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Neurobiology of Disease

Complement Component C1q Mediates Mitochondria-Driven
Oxidative Stress in Neonatal Hypoxic-Ischemic Brain Injury
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Hypoxic-ischemic (HI) brain injury in infants is a leading cause of lifelong disability. We report a novel pathway mediating oxidative
brain injury after hypoxia-ischemia in which Clq plays a central role. Neonatal mice incapable of classical or terminal complement
activation because of Cl1q or C6 deficiency or pharmacologically inhibited assembly of membrane attack complex were subjected to
hypoxia—ischemia. Only C1q ~'~ mice exhibited neuroprotection coupled with attenuated oxidative brain injury. This was associated
with reduced production of reactive oxygen species (R0S) in C1q ~/~ brain mitochondria and preserved activity of the respiratory chain.
Compared with C1q /™ neurons, cortical C1q '~ neurons exhibited resistance to oxygen- glucose deprivation. However, postischemic
exposure to exogenous Clq increased both mitochondrial ROS production and mortality of Clq ~'~ neurons. This Clq toxicity was
abolished by coexposure to antioxidant Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid). Thus, the C1q component of
complement, accelerating mitochondrial ROS emission, exacerbates oxidative injury in the developing HI brain. The terminal comple-
ment complex is activated in the HI neonatal brain but appeared to be nonpathogenic. These findings have important implications for
design of the proper therapeutic interventions against HI neonatal brain injury by highlighting a pathogenic priority of C1q-mediated

mitochondrial oxidative stress over the C1q deposition-triggered terminal complement activation.

Introduction

Accumulating evidence indicate that complement (C) activation
contributes to ischemia—reperfusion injury in different organs
(Pedersen et al., 2004; Arumugam et al., 2006). We have reported
that neonatal mice with genetic deletion of Clgq, the initial com-
ponent of classical C activation pathway, were protected against
hypoxic—ischemic (HI) brain injury (Ten et al., 2005). Clq is
essential for activation of the classical C pathway, which results in
assembly of cytotoxic membrane attack complex (MAC) (Trouw
etal., 2008). In the heart and kidney, an ischemic insult results in
robust activation of classical C pathway and deposition of MAC
in the injured tissue, suggesting a pathogenic role for the terminal
C complex in tissue damage (Vakeva et al., 1998; Zhou et al,,
2000; Yamada et al., 2004 ). The evidence for a deleterious role of
terminal C activation in perinatal cerebral HI injury is controver-
sial. Systemic C depletion with cobra venom factor significantly
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attenuated HI brain damage in neonatal rats. However, the cere-
bral expression of C9, a marker for MAC assembly, in the
C-depleted rats was similar to that in the vehicle-treated litter-
mates (Cowell et al., 2003), arguing against a pathogenic role of
MAC in HI injury. In contrast, an association between cerebral
C9 deposition and the severity of brain injury has been reported
in HI rats and asphyxiated infants (Figueroa et al., 2005; Schultz
et al., 2005). Pretreatment with exogenous C9 exacerbated HI
brain injury in immature rats deficient in C9 (Imm et al., 2002).
Furthermore, human cultured neurons incubated with anti-
CD59 antibodies were susceptible to MAC-driven cytolysis after
spontaneous activation of the classical C pathway (Singhrao etal.,
2000). This suggests that C1q mediates HI brain injury via classi-
cal C pathway activation resulting in MAC-driven exacerbation
of cell damage during reperfusion.

It has been shown that incubation of cultured cortical neurons
with human Clq induced a lethal oxidative stress (Luo et al.,
2003). Given that mitochondria are primary source of reactive
oxygen species (ROS), we hypothesized that C1q may exacerbate
HI brain damage by affecting mitochondrial ROS generation.

In this study, we tested two alternative hypotheses: (1) neona-
tal HI brain injury is mediated by Clq-dependent terminal C
activation or (2) Clq directly (independently from C activation
pathway) exacerbates HI brain injury by potentiating the severity
of mitochondria-mediated oxidative stress.
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Materials and Methods

Mice. Clqa knock-out (Clq /7)), Cé-deficient (C6 /) mice back-
crossed into C57BL/6 strain for 10 and 5 generations (Botto et al., 1998;
Morgan et al., 2006) and wild-type (WT) mice (C57BL/6] purchased
from The Jackson Laboratory) were bred in the animal facility of Colum-
bia University. The experimental protocol was approved by the Institu-
tional Animal Care and Use Committee of Columbia University.

Induction of unilateral hypoxia—ischemia. We used the Rice—Vannucci
model of HI brain injury adapted to postnatal day 9 (P9) to P10 neonatal
mice (Ten et al., 2003, 2004). The model consisted of a permanent liga-
tion of the right carotid artery followed by hypoxic exposure. Briefly,
surgical intervention was performed under isoflurane anesthesia. At 1.5h
of recovery, pups were exposed to hypoxia (8% O, balanced N,) for 15
min. The ambient temperature during hypoxia was maintained at 37.0—
37.5°C by placing the hypoxic chamber in a neonatal isolette (Airshield).
After hypoxic exposure, pups were returned to their dams. To minimize
a temperature-related variability in the extent of brain injury, during the
initial 12 h of reperfusion, mice were kept in an isolette at the ambient t =
32°C. In adult male mice, hypoxia—ischemia was produced as described
above, except the ambient temperature during hypoxia was maintained
at 35.5-36°C, and the duration of hypoxia was extended to 25 min. The
modulation of hypoxic duration with the age was shown to produce a
similar degree of injury in neonatal or juvenile or adult mice with mini-
mal changes in mortality (Lafemina et al., 2006; Zhu et al., 2009). At 24 h
of reperfusion, mice were killed by decapitation, and brains were har-
vested, sectioned into 1-mm-thick coronal slices, and stained with 2%
triphenyl-tetrazolium chloride (TTC). TTC is oxidized only by metabol-
ically active mitochondrial dehydrogenases converting TTC into a red-
colored formazan (Schinzel et al., 2005). Digital images of infarcted (pale
white) and viable (red) areas of brains were traced (Adobe Photoshop
4.0.1) and analyzed (NIH Image 1.62) by an investigator “blinded” to a
genotype identity. The extent of brain injury (direct infarct volume) was
expressed as a percentage of the infarcted hemisphere ipsilateral to the
carotid artery ligation.

Clq and MAC in HI injury. To investigate the role of C1q and MAC in
HI brain injury, the progenies of C1q ™/~ or C1q "/~ and C1q '~ mat-
ing (cohort 1), C1q ~/~ along with age- and strain-matched C6-deficient
and WT mice (cohort 2) simultaneously were subjected to hypoxia—
ischemia. C1q /™ mice are not able to activate terminal C via the classical
C activation pathway. The C6 /" mice lack one (C6) of the components
of MAC (C5b—C9) and are not able to assemble a functional terminal C
complex (MAC). Therefore, if C1q-dependent (classical pathway) acti-
vation of the terminal C complex participates in HI injury, then both
Clq '~ and C6 /~ mice are expected to demonstrate neuroprotection.
The extent of cerebral damage was analyzed after C1q genotyping.

Clq genotyping. Clqa primers were as follows: mClqa/5+, GGG GCC
TGT GAT CCA GAC AG; mC1qIN/2—, TAA CCA TTG CCT CCA GGA
TGG; Neo3’, GGG GAT CGG CAA TAA AAA GAC. The deficiency of C6
(C6 '7) in mice was verified functionally by the assessment of C6-
dependent hemolytic activity of human serum (Kabad and Mayer, 1961).
Briefly, in 500 ul of gelatin Veronal buffer (Sigma-Aldrich), an increasing
concentration of serum obtained from P10 naive WT or C6 ~/~ mice was
incubated with sensitized sheep erythrocytes (3 X 107; Sigma-Aldrich) in
the presence of human Cé6-deficient serum (25 ul; Sigma-Aldrich) for 30
min at 37°C. Hemolytic activity of each sample was measured at 412 nm
to obtain hemolytic titration curve. Using this curve, the amount of WT
mouse (C6 */*) serum (20 wl) that restored 50—60% of hemolytic activ-
ity of C6-deficient serum was determined. Then hemolytic activity of
serum (20 pl) obtained from randomly selected C6 ~/~ and WT HI mice
were compared and expressed as percentage of hemolysis relative to the
extent of spontaneous hemolysis (0%) and osmotic hemolysis (100%).

A separate cohort of WT mice was used to determine whether phar-
macological inhibition of MAC assembly attenuates the extent of HI
brain injury. At 12 h before HI insult, WT mice were pretreated either
with mouse-specific IgG-fused soluble CD59 (sCD59) (200 ug, i.p., in
0.15 ml of PBS) or vehicle (0.15 ml of PBS, i.p.) followed by the exposure
to HI insult as described previously. At 24 h of reperfusion, brains were
examined for the degree of C9 deposition and the extent of HI injury.
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sCD59 is a potent primary inhibitor of MAC assembly on cell mem-
branes in mice (Baalasubramanian et al., 2004). Pretreatment with
sCD59 has been shown to limit the assembly of MAC (decreased depo-
sition of C9) in the renal tissue after ischemia-reperfusion, and this was
associated with attenuation of injury (Yamada et al., 2004).

Extent of C activation. The extent of C activation was assessed by de-
tection of C3-split products and C9 in the post-HI brains. Briefly, at 24 h
after HI insult, brains were harvested from randomly selected Clq N
Clq """ mice and the WT mice pretreated with sCD59 or vehicle, fixed in
4% paraformaldehyde, and incubated with rabbit/anti-rat C9 antibodies
or rat/anti-mouse monoclonal antibodies against C3b/iC3b/C3c neo-
epitopes (Hycult Biotechnology). Rabbit/anti-rat C9 antibodies cross-
react with mouse C9 and have been used as a marker for MAC assembly
and cellular deposition after renal and brain injury in mice (Yamada et
al., 2004; Alexander et al., 2005). Nissl and microtubule-associated pro-
tein 2 (MAP2) (1:800; Sigma-Aldrich) staining were used to counterstain
nucleus and neuronal cytosol. During confocal microscopy (Bio-Rad
2000 laser-scanning device; Nikon E800), the infarcted areas of brain
were identified by the regional loss of MAP2 immunoreactivity. The level
of immunopositivity for C9 and C3-split products was assessed semi-
quantitatively as described previously (Ten et al., 2005). Images of the
area of interest (ipsilateral and contralateral hemisphere) were captured
under identical fluorescence and magnification. Areas (in pixels) positive
for C9 and C3-split products were measured using Image-Pro Plus 4.5
(Media Cybernetics). A total of five nonadjacent fields in five cerebral
sections (—1 to +1.5 mm in relation to bregma) were analyzed from each
mouse. Mean value of immunopositivity (pixels) for C9 and C3-split
products obtained from a single mouse was used for data analysis. In
addition, the presence of C3d (C3-split product) in the ischemic brains
was quantified by Western blot analysis as described previously (Mack et
al,, 2006). In brief, 50 ug of total protein per sample were denaturated in
SDS with reducing agent and run on NuPAGE Novex 12% Bis-Tris Gel
(Invitrogen) under reducing conditions. Membranes were incubated
with the goat anti-mouse C3d antibody (1:1000; R&D Systems) followed
by incubation with horseradish peroxidase (HRP)-conjugated donkey
anti-goat secondary antibody (1:20,000). Immunoreactive bands were
detected using a chemiluminescence kit (Thermo Fisher Scientific), and
membranes were exposed to x-ray film (Eastman Kodak). Blots were
scanned and analyzed using NIH Image]J to quantify relative (normalized
to B-actin) expression of C3d. The ratio of C3d optical density between
ipsilateral and contralateral hemisphere was used for statistical analysis.

Neuronal Clq genotype and oxygen—glucose deprivation. Cortical neu-
rons were isolated from mouse fetal brains at 16 d of gestation as de-
scribed previously (Brewer et al., 1993; Takuma et al., 2005). Briefly, the
cerebral cortex from WT and Clq '~ fetuses was removed, digested with
trypsin (Invitrogen), and triturated in the Neurobasal media supple-
mented with 2% B27, 0.5 mm glutamine, and 4.4 mm sodium bicarbon-
ate. Isolated cortical neurons in 1 ml of the media were centrifuged
(3000 X g; 3 min; at 4°C), and pellets were resuspended in the Neuro-
basal/B27 media supplemented with 0.5 mm glutamine, 50 U/ml penicil-
lin, and 50 mg/ml streptomycin. Then cells were seeded in the 24-well
plates (Corning Life Sciences) precoated with 50 mg/ml poly-L-lysine
(Invitrogen) at a density of 1 X 107 cells per well. After 3—4 d in vitro
incubation at 37°C and 5% CO,, neurons were subjected to the oxygen—
glucose deprivation (OGD) stress.

OGD challenge. OGD challenge was produced as described previously
(Zhang et al., 2003; Benchenane et al., 2005). In brief, the neurons were
washed with HBSS, rinsed with PBS, and incubated in glucose-free
DMEM media prebubbled with hypoxic gas mixture (94% N, plus 6%
CO, at pH 7.4) in the tightly sealed plastic chamber containing anaerobic
GasPak EZ Container System and O, indicator (BD Biosciences). The
GasPak EZ system contains a reagent sachet consisting of inorganic car-
bonate, activated carbon, ascorbic acid, and water. When the sachet is
removed from the outer wrapper, it is activated by the exposure to air and
rapidly reduces the oxygen concentration within the chamber to <1%.
The O, indicator changes color (white to blue) if O, concentration in the
chamber exceeds 1%. The OGD was carried for 4 h at 37°C. After OGD
cells were replenished with fresh media and kept at standard (normoxia;
5% CO,; at 37°C) condition for reperfusion. At 20 h of reperfusion,
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cellular viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) reducing assay. Briefly, cells were
washed with HBSS and incubated in the same media containing 5 mg/ml
MTT and 10 mm sodium succinate. After 60 min of incubation, the
media was removed and cells were rinsed with PBS and dried. The
formazan crystals were solubilized with 0.3 ml of 4 mm HCl-isopropanol.
The plates were read on the Tecan microplate reader (Infinite M200) ata
wavelength of 570 nm.

To examine a direct effect of C1q on cellular survival during reperfu-
sion, Clq /" neurons were exposed to increasing concentrations
(0.035-1.75 ug/ml) of purified human Clq protein (hC1q) produced as
described previously (Tenner et al., 1981) or purchased (Quidel). The
concentration of Clq in human CSF averages 0.340 ug/ml (Smyth et al.,
1994). Given that, after a global cerebral ischemia, Clq is dramatically
upregulated leading to a threefold to sixfold increase in C1q-dependent
hemolytic activity (Schifer et al., 2000), we selected hC1q doses repre-
senting normal and elevated Clq concentration in CSF, 0.35 to 1.75
wg/ml. Cellular viability in WT and C1q ~/~ OGD-stressed neurons was
assessed after reperfusion in the presence or absence of 200 um
6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), a
potent ROS scavenger. Cellular viability of OGD-stressed cells was ex-
pressed as percentage in the relation to the viability of genotype-
appropriate untreated neurons (100%). Data from four separate
experiments were used for analysis.

Assays for mitochondrial functions. To determine whether the presence or
absence of C1q alters the response of brain mitochondria to HI insult, sepa-
rate cohorts of C1q '~ and C1q ™" mice were subjected to hypoxia—isch-
emia as described previously. Brain nonsynaptosomal mitochondria
were isolated as described previously (Caspersen et al., 2008) with minor
modification. The rates of mitochondrial respiration, ROS emission were
measured at three different time points of reperfusion: 0, 30— 60 min, and
4-6 h, respectively. Mitochondrial membrane potential (Aym) was
measured at 0 and 30—60 min of reperfusion.

Mitochondrial respiration. Mitochondrial respiration was measured
using a Clark-type electrode (Oxytherm; Hansatech). Mitochondria
(0.05 mg of protein) were added to 0.5 ml of respiration buffer composed
of 200 mm sucrose, 25 mm KCl, 2 mm K,HPO,, 5 mm HEPES-KOH, pH
7.2, 5 mm MgCl,, 0.2 mg/ml BSA, 30 um P!,P>-di(adenosine 5')-
pentaphosphate (ApsA) (an inhibitor of adenylate kinase), 10 mm gluta-
mate, and 5 mm malate at + = 32°C. To initiate the phosphorylating
respiration (state 3), 100 nmol of ADP was added to the mitochondrial
suspension. To achieve a nonphosphorylating (uncoupled) acceleration
of respiration, 70 um 2,4-dinitrophenol (DNP) was added at the state 4,
after a completion of ADP phosphorylation. Rates of O, consumption
were expressed in nanomoles of O, per milligram of mitochondrial pro-
tein per minute. The respiratory control ratio (RCR) was calculated as
the ratio of the state 3 respiration rate to the resting respiration rate (state
4) recorded after the phosphorylation of ADP has been completed.

Measurement of mitochondrial H,0, emission rate. Measurement of
mitochondrial H,O, emission rate was performed by a fluorescence as-
say with Hitachi 7000 spectrofluorimeter set at 555 nm excitation and
581 nm emission as described previously (Starkov and Fiskum, 2003).
Briefly, mitochondria (0.05 mg/ml) were placed in 1 ml of respiration
buffer with omitted malate/glutamate and ApsA, but supplemented with
5 mM succinate, 10 um Amplex Ultrared (Invitrogen), and 4 U/ml HRP.
After recording the fluorescence for 400 s, samples were supplemented
with 1 uM rotenone and, after another ~200 s, with 1 pg/ml Antimycin
A. The calibration curve was obtained by adding several 100 nmol ali-
quots of freshly made H,0, to the cuvette containing the respiration
buffer, Amplex Ultrared, and HRP. The rate of H,O, emission was ex-
pressed in nanomoles of H,0, per milligram of mitochondrial protein
per minute.

The rationale for testing mitochondrial ROS generation rate on the
flavin adenine dinucleotide (FAD)-linked substrate succinate was based
on studies that demonstrated ~300% increase in succinate concentra-
tion in the rat brain after ischemia (Folbergrova et al., 1974; Benzi et al.,
1979). In contrast, the same ischemia resulted in a profound (8- to 10-
fold compared with control) decrease in the concentration of mitochon-
drial NAD-linked substrates. This elevated cerebral level of succinate
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returned to the preischemic range by 30 min of reperfusion (Benzi et al.,
1982). In mature rats, forebrain ischemia and 6 h of reperfusion resulted
in significant inhibition of mitochondrial respiration tested on NAD-
linked substrates. However, no significant differences from the control
values were found when the same mitochondria respired on succinate
(Sims, 1991). In neonatal rats exposed to HI cerebral mitochondria ex-
hibited a better respiration on FAD-linked than on NAD-linked sub-
strates (Gilland et al., 1998). Together, these data indicate that, during
postischemic reperfusion in mature and immature brains, the conditions
are more preferable for oxidation of succinate rather than NAD-linked
substrates.

Reconstitution of isolated Clq mitochondria with exogenous Clq.
Reconstitution of isolated C1q ™'~ mitochondria with exogenous Clq
was performed to examine whether direct interaction of hC1q with iso-
lated mitochondria will alter mitochondrial ROS generation rate. Cere-
bral mitochondria isolated from naive C1q ~/~ mice (0.1 mg of protein)
were coincubated with either active or heat-inactivated hC1q (1.75 or 3.5
pg/ml) for 30 min at 37°C in 1 ml of cytosol-like buffer (125 mm KCI, 14
mum NaCl, 2 mm KH,PO,, 20 mm HEPES, pH 7.2, 1 mm MgCl,, 4 mm
ATP, 0.2 mm EGTA) in the cuvette with magnetic stirrer. At 20 min of
incubation, Amplex Ultrared and 4 U/ml HRP were added and mito-
chondrial respiration was initiated with supplementation of succinate
(5 mm). The H,O, emission rate was recorded for 500 s followed by
supplementation of rotenone and antimycin-A as described above. After
spectrofluorometry, mitochondria and buffer containing hC1lq were
centrifuged at 10,000 X g for 20 min. Then, both supernatant (buffer)
and mitochondrial pellet (pellet was washed three times in the fresh
buffer) were processed for Western blot analysis for the presence of
hClq.

Membrane potential. The membrane potential (AWm) of isolated mi-
tochondria was estimated using the fluorescence of Safranin O with ex-
citation and emission wavelengths of 495 and 586 nm, respectively
(Kowaltowski et al., 2002). Mitochondria (0.05 mg/ml) were suspended
in the respiration buffer supplemented with Safranin-O at 20:1 ratio
(micromolar Safranin-O to milligrams of mitochondrial protein) to en-
sure the linearity of the dye response to AWm changes (Zanotti and
Azzone, 1980).

Assessment of mitochondrial ROS scavenging capacity. An assessment of
mitochondrial ROS scavenging capacity was based on measurements of total
glutathione concentration (GSH), levels of glutathione peroxidase (GPx),
glutathione reductase (GR), and Mn-superoxide dismutase (MnSOD) in
randomly selected samples of brain mitochondria isolated from C1q ~/~
and C1q ™" naive mice and HI mice at 4 h of reperfusion.

Measurement of glutathione. GSH concentrations were measured as
described by Griffith (1980) with minor modification. Briefly, to prevent
self-oxidation, mitochondria (1.5 mg/ml) were diluted in 5% metaphos-
phoric acid (1:1). Three working solutions were used as follows: (1) 0.3
mM NADPH (Sigma-Aldrich), (2) 6 mm 5,5'-dithiobis-2-nitrobenzoic
acid (DTNB) (Sigma-Aldrich), and (3) 10 U/ml glutathione reductase
(Sigma-Aldrich). Reduced glutathione in concentration of 0-20 um was
used as standard (Sigma-Aldrich). GSH concentration was measured at
405 nm using a microplate reader (Tecan) and expressed in micromoles
per milligram of total protein. The levels of GPx, GR, and MnSOD were
quantified by Western blot analysis. Antibodies against GPx, GR, and
MnSOD (Abcam) were used in final concentrations of 1:2000, 1:1000,
and 1:20,000, respectively.

Complex I and citrate synthase activity. Complex I and citrate synthase
(CS) activity was measured spectrophotometrically as rotenone-sensitive
NADH:Q), reductase. Reaction buffer was composed of 10 ml of 2 mm
HEPES, pH 7.8, 75 um NADH, 40 uM coenzyme Q, (final concentra-
tion). Frozen-thawed mitochondria (0.1 mg/ml) were mixed with the
reaction buffer in a 96-well plate, and the absorbance changes at 340 nm
were followed for 15 min with plate reader HTS7000+ (PerkinElmer). In
control incubations, the reaction buffer was supplemented with 2 um
rotenone (final concentration). The activity of complex I was calculated
as difference between the rates of NADH oxidation (E**° mm = 6.22
cm ') in the absence and in the presence of rotenone and presented in
nanomoles of NADH per minute per milligram of protein. CS activity in

—/—
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0.1 mg/ml mitochondria was measured by the C3b/iC3b/C3c
reduction of DTNB as described previously A
(Shepherd and Garland, 1969).

Mitochondrial superoxide detection in cells. Mi-
tochondrial superoxide detection in cells was per-
formed in primary neurons cultured for 3 d in
the glass-bottom poly-p-lysine-coated micro-
well dishes (?35/10 mm) (MatTek). Cells were
seeded at a density of 5 X 102, To detect mito-
chondrial superoxide production, cells were
washed with HBSS and incubated with Mi-
toSOX Red (0.2 um in HBSS, 15 min; Invitro-
gen) followed by incubation with Hoechst
33342 (0.2 uM in HBSS, 5 min; Invitrogen).
MitoSOX Red selectively detects superoxide in
the mitochondrial matrix (Kirkland et al.,
2007; Robinson et al., 2008). The concentra-
tion of MitoSOX (0.2 um) was selected to
avoid cellular toxicity and nonspecific nuclear
fluorescence (Simonyan and Skulachev, 1998;
Robinson et al., 2008). After incubation with
fluoroprobes, cells were washed with HBSS and
examined under inverted microscope (Axio
Observer Z1; Zeiss). MitoSOX fluorescence
was detected using filter (43HE DS-Red; exci-
tation, 563; emission, 581 nm) and Hoechst
with the filter (Ste 02; excitation, 365; emission,
420). Images were examined and captured at
37°C using 63X oil objective. The parameters
for image capture, fluorescent light intensity
and exposure time (500 ms), were set at the
initial imaging of C1q /™ naive cells and then
keptidentical for all other studied samples dur-
ing each experiment. To minimize photo-
oxidation of MitoSOX, the microscopy time
for a field selection and adjustment of focus
were kept constant (10 s) for all images. For
semiquantification of MitoSOX fluorescence,
five nonadjacent images (259,840 pixels) per
well from each experimental condition were
collected and the number of cells (Hoechst-
positive nuclei) in each image were counted.
The mean value per well represented a single
observation (n = 1). Two to four wells per each
experimental group were analyzed in each experiment. Data from a total
of three separate experiments (three separate neuronal preparations)
were analyzed. In neurons after 2—4 h of OGD, the exposure to MitoSOX
caused significant cellular mortality and intensive nonspecific nuclear
MitoSOX fluorescence. Therefore, the duration of OGD exposure was
reduced to 30 min. All images were obtained at 60—70 min of reperfu-
sion. MitoSOX fluorescence was quantified using ImageJ analysis soft-
ware and expressed in pixels normalized per cell count.

Electron microscopy. Electron microscopy of brains in WT mice was
performed to examine intraneuronal presence and localization of Clq
before (n = 2) and at 12 h after HI insult (n = 2). Briefly, brains were
fixed (4% paraformaldehyde plus 0.1% glutaraldehyde). Then, samples
(small pieces of neocortex) were embedded in LR-white medium (Elec-
tron Microscopy Laboratory). Ultrathin sections were blocked in 10%
donkey serum and incubated with goat/human anti-Clq polyclonal an-
tibody (1:200; Biomeda) followed by incubation with secondary IgG
donkey anti-goat antibody conjugated with donkey anti-mouse antibody
conjugated with colloidal gold (12 nm particle; 1:40; Jackson Immu-
noResearch Laboratories). Sections were counterstained with uranyl ac-
etate and examined under electron microscope (JEOL 100S; Jackson
ImmunoResearch Laboratories). To quantify Clq accumulation in
neuronal mitochondria, the Clq-immunogold particles present in
the mitochondrial projection were counted in 49 organelles in naive
and 57 organelles in HI mice and expressed as mean count of particles
per mitochondrion.

Figure 1.
cortex in WT (B) and C1q ~/~ (€) HI mice. D, Western blot analysis for (3d content in the contralateral (c) and ipsilateral (i)

hemispheresin WTand C1q
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A-(, Confocal microscopy for deposition of (3b/iC3b/C3c (pink) in the contralateral (), and the ischemic, ipsilateral

mice. E-G, Immunostaining for (9 deposition (pink) in the contralateral () and ipsilateral cortex
inWT (F) and C1q ~/~ (G) HI mice. The green color is MAP2, and blue is Niss! stain. Scale bars, 50 um. H—J, Light microscopy
images of hippocampus and corteximmunostained for C9 deposition (dark brown) in nonischemic (H) and ipsilateral hemispheres
inthe vehicle-treated WT mice (/) and their littermates pretreated with sCD59 (/). Scale bars, 100 m. All data are mean = SEM.

Extent of oxidative brain damage. The extent of oxidative brain damage
was analyzed by visual detection and semiquantification of immunopos-
itivity of markers for lipid peroxidation [4-hydroxy-nonenal (4HNE)]
and protein peroxinitrolysation [3-nitrotyrosine (3NT)]. In brief, at 4
and 24 h of reperfusion, brains were harvested from randomly se-
lected C1q /™ and age- and strain-matched WT mice, fixed in 4%
paraformaldehyde, and soaked in 30% sucrose overnight. The 20-
pm-thick coronal sections were blocked (10% donkey serum) and
incubated with rabbit polyclonal anti-4-HNE (1:500) and anti-3NT
antibodies (1:100) as described previously (Zhu et al., 2007). Samples
were examined using Bio-Rad 2000 confocal laser-scanning device
attached to a Nikon E800 microscope. The 4-HNE and 3-NT immu-
noreactivity was analyzed by the count of immunopositive neurons in
five nonadjacent fields (40X) of injured cortex at three different
bregma levels (—1.0, 0, +1.0 mm). Thus, 15 areas of cortex were
analyzed for each mouse and mean value of cell count per square
millimeter per mouse was used for statistical analysis. Only those WT
and Clq /" mice that developed signs of neuronal injury (dimin-
ished expression of MAP2) were used for data analysis.

Statistical analysis. All data were expressed as mean *+ SEM. One-way
ANOVA or ANOVA for repeated-measures or f test, when appropriate,
with Fisher’s post hoc analysis were used to compare the extent of cerebral
injury, cellular viability, the degree of C component deposition, and
oxidative stress among three or two groups. Data were considered statis-
tically significant if p < 0.05.
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Results

Complement is activated in the ischemic brain

At 24 h after hypoxia—ischemia, WT mice demonstrated deposi-
tion of C3-split products (C3b/iC3b/C3c) and C9 only in the
ischemic (ipsilateral) hemisphere (Fig. 1A, B,E,F,H,I). Western
blot analysis revealed markedly increased C3d content in the ip-
silateral versus contralateral hemispheres (Fig. 1D). The
C-specific immunosignals were detectable in the injured areas of
brain defined by the remnant presence or the absence of immu-
noreactivity for MAP2 (Fig. 1B, F).

Genetic ablation of C1q or pretreatment with sCD59
attenuates terminal C activation

At 24 h of reperfusion, C1q '~ mice exhibited attenuated depo-
sition and expression of C3-split products and C9 in their injured
brains compared with Clq*'" littermates (Fig. 1B,C,F,G).
Semiquantitative analysis revealed significantly (p < 0.03)
smaller size of the areas immunopositive for C3-split products
(7.36 = 1.87 X 10° pixels; n = 4) and C9 (4.8 = 1.3 X 107 pixels;
n=4)in Clq '~ mice compared with their C1q *'" littermates
(17 =3.6 X 10% and 14.2 = 2.7 X 10° pixels, respectively; n = 4).
Similarly, Western blot analysis also showed significantly ( p <
0.03) decreased C3d/B-actin ratio in the ischemic brains in
Clq ™' mice (n = 4) compared with C1q */* mice (n = 3). Mice
pretreated with sCD59 compared with their vehicle-treated lit-
termates exhibited significantly ( p = 0.01) reduced deposition of
C9 (5.2 * 1.9 X 10° vs 31.8 = 11 X 107 pixels; n = 4) in the
HI-injured cortex and hippocampus (Fig. 1 H-]).

Only C1q ~'~ mice were protected against hypoxia—ischemia
Analysis of the brain damage revealed a significant ( p = 0.0003)
decrease of infarct volume in C1q /™ mice compared with their
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Clq ™™ littermates (Fig. 2A,B). C1q™'~
littermates also demonstrated signifi-
cantly (p = 0.04) attenuated extent of
brain damage compared with their
Clq"'™" littermates. The distribution of
cerebral infarct volumes among Clq ',
Clq™7,and C1q*'" littermates was as-
sociated with both C1q—protein content
in their brains and genotype (Fig. 2B, C).
Although mice pretreated with sCD59
exhibited significantly decreased depo-
sition of C9 in the injured hemisphere,
their cerebral infarct volumes were
similar (42 * 7.4%; n = 6) to the
vehicle-treated HI littermates (40 =
4.87%;n = 6). When Clq '~, WT, and
C6-deficient mice were exposed to hy-
poxia—ischemia of an identical severity,
only Clq ™'~ mice demonstrated sig-
nificant neuroprotection (Fig. 2D). In
contrast, C6 '~ mice demonstrated
brain injury to a similar extent as their
WT counterparts (Fig. 2D). The serum
obtained from these C6 '~ HI mice
failed to restore MAC-hemolytic activ-
ity [5.09 * 1.6% (C6 ' 3n=4)vs 63 +
2.2% (WT; n = 4) hemolysis; p <
0.0001] of the C6-deficient human serum,
providing a functional confirmation for C6
deficiency.

*/~ mating progenies

Clq accumulates in neuronal cytosol and mitochondria

after hypoxia—ischemia

Electron microscopy revealed that, in naive WT mice, neurons
constitutively express Clq in the cytosol and mitochondria
(0.81 * 0.42 immunogold particles per organelle) (Fig. 3A).
However, in response to hypoxia—ischemia and 12 h of reperfu-
sion, there was a markedly increased presence of C1q in neuronal
cytosol associated with significantly increased (4.23 = 1.82 Clq-
immunogold particles per organelle; p < 0.0001) accumulation
of Clq in mitochondria (Fig. 3A,B). Of note, 8.76% of mito-
chondria in HI neurons exhibited very dense (the distance be-
tween particles, ~12 nm) accumulation of C1q in the matrix (Fig.
3 B,C). Western blot analysis also revealed an increasing presence
of Clq in the ipsilateral hemisphere at 3.5 and 7 h of reperfusion,
compared with naive mice (supplemental Fig. 1A, available at
www.jneurosci.org as supplemental material).

Clq ablation limits mitochondrial ROS emission and extent
of oxidative brain injury only in neonatal mice

Brain mitochondria isolated from C1q ~/~ mice exhibited a sig-
nificantly decreased rate of ROS emission compared with their
Clq ™" littermates at all time points, before hypoxia—ischemia
(naive mice), at 0, 30—60 min, and 4—6 h after hypoxia—ischemia
(Fig. 3D-G). Importantly, in WT HI mice at 0 min of reperfusion,
the rate of mitochondrial ROS emission in the brain did not differ
from that in their naive littermates (Fig. 3E). However, once
reperfusion was established, WT mice demonstrated a robust
acceleration in mitochondrial ROS emission rate compared with
naive and non-reperfused HI littermates (Fig. 3E). In contrast,
C1q ™'~ HI mice exhibited a significantly lower rate of ROS re-
lease at 30—60 min of reperfusion compared with WT counter-
parts, although it was significantly increased compared with that
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at 0 min of reperfusion (Fig. 3E). The
Clq ™/~ genotype-associated inhibition
in ROS emission rate was detected before
and after inhibition of the C-I with rote-
none (Rot) and inhibition of the C-III
with antimycin A (AntA) (Fig. 3F,G). Re-
markably, at 4—6 h of reperfusion, the rate
of ROS emission in WT HI mice was di-
minished compared with that at 30—60
min of reperfusion. At the same time,
Clq /" mice mitochondria continued to
generate ROS at a rate comparable with
that of their naive littermates (Fig. 3E). Of
note, no difference in mitochondrial
membrane potential was found between
Clq ™/~ and C1q™'" mice assessed at 0
(data not shown) and 30 min of reperfu-
sion, the time point when ROS emission
rate differed the most between two geno-
types (supplemental Fig. 1C, available at
www.jneurosci.org as supplemental ma-
terial). At 4 and 24 h of reperfusion, stain-
ing of brains for markers of lipid and
protein oxidative damage (4HNE and
3NT) revealed significantly attenuated
signs of oxidative stress in C1q '~ mice
compared with WT mice (Fig. 4A-G).
The signs of oxidative brain damage
were detectable at 4 h of reperfusion
with additional magnification by 24 h of
reperfusion in mice of both genotypes.
This was associated with a gradual loss
of the MAP2 immunopositivity, indicat-
ing a propagation of cellular damage and
death (Fig. 4A-E).

Surprisingly, brain mitochondria iso-
lated from naive adult (10-week-old)
Clq '~ mice demonstrated the same rate
of ROS emission as mitochondria from
Clq ™" mice (supplemental Fig. 1D-F,
available at www.jneurosci.org as supple-
mental material). This coincided with
the absence of neuroprotective effect of
Clq gene deletion against HI injury in
mature mice (supplemental Fig. 1G,H,
available at www.jneurosci.org as sup-
plemental material).

Clq deletion attenuates post-HI

inhibition of mitochondrial respiration
At 0 min of reperfusion, mitochondria
isolated from the ipsilateral hemisphere of
neonatal WT mice demonstrated signifi-
cant (p = 0.0001) inhibition of phos-
phorylating and uncoupled respiration

along with poorer RCR compared with their naive counterparts
(Fig. 5A,B,D). No significant changes in the resting (state 4)
respiration rates were detected in HI mice of both genotypes (Fig.
5C). Importantly, at 0 min of reperfusion, cerebral mitochondria
" mice compared with their WT counterparts exhib-
ited minimally inhibited respiratory chain activity, as defined by
ADP-phosphorylating and uncoupled respiration rates (Fig.
5A,B). This was associated with spared C-I activity in Cl1q "~

from Clq ~/
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neurons with characteristic dense accumulation of C1q in mitochondria. Scale bars, 100 nm. M, Mitochondrion. D, Representative
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at 30 min of reperfusion. The arrows indicate supplementation of mitochondria (Mito), rotenone (Rot), and antimycin A (Ant.A).
E=G, H,0, generation rate in mitochondria isolated from C1q */* (black bar) and C1q ~/~ (checkered bar) at different time
points after Hl insult. Naive mice (n = 11and 8) at 0 min (n = 4in both groups), at 30 — 60 min (» = 8and 5),and at4—6h (n =
7 and 5) of reperfusion. E, Total rate. F is the rate after rotenone supplementation, and G is the rate after antimycin-A
supplementation. *p < 0.05 compared with the corresponding WT mice; p < 0.01 compared with naive and that at 0 min of
reperfusion; **p =< 0.02 compared with that measured at 30 — 60 min of reperfusion in WT mice. Error bars indicate SEM.

mice, but not in WT mice in which hypoxia—ischemia caused
significant inhibition of C-I (Fig. 5E). At 30—60 min of reperfu-
sion, the rate of mitochondrial O, consumption during state 3
respiration was well coupled and fully restored in both groups of
mice and did not differ from their naive counterparts (Fig.
5A,B,D). In WT HI mice, this fully restored activity of the mito-
chondrial respiratory chain was paralleled with the peak in

= post-HI ROS emission rate detected at 30—60 min of reperfusion
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(Fig. 3E). However, at 4—6 h of reperfusion, mitochondrial phos-
phorylating and uncoupled respiration in WT HI mice declined
significantly ( p = 0.01) compared with that in WT naive mice or
WT HI mice studied at 30 —60 min of reperfusion, and compared
with C1q ™'~ HI mice (Fig. 5A,B). At the same time point of
reperfusion, the RCR in WT HI mice was also significantly de-
creased compared with their naive littermates (Fig. 5D). In con-
trast,in C1q /" HI mice, mitochondrial respiration rates (state 3
and DNP accelerated) assessed at the same time point did not
differ from that in naive C1q '~ mice (Fig. 5A,B).

Exposure to C1q increased mitochondrial superoxide only in
cultured neurons

When Clq /" cortical neurons were exposed to hC1q for 90 min
and labeled with MitoSOX, an elevation (p = 0.06) of
superoxide-specific signal was detected (Fig. 5F). This effect was
absent after exposure to a heat-inactivated hClq (Fig. 5F). Elec-
tron microscopy of C1q /" neurons revealed an appearance of

24 hrs reperfusion

Reperfusion time (hrs)

Confocal microscopy of the cortex immunostained for 4HNE (pink) in naive (A) and Hl mice at 4 h (B) and 24 h (C) of
reperfusion. D, E, The cortex immunostained for 3NT (pink) at 4 h (D) and 24 h (E) of reperfusion. The genotypes of mice are
indicated. Blue is Nissl, and green is MAP2. Scale bars, 50 rum. The arrows indicate positive 4HNE and 3NT cells. F, G, The number
of positive cells in WT (black bar; n = 5) and (1q ~/~ (checkered bar; n = 4) mice. *p < 0.03 compared with WT counterparts
(ttest); **p << 0.02 compared with that at 4 h of reperfusion (repeated-measures ANOVA). Error bars indicate SEM.
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hClqimmunosignal in the neuronal cytosol
and mitochondria after 90 min incubation
with hClq (Fig. 5G,H). An incubation of
hClq with isolated C1q '~ mitochondria
resulted in hClg-mitochondria interac-
tion (supplemental Fig. 1B, available at
www.jneurosci.org as supplemental ma-
terial). However, this interaction did not
affect mitochondrial ROS emission rate
(data not shown).

C1q '~ neurons are protected against
OGD and exposure to hC1q abrogates
this protection

Cortical Clq '~ neurons demonstrated a
dramatic (p = 0.0007) protection against
OGD challenge compared with their WT
counterparts (Fig. 6A). However, when
OGD-stressed C1q ™'~ cells were “reper-
fused” in the presence of increasing con-
centrations of hClq, neuronal viability
decreased in the hClq dose-dependent
manner (Fig. 6A). No change in OGD-
induced mortality was detected after reperfu-
sion of C1q '~ neurons with heat-inactivated
hClq. Importantly, the deleterious effect of
hC1q on cellular survival was fully abro-
gated in the presence of the ROS scavenger,
Trolox (Fig. 6A). The OGD and 60 min of
reperfusion significantly increased mito-
chondrial superoxide-specific fluorosignal
only in WT neurons (Fig. 6 B,C).InClq '~
OGD-stressed cells, the MitoSOX fluores-
1 cence was significantly reduced compared
with that in WT OGD cells (Fig. 6 B,C). The
exposure to hClq during 60 min of reperfu-
24 sion further increased ROS signal in
Clq '™ cells, and heat inactivation of hClq
prevented this effect (Fig. 6C).

Discussion

Complement is activated in the ischemic
brain after hypoxia—ischemia in immature
rodents and in human infants (Cowell et al.,
2003; Schultz et al., 2005). We also found
markers for Cactivation (C3-split products
and C9) only in the post-HI brain. In C1q '~ mice, signs of C
activation and deposition of the terminal C complex were signif-
icantly decreased, the event associated with neuroprotection
against hypoxia—ischemia. This suggests that the neuroprotec-
tion in C1q /" mice is attributable to a limited C activation and
assembly of the terminal C complex. However, neither genetic
(C6 ™/~ mice) nor pharmacological (pretreatment with sCD59)
inhibition of the terminal C complex assembly resulted in pro-
tection against hypoxia—ischemia. This implies that terminal C
complex does not contribute to the HI injury in the developing
brain. C1g-mediated C activation pathway generates proinflam-
matory mediators, C3a and C5a, implicated in the pathogenesis
of focal ischemic brain injury (Van Beek et al., 2000; Mocco et al.,
2006). The neuroinflammatory response develops within hours
and days after hypoxia—ischemia (Ferriero, 2004). In our experi-
ments, C1q '~ mice exhibited signs of neuroprotection (signifi-
cantly better preserved mitochondrial phosphorylating respiration
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and C-I activity) even before the reperfu-
sion, when neuroinflammation cannot be
considered. Therefore, it is unlikely that
attenuated complement-mediated neu-
roinflammation accounts for neuropro-
tection in C1q /™ mice.

In Clqg-sufficient mice, hypoxia—isch-
emia and reperfusion were associated
with robust accumulation of Clq in the
neuronal cytosol and mitochondria. This
is consistent with a dramatic overexpression
of Clq in the brain after global ischemia
(Schifer et al., 2000) and in neuron-like
PC12 cells on hypoxic stress (Tohgi et al.,
2000). Although this postischemic up-
regulation and accumulation of Clq in
the brain can be the initial sign of classical
C activation pathway, there is another
molecular effect associated with neuronal
presence of Clg, accelerated release of
ROS from mitochondria. In the absence
of Clq, brain mitochondria generated sig-
nificantly less ROS compared with Clg-
sufficient littermates. C1q /™ genotype
was also associated with significantly bet-
ter preservation of the mitochondrial
phosphorylating and uncoupled respira-
tion and C-I activity at the end of HI in-
sult. This suggests that the absence of C1q
protects mitochondrial respiratory chain
against inhibition by hypoxia—ischemia.
Postischemic inhibition of mitochondrial
C-I was suggested as a molecular mecha-
nism responsible for excessive generation
of ROS from mitochondrial respiratory
chain during reperfusion (Chen et al,
2008). An accelerated ROS emission from
cerebral mitochondria in Clq™'* HI
mice could be explained by a greater C-I
inhibition compared with Clq '~ HI
mice. However, mitochondria obtained
from naive Cl1q"/" and Clq ™'~ mice
with unaltered C-I activity also exhibited a
markedly different rate in ROS emission,
pointing to a C-I-independent mecha-
nism for Clq regulation of mitochondrial
ROS release. It has been proposed that ac-
celerated mitochondrial ROS emission af-
ter global brain ischemia is responsible for
inactivation of respiratory chain com-
plexes, including C-I (Racay et al., 2009).
Therefore, the relative resistance of C-I
toward an inhibiting effect of hypoxia—is-
chemia in C1q /" HI mice could be sec-
ondary to a limited acceleration in ROS
emission during HI insult so that ROS lev-
els in the mitochondrial matrix do not

reach a threshold to cause C-I dysfunction. Neuronal mitochon-
dria were shown to respond with a burst of ROS release within
minutes of initiation of OGD. By the end of OGD challenge,
mitochondrial emission of ROS declined secondary to collapsed
AW¥m (Abramov et al., 2007). Importantly, a difference in AWm,
a well established regulator of mitochondrial ROS production
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rate (Starkov and Fiskum, 2003), cannot account for the differ-
ence in mitochondrial ROS emission in C1q /" versus Clq '~
mice, as AWm did not differ between mice of these genotypes. We
also found no difference in the mitochondrial total GSH content
or the presence of GPx, GR, and MnSOD in mitochondria iso-
lated from C1q /~ and C1q ™" naive or HI mice (supplemental
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Fig. 1 =K, available at www.jneurosci.org as supplemental mate-
rial). Thus, neither mitochondrial ROS scavenging capacity nor
AW¥m account for the significantly decreased rate of mitochon-
drial ROS emission in C1q '~ mice compared with Cl1q™*/'*
counterparts. Although we do not know the exact molecular
mechanism for C1q-mediated regulation of mitochondrial ROS
release, this study is the first to demonstrate a pathophysiological
significance of C1q in oxidative stress originated from mitochon-
dria during HI damage in the developing brain. Compared with
Clq™*'* mice, C1q '~ mice exhibited significantly reduced ex-
tent of oxidative injury, suggesting that ROS of mitochondrial

Trolox 200uM
+ hC1q (dose pg/ml)

Clg+- OGD+hCiq
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origin contribute to oxidative injury in HI
brain. In C1q™'" mice, signs of oxidative
injury coincided (4 h of reperfusion) with
mitochondrial signs of a secondary energy
failure (4—6 h of reperfusion), evidenced by
the secondary decline of phosphorylating
respiration rates. We propose that, in im-
mature brain, Clq amplifies a burst of
mitochondrial ROS release during hypoxia—
ischemia and reperfusion, and exacerbates
oxidative brain injury, leading to a greater
inhibition of mitochondrial respiratory
chain. The data obtained in adult C1q ™/~
and C1q """ mice serve as an argumentum
a contrario for this hypothetical sequence
of events. Brain mitochondria isolated
from adult C1q /" and C1q """ mice ex-
hibited similar rates of ROS emission, and
mature C1q /" mice were not protected
against HI injury. This suggests that the
ability of Clq to exacerbate oxidative
stress by accelerating mitochondrial ROS
emission is developmentally regulated.
Wang et al. (2009) recently reported a
fundamental age-dependent difference in
the role of mitochondrial permeability
transition pore in propagation of apopto-
tic and necrotic neuronal death after
hypoxia—ischemia.

Interestingly, in 8.76% of neuronal mi-
tochondria examined after HI insult, Clq
protein accumulated at a very high den-
sity. When isolated C1q ~/~ mitochondria
were coincubated with hClq, Western
blot analysis revealed redistribution of
hC1q from the buffer to mitochondria.
However, no changes were detected in the
ROS emission rate. This suggests that direct
interaction between mitochondria and
hClq exists; however, it requires an addi-
tional intracellular signaling to alter ROS
generation. Thus, the significance for cellu-
lar fate of this relatively minor (8.76%) frac-
tion of mitochondria with dense Clq
—/— accumulation remains unclear. Of note, the
fraction of mitochondria that released
apoptosis-inducing factor after hypoxia—
ischemia did not exceed 20% in P5 and 10%
in P21 mice (Zhu et al., 2005), suggesting
that the damage of only 10-20% of mito-
chonderia is sufficient for execution of cellu-
lar death pathway after hypoxia—ischemia.

Our in vitro experiments support detrimental role of Clg-
mediated mitochondrial ROS release in HI brain injury. In C1q /™
cells, OGD challenge increased mitochondrial ROS signal associated
with significant cellular mortality, and the exposure to antioxidant,
Trolox, improved cellular viability. Compared with C1q "/ cells,
Clq /" neurons exhibited a markedly reduced mitochondrial
ROS signal coupled with significantly better viability after OGD.
When during reperfusion the C1q /" neurons were exposed
to hClq, cells exhibited a dose-dependent increase in their
mortality rate, virtually turning Clq '~ phenotype into
Clq*’" phenotype with respect to OGD-induced mortality.
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This deleterious effect of hC1q on neuronal viability in OGD-
exposed C1q /™ cells was fully abrogated by Trolox. Trolox is a
vitamin E derivative used extensively in vitro and in vivo to dissect
out the contribution of oxidative stress from other mechanisms
of ischemic neuronal injury (Copin et al., 1998; Gupta and
Sharma, 2006; Wang et al., 2008). Interestingly, the measure-
ment of mitochondrial superoxide-specific signal in naive
neurons did not demonstrate statistical significance between
Clq '~ and WT cells. However, in response to OGD, Cl1q '~
cells exhibited significantly decreased mitochondrial superoxide
fluorescence compared with OGD-stressed WT neurons. The
difference in ROS emission rates between WT and C1q '~ iso-
lated mitochondria was detected using the FAD-linked substrate
succinate. It is important to note that the difference in mitochon-
drial ROS signal was reproduced in WT and C1q '~ live neurons
only after OGD challenge. This suggests that, during reperfusion,
neurons more actively oxidize succinate than NAD-linked sub-
strates. It has been reported that brain ischemia and reperfusion
in rats resulted in significant inhibition of mitochondrial respi-
ration tested on NAD-linked substrates. However, no significant
differences from the control values were detected when the same
mitochondria respired on succinate (Sims, 1991). Similarly, in neo-
natal rats exposed to hypoxia—ischemia, cerebral mitochondria ex-
hibited a better respiration on FAD-linked than on NAD-linked
substrates (Gilland et al., 1998). This suggests that, compared with
the C-T activity, the activity of C-IL is better preserved after hypoxia—
ischemia, which makes succinate a preferred mitochondrial sub-
strate on reperfusion. Importantly, succinate oxidation can
support the highest rate of ROS production in mitochondria (for
review, see Starkov, 2008). Specifically, only mitochondria iso-
lated from the brain and the heart (not liver, kidney, or muscle)
exhibit 10-fold increase in ROS emission rates obtained on suc-
cinate compared with glutamate, a-ketoglutarate, glycerol phos-
phate, and palmitate carnitine (Tahara et al., 2009). Theoretically,
mitochondria actively oxidizing succinate on reperfusion are capa-
ble of a dramatic increase in ROS-generating capacity leading to a
reperfusion-driven oxidative burst.

In conclusion, this study uncovers the existence of a novel
Clg-dependent pathway in regulation of mitochondrial produc-
tion of ROS and oxidative stress in the developing brain subjected
to hypoxia—ischemia. The central role of Clq in this pathway
highlights a mechanistic link between two fundamental events
initiated by ischemia—reperfusion: activation of innate immunity
and oxidative stress. This study also shows that the classical C
activation pathway does not exacerbate HI brain injury via acti-
vation of the terminal complex. Finally, this work not only un-
covered Clq-dependent mechanism of oxidative damage in the
developing brain but also dissected out a causative role for ROS of
mitochondrial origin.
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