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This paper presents a su± cient condition for a one-dimensional Dirac operator with a
potential tending to in¯nity at in¯nity to have no eigenvalues. It also provides a
quick proof (and suggests variations) of a related criterion given by Evans and Harris.

In [3], Evans and Harris obtained bounds for regions in the real line that cannot
contain eigenvalues of one-dimensional Dirac operators. In the special case of the
Dirac operator

¡ i ¼ 2
d

dx
+ ¼ 3 + p¼ 1 + w + r; (1.1)

with a potential w tending to in nity at in nity and asymptotically dominating the
angular momentum term p and the perturbation r, they have given the following suf-
 cient criterion for the non-existence of eigenvalues altogether (see [3, theorem 3]).

Theorem 1.1. Let w; p 2 ACloc[a; 1), r 2 L1
loc[a; 1), a > 0. Suppose that

lim
x ! 1

jw(x)j = 1; (3.16)

lim sup
x ! 1


p(x)

w(x)

= 0; (3.17)

lim sup
x ! 1

1

log x

Z x

a

(w0)¡

jwj2
=: L1; (3.18)

lim sup
x ! 1

1

log x

Z x

a

r

w

=: K1; (3.19)

lim
x! 1

1

log x

Z x

a

³pr

w

+


pw0

w2

+


p0

w



´
= 0: (3.20)

Then there are no non-trivial L2(a; 1) solutions of
³

¡ i ¼ 2
d

dx
+ ¼ 3 + p¼ 1 + w + r

´
u = ¶ u (1.2)

for any ¶ 2 R if L1 + K1 < 1
2
.

The observation that the one-dimensional Dirac operator (with p ² r ² 0) has a
purely continuous spectrum, even covering the whole real line, if w tends to in nity
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at in nity and satis es certain conditions, goes back to Plesset [7] in the case of
polynomial w. As stated correctly, though with an incorrect proof, by Rose and
Newton [9], it is su¯ cient to assume that w is eventually non-decreasing.

In their study of the spectrum in a variety of cases for the asymptotic behaviour
of the coe¯ cients, Roos and Sangren [8] note `continuous spectrum ¡ 1 < ¶ < 1’
if (3.16) holds, corresponding to their cases (3) and (4); a statement of appealing
generality but unfortunately false, as (3.16) alone is compatible both with the exis-
tence of eigenvalues (cf. [12]) and of gaps in the essential spectrum (cf. [13]). Indeed,
in the proof they observe that `it is advantageous to assume further [. . . ] that S(t)
is L(0; 1)’, where in the case at hand

S(t) ¹ w02(t)

w3(t)
¡ w00(t)

2w2(t)
; t ! 1

(note that there is a misprint in formula (6) of [8], which should read G(t; ¶ ) =
( ¬ 0)¡1F 0(t; ¶ )). Thus the actual hypotheses of [8] coincide with Titchmarsh’s cri-
terion for purely absolutely continuous spectrum covering the whole real line [15],
subsequently weakened to

w 2 ACloc;

Z 1 jw0j
w2

< 1

by Erd́elyi [2] (cf. [12]).
For the more general question of ruling out the existence of eigenvalues only,

Erd́elyi’s criterion can in turn be re ned, as shown in theorem 1.1 above.
In this paper we present a transparent approach to this case, which easily yields

variants of the Evans{Harris criterion. In particular, we weaken the regularity
requirement on the potential to locally bounded variation, which in the light of
similar results (see [12,14, 17] and [16, x 8]) appears to be the natural setting for
this kind of question. Our fundamental result is the following.

Theorem 1.2. Let M; M1; Q; Q1 2 L1
loc(¢; 1) be real-valued functions such that

M > 0; lim
x ! 1

Q(x) = 1; lim sup
x ! 1

M (x)

Q(x)
< 1 and

M

Q ¡ M
2 BVloc(¢; 1):

Then the Dirac system
³

¡ i¼ 2
d

dx
+ (M + M1) ¼ 3 + Q + Q1

´
u = 0 (1.3)

has no non-trivial solution u 2 L2(¢; 1) if
Z 1

exp

³
¡ 2P

³
M

Q ¡ M

´
(t) ¡ 2

Z t jM1Q ¡ MQ1j
Q ¡ M

´
dt = 1:

Here we use the notation X(¢; 1) := fu j there is a 2 R such that u 2 X(a; 1)g,
with X any symbol for a space of functions on a real interval.

Furthermore, if f is a function of locally bounded variation (BVloc), we denote
by Pf its positive variation, de ned up to an additive constant by

Pf (b) ¡ Pf (a) = sup

nX

j = 1

(f (xj) ¡ f (xj¡1)) + ;



Point spectra of Dirac operators 1239

where the supremum is taken over all partitions a = x0 < x1 < ¢ ¢ ¢ < xn = b,
n 2 N.

The Dirac operator (1.1) has a matrix term p¼ 1, and thus does not immediately
satisfy the hypotheses of theorem 1.2. Nevertheless, if we assume p to be locally
absolutely continuous, it is unitarily equivalent to the Dirac operator

¡ i ¼ 2
d

dx
+

p
1 + p2 ¼ 3 + w + r ¡ p0

2(1 + p2)

by virtue of the transformation given in [11, p. 467] (cf. however, remark 1.7 below).
Thus, taking in theorem 1.2,

M := 1; M1 :=
p

1 + p2 ¡ 1 6 p2; Q := w ¡ ¶ and Q1 := r ¡ p0

2(1 + p2)
;

we obtain the following result.

Corollary 1.3. Let w; r 2 L1
loc(¢; 1), p 2 ACloc(¢; 1) be real-valued functions

such that limx ! 1 w(x) = 1 and 1=w 2 BVloc(¢; 1). Then (1.2) has no non-trivial
solution u 2 L2(¢; 1) if

lim sup
x ! 1

1

log x

³
P

³
1

w

´
(x) +

Z x³
jrj
w

+
jp0j
2w

+ p2

´´
< 1

2 :

The constant 1
2 is optimal in the sense that for each ¬ > 1

2 , there is a potential
w such that

lim sup
x ! 1

P (1=w)(x)

log x
< ¬ ;

and the Dirac operator (1.1), with p ² r ² 0, has an eigenvalue. Indeed, a piecewise
constant w with these properties can easily be obtained from the example given
in [12, x 3] by increasing the lengths of the intervals on which the potential is
constant.

If, in addition to the hypotheses of corollary 1.3, we assume w 2 ACloc(¢; 1),
then

P

³
1

w

´
(x) =

Z x (w0)¡
w2

;

and limx ! 1 jw(x)j = 1 means either w(x) ! 1 or w(x) ! ¡ 1, which is essen-
tially the same, due to the inherent symmetry of the Dirac system. Thus the above
conditions on w and r correspond precisely to (3.16), (3.18) and (3.19).

However, corollary 1.3, though in itself presenting a criterion of appealing simplic-
ity for the absence of eigenvalues, does not entail theorem 1.1. Indeed, corollary 1.3
includes an integral condition on p2, whereas (3.20) only poses conditions on the
size of p, p0 relative to that of w.

But then, taking Q and Q1 as above, but M :=
p

1 + p2, M1 := 0 in theorem 1.2,
we obtain the following mild generalization of theorem 1.1.

Corollary 1.4. Let r 2 L1
loc(¢; 1), w; p 2 ACloc(¢; 1) be real-valued functions

such that

lim
x ! 1

w(x) = 1 and lim
x ! 1

jpj
w

(x) = 0:
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Then (1.2) has no non-trivial solution u 2 L2(¢; 1) if

lim sup
x ! 1

1

log x

Z x³³
(w0)¡

w2
+

jrj
w

´
(1 + jpj) +

3 jp0j
2w

´
< 1

2
:

Remark 1.5. In the case of the angular momentum term arising from a separation
in polar coordinates of a higher-dimensional rotationally symmetric Dirac operator,
p(x) = k=x,

jp0j
2w

+ p2 =

³
jkj
2w

+ k2

´
1

x2

will be integrable at 1, so that the condition of corollary 1.3 reduces to

lim sup
x! 1

1

log x

³
P

³
1

w

´
(x) +

Z x jrj
w

´
< 1

2 :

Likewise, corollary 1.4 has this condition with the positive variation expressed as
the integral of the positive part of the derivative.

We also remark that in view of limx ! 1 jw(x)j = 1, equation (3.18) already
implies

lim sup
x ! 1

1

log x

Z x

a

jw0j
w2

= 2L1;

and hence

lim
x! 1

1

log x

Z x

a

jw0(t)j
tw2(t)

dt = 0:

Therefore, hypothesis (3.20) is satis ed if p(x) = k=x, without the additional
assumption (3.23) introduced in [3, remark 4].

The idea of the proof of theorem 1.2 is to make the method of [12,14] quantitative.
One of the key observations of these studies (see [12, lemma 2]) shows that a
locally bounded function satisfying a rough Gronwall-type estimate with a right-
hand side resembling a Stieltjes integral with a bounded integrator, is bounded;
this was used to give a su¯ cient condition for all solutions of Dirac systems with
a divergent potential to be bounded. In the present situation, we similarly exclude
the existence of L2 solutions by estimating the growth of solutions and applying a
standard Wronskian argument.

The Gronwall lemma has been generalized to Stieltjes integrals in various ways
before (cf. [1, 4, 6, 10]); however, these extensions do not quite meet our present
requirements. The following re nement of [12, lemma 2] is readily proved along the
lines of [5, theorem 1.4].

Lemma 1.6. Let c 2 R, C > 0 and f : [c; 1) ! [0; 1) be a continuous function
satisfying

f (t) 6 C +

Z t

c

f(s) d ¬ (s); t > c;

with non-decreasing ¬ : [c; 1) ! R, ¬ (c) = 0.
Then f (t) 6 C exp( ¬ (t)), t > c.
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Proof of theorem 1.2. As the Dirac system (1.3) has real coe¯ cients, it is clearly
su¯ cient to consider R2-valued solutions.

Let u be a solution, and v a linearly independent solution, of (1.3).
As Q ¡ M = Q(1 ¡ M=Q) ! 1 at 1, we can de ne

R :=
(v2

1 + v2
2)Q + (v2

1 ¡ v2
2)M

Q ¡ M
2 BVloc(¢; 1):

Then R > jvj2, and for su¯ ciently large t1 6 t2 we have, by the rule of integration
by parts for Stieltjes integrals,

R(t2) ¡ R(t1) =

Z t2

t1

(jvj2)0 +

Z t2

t1

2M

Q ¡ M
(v2

1)0 +

Z t2

t1

2v2
1 d

³
M

Q ¡ M

´

=

Z t2

t1

4v1v2
QM1 ¡ MQ1

Q ¡ M
+

Z t2

t1

2v2
1 d

³
M

Q ¡ M

´

6 2

Z t2

t1

jvj2 jQM1 ¡ MQ1j
Q ¡ M

+ 2

Z t2

t1

v2
1 dP

³
M

Q ¡ M

´
:

Hence

jvj2 (t2) 6 R(t2) 6 R(t1) +

Z t2

t1

jvj2 d ¬ ;

where

¬ (t) := 2

Z t

t1

jQM1 ¡ MQ1j
Q ¡ M

+ 2P

³
M

Q ¡ M

´
(t) ¡ 2P

³
M

Q ¡ M

´
(t1); t > t1:

By the above Lemma, we conclude jvj2 (t) 6 R(t1) exp( ¬ (t)), t > t1.

If W is the Wronskian of u, v, the estimate juj2 jvj2 = W 2 +(u1v1 + u2v2)2 > W 2

implies Z 1

t1

juj2 > W 2

Z 1

t1

1

jvj2
> W 2

R(t1)

Z 1

t1

exp( ¡ ¬ ) = 1:

Proof of corollary 1.3. With the choices for M , M1, Q, Q1 indicated before the
statement of corollary 1.3, we  nd

P

³
M

Q ¡ M

´
(t) +

Z t jM1Q ¡ MQ1j
Q ¡ M

6 P

³
1

w ¡ ¶ ¡ 1

´
+

Z t p2(w ¡ ¶ ) + jrj + 1
2

jp0j
w ¡ ¶ ¡ 1

:

For any ¶ 2 R and su¯ ciently large x; y 2 R, we have

³
1

w(x) ¡ ¶ ¡ 1
¡ 1

w(y) ¡ ¶ ¡ 1

´

+

=
w(x)

w(x) ¡ ¶ ¡ 1

w(y)

w(y) ¡ ¶ ¡ 1

³
1

w(x)
¡ 1

w(y)

´

+

;



1242 K. M. Schmidt

and thus the positive variation on an interval [s; t] satis es

P

³
1

w ¡ ¶ ¡ 1

´
(t) ¡ P

³
1

w ¡ ¶ ¡ 1

´
(s)

6
³

1 + sup
[s;t]

¶ ¡ 1

w ¡ ¶ ¡ 1

2́³
P

³
1

w

´
(t) ¡ P

³
1

w

´
(s)

´
:

Thus we have

P

³
1

w ¡ ¶ ¡ 1

´
(t) ¡ P

³
1

w ¡ ¶ ¡ 1

´
(s) +

Z t

s

p2(w ¡ ¶ ) + jrj + 1
2

jp0j
w ¡ ¶ ¡ 1

6
³

P

³
1

w

´
(t) ¡ P

³
1

w

´
(s) +

Z t

s

³
p2 +

jrj + 1
2

jp0j
w

´´
(1 + o(1))

as s ! 1 and, taking s large enough,

lim sup
t ! 1

1

log t

³
P

³
1

w ¡ ¶ ¡ 1

´
(t) +

Z t p2(w ¡ ¶ ) + jrj + 1
2

jp0j
w ¡ ¶ ¡ 1

´
< 1

2 :

Consequently,
Z 1

exp

³
¡ 2P

³
M

Q ¡ M

´
(t) ¡ 2

Z t jM1Q ¡ MQ1j
Q ¡ M

´
dt >

Z 1 dt

t
= 1;

which, by theorem 1.2, implies the non-existence of L2(¢; 1) solutions.

Proof of corollary 1.4. With the choices for M , M1, Q, Q1 indicated before the
statement of corollary 1.4, we  nd

P

³
M

Q ¡ M

´
(t) +

Z t jM1Q ¡ MQ1j
Q ¡ M

=

Z t³³
pp0

p
1 + p2(w ¡ ¶ ¡

p
1 + p2)

¡
p

1 + p2w0 ¡ pp0

(w ¡ ¶ ¡
p

1 + p2)2

´

+

+

p
1 + p2

r ¡ p0=2(1 + p2)


(w ¡ ¶ ¡
p

1 + p2)

´
:

The integrand has the upper bound
³

3 jp0j
2w

+ (1 + jpj)
³

(w0)¡
w2

+
jrj
w

´´
(1 + o(1));

and the assertion follows as in the proof of corollary 1.3.

Remark 1.7. In order to remove the matrix term p¼ 1 from the original Dirac oper-
ator (1.1) by a unitary transformation, we had to assume that p be locally abso-
lutely continuous. This restriction can be avoided by treating the full system (1.2)
directly, as in the proof of [14, proposition 2]. The resulting su¯ cient condition for
the absence of L2(¢; 1) solutions involves the variations of various combinations
of the coe¯ cients only; however, when w, p are locally absolutely continuous, this
does not improve upon corollary 1.4.
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