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Abstract

We study a decentralized supply chain where only delayed market demand
information is available for making replenishment decisions. The impact of
this delay is quantified in a serially linked two-level supply chain where each
player exploits the order-up-to replenishment policy. The market demand
is assumed to be a first-order autoregressive process. It is shown that the
first level of the supply chain benefits from shorter time delays; however, the
benefit for the second level is quite minor at best and can sometimes even
be (counter-intuitively) detrimental. We conclude that the second level does
not have a strong incentive to reduce the time delays in the shared market
demand information.

Keywords: Information delay, inventory, manufacturing, order-up-to
policy, stochastic process, supply chain management, time series, RFID

1. Introduction

We consider a situation where the available market demand information
used to make replenishment decisions is accurate but tardy. Delayed market
demand information is not unusual in the real world. The recent popularity
of Radio Frequency IDentification (RFID) technology suggests that delays
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and errors in information flows may be quite common as it is often advo-
cated that RFID technology allows the sharing of accurate real-time supply
chain information. Here we quantify the impact of the time delay on a
serially linked two-level supply chain performance under a market demand
information sharing scheme1. The supply chain consists of a distributor at
the first level and a manufacturer at the second level and is operated in a
decentralised manner. It is assumed that the delayed demand information
is common knowledge in the supply chain thanks to an information sharing
scheme. This enables us to isolate the impact of the time lag from the im-
pact of sharing market demand information. The manufacturer exploits the
shared market information to improve its forecast accuracy. To represent
the market demand we use the first-order autoregressive (AR(1)) process
as it has been shown that many actual market demand processes can be
modeled by this structure, [1] and [2]. To quantify the impact of the delay
in the market demand information, we measure both the distributor’s and
the manufacturer’s inventory cost as well as the manufacturer’s production
variability costs.

To the best of our knowledge, [3] and [4] may be the first research on the
delayed information problem. They focus on the optimum ordering policy for
a single supply chain echelon when inventory information is delayed and show
that when a constant/stochastic time delay in inventory information exists,
an Order-Up-To (OUT) type policy is the optimum replenishment policy.
The objective of our research is slightly different from [3] and [4]. We quantify
the economic consequences of shorter time delays in the market demand
information for each player in a two-level supply chain. If the economic
benefit for the manufacturer is large, he would voluntarily cooperate with
the distributor (e.g. by affixing RFID tags to each item) to reduce the time
delay in the market demand information. Otherwise, there is no reason
for the manufacturer to take this action. This aspect of our research is a
key difference from [3] and [4]. A similar but different issue, inaccuracy of
information in a supply chain, has attracted much research recently; [5], [6],
[7], [8] and [9]. However, here we will focus solely on the issue of the time
delayed demand information in the two-level supply chain.

Using a single level supply chain model with the OUT policy, [10] con-

1In this paper, ‘delay’ refers to the backward shift of the information in the time
dimension.
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sider the case where the most recent demand information is available to the
replenishment decision maker but is not available to the forecaster. Thus,
order quantities are based on inventory information that includes the most
recent demand information but the forecasts that are affected by the informa-
tion delay. It is shown that when such forecasts are used in the OUT policy,
the bullwhip effect can be reduced. Assuming that the most recent demand
information is not available, [11] propose a replenishment policy which can
overcome the disadvantage of the demand information delay in a single level
supply chain. It is shown that without eliminating the delay in the demand
information, a manufacturer can reduce its production cost by exploiting the
new policy that can be easily implemented and requires little to no running
cost.

Recently, there is a stream of literature discussing the impact of better
information / knowledge on supply chain performance. In a setting where
the market demand process is mis-specified by a retailer and this erroneous
information is shared with a manufacturer, [9] observe that this is not always
detrimental for the supply chain as a whole. Using a two-level decentralized
supply chain model, [12] show that the sharing of the more accurate demand
information can decrease the expected profit of the supply chain. [13] con-
sider the situation where the manufacturer is selecting a retail partner. They
show that the manufacturer’s expected profit depends on the retailer’s abil-
ity to generate accurate demand forecasts. [14] consider the case where the
actual replenishment lead-time is not known for supply chain participants
and propose an algorithm to identify the unknown delay in the lead-time.

First we consider the forecasting method used by the distributor. It is
shown that the conditional expectation of the demand over the replenishment
lead-time plus the review period does not provide the distributor with the
minimum inventory cost any more (we call this forecast a “sub-optimum
forecast”, as the forecast is sub-optimum for the distributor), contrary to the
findings of [15] and [16]. Instead, the conditional expectation of the demand
over the sum of the replenishment lead-time, the time delay and the review
period yields the optimum forecast. This yields the minimum inventory
cost for the distributor (called “optimum forecast” herein, as the forecast
is optimum only for the distributor). This finding is, we believe, one of the
contributions of this research. Thus it might be reasonable to assume that
the distributor does not know the optimum forecast under the information
delay setting and believes (wrongly) that the sub-optimum forecast is the
optimum forecast for him. We will quantify the impact of the sub-optimum
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forecast on the distributor and on the supply chain as a whole.
Additionally, it is shown that only when the optimum forecast is used

does the impact of the replenishment lead-time and the time delay on the
distributor’s inventory cost become identical. Therefore, the impact of re-
ducing the time delay in information may not be the same as that of the
lead-time delay if an optimum forecast is not made. We show that irrespec-
tive of the forecasting method used, the distributor’s inventory cost always
becomes smaller when the time delay in the demand information is reduced.

In terms of the impact on the manufacturer, when the distributor exploits
the optimum forecast, there is an economic benefit for the manufacturer as
well, but the magnitude of this benefit is quite minor. Furthermore, we
will show a counter-intuitive result: the manufacturer’s cost could increase
when the information time delay is shortened or eliminated. This can hap-
pen when the distributor exploits the sub-optimum forecast. Therefore, the
manufacturer may not have a strong incentive to eliminate the time delay in
the demand information if the distributor’s forecasting performance is poor.
This result might explain why the implementation of RFID technologies is
almost always initiated by downstream supply chain players and sometimes
ends without any clear benefits (see [17], for example).

This paper is organized as follows: the model will be described with its
properties in the next section. Then to illustrate those properties, some
results of numerical analysis will be shown in Section 3. We conclude in
Section 4.

2. Model

This section presents details of the serially linked two-level supply chain
model. The model is based on the previous works of [1], [11] [16], and [18].
To describe the model, let us use an example where products are sold to
the end customer on a consignment basis. Fig. 1 represents a schematic
of the model. Sales representatives from the distributor pick products from
the on-hand inventory in the distributor’s warehouse, and put them into the
trunk (or, boot) of their vehicles for delivery. This “trunk inventory” will
become the consignment inventory when the products are delivered to the
customer’s stocking point. Customer demand, Dt, is satisfied from the con-
signment inventory. The distributor cannot observe the value of Dt directly.
Only by observing the left-over consignment inventory level does the sales
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tor’s sales representatives pick products for their trunk inventory. At the end
of the period, the distributor places an order with the knowledge of the de-
layed customer’s demand information (Dt−τ ). The manufacturer receives the
demand from the distributor without delay and dispatches the products from
its on-hand inventory. The constant replenishment lead-time for the distribu-
tor is Td(= 0, 1, 2, . . . ). If the manufacturer’s does not have enough on-hand
inventory to meet all the demand from the distributor, unmet demand is
filled from an external source by using an expediting strategy. The expedit-
ing strategy assumption is widely used in multi-level supply chain research
(see [1][18][19][20][21], for example) and as it allows an analytical model ca-
pable of producing managerial insights to be created. Detailed discussion
on the expediting assumption can be seen in [1]. Finally the manufacturer
makes a production request, Pt, at the end of the period. After a constant
production lead-time, Tp(= 0, 1, 2, . . . ), Pt will be completed. It is assumed
that the manufacturer has infinite raw material.

For an objective function, the inventory costs at both the distributor and
the manufacturer and the production cost at the manufacturer are consid-
ered. A unit holding cost for on-hand inventory (hd) and a unit backlog cost
for unmet demand (bd) are incurred by the distributor at the end of each
period. The manufacturer incurs a holding cost per unit of on-hand inven-
tory (hm) and an expediting cost per unit of unmet demand (bm), charged
at the end of each period. When Pt is greater than the standard capacity of
the production line G, the manufacturer is charged an overwork cost (w) per
period for each product over the capacity G whilst incurring an opportunity
cost (u) per period for each unit of lost production below the capacity G.

We note that the setting where time delay exists in the inventory informa-
tion is quite similar to the setting where the demand information is delayed.
This is especially true considering the distributor’s inventory balance equa-
tion, NS t = NS t−1 +Ot−Td−1 −Dt, where Ot−Td−1 is the replenishment order
rate placed by the distributor at t−Td −1. If the distributor knows NS t and
NS t−1, then the distributor can determine Dt using this inventory balance
equation since Ot−Td−1 is locally available information, even though the dis-
tributor does not observe Dt directly. Therefore, when τ ≥ 1 we also must
also assume that the distributor does not know {NS t,NS t−1, . . . ,NS t−τ+1}
either.
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2.1. Market demand model and information sharing

We assume that the customer’s demand follows an AR(1) process. An
AR(1) process is a well-accepted model to represent supply chain demand
processes. It is given by

Dt = µ + ρ(Dt−1 − µ) + εt, (1)

where Dt is the non-negative market demand realized at time t, µ is a mean
of the demand, ρ is an autoregressive parameter constrained to |ρ| < 1 and
εt is a normally distributed white noise element in time t with a mean of zero
and a standard deviation of σε. Thus when ρ = 0, Dt is a white noise process.
The variance of Dt is σ2

ε/(1 − ρ2). We consider the case when 0 ≤ ρ < 1
as we assume a negative value of ρ is rather rare in reality. Evidence of
non-negative values of ρ have been provided in [1] and [2]. It is assumed
that the distributor has complete knowledge of the market demand process
(i.e. Eq. 1 is known to the distributor), and this knowledge is shared with
the manufacturer. The manufacturer exploits this shared knowledge for its
production request decision making.

It should be noted that in [1] and [18], a different form of the AR(1)
demand process is used,

Dt = d + ρDt−1 + εt,

where d is a constant value. The value of the mean of this AR(1) process
becomes d/(1− ρ), which is dependent upon the value of ρ. To avoid unnec-
essary complexity from an unnecessary initial transient response, we use Eq.
1.

2.2. Distributor’s ordering policy and costs

A traditional periodic review OUT policy without time delays (i.e. τ = 0)
can be described by the following set of formulae (see, [1] for example),

{

Ot = Dt + (St − St−1),

St = D̂t + zdσd,
(2)

where Ot is the order rate at t, St is the OUT level determined at t and D̂t

represents the conditional expectation of the total demand during the period

(t, t + Td + 1], where D̂t = E
[

∑

Td+1
i=1 Dt+i|Dt

]

. σd is the standard deviation
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of the sum of the forecast errors over the lead-time and review period, where

σ2
d = Var

[

D̂t −
∑

Td+1
i=1 Dt+i

]

. zd is set to zd = Φ−1[bd/(bd +hd)] to minimize

the expected holding and backlog cost in the period t + Td + 1. Φ−1[·] is
the inverse of the cumulative distribution function for the standard normal
distribution. zdσd represents the target left-over net stock level at the end of
each period - the “safety stock”. D̂t and σ2

d can be shown to be equivalent
to

D̂t = (Td + 1)µ + ρ
1 − ρTd+1

1 − ρ
(Dt − µ), (3)

σ2
d =

(

(Td + 1)(1 − ρ2) + ρ(1 − ρTd+1)(ρTd+2 − ρ − 2)
)

(1 − ρ)2(1 − ρ2)
σ2

ε .

Note that as shown in Appendix 1, σd is identical to the standard deviation
of the net stock levels at the end of each period. Therefore, for a given σd,
the minimized distributor’s expected inventory cost, Cd, can be obtained by
the classic newsvendor approach. It is Cd = (hd + bd)φ[zd]σd, where φ[·] is
the probability density function of the standard normal distribution. Thus,
the distributor’s concern is to minimise σd as Cd is proportional to σd when
hd and bd are given and the safety stock is to zdσd.

In what follows, we will consider the case that the demand information
is delayed. The sequence of events is the same as those assumed in the
traditional OUT policy. When the most up-to-date demand information is
not available, only Dt−τ is available, a replenishment ordering decision maker
who is familiar with Eq. 2 might exploit the following ordering policy, instead
of Eq. 2.

{

O
′

t = Dt−τ + (S
′

t − S
′

t−1),

S
′

t = D̂t−τ + zdσ́d,
(4)

where O
′

t and S
′

t are the order rate and the OUT level determined at t respec-
tively when the demand information is delayed. D̂t−τ represents the condi-
tional expectation of the total demand during the period (t, t+Td +1] given

Dt−τ , where D̂t−τ = E
[

∑

Td+1
i=1 Dt+i|Dt−τ

]

. σ́d is the standard deviation of

the forecast error subject to D̂t−τ , where σ́2
d = Var

[

D̂t−τ −
∑

Td+1
i=1 Dt+i

]

.
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D̂t−τ and σ́2
d can be shown to be:

D̂t−τ = (Td + 1)µ + ρτ+1 1 − ρTd+1

1 − ρ
(Dt−τ − µ), (5)

σ́2
d =

σ2
ε

1 − ρ2

(

ρτ+1 1 − ρTd+1

1 − ρ
− ρ

1 − ρτ+Td+1

1 − ρ

)2

+

(

(τ + Td + 1)(1 − ρ2)+
ρ(1 − ρτ+Td+1)(ρτ+Td+2 − ρ − 2)

)

(1 − ρ)2(1 − ρ2)
σ2

ε . (6)

Details are shown in Appendix 2. Appendix 2 also shows that σ́2
d still repre-

sents the variance of the net stock levels, even though the demand informa-
tion is delayed. However, as shown in the following property, D̂t−τ does not
minimize the variance (or the standard deviation) of the net stock levels at
the distributor.

Property 1. When the demand information is delayed, the forecast given
by,

D̂∗

t−τ = (τ + Td + 1)µ + ρ
1 − ρτ+Td+1

1 − ρ
(Dt−τ − µ), (7)

minimizes the variance of the net stock levels. The minimum variance of the
net stock for the distributor is

σ́∗2
d =

(

(τ + Td + 1)(1 − ρ2)+
ρ(1 − ρτ+Td+1)(ρτ+Td+2 − ρ − 2)

)

(1 − ρ)2(1 − ρ2)
σ2

ε ,

σ́∗2
d ≤ σ́2

d.

Proof 1. Details are shown in Appendix 2.

Note that from Eq. 3, Eq. 5 and Eq. 7, it is easy to check that when τ = 0,
we have D̂t = D̂t−τ = D̂∗

t−τ .
From property 1, we may obtain the ordering policy which minimises the

distributor’s expected inventory cost,
{

O
′
∗

t = Dt−τ + (S
′
∗

t − S
′
∗

t−1),

S
′
∗

t = D̂∗

t−τ + zd · σ́
∗

d,
(8)

where O
′
∗

t and S
′
∗

t are the order rate and the OUT level at time period t
respectively, subject to D̂∗

t−τ . This ordering policy has the following property.
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Property 2. When D̂∗

t−τ is exploited within the OUT policy, the impact of
the time delay, τ , on the variance (and the standard deviation) of the net
stock levels, σ́∗2

d (or, σ́∗

d), becomes exactly identical to that of the replenish-
ment lead-time, Td .

Proof 2. Appendix 2 provides the necessary steps to obtain this property.

In other words, when a non-optimum forecast (e.g. D̂t−τ ) is used, the impact
of τ and Td on the variance (and the standard deviation) of the net stock
levels for the distributor are not identical: it depends on the values τ and Td

used in a sub-optimum forecast. Indeed when D̂t−τ is exploited, the variance
of the forecast errors is given by Eq. 6 which suggests that the impact of τ
on σ́2

d is not the same as that of Td . Under the special case of ρ = 0, however,
we have the following property.

Property 3. When the market demand process follows a white noise process
(i.e. ρ = 0), even if D̂t−τ is exploited,

• the variance of the net stock levels are minimized and we have σ́2
d = σ́∗2

d ,
and

• the impact of τ on the variance (or, standard deviation) of the net stock
levels becomes identical to that of Td .

Proof 3. It is obvious since when ρ = 0, σ́2
d = σ́∗2

d = (τ + Td + 1)σ2
ε .

Property 3 shows us that when the market demand is a white noise process,
both D̂t−τ and D̂∗

t−τ yield the minimum inventory cost, Cd, for the distributor
since Cd is proportional to the distributor’s standard deviation of the net
stock levels.

Property 4. When 0 < ρ < 1, both σ́d and σ́∗

d are increasing in τ .

Proof 4. Details are shown in Appendix 3.

Since the distributor incurs only the inventory cost (Cd) which is a linear
function of the standard deviation of the net stock levels, property 4 sug-
gests that reducing the value of τ is always beneficial for the distributor,
irrespective of its forecasting method.
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In the rest of the paper, we will exploit not only D̂∗

t−τ but also D̂t−τ when
we quantify the impact of τ on a supply chain cost. This is reasonable as the
distributor might not have any knowledge of property 1 and uses the ordering
policy given by Eq. 4 with D̂t−τ , believing it yields the optimum inventory
cost for the distributor even though the demand information is delayed. The
other valid reason is that D̂t−τ has the following interesting property.

Property 5. When 0 < ρ < 1 and 0 < τ ,

• the variance of the distributor’s orders when the suboptimal forecast is
used O

′

t, Var [O
′

], is always less than the distributors orders when the
optimal forecast is used O

′
∗

t , Var [O
′
∗],

• Var [O
′

] is decreasing in τ , whilst Var [O
′
∗] is increasing in τ .

Proof 5. The proof is shown in Appendix 4.

Property 5 means that the combined use of the delayed demand information
and the non-optimum forecast (i.e. D̂t−τ ) can mitigate the well-known Bull-
whip effect (see, [22], for example), when the market demand is positively
correlated over the time. Furthermore, surprisingly, the level of Bullwhip re-
duction will increase as the time delay becomes longer. A simple explanation
of this is that when the demand information delay is longer, the sub-optimum
forecast becomes less responsive to demand fluctuations since ρτ+1 in D̂t−τ

(see, Eq. 5) becomes smaller as τ increases. Note that it is well recognized
that in a multi-level supply chain, lower Bullwhip can bring benefit to up-
per levels of a supply chain (see, [23], for example). Therefore, property 5
raises a question about whether there is actually some economic benefit to
the manufacturer from time delays in the demand information. To answer
this question, first let us develop a model for the manufacturer.

2.3. Manufacturer’s ordering policy and costs

It is assumed that the review period used by the manufacturer is the
same as that by the distributor. The manufacturer receives an order from
the distributor without delay. The market demand information, Dt−τ , is also
shared by the distributor and is known at time period t for the manufac-
turer. Therefore, the ordering policy exploited by the manufacturer can be
described as

{

Pt = Õt + (Mt − Mt−1),

Mt = Ôt + zmσm,
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where Õt is the distributor’s demand at time t and can be O
′
∗

t or O
′

t, depend-
ing on the distributor’s forecasting method. Mt is the OUT level determined
at t and Ôt is the conditional expectation of the total demand from the
distributor during the period (t, t + Tm + 1] given Õt and Dt−τ . That is

Ôt = E
[

∑

Tm+1
i=1 Õt+i|Õt, Dt−τ

]

. zm = Φ−1[bm/(bm +hm)] and σm is the stan-

dard deviation of the forecast error, where σ2
m = Var

[

Ôt −
∑

Tm+1
i=1 Õt+i

]

.

The manufacturer’s minimized inventory cost is given by Cm =
(hm + bm)φ[zm]σm.

The manufacturer also incurs a production cost. The expected production
cost period is uE [(G − Pt)

+] + wE [(Pt − G)+], where (x)+ = max[x, 0]. By
applying newsvendor logic we may obtain CP , the minimized value of the
capacity cost, CP = (u + w)φ[zp]σP , where zp = Φ−1[w/(w + u)] and σP is
the standard deviation of Pt. The optimal capacity is given by G∗ = µ+σP zp.

General expressions of Ôt, σ2
m and σ2

P are

Ôt = (Tm + 1)µ + (ρ + ρK − K)
1 − ρTm+1

1 − ρ
(Dt−τ − µ),

σ2
m =





(Tm + 1)(ρ2 − 1) + K2(ρ − 1)2(ρ2(Tm+1) − 1)+
2K(ρ − 1)(ρTm+1 − 1)(ρTm+2 − 1)+
ρ(ρTm+1 − 1)(ρ(ρTm+1 − 1) − 2)





(ρ − 1)3(1 + ρ)
σ2

ε ,

σ2
P =

(

ρTm+1(ρ + ρK − K)
)2

1 − ρ2
σ2

ε +

(

1 − ρTm+1(ρ + ρK − K)

1 − ρ

)2

σ2
ε ,

where K = ρ(1 − ρτ+Td+1)/(1 − ρ) for the case when the distributor uses
the optimal forecast and K = ρτ+1(1− ρTd+1)/(1− ρ) for the case when the
distributor uses the sub-optimal forecast. Details are shown in Appendix 5.

Property 6. When 0 < ρ < 1 and the optimal forecast D̂∗

t−τ is exploited,
both σm and σP are increasing in τ . However, when the sub-optimal forecast
D̂t−τ is exploited, both σm and σP are decreasing in τ , if 0 < ρ < 1.

Proof 6. The proof is given in Appendix 6.

Property 6 suggests that when the distributor exploits D̂∗

t−τ , reducing the
delay in the market demand information decreases the inventory and the
production costs of the manufacturer. Therefore, the manufacturer might
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have an incentive to work together with the distributor to reduce the in-
formation delay. On the other hand, in the case of D̂t−τ , τ has an opposite
effect on the two costs: reducing τ results in higher inventory and production
costs of the manufacturer, as we conjectured from property 5. Therefore, in
this case the manufacturer does not have any incentive to cooperate with the
distributor to improve the market demand information availability.

Property 7. When ρ = 0, both σ2
m and σ2

P are independent of τ and the
distributor’s forecasting method.

Proof 7. Setting ρ = 0, we have σ2
m = (Tm + 1)σ2

ε and σ2
P = σ2

ε .

Property 7 means that when the market demand follows a white noise pro-
cess, the manufacturer may not be interested in cooperating with the dis-
tributor to reduce τ , since the manufacturer’s costs are proportional to σm

and σP , which are independent of τ .
To illustrate the properties found, in the next section we will now conduct

a numerical analysis.

3. Numerical analysis

In this section, the following values will be used τ = 0, 1, 2, 3, Td = 4 and
Tm = 4. Unless otherwise stated, the cost parameters are assumed to be;
hd = 2, bd = 50, hm = 1, bm = 25, u = 2, w = 50. In terms of the market
demand, 0.0 ≤ ρ ≤ 0.9 and σε = 10 is assumed. We measure total supply
chain cost with the sum of the inventory cost at each level, Cd, Cm, and
the manufacturers production cost, CP . Since the closed form expressions
to obtain Cd, Cm and CP have been given, interested readers may efficiently
conduct their own numerical analysis with different parameter settings and
will find similar findings to those shown in this section. In addition to the
costs, we use the following measure to quantify the impact of eliminating the
information delay:

% reduction =
(total cost when τ = k − 1) − (total cost when τ = k)

total cost when τ = k
× 100,

where k = 1, 2, or 3.
Table 1 shows calculated values of % reduction of total supply chain cost.

Fig. 2 shows the calculated values of the distributor’s cost, Cd, and the man-
ufacturer’s total cost, Cm + CP , for each forecasting method. Recall that
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Table 1: Percentage reduction in costs

Distributor Manufacturer
τ Optimum Sub-optimum Optimum Sub-optimum

3 → 2 -14.3% -17.2% -4.1% 3.7%
ρ = 0.9 2 → 1 -16.5% -20.3% -4.8% 4.0%

1 → 0 -19.5% -22.1% -5.6% 4.2%
Average -16.8% -19.9% -4.8% 4.0%

3 → 2 -10.3% -11.2% -0.6% 3.6%
ρ = 0.7 2 → 1 -12.2% -13.8% -0.9% 5.1%

1 → 0 -14.9% -16.1% -1.3% 7.1%
Average -12.4% -13.7% -1.0% 5.2%

3 → 2 -8.2% -8.4% 0.0% 1.2%
ρ = 0.5 2 → 1 -9.7% -10.4% -0.1% 2.6%

1 → 0 -11.8% -12.6% -0.2% 5.4%
Average -9.9% -10.5% -0.1% 3.1%

3 → 2 -7.2% -7.2% 0.0% 0.3%
ρ = 0.3 2 → 1 -8.4% -8.5% 0.0% 0.9%

1 → 0 -10.0% -10.4% 0.0% 3.1%
Average -8.5% -8.7% 0.0% 1.4%

3 → 2 -6.5% -6.5% 0.0% 0.0%
ρ = 0.0 2 → 1 -7.4% -7.4% 0.0% 0.0%

1 → 0 -8.7% -8.7% 0.0% 0.0%
Average -7.5% -7.5% 0.0% 0.0%
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Together with the numerical analysis, we may conclude that whichever
forecasting method the distributor uses, the manufacturer may not want to
take the initiative in eliminating market demand information delays, since
reducing time delays in the demand information is not hugely effective at
reducing its own local costs. It is also shown that the total supply chain
cost is always reduced as the delay is shortened or reduced, if and only if
the optimum forecasting method is used. However, in the case of the sub-
optimum forecast, it is shown that the total supply chain cost can increase
as the result of the cost increase of the manufacturer.

Finally, we mention the limitations of our research and point towards
potential future research directions. The contributions of this research are
largely based on the AR(1) market demand process assumption. As a fur-
ther study, a different demand model such as an ARIMA process could be
considered to examine information delays in a supply chain. The setting
of a serially linked supply chain could be another limitation of this research.
Considering other types of supply chain structure, such as a divergent supply
chains, could also be an interesting future research direction.
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Appendix 1: The link between the variance of the sum of the

forecast errors and the net stock variance

Let us use another form of the OUT policy that is dynamically equivalent,
[16],

Ot = St − (NS t + WIP t)

= St − IP−

t ,

where NS t is the end of period net stock level at t. WIP t is the Work-In-
Progress (or, on-order inventory) at t, where WIP t =

∑

Td

i=1 Ot+i. IP−

t (=
NS t + WIP t) is the inventory position just before an order Ot is placed.
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Therefore, the inventory position just after the order Ot is placed, IP+
t (=

IP−

t + Ot), is always equal to St, if the OUT policy is exploited. At this
moment, the on-orders are Ot−Td

, Ot−Td+1, . . . , Ot, and all those orders will
be delivered by the time t + Td + 1. Orders placed during (t, t + Td + 1] will
be delivered after t + Td + 1. Therefore NS t+Td+1 can be described as

NS t+Td+1 = IP+
t −

Td+1
∑

i=1

Dt+i = St −

Td+1
∑

i=1

Dt+i

= D̂t + safety stock −

Td+1
∑

i=1

Dt+i, (9)

where D̂t is the forecast of the demand made at t. Note that at this mo-
ment, we do not specify any type of forecasting method for D̂t. Since the
safety stock is a constant value over the time, we can ignore that value when
we consider the variance of the net stock levels. From Eq. 9, the variance of
NS t+Td+1 can be written as

Var [NS t+Td+1] = Var

[

D̂t −

Td+1
∑

i=1

Dt+i

]

. (10)

Clearly, Eq. 10 is time-independent. Thus we can simplify to

Var [NS ] = Var

[

D̂ −

Td+1
∑

i=1

Di

]

which indicates that the variance of the end of period net stock levels is
identical to the variance of forecast errors over Td + 1 periods. And also the
variance of the net stock levels depends on the value of D̂. Similar results
are shown by [15] using discrete variable servo theory.

Appendix 2: Derivation of the forecasts and the net stock variances

The ordering policy given by Eq. 4 can be rewritten as follows:
{

At−τ = Dt−τ + (St−τ − St−τ−1),
O

′

t = At−τ ,

and the sequence of the order decision making can be restated like this: The
order, At−τ is determined at t − τ by using the OUT policy. At−τ is held
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until t and is received by the manufacturer as an order (O
′

t) at the end of t.
Let us use IP+

t−τ , which is the inventory position at t − τ right after At−τ

is determined and is the sum of the net stock level at t − τ and the total
of on-orders, {At−τ , At−τ−1, . . . , At−τ−Td

}. All those on-orders will become
the manufacturer’s on-hand inventory during (t − τ, t + Td + 1]. Therefore,
whatever ordering policy is used, we must have

NS t+Td+1 = IP+
t−τ −

τ+Td+1
∑

i=1

Dt−τ+i.

Using the same way of reasoning as used in Appendix 1, we can have

Var [NS t+Td+1] = Var

[

D̂ −

τ+Td+1
∑

i=1

Dt−τ+i

]

= E





(

D̂ −

τ+Td+1
∑

i=1

Dt−τ+i

)2


 . (11)

This suggests that the forecast (D̂) should cover the demand over τ +Td +1
periods to minimize Var [NS t+Td+1]. Let D̂∗

t−τ be the conditional expecta-

tion of the demand over τ + Td + 1 periods given Dt−τ , where D̂∗

t−τ =

E
[

∑τ+Td+1
i=1 Dt−τ+i|Dt−τ

]

. D̂∗

t−τ minimizes Eq. 11 since D̂∗

t−τ−
∑τ+Td+1

i=1 Dt−τ+i

yields a sequence of independent unknown error terms. A closed form of D̂∗

t−τ

is

D̂∗

t−τ = E

[

τ+Td+1
∑

i=1

Dt−τ+i

∣

∣

∣
Dt−τ

]

= (τ + Td + 1)µ + ρ(1 + ρ + · · · + ρτ+Td )(Dt−τ − µ)

= (τ + Td + 1)µ + ρ
1 − ρτ+Td+1

1 − ρ
(Dt−τ − µ),

and the minimized value of Var [NS t+Td+1], σ́∗2
d , can be obtained using the

results shown in a previous research (e.g. [16]) and is

min [Var [NS t+Td+1]] = σ́∗2
d

=

(

(τ + Td + 1)(1 − ρ2)+
ρ(1 − ρτ+Td+1)(ρτ+Td+2 − ρ − 2)

)

(1 − ρ)2(1 − ρ2)
σ2

ε . (12)
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Eq. 12 tells us that σ́∗2
d is a function of the sum of the two delays, (τ + Td),

when ρ and σ2
ε are given. Therefore, the impact of τ on σ́∗2

d is identical to
that of Td , when the optimum forecast, D̂∗

t−τ , is exploited. Using D̂∗

t−τ , we
can modify Eq. 11,

Var [NS t+Td+1] = E





(

D̂ −

τ+Td+1
∑

i=1

Dt−τ+i

)2




= E





(

(

D̂ − D̂∗

t−τ

)

+
(

D̂∗

t−τ −

τ+Td+1
∑

i=1

Dt−τ+i

)

)2


 .

(13)

Since E
[

D̂∗

t−τ −
∑τ+Td+1

i=1 Dt−τ+i|Dt−τ

]

= 0, Eq. 13 can be simplified to

Var [NS t+Td+1] = E

[

(

D̂ − D̂∗

t−τ

)2
]

+ E

[

(

D̂∗

t−τ −

τ+Td+1
∑

i=1

Dt−τ+i

)2
]

= E

[

(

D̂ − D̂∗

t−τ

)2
]

+ σ́∗2
d . (14)

Using the recursive characteristic of an AR(1) model, future values of the
demand (i.e. Dt+1, Dt+2, . . . ) given Dt−τ can be described as

Dt+1 = µ + ρτ+1(Dt−τ − µ) +
τ

∑

i=0

εt+1−i,

Dt+2 = µ + ρτ+2(Dt−τ − µ) +
τ+1
∑

i=0

εt+2−i,

...

Dt+Td+1 = µ + ρτ+Td+1(Dt−τ − µ) +

τ+Td
∑

i=0

εt+Td+1−i.

Therefore, D̂t−τ is

D̂t−τ = E[Dt+1 + Dt+2 + · · · + Dt+Td+1|Dt−τ ]

= (Td + 1)µ + ρτ+1
(

1 + ρ + · · · + ρTd

)

(Dt−τ − µ)

= (Td + 1)µ + ρτ+1 1 − ρTd+1

1 − ρ
(Dt−τ − µ).
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If we substitute D̂t−τ into D̂ in Eq. 14, we obtain σ́2
d Eq. 6. As we expect,

we can see σ́∗2
d ≤ σ́2

d, since the RHS of Eq. 6 is the sum of a non-negative
value and σ́∗2

d . Only when τ = 0 and/or ρ = 0 do we have σ́∗2
d = σ́2

d. ¤

Appendix 3: Analysis of the distributor’s net stock variance

First, we will show that σ́∗

d is increasing in τ(= 0, 1, 2, . . . ). For conve-
nience, we will use a new notation f(τ), where

f(τ) = σ́∗

d =

(

(τ + Td + 1)(1 − ρ2)+
ρ(1 − ρτ+Td+1)(ρτ+Td+2 − ρ − 2)

)

(1 − ρ)2(1 − ρ2)
σ2

ε .

To prove property 4, it is enough to show that f(τ +1)− f(τ) > 0. Actually
it is as:

f(τ + 1) − f(τ) =
(ρτ+Td+2 − 1)2

(ρ − 1)2
σ2

ε > 0.

Next, we will show that σ́d is increasing in τ . From Eq. 6, σ́2
d can be

rewritten using σ́∗2
d as

σ́2
d =

σ2
ε

1 − ρ2

(

ρτ+1 1 − ρTd+1

1 − ρ
− ρ

1 − ρτ+Td+1

1 − ρ

)2

+ σ́∗2
d . (15)

Since we already know that σ́∗

d is increasing in τ , we can focus only on the
first term of the RHS of Eq. 15. Let us set

f(τ) =
σ2

ε

1 − ρ2

(

ρτ+1 1 − ρTd+1

1 − ρ
− ρ

1 − ρτ+Td+1

1 − ρ

)2

.

Then we have

f(τ + 1) − f(τ) =
ρτ+2 (2 − ρτ (1 + ρ))

(ρ − 1)2(1 + ρ)
σ2

ε > 0,

when ρ is positive. ¤
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Appendix 4: Analysis of the distributors order variance

For convenience, we will use K = ρ(1 − ρτ+Td+1)/(1 − ρ) and D̂∗

t−τ =
(τ + Td + 1)µ + KDt−τ . Now, O

′
∗

t in Eq. 8 can be rewritten as

O
′
∗

t = Dt−τ + (S
′
∗

t − S
′
∗

t−1)

= Dt−τ + (D̂∗

t−τ − D̂∗

t−τ−1)

= Dt−τ + K(Dt−τ − Dt−τ−1)

= µ + ρ(Dt−τ−1 − µ) + εt−τ + K(µ + ρ(Dt−τ−1 − µ) + εt−τ − Dt−τ−1)

= µ + (ρ + ρK − K)(Dt−τ−1 − µ) + (1 + K)εt−τ .

Then using knowledge that a constant value does not affect the value of the
variance, a general expression of the variance of O

′
∗

t can be obtained as

Var [O
′
∗] = Var [(ρ + ρK − K) Dt−τ−1 + (1 + K)εt−τ ]

= (ρ + ρK − K)2 Var [D] + (1 + K)2σ2
ε

=
(ρ + ρK − K)2

1 − ρ2
σ2

ε + (1 + K)2 σ2
ε .

Substitute ρ(1 − ρτ+Td+1)/(1 − ρ) into K, and simplification will yield

Var [O
′
∗] =

1 + ρ + 2ρ2(τ+Td+2) − 2ρτ+Td+2(1 + ρ)

(ρ − 1)2(1 + ρ)
σ2

ε .

Clearly Var [O
′
∗] is the function of (τ +Td) when ρ and σ2

ε are given. There-
fore, the impact of τ on Var [O

′
∗] is identical to that of Td . By following the

same steps, we may obtain the variance of O
′

t,

Var [O
′

] =

(

1 + ρ
(

2ρτ
(

ρTd+1 − 1
) (

ρ − ρ1+τ + ρ2+Td+τ − 1
)

− 1
))

(ρ − 1)2(1 + ρ)
σ2

ε .

As ρτ+1(2ρTd+1 − 1) − 1 < 2ρTd+1 − 2 < 0 when 0 ≤ ρ < 1, we can show the
following relationship.

Var [O
′
∗] − Var [O

′

] =
2ρ(ρτ − 1)(ρτ+1(2ρTd+1 − 1) − 1)

(ρ − 1)2(1 + ρ)
σ2

ε ≥ 0.

Therefore, Var [O
′
∗] ≥ Var [O

′

], when 0 < ρ < 1 and τ > 0. Only if ρ = 0
and/or τ = 0 do these two variances have the same value which is σ2

ε .
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The second property in property 5 can be proved by showing (∂Var [O
′

])/(∂τ) <
0 and (∂Var [O∗

′

])/(∂τ) > 0. This gradient is given by

∂Var [O
′

]

∂τ
=

2ρτ+1(ρTd1+1 − 1)(2ρτ+Td1+2 − 2ρτ+1 + ρ − 1) log ρ

(ρ − 1)2(1 + ρ)
σ2

ε .

Under the condition 0 < ρ < 1, we have;

2ρτ+1(ρTd1+1 − 1) < 0,

2ρτ+Td1+2 − 2ρτ+1 + ρ − 1 < 2ρτ+1 − 2ρτ+1 + ρ − 1 = ρ − 1 < 0,

log ρ < 0,

(ρ − 1)2(1 + ρ) > 0,

σ2
ε > 0.

Therefore, (∂Var [O
′

])/(∂τ) < 0 must be true.
Finally, we will show (∂Var [O∗

′

])/(∂τ) > 0, which can be written as

∂Var [O∗
′

]

∂τ
=

2ρτ+Td1+2(2ρτ+Td1+2 − ρ − 1) log ρ

(ρ − 1)2(1 + ρ)
σ2

ε .

When 0 < ρ < 1, it is easy to check;

2ρτ+Td1+2 > 0,

2ρτ+Td1+2 − ρ − 1 ≤ 2ρ − ρ − 1 = ρ − 1 < 0,

log ρ < 0,

(ρ − 1)2(1 + ρ) > 0.

Therefore we have (∂Var [O∗
′

])/(∂τ) > 0. ¤

Appendix 5: Derivation of the manufacturer’s replenishment poli-

cies and their variances

For convenience, let us begin with the case of O
′
∗

t . Ôt can be given as

Ôt = E
[

O
′
∗

t+1 + O
′
∗

t+2 + · · · + O
′
∗

t+Tm+1|O
′
∗

t

]

= E
[

O
′
∗

t+1 + O
′
∗

t+2 + · · · + O
′
∗

t+Tm+1|Dt−τ , K
]

= (Tm + 1)µ + (ρ + ρK − K)(1 + ρ + . . . + ρL2−1)(Dt−τ − µ)

= (Tm + 1)µ + (ρ + ρK − K)
1 − ρTm+1

1 − ρ
(Dt−τ − µ), (16)
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where K = ρ(1− ρτ+Td+1)/(1− ρ). For the case of Ot = O
′

t, by following the
same steps as in Appendix 4, we find that K = ρτ+1(1 − ρTd+1)/(1 − ρ). A
general expression for the forecast error over the lead-time plus the review
period is

Ôt −

Tm+1
∑

i=1

Ot+i = (1 + K + (ρ + ρK − K)(1 + ρ + . . . + ρL2−2))εt−τ+1

+(1 + K + (ρ + ρK − K)(1 + ρ + . . . + ρL2−3))εt−τ+2

+ · · ·

+(1 + K + (ρ + ρK − K))εt−τ+Tm

+(1 + K)εt−τ+Tm+1,

and σ2
m is

σ2
m = E





(

Ôt −

Tm+1
∑

i=1

Ot+i

)2




=
Tm+1
∑

i=1

(

(1 + K) + (ρ + ρK − K)
i

∑

j=2

ρj−2

)2

σ2
ε

=





(Tm + 1)(ρ2 − 1) + K2(ρ − 1)2(ρ2(Tm+1) − 1)+
2K(ρ − 1)(ρTm+1 − 1)(ρTm+2 − 1)+
ρ(ρTm+1 − 1)(ρ(ρTm+1 − 1) − 2)





(ρ − 1)3(1 + ρ)
σ2

ε ,

where K = ρ(1 − ρτ+Td+1)/(1 − ρ) for the case of Ot = O
′
∗

t and K =
ρτ+1(1 − ρTd+1)/(1 − ρ) for the case of Ot = O

′

t. With knowledge of Eq. 16
and Eq. 1, Pt can be rewritten as

Pt = Ot + (Mt − Mt−1)

= Ot + (Ôt − Ôt−1)

= Ot + (ρ + ρK − K)
1 − ρTm + 1

1 − ρ
(Dt−τ − Dt−τ−1)

= µ + (ρ + ρK − K)(Dt−τ−1 − µ) + (1 + K)εt−τ +

(ρ + ρK − K)
1 − ρTm + 1

1 − ρ
(µ + ρ(Dt−τ−1 − µ) + εt−τ − Dt−τ−1)

= ρTm+1(ρ + ρK − K)(Dt−τ−1 − µ) +
1 − ρTm+1(ρ + ρK − K)

1 − ρ
εt−τ .
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Thus, σ2
P is

σ2
P =

(

ρTm+1(ρ + ρK − K)
)2

Var [D] +

(

1 − ρTm+1(ρ + ρK − K)

1 − ρ

)2

σ2
ε

=

(

ρTm+1(ρ + ρK − K)
)2

1 − ρ2
σ2

ε +

(

1 − ρTm+1(ρ + ρK − K)

1 − ρ

)2

σ2
ε ,

where K = ρ(1 − ρτ+Td+1)/(1 − ρ) for the case of Ot = O
′
∗

t and K =
ρτ+1(1 − ρTd+1)/(1 − ρ) for the case of Ot = O

′

t. ¤

Appendix 6: The influence of the delay on the manufacturer

The fact that σm and σP is increasing in τ when the optimal forecast is
present (the first property in property 6) is proved by showing (∂σ2

m)/(∂τ) >
0 and (∂σ2

P )/(∂τ) > 0, when D̂∗

t−τ is exploited. In such case, (∂σ2
m)/(∂τ) is

given as

∂σ2
m

∂τ
=

(

2ρτ+Td+2(ρTm+1 − 1)×
(ρτ+Td+2 + ρτ+Td+Tm+3 − ρ − 1) log ρ

)

(ρ − 1)3(1 + ρ)
σ2

ε .

For 0 < ρ < 1, it is easy to check;

2ρτ+Td+2 > 0,

ρTm+1 − 1 < 0,

ρτ+Td+2 + ρτ+Td+Tm+3 − ρ − 1 ≤ 2ρ − ρ − 1 = ρ − 1 < 0,

log ρ < 0,

(ρ − 1)3(1 + ρ) < 0,

σ2
ε > 0.

Therefore, (∂σ2
m)/(∂τ) > 0.

In the case that D̂∗

t−τ is used by the distributor, (∂σ2
P )/(∂τ) is

∂σ2
P

∂τ
=

(

2ρτ+Td+Tm+3×
(2ρτ+Td+Tm+3 − ρ − 1) log ρ

)

(ρ − 1)2(1 + ρ)
σ2

ε .

26

Hosoda, T. and Disney, S.M., (2012), “A delayed demand supply chain: Incentives for upstream players”, OMEGA: The International Journal of Management Science. Vol. 40, No. 4, pp478-487. DOI: 10.1016/j.omega.2011.09.005.



For 0 < ρ < 1, it is necessary to check;

2ρτ+Td+Tm+3 > 0,

2ρτ+Td+Tm+3 − ρ − 1 ≤ 2ρ − ρ − 1 = ρ − 1 < 0,

log ρ < 0,

(ρ − 1)2(1 + ρ) > 0,

σ2
ε > 0.

Therefore, we have (∂σ2
P )/(∂τ) > 0.

Now, we will now show that σm and σP are decreasing in τ when the non-
optimal forecast is present by showing (∂σ2

m)/(∂τ) < 0 and (∂σ2
P )/(∂τ) < 0.

In this case, (∂σ2
m)/(∂τ) is given by

∂σ2
m

∂τ
=

(

2ρτ+1(ρTd+1 − 1)(ρTm+1 − 1)×
(ρTm+2 − ρτ+1 + ρτ+Td+2 − ρτ+Tm+2 + ρτ+Td+Tm+3 − 1) log ρ

)

(ρ − 1)3(1 + ρ)
σ2

ε .

Since 0 < ρ < 1, we have

2ρτ+1(ρTd+1 − 1)(ρTm+1 − 1) > 0,

log ρ < 0,

(ρ − 1)3(1 + ρ) < 0,

σ2
ε > 0.

For convenience, let us set fm(τ) = (ρTm+2 − ρτ+1 + ρτ+Td+2 − ρτ+Tm+2 +
ρτ+Td+Tm+3 − 1) to show fm(τ) is negative. (∂fm(τ))/(∂τ) is

∂fm(τ)

∂τ
= ρτ+1(ρTd+1 − 1)(ρTm+1 + 1) log ρ > 0.

Therefore, the maximum value of fm(τ) is achieved when τ → ∞:

max fm(τ) = lim
τ→∞

f(τ) = ρTm+2 − 1 < 0.

This shows fm(τ) < 0, and we conclude that (∂σ2
m)/(∂τ) < 0. By following

the same steps above, we will show (∂σ2
P )/(∂τ) < 0. (∂σ2

P )/(∂τ) is given as

∂σ2
P

∂τ
=

(

2ρτ+Tm+2(ρTd+1 − 1)×
(ρ(2ρTm+1(1 − ρτ + ρτ+Td+1) − 1) − 1) log ρ

)

(ρ − 1)2(1 + ρ)
σ2

ε .
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With the knowledge that 0 < ρ < 1, we have

2ρτ+Tm+2 > 0,

ρTd+1 − 1 < 0,

log ρ < 0,

(ρ − 1)2(1 + ρ) > 0,

σ2
ε > 0.

For convenience, we set fP (τ) = ρ(2ρTm+1(1−ρτ +ρτ+Td+1)−1)−1 and will
show fP (τ) is negative by using (∂fP (τ))/(∂τ). Since (∂fP (τ))/(∂τ) is

∂fP (τ)

∂τ
= 2ρτ+Tm+2(ρTd+1 − 1) log ρ ≥ 0,

fP (τ) yields the maximum value when τ → ∞, which is

max fP (τ) = lim
τ→∞

fP (τ) = 2ρTm+2 − ρ − 1

< 2ρ − ρ − 1

= ρ − 1 < 0.

Therefore, fP (τ) < 0 and we can conclude that (∂σ2
P )/(∂τ) < 0. ¤
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