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PURPOSE. Klf4, one of the highly expressed transcription factors
in the mouse cornea, plays an important role in maturation and
maintenance of the ocular surface. In this study, the structure
and proteoglycan composition of the Klf4 conditional null
(Klf4CN) corneal stroma was investigated, to further charac-
terize the previously reported Klf4CN stromal edema.

METHODS. Collagen fibril spacing and diameter were calculated
from scattering intensity profiles from small angle synchrotron
x-ray scattering patterns obtained across the cornea along a
vertical meridian at 0.5-mm intervals. Collagen fibril organiza-
tion and proteoglycans were visualized by electron microscopy
(EM), with or without the cationic dye cuprolinic blue. Pro-
teoglycans and glycosaminoglycans were further analyzed by
fluorophore-assisted carbohydrate electrophoresis (FACE) and
immunoblot analysis. Q-RT-PCR was used to measure the tran-
script levels.

RESULTS. In the central cornea, the average collagen interfibril-
lar Bragg spacing increased from 44.5 nm (SD �1.8) in wild-
type to 66.5 nm (SD �2.3) in Klf4CN, as measured by x-ray
scattering and confirmed by EM. Mean collagen fibril diameter
increased from 32 nm (SD �0.4) in wild-type to 42.3 nm (SD
�4.8) in Klf4CN corneal stroma. Downregulation of proteo-
glycans detected by EM in the Klf4CN stroma was confirmed

by FACE and immunoblot analysis. Q-RT-PCR showed that,
whereas the Klf4CN corneal proteoglycan transcript levels
remained unchanged, matrix metalloproteinase (MMP) tran-
script levels were significantly upregulated.

CONCLUSIONS. The Klf4CN corneal stromal edema is character-
ized by increased collagen interfibrillar spacing and increased
diameter of individual fibrils. The stroma also exhibits reduced
interfibrillar proteoglycans throughout, which is possibly
caused by increased expression of MMPs. (Invest Ophthalmol
Vis Sci. 2009;50:4155–4161) DOI:10.1167/iovs.09-3561

The cornea consists of a connective tissue stroma of multi-
ple, superimposed lamellae each formed from collagen

fibrils with highly regular structure and orientation. The stroma
is covered by a stratified epithelium on its outer boundary and
a monolayer of endothelial cells lining the inner surface, both
cellular populations fulfilling an important barrier function,
which influences movement of fluid into and out of the stroma.
Corneal transparency is essential for vision and consequently,
tight regulation of molecular interactions governing structural
integrity and hydration of matrix components is thought to be
important in tissue homeostasis, both in development and in
the adult. Highly ordered collagen architecture with uniformity
of fibril diameter and spacing is central to corneal transparen-
cy.1 Collagen fibril diameter may be controlled during fibrillo-
genesis in the embryo by interaction of different collagen types
to form hybrid fibrils.2–5 Proper hydration of interfibrillar pro-
teoglycans (PGs) appears to be equally important in maintain-
ing appropriate fibril diameter and spacing consistent with
optimal light transmission. Overhydration (edema) of stroma is
a consequence of impaired function of epithelial or endothelial
limiting cell layers, and can occur in a range of corneal dystro-
phies and pathologic conditions, leading to disruption of the
ordered ultrastructure, clouding or opacity of the tissue and
accompanying loss of vision.6,7

Maturation of the fully functional transparent cornea is
driven by complex signaling interactions as well as extrinsic
environmental stimuli during development. In rodents, impor-
tant developmental events take place in association with eyelid
opening.8 In a study conducted to identify changes in gene
expression during postnatal maturation of the mouse cornea,
serial analysis of gene expression was recently used.9 Tran-
scription factors associated with barrier function were among
the most highly expressed transcription factors in the maturing
as well as adult mouse cornea. Foremost among these was
KLF4, a member of the Krüppel-like transcription factor (KLF)
family of zinc finger-containing proteins previously identified
as an important regulator of epithelial differentiation in skin,
lung, and gastrointestinal tract.10–13 Klf4 null mice do not
survive beyond 15 hours postpartum owing to loss of fluid that
is directly attributable to increased epithelial permeability.13

The lethal effect of Klf4 deletion made it impossible to inves-
tigate its role in the cornea until recently, after the successful
production of hybrid mice with conditional deletion of the
Klf4 gene in the developing ocular surface, using the Cre-Lox
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approach.14 Klf4CN mice are viable and express KLF4 nor-
mally, except in the ocular tissues of ectodermal origin includ-
ing cornea, conjunctiva, and lens, where the Klf4 gene is
disrupted. Klf4CN corneas contain fewer epithelial cell layers
with vacuolated cells, swollen endothelium, and edematous
stroma, than do wild-type (WT) corneas.14

Corneal stromal edema is considered to result from malfunc-
tioning of one or both of the limiting cellular layers,15 although
endothelial abnormality is normally regarded as the primary
cause of stromal changes. An understanding of the factors
leading to stromal edema remains important from a clinical
standpoint, yet structural matrix changes at the molecular and
fibrillar levels which underlie the clinical signs of stromal
edema have not been clearly characterized. Mice with defec-
tive KLF4 expression thus represent an important model for
investigations of mechanisms and molecular interactions in-
volved in this process. We report the results of a study using
x-ray scattering, electron microscopy, and PG analysis to define
the changes in macromolecular composition and organization
associated with Klf4CN stromal edema.

MATERIALS AND METHODS

Animals and Tissue Acquisition

Klf4CN mice with selective disruption of the Klf4 gene in the cornea,
conjunctiva, eyelids, and lens were generated as described previ-
ously.14 The following breeding scheme was used to generate the Klf4
conditional null (Klf4CN) and WT control sibling mice used in our
assays: Klf4loxP/loxP, LeCre/� mice were mated with Klf4loxP/loxP mice
to obtain a roughly equal proportion of Klf4loxP/loxP, LeCre/�

(Klf4CN), and Klf4loxP/loxP (WT control siblings) offspring, as de-
scribed before.14,16 The mice studied herein were age matched (12-
week-old) on a mixed genetic background and maintained in accor-
dance with the guidelines set forth by the Institutional Animal Care and
Use Committee and the ARVO Statement for the Use of Animals in
Ophthalmic and Vision Research. The eyes were enucleated from mice
euthanatized by carbon dioxide asphyxiation and the corneas, together
with a rim of sclera, were dissected within 10 minutes of death and
transferred to 4% paraformaldehyde fixative in 0.1 M phosphate buffer.

X-Ray Scattering

Corneas were transported in fixative to the Synchrotron Radiation
Source (Daresbury, UK) and small angle x-ray scattering was performed
with a beam approximately 0.5 mm2. Corneas were rinsed briefly in
buffer and enveloped in plastic film to prevent dehydration, and the
beam was passed through full tissue thickness at the center. Exposures
were made along a vertical meridian at 0.5-mm intervals with a com-
puter-operated translation stage. Patterns were analyzed to produce
scattering intensity plots from which mean center-to-center collagen
fibril Bragg spacing and fibril diameter were calculated.

Electron Microscopy

After removal from the x-ray beam, some corneas of WT and Klf4CN
mice were fixed for electron microscopy by immersion in either 2.5%
glutaraldehyde in 0.1 M sodium cacodylate buffer, followed by aque-
ous 1% osmium tetroxide for routine electron microscopy, or 2.5%
glutaraldehyde in 25 mM sodium acetate buffer containing 0.1 M
magnesium chloride and 0.05% cuprolinic blue for PG localization.
Specimens were dehydrated in a graded ethanol series and embedded
in Araldite CY212 resin. Sections, 90-to 100-nm thick, were cut from
the polymerized resin blocks, collected on uncoated copper grids and
stained with uranyl acetate and lead citrate, or uranyl acetate alone for
examination in an electron microscope (EM model 208; Philips, Eind-
hoven, The Netherlands).

Statistical Analysis

Collagen fibril spacing in the WT and Klf4CN corneal stroma was
calculated for mean � SD and tested for normality and equal variance
before analysis by Student’s two-sample t-test (Minitab Statistical Soft-
ware; Minitab Ltd., Coventry, UK). When data were not normally
distributed or of unequal variance, the Mann-Whitney test was per-
formed.

PG Analysis

Total protein was extracted from two to three WT or Klf4CN corneas
in triplicate using 6 M urea with protease inhibitors as described
previously17 and PGs were isolated using NH2-ion exchange microcol-
umn.18 Triplicate samples containing equal amounts of protein were
digested with 100 mU/mL chondroitinase ABC or keratanase (Sigma-
Aldrich, St. Louis, MO) in 0.1 M ammonium acetate pH 7.4, at 37° for
16 hours to digest chondroitin sulfate/dermatan sulfate (CS/DS), or
keratan sulfate (KS) glycosaminoglycans (GAGs), respectively. The
GAG fragments were recovered by passage through a 2-kDa cutoff
membrane filter and repeated drying before derivatization with 2-ami-
noacridone and analysis by using fluorophore-assisted carbohydrate
electrophoresis (FACE), as previously described.18 PG core proteins in
the digests were identified by immunoblot analysis with an antibody to
keratocan, Kera-C (provided by Winston Kao, University of Cincinnati,
Cincinnati, OH), a monoclonal antibody to lumican, Lum-1 (from Bruce
Caterson, Cardiff University, Wales, UK), or to decorin (Sigma-Aldrich),
as previously described.19

Isolation of Total RNA and Q-RT-PCR

Total RNA isolated from the WT or Klf4CN corneas was quantified, and
the concentration adjusted with RNase-free water to 100 ng/�L RT-
PCR, and quantitative real time RT-PCR (Q-RT-PCR) assays were per-
formed with cDNA generated by high-capacity cDNA archive kit and
total RNA isolated from pooled corneas of 10 WT or Klf4CN mice. The
RT-PCR products were separated on a 2% agarose gel with TBE buffer.
Q-RT-PCR assays for different transcripts were performed in a thermo-
cycler (model 7700; Applied Biosystems [ABI], Foster City, CA) using
18S rRNA as endogenous control. The results were then analyzed (SDS
software; ABI). To distinguish the products originating from the mRNA
from those amplified from the contaminating genomic DNA, if any, the
forward and reverse primers used in RT-PCR were picked from adja-
cent exons. The sequence of primers used for RT-PCR and Q-RT-PCR is
provided in Supplementary Table S1, http://www.iovs.org/cgi/content/
full/50/9/4155/DC1. Data are expressed as the mean (�SD).

RESULTS

As measured by synchrotron x-ray diffraction, average collagen
fibril spacing in WT corneas increased from the corneal center
toward the periphery (Fig. 1). Klf4CN mouse corneas also
exhibited a center-to-periphery increase in fibril spacing (Fig.
1), but with the spacing in these animals always exceeding that
recorded in WTs. Average collagen interfibrillar Bragg spacing
in the central cornea increased by approximately 50%, from
44.5 nm (�1.8) in the WT (n � 5) to 66.5 nm (�2.3) in the
Klf4CN stroma (n � 8; Fig. 1, Table 1). A similar proportional
increase was observed in the periphery of the cornea, with the
interfibrillar Bragg spacing measuring 65.8 nm (�11.9) in the
WT and 88.7 nm (�14.5) in the Klf4CN corneas (Fig. 1, Table
1). These studies also revealed that the average diameter of
individual collagen fibrils increased by approximately 32%,
from 32 nm (�0.4) in WT to 42.3 nm (�4.8) in the Klf4CN
corneas (Table 1).

Consistent with the x-ray scattering data, electron micros-
copy also illustrated increased collagen fibril diameter and
spacing throughout the depth of the central Klf4CN cornea
(Figs. 2E–H), compared with the WT (Figs. 2A–D). Even
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though the increased collagen fibril spacing and diameter were
both evident throughout the Klf4CN cornea (compare Figs.
2B–D and 2F–H), this effect was much more striking in the
posterior stroma (compare Figs. 2D and 2H), than the middle
or anterior stroma. Electron microscopy also revealed that the
Klf4CN subepithelial stroma was disrupted with randomly or-
ganized collagen fibrils, unlike the regular organization of
subepithelial extracellular matrix in the WT (compare Figs. 2E
and 2A).

Electron microscopy of corneal specimens fixed in the
presence of cuprolinic blue showed PGs as electron-dense
filaments associated with collagen fibrils. PGs appeared con-
siderably reduced in size and abundance in the Klf4CN (Figs.
3G–L) compared with those in WT (Figs. 3A–F) cornea, in both
longitudinal (Figs. 3A, 3C, 3E, 3G, 3I, 3K) and transverse
sections (Figs. 3B, 3D, 3F, 3H, 3J, 3L). This reduction in PGs
was observed in the anterior (Figs. 3A, 3B, 3G, 3H), middle

FIGURE 2. Electron micrographs of corneal lamellae in WT (A–D)
and Klf4CN corneal stroma (E–H). Subepithelial stroma appeared
disrupted in mutant cornea (E). Arrows: basal lamina below the
epithelium (A, E); anterior stroma (B, F); mid-stroma (C, G); poste-
rior stroma (D, H). Bar: (A, E) 480 nm; (B–D, F–H) 300 nm.

TABLE 1. Summary of Collagen Interfibrillar (Bragg) Spacing

Wild-Type Klf4CN

Mouse ID

Interfibrillar Bragg
Spacing (nm)

Fibril Diameter
(nm) Center

Mouse
ID

Interfibrillar Bragg
Spacing (nm)

Fibril Diameter
(nm) CenterCenter Periphery Center Periphery

425 44 76.7 32.2 426 65.5 109.4 38.6
425A 42.1 51 31.5 426A 65.5 75.6 37.7
437 45.4 59 31.7 436 64.1 67 38.6
437A 44 79 31.9 424 65.5 92.1 47.3
423 46.8 63.2 32.6 432 65.5 75.6 43.8

435 70.2 100 51.3
429 70.2 95.1 40.9
433 65.5 95.1 40.2

Mean 44.5 65.8 32.0 66.5 88.7 42.3
SD 1.8 11.9 0.4 2.3 14.5 4.8
SE 0.8 5.3 0.2 0.8 5.1 1.7

Data were collected at the at corneal center and periphery and the fibril diameter at the corneal center was calculated from X-ray scatter
patterns obtained in wild-type (n � 5) and Klf4CN (n � 8) mice.
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FIGURE 1. Graphic representation of average collagen interfibrillar
(Bragg) spacing (y-axis) from x-ray scattering patterns obtained at five
sites at 0.5-mm intervals (x-axis) along a vertical meridian across the
cornea in five WT and eight Klf4CN mice. In both WT and Klf4CN
stroma, the interfibrillar spacing became increasingly greater on mov-
ing further toward the periphery from the corneal center (represented
by 0 mm). Fibril spacing in the Klf4CN mouse cornea exceeded that in
WT across the meridian.
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(Figs. 3C, 3D, 3I, 3J), and posterior (Figs. 3E, 3F, 3K, 3L)
cornea. Consistent with the previous results (Figs. 2), the
heightened diameter and spacing of collagen fibrils in Klf4CN
stroma was also evident at higher magnification in the poste-
rior compared with the central or anterior locations (Figs. 3 K,
3L compared with 3G–J).

Alterations in stromal PGs of Klf4CN corneas were con-
firmed by biochemical analyses of both core proteins and their
GAG chains in total protein extracts of WT and Klf4CN cor-
neas. CS/DS and KS were detected by using FACE after diges-
tion with specific endoglycosidases. FACE analysis showed that
Klf4CN corneas contained approximately 35% of the WT levels
of CS/DS (both nonsulfated and monosulfated disaccharides),
and only 15% of the KS (Figs. 4A, 4C). Immunoblots with
antibodies specific for the PG core proteins, decorin, lumican,
and keratocan indicated a significant downregulation of all
three components in Klf4CN compared with WT corneas (Fig.
4B). Densitometric scans of these blots showed that decorin,
keratocan, and lumican were reduced to approximately 63%,
50%, and 6% of the WT levels, respectively, in Klf4CN corneas
(Fig. 4D). These results imply that lumican and KS GAGs
exhibit a greater reduction pro rata than decorin and CS/DS
GAGs (Fig. 4C). Consistent with the results of cuprolinic blue
contrast-enhanced electron microscopy (Fig. 3), these bio-
chemical analyses provided quantitative estimates of the extent
of reduction of GAGs in the Klf4CN cornea.

We then compared the expression levels of the transcripts
encoding the PGs tested above, in the WT and Klf4CN corneas.

Data from the earlier microarray16 and the current Q-RT-PCR
analyses indicated that the transcript levels of decorin, lumi-
can, keratocan, and Chst5 (an enzyme involved in the sulfation
of KS chains), do not vary significantly between WT and
Klf4CN corneas (Fig. 5). To test the possibility that increased
degradation of corneal PGs by elevated expression of MMPs
may be responsible for the observed reduction in PGs in the
Klf4CN stroma, we examined the microarray data for the levels
of MMPs. We found that MMP2 and -9 known to play an active
role in corneal extracellular matrix rearrangement during
wound healing,20 and MMP3 and -13 are indeed upregulated in
the Klf4CN compared with the WT cornea, by 1.76-, 3.5-, 2.9-
and 4.3-fold, respectively.16 The upregulation of MMP-2, -3, and
-9 expression indicated by microarray analysis was confirmed
by RT-PCR (Fig. 6).

DISCUSSION

Maintenance of precise spacing between collagen fibrils with
highly regular diameter is considered to be critically important
for the transparency of the corneal stroma.1 Fibril diameter and
spacing are influenced by several interacting factors, including
the collagen-type composition of the fibrils,2,3 nature, and
abundance of the PGs that interact with the fibrils21–23 and the
level of stromal hydration.24 In this study, we used x-ray fiber
diffraction to measure the collagen fibril spacing and diameter
in WT and Klf4CN mouse corneas, which develop significant
stromal edema.14 Use of an x-ray beam focused to 0.5 mm has
permitted collection of data from multiple sites across mouse
cornea, showing that average interfibrillar spacing of collagen
fibrils is higher in the corneal periphery, as previously de-
scribed in human cornea.25 Moreover, Klf4CN corneas dem-
onstrated significantly increased collagen interfibrillar spacing
across the cornea compared with WT. The collagen fibrils
were spread wider apart at all depths in the Klf4CN corneal
stroma, but with especially increased spacing in posterior re-
gions.

Factors regulating collagen fibril spacing are not fully un-
derstood, but evidence suggests that interfibrillar PGs, consist-
ing of a core protein and attached GAG chains, fulfill an
important role. Stromal PGs are members of the small leucine-
rich PG (SLRP) family which includes three KS-linked proteins
lumican,26 keratocan,27,28 and osteoglycin,29 and the CS/DS PG
decorin.30 PGs interact with collagen fibrils at specific sites via
their core protein domains,31 with the sulfated, highly-hydro-
philic GAG chains extending into the interfibrillar space where
they bind water and thus influence stromal hydration.32 We
found that GAGs, visualized by electron microscopy with cu-
prolinic blue contrast, were markedly reduced in the edema-
tous Klf4CN corneal stroma. Biochemical analysis confirmed
this reduction using FACE, which revealed that both KS and
CS/DS GAGs were significantly reduced. The presence of re-
duced GAGs initially seems difficult to reconcile with tissue
edema and increased water content in the Klf4CN stroma.
Similar decreases in GAG levels have been reported previously,
in response to postsurgical and experimentally induced cor-
neal edema.33,34 In other situations, however, reduced sulfated
KS is associated with a more compact stroma with reduced
spacing between collagen fibrils—for example, in the Chst5-
knockout mouse cornea,35 and also in corneas from patients
with macular corneal dystrophy.36 It therefore seems more
likely that the PG loss in Klf4CN corneas is a secondary effect
of tissue edema rather than its cause.

PG transcript levels in Klf4CN corneas were similar to WT
despite a reduction in PG and GAG levels, suggesting increased
degradation of these molecules in the mutant. Accordingly, in
Klf4CN corneas we observed an upregulation in MMPs capable

FIGURE 3. Electron micrographs of cornea in anterior, mid-, and pos-
terior stroma from WT (A–F) and Klf4CN (G–L) corneas, prepared
with contrast-enhanced fixation of PGs with cuprolinic blue. Collagen
fibrils appeared in longitudinal (A, C, E, G, I, K) and transverse (B, D,
F, H, J, L) sections. PGs were seen as fine filaments decorating the
collagen fibrils and were more prominent in WT than in Klf4CN mouse
corneas, where interfibrillar spacing was also seen to be increased. Bar,
300 nm.
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of degrading stromal PGs, and which may also contribute to
the thinning of the epithelial basement membrane in Klf4CN
corneas described previously.14 The results presented here do
not allow us to determine whether the increased expression of
MMPs is due to activation of their promoter activities, or
increased stability of their corresponding transcripts. It is pos-
sible that the signals generated in response to the Klf4CN
corneal epithelial fragility or stromal swelling simulate a cor-
neal wounding response and elicit the observed increase in
Klf4CN corneal MMP expression.

Upregulation of MMPs appears to be a consistent feature
concomitant with edema, reported in diverse tissues, including
skin, brain, and the vascular system,37,38 as well as human
corneas in pseudophakic eyes.39 In view of the fact that ele-
vated expression of MMPs is associated with tissue remodeling
and wound healing,20 exploring the role of KLF4 in regulating
the expression of MMPs in the cornea may reveal if KLF4
influences corneal wound healing by regulating MMPs. The
broad spectrum of known activities of the MMP family indi-

cates that, rather than solely regulating matrix turnover, they
potentially control many complex aspects of cell behavior and
homeostasis in the extracellular matrix.40 Thus, upregulation
of MMPs probably has far-reaching consequences in the
Klf4CN phenotype through additional effects on many nonma-
trix substrates such as cell receptors, signaling, and adhesion
molecules.

Besides increased interfibrillar spacing in edematous
Klf4CN corneas, a surprising finding was the increased diam-
eter of stromal collagen fibrils. This may be directly related to
the reduction in the amount of PGs, as stromal PGs are known
to bind to fibrillar collagen in vitro and influence the lateral
association of collagen during fibrillogenesis.22 KS PG-null
mice, deficient in lumican, keratocan, or osteoglycin, all to some
extent exhibit increased diameters of collagen fibrils in corneal
stroma.41–44 Decorin has also been shown to influence fibril
diameter and alignment in studies on skin and tendon.21–23,45

Consistent with our observation that lumican is almost absent
from the Klf4CN cornea, increased fibril diameters and dis-

FIGURE 4. Analysis of PGs extracted
from WT and Klf4CN mouse cor-
neas. (A) Fluorophore-assisted carbo-
hydrate electrophoresis analysis of
(A1) keratan sulfate-(KS) monosul-
fated disaccharides generated by
keratanase digestion. (A2) Nonsul-
fated (COS) and monosulfated (C4S)
CS/DS disaccharides generated by
chondroitinase ABC digestion. (B)
Western blot identification of (B3)
decorin core protein; (B4) lumican
core protein; (B5) keratocan core
protein. (C) Ponceau-stained blot
showing equal protein loading. (D)
For each of these analyses, quantita-
tive analysis of three replicates from
WT and Klf4CN corneal extracts are
displayed with the SE. In each case,
the differences were statistically sig-
nificant (P � 0.05).
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rupted fibril spacing were especially prominent in posterior
regions of the stroma, where lumican concentrations are high-
est.46 However, unlike in our findings, fibril changes were not
uniform in PG-knockout mice. Rather, clusters of atypical
fibrils appeared, scattered among relatively normal fibril pop-
ulations.41–44

Edema in Klf4CN corneas is manifest as increased fibril
spacing throughout the stroma, presumably the result of water
ingress after perturbation of epithelial and/or endothelial bar-
riers. Swamynathan et al.14,16 have shown downregulation of
the epithelial water channel proteins, aquaporins-3 and -5 in
Klf4CN corneas, whereas aquaporin-1 in endothelium is unal-
tered, and suggested that disturbance of aquaporin levels may
be the reason for stromal edema. This notion implies a more
important role for the epithelium in the control of stromal
hydration than recognized hitherto. The epithelium is instiga-
tive in stromal morphogenesis from an early stage in corneal
development.47 Klf4 expression was detectable in the devel-
oping mouse eye from embryonic day 10,48 at the threshold of
major morphogenetic changes involving tissue compaction,
loss of water, and increasing transparency.5,46 Perturbation of
Klf4-driven epithelial differentiation, disregulation of water
channel components and subsequent MMP overexpression ap-
pear to contribute to an altered matrix structure which persists
in the adult animal.

In summary, the results presented in this report provide
quantitative measurements of matrix changes that occur with

stromal edema in Klf4CN corneas and indicate that an in-
creased expression of MMPs is probably responsible for re-
duced corneal PGs in Klf4CN. Thus, Klf4CN mice represent a
useful model for further investigations into the physiological
mechanisms underlying stromal edema in the cornea.
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