive to the systematic errors of measurement equipment. 
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CHAPTER 5  GRID METHOD ANALYSES AND MODELLING OF THE 

GEOMETRICAL DISTORTIONS IN THE SLS PROCESSES 

 

 

The need to understand the SLS process phenomena that can result in distortions of 

manufactured components and implementation of the GM for calibration and process 

accuracy improvement were the main motivations behind the development of the 

presented methodology. 

 

For many years the SLS processes were studied and attempts were made to improve 

the consistency of the quality in produced parts. This improvement is imperative for 

the efficiency of SLS as a mature manufacturing process. Therefore the investigation 

of the process by means of the developed GM methodology was one of the main 

objectives of this research. 

 

Polystyrene (PS) SLS material was chosen as a target for accuracy investigation 

because it is one of the most commonly used materials in RP practices, despite the 

numerous problems attributed to the complexity of the production process chain. 

With regards to commercial interest in this material during the last 10 years, the total 

share of orders received by the Manufacturing Engineering Centre (MEC) for PS 

SLS produced parts ranged from 15% to 30%-35% of the total number of orders; 

proving the significant commercial interest to this material. Moreover there are many 

studies on this technology that provide a basis to compare the effectiveness of the 

developed GM methodology. It is intended that the GM method, once shown to be 

effective, can be applied to other processes.  
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5.1 Overview of Selective Laser Sintering of Polystyrene powder 

 

Polystyrene material for SLS processing is best known by its trade name Castform. 

The material is used to crate patterns for investment metal casting - Figure 5.1. 

‘Green’ parts produced by SLS are low density with approximately 45% of the 

density of the solid material. Users then infiltrate the green patterns with foundry 

wax. Wax fills the pores of the parts, making them strong enough for handling, 

finishing, shipping, casting tree preparation and embedding. The material does not 

require significant modifications to the foundry equipment and procedures in respect 

to the common foundry practice of burning the wax patterns. It also has very low 

residual ash content (<0.02%). All this makes polystyrene SLS patterns behave 

much like the most desired investment casting material - wax. The material is 

amorphous and during the sintering process is subject to rheological deformations 

due to high temperature and weight pressure. 

 

In selective laser sintering of the polystyrene powder there are numerous unsolved 

accuracy problems; notably the problem of dimensional accuracy along the 

lengthwise vertical (or z) direction. In this direction the component dimensions are 

nonlinearly distorted and distributions of dimensional deviations within the total 

build volume are not always clear. This impedes proper part scaling for dimensional 

compensation, which is crucial for final accuracy. Since this task is rather 

challenging some researchers find that the only possible way around the problem is 

to produce a preliminary mock part and measure it, correcting the machine scaling 

parameters accordingly for the next trial (Dotchev et al. 2007). Such an approach 

could easily double the lead time and cost. 
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Figure 5.1 a) Casting tree with infiltrated Castform pattern; b) final metal casting 

 

The distortions induced in the RP parts in the vertical direction of the building 

process are caused by various sources analysed in paragraph 2.1. More specifically 

in the context of SLS of PS, the most influential source of error is shrinkage. The 

variations in shrinkage depend of factors such as: 

 total build height;  

 part height;  

 part shape and wall thickness;  

 part arrangement in the build;  

 sintering parameters and variation in temperature. 
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The final part might be correct in overall height, yet usually exhibits more shrinkage 

in lower sections, less or none at some levels, and may even show, paradoxically at 

first glance, elongation in upper sections as the author's experience suggests. 

 

In general, as considered in this chapter, the term shrinkage does not accurately 

reflect the complexity of the expected part inaccuracies. The prediction and 

determination of part distortion and taking into consideration of wax infiltration 

post-processing additionally complicates achieving the desired accuracy. Some 

versions of RP machine software allow users to apply nonlinear scaling as a formula 

with x, y and z as variables. This option cannot be utilised effectively until the type 

of distortions and their directional distribution are investigated and quantitatively 

measured. 

 

The aim of the research described in this chapter is to investigate dimensional and 

shape inaccuracies in SLS PS by calculating the linear and angular dimensional 

deviations from nominal by means of calculating the respective strains using the 

GM.  

 

The GM method for studying the above RP material and manufacturing method, can 

be implemented in analysing the following suggested areas: 

(i) process accuracy and precision study;  

(ii) analysing of sources of errors;  

(iii) scaling factors calculation;  

(iv) assessment of curling and other distortion phenomena; 
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(v) comparative studies of different processes; 

(vi) facilitating process chains integration; 

(vii) developing mathematical models of inaccuracy distribution; 

(viii) monitoring the specific equipment for technical problems or maintenance 

requirements. 

 

The GM methodology is comprehensively applied not only to the SLS of 

Polystyrene but also for other materials and processes with similar applications and 

corresponding accuracy problems such as SLS of Polyamide (PA) and the Thermojet 

3D wax printer. An example of the latter is given in the end of this chapter. 

 

 

5.2 Analyses of the geometrical variations caused by the physical processes in 

Selective Laser Sintering Castform 

 

The ultimate aim of the described methodology is to characterize and analyse the 3D 

distribution of geometrical deviations from the nominal over the entire region of 

interest. In the case of SLS processes the values of the deviations vary considerably 

within the build volume. The factors that determine the plate distortion in the various 

directions could be summarised as follows: 

(i) Along the x and y directions – The central part of the test plate would retain 

residual heat for a longer period than the part extremities, thus the cooling rate and 

shrinkage of the material positioned in the middle of the part bed would be slower 

than that of the material which is close to the wall. 



Chapter 5  Grid Method Analyses and Modelling of the Geometrical 

Distortions in the SLS Processes 

 

____________________________________________________________________ 

 

- 118 - 

(ii) Along z direction – the sintered sections of the part shrink whilst the part bed 

piston moves down with constant increments. Each new layer of fresh powder 

compensates to a greater extent the z shrinkage of the previous layers. The factors 

described in point (i) are applicable for z direction also. 

 

The most challenging direction to maintain accurate sizes in the SLS process is the 

vertical one. In this direction the accuracy is influenced by both factors (i) and (ii). 

For this reason the grid methodology is applied to study mainly εz distribution. 

 

Apart from the major factors described above other issues, which are discussed later 

in the chapter, may play significant and somewhat complicated role in the plate 

distortion.  

 

5.2.1 Experimental set up 

 

Machine 

The main sintering machine used for the experiments described below was 3D 

Systems CI 2500. Complimentary experiments on DTM 2000 and 2500 Plus were 

also conducted in order to support the general conclusions from the observations 

regarding the process and material behaviour. 

 

Material 

Castform PS. This is the 3D trade name of polystyrene powder material for SLS 

process. 
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Test piece design and orientation 

To examine the most of the build area vertical plates with orientations shown in 

Figure 5.2 were produced. The sizes of the test plate were x=235mm; z=310mm. The 

grid step was 15mm. This provides grid of 15 columns and 20 rows on the plate. The 

reference hole diameter was 2.2mm. 

 

 

Figure 5.2 Plate orientations for vertical accuracy investigation 

 

Sintering parameters 

The sintering parameters were kept at their optimum values for the Castform 

material. These parameters were established during the commercial practice in order 

to fulfil requirements for part surface quality, strength and integrity with acceptable 

building time taking into consideration the platform manufacturer recommendations. 

The values of main process parameters were: 

Laser power = 7W;  

Outline power = 0W/(no);  

Slicer Fill Scan Spacing = 0.10mm;  

Cross Fill Scan = 1/(yes);  

Warm-up = 25mm;  

Cool-down = 2mm;  
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Sorted Enable = 1/(yes);  

Left/Right feed distance = 0.254mm;  

Powder Layer Thickness = 0.15mm;  

Left/Right Feed Set Point = 40C;  

Part Cylinder Heater Enable = 1/(yes);  

Part Cylinder Heater Set Point = 60C;  

Part Heater Set Point = 85C;  

In/Out ratio = 1;  

Scan speed = 5080mm/s (200in/s);  

Piston Heater Enable = 1/(yes);  

Piston Heater Set Point = 60C;  

Beam offset x = 0.112;  

Beam offset y = 0.196.  

These set of parameters were stored for use as “material default settings” in platform 

CAM software. As the objective of the study was to reveal the distortions in the part 

due to the process no scaling factors were applied. 

 

 

5.2.2 Results and discussions 

 

It was found that εz distributions in both test plates orientation shown on Fig. 5.2 

were similar regardless of their position. The results from plate oriented according 

Figure 5.2(a) are depicted in Figures 5.3 and 5.4 and analysed bellow. The similarity 
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in the shapes of εz surfaces obtained from various plates built vertically suggested 

common causes for the distortions. 

 

 

 

Figure 5.3 3D visualisation of εz (vertical size deviations from nominal) distribution 

in the (x, z) plane produced by GM 
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The mean value of the 15 reference points along each row of the plate gives a point 

of the line shown on Figure 5.4. As an example the highlighted row “10” from 

Figure 5.3 gives the position of the point “10” on the Figure 5.4. 

 

 

Figure 5.4 Distribution of εz -vertical deviation of the sizes from nominal 

 

The line "Mean" on the Figure 5.4 is obtained by calculation of the mean value of εz 

along each row from the test plate. The lines "Std+" and "Std-" show standard 

deviation of εz along horizontal direction. 
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The shape of the curves in Figure 5.4 reinforces the requirement for further attempts 

to establish a general mathematical model of the material’s behaviour along the z 

direction and to suggest a polynomial formula which could be utilised in the 

supporting computer-aided manufacturing (CAM) software for dimensional 

compensation. 

 

 

Figure 5.5 Schematic distribution of εz in vertical direction and specific 

contributions to it 

 

In Figure 5.5 the εz axis represents the elongation or shrinkage of the sintered part 

along the z-direction. Schematically the curve (b) corresponds to the real distortion 

curve calculated by GM as illustrated in Figure 5.4. Up to approximately    
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      the shrinkage in the part slightly increase. After this extremity the shrinkage 

decreases and becomes zero at           i.e. at this height the part is most 

accurate. The volumes above this ‘neutral’ level (znr) exhibit elongation rather than 

shrinkage. Two immediate conclusions could be made from the above observations: 

 

1. Parts shorter than the ‘neutral’ height (znr) will always exhibit shorter z 

dimensions between features, and the overall size will be smaller than the nominal. 

2. Parts higher than znr have elongated features in z direction above the neutral line 

although overall part size may be shorter. 

 

This means that in SLS of PS, features along the z axis and vertical distances 

between functional surfaces may have either positive or negative dimensional 

changes. 

 

Three major factors contributing to the material shrinkage could be suggested with 

reference to Figure 5.5 to explain the shape of the εz distribution (Figure 5.3 and 5.4) 

repeatedly observed in this research as well as author's experience in the Castform 

SLS commercial practise: 

(i) Thermal shrinkage of the material. This shrinkage is constant and depends on 

the linear coefficient of thermal expansion according the equation (2.3). It is 

usually averaged by a horizontal pyramid test part and constant shrinkage 

compensation is applied to the x and y dimensions of the part; 

(ii) Gravity induced shrinkage This deformation is associated with the fact that 

upper layers press the lower layers under temperature above glass transition (Tg) 
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whereas the viscosity of the material is elevated and rheological behaviour is more 

prominent; 

(iii) Z-specific deviation This deviation is associated with the mechanics of the 

layering process. As the volume below the currently sintered layer shrinks thermally, 

the part bed also moves down simultaneously to allow for new layer fabrication. A 

new layer of powder is spread across the uppermost layer and compensate for this z-

direction sinking. The upper the layer is, the greater the sinking effect is and thus a 

greater amount of new powder is applied for the next layer by the recoating system. 

 

The superposition of factors (i) and (ii) (both causing shrinkage) will result in a 

curve, which is schematically depicted as (a) on Figure 5.5. If the factor (iii) is 

superimposed onto the curve (a) it will be translated and twisted towards + εz. The 

resulting curve (b) is the type of curve observed in all parts of the building area as 

shown in Figure 5.4 irrespective of their x and y position. The variations in shape and 

curvature can be explained by the different ‘temperature history’ of build area. 

 

The distribution of z dimensional deviation from nominal in the vertical direction 

revealed by GM suggests that the actual layer thickness is not constant and equal to 

the value set by build profile parameters. Variations in layer thickness matching the 

dimensional deviation were confirmed by a Scanning Electron Microscopy (SEM) 

study. Samples at heights of 15 mm, 60 mm, 105 mm, 150 mm and 195 mm were 

taken from the test plate. The samples were sputter coated with Gold/Palladium 

(Au/Pd) in order to prevent electron-charging effects during SEM imaging. The layer 

thicknesses have been measured from the SEM image using specialised micro 

imaging software. As can be seen from the typical sample picture on Figure 5.6 the 
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layers are distinguished, although not sharply defined. To increase the reliability of 

measurement, ten layers of each sample were measured and the mean values of layer 

thickness were then calculated. The maximum standard deviation in measurement of 

the layer thicknesses was found to be 11.5 μm. The plotted results of layer thickness 

against corresponding z position in the build are presented on Figure 5.7. Noticeably 

the shape and trend of the curve shows change of layer thickness with z that 

confirmed the shape of deviation curves obtained by GM (Figure 5.4). This is 

another illustration of complex nonlinear distribution of deviations in the z-direction 

revealed by implementing the SEM imaging. 

 
Figure 5.6 Scanning electron image of SLS Castform sintered layers 

 

 
Figure 5.7 Layer thicknesses of SLS Castform depending on their z position 



Chapter 5  Grid Method Analyses and Modelling of the Geometrical 

Distortions in the SLS Processes 

 

____________________________________________________________________ 

 

- 127 - 

Experiments and calculations that were conducted on horizontal plates (built in x, y 

plane) showed less deviation in sizes. This conformed to the results of x given in 

Appendix 2. Distributions of x and y can be explained by the influence of thermal 

factors on the shrinkage and part distortions that are described in section 2.1.2.2. 

 

5.3 Implementation of the GM calibration in the SLS RP practice and 

modelling of the distortions 

 

To compensate for the distortions after the manufacturing process, the nominal sizes 

from the CAD file are scaled accordingly. The possibility for accurate calculation of 

scaling factors that will compensate the specific and complex part distortions that 

occur in RP manufacturing processes is an important application of GM. In common 

RP practice the scaling factors are determined experimentally (DTM 1999), (Wang 

1999), (EOS 2003) and calculated by the formula: 

 

 

     
  

 
         (5.1) 

where 

z0 - is the nominal size from the CAD model, 

z - is the measured size achieve from the process. 

 

From equation (4.3) and (5.1) the scaling factor can be expressed in terms of strains 

as: 
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        (5.2) 

 

The above calculation of scaling by formula for engineering strains that was used to 

determine the dimensional deviations from nominal, introduces a negligible error as 

per the practice described in Paragraph 4.1 and is in the range illustrated in Table 

4.1. 

 

The results of GM accuracy investigation, allows the scaling factors to be calculated 

as a function of the x, y, z coordinates and an approximation formula applied to the 

CAD model compensating the distortions. Thus it is possible for part sizes to be 

compensated with greater correctness according to their position in the build 

chamber and also their location within the manufactured part itself. Furthermore 

instead of average scaling formulae, distribution of deviations along a specific 

direction can be used for formula scaling approximation. Separate experiments were 

conducted to verify the reliability of the GM for part scaling. 

 

Experimental set up  

 

The sizes and grid parameters of the plates were: 

x = 235mm; 

z = 175mm; 

Grid step = 15mm; 

Number of rows = 11; 

Number of columns = 15; 
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Thickness = 8mm; 

Holes diameter = 2.2mm. 

Picture of a test piece (plate) for process scaling is shown in Figure 5.8. 

 

 

Figure 5.8 Picture of the plate for scaling verification 

 

Plate shown on Figure 5.8 was built in the centre of the part bed and it was oriented 

as shown in Figure 5.2(a). 

 

Results 

 

Distribution of z which was used for scaling calculations is depicted in Figure 5.9. 

Detailed results are given in Appendix 2. The abnormal deviation along Row 4 can 

be classified as accidental as described in Section 2.1.5. No further abnormalities of 
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such a character were observed in this experiment and its influence was negligible 

after applying the approximation formula for scaling. 

 

 

Figure 5.9 z distribution in calibration plate 
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Scaling factors can be calculated either on the basis of the data from particular set of 

columns or by averaging the scaling over all columns (Figure 5.10). First approach 

would be more applicable if a specific build area of the platform is targeted for 

calibration. For overall calibration and for large parts the 'averaging' approach is 

more suitable; it was applied in this research. 

 

Figure 5.10 Scaling factor calculated by the average of Sc for the corresponding z 

 

Application 

 

For this research two plates were built simultaneously side by side - one without 

scaling and another with applied scaling factors according to the analytical formula 

(scaling as a function of z height) obtained from the test-plate described above 

(Figure 5.10): 

                                  (5.3) 

Where: 

Scz is scaling factor in z (vertical) direction. 
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Comparison of z (dimensional deviations from nominal per unit length) distribution 

in the SLS plate before and after correction following the GM scaling calculations is 

illustrated in Figure 5.11, Figure 5.12, Figure 5.13 and 5.14. It can be seen that the 

variation of z in the part without scaling is from -0.018 (-1.8%) to 0.013 (1.3%) 

depending on z. After scaling by formula, the values of z are substantially reduced 

(up to 3 times) within the range of +/- 0.006 (0.6%) and are symmetrically 

distributed around zero for the entire height of the part. 
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Figure 5.11 3D z distribution in plate built without scaling 

 

 

Figure 5.12 3D z distribution in plate build with scaling 
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Figure 5.13 Side view of z distribution surface in plate build without scaling 

 

 

Figure 5.14 Side view of z distribution in plate build with scaling 
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Conclusions about process accuracy and precision can be made from GM 

investigation and can be used for scaling by analysis of the shape and position of the 

3-D distribution surface of . The application of the GM for accuracy study and 

calibration of different RP platforms (including SLS, micro SLA, micro-CNC 

milling, ion beam ablation) (Minev et al. 2011, Minev et al. 2010) revealed several 

types of strain distribution surfaces. They are summarised and illustrated 

schematically on Figure 5.15 where the bold lines represent the mean values of a 

deviations in certain direction. The results from the real experiment that was 

conducted for scaling calculations of SLS Castform demonstrated scenario a) and d). 

They are given in Appendix 2. 

 

Accuracy is presented by the deviation of the mean value from 0, while the precision 

is measured by standard deviation as a criterion for a spread of deviations at certain 

line (dotted lines). The process (a) is 'accurate' but not 'precise' while process (b) is 

'precise' but not 'accurate'. In case (b) simple scaling by a constant scaling factor can 

be applied to correct the inaccuracy. Processes (c) and (d) require scaling calculated 

by formula (linear and non-linear respectively) as illustrated in the case of SLS 

polystyrene parts described above. 

 

The 3-D distribution of  surfaces could also be used for: 

 comparative studies of different processes,  

 evaluating the processes in terms of their integration in process chains and  

 developing mathematical models of inaccuracy distribution. 
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a)  

 

b)  

 

c)  

 

d)  

 

Figure 5.15 Four scenarios of accuracy and precession of a process 
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5.4 Implementation of the GM for studying other RP materials and processes 

 

5.4.1 SLS Polyamide (PA) 

 

As stated in Chapter 3 one of the strongest aspects of the GM methodology is its 

ability to illustrate distributions of  in various sections of the test parts. For example 

the method can be used to evaluate the changes in distortions at different levels of 

the build as well as to compare and evaluate these changes in different directions. 

 

This is illustrated by the study of  in SLS Polyamide (PA) material. For this study a 

plate with sizes z = 510mm and x = 225 mm and orientation as shown on Figure 

5.2(a) was built using EOS P700 machine. This platform is highly utilised to 

produce large, functional polyamide prototypes and is of particular interest for RP in 

the automotive industry. 

 

The results are depicted on Figure 5.16. The x deviations are smaller compared to 

the CastForm Polystyrene (PS) material. In contrast with the same material the 

distribution of z in the most critical (vertical) direction is uniform. One reason for 

that is due to SLS Polyamide material sintering to a much higher density than 

CastForm material (approx. 95% for PA vs. 45% for PS) and therefore is not 

influenced by gravity induced shrinkage (factor (ii) described in Section 5.2.2). As 

two different machines were used for PA and PS, the conclusions about accuracy 

comparison between these materials are not conformed. 
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Considerable values of z (Figure 5.16 b) are observed only in the beginning of the 

build and are due to the unsettled temperatures leading to a severe curling. (The 

other randomly scattered peaks observed in this experiment are non-process related 

accidental measurement errors, see Section 4.5). 

 
a) 

 
b) 

Figure 5.16 a) Distribution of horizontal deviations (x) and b) distribution of 

vertical deviations (z) in polyamide SLS plate 
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As a final conclusion it can be stated that the deformations and corresponding 

deviations in the PA material are more uniformly distributed than those in PS and 

could be easier compensated by applying an appropriate constant scaling factor. 

 

5.4.2 Process monitoring of the Multi-Jet modelling system (3D Systems 

‘ThermoJet’ for investment casting wax patterns) 

 

Process and equipment monitoring and fault diagnosis can be done efficiently using 

GM by building a plate over the build volume. This is illustrated in this section for 

the case of a faulty Thermojet machine. The distortions in RP Thermojet parts 

(Figure 5.17) are more uniformly distributed and less scattered compared to SLS. 

The material that undergoes fused deposition on the build surface cools down rapidly 

below the Tg and is not subjected to viscous flow over the entire building period. 

Therefore the positive (elongation) changes of the upper layers due to factors (ii) and 

(iii) (Paragraph 5.2.2) are avoided. However as it can be seen from Figure 5.17 the 

deviations (strains) at high z volumes in this particular platform are dramatically 

scattered. Subsequent investigations discovered that the reason for this was 

mechanical problems with the machine. This is a convincing demonstration of the 

potential ability for the suggested methodology to monitor and flag-up specific 

platforms with technical problems or in need of maintenance attention. 
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Figure 5.17 Distribution of εz in faulty Thermojet build’s volume 

 

5.5 Conclusions 

 

This investigation has shown that GM can be easily and cost effectively applied to 

generate and analyse the distribution of dimensional deviations in the RP build 

process throughout the entire build envelope. It is a powerful means to obtain 

valuable information for analysing the different build phenomena. The data could be 

interpreted and analysed from a point of view of accuracy and precession of the 

parts. 

 



Chapter 5  Grid Method Analyses and Modelling of the Geometrical 

Distortions in the SLS Processes 

 

____________________________________________________________________ 

 

- 141 - 

It proposes that a single GM test piece and routine measurement procedure could be 

utilised to estimate the scaling factors throughout the entire part build and to improve 

part accuracy. In particular it was demonstrated that the dimensional deviation in 

parts could be reduced by up to three times when the scaling formula was applied. 

The dimensional error in the z direction of the SLS polystyrene part was reduced 

from 1.8% to 0.6%. This was a convincing verification of the important practical 

application to CAD model scaling for process uncertainties compensation. 

 

In this research the GM was applied to study the causes of dimensional inaccuracy in 

the z-direction of SLS polystyrene process. A critical dimension in height was found 

from where the part size distortion changes from shrinkage to extension. The reason 

for this was proved to be the layer thickness variations in the process. Future 

investigation of the factors affecting part accuracy in different RP methods is 

possible. More specifically it is important to study and distinguish the influence of 

the factors affecting part deformation such as: gravity induced shrinkage; 

overcompensation of the layers; temperature distribution; energy delivered for 

processing. 
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CHAPTER 6 COMPARATIVE STUDIES OF MICRO PROCESSES AND CHAINS 

ACCURACY 

 

 

To make the processing sequence efficient there is a need to address challenges 

related to micro-strains and distortions. The installations must be verified during 

machine setup with respect to the accuracy issues identified below. The verification 

process will lead to development of process specifications and will also involve the 

development of common approaches for evaluating and setting up alternative and 

complementary installations. 

 

6.1 Technological chains and the importance of the accuracy compatibility 

 

In the process of horizontal integration of micro- and nano-technologies (MNT) 

installations there is a particular need for keeping accurate dimensional control 

throughout the entire manufacturing process (Bigot et al. 2010; Hansen 2007). As an 

example a micro structured surface could be produced by a Projection Mask Micro-

Stereolithography (PM-SLA) apparatus at one installation, then it could be laser 

treated and nano-structured at a second and/or third installation and finally it could 

be transferred by electroforming in Ni-shim for high throughput polymer thermal 

replication. Therefore the equipment must operate within its specifications to 

facilitate its integration in process chains (EUMINAfab 2010; Kautt 2009). 

 

This chapter describes a method for performing a comparative investigation with 

reference to PM-SLA and micro milling processes using the GM. These processes 
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are investigated as they are promising technology in various master-making chains 

(Kennedy 2009; Imahori et al. 2005). 

 

6.2 Micro-Stereolithography accuracy study by Grid Method  

 

In Projection Mask Micro-Stereolithography (PM-SLA) processes the digital part 

model is converted into a series of layers of bitmap images. These are then 

transferred to a dynamic pattern generator, which controls a digital micro-mirror 

device (DMD). The DMD projects the pattern (a mask) of the layer profile onto the 

photo curable polymer to allow for exposure and thus layer curing (Yang et al. 2009; 

Sun et al. 2005; Zhang et al. 1999). Advantages of the method are that no structure 

recoating is required. The surface being illuminated is always smooth, the 

illuminated layer is not subjected to the atmosphere and thus inhibitions caused by 

oxygen are reduced (Melchels et al. 2010). One SLA material that has been 

developed for commercial utilisation is acrylic based photo resin polymer. This 

material could be used for creation of meso-micro prototype parts or patterns for 

precision Investment Casting (Dean Al 2004). This outlines a new potential process 

chain candidate, namely SLA  Investment Casting (IC)  Injection moulding. 

 

Achieving good accuracy of parts fabricated by additive layer based processes (such 

as SLA) is a complex task that is constantly under consideration by process 

planners. A common issue with Stereolithography systems and especially important 

in SLA is the uncontrolled penetration of the ultraviolet light source into the photo-

cross-linkable resin when fabricating down-facing surfaces (Choi et al. 2009). The 

horizontal resolution is governed by the pattern generator pixel size and the 
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reduction factor of the optical components used to focus the mask profile on the 

photo-reactor surface. The vertical resolution is limited by the absorption of the 

chemical medium and the current recoating strategy (Bertsch et al. 2000). Post 

processing and handling of SLA parts is an additional factor contributing to the 

overall resolution and accuracy. One common distortion phenomenon that has been 

observed in our research and commercial practice in MEC was curling (Figure 6.1). 

 

 

Figure 6.1 Neuro-medical insert produced in acrylic resin with PM-SLA showing 

the curling effect 

 

In this chapter the accuracy issues above are addressed by implementation of GM. 

Some of the data has been previously published (Minev et al. 2011). The results 

enabled better 3D model scaling and tailoring by assigning dimensional 
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compensations, which is a crucial prerequisite for final part accuracy and MNT 

process compatibility. 

 

6.2.1 Experimental set up and methodology 

 

Machine 

The platform used for the experiments was the EnvisionTec Perfactory® using R11 

material (an acrylic based photo resin polymer), that is recommended for investment 

casting patterns. The machine was specifically acquired to extend the micro 

manufacturing capabilities of MEC. Its specifications allowed producing 

components with small and intricate features in plastic or metal (after investment 

casting of the plastic patterns) which were difficult or not achievable by other 

processes. 

 

Test piece design and orientation 

To examine the most of the build area vertical plate with orientation shown in Figure 

6.2 was produced. The sizes of the plate were x=40; z=62.5mm and thickness 1mm. 

The grid step was 2.5 mm, and the reference holes diameter was 0.5mm. The test 

plate sizes and grid step were determined following the general considerations 

described in Section 4.4. 
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Figure 6.2 Plate orientation for SLA accuracy experiment 

 

 

The hole diameter needed to be large enough for correct cleaning (i.e. to prevent 

holes becoming congested with uncured material) The minimum through-hole 

diameters that can be built and cleaned-out effectively (in order to be accurately 

measured by the CMM system) are interrelated with the plate thickness; the thinner 

the plate is the smaller the diameter of the achievable holes. Figure 6.3 shows the 

minimum hole diameter achievable reference to the plate thickness. The trendline 

(regression line) “diameter of all holes to breakthrough” shows the minimum hole 

size that should form without problem. The line “diameter of one hole to 

breakthrough” shows the minimum hole size that can be achieved, but without 

confidence (i.e. experimentation would be required prior to part build to ensure that a 

hole can be formed sufficiently well). 
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Figure 6.3 Graph of hole diameter against plate thickness for acrylic based photo 

resins (Perfactory R11 material) 

 

From these results it was decided that a plate thickness of 1mm and a hole diameter 

of 0.5 mm should be used. This ensured that all holes should form and breakthrough 

correctly and the plate thickness is representative for length scale applications of 

SLA, as well as strong enough to withstand processing. It should be noted that the 

freshness and the quality of the resin are important factors for build resolution and 

hence the achievable hole sizing. Further decrease of the hole size was not practical 

because cleaning would be impeded and relative error of automatic contour 

approximation would increase. The appropriate grid density was established taking 

into account the considerations described in Section 4.4 “Test plate geometry 

considerations”. In the case of studying acrylic based photo resins along the whole 

building chamber the grid cell size was 2.5 mm. 

 

After completion of the building process (Figure 6.4) the plate was cleaned and post-

cured in accordance with the material supplier recommendations. 
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Figure 6.4 Test plate after the build completion on EnvisionTec Perfactory platform 

 

 

6.2.2 Results from the Grid Method for accuracy study of micro-

Stereolithography process 

 

The described methodology provides the possibility to represent and analyse the 3D 

strain distribution in the built object over the large build space. In this study the 

focus was on determination and analysis of the usually most problematic vertical 
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accuracy and the associated linear () and angular () dimensional deviations from 

nominal. In this direction the accuracy is linked to numerous factors such as the 

mechanical movement of the platform, light scattering during curing, cure depth and 

curling phenomenon. The linear and angular geometrical characteristics of accuracy 

are calculated in terms strains by the definitions provided in Section 4.1. 

 

The 3D distribution of εz (deviation of length from nominal in z direction) over the 

plate depicted on Figure 6.4 is shown on Figure 6.5. If a few significantly scattered 

points are ignored (non process related errors considered paragraph 4.5) εz are within 

the interval +/- 0.01 (1%) and relatively small for RP processes. From the “front 

view” of the εz surface (Figure 6.5b) it can be seen that the material is predominantly 

shrinking (εz are negative) in nature. 
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Figure 6.5 Distribution of εz over the test plate. a) 3D representation, b) front view 

of the same surface 
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The observations of parts produced by SLA show that the curling has a significant 

impact on the part quality. As described on Figure 2.14 (Section 2.1.2.4) curling 

manifests more obviously by shear (angular) deviations from nominal (or strains ), 

which can be analysed from the same test-plate. The results are shown on Figure 6.6 

and Figure 6.7. 

 

 

Figure 6.6 Surface showing the distribution of  over the test plate 

 



Chapter 6 Comparative Studies of Micro Processes and Chains Accuracy 

 

____________________________________________________________________ 

 

- 152 - 

 

Figure 6.7 Distribution of shear strains (described as deviations from nominal) γ in z 

direction along different columns 

 

In the case of the considered SLA, the curling is identical on the left and on the 

right side of the part. This is illustrated by the symmetrical curves presented on 

Figure 6.7. From the graphs it can be seen that curling close to the edges is 

significant in the lower area of the part, it then drops off steeply (three times in 

value), after the height of 20 mm the distortion remains constant and become 

marginal at the top. This must be taken into consideration for real part builds. The 

typical curling phenomenon is due to the shrinkage effects after lightening up and 

curing of the resin, which is described in Chapter 1. 

 

Some cross-sections of the presented surface on Fig. 6.6 could be derived in order to 

evaluate the distortions in the test plate along different directions and more 

particularly in horizontal and vertical directions. This would reveal the important 

differences of component inaccuracy distribution.  

 

The line ‘k’ on Figure 6.6 represents the distribution of  along the horizontal (x) 

direction. It can be seen clearly that  are at a maximum close to the left and right 
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sides of the build (positive and negative respectively). They are at a minimum in the 

centre. In order to assess the changes in  along the vertical direction it is useful to 

compare the values along z-axis. Since they are different in the centre and close to 

the edges of the build (see distribution alongside x) it is beneficial to compare their 

mean values for given z. The mean value of strain along each line “k” from Figure 

6.6 generates the point “k” on the graph depicted on Figure 6.8. From this figure it is 

clear that this point has similar and very low (close to zero) values alongside z 

because the positive and negative deviations at left and right side of the build (close 

to the edges) are compensated giving nearly zero deviation at any height of the build. 

This could be interpreted as high average accuracy of the process.  

 

The Standard Deviation of strains at each point “k” was also calculated. It represents 

the scatter of the  values (lines “Std+” and “Std-”). The values of the Standard 

Deviations vary significantly and depend on the z position. This could indicate that 

the process precision at a given z is different and is much lower at the beginning of 

the build due to the considerable curling.  

 

Total process precision over the entire plate can be evaluated by value of total 

standard deviations (throughout the whole build). At the same time the accuracy of 

the process could be evaluated by the mean value of the strains throughout the whole 

build. The results from calculations are: 

 = -0.00095 rad, 

Std = 0.0086 rad,  

and are included in Table 6.1. 
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To summarise the above observations, we can say that the process accuracy is high 

and process precision is relatively low and is dependent on the height of the build. 

 

 

Figure 6.8 Mean values and spread of  represented by its Std+ and Std- along each 

line over the test plate from Figure 6.4 

 

As stated above  can be considered as a general measure of curling distortion. The 

symmetrical nature of the curling phenomenon, which was shown above, gives the 

process high accuracy. However the spread of angular deviations  is significant. The 

lines “Std +” and “Std -” (Figure 6.8) show considerable curling from the start of the 

build that can be expected (up to approximately 10 mm from the base). After this 
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level the curling is reduced and remains consistent to the end of the part build where 

it becomes negligible. 

 

Test plate (Figure 6.4) was utilised to calculate z and x along with their spread and 

mean values in a similar way to . The results of both linear ( and shear () 

inaccuracies of the process are summarised in Table 6.1. 

 

Table 6.1 Standard deviations and mean values of linear and angular deviations for 

SLA process calculated over the total test plate 

 Standard Deviation Mean value 

Angular deviations rad 0.0086 -0.00095 

Vertical deviations z 0.0039 -0.0028 

Horizontal deviations x 0.0049 -0.0071 

 

Because of the complexity in strain distribution along the vertical and horizontal 

directions caused by the curling, it cannot be reduced easily by scaling only. Other 

measures such as changing the support structure are usually implemented to reduce 

the curling impact on total process accuracy (as described in Section 2.1.2.4). 

 

Linear deviations have to be used to calculate the scaling factors of the part. In this 

case the linear strains are not uniform due to the curling effect. To exclude the 

curling influence, vertical scaling of a part is best done on the basis of results from 
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the centre area of the test plate (where the curling is zero). z in the middle area of 

the plate is depicted on Figure 6.9. On this graph z are interpolated with a line 

whose position illustrates the process accuracy. The gradient of the interpolated line 

and the mean value of the z can be used as an evaluation of the process accuracy 

within the total build chamber. From the obtained statistical data it can be concluded 

that the process exhibits good accuracy with the mean value εzmean = -0.00119 (see 

Figure 6.9). Although the distribution of the strains within the total build volume is 

the main objective of the study using this method, some results with practical 

importance for scaling the parts can also be made. The mean value of εz could be 

interpreted as the total height of the plate being -0.119% shorter than nominal. The 

inclination of the interpolated line is small which demonstrates an absence of an 

undesirable trend in the vertical inaccuracy. It means that for this particular platform 

the CAD models of the real parts can be scaled by a constant scaling factor 

calculated by formula 

Sc = 1/( εzmean+1) = 1.0012       (6.2) 

 

Figure 6.9 Distribution of strains εz alongside a column in the middle of the plate 
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It must be noted that applying a constant scaling factor for RP processes is not 

always possible as was illustrated in Section 5.3. These are the cases in which either 

the gradient of the approximation line is significant or the approximation is non-

linear and can be applied only by a curve. Figure 6.9 also depicts the value of the 

Standard Deviation (εzstd = 0.0038) which characterises the precision of the process 

in the z-direction. It shows that the spread of the mean value of z (-0.00119) is 

significant and indicates the necessity of improvement if small features are to be 

produced. 

 

6.3 Implementation of the Grid Method for accuracy analysis of micro 

machining 

 

This section describes a comparative investigation with reference to micro drilling 

and micro wire electric discharge machining (EDM) using the GM. Together with 

PM-SLA these processes are promising technology in various master-making 

chains. 

 

As a generic approach for accuracy investigation GM can be used not only for Free 

Form Fabrication processes but also for a variety of conventional processes or 

advanced micro manufacturing processes. Applications of such an approach have 

been reported recently (Minev et al. 2011). 

 



Chapter 6 Comparative Studies of Micro Processes and Chains Accuracy 

 

____________________________________________________________________ 

 

- 158 - 

The punching tool for green ceramic tapes (used for complex multilayer assemblies 

for microelectronic applications (Bredeaua and Bancillon 2011)) was targeted for 

accuracy investigation. The tools are shown on Figure 6.10 and Figure 6.11. 

 
Figure 6.10 A punch produced by micro milling process 

 
Figure 6.11 A die manufactured by micro drilling and micro wire EDM processes 
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Since both these parts mate, accuracy of both parts is imperative for tool 

functionality. The punch (Figure 6.10) is produced by one micro milling process 

which requires one machine setup operation. The die (Figure 6.11) manufacture 

requires two different processes (micro drilling and micro wire electric discharge 

machining (EDM)) and thus two machine setting operations. 

 

In this case, due to their geometry, the actual components can be used directly for 

strain calculations instead of producing a test plate with a grid. The key features, the 

pins and the holes act as reference points of the grid for measurement. Their 

positions were measured directly in the same way as those of the test plate described 

in Chapter 4. The results are illustrated on Figure 6.12. Values for εx and εy are 

statistically identical and only εy are shown for illustration. 
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Figure 6.12 Distribution of εy. Left – pins (punch tool) from Figure 6.10; Right – 

hols (die tool) from Figure 6.11 

 

The study of the inaccuracies by GM reveals that in the case of one machine setting 

operation, εy distribution is in the range of 0.1% and approximately 0.2% in the case 

of two setting operations. The results show well-matched accuracy between the two 

consecutive processes. The final errors after the second process of EDM are no more 

than twice the errors of the initial micro machining process which means that the 

contributing inaccuracies from each process are equal and the cumulative inaccuracy 

is acceptable. 



Chapter 6 Comparative Studies of Micro Processes and Chains Accuracy 

 

____________________________________________________________________ 

 

- 161 - 

 

It is important to note (Figure 6.12 and Table 6.2) that the accuracy and the precision 

of the micro-milling process (measured by the mean value of strains and the 

Standard Deviation) is 10 times higher than that of the SLA and the micro-milling 

+ micro EDM process chain is 5 times more precise and accurate than the micro 

SLA. 

 

Table 6.2 Accuracy and precision of: SLA; Micro Milling; Micro milling + micro 

EDM 

 Micro SLA Micro Milling 
Micro milling + 

EDM 

Mean value of εy 

(accuracy) 
-0.00119 -0.000129 0.000195 

Standard Deviation 

of εy (precision) 
0.0038 0.00030 0.00068 

 

 

6.4 Conclusions 

 

This chapter has shown that, in terms of geometrical uncertainties, curling can be 

best described as a rotation of the line segments manifested in the same way as shear 

strains. The utilised GM methodology can be used to clearly reveal and estimate the 

curling magnitude and distribution within the part. In layer based RP processes such 

as SLA the curling effect on the lower layers and close to the part edges is 

significant and must be taken into consideration. 
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It has also shown that GM could be utilised not only to evaluate the accuracy of RP 

but also is applicable for characterisation of the geometrical uncertainties of other 

advanced manufacturing technologies. 

 

In particular the study of Micro-Stereolithography (µSLA) process shows that 

curling is the most typical source of inaccuracy of micro-parts. The deviations from 

the nominal are within 1% and the edge curling of the parts significantly contributes 

to the vertical inaccuracy. As an example the holes close to the part edge would have 

an angular displacement of 2 degrees when compared to holes at the centre. 

 

Overall the work indicates that GM can be applied successfully to study the accuracy 

of process chains and analysing accumulated errors from each consecutive process. 

Furthermore in this study it was shown that the process chains for producing a punch 

tool are capable of achieving good matching accuracy (0.2% cumulative positional 

error). 

 

It has been proven that the measurement and the calculating technique of GM for 

accuracy investigation can be used on real components without producing a 

dedicated test part, this depends upon the geometry of the real part to be produced. 
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CHAPTER 7 HOW TO USE GM DATA TO EVALUATE PROCESS 

CAPABILITIES? 

 

 

7.1 Grid Method for capability studies of MNT 

 

This chapter is focused on outlining a methodology, based on the Grid Method, to 

evaluate the process capability and rational determination of tolerance bands for 

the studied processes. The process benchmark criteria in this study, as well as the 

ways to define the process compatibility (namely the ability of the processes to 

be combined in pairs and chains) are also determined. In the process of designing 

micro parts it is necessary to know the specified tolerances based on the 

functional requirements of the part and those required by the customer. However, 

for a realistic assignment of tolerances the knowledge of the capabilities of 

process or process chains is of paramount importance. 

 

The tolerance capability of the processes and process chains could be effectively 

studied with the Grid Methodology taking into account the following specifics: 

 

1) There is no shape and size contextualisation when the method is applied to 

evaluate the uncertainties. Therefore the achieved results could be implemented 

in the design specification and process evaluation for different geometries. 

 

2) The results obtained by applying the Grid Methodology are achieved on a plate 

geometry type and should be used with some precaution when tolerancing special 
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and more complex shapes. However this ‘disadvantage’ is even more acute and 

results are less transferable when specific test pieces are used (such as ‘stair 

cases’ samples, shafts, holes etc.) to evaluate process variances. 

 

3) The variations in the dimensions calculated with the Grid Method are complex 

by their nature. They encompass and take into account the deviations throughout 

the whole build envelop of the FF or/and MNT process and could be interpreted 

as a holistic measurement of the process capability. These results could be used 

for benchmarking and evaluating process compatibility and complementarity, 

with regards to both single process and process chains. 

 

In engineering design the Upper Specification Limit (USL) and Lower Specification 

Limit (LSL) are defined by the designer/manager as boundaries within which the 

system must operate. When those limits are not yet known they can be obtained and 

adjusted by the process statistics for the particular sample size. They are defined as 

natural tolerance limits (Chandrupatla et al. 2009), (Krajewski et al. 2010): Upper 

Natural Tolerance Limit - UNTL and Lower Natural Tolerance Limit – LNTL 

(Figure 7.1): 

 

          ;                 (7.1) 

 

Where  is the population mean,  is the population standard deviation of sample 

size n of the measured parameter X. 
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Figure 7.1 Specification limits and natural tolerances (Chandrupatla et al. 2009) 

 

If the uncertainties are normally distributed then 99.73% of the samples will fall in 

this interval and the ‘process spread’ is defined as: 

UNTL – LNTL = 6       (7.2) 

If the process is skewed ‘off-centred’ (Figure 7.2) with b=µ-T, where T is the target 

value of X then: 

                   (7.3) 

                   (7.4) 

If the above approach is applied to the dimensionless deviation from nominal per 

unit length (  
  

  
) calculated by the Grid Method then the target value is: 

 = T = 0 

and the equations for the UNTL and LNTL will be transformed as follows: 
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                  (7.5) 

 

 

Figure 7.2 Defining the process capability (Chandrupatla et al. 2009) 

 

In the Grid Method the variance could be estimated for any particular area within 

the process build envelop. The root cause of variance could differ according to 

the process specifics and the physical phenomenon (thermal, mechanical, 

rheological, chemical) behind each process. In Chapter 5 the particularities in the 

SLS process were studied and the implications they may have on the accuracy of 

the build part in accordance of their size, geometry and position within the built 

part were considered. It is clear that the process capabilities could be determined 

(and tolerances assigned) separately for any particular area of the build envelop. 

The process capability will differ according to the size of the part and its position 

in the part bed. In MNT processes such differentiation is not always possible or 

practically feasible. In this case an integrated capability variance reference to the 

entire operational envelops could be estimated and the ‘3’ tolerances for any 
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dimension could be calculated based on the natural tolerance limits following 

equations (7.5) as follows: 

                      

                     (7.6) 

The benchmarking of the studied MNTs based on their capabilities is presented in 

the following sections and is conducted using the following parameters:  

Process offset (b=) - accuracy indicator 

Process spread (6) - precision indicator 

The graphical representations and the interpretations used later in this Chapter for 

studying the MNT process ‘capabilities’ are shown on Figure 7.3 and Figure 7.4. 

Ideally, after calibration (for instance following the procedure described in 

Chapter 5), the process offsets will be zero. 

 

 

Figure 7.3 Graphical representations of process precision and accuracy  

 

The evaluation of the process compatibility to form a pair (chain) and the 

estimation of the tolerance of the process pair is described on Figure 7.4. Process 



Chapter 7  How to Use GM Data to Evaluate process Capabilities? 

 

____________________________________________________________________ 

 

- 168 - 

1 is more accurate and precise than Process 2 but their tolerances are of the same 

order of magnitude and they are compatible from a dimensional accuracy point of 

view, these could be deemed complementary if used as a adjacent processes (i.e. 

a pair) on different materials. 

 

 

Figure 7.4 Comparison of the process capabilities of two processes 

 

The following definitions apply when discussing here and later the process 

compatibility and complementarity (Vella et al. 2010; Bigot et al. 2010): 

 

Complementarity is an overall measure of how much two processes are perceived 

to be able to complement or enhance each other’s capabilities so that the 
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combined application of the processes should have a value added (or synergetic) 

effect on the capabilities. 

 

Compatibility is an overall measure of how much two processes are perceived to 

be able to work successfully together or to perform to the same level of the 

capability parameters. In the ultimate case of complete compatibility the 

processes are competing alternatives rather than a complementary section of a 

process chain. 

 

We suggest the following imperatives when defining the process 

compatibility/complementarity based on the assessment of the dimensional 

accuracy of the processes (Minev et al. 2010(a), (b)): 

 

 IF process capability parameters ARE of the same order of magnitude, 

then the parameters and the corresponding processes are Compatible. 

 IF process capability parameters ARE NOT of the same order of 

magnitude, then the parameters and the corresponding processes are 

Complimentary. 

  

Usually when defining the capability of a process the capability index (Cpk) is 

used:  

        
     

  
 
     

  
        (7.7) 
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The user of a particular technology targeting a quality of three, four, five, or six 

sigma will use Cpk = 1; 1.33; 1.67 or 2 respectively (Krajewski et al. 2010). Some 

recommended values of the LSL and USL for selected dimensions produced with 

SLA have been calculated utilising the described Grid Method approach and 

presented in specific Figures and Tables in the following section. 

 

Since the measurement procedure shows very good reproducibility and 

repeatability (Paragraph 4.6) the methodology (an hence results) could be applied 

quickly (i.e. an “express mode”) using a single test piece. However the 

repeatability of the process itself is not considered if a single test piece is 

produced. 

 

 

7.2 Capability study of MNT processes 

 

Since the Grid Method utilised in this study enabled the collection of a large 

amount of data from a single test piece (sample size of more than 150) the 

‘express’ option provides reliable and satisfactory results. This allows for a 

comprehensive study of capabilities and tolerances of several processes to be 

stored for reference (i.e. it creates a “toolbox” of data) for producing different 

MNT tools and components with specific length scale integration features or 

multi-material utilisation (Bigot et al. 2010, 2009). 

 

Ultimately this section presents a practical guideline for defining the design 

tolerances and control limits of the studied processes (PM-SLA; -Milling; -
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EDM; Focused Ion Beam Milling). All calculations are based on the results of  

and  from relevant GM experiments. To compare the processes capabilities for 

other dimensions it has been assumed that the deviations depend linearly on the 

nominal. This approach is suggested as express and rough method for process 

comparison and estimation of predicted tolerances. By excluding rows and columns 

of the grid it is possible from the same test part easily to obtain data for estimating 

tolerances for larger nominal dimensions. 

 

The tolerance window for the PM-SLA process calculated according to the 

equation (7.6) is presented in Figure 7.5. The recommended tolerances in this 

process are nearly 10 times higher than the corresponding values for the -

Milling process and EDM processes (Figure 7.6 and Figure 7.7). 

 

 

Figure 7.5 Tolerance limits for the PM-SLA 
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Figure 7.6 Tolerance limits for the -Milling process 

 

 

Figure 7.7 Tolerance limits for the -Milling + -EDM process chain 
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The evaluation of the compatibility/complementarity nature of the processes 

according to the methodology described in section 7.1 is summarised in Table 

7.1. 

 

Table 7.1 Complementarity / Compatibility evaluation and ‘process spread’ (m) for 

a typical feature size (100m) 

-Milling -Milling + -EDM FIB  

Complementary 

PM-SLA:       3    m 

-Milling:      0.2 m 

(*) 

Complementary 

PM-SLA:     3    m 

-M/EDM:   0.5 m 

(*) 

Compatible 

PM-SLA:     3    m 

FIB:             2   m 

(**) 

PM-SLA 

 Compatible 

-Milling:     0.2 m 

-M/EDM:   0.5 m 

 

Complementary 

-Milling:     0.2 m 

FIB:             2    m 

(***) 

-Milling 

  Complementary 

-M/EDM:   0.5 m 

FIB:             2    m 

(***) 

-Milling + -EDM 

 

It can be seen that the tolerances for the process chain -Milling + -EDM are 

higher than the tolerances for the -Milling alone. The major contribution for the 

uncertainty in this case is the second process - -EDM. The EDM was used to 

calibrate the holes size to the design specification of the tool. The estimated 
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tolerances for this process are presented in Table 7.2. The use of a less accurate 

process (-EDM) after a more accurate process (-Milling) is usually not 

recommended but in this particular case it was a necessary compromise of the 

rule, in order to achieve the specific non-standard size of the holes. 

 

A comparison of the studied processes that this approach enables in terms of their 

achievable accuracy tolerance is presented in Figure.7.8, which together with 

Table 7.2 could be used as a reference tool to estimate the indicative specification 

limits (USL and LSL). -Milling, -EDM and FIB processes are clustered 

together (Process cluster I) according to their accuracy in the range of < 0.5% 

error, while SLA (due to the implemented thermal and photo curing processes) 

is less accurate with an error range of > 2% (Process cluster II).  As shown in the 

Table 7.1 the differences in the accuracy range does not create an obstacle to 

form various process chains on the ground of either compatibility or 

complementarity nature. 

 

Most of the indicative process chains designed and evaluated in this work 

through the Grid Method included accuracy evaluation, process phenomenon 

research and calibration. Typically they included multi-material objects (tools 

and parts) and Functional and Length Scale Integration (FLSI) features (Bigot S. 

et al., 2009). The examples cited with (*), (**) and (***) in Table 7.1 are briefly 

outlined below: 
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(*) 

PM-SLA 

master 

making  

 Ni-Electro-

forming 
 

-Milling 

and/or -

EDM for 

adding FLSI 

elements 

 

 

-Injection 

Moulding or  

Hot embossing or 

R2R of 

plastic pars 

Product 

examples: 
Neuro-medical electrodes  

 

(**) 

PM-SLA 

master 

making  

 Ni-Electro-

forming 
 

FIB for repair or  

adding FLSI 

elements 

 

    -Replication 

Product 

Examples: 
Shark skin or other bio-mimetic surfaces; Neuro-medical electrodes  

 

(***)   

-Milling 

or/and  

-EDM 

 
FIB for 

adding FLSI 

elements 

 

 

FIB for repair  

 
   -Replication 

Product 

Examples: 
Diffractive optical devices  

 



Chapter 7  How to Use GM Data to Evaluate process Capabilities? 

 

____________________________________________________________________ 

 

- 176 - 

 

Figure 7.8 Process spread of the investigated MNTs for determination of 

recommended tolerances 
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Table 7.2 Recommended process tolerances for nominal dimensions L=10-500 m 

 

 

An illustaration of the process tolerances in accordance with the quality level 

(Krajewski et al. 2010), (Craig et al. 2005), (Montgomery 2004) and the value of 
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the capability index (Cpk) as described in section 7.1 are presented in Table 7.3. 

Two processes were compared (SLA and -Milling), as they are representative 

of less and more accurate clusters of the studied processes. 

 

Table 7.3 Calculated component tolerances corresponding to the expected quality 

standards 

Cpk 
Quality 

standard 

Process 

yeld, 

% 

PM-SLA -Milling 

Nominal 

size, m 

Tolerance, 

m 

Nominal 

size, m 
Tolerance 

1 ‘3‘ 99.73 % 

100 
+1.0 

100 
+0.1 

-1.3 -0.1 

300 
+3.1 

300 
+0.2 

-3.8 -0.3 

500 
+5.1 

500 
+0.4 

-6.3 -0.5 

1.33 ‘4‘ 99.99 % 

100 
+1.4 

100 
+0.1 

-1.7 -0.1 

300 
+4.2 

300 
+0.3 

-4.9 -0.4 

500 
+7.0 

500 
+0.5 

-8.2 -0.7 

2 ‘6‘ 
99.9999998 

% 

100 
+2.2 

100 
+0.2 

-2.4 -0.2 

300 
+6.5 

300 
+0.5 

-7.2 -0.6 

500 
+10.8 

500 
+0.8 

-12.0 -1.0 
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7.3 Conclusions 

 

The implementation of the Grid Method in combination with the basic concept of 

calculating the specification limits of processes provides a fast, economical and 

effective way to calculate and assign the design tolerances and quality control 

parameters in processes and process chains. This approach was implemented for 

benchmarking some MNT processes and to evaluate and predict possible process 

chains. 
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CHAPTER 8  CONTRIBUTIONS, CONCLUSIONS AND FURTHER WORK 

 

 

CONTRIBUTIONS TO KNOWLEDGE 

 

The main contributions to knowledge from the presented research can be 

summarised as: 

 

The engineering of a new and original methodology for establishing the accuracy 

of components built by FF fabrication processes. This GM methodology is based 

on the descretisation of the object to allow the measurement, calculation, 

visualisation and analysis of the part distortion in terms of linear and shear 

deviations from nominal. The method overcomes limitations and disadvantages 

of currently used approaches for assessing the accuracy of RP processes. 

 

The investigation of specific distortions in SLS polystyrene components using the 

GM revealed the presence of local extensions of the parts. This was not 

previously confirmed and clearly demonstrates the limitations of the commonly 

accepted model that assumed all over shrinkage. Proof that this effect can result 

in the distribution of inaccuracies is of a major significance. Proper process 

calibration and part compensation can now be undertaken using the data derived 

from the application of GM. 
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The important cause of part distortion known as curling was described in terms of 

angular (shear) deviations from nominal. This allows to separately analyse such 

kind of distortions from linear distortions and corresponding compensation 

measures to be implemented to improve product quality. 

 

The application of the GM to the emerging micro-nano manufacturing sector has 

been shown to support the assessment of process capability. This provides a 

means of calculating process tolerances using results obtained from the single test 

piece. This demonstrated that, using the GM method, process compatibility and 

complimentarity can be more accurately calculated and process chains can thus 

be designed. 

 

 

CONCLUSIONS 

 

The review of current practice undertaken during this research indicated that 

there were sources of uncertainties arising in the performance of FF processes. It 

suggested that the distribution, magnitude and character of the uncertainties are 

not uniform within the build area of the manufacturing platforms and can vary 

significantly with part position, size and shape. This indicated that a reliable and 

generic method for the quantitative investigation of uncertainties and particularly 

their distribution was important. 

 

The research considered the analysis of the methods and test parts used for these 

accuracy studies and concluded that the current investigation practices in the area 
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of Free Form (FF) fabrication were not always sufficient. In particular the 

approaches which utilise pyramid test parts were shown to be unable to provide 

reliable data regarding the distribution and type of uncertainties observed in build 

components. This was taken as justification for the engineering of a more generic 

and accurate methodology. 

 

A new methodology was engineered to support the investigation of the 

distribution of linear and angular geometrical deviations in components. The 

methodology was named the Grid Method (GM). The adopted methodology 

utilises a test part in form of plate with grid formed across the part. The research 

then provided an automatic measurement procedure which enabled the 

calculation and presentation of geometrical characteristics that were designed for 

incorporation into software to enable a complete accuracy investigation. 

 

Through the presented research it has been demonstrated that GM can be 

successfully applied to investigate and analyse the inaccuracy distribution in the RP 

process over the entire build envelope. Linear and angular deviations from nominal 

and their distributions were the geometrical characteristic used to describe the 

complex part distortions after building. These characteristics were calculated by 

adapting the concepts of strain used in solid mechanics. A single test piece that 

overcomes the disadvantages of pyramid test parts was utilised. This, in combination 

with automated measuring, makes the GM a powerful means for obtaining valuable 

information for analysing different build phenomena. 
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The GM was applied in order to research the causes of dimensional inaccuracy in the 

vertical direction of SLS polystyrene process. On the basis of the obtained results, 

the factors affecting part deformation such as gravity, induced shrinkage, 

overcompensation of the layers, temperature distribution and material behaviour 

were analysed. The existence of a critical dimension in height was revealed from 

where the part size distortion changes from shrinkage to extension. Layer thickness 

variations confirmed the complex causes for the nonlinear distortions of the built 

part. 

 

It was demonstrated that the deviation of the sizes from nominal could be reduced by 

up to three times when the scaling formula was applied. The dimensional error in the 

z direction of SLS polystyrene part was reduced by applying GM from 1.8% to 

0.6%. 

 

The utilised methodology was shown to be capable of measuring and analysing the 

shear strain distribution to clearly reveal and estimate the magnitude of curling 

arising in any given line segment within the part. Interpretation of the strains as a 

measure of the dimensional uncertainties is clearly a very informative and easy to 

implement analysis tool. Its application to other manufacturing process was 

considered in the research; the study of µSLA processes indicated that curling is the 

most typical source of vertical inaccuracy in micro parts and that overall, the edge 

curling in µSLA parts significantly contributes to the vertical inaccuracy. 

 

The GM was also applied to investigate the accuracy in advanced manufacturing 

technologies when they are deployed to form process chains by analysing 
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accumulated errors from each consecutive process. In this context it was shown that 

the process chains for producing a punch tool are capable of achieving good 

matching accuracy (less than 0.2% cumulative positional error). 

 

The research indicated that, in some cases the measurement and the calculating 

technique of GM for accuracy investigation can be applied on real components 

without the need to produce a dedicated test part. This depends upon the geometry of 

the real part. 

 

The implementation of the Grid Method in combination with the basic concept of 

calculating the specification limits of processes was therefore shown to provide a 

fast, economical and effective way to calculate and assign the design tolerances 

and quality control parameters in processes and process chains. This approach 

was verified in practical cases and was implemented for benchmarking some 

MNT processes and to evaluate and predict possible process chains. 

 

 

FURTHER WORK 

 

Further work could be done in two main directions 

 improvement of the GM methodology; 

 implementation of the GM for accuracy investigation of differnt processes 

and material. 
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The improvement of the GM could be focused on the measuring and calculation 

procedures. More particularly the utilisation of different measuring systems; 

automation of the processes; and elaboration of recommendations for the test 

piece geometry are some of the possible direction for further development.  

 

Investigations and comparison (benchmarking) of different processes, materials 

and platforms in terms of accuracy is also a feasible target taking advantage of 

the methodology ability to describe the process uncertainties throughout the 

whole build volume quickly and cost-effectively. 

 

Future investigation of the factors affecting part accuracy in different RP 

methods is promising. More specifically it is important to study and distinguish 

the influence of the factors affecting part deformation in SLS such as: gravity 

induced shrinkage; overcompensation of the layers; temperature distribution; 

energy delivered for processing. Comprehensive experiment set up could make a 

foundation for mathematical model of the process-material accuracy interaction. 
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APPENDIXES 

 

Appendix 1 Program code for automatic CMM measurement control 

Declare Sub QVBlock_2 

' Declare Sub QVBlock_1 

Declare Sub KBP_T_1 

Declare Sub QVBlock_0 

Declare Sub Write_Array_2_File 

Declare Sub Write_Arrays_in_File_R 

Declare Sub startup 

Declare Sub Change_Row_Col 

' Declare Sub Load_Points 

Option Explicit 

dim PointX 

dim PointY 

dim PointEndX 

dim PointEndY 

dim PointStartY 

dim CoaxValue as Double 

dim StageValue as Double 

Dim STEP_X 

Dim STEP_Y 

DIM X_Focus 

DIM ZEROs 

DIM X_Align 

dim TESTY 

Dim XT() as Double 

Dim YT() as double 

' 04/06/2010 

Dim RT() as double 

' 04/06/2010 

Dim Row_T() as Integer 

Dim Col_T() as Integer 

dim CN as Integer 

dim MaxROW as Integer 

dim MaxCOL as Integer 

DIM C_Row as Integer 

DIM C_Col as Integer 

DIM CurrP as Integer 

Dim Ave_Dist  

Dim Answer 

Dim CEN_Name as string 

Dim msgtext as String 

Dim R2_1 

Dim Step_M 

Dim KBP_Err 

Dim III 

Dim MEASURED_X_ACTUAL 

Dim OLD_X_ACTUAL 

Dim Stage_My 

Dim MyCoax_V 

Dim LensNomMag_KBP 

'*** HERE SET ALL CONSTANTS**************YOU CAN CHANGE HERE***BIGGER 

VALUE - MORE LIGHT********************* 

' IN OLD is -->                            CONST MyCoax_V = 0.21       '  0.25 there are some white "spots!!! 
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'****************************************YOU CAN CHANGE HERE****0.xx is xx% 

LIGHT**************************** 

dim C_Rad                               'EXTERNAL RADIUS 

' IN OLD is --> const Stage_My = 0.19   '0.23   'STAGE LIGHT 

'**************************************** 

 

sub startup '=========================== 

'  *** Display Format *** 

DistanceUnits = MM 

CoordinateMode = CART 

ResolutionMode = DECIMALS_4 

AngleRange = ZERO_TO_360 

AngleUnits = DECIMAL_DEGREES_3 

 

'  *** Lens in Use *** 

Lens.Select Label:="1X (QV Objective)" 

 

'  *** Results Formatting *** 

Results.ShowColumnLabels = TRUE 

Results.ShowFeatureTypeInHdr = TRUE 

Results.ShowFeatureLabelInHdr = TRUE 

Results.ShowFeatureIDInHdr = TRUE 

Results.ShowNumOfPointsInHdr = TRUE 

Results.FormatColumns   ELEMENT, ACTUAL, NOMINAL, DEVIATION, UPTOL, LOWTOL, 

PASSFAIL 

 

'  *** Results Messages *** 

Results.ShowAlignmentMsg = FALSE 

Results.ShowUnitsChangeMsg = FALSE 

Results.ShowConstructionMsg = FALSE 

Results.ShowErrorMsg = TRUE   'FALSE - PRINT IN MESSAGE FILE 

 

'  *** Results Data Reporting *** 

Results.ReportLevel = ALLDATA 

 

'  *** Results Logging *** 

Results.LogToFile = FALSE 

Results.LogToCOM1 = FALSE 

Results.LogToCOM2 = FALSE 

 

'  *** Restore MCS *** 

PCS.RestoreMCS 

 

'  *** Reference Plane *** 

ReferencePlane = XY_PLANE 

 

'  *** Measuring Device *** 

MeasuringDevice = QV_VIDEO 

 

'  *** Touch Probe Context Properties *** 

TouchProbe.ApproachDist = 6.0000000 

TouchProbe.SearchDist = 10.0000000 

TouchProbe.CNCMeasureSpeed = 3.0000000 

TouchProbe.CNCMotionSpeed = 50.0000000 

TouchProbe.CNCMeasureAccel = 490.0000000 

TouchProbe.CNCMotionAccel = 490.0000000 

TouchProbe.CNCMeasureDecel = 490.0000000 

TouchProbe.CNCMotionDecel = 490.0000000 

 

end sub   'startup=========================== 
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'************************************************ 

Sub Load_Points  '================================== 

end sub   'Load_Points============================== 

 

 

'*************************************************** 

Sub Change_Row_Col   '=========================== 

 

   CEN_Name = "CEN_"  

   CEN_Name = CEN_Name + str(Format(C_Row,"0"))  

   CEN_Name = CEN_Name + "_" 

   CEN_Name = CEN_Name + str(Format(C_Col,"0")) 

end sub   'Change_Row_Col=========================== 

 

'*************************************************** 

sub Main    'start of MAIN subroutine============ 

Dim I 

DIM II 

'******************** TO READ IT ***************** 

' NEW - 19/03/2010 

   Stage_My = InputBox("Enter STAGE Light Intensity (0.2-1)    :") 

   MyCoax_V = InputBox("Enter COAX (TOP) Light Intensity (0.2-1):") 

   if MyCoax_V < 0.21 then  

      MyCoax_V = 0.21 

   end if 

   LensNomMag_KBP = InputBox("Enter Magnification (1, 2 or 6)     :") 

   if LensNomMag_KBP >= 6 then  

      LensNomMag_KBP = 6 

   else 

      if LensNomMag_KBP  >= 2 then 

         LensNomMag_KBP  = 2 

      else 

         LensNomMag_KBP = 1 

      end if 

   end if 

   MaxROW = InputBox("Enter Number of the Rows              :") 

   MaxCOL = InputBox("Enter Number of the Columns ( <= 21)  :") 

   if MaxCOL > 21 then 

      MaxCOL = 21 

   end if 

   PointX=0 

   PointY=0 

   C_Rad = 2.2 / LensNomMag_KBP 

   C_Row = 1 

   C_Col = 1 

   CurrP = 1 

   Ave_Dist = 0 

' ****************  NEW 4 Z Limit***************** 

'***********************REDim Arrays****************************** 

   CN=MaxROW * MaxCol 

ReDim XT(1 to CN)  

ReDim YT(1 to CN) 

' 04/06/2010 

ReDim RT(1 to CN) 

' 04/06/2010 

ReDim Row_T(1 to CN)  

ReDim Col_T(1 to CN)  

'***********************REDim Arrays****************************** 

'   Stage.ClearZSafetyLimit 
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      call startup 

 

   STEP_X = InputBox("Enter STEP IN X Axis    :") 

   X_Focus = PointX + C_Rad 

 

   Lens.NomMag = LensNomMag_KBP     ' OLD is --> 1.000000 

'   CoaxValue  = (Lens.NomMag/20 + MyCoax_V) 

   CoaxValue  = MyCoax_V  

   if CoaxValue > 1 then 

      CoaxValue =1 

   end if 

'   StageValue = (Lens.NomMag/20+0.29) 

   StageValue = Stage_My 

   if StageValue > 1 then 

      StageValue =1 

   end if 

 

      Call   QVBlock_0 

   PointY = 0 

   OLD_X_ACTUAL = 0 

'*********** CYCLE FOR a ROW *************************************************** 

   For C_Row= 1 to MaxRow 

      For C_Col= 1 to MaxCol 

         Call   QVBlock_2 

         if C_Col = 1 then 

            if C_Row = 1 then 

               STEP_Y = STEP_X 

            else 

               II =  ((C_Row - 1) * MaxCol + 1) 

               if YT(II) > 0 then 

                  if  YT(II - MaxCol) > 0 then 

                     STEP_Y =  (YT(II) -  YT(II - MaxCol)) ' * 0.995 

                  else 

                    STEP_Y = STEP_X 

                  end if 

               end if 

                  Answer = InputBox("Is Positioning in Y OK (Row=" + str(C_Row) + "   (0  -   NO  /   1-

YES) :" +" STEP_Y = " + str(Step_Y)) 

                  if Answer = 0 then 

                     Measure.Point Label:="NEW_Y" + CEN_Name 

                     Light.PRL.SetAll   Coax:=CoaxValue, Stage:=Stage_My , Back:=0.00, Front:=0.00, 

Right:=0.00, Left:=0.00, Angle:=0.00, Color:=qvIgnore 

'*********************************************************************************

*************** 

                    ManualTool.Run, Prompt:="Click ON the RIGHT Y - Circle CENTER..." 

                  Measure.EndMeas 

                     STEP_Y = featureDB.item("NEW_Y" + CEN_Name).Y.actual - YT(II - MaxCol) 

                     if abs(STEP_Y - STEP_X) > 1.2 then 

                          STEP_Y = STEP_X 

'                           msgbox " STEP_Y = " + str(Step_Y) + " PointY = " + str(PointY) + " STEP_X = " + 

str(Step_X) + " PointX = " + str(PointX) + " X_Focus = " + str(X_Focus) 

                     end if 

                  end if 

            end IF 

         end if 

      NEXT C_Col 

      PointY = PointY + STEP_Y 

      PointX = 0 

      X_Focus = PointX + C_Rad 
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   NEXT C_Row 

'*********** CYCLE END FOR a ROW *********************************************** 

 

   Call Write_Array_2_File 

   Call Write_Arrays_in_File_R 

     

'***************Turn OFF the lights********************************************** 

 

Light.PRL.SetAll   Coax:=0.0, Stage:=0, Back:=0.0, Front:=0.0, Right:=0.0, Left:=0.0, Angle:=0.00 

Stage.MoveTo   X:=0, Y:=PointY, Z:=0 

Stage.MoveTo   X:=0, Y:=0, Z:=0 

 

end sub   'Main===================================== 

 

'*************************************************** 

' END MAIN PROGRAM ********************************* 

'*************************************************** 

' 04/06/2010 

'           Adding RT() in new file 

' 

Sub Write_Arrays_in_File_R  '=========================== 

dim I 

Dim F_Name as string 

I=0 

F_Name = "D:\Second_XYZR_" +str(Format(I,"0")) +".TXT" 

FileLoop:   open F_Name for Input as #1 

               on Error GoTo NewFile 

               I=I+1 

               F_Name = "D:\Second_XYZR_" +str(Format(I,"0")) +".TXT" 

               Close #1 

   GoTo FileLoop 

NewFile:   open F_Name for OutPut as #1 

   print #1, "Rows=" & Chr$(9) & MaxRow & Chr$(9) & "Columns=" & Chr$(9) & MaxCol 

   print #1, "Row" & Chr$(9) & "Column" & Chr$(9) & "X" & Chr$(9) & "Y" & Chr$(9) & "R" 

   for I = 1 to CN 

'      if XT(I) = 0 then 

'         XT(I) = (XT(I-1) + XT(I+1))/2 

'      end if 

'      if YT(I) = 0 then 

'         YT(I) = (YT(I-1) + YT(I+1))/2 

'      end if 

 print #1, Row_T(I) & Chr$(9) & Col_T(I) & Chr$(9) & Format(XT(I),"0.000000") & Chr$(9) & 

Format(YT(I),"0.000000") & Chr$(9) & Format(RT(I),"0.000000") 

'      print #1, Format(Row_T(I),"0"),Format(Col_T(I),"0"),Format(XT(I),"0.000000")," 

",Format(YT(I),"0.000000") 

   Next I 

   Close #1 

end sub   'Write_Arrays_in_File_R ====================== 

 

'*************************************************** 

' 04/06/2010 

 

Sub Write_Array_2_File  '=========================== 

dim I 

Dim F_Name as string 

I=0 

F_Name = "D:\Second_XYZ_" +str(Format(I,"0")) +".TXT" 

FileLoop:   open F_Name for Input as #1 

               on Error GoTo NewFile 

               I=I+1 
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               F_Name = "D:\Second_XYZ_" +str(Format(I,"0")) +".TXT" 

               Close #1 

   GoTo FileLoop 

NewFile:   open F_Name for OutPut as #1 

   print #1, "Rows=" & Chr$(9) & MaxRow & Chr$(9) & "Columns=" & Chr$(9) & MaxCol 

   print #1, "Row" & Chr$(9) & "Column" & Chr$(9) & "X" & Chr$(9) & "Y" 

   for I = 1 to CN 

'      if XT(I) = 0 then 

'         XT(I) = (XT(I-1) + XT(I+1))/2 

'      end if 

'      if YT(I) = 0 then 

'         YT(I) = (YT(I-1) + YT(I+1))/2 

'      end if 

      print #1, Row_T(I) & Chr$(9) & Col_T(I) & Chr$(9) & Format(XT(I),"0.000000") & Chr$(9) & 

Format(YT(I),"0.000000") 

'      print #1, Format(Row_T(I),"0"),Format(Col_T(I),"0"),Format(XT(I),"0.000000")," 

",Format(YT(I),"0.000000") 

   Next I 

   Close #1 

end sub   'Write_Array_2_File ====================== 

 

'*************************************************** 

 

Private Sub QVBlock_0   '=========================== 

Dim Far_Point  

'=====22/03/2010======= 

dim Square_Focus_Size 

Square_Focus_Size = 0.9858766 / LensNomMag_KBP 

 

'=====22/03/2010======= 

Light.PRL.SetAll   Coax:=CoaxValue, Stage:=0, Back:=0.0, Front:=0.0, Right:=0.0, Left:=0.0, 

Angle:=0.00 

'**************** NEW FOR REZERO******************** 

   Measure.Point Label:="ZEROs" 

      Light.PRL.SetAll   Coax:=CoaxValue, Stage:=Stage_My , Back:=0.00, Front:=0.00, Right:=0.00, 

Left:=0.00, Angle:=0.00, Color:=qvIgnore 

'************************** 

     ManualTool.Run, Prompt:="Click ON the ZERO-ROUGHLY NEAREST LEFT Circle 

CENTER..." 

   Measure.EndMeas 

   ZEROs=featureDB.item("ZEROs").X.actual 

   PCS.AlignOrigin   Axes:=ALL_AXES, Tag:="ZEROs" 

 

'********RESTORE Zeros + RE FOCUS ****************** 

      Stage.MoveTo   X:=0, Y:=0, Z:=0 

      Stage.MoveTo   X:=C_Rad, Y:=0, Z:=0 

      Light.Color = qvWhite 

      Light.PRL.SetAll   Coax:=(CoaxValue + 0.05), Stage:=Stage_My , Back:=0.00, Front:=0.00, 

Right:=0.00, Left:=0.00, Angle:=0.00, Color:=qvIgnore 

      FocusTool.SetMode   FocusType:=SURFACE, Speed:=FAST, Range:=4.2314050 

      FocusTool.Focus   X:=C_Rad, Y:=0, Z:=0, W:=Square_Focus_Size , H:=Square_Focus_Size  

      Stage.MoveTo   X:=0, Y:=0, Z:=0 

'*************************************************** 

      if MaxCOL <= 9 then 

            Far_Point = (MaxCOL - 1) 

         else 

            Far_Point = (MaxCOL - 3) 

      end if 

      Far_Point = STEP_X * Far_Point 

      if Far_Point > 258 then 
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            Far_Point = 258 

      end if 

      Stage.MoveTo   X:=Far_Point, Y:=0, Z:=0 

'*************************************************** 

'**************** NEW FOR SETTING X-Axis *********** 

   Measure.Point Label:="X_Align" 

      Light.PRL.SetAll   Coax:=CoaxValue, Stage:=Stage_My , Back:=0.00, Front:=0.00, Right:=0.00, 

Left:=0.00, Angle:=0.00, Color:=qvIgnore 

'******************************** 

     ManualTool.Run, Prompt:="Click ON the SECOND X-Axis Point - ROUGHLY NEAR CIRCLE 

CENTER..." 

   Measure.EndMeas 

'****************SET X AXIS (and others)**************** 

   PCS.AlignAxis AlignmentAxis:=X_AXIS, RotationAxis:=Z_AXIS, Offset:=0.0000000, 

Direction:=POS, Tag:="X_Align" 

      Stage.MoveTo   X:=0, Y:=0, Z:=0 

'*************************************************** 

 

End Sub   'QVBlock_0  ================================= 

'****************************************************** 

'********************  KBP_T_1   ********************** 

'****************************************************** 

Private Sub KBP_T_1 

   KBP_Err = 0       ' ********** NO ERROR ************ 

   III = CurrP MOD MaxCOL 

   if III > 1 then 

'      Step_M = abs(FeatureDB.Item(Tag:=CEN_Name).X.Actual - XT(CurrP - 1)) 

      MEASURED_X_ACTUAL = FeatureDB.Item(Tag:=CEN_Name).X.Actual 

      Step_M = MEASURED_X_ACTUAL 

      if abs(Step_M) <  0.01 then 

'            msgbox "IN ERROR PART: STEP_M = " + str(Step_M) + " STEP_X = " + str(Step_X) 

            Step_M = STEP_X   

            KBP_Err = 1       ' ******** ERROR ******* 

      else 

         Step_M = abs(Step_M - OLD_X_ACTUAL)      ' WAS --> XT(CurrP - 1)) 

         if abs(Step_M - STEP_X) > 1.75 then 

'             msgbox str(CurrP) + " MOD = " + str(III) + " OLD_X_ACTUAL = " + 

str(OLD_X_ACTUAL) + " STEP_M = " + str(Step_M) + " WILL BE CHANGED to " + str(Step_X) 

             Step_M = STEP_X  '***************************TO SEE AGAIN**************** 

         end if 

         OLD_X_ACTUAL = PointX 

      end if 

   else 

      Step_M = STEP_X 

      MEASURED_X_ACTUAL = FeatureDB.Item(Tag:=CEN_Name).X.Actual 

' on 02/09/2009 --> BECAUSE the 1st-X value is the last one 

      OLD_X_ACTUAL = PointX 

   end if      'END IF III > 1 

End Sub   'KBP_T_1   ================================== 

'****************************************************** 

'********************  QVBlock_2 ********************** 

'****************************************************** 

Private Sub QVBlock_2   '============================== 

'******************** NEXT Position ******************* 

   Call Change_Row_Col  

'********************MOVE TO...************************ 

if PointX > 299 then 

   ' STOP PROGRAM 

   msgtext="Error " & Err & ": " & Error$ & " STOP (2) THE PROGRAMM !!!! X is: " & PointX 

   MsgBox msgtext 
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   ' exit sub 

end if 

      Stage.MoveTo   X:=PointX, Y:=PointY, Z:=0 

'      Stage.MoveTo   X:=X_Focus, Y:=PointY, Z:=0 

'      Light.Color = qvWhite 

'      Light.PRL.SetAll   Coax:=CoaxValue, Stage:=Stage_My , Back:=0.00, Front:=0.00, Right:=0.00, 

Left:=0.00, Angle:=0.00, Color:=qvIgnore 

'      FocusTool.SetMode   FocusType:=SURFACE, Speed:=FAST, Range:=4.2314050 

'      FocusTool.Focus   X:=X_Focus, Y:=PointY, Z:=0, W:=0.9, H:=0.9 

'      Stage.MoveTo   X:=PointX, Y:=PointY, Z:=0 

'***************** NEW MEASURE ************************ 

   Measure.Circle Label:=CEN_Name 

   Light.Color = qvWhite 

   Light.PRL.SetAll   Coax:=CoaxValue, Stage:=Stage_My , Back:=0.00, Front:=0.00, Right:=0.00, 

Left:=0.00, Angle:=0.00, Color:=qvIgnore 

   CircleTool.ScanInt = 20 

'   CircleTool.SetFilter   Alg:=DYNAMIC_THRESH, EdgeSlope:=FALLING, 

EdgeQuality:=STRONG, Outlier:=0, TH:=221.094340, THR:=0.434906, THS:=19.000000 

   CircleTool.SetFilter   Alg:=DYNAMIC_THRESH, EdgeSlope:=FALLING, EdgeQuality:=WEAK, 

Outlier:=0, TH:=221.094340, THR:=0.434906, THS:=19.000000 

   CircleTool.Run   X:=PointX, Y:=PointY, Z:=0, R1:=0.064578, R2:= C_Rad  

   Measure.EndMeas 

   Results.ReportFeature   Show:=X_ and Y_ and Z_ and D_, Tag:=CEN_Name 

'    

      CALL KBP_T_1 

' 

' ********** MEASURE ERROR ************ 

   if KBP_Err = 1 then 

      XT(CurrP)  = 0   ' PointX 

      YT(CurrP)  = 0   ' PointY is ZERO... 

   else 

      XT(CurrP)  = MEASURED_X_ACTUAL      ' FeatureDB.Item(Tag:=CEN_Name).X.Actual 

      YT(CurrP)  = FeatureDB.Item(Tag:=CEN_Name).Y.Actual   ' PointY is ZERO... 

' 04/06/2010........................ 

      RT(CurrP)  = FeatureDB.Item(Tag:=CEN_Name).RD.Actual   ' Saving Radius Value... 

' 04/06/2010........................... 

 

   end if 

' ********** MEASURE ERROR ************ 

   Row_T(CurrP)  = C_Row 

   Col_T(CurrP)  = C_Col 

'   msgbox str(CurrP) + " MOD = " + str(III) + " IN QVBLOCK_2 => Point_X BEFORE ADDING 

Step_M is ( " + str(pointX) + ")     Step_M is = ( " + str(Step_M) + " )" 

   PointX = PointX + Step_M 

      if PointX > 316 then 

         ' STOP PROGRAM 

         msgtext="Error " & Err & ": " & Error$ & " STOP (1) THE PROGRAMM !!!!  X is: " & 

PointX 

         MsgBox msgtext 

         ' exit sub 

      end if 

   X_Focus = PointX + C_Rad 

   CurrP = CurrP + 1     

End Sub   'QVBlock_2  
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Appendix 2 Results for scaling calculations of SLS Castform  

1. Coordinates of reference points (hole centres) measured by optical CMM 

Row Column X Y 
1 1 -0.028441 0.002927 
1 2 14.758026 -0.062340 
1 3 29.593672 -0.060080 
1 4 44.455400 -0.068964 
1 5 59.328571 -0.063281 
1 6 74.152018 -0.009096 
1 7 89.025381 0.018581 
1 8 103.934091 -0.033793 
1 9 118.710436 0.077051 
1 10 133.576640 -0.012410 
1 11 148.446826 -0.108760 
1 12 163.304722 -0.062361 
1 13 178.108382 -0.001173 
1 14 192.929748 -0.054534 
1 15 207.635431 -0.037598 
2 1 -0.080063 14.857845 
2 2 14.767538 14.807908 
2 3 29.581392 14.792087 
2 4 44.404574 14.773611 
2 5 59.280214 14.860377 
2 6 74.119765 14.840508 
2 7 89.002376 14.861855 
2 8 103.861315 14.894177 
2 9 118.698697 14.861266 
2 10 133.546062 14.844221 
2 11 148.397385 14.858307 
2 12 163.216137 14.846251 
2 13 178.134649 14.737465 
2 14 192.898764 14.799640 
2 15 207.641081 14.826931 
3 1 -0.083501 29.694971 
3 2 14.747614 29.643182 
3 3 29.555633 29.661406 
3 4 44.391172 29.614729 
3 5 59.241547 29.683399 
3 6 74.109628 29.612412 
3 7 88.994694 29.659608 
3 8 103.845557 29.689029 
3 9 118.698908 29.642347 
3 10 133.542104 29.630420 
3 11 148.362177 29.654560 
3 12 163.220709 29.632335 
3 13 178.056877 29.490394 
3 14 192.891140 29.579730 
3 15 207.637578 29.631124 
4 1 -0.045933 44.563628 
4 2 14.754809 44.478677 
4 3 29.568164 44.476677 
4 4 44.400708 44.472527 
4 5 59.252969 44.490380 
4 6 74.124394 44.443610 
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4 7 89.006439 44.467310 
4 8 103.848958 44.479273 
4 9 118.706800 44.444173 
4 10 133.537466 44.416436 
4 11 148.372382 44.423013 
4 12 163.252105 44.440665 
4 13 178.074873 44.419654 
4 14 192.907337 44.423226 
4 15 207.650886 44.470550 
5 1 0.010775 59.329588 
5 2 14.823542 59.248382 
5 3 29.614073 59.244379 
5 4 44.494184 59.224351 
5 5 59.300428 59.224672 
5 6 74.143034 59.208172 
5 7 89.044616 59.145616 
5 8 103.885340 59.161164 
5 9 118.714056 59.137351 
5 10 133.542872 59.166119 
5 11 148.444142 59.146719 
5 12 163.232216 59.184580 
5 13 178.054624 59.165408 
5 14 192.923932 59.168877 
5 15 207.655418 59.221177 
6 1 0.002970 74.276118 
6 2 14.837392 74.192730 
6 3 29.638084 74.133953 
6 4 44.478203 74.121880 
6 5 59.337553 74.077679 
6 6 74.167269 74.052489 
6 7 88.991073 74.026154 
6 8 103.867472 73.984291 
6 9 118.736736 73.973925 
6 10 133.599378 73.959384 
6 11 148.420570 73.966616 
6 12 163.261171 74.011370 
6 13 178.027492 74.030036 
6 14 192.893945 74.057555 
6 15 207.619727 74.078198 
7 1 0.029116 89.158048 
7 2 14.873580 89.027353 
7 3 29.641057 88.961195 
7 4 44.495212 88.978109 
7 5 59.335171 88.886120 
7 6 74.209805 88.877499 
7 7 89.045962 88.866474 
7 8 103.825887 88.787241 
7 9 118.686504 88.829104 
7 10 133.561478 88.797543 
7 11 148.382852 88.797500 
7 12 163.181366 88.835176 
7 13 178.055116 88.904964 
7 14 192.857938 88.908928 
7 15 207.578909 88.968290 
8 1 0.102181 104.087085 
8 2 14.892325 103.944218 
8 3 29.718105 103.882299 
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8 4 44.541078 103.823684 
8 5 59.337858 103.778944 
8 6 74.195706 103.715878 
8 7 89.048414 103.702077 
8 8 103.905891 103.744436 
8 9 118.698259 103.715523 
8 10 133.523312 103.700386 
8 11 148.374193 103.688890 
8 12 163.180624 103.713558 
8 13 177.949244 103.749933 
8 14 192.785780 103.775389 
8 15 207.528498 103.854059 
9 1 0.132174 119.038709 
9 2 14.918740 118.916322 
9 3 29.745636 118.844254 
9 4 44.559711 118.775070 
9 5 59.366684 118.709767 
9 6 74.235859 118.659836 
9 7 89.045127 118.658006 
9 8 103.924427 118.604801 
9 9 118.639345 118.533118 
9 10 133.539272 118.621196 
9 11 148.356696 118.625903 
9 12 163.186973 118.621567 
9 13 177.901556 118.672214 
9 14 192.740651 118.743500 
9 15 207.495081 118.795109 
10 1 0.180847 133.972675 
10 2 15.002974 133.846257 
10 3 29.822607 133.799655 
10 4 44.611934 133.738463 
10 5 59.420059 133.675910 
10 6 74.231031 133.648852 
10 7 89.130957 133.590282 
10 8 103.787519 133.554680 
10 9 118.703463 133.537116 
10 10 133.541389 133.480466 
10 11 148.360177 133.490241 
10 12 163.192090 133.536770 
10 13 177.909061 133.621820 
10 14 192.735803 133.596377 
10 15 207.439091 133.744617 
11 1 0.182842 149.055770 
11 2 14.977656 148.918907 
11 3 29.795175 148.892542 
11 4 44.587631 148.853694 
11 5 59.514974 148.846088 
11 6 74.283498 148.745621 
11 7 89.035236 148.760653 
11 8 103.847391 148.813714 
11 9 118.598772 148.737463 
11 10 133.481820 148.721197 
11 11 148.364884 148.683420 
11 12 163.166756 148.744756 
11 13 177.946189 148.804648 
11 14 192.696294 148.787152 
11 15 207.433573 148.868844 
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2. Graphical representation of distributions of x and z in plate that was used for 

scaling calculations 
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3. Distribution of deviation in sizes from nominal in x and z direction (x and z) 

 

 

Distribution of deviation of sizes from nominal in n x direction for Castform 

 

 

Distribution of deviation of sizes from nominal in n z direction for Castform 
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4. Matrix of calculated z 

 

 

 
 

   

 
Matrix Z 

      X/Z 0 1 2 3 4 5 6 7 8 9 

 

12 13 

0 
-

0.0092  
-

0.0110  
-

0.0099  
-

0.0156  
-

0.0036  
-

0.0095  
-

0.0051  
-

0.0025  -0.0045  0.0052      

1 
-

0.0093  
-

0.0099  
-

0.0117  
-

0.0155  
-

0.0055  
-

0.0113  
-

0.0054  
-

0.0022  -0.0038  0.0055  
  

2 
-

0.0102  
-

0.0097  
-

0.0110  
-

0.0161  
-

0.0071  
-

0.0106  
-

0.0078  
-

0.0029  -0.0027  0.0069  
  

3 
-

0.0078  
-

0.0113  
-

0.0112  
-

0.0173  
-

0.0083  
-

0.0112  
-

0.0088  
-

0.0039  -0.0023  0.0095  
  

4 
-

0.0076  
-

0.0136  
-

0.0121  
-

0.0168  
-

0.0101  
-

0.0123  
-

0.0090  
-

0.0042  -0.0015  0.0089  
  

5 
-

0.0103  
-

0.0144  
-

0.0121  
-

0.0187  
-

0.0092  
-

0.0112  
-

0.0109  
-

0.0033  -0.0026  0.0089  
  

6 
-

0.0077  
-

0.0137  
-

0.0135  
-

0.0216  
-

0.0099  
-

0.0120  
-

0.0069  
-

0.0061  -0.0039  0.0142  
  

7 
-

0.0096  
-

0.0142  
-

0.0137  
-

0.0210  
-

0.0114  
-

0.0115  
-

0.0052  
-

0.0108  -0.0015  0.0152  
  

8 
-

0.0120  
-

0.0145  
-

0.0138  
-

0.0187  
-

0.0124  
-

0.0103  
-

0.0071  
-

0.0088  -0.0046  0.0146  
  

9 
-

0.0059  
-

0.0140  
-

0.0150  
-

0.0177  
-

0.0130  
-

0.0111  
-

0.0069  
-

0.0048  -0.0093  0.0144  
  

10 
-

0.0041  
-

0.0140  
-

0.0142  
-

0.0179  
-

0.0118  
-

0.0116  
-

0.0077  
-

0.0052  -0.0074  0.0133  
  

11 
-

0.0118  
-

0.0155  
-

0.0088  
-

0.0172  
-

0.0103  
-

0.0101  
-

0.0093  
-

0.0057  -0.0045  0.0129  
  

12 
-

0.0137  
-

0.0157  
-

0.0076  
-

0.0171  
-

0.0083  
-

0.0092  
-

0.0097  
-

0.0037  -0.0066  0.0124  
  

13 
-

0.0094  
-

0.0140  
-

0.0106  
-

0.0169  
-

0.0085  
-

0.0087  
-

0.0083  
-

0.0030  -0.0066  0.0105  
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5. Graphs for comparison and illustration of scaling scenarios in x and z direction 

 

 

Results from experiment that illustrate scenario on Figure 5.13(a) 

 

 

Results from experiment that illustrate scenario on Figure 5.13(d) 

 

y = 1E-07x2 - 5E-06x + 1.0111 
R² = 0.0885 
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