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Abstract: Hill’s one-dimensional three-element model has often been used for formulating
a three-dimensional skeletal muscle constitutive model, which generally involves several
material parameters. However, only few of these parameters have physical meanings and can
be experimentally determined. In this paper, a parametric study of a Hill-type hyperelastic
skeletal muscle model is performed. First, the Hill-type hyperelastic skeletal muscle model is
formulated, containing 13 material parameters. The values or value ranges of these parameters
are discussed. The muscle model is then used to predict the behaviour of New Zealand white
rabbit hind leg muscle tibialis anterior and a sensitivity study of several parameters is
performed. Results show that some parameters in the muscle model can be experimentally
determined, some parameters have their own value ranges and the muscle model can predict
the experimental data by tuning the parameters within their value ranges. The results from the
sensitivity study can help understand how some parameters influence the total muscle stress.

Keywords: skeletal muscle, finite element, constitutivemodel, parametric study, LS-DYNAUMAT

1 INTRODUCTION

Skeletal muscle is a soft biological tissue with the

primary function of active contraction. Skeletal

muscle plays an important role in the human body

system and function by generating voluntary forces

and facilitating body motion. Furthermore, skeletal

muscle provides protection to the upright skeleton.

From a biomechanical point of view, skeletal muscle

exhibits a very complex mechanical behaviour which

is active, incompressible, transversely isotropic, and

hyperelastic. A number of mathematical skeletal

muscle models have been developed over the past

two decades and they can be classified as belonging

to one of two categories: Hill-type [1] and Huxley-

type [2] muscle models. Hill-type muscle models are

phenomenologically based and consist of three

elements: a parallel element (PE) in parallel with

a series elastic element (SEE) and a contractile

element (CE). Huxley-type models describe the

muscle behaviour at the molecular level and are

mainly used to understand the properties of the

microscopic contractile element. In this paper, the

Hill-type muscle models are studied and discussed.

Hill’s three-elementmodel has been used in studying

the mechanical behaviour of different muscle tissues

[3–6]. However, Hill’s model is only one-dimensional

(1D). In order to investigate the complex three-dimen-

sional (3D) geometry and mechanical behaviour of

skeletal muscle, Hill’s 1Dmodel has been extended into

the 3D scope. The approach ofmusclemodel extension,

which has been employed by many researchers [7–13],

is to add up the longitudinal stress from the muscle

fibres sfibre, the stress from the embedding matrix

smatrix and the stress related to the incompressibility of

the muscle sincomp. Thus, the Cauchy stress s produced

in a 3D muscle can be expressed as

s~sfibrezsmatrixzsincomp ð1Þ

In the 3D Hill-type skeletal muscle model proposed

by Kojic et al. [10], the contractile element and the
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series elastic element played the role of the active

muscle fibre, and the parallel element played the role

of the surrounding matrix which was assumed to be

isotropic linear elastic. The incompressibility con-

straint was not taken into account. There are ten

material parameters involved in Kojic et al.’s model.

In the same year, Martins et al. [11] developed a 3D

Hill-type skeletal muscle model based on the concept

of fibre-reinforced composite. This was a modified

form of the constitutive equation proposed by

Humphrey and Yin [14]. The material parameters in

Martins et al.’s model were reduced to 4. However, a

strain-like quantity jCE was introduced into their

model to express the stress in the CE and this quantity

is difficult for the experimental determination. To

avoid using jCE, Martins et al. [12] introduced the

multiplicative split of the fibre stretch into a con-

tractile stretch followed by an elastic stretch and

through this method, the number of material para-

meters was controlled at 5. Most recently, Tang et al.’s

[13] developed a 3D finite element muscle model

which was able to simulate active and passive non-

linear mechanical behaviour of skeletal muscle dur-

ing lengthening or shortening under either quasi-

static or dynamic condition. This model is compre-

hensive, but there are 11 material parameters in-

volved and few of them are well understood.

In this paper, the parametric study of a Hill-type

hyperelastic muscle model is performed. In this

model, the muscle is modelled as an active, quasi-

incompressible, transversely isotropic and hypere-

lastic solid. There are 13 material parameters in the

developed muscle model. The values or value ranges

of these parameters are investigated. A test is then

performed to investigate if the model can be used to

predict some experimental data by tuning the

parameters within their value ranges. The results

from the sensitivity study of some material para-

meters are also included in the paper.

2 SKELETAL MUSCLE CONSTITUTIVE MODEL

The muscle constitutive relation is derived through

the strain energy approach and the framework of

this relation is adopted from Tang et al.’s work [13].

However, in order to reduce the parameter inputs,

the muscle force-length function in Tang et al.’s

model is replaced with a smooth quadratic function

proposed by Blemker et al. [15]. Furthermore, in

order to control the muscle activation behavior,

Tang et al.’s muscle activation function is replaced

by an exponential function proposed by Meier and

Blickhan [16]. The skeletal muscle model is sum-

marized below.

The muscle is regarded as a fibre-reinforced com-

posite comprising a ground substance matrix and the

muscle fibres, where the muscle fibres are modeled

using the Hill’s three-element model (Fig. 1).

The strain energy in the muscle is given by

U~UI
�IIC1
� �

zUf
�llf , ls
� �

zUJ Jð Þ ð2Þ

where

UI
�IIC1
� �

~c exp b �IIC1 {3
� �� �

{1
� �

ð3Þ

is the strain energy stored in the isotropic matrix

Uf (�llf ,ls)~

ð�llf
1

½ss(l,ls)zsp(l)�dl ð4Þ

is the strain energy stored in the muscle fibres and

UJ Jð Þ~ 1

D
J{1ð Þ2 ð5Þ

is the strain energy associated with the volume

change.

In these definitions, �IIC1 is the first invariant of the

right Cauchy–Green strain tensor with the volume

change eliminated, b and c are material parameters,
�llf is the modified fibre stretch ratio, ls is the stretch

ratio in the series elastic element (SEE), l is the fibre

stretch ratio, ss l, lsð Þ is the stress produced in SEE,

sp lð Þ is the stress produced in the parallel element

(PE), J is the Jacobian of the deformation gradient

and D is the compressibility constant.

Based on Pinto and Fung’s experiment on the

papillary muscle of a rabbit heart, Fung proposed a

recurrence relation to express the stress produced in

the SEE [17]

tzDtss~eaDls tsszb
� �

{b ð6Þ

Fig. 1 Hill’s three-element muscle model

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 2 Y T Lu, L Beldie, B Walker, S Richmond and J Middleton
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with

tss~b ea
tls{1ð Þ{1

h i
ð7Þ

where a and b are material constants.

The stress produced in the CE is given by

tzDtsc~s0 :f t(tzDt):f l(
�llf ):f v(

_llm) ð8Þ

where

ft tð Þ~

n1, if tvt0

n1z n2{n1ð Þ:ht t, t0ð Þ, if t0vtvt1

n1z n2{n1ð Þ:ht t1, t0ð Þ
{ n2{n1ð Þ:ht t1, t0ð Þ½ �:ht t, t1ð Þ,

if twt1

8>>><
>>>:

ð9Þ

with

ht ti, tbð Þ~ 1{exp {S: ti{tbð Þ½ �f g ð10Þ

is the muscle activation function;

fl
t�llf
� �

~

0, if t�llf
�
loptv0:4

9 t�llf
�
lopt{0:4

� �2
, if 0:4¡t�llf

�
loptv0:6

1{4 1{t�llf
�
lopt

� �2
, if 0:6¡t�llf

�
loptv1:4

9 t�llf
�
lopt{1:6

� �2
, if 1:4¡t�llf

�
loptv1:6

0, if t�llf
�
lopt§1:6

8>>>>>>>><
>>>>>>>>:

ð11Þ

is the muscle stress-stretch function and

fv _llm

� �
~

1{ _llm

.
_ll
min

m

1zkc _llm

.
_ll
min

m

, if _llm¡0

d{ d{1ð Þ
1z _llm

.
_ll
min

m

1{kcke _llm

.
_ll
min

m

, if _llmw0

8>>>>>>>><
>>>>>>>>:

ð12Þ

is the muscle stress-velocity function.

In these definitions, s0 is the maximum isometric

stress, n1 is the muscle activation level before and

after the activation, n2 is the muscle activation level

during the activation, t0 is the muscle activation time,

t1 is themuscle deactivation time, S is the exponential

factor, lopt is the optimal fibre stretch, kc and ke are

the shape parameters of the hyperbolic curves, d is

the offset of the eccentric function, _llm is the stretch

rate in the CE, and _ll
min

m is the minimum stretch rate.

Equation (6) contains one unknown, namely Dls,

and this can be solved by setting up a non-linear

equation utilising the stresses relationship between

the CE and the SEE [13], i.e. at any time, tzDtss~
tzDtsc. Further using equations (6) and (8), the

following non-linear equation is obtained

f Dlsð Þ~ a2za3Dlsð ÞeaDls{a4Dls{a5~0 ð13Þ

where in case of muscle shortening

a2~
tsszb
� �

1z
kc:a1

_ll
min

m
:Dt

 !
ð14Þ

a3~{ tsszb
� � k:kc

_ll
min

m
:Dt

ð15Þ

a4~{
b:kc{fl(

t�llf ):ft(tzDt)

_ll
min

m
:Dt

k ð16Þ

a5~bzfl
t�llf
� �

:ft tzDtð Þ{
fl

t�llf
� �

:ft tzDtð Þ{b:kc

_ll
min

m
:Dt

a1

ð17Þ

and in case of muscle lengthening

a2~
tsszb
� �

1{
ke:kc:a1

_ll
min

m
:Dt

 !
ð18Þ

a3~
tsszb
� � k:ke:kc

_ll
min

m
:Dt

ð19Þ

a4~
b:ke:kczfl

t�llf
� �

:ft tzDtð Þ: d:ke:kczd{1ð Þ
_ll
min

m
:Dt

k

ð20Þ

a5~bzt fl �llf
� �

:ft tzDtð Þ

{
fl

t�llf
� �

:ft tzDtð Þ: 1{d{d:ke:kcð Þ{b:ke:kc

_ll
min

m
:Dt

a1

ð21Þ

In equations (14), (17), (18), and (21), a1~

1zkð ÞtzDt�llf{
tlm{ktls, where k is the ratio of the

length of contractile element to that of series elastic

element and is normally set as 0.3.

3
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The stress in the PE can be expressed as

tzDtsp~s0fPE
tzDt�llf
� �

ð22Þ

with

fPE
tzDt�llf
� �

~
A: tzDt�llf{1
� �2

,

0,

(
if tzDt�llf w1

otherwise
ð23Þ

where A is a material parameter.

Using equations (4), (6), and (22), the strain energy

produced in the muscle fibres can now be obtained.

Then, the second Piola–Kirchhoff stress tensor S can

be obtained from the strain energy function (2) [18]

S~
LU
LE

~U ’I 2J{2=3I{
2

3
�IIC1 C

{1

� �

zU ’f J{2=3�ll{1
f A6Að Þ{ 1

3
�llfC

{1

� �
zJU ’JC

{1

ð24Þ

where

U
0

I~
LUI

L�IIC1
~bc exp b �IIC1 {3

� �� �
ð25Þ

U
0

f (
�llf ,ls)~U

0

PE (
�llf )zU

0

SEE (
�llf ,ls) ð26Þ

U
0

J~
LUJ

LJ
~

2

D
J{1ð Þ ð27Þ

and

U
0

PE
�llf
� �

~s0
4 �llf{1
� �2

, if �llfw1

0, otherwise

(
ð28Þ

U
0

SEE
�llf , ls
� �

~b: ea ls{1ð Þ{1
h i

ð29Þ

In equation (24), E is the Green strain, I is the second-
order unit tensor, C is the right Cauchy–Green tensor
and A is the initial muscle fibre direction.

The Cauchy stress s is defined by the push-forward

of S by the deformation Q [19]

s : ~
1

J
w Sð Þ

~
1

J
U ’I 2�BB{

2

3
�IIC1 I

� �
zU ’f �llf a6að Þ{ 1

3
�llfI

� �� �

zU ’JI ð30Þ

where, �BB is the left Cauchy–Green tensor and a is the

deformed fibre direction.

3 PARAMETRIC STUDY OF THE SKELETAL
MUSCLE MODEL

The muscle model described in section 2 is active,

quasi-incompressible, transversely isotropic, and

hyperelastic. The general framework for the finite

element implementation of this kind of material has

been described in Weiss et al.’s work [20]. In this

paper, the developed model was implemented into

LS-DYNA [21] by means of user-defined material

(UMAT) subroutines. There are 13 material para-

meters in the muscle model, as listed in Table 1.

Parameters b and c are used to characterize the

stress produced in the isotropic matrix and they first

appeared in an exponential form expression pro-

posed by Humphrey and Yin [14]. In their work, the

values of b and c were determined in a least-squared

sense from the experimental data and it was found

that the best-fit material parameters varied with the

experimental protocol. In this paper, the data set

b5 23.46 and c5 379.0 Pa is chosen from Humphrey

and Yin’s best-fit data, as it was also used in the

study by Martins et al. [12, 22].

To determine the stress in the SEE, Pinto and Fung

[23] performed experiments on the papillary muscle

of a rabbit heart and it was found that the derivative

of stress with respect to strain is a linearly increasing

function of the stress (Fig. 2). They proposed the

following equation to express the experimental

result:

dss
dl

~a sszbð Þ ð31Þ

It can be seen that a is the slope of the straight line

and is approximate 10.0. It can be also worked out

Table 1 Material parameters

Stress in
the matrix

Stress in
SEE

Stress
in PE

Stress in CE
Compressibility
constantft(t) fv(l

?
m) fl(l̄)f

b c a b A s0 S kc ke d _ll
min

m
lopt D

4 Y T Lu, L Beldie, B Walker, S Richmond and J Middleton
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from Fig. 2 that ab& 1.06104 Pa. Therefore, b&
1.06103 Pa. It should be noted that equation (31)

can be integrated to equation (6).

Chen and Zelter [24] performed the tension-length

experiment on frog muscle to measure the force for

the passive muscle. To express the experimental

tension–length curve, they subsequently proposed a

quadratic function, as shown in equation (23), where

the parameter A was set to 4.0 to fit the experimental

curve. When A5 4.0, the normalized force in PE

versus stretch ratio curve derived from equation (23)

is plotted against Chen and Zelter’s experimental

curve in Fig. 3. Parameter s0 is the maximum iso-

metric stress and its value varies both from species to

species and from subject to subject. However, it is

reported that s0 ranges from 0.16MPa to 1.0MPa [25].

There is only one parameter S used to define the

muscle activation function. Parameter S is an ex-

ponential factor. When modelling single muscle

fibres, the magnitude of S is related to the rate of

the chemical processes and when modelling large

muscle compartments, S represents the time-depen-

dent recruitment of different motor units. Figure 4

shows the activation curves for t05 0.1s, t15 0.4s,

n15 0.0, and n25 1.0, where the solid curve is with

S5 50 and the dotted curve is with S5 100. In this

paper, S is set as 50.0 to mimic one case of the muscle

activation [16].

Four parameters kc, ke, d, and _ll
min

m are used to

describe the muscle force–velocity relationship. It is

reported that the value of kc for slow muscle fibres is

5.88 and its value for fast muscle fibres is 4.0 [26, 27].

The influence of kc on the muscle force is shown in

Fig. 5 (left), where d is set as 1.8. The value of ke
varies in the literature. In Van Leeuwen’s work [28],

it was chosen as 7.56. In Ből and Reese’s work [29], it

was 5 and in Tang et al.’s work [13], it was set to 3.14

for frog gastrocenemius muscle and 7.56 for squid

tentacle. The influence of ke is shown in Fig. 5

(right), where d is set as 1.8. The dimensionless

constant d is the offset of the function due to the

eccentric movement. It is seen from equation (12)

that the maximum eccentric stress at time tzDt is

dominated by the parameter d. The ultimate tension

that a muscle can sustain is limited from 1.1 s0 to 1.8

s0 [25]. Therefore, the value range for d is from 1.1 to

1.8. It is reported that the minimum stretch rate _ll
min

m

is 217/s, although this cannot be reached owing to

the inertia of muscle [16]. In this paper, the muscle

inertia is not taken into account. Therefore, _ll
min

m is

chosen as217/s. When kc5 5.0, ke5 5.0, d5 1.8, and
_ll
min

m 5217, the force–velocity curve derived from

equation (12) is plotted against McMahon’s experi-

mental force–velocity curve [30] in Fig. 6.

Fig. 2 Relation between derivative of stress with respect
to strain and stress

Fig. 3 Normalized force in PE versus stretch ratio
curves Fig. 4 Muscle activation curves

5
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In the developed muscle model, the muscle force–

stretch relationship is characterized by one para-

meter, namely lopt. In this paper, the value of lopt
is set as 1.05 to approximate Gordon’s isometric

tension–length curve obtained from the experiments

on a single fibre of frog skeletal muscle [31]. When

lopt5 1.05, the curve derived from equation (11)

is plotted against Gordon’s experimental curve in

Fig. 7.

Parameter D is a compressibility constant and it

can be best understood as a penalty parameter which

is used to penalize the volume change. Therefore, the

value of D is chosen on the condition that the object

volume is preserved during the deformation.

From the above analysis, it is seen that the

parameters b, c, a, b, and A have been determined by

best fitting with the corresponding experimental data.

Parameters s0, S, _ll
min

m , and lopt have their physical

meanings. Parameters kc, ke, and d are for character-

ising the muscle force-velocity curves. The analysis

also shows that parameters s0, kc, ke, and d have their

own value ranges. In this paper, the investigations are

performed to test if the developed muscle constitutive

model can predict some experimental data by tuning

the parameters within their value ranges. To do so, the

experimental data from the New Zealand white rabbit

hind leg muscle tibialis anterior [32, 33] are used.

Passive and activated elongation simulations are per-

formed and the simulation results are compared with

the experimental data.

Fig. 5 Effects of kc and ke on the normalized force versus velocity curve

Fig. 6 Muscle force–velocity curves Fig. 7 Muscle force–stretch curves

6 Y T Lu, L Beldie, B Walker, S Richmond and J Middleton
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A simple finite element muscle model shown in

Fig. 8 is used for the test. Four-noded tetrahedral

elements are used in the finite element FE muscle

model. The length of the muscle is 5.0 cm. The

diameter is 0.9 cm for the smallest cross-section and

1.75 cm for the largest cross-section. The initial

direction of the parallel distributed fibre was chosen

to be along longitudinal direction.

In the passive elongation simulation, one end of

the muscle was fully fixed and the other end of the

muscle was pulled quasi-statically at a controlled

velocity of 5.0mm/s (which is regarded as a quasi-

static simulation velocity [8]) from its rest length,

while the muscle was not activated. The activated

elongation simulation was divided into two stages.

In the first stage, the muscle was held constant in

length while being stimulated for 0.5 s, at the end of

which the muscle had reached full activation. The

muscle was stimulated by inputting an activation

function (Fig. 9), where t05 0.0 s, t15 0.5 s, n15 0.0,

and n25 1.0. In the second stage, while one end of

the muscle was still fully fixed, the other end of the

muscle was released and pulled quasi-statically at a

controlled velocity of 5.0mm/s while the full activa-

tion was maintained. The engineering stress–strain

curves were obtained from the two simulations and

plotted against the corresponding experimental

curve. The values of the parameters s0, D, ke, kc,

and d were tuned to make the numerical results fit

with the experimental data. In this process, first the

five parameters were tuned one by one in order to

find out how they influence the stress–strain curve,

and then they were tuned together until a set of fitting

values were found, as listed in Table 2. Using these

parameter values, the passive elongation simulation

results show reasonably good agreement with the

experimental data, as illustrated in Fig. 10 (left) and

the results from the activated elongation are in

accordance with the experimental data up to 15 per

cent engineering strain, as indicated in Fig. 10 (right).

Given that some of the input parameters are

effectively guessed within their values ranges, the

sensitivity of these parameters needs investigating.

In this paper, the sensitivity tests of D, s0, kc, ke, and

d are performed, as their values were tuned during

the fitting process. In these tests, while the value of

one parameter is varied, the values of the remaining

12 parameters are taken from Table 2. Since para-

meter kc and d are used in the characterization of

muscle active stress, the sensitivities of kc and d are

performed in the activated elongation simulation.

The results from the sensitivity tests (Figs 11 and 12)

show that the engineering stress increases with the

Fig. 8 Finite element muscle model

Table 2 Material parameter values

Description Parameter Value References

Stress in the matrix b 23.46 Humphrey and Yin, 1987
c (Pa) 379.0

Stress in the SEE a 10 Pinto and Fung, 1973
b (Pa) 1.06103

Stress in the PE A 4.0 Chen and Zeltzer, 1992
s0 ( Pa) 7.06105

Stress in the CE ft(t) S(s21) 50 Meier and Blickhan, 2000
fv(l

?
m) kc 5

ke 5
d 1.5

_ll
min

m (s21) 217 Meier and Blickhan, 2000

fl(l̄)f lopt 1.05 Gordon, 1966
Compressibility constant D (Pa21) 1.061029

Fig. 9 Muscle activation function

7
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Fig. 10 Engineering stress–strain curves compared with experimental data

Fig. 11 Sensitivities of parameters D and s0 in the passive elongation simulation

Fig. 12 Sensitivities of parameters kc and d in the activated elongation simulation
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increase of s0, kc, and d and decreases with the

increase of D. It is seen from Fig. 11 (left) that

parameter D has a considerable influence on the

total engineering stress and so its value should be

carefully chosen. In the paper, the value of D is set

based on the conditions that the muscle volume has

been preserved and the resulting stress-strain curves

fit closely to the corresponding experimental curve.

Parameter s0 has also a considerable influence and it

is seen that the relative difference between the

engineering stresses at the maximal and minimal

s0 is up to 60.7 per cent at strain 0.2. Therefore, it is

crucial to choose the right value for s0 in the

numerical simulations. Since the value variation of

s0 depends on the muscle type, it is hoped that the

value of s0 can be experimentally determined for

individual muscle in the future. It is seen from

Fig. 12 (left) that parameters kc has little influence

on the muscle stress. Since parameter ke has similar

effects on the muscle force-velocity curves as kc
(Fig. 5), the sensitivity of ke is similar to that of kc.

Therefore, the sensitivity result of ke is not included

here. It can be seen from Fig. 12 that parameter d

has a greater influence than parameter kc and ke.

4 CONCLUSION

In this paper, a parametric study of a three-dimen-

sional Hill-type finite elementmusclemodel has been

presented. Themuscle constitutive model is based on

Tang et al.’s work [13] and is able to characterize the

complex mechanical behaviour of skeletal muscle.

Themodel has been implemented into the non-linear

finite element programme LS-DYNA by means of

user-defined material subroutines. There is a total of

13 parameters in the developed model and it is found

that 5 of them (b, c, a,b, and A) have been determined

by best fitting to the corresponding experimental data

(as performed and indicated by other authors), four of

them (s0, S, _ll
min

m , and lopt) have their physical mean-

ings, four of them (s0,kc,ke, and d) have their own

value ranges and parameter D is a compressibility

constant. To investigate if this model can predict the

experimental data by tuning the parameters within

their value ranges, the experimental data from the

New Zealand white rabbit hind leg muscle tibialis

anterior are used and passive and activated elonga-

tions are simulated. The results show that the model

is able to predict both passive and active behaviour of

rabbit muscle up to 15 per cent engineering strain.

The sensitivity study of some input parameters is also

performed and the results can help understand how

these parameters affect the total muscle stress.

Hill-type muscle models are phenomenologically

based. Therefore most of the material parameters in

this paper are phenomenological and few of them

have direct physical counterparts. It is hoped that

physically based skeletal muscle constitutive mo-

dels can be proposed in the future, where all of the

material parameters will be experimentally deter-

mined.
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APPENDIX

Notation

a deformed muscle fibre direction

A initial muscle fibre direction

b, c material parameters in the isotropic

matrix

B̄ left Cauchy–Green deformation

tensor with the volume change

eliminated

C right Cauchy–Green deformation

tensor

d offset of the eccentric function

D compressibility constant

E green strain

ft muscle activation function

fv muscle stress–velocity function

fl muscle stress–stretch function

I second-order unit tensor
�IIC1 modified first invariant of the right

Cauchy–Green strain tensor

J Jacobian of the deformation gradient

k ratio of the length of contractile

element to that of series elastic

element

kc, ke shape parameters of the hyperbolic

curves
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n1 muscle activation level before and

after the activation

n2 muscle activation level during the

activation

S exponential factor

t0 muscle activation time

t1 muscle deactivation time

U strain energy in the muscle

Uf strain energy in the muscle fibres

UI strain energy in the isotropic matrix

UJ strain energy associated with the

volume change

a, b material parameters in the series

elastic element

l̄f fibre stretch ratio
_llm stretch rate in the contractile

element

_ll
min

m mimimum stretch rate

lopt optimal fire stretch

ls stretch ratio in the series elastic

element

jCE a strain-like quantity

s Cauchy stress in skeletal muscle

sc Cauchy stress produced in the con-

tractile element

sfibre Cauchy stress in the muscle fibres

sincomp Cauchy stress related to the muscle

incompressibility

smatrix Cauchy stress in the matrix

sp Cauchy stress produced in the par-

allel element

ss Cauchy stress produced in the series

elastic element

s0 maximum isometric stress

11

Proc. IMechE Vol. 225 Part H: J. Engineering in Medicine

 at Cardiff University on April 4, 2012pih.sagepub.comDownloaded from 

http://pih.sagepub.com/



