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Abstract

We tackle the problem of individuals being able to self-detect the encounter communities within
which they periodically occur. This has widespread applicability, not least for future communi-
cation systems where content can be locally shared via wireless opportunistic networking when
devices carried by participants come into close range. In this paper, we introduce a comprehensive
model and decentralised algorithm to accomplish the detection of periodic communities in oppor-
tunistic networks. To the best of our knowledge, this is the first decentralised algorithm for the
detection of periodic communities. We investigate the behaviour of our approach both analytically
and with real-world data.

Keywords: Opportunistic network, Social network, Periodic encounter community, Decentralised
detection, Temporal analysis

1. Introduction

There is now an established literature for identifying sub-structures within static network
topologies, both on a centralised and decentralised basis. However, static methods fail to capture
periodicity in the encounters between mobile nodes. Furthermore, in many real-world situations,
periodic communities emerge from the periodic encounters between pairs of nodes. We refer to
such communities as periodic encounter communities (PECs). The existence of PECs in a network
has substantial impact on the diffusion of information among mobile nodes. Enabling nodes to
detect the PECs they belong to provides them with useful context about the network they operate
in.

The study of periodic encounter community detection is strongly motivated by the dominance
of portable wireless devices that are carried by people and recent analyses showing the existence of
multiscale human periodic encounter behaviour [1, 2, 3]. Such devices can form an opportunistic
network [4], where data is exchanged opportunistically when devices come into close range. De-
vices can directly share, gain, and convey information and knowledge within PECs. Decentralised
approaches are necessary in opportunistic networks due to the lack of any single repository for net-
work information. Apart from human-based opportunistic networks, other examples of application
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domains that would benefit from decentralised periodic encounter community detection include
wildlife monitoring networks [5] and vehicular ad-hoc networks (VANETs) [6].

In this paper we introduce, formalise, and model the concept of periodic encounter communi-
ties, presenting to the best of our knowledge the first decentralised periodic encounter community
detection algorithm. The temporal and intermittent nature of interactions between nodes makes
detecting encounter communities on a decentralised basis a challenging problem. Moreover, the
periodicities with which communities repeat have different time scales which may not be known a
priori. The algorithm we present automatically detects the periodicities with which communities
occur. Our approach combines data mining for the extraction of periodic encounter information at
individual nodes with opportunistic sharing of this information when nodes are in communication
range. Through opportunistic communication all nodes are able to discover the complete periodic
encounter communities they appear in, including those parts of the community that a node cannot
directly observe. We evaluate our approach using real-world data and explore its behaviour with
a number of metrics.

The rest of the paper is organised as follows. Section 2 discusses related work in the area.
In Section 3 we formulate the PEC detection problem along with its local-knowledge variant and
discuss the relation between PEC detection and the periodic subgraph mining problem from the
literature. Our decentralised PEC detection algorithm is presented in Section 4. In Section 5 we
introduce a model for investigating the information diffusion characteristics of PECs and the limits
of decentralised PEC detection. This model is applied to real-world data in Section 6 to analyse
the decentralised PEC detection algorithm. Finally, we conclude in Section 7 and discuss potential
future work.

2. Related work

Community detection is a well-studied problem in the field of network science. Community
detection seeks to identify highly clustered components in large real-world networks. Many com-
munity detection methods have been proposed, but most are intended for offline analysis of net-
works (see [7] for a comprehensive survey of community detection methods). Furthermore, most
methods analyse static networks; i.e., where interactions have been aggregated into a single graph
regardless of their time and order. The most relevant community detection algorithms to our work
are those of Hui et al. [8]. These algorithms are notable as they offer a decentralised approach for
nodes to detect the static encounter communities they belong to over time. However, the algorithm
considers aggregated graphs rather than any temporal or periodic trend in the encounter patterns.
Other recent research into the dynamics of community structure, such as that of Palla et al. [9],
has analysed the evolution of networks over time. So far there has been little work in this area
that considers periodic communities.

Early analyses of human encounters focused on time-invariant characteristics, such as inter-
encounter time and encounter duration [10, 11]. More recently, attention has been given to the
analysis of regularity in human encounters. In particular, the work in [1] demonstrates the presence
of multi-scale periodicity in a number encounter network metrics. The work of Tang et al. in [12]
and [13] uses a dynamic graph representation to retain temporal information about encounters,
similar to the representation used in our paper. The authors analyse the temporal dynamics of
information diffusion in these graphs, but without specifically considering communities or periodic-
ity. With a similar dynamic graph construction, Lahiri and Berger-Wolf [2] formulate the problem
of identifying subgraphs that appear periodically in real-world networks. We use the framework
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introduced by Lahiri and Berger-Wolf to define the periodic encounter community detection prob-
lem. However, the PSE-Miner algorithm proposed by the authors is intended for use in offline
analysis and assumes global knowledge of the network, and is therefore not suitable in our decen-
tralised setting. In addition, the formulation presented by the authors does not distinguish between
communities and subgraphs.

A substantial amount of related work has been motivated by the study of opportunistic net-
works. Such networks attempt to use encounters between wireless enabled devices to store, carry,
and forward content for enabling a wide range of applications. Consequently, the temporal patterns
of encounters allow content-sharing protocols in opportunistic networks to make better-informed
forwarding decisions. Protocols such as those in [14, 15, 16] build an understanding of encounter
familiarity between nodes. However, these protocols do not attempt to capture any regularity that
may be present in encounter patterns. Some newer protocols, such as those in [17, 18], include
statistical models that incorporate periodicity. These models require parameters regarding the
periodicities of encounters to be known a priori. For example, in [18] a single period must be
specified, which precludes detection of repeating encounters at other periods.

The aforementioned protocols analyse only pairwise patterns. Broader relationships between
nodes (e.g., acquaintances of acquaintances) are not considered. Habit [19] is a protocol that
attempts to merge both multi-node encounter behaviour and periodicity. Habit begins with node-
centric pairwise analysis of regularity patterns between familiar strangers and, subsequently, nodes
exchange their regularity patterns to build up a regularity graph. The model, however, requires a
priori domain-specific period and memory parameters.

In response to these contributions, our work can make a significant contribution to applications
for opportunistic networking by allowing individual devices to determine their presence within
wider periodic communities. Our work also extends the concept of a community into the temporal
domain.

3. The PEC detection problem

A PEC (periodic encounter community) can be thought of as a group of nodes that encounter
one another periodically. The pairs of nodes in the community do not necessarily have to directly
encounter one another, but may instead have an acquaintance in common with whom they are
both encountering with the same periodicity. More formally, the structure of a PEC is defined in
graph theoretic terms and, in particular, as a connected graph representing the nodes and their
encounters. The temporal information of the PEC specifies the period with which the encounters
(as represented by the graph) repeat in time and how long the pattern repeats for. We note that
the same nodes may encounter with more than just one periodicity (for example, a group of nodes
may meet daily during the week, and fortnightly on weekends), and thus the same set of nodes
may belong to multiple PECs.

The formal definition of PECs and the language we use to discuss them are presented in detail in
Section 3.1, along with a formulation of the general PEC detection problem. We present the local-
knowledge variant of the PEC detection problem in Section 3.2. It is this local-knowledge PEC
detection problem that we must solve in the context of opportunistic networks, since the limited
connectivity and decentralised nature of these networks make it unfeasible to maintain a single
source of complete knowledge of the network. Furthermore, it would be very inefficient to have
nodes flood their whole (unprocessed) local encounter histories through the network to emulate a
global knowledge scenario. In Section 3.3 we show that the global PECs (the result of the general
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PEC detection problem) can be decomposed into multiple locally detectable PECs, and thus there
is a viable solution to the local-knowledge PEC detection problem. The relationship between
PEC detection and the existing problem of periodic subgraph mining is discussed in Section 3.4,
along with reasons why periodic subgraph mining is not directly applicable to the local-knowledge
problem.

3.1. General PEC detection formulation

PEC detection and periodic subgraph mining [2] are closely related and we adopt consistent
terminology in our formulation. The representation of time in our formulation is as a series of
discrete timesteps. The duration Q that each timestep spans is referred to as the granularity. In
particular, for some arbitrary start time c, a timestep t spans the interval [ c+ (t− 1)Q, c+ tQ ).
For simplicity, we regard encounters as discrete, zero-duration events.

Definition 1. A simple encounter graph Gt = (Vt, Et) is a snapshot of all encounters and
nodes appearing within the time window corresponding to timestep t. That is, {v, u} ∈ Et if and
only if nodes v, u ∈ Vt were in range at least once during the time interval represented by t. A
simple encounter graph Gt = (Vt, Et) is proper if and only if ∀v ∈ Vt there exists u ∈ Vt such that
{v, u} ∈ Et; in other words, a proper simple encounter graph is one where every node is involved
in at least one encounter.

Definition 2. A dynamic encounter graph D = 〈G1, . . . , GT 〉 is a time-ordered sequence of
proper simple encounter graphs1.

Definition 3. The subgraph C = (V,E) of a proper simple encounter graph Gt is an encounter
community if C is connected and |V | > 1.

We write F2 ⊆ F1 to denote that F2 is a subgraph of, or equal to, F1. We say that an encounter
community C exists in the dynamic encounter graph D at timestep t if C ⊆ Gt. An encounter
community C may exist in D at periodic timesteps, leading to the following definition.

Definition 4. A periodic support set, denoted by Sλ where λ = (i, p, n), for an encounter
community C in a dynamic encounter graph D = 〈G1, . . . , GT 〉 is a subsequence of n > 1 timesteps

Sλ = 〈i, i+ p, i+ 2p, . . . , i+ (n− 1)p〉

for which C exists, where i ≥ 1 and i + (n − 1)p ≤ T . The kth timestep specified by a periodic
support set, where 1 ≤ k ≤ n, is given by i+ (k − 1)p and denoted by Sλ(k).

Given a periodic support set Sλ, λ = (i, p, n) for encounter community C, we refer to n as the
number of periodic occurrences of C specified by Sλ. We write |Sλ| to denote periodic support set
size, noting that |Sλ| = n.

Definition 5. A periodic support set Sλ, λ = (i, p, n) for an encounter community C in a dynamic
encounter graph D = 〈G1, . . . , GT 〉 is a maximum periodic support set if both C 6⊆ Gi−p and
C 6⊆ Gi+pn.

1A node exists in Vt if and only if it is involved in an encounter with another node at timestep t. The definition
of dynamic graph in [2] is less strict as it permits nodes with degree zero.
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Definition 6. Denoted as the pair 〈C, Sλ〉, a periodic encounter community (or PEC) is an
encounter community C along with a maximum periodic support set Sλ for which C exists.

Note that an encounter community may exist in a dynamic encounter graph for more than one
maximum periodic support set. A maximum periodic support set may be wholly contained within,
intersect, or be disjoint from another. If a maximum periodic support set is contained within
another, the contained periodic support set is redundant and the containing periodic support set
subsumes all of the temporal information conveyed by the contained periodic support set.

Definition 7. A periodic support set Sλ2 is a subset of Sλ1 if and only if all timesteps contained
in Sλ2 are contained in Sλ1 . Letting λ2 = (i2, p2, n2) and λ1 = (i1, p1, n1), an equivalent definition
is that Sλ2 is a subset of Sλ1 if and only if all of the following conditions hold:

1. i2 ≥ i1 and i2 + p2(n2 − 1) ≤ i1 + p1(n1 − 1)
(i.e., Sλ2 is temporally bounded by Sλ1);

2. p2 = kp1 for some integer k > 0
(i.e., the period p1 is a factor of p2);

3. i2 = i1 + lp1 for some integer 0 ≤ l < n1

(i.e., the first timestep in Sλ2 must be equal to a timestep in Sλ1).

We denote by Sλ2 ⊆ Sλ1 the relationship of Sλ2 being a subset of Sλ1 . We call Sλ2 a proper
subset of Sλ1 if and only if Sλ2 ⊆ Sλ1 and Sλ2 6= Sλ1 . This relation is denoted Sλ2 ⊂ Sλ1 .

The definition of the subset relation for periodic support sets formalises the concept of temporal
subsumption. If we have an encounter community C which exists in periodic support sets Sλ1
and Sλ2 such that Sλ2 ⊂ Sλ1 , then Sλ1 conveys more information than Sλ2 about the periodic
occurrences of C.

Definition 8. An encounter community C ′ is a subcommunity of encounter community C if
and only if C ′ ⊆ C.

Subsumption can also occur between the structural components of PECs. For example, given
a PEC 〈C, Sλ〉, any subcommunity C ′ of C also exists for Sλ. If Sλ is maximum for C ′ then
〈C ′, Sλ〉 forms a PEC; however, in the case that C ′ ⊂ C the PEC 〈C ′, Sλ〉 contains only some of
the structural information conveyed by 〈C, Sλ〉.
Definition 9. Let P1 = 〈C1, Sλ1〉 and P2 = 〈C2, Sλ2〉 be two PECs. We say that P1 is subsumed
by P2 if and only if Sλ1 ⊆ Sλ2 and C1 ⊆ C2. We denote this relationship by P1 ⊆ P2.

Definition 10. A PEC P1 is maximal if and only if there does not exist another PEC P2, where
P1 6= P2, such that P1 is subsumed by P2.

Figure 1 demonstrates the subsumption and maximality criteria on an example dynamic en-
counter graph D. PECs P1 and P2 are the only maximal PECs in D because they are each not
subsumed by any other PEC. PECs P3 and P4 are examples of submaximal PECs. In particular,
P3 is structurally subsumed by P1 due to the lack of edge {4, 5} and P4 is temporally subsumed
by P2 because the period of P2 divides that of P4 causing Sλ4 to be a subset of Sλ2 .

Maximal PECs are the fundamental PECs that we wish to extract from a dynamic encounter
graph. With knowledge of all maximal PECs, all other PECs are redundant. The collection of all
maximal PECs represents the most compact and complete description of the periodic encounter
communities present in a dynamic encounter graph.
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Figure 1: A dynamic encounter graph D and a selection of PECs in D.

Definition 11. The periodic encounter community detection problem is the problem of
finding all maximal periodic encounter communities that exist in a dynamic encounter graph.

3.2. Local-knowledge PEC detection formulation

The problem as introduced in Section 3.1 is presented as a global-knowledge problem, where
mining of PECs could be carried out with the full graphs in the dynamic encounter graph available
to a mining algorithm, as in [2]. Alternative to this is the node-centric perspective where the entire
graph Gt is not available to any single entity. In particular, each node has only the knowledge of
encounters that directly involve it. We formalise the concept of local knowledge in the following
definitions.

Definition 12. For an encounter graph Gt = (Vt, Et), the intrinsic encounter graph Gvt =
(V v
t , E

v
t ) is the subgraph of Gt induced by selecting only the edges Evt = {e | e ∈ Et ∧ v ∈ e} and

their incident vertices.

Definition 13. Consider the dynamic encounter graph D = 〈G1, . . . , GT 〉. The intrinsic dy-
namic encounter graph of a node v is the sequence of graphs Dv = 〈Gv1, . . . , GvT 〉.

Figure 2 shows a set of intrinsic dynamic encounter graphs and the corresponding global dy-
namic encounter graph. A node v’s intrinsic dynamic encounter graph represents the encounter
information that is directly observable by v. We note that the global encounter graph at timestep
t is the aggregation of all intrinsic graphs at t; in other words, if we have dynamic encounter graph
D = 〈G1, . . . , GT 〉 and denote the set of all nodes by V = V1 ∪ . . . ∪ VT , then

Gt =
⋃
v∈V

Gvt .

Knowledge of the (global) dynamic encounter graph is effectively distributed among the nodes in
the network.

We distinguish PECs that are maximal in the global dynamic encounter graph by referring to
them as globally maximal PECs. An intrinsic PEC is a PEC (be it maximal or submaximal) that
exists in an intrinsic dynamic encounter graph.
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Figure 2: A global dynamic encounter graph D and its intrinsic dynamic encounter graphs. Dv denotes the intrinsic
dynamic encounter graph for node v.

Definition 14. Local-knowledge periodic encounter community detection is the problem
of identifying all globally maximal periodic encounter communities from local knowledge. This is
a special case of the periodic encounter community detection problem (Definition 11) where no
global view of the dynamic encounter graph exists. In particular, the following restrictions apply:

• Local knowledge: knowledge of encounters is expressed only as intrinsic dynamic encounter
graphs, all of which are distributed among the corresponding nodes in the network;

• Local exchange: information may be exchanged between a pair of nodes only when they
encounter each other.

The decentralised detection scenario corresponds to the local-knowledge problem.

3.3. Decomposition of PECs

Here we show that all globally maximal PECs decompose into intrinsic PECs. This is an
important property as it means that if individual nodes extract their intrinsic PECs from their
intrinsic dynamic encounter graphs, they can combine these intrinsic PECs with those of other
nodes to find globally maximal PECs. Therefore, all globally maximal PECs can be detected in
the local-knowledge problem.

Definition 15. A set of encounter communities Γ = {C1, C2, . . . , Cm} is a community cover of
encounter community C if ⋃

C′∈Γ

C ′ = C .

Consider the PEC 〈C, Sλ〉 in dynamic encounter graph D and a community cover Γ of C. From
the definition of a PEC (Definition 6) and the subgraph property of a subcommunity, it follows
that any encounter community C ′ in Γ exists for periodic support set Sλ. Although Sλ may not
be maximum for the subcommunity C ′, there must exist a maximum periodic support set Sλ′ for
C ′ that contains Sλ, and therefore there exists a PEC 〈C ′, Sλ′〉.
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Definition 16. The intrinsic cover of encounter community C = (V,E) is the set of communities
{Cv | v ∈ V }, where Cv = (Vv, Ev) is the subcommunity of C induced by selecting only the edges
Ev = {e | e ∈ E ∧ v ∈ e} and their incident vertices.

A subcommunity C ′ in the intrinsic cover of C corresponds to a particular node’s intrinsic (i.e.,
local) view of C. We note that the intrinsic cover of C is also a community cover of C.

Consider a PEC P = 〈C, Sλ〉 and a subcommunity C ′ in the intrinsic cover of C. It follows that
there must be an intrinsic PEC that subsumes 〈C ′, Sλ〉. Therefore, P decomposes into multiple
intrinsic PECs. The same applies if P is a globally maximal PEC, and so any globally maximal
PEC can be reconstructed from a local-knowledge representation.

3.4. Relation to periodic subgraph mining

The periodic subgraph mining problem introduced by Lahiri and Berger-Wolf in [2] is related
to the PEC detection problem that we present in this paper. Rather than extracting periodic
encounter communities as we do in our work, the periodic subgraph mining problem seeks to extract
periodic subgraph embeddings (PSEs). A PSE in a dynamic encounter graph D is defined as a pair
〈F, Sλ〉 where F is a subgraph that exists in D for the periodic support set Sλ. (Subsumption and
maximality rules apply to PSEs as they do to PECs.) The key distinction between a PEC and a
PSE is the encounter community property of PECs. In particular, the definition of a PSE is more
general as it allows subgraphs that are disconnected and subgraphs consisting of only one node.

If we assume global knowledge of the dynamic encounter graph, the PEC detection problem
becomes a special case of the PSE mining problem. By extracting connected subgraphs consisting
of at least two nodes from the graphs of maximal PSEs in a dynamic encounter graph, we obtain
the maximal PECs. Lahiri and Berger-Wolf also show that the time and space complexity of the
problem is polynomial in the size of the input dynamic encounter graph. The PSE-Miner algorithm
presented as a solution to the PSE mining problem requires global knowledge, making it unsuitable
for directly extracting all maximal PECs in the local-knowledge PEC detection problem. For the
local-knowledge problem we instead follow a local mining and local sharing approach.

4. Decentralised PEC detection algorithm

In this section we describe our decentralised PEC detection algorithm. From the decomposition
in Section 3.3 we know that global maximality of PECs can be reached from a local-knowledge
representation. Therefore, the aim of the detection algorithm is to build globally maximal PECs
from the local-knowledge distributed across all the nodes in the system.

4.1. Algorithm overview and parameters

Figure 3 provides an overview of the stages that a node goes through during the operation of
the detection algorithm. Here we provide a brief introduction to the detection algorithm. The
individual stages are described in detail later in this section. Note that the task of a node finding
its local periodic communities and the periods with which these communities repeat (i.e., the task
of extracting local PECs) is carried out in Stage 2. These local PECs are subsequently combined
with the local PECs found by other nodes in Stage 3.

Three parameters are required during the detection algorithm. In Stage 1 the granularity Q is
used. In Stage 2 pmax (the maximum PEC period) and nmin (the minimum number of periodic
occurrences) are used.
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Figure 3: An overview of the stages of the PEC detection algorithm from the perspective of a node.

Before the detection algorithm is initiated, all nodes record the times of their encounters as
encounter histories (this corresponds to the initial state in Figure 3). On initiation, the first
stage of the detection algorithm is for each node to build its intrinsic dynamic encounter graph
(Definition 13) from its encounter history. It is this stage where the granularity parameter (denoted
by Q) is applied. As described in Section 3.1, the granularity Q is the duration of each timestep
in the node’s intrinsic dynamic encounter graph. The choice of granularity Q depends on the
domain and application. Choosing a fine granularity results in more timesteps in the intrinsic
dynamic encounter graph and so increases the computational overhead of the mining algorithm
(which occurs in Stage 2). Fine granularities also have the disadvantage that the effect of small-
scale randomness in the times of encounters is greater. However, in some cases we may still wish
to use a fine granularity for the purpose of identifying repeating behaviour with a fine degree of
temporal resolution (e.g., identifying regular encounters to within a specific hour of the day).

Details of the initiation of the PEC detection algorithm (including the building of the intrinsic
dynamic encounter graph in Stage 1) and its data structures are given in Section 4.2. Note that
subsequent stages of the detection algorithm only consider time in terms of timesteps in the intrinsic
dynamic encounter graph. Resulting PECs are described in terms of timestep indexes rather than
real-time units. (For example, the period of a PEC 〈C, Sλ〉, λ = (i, p, n) is p timesteps.) It is trivial
to convert from timesteps back to real-time units.

The node’s intrinsic dynamic encounter graph built in Stage 1 is used as input to the local
mining stage (Stage 2), which is detailed in Section 4.3. In brief, during the local mining stage
individual nodes mine their intrinsic dynamic encounter graphs to obtain their intrinsic PECs.
Each node implements the PSE-Miner algorithm (detailed in [2]) which extracts all (maximal
intrinsic) PECs found in the node’s intrinsic dynamic encounter graph. The correctness of the
PSE-Miner is shown in [2] and thus we know that all PECs present in the node’s intrinsic dynamic
encounter graph will be identified (the criteria that define a PEC are given in Definition 6). All
the attributes that constitute each PEC are automatically found by the PSE-Miner. For a PEC
P = 〈C, Sλ〉, λ = (i, p, n) these attributes are the community C, the start timestep i, the period p,
and the number of periodic occurrences n. Importantly, it is the PSE-Miner that identifies the one
or more periods that a community repeats with in the node’s intrinsic dynamic encounter graph,
resulting in one or more PECs for the community. The two parameters, pmax ≥ 1 and nmin ≥ 2,
specified in this stage control the maximum period and minimum number of periodic occurrences,
respectively. Formally, only PECs that meet the conditions p ≤ pmax and n ≥ nmin are identified.
Although PECs with larger periods may exist in the intrinsic dynamic encounter graph, these are
ignored.

The intrinsic dynamic encounter graph is only a local subset of the global dynamic encounter
graph, and so the PECs resulting from the local mining stage (Stage 2) are not necessarily globally
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maximal. It is through knowledge exchange during the opportunistic construction stage (Stage 3)
(detailed in Section 4.4) that nodes learn the globally maximal PECs they belong to. Encounters
between pairs of nodes offer the opportunity for those nodes to share and expand the PECs they
have discovered so far. The process of combining PECs results in PECs that have a larger com-
munity, and possibly a new period derived from the source PECs. Note that nodes will only seek
to learn the PECs they are a member of.

4.2. Algorithm setup and initiation

We denote by V the set of all nodes in dynamic encounter graph D. Each node v ∈ V maintains
its local history of encounters with other nodes. When the detection algorithm is initiated, each
node v ∈ V first builds its intrinsic dynamic encounter graph Dv = 〈Gv1, . . . , GvT 〉 from its encounter
history. Building Dv is done by segmenting time into T timesteps, where each timestep represents
a duration of time Q. Given some arbitrary start time c, the encounter graph Gvt at timestep t
represents v’s encounters in the time interval [ c+(t−1)Q, c+tQ ). The granularity Q is only used
for the purpose of building the intrinsic dynamic encounter graph and is not used at any future
point in the algorithm.

Each node also maintains a knowledge base (Definition 17), which is a data structure that holds
the PECs discovered by a node so far.

Definition 17. The knowledge base for a node v, denoted by Kv, is a set that consists of the
PECs known by v.

Knowledge bases are updated over time as locally stored PECs are combined with PECs received
from other nodes. During each update, the algorithm ensures that a knowledge base Kv meets the
following conditions:

1. Relevance to v: ∀ 〈C, Sλ〉 ∈ Kv node v is a member of encounter community C.

2. Maximality among Kv: ∀P1 6= P2 ∈ Kv, P1 does not subsume P2.

By Condition 1, a node only stores PECs that are relevant to it, and Condition 2 ensures that no
redundant PECs are stored.

Once the intrinsic dynamic encounter graph Dv for a node v is formed and the knowledge base
Kv is initialised, v then mines the intrinsic PECs from Dv and places them in Kv. This mining
algorithm is detailed in Section 4.3. From timestep T + 1 onwards, nodes share and update PEC
information whenever they encounter each other, as detailed in Section 4.4.

The point in time to initiate mining depends on domain and application. Most applications
would benefit from obtaining PEC information early; however, mining too early may result in there
being too few timesteps for periodic patterns to be present.

4.3. Local mining: extraction of intrinsic PECs

In the decentralised PEC detection algorithm each node v executes the PSE-Miner algorithm
[2] on its intrinsic dynamic encounter graph Dv to extract its (locally maximal) intrinsic PECs. As
mentioned in Section 3.4, the PSE-Miner algorithm is capable of extracting all maximal PECs in a
dynamic encounter graph. Therefore, if a node implements PSE-Miner, it can extract its maximal
intrinsic PECs from its intrinsic dynamic encounter graph. Note that period detection is part of
the mining process itself, and therefore periods do not need to be specified beforehand.
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For the purpose of the PSE-Miner algorithm a dynamic encounter graph is represented as a
sequence of sets of integers. To establish an invertible mapping between graphs and sets, all nodes
and all edges in a dynamic encounter graph are each mapped to a unique integer label. The set
representation for a particular graph Gt = (Vt, Et) is the set Rt of size |Vt|+ |Et| where the integer
label of each element in Vt∪Et appears in Rt. This set representation allows fundamental operations
such as graph hashing and maximal common subgraph finding to be carried out efficiently by the
PSE-Miner [2].

The PSE-Miner is a single-pass algorithm. During execution the miner maintains two core
data structures: a pattern tree and a subgraph hash map. As soon as a PSE ceases to be periodic
it is flushed to the output stream. Those PSEs that do not have a sufficient number of periodic
occurrences (nmin) are filtered out. A full description of the operation of the PSE-Miner algorithm,
including how subgraphs and their periods are automatically identified, is provided in [2].

After a node v executes PSE-Miner on its intrinsic dynamic encounter graph, the node discards
any PSEs that consist only of v (these are valid PSEs but not valid PECs). All other PSEs extracted
by PSE-Miner are (locally maximal) intrinsic PECs and are therefore added to v’s knowledge base.

4.4. Opportunistic construction

Opportunistic construction is the process whereby pairs of nodes share and combine their
locally stored PECs when in communication range. Through repeated opportunistic construction,
nodes obtain more information on the structure of the globally maximal PECs they belong to. As
mentioned in Section 3.3, any non-intrinsic PEC can be obtained from its intrinsic PECs. Thus,
if a construction strategy is correct and there are sufficient exchange opportunities, nodes will
eventually obtain their globally maximal PECs.

When a node v encounters a node u, it receives knowledge base Ku. It is the task of v to
update its own knowledge base Kv by pairwise combining the PECs in Kv with those in Ku. This
update mechanism is described in Section 4.4.2. As part of knowledge base updating, node v must
check if a pair of PECs are compatible to be combined to derive a new PEC. Compatibility and
combination are explained in Section 4.4.1.

Note that although the local mining step returns the intrinsic PECs for a node, over time
these may be subsumed by PECs generated during opportunistic construction. An intrinsic PEC
subsumed by another PEC is removed since the subsuming PEC contains all the information
conveyed by the intrinsic PEC. This reduces the size of knowledge bases without affecting the
ability of the algorithm to build globally maximal PECs.

4.4.1. PEC compatibility and combination

Upon node v receiving a PEC P from another node, v must check which PECs in its knowledge
base Kv can be combined with P to derive new PECs. A derived PEC must be connected, exist
in its periodic support set, and be relevant to v.

Definition 18. Two PECs 〈C1, Sλ1〉 and 〈C2, Sλ2〉 with encounter communities C1 = (V1, E1) and
C2 = (V2, E2) are compatible for node v if all of the following hold:

1. Relevance to v: v ∈ V1 and v ∈ V2;

2. Structural overlap: E1 ∩ E2 6= ∅;
3. Temporal containment: either Sλ1 = Sλ2 , Sλ1 ⊂ Sλ2 , or Sλ2 ⊂ Sλ1 .
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The method of combination for two compatible PECs 〈C1, Sλ1〉 and 〈C2, Sλ2〉 depends on the
direction of periodic support set containment. The case Sλ1 = Sλ2 is a simple case because both
C1 and C2 exist for the same periodic support set. In the case Sλ1 ⊂ Sλ2 , we know that C2 exists
for Sλ1 , but C1 does not exist for all timesteps in Sλ2 . Therefore, when combining two PECs where
Sλ1 ⊂ Sλ2 , the contained periodic support set (i.e., Sλ1) is chosen to ensure that the resulting
community exists in its support.

Formally, two compatible PECs 〈C1, Sλ1〉 and 〈C2, Sλ2〉 are combined to derive PEC 〈C ′, Sλ′〉
as follows:

• if Sλ1 = Sλ2 then C ′ = C1 ∪ C2 and Sλ′ = Sλ1 = Sλ2 ;

• if Sλ1 ⊂ Sλ2 then C ′ = C1 ∪ C2 and Sλ′ = Sλ1 ;

• if Sλ2 ⊂ Sλ1 then C ′ = C1 ∪ C2 and Sλ′ = Sλ2 .

4.4.2. Knowledge base updating

During an encounter between two nodes v and u their knowledge bases Kv and Ku are ex-
changed2. For a node v receiving knowledge base Ku from node u, node v updates its own knowl-
edge base Kv according to Algorithm 4.1.

Candidate pruning is carried out to ensure that redundant PECs are not added to the knowledge
base Kv. A candidate that passes the pruning step is one that is not subsumed by any PEC already
in Kv and should therefore be added to Kv. Such candidates may subsume a number of PECs
already in the knowledge base. To ensure maximality among PECs in Kv, knowledge base pruning
is carried out to remove any pre-existing PECs made redundant by the addition of the candidate.

5. Analysis of PEC construction using token broadcast

The time required for a global PEC to be discovered by all its constituent nodes is of primary
interest for the analysis of PEC construction. It is the encounters between individual nodes that
enable the information of a PEC to be shared throughout the network, and thus the patterns of
these encounters have a substantial impact on the time required for a node to discover the globally
maximal PECs it belongs to.

To study the spread of information in the construction of global PECs we define the equivalent
scenario of token broadcast. Informally, token broadcast is where each node of a PEC being studied
attempts to flood a unique token to all other nodes in the PEC. The route taken by a token
from node u to reach node v represents the spread of u’s local PEC information to v during the
opportunistic construction phase of the decentralised PEC detection algorithm. The event of the
token sent from u reaching v corresponds to the event of v receiving a knowledge base including
some of u’s PECs for the first time. The token can also represent a general packet of information,
and thus the token broadcast scenario provides insight into the flow of information within a PEC.

We formally define the token broadcast scenario as follows. Consider the (global) dynamic
encounter graph D = 〈G1, G2, . . . , GT 〉 and an arbitrary PEC 〈C, Sλ〉 in D where λ = (i, p, n) and

2In practice, even before the exchange occurs a sender node can identify some PECs in its knowledge base that
will not be relevant to the recipient node. Withholding these PECs reduces communication overhead. Examples
include withholding a PEC that the recipient node does not appear in and withholding a PEC that has already been
sent to the same node during a previous encounter.
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Algorithm 4.1: KB-Update

Input: Node v whose knowledge base Kv is to be updated
Input: External knowledge base Ku

Create empty list L to hold candidate PECs
Generate candidates:
foreach Pa ∈ Kv and Pb ∈ Ku do

if Pa and Pb are compatible for v and Pb 6⊆ Pa then
Combine Pa and Pb to generate candidate PEC Pc
Add Pc to L

end

end
Prune candidates list:
foreach Pc ∈ L and Pa ∈ Kv do

if Pc ⊆ Pa then
Remove Pc from L

end

end
Prune knowledge base:
foreach Pa ∈ Kv and Pc ∈ L do

if Pa ⊆ Pc then
Remove Pa from Kv

end

end
Insert candidates:
Add all PECs in L to Kv
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C = (V,E). Each node v in C stores a token set Tv of received copies of tokens. We denote node
v’s token set after t timesteps by Tv(t). Initially, each token set Tv only consists of the single
token τv. In other words, ∀ v ∈ V, Tv(0) = {τv}. Token sharing then progresses for each timestep
i, i+ 1, i+ 2, ..., i+ (n− 1)p. To carry out token sharing at timestep t, all of the encounters in the
time interval for t are applied in the order they occurred. When two nodes encounter each other,
each copies all of its tokens to the other. We say that full coverage has been reached in timestep t
if all nodes in V have received all tokens; that is, every node v in V has Tv(t) = {τv | v ∈ V }.

To characterise the broadcast of a specific PEC, only those encounters that support the PEC
are used as token sharing opportunities. More specifically, only encounters corresponding to edges
in E during timesteps in Sλ are used as token sharing opportunities.

5.1. Token broadcast metrics

We define the following metrics for evaluating broadcast within a PEC.
First, to quantify the extent of token spread over time we introduce metrics for token coverage.

The coverage fraction fc(v, t) for a node v in encounter community graph C = (V,E) at the end
of timestep t is given by

fc(v, t) =
|Tv(t)| − 1

|V | − 1
.

This measures the relative number of tokens v has obtained by the end of timestep t, excepting its
own token τv. For a PEC P = 〈C, Sλ〉 where λ = (i, p, n), we quantify the PEC coverage f̄c(P, t)
as the average coverage of nodes in C at timestep t,

f̄c(P, t) =
1

|V |
∑
v∈V

fc(v, t) .

It is more convenient to talk in terms of the number of periodic occurrences of a PEC rather than
the number of timesteps. The timestep for the kth periodic occurrence of P is given by Sλ(k) and
so we refer to f̄c(P, Sλ(k)) for the coverage fraction after k periodic occurrences.

The broadcast time, denoted Λ(P ), measures the number of periodic occurrences of a PEC
P that were required for P to reach full coverage. Λ(P ) is equal to the smallest positive integer
k such that f̄c(P, Sλ(k)) = 1 . In the case that there were insufficient encounters to reach full
coverage, Λ(P ) =∞ .

5.2. Worst-case token broadcast time

The worst-case token broadcast time, denoted by Λmax(P ), is the theoretical maximum number
of periodic occurrences that an arbitrary PEC P requires to reach full coverage, under the assump-
tion that P continues recurring indefinitely. Knowledge of the existence of a PEC P = 〈C, Sλ〉,
where C = (V,E) and λ = (i, p, n), in dynamic encounter graph D = 〈G1, . . . , GT 〉 implies some
minimum conditions on the occurrences of encounters in D; in particular, for each edge {v, u} in E,
there must be at least one encounter between nodes v and u in each timestep Sλ(1), Sλ(2), ..., Sλ(n).
The worst-case analysis of the broadcast time for P considers the largest possible number of peri-
odic occurrences that P would require to reach full coverage.

We note that if a PEC repeats indefinitely, the worst-case broadcast time is always finite. Since
the encounters for each edge in E must occur at least once in each timestep in Sλ, if a token τu has
not reached every node at the end of timestep Sλ(k) then it will spread to at least one additional
node in timestep Sλ(k + 1).
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Definition 19. The broadcast front, denoted by Bv(t), of token τv at timestep t is the set of
nodes that received τv in timestep t but did not have it in timestep t− 1.

A worst case for the travel of token τu from node u to node v is presented as follows. Consider
the case where, in timestep Sλ(1), the encounters corresponding to edges incident to u occur after
all other encounters in that timestep. The effect of this is that τu moves one node closer to v
along the shortest paths between u and v, and the broadcast front Bu(Sλ(1)) consists only of u’s
neighbours. If in timestep Sλ(2) the encounters corresponding to edges incident to the nodes in
Bu(Sλ(1)) occur after all other encounters, τu will again only move one node closer to v. If the
encounters corresponding to edges incident to nodes in Bu(Sλ(k)) are always the last to occur in
each timestep Sλ(k+ 1), k = 1, . . . , |Sλ|, then the number of periodic occurrences of C required for
τu to reach v from u is equal to the shortest path distance between v and u.

A worst-case time for a PEC to reach full coverage results when v and u are peripheral nodes,
requiring a number of periodic occurrences equal to the diameter of C, denoted by D(C). Thus,
for a PEC P = 〈C, Sλ〉 we have Λmax(P ) = D(C).

6. Experiments and results

In this section we evaluate decentralised PEC detection through the study of token broadcast
in PECs found in a real-world encounter network. In particular, we use the encounter trace from
the MIT Reality Mining dataset [20].

The 2004-2005 Reality Mining project carried out at the Massachusetts Institute of Technology
(MIT) followed 100 subjects equipped with Bluetooth-enabled mobile phones and recorded infor-
mation about their behaviour over the nine month academic period. The data collected includes
Bluetooth sightings between subjects, with Bluetooth scanning carried out at five minute intervals.
The long duration of the experiment permits the presence of PECs with periods in the order of
hours, days, and weeks. The dataset also has the advantage of being direct encounter information
between individuals, rather than inferred encounters. However, we note that Bluetooth sampling
is unreliable, resulting in some missed encounters. For PEC detection, a missed encounter may
result in the true PEC being temporally or structurally partitioned.

6.1. Simulating token broadcast

Simulating token broadcast on the encounter trace follows from the framework established in
Section 5. When extracting the dynamic encounter graph D = 〈G1, . . . , GT 〉 with granularity Q
from the encounter trace, the orderings of actual encounters (including any repeat encounters)
within each timestep 1, 2, . . . , T are retained for the purpose of simulating token exchange. To
simulate token broadcast for a particular globally maximal PEC 〈C, Sλ〉 with C = (V,E) and
λ = (i, p, n), the trace is filtered so that only the encounters corresponding to edges in E and
occurring during timesteps in Sλ are retained. Unique tokens are placed on the nodes and then
broadcast is simulated for each timestep i, i + 1, i + 2, . . . , i + (n − 1)p. In a timestep t, each
encounter from the underlying encounter trace is used as a token sharing opportunity in the order
it appears during t.
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Granularity (Q)

4hr 6hr 12hr 24hr

Number of maximal PECs 509 561 897 900
Average D(C) 2.17 2.21 2.34 2.42
Average |Sλ| 4.20 4.24 4.34 4.37
Average Λ(P ) 1.32 1.33 1.51 1.54
Average Λ(P )/Λmax(P ) 0.298 0.306 0.449 0.465

Table 1: Summary of PECs in the Reality Mining dataset. Four experiments were run, each with a different granu-
larity (denoted by Q). D(C) denotes community diameter, |Sλ| denotes periodic support set size (i.e., total number
of periodic occurrences of a PEC), Λ(P ) denotes broadcast time (measured in number of periodic occurrences), and
Λ(P )/Λmax(P ) gives the normalised broadcast time. PECs with D(C) = 1 are not included in the experiments.

6.2. Experimental setup

We set the maximum period parameter (pmax) to be 30 days and the minimum periodic oc-
currences3 parameter (nmin) to be four. Other PSE-Miner parameters were left as the defaults
specified in [2]; i.e., the minimum period was set to one and no timestep smoothing was carried
out.

Experiments were run with granularities (denoted by Q) of 4, 6, 12, and 24 hours. Choosing
a fine granularity allows the identification of periodic behaviour with greater temporal precision,
but at the cost of an increase in computational overhead. Furthermore, at very fine granularities
the effect of small-scale randomness in human encounter times becomes great, typically resulting
in fewer PECs. Indeed, in experiments with granularity Q = 1 hour we found that very few
PECs had periods longer than one day. The majority of PECs at this granularity were short-lived
communities that repeated in consecutive timesteps for part of a day.

We note that the combination of noise in the trace dataset, the uncertain nature of human
behaviour, and the crispness of our PEC definition means that PECs can become temporally
fragmented. A break in encounter regularity in an encounter trace, be it due to inadequate sampling
or true individual behaviour, results in a PEC either becoming temporally partitioned, structurally
smaller, or not existing at all. Two or more PECs having the same encounter community, period,
and phase, but spanning different durations in the trace, are assumed to be the same PEC and
such duplicates were discarded from the experiments.

Finally, PECs whose communities had a diameter equal to one were not included in the analysis
as these are a trivial case for PEC construction.

6.3. Results

Information on PECs obtained in the dataset is summarised in Table 1. The table shows that
average diameter and average periodic support set size increase at coarser granularities. This is
due to encounters being aggregated into wider snapshots, resulting in some encounter communities
becoming merged. We note that in all experiments every PEC reached full coverage within the
duration of time it existed.

Figure 4 shows the period and diameter of each PEC detected for granularities of 6 hours and
24 hours. We can clearly observe periodicities at one day, seven days, and 14 days, demonstrating
the multiscale characteristic of human encounter behaviour. The figure also shows that many of

3In [2] the minimum number of periodic occurrences is denoted by σ rather than nmin.
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Figure 4: Joint frequency distribution of diameters and periods for PECs in the Reality Mining dataset. Left: Q = 6
hrs. Right: Q = 24 hrs.

the PECs occur at periods of one day and seven days. We suggest that this occurs because many
of the PECs are students visiting the same campus on each weekday, resulting in one day PECs
between Monday and Friday. Although these PECs end at the weekend, students following this
weekday behaviour also exist in PECs at a period of seven days.

In Figure 5 we plotted the cumulative distribution of the normalised broadcast times of PECs.
The normalised broadcast time of a PEC P is its actual broadcast time Λ(P ), normalised by its
potential worst-case time Λmax(P ). This quantity indicates how close a PEC’s actual broadcast
time is to its worst case. For granularities of 4 hours and 6 hours, 68% of PECs reached full coverage
in less than 0.22 of their potential worst-case times, and 78% of PECs reached full coverage in less
than 0.55 of their potential worst-case broadcast times. For the same granularities, 21% of the
PECs required worst-case broadcast time.

Figure 5 also shows that coarser granularities result in PECs with broadcast times closer to
their worst cases. This is reflected in the plot of community coverage over time (Figure 6). The
distribution of points shows that after the first periodic occurrence, coverage was typically higher
for PECs with granularity Q = 6 than for PECs with granularity Q = 24. There were a number
of PECs with Q = 24 hours that required a 4th occurrence to reach full coverage. It appears
that, although coarser granularities result in more encounters per timestep, the broadcast time
still increases. We suggest that this happens because coarser granularities result in many PECs
having large diameter (Figure 7). In PECs with large diameter, central nodes can have a greater
negative effect on broadcast time by limiting the rate at which information spreads to the periphery
of the community.

To further study the impact of diameter on broadcast time, we plotted the broadcast times for
PECs grouped by diameter (Figure 8). We can see that the broadcast time increases for PECs
with larger diameter. However, it is interesting that as diameter increases, PECs required worst-
case broadcast time less frequently. For example, although PECs with diameter six therefore have
a potential worst-case broadcast time of six, none required more than four occurrences. Only at
smaller diameters do broadcast times begin to approach worst-case times; for example, 8% of PECs
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Figure 5: Cumulative distribution of normalised broadcast times for PECs in the Reality Mining dataset. The
normalised broadcast time for a PEC P is given by Λ(P )/Λmax(P ).

with diameter three required worst-case time.
The implications of these results for decentralised PEC detection are that, for most PECs in the

dataset, detection of maximal PECs by the nodes in the community can occur rapidly. On average,
the coverage percentage reaches 92% after the first occurrence of the community. Furthermore, the
patterns of encounters within the PECs are such that, for finer granularities, the majority of the
PECs were detected within 0.22 of their potential worst-case time.

7. Conclusions and future work

In this paper we defined the concept of a periodic encounter community (PEC) and the problem
of nodes self-detecting PECs in an opportunistic network. To solve this problem we proposed a novel
decentralised algorithm which is capable of automatically identifying community periodicities and
is able to extract all globally maximal PECs, under the condition that there are sufficient exchange
opportunities between nodes. Our analysis considered the diffusion of information within PECs,
providing insight into the time required for PECs to be constructed.

Analytical study of diffusion in PECs shows that worst-case broadcast time for a PEC is given
by its community diameter. The experimental results from a real-world dataset show that PECs
with large community diameter require a longer time to reach full coverage, further demonstrating
the influence of community diameter on information diffusion. Our results also show that, in the
dataset we studied, the time required for a PEC reach full coverage was typically much shorter
than the PEC’s worst-case time.

For real-world deployment of the algorithm there are a number low-level issues that require
further work. The algorithm described in this paper assumes that mining occurs once, and is then
followed by opportunistic construction. In practice, nodes’ encounter histories continue to grow
in real time. New PECs may appear and existing PECs may cease. A simple extension would
have nodes periodically erase their knowledge bases and reinitiate the algorithm. Mining can be
scheduled for specific times; for example, in the context of pocket-switched networks, a convenient
time is at night while the device is idle and charging. A more efficient solution would be to retain
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Figure 7: Diameters of PECs in the Reality Mining dataset at different granularities. PECs with diameter equal to
one were not included in the experiments.
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the previous knowledge base when mining is reinitiated and have nodes propagate updates to PECs
through the network.

Other future work will extend the model presented in this paper to a fuzzy representation. Such
a representation would model uncertainty in the periodicity and structure of PECs, making them
robust to noise in encounter data (i.e., missing encounters) and anomalous changes in a node’s
periodic patterns. Our algorithm aims to detect all PECs, including those that have stopped
repeating at the time of mining. Some applications may require only the current PECs, and so a
variant of the algorithm that only mines and constructs such PECs may be useful. We also note that
the encounter data used in our experiments is specific to students and staff at the same academic
institution. It would be interesting to study decentralised PEC detection in other scenarios, and
so future work will be to consider other encounter traces from a variety of domains.
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