
This is an Open Access document downloaded from ORCA, Cardiff University's institutional

repository: http://orca.cf.ac.uk/11415/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Chen, Yin, Cheng, Zhi-Quan, Li, Jun, Martin, Ralph Robert and Wang, Yan-Zhen 2011. Relief

extraction and editing. Computer-Aided Design 43 (12) , pp. 1674-1682. 10.1016/j.cad.2011.07.011

file 

Publishers page: http://dx.doi.org/10.1016/j.cad.2011.07.011

<http://dx.doi.org/10.1016/j.cad.2011.07.011>

Please note: 

Changes made as a result of publishing processes such as copy-editing, formatting and page

numbers may not be reflected in this version. For the definitive version of this publication, please

refer to the published source. You are advised to consult the publisher’s version if you wish to cite

this paper.

This version is being made available in accordance with publisher policies. See 

http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications

made available in ORCA are retained by the copyright holders.



Relief Extraction and Editing

Yin Chena, Zhi-Quan Chenga,b,∗, Jun Lia, Ralph R. Martinb, Yan-Zhen
Wanga

aSchool of Computer Science, National University of Defense Technology, China
bSchool of Computer Science and Informatics, Cardiff University, Wales, UK

Abstract

Bas-reliefs are widely used in the world around us, for example, on coinage,

for branding products, and for sculptural decoration. Reverse engineering of

reliefs—extracting existing reliefs from input surfaces—makes it possible to

apply them to new items; relief editing tools allow modification of reverse-

engineered reliefs. This paper presents a novel approach to relief extraction

based on differential coordinates, which offers advantages of speed and precise

extraction. It also gives the first method in the literature specifically designed

for relief editing. The base surface is estimated using normal smoothing and

Poisson reconstruction, allowing a relief (which may lie on a smooth or tex-

tured input surface) to be automatically extracted by height thresholding.

We also provide a range of relief editing tools, also using differential coor-

dinates, permitting both global transformations (translation, rotation, and

scaling) of the whole relief, as well as local modifications to the relief. Our

∗Corresponding author. Tel.: +86 (0)731-8457-5993;
Email addresses: Chris.leo.chan@gmail.com (Yin Chen),

Cheng.zhiquan@gmail.com (Zhi-Quan Cheng), Jun.johnson.li@gmail.com (Jun Li),
Ralph@cs.cardiff.uk (Ralph R. Martin), Yanzhen.wang@gmail.com (Yan-Zhen Wang),
Yukun.Lai@cs.cardiff.ac.uk (Yu-Kun Lai), Gangdang@nudt.edu.cn (Gang Dang),
Syjin1937@163.com (Shi-Yao Jin)

Preprint submitted to Computer-Aided Design October 21, 2011



relief editing algorithm, unlike generic mesh editing algorithms, is specifically

designed to preserve the geometric detail of the relief over the base surface.

The effectiveness of our methods is demonstrated on various examples of real

industrial interest.

Keywords: Bas-relief, Relief extraction, Relief editing, Differential

coordinates, Laplacian smoothing, Poisson reconstruction

1. Introduction

Bas-reliefs take the form of low-height details, similar to a raised (or, less

commonly, lowered) picture, applied to an underlying base surface. They

are widely used in daily life to decorate or identify man-made objects, e.g.

to apply branding to merchandise, as sculptures on coins and porcelain, and

as architectural decoration. The production of reliefs is currently a costly

and time-consuming process, requiring skilled sculptors and engravers. Re-

verse engineering tools which perform automatic extraction of a relief from

a scanned model, for application to a new surface, or which can edit it in

place to modify its shape or location, could greatly reduce production time.

They also have the potential to produce more accurate results than ad-hoc

craft methods currently in use.

Providing a simple and robust method for relief extraction is challenging.

While at times the relief may lie on a simple base surface such as a plane,

a cylinder, or a surface of revolution, which can readily be estimated, in

many other cases the base surface is unknown [1]. Starting from an initial

user-drawn contour loosely enclosing the relief (a snake), Liu et al. [1, 2,

3, 4] gave a series of algorithms to separate reliefs from their underlying

2



surfaces, both for smooth and textured backgrounds. Zatzarinni showed how

to automatically extract reliefs by defining a height function along the base

surface normals, the latter being adaptively estimated using local geometric

features computed via experimentally determined coefficients [5]. Our paper

provides an alternative method to automatically extract reliefs via recovery

of the underlying base surface.

Shape editing is a fundamental topic in geometric modeling and process-

ing, with many approaches both for global operations [6] and local modifi-

cation [7]. However, unlike the arbitrary manipulations available to a free-

standing model, relief editing is strongly constrained by the notion that the

relief is a modification of an underlying base surface. Existing editing meth-

ods are thus not directly applicable, and new tools are needed specific to

relief editing. We provide such a set of user-guided tools, with a simple and

intuitive interface. These include tools for global transformation, allowing

translation, rotation, and isotropic scaling of the relief over the base surface,

as well as a local deformation tool for modifying relief shape detail. Our

approach also lends itself to transfer of reliefs to new surfaces. Our tools op-

erate directly on mesh models of the kind acquired by laser-range scanners,

allowing them to be used in a reverse engineering workflow.

The main contributions of the paper are (i) a novel algorithm for relief

extraction, which is faster than previous methods, yet times more precise in

its results, and (ii) the first tools in the literature specifically designed for

editing reliefs. Example uses of our methods are demonstrated in Figure 1.

Our relief extraction approach estimates a base surface using normal smooth-

ing and Poisson surface reconstruction, followed by height thresholding. The

3



Figure 1: Relief extraction and editing are performed in the gradient domain. An acquired

model (top left) is processed to extract the relief (top right) via estimation of an underlying

base surface (top center) using Poisson-based smoothing. The extracted relief may be

edited in place on the input model, e.g. moving it as a whole across the background

surface (bottom left), or locally changing the detail (bottom right).

editing tools are based on the use of differential coordinates [8, 9] (Laplacian

coordinates), which encode geometric details. While mesh editing methods

based on differential coordinates already exist [8, 9], our new tools impose

constraints specific to bas-relief editing. In particular, to ensure high-quality

results, we preserve the height of relief features over an unchanged base sur-

face, and avoid distortion while modifying geometric details of the relief.

To perform relief extraction, we estimate the underlying curved base sur-

4



face using a smoothing process. We smooth surface normals to provide guid-

ance vectors for Poisson surface reconstruction to collapse the relief to the

level of the base surface. This Poisson problem can be represented as a sparse

linear least-squares system which can be efficiently solved. This base surface

estimation process is a global smoothing process, and so is both robust and

insensitive to noise, and furthermore allows us to extract reliefs superim-

posed upon textured backgrounds. Having estimated the base surface, we

can measure the height of each surface point and use thresholding to extract

the relief. Relief extraction is further explained in Section 3.

Differential coordinates are also employed in our relief editing system

which directly manipulates the extracted relief over the estimated base sur-

face and original mesh. Global and local editing are easy to control by locally

manipulating handles attached to the relief. We place special emphasis on

providing an intuitive user interface, robustness and speed, while at the same

time being careful to avoid distortion in the final results. Details of these

editing tools are provided in Section 4.

2. Related work

2.1. Relief extraction

The first work on relief detection and extraction can be traced back to [10],

which decoupled a cuneiform tablet into a smooth B-spline base and a dis-

placement map capturing the inscribed marks. Liu et al. [2] similarly used

a B-spline fitting algorithm to estimate the base surface underlying a relief.

The position of the relief is extracted starting from a snake loosely drawn by

the user around the relief, which snaps to the relief boundary [1]. Snakes can

5



also be used to separate geometric reliefs from textured backgrounds, after

texture classification or alternatively surface smoothing [3]. Further work

has identified periodicity in reliefs extracted by these earlier methods, find-

ing a single repeat unit by determining correspondences between adjacent

repeats using an iterative closest point algorithm. A different approach to

relief extraction by Zatzarinni [5] requires no user input other than control

parameters; global optimization estimates the height of each vertex via esti-

mation of base surface normals. We give a further automatic relief extraction

algorithm, in which we reconstruct the base surface by considering smoothed

normals, and separate the relief from the surrounding background.

2.2. Differential coordinates and editing

There are many papers on mesh editing based on the use of differential

coordinates. In the following we review only representative methods, and

refer the reader to the comprehensive surveys in [8, 9].

Discrete Laplacian coordinates, first proposed by [11], have been further

improved by adding local rotation estimation [12], transformation lineariza-

tion [13], the provision of a sketch-based interface [14], generalization to

a volume graph Laplacian [15], and affine transformation using a two-step

strategy [16]. Laplacian coordinates permit gradient-based editing concur-

rently with other Laplacian-based techniques. The first such mesh editing

algorithm modified the original mesh geometry implicitly through gradient

field manipulation [17], using a geodesic interpolation method to propagate

user specified rotation and scaling constraints determined at given handles

(vertices) to the whole mesh. Other approaches for transformation constraint

propagation are based on interpolation [15], harmonic functions [18], or ma-

6



terial properties [19]. Gradient deformation has also been applied to defor-

mation transfer [20] and mesh morphing [21].

In addition to the above linear variational algorithms, nonlinear optimiza-

tion methods have also been used to determine transformations of Laplacian

coordinates and vertex coordinates from pure translations of deformation

control handles. The Gauss-Newton method has been used for both a sub-

space gradient deformation algorithm [22] and a dual Laplacian coordinate

algorithm [23]. Later an alternative linear least-squares deformation solver

was proposed [24] based on a particular rigid motion representation [25], in

order to provide better deformations in cases which subspace methods find

difficult. Handle-aware isolines have been employed to reduce the nonlinear

optimization problem to one over affine transformations, rather than directly

involving vertex coordinates [26].

Although relief editing has not been explicitly considered in previous pa-

pers, techniques relevant to relief editing have appeared. Geometry images

have been used for texture or geometric detail transfer [27], as have en-

coded differences of Laplacian coordinates between an original surface and a

smoothed, low-frequency version, together with an inverse Laplacian trans-

form [13]. Correspondences between the source and target surface regions

must be manually established to perform the transfer, and in general, this is

difficult for the user to achieve, especially if the geometries differ significantly.

Such manually-specified correspondences can also be used in a Poisson edit-

ing framework to merge meshes to construct a new object [17]. However, it

is infeasible for a user to interactively establish the large number of accurate

correspondences needed for relief transfer. Thus, Zatzarinni [5] showed how

7



to paste an extracted relief onto another target area by merging the parame-

terized domains of the two surfaces. This requires much less user interaction,

as correspondences can be determined by choice of boundary conditions for

the parametrization algorithm. However, it still provides an awkward inter-

face for relief editing, as the user has to draw a target shape similar to the

source region. This is difficult in practice, even if the user just wishes to

arbitrarily translate the relief to another position on the same model.

An alternate is cut-and-paste parametrization-based editing, which pro-

vide a simpler method for the user to indicate the destination region [28];

however, the user still has to draw a branched curve to serve as the spine of

the relief.

Instead, inspired by a position-based dynamic simulation algorithm [29],

we provide a relief editing system with a direct and simple interface. The user

just drags a few manipulation handles to achieve intended results, such as

global translation, rotation, or scaling of the whole relief on the background,

or directly modifying local details of the relief. Our approach is conceptu-

ally simple and easy to implement, providing interactive performance even

without GPU acceleration.

3. Relief Extraction

We start from a captured mesh which includes the relief, surrounded by

background surface. Let this triangle mesh be M = {V,E, T}, where V is

the set of NV vertices, E is the set of edges, and T is the set of triangles. We

must first automatically separate the part R of the mesh which belongs to

the relief from the background surface G (which may be smooth or textured):

8



i.e. M should be partitioned into R and G. We assume that the relief can

be described as an offset relative to an underlying smooth base surface B.

As B is smooth, then its normals also vary smoothly. Thus, to perform relief

extraction, we first estimate these smooth normals and then reconstruct B

using a Poisson equation in which the boundary conditions come from the

background surface surrounding the relief. By finding the height of each

mesh vertex above this base surface, we then determine R as the union of

all vertices that are higher than a threshold. Figure 2 illustrates how this

works both for smooth and textured backgrounds. We first perform Laplacian

smoothing of the vertex positions of the whole mesh M , to give a new mesh

M ′. We now compare the normal of each vertex in M with the corresponding

vertex normal in M ′. Ones which are similar are considered to be reliable

(i.e. to represent the correct normal direction). Next, we smooth the normals

of M using Laplacian smoothing, but build in a constraint to preserve the

normals at reliable vertices. This gives a smooth normal field over M which

represents the normals of the overall shape. From this normal field, we carry

out Poisson reconstruction following [17], using the boundary of the region of

interest as position constraints—the relief is presumed not to extend to the

region boundary. This gives the base surface. Finally, the relief is detected

as those regions of M which have heights greater than some threshold above

the base surface.

We briefly note that M ′ is itself unsuitable as a base surface. In M ′, parts

of the background near the contour of the relief are lifted while relief regions

near the contour are depressed (in the case of raised reliefs, vice versa for

lowered reliefs). Although M ′ is visually similar to the base surface obtained

9



Figure 2: Relief extraction. (Top) By ignoring vertices whose normals change significantly

before and after position Laplacian smoothing, reliable normals (blue normals in the second

row) are selected as constraints in Laplacian smoothing of the normal field (center). The

base surface B is reconstructed by solving a Poisson equation with boundary constraints

(fourth row), allowing the relief R to be separated from the background G by height

thresholding.

by Poisson smoothing, they may lead to large differences in the extracted

reliefs, since reliefs take the form of low-height details. Figure 3 shows the

poor results that would be obtained by directly usingM ′, and compares them

to the actual results obtained by our full algorithm.

We now consider each step in detail.

10



Figure 3: Duck relief extraction result using our full algorithm (middle) and simply using

a position Laplacian smoothed surface (right) as the base surface

3.1. Normal smoothing

To perform normal smoothing, we first use weighted Laplacian smoothing

to smooth the meshM , preserving the outer boundary. To do so, we minimize

the following energy function:

Ep = ‖LV ′‖2 +
NV∑

i=1

αi‖vi − v′
i‖

2. (1)

Here, v′
i is the smoothed mesh vertex corresponding to vi in M , and the ver-

tex set V ′ comprises all v′
i. L is the Laplacian matrix calculated from Lapla-

cian coordinates using uniform weights. We also tried cotangent weights,

but found that they provided similar or worse extraction results, while being

more expensive to compute. Eqn. 1 is similar to the function used by [30],

except that we use a different weight scheme αi. To take into account vari-

ations in normals, αi is a weight measuring local variance of normals in the

one-ring neighborhood N (vi) of vi, defined by

αi = 1/
∑

vj∈N (vi)

‖nj − ni‖
2 (2)

at all vertices, except at boundary vertices where it is set to 108.

11



The first energy term measures the smoothing of base surface. The sec-

ond term provides weights according to normal variation, while at the same

time ensuring the boundary is fixed. A least-squares solution to this overde-

termined linear system is obtained using Cholesky factorization to give the

vertex coordinates of the smoothed surface. This smoothed surface is not

suitable for use as a base surface, as it follows the general height of the relief,

whereas the base surface should reflect the height of the original background.

However, it provides a way of detecting vertices whose normals are reliable,

allowing us to estimate a smooth normal field over the whole surface.

We detect these reliable vertices by comparing the original and smoothed

(unit) normals, and mark as reliable those whose dot product exceeds a

certain value. We use a fixed threshold of 0.99 which seems to work well in

all cases we have tried—there is no need for manual setting of this threshold.

We then estimate the normals of the base mesh by smoothing the normals

ofM using uniform Laplacian smoothing, constrained by the reliable normals

NS. We use a function similar to Equation 1, where position variables are

now replaced by normals: we minimize the following energy:

En = ‖LN′‖2 +
NS∑

i=1

w‖ni − n′
i‖

2, (3)

where the weight w is set to 106. These smoothed normal vectors are used

as input to Poisson surface reconstruction in the next stage.

3.2. Base surface reconstruction

A good estimated base surface should be close to the real base surface.

Intuitively, the problem can be seen as one of collapsing protruding relief

regions back onto the base. To do so, we use a Poisson-based gradient domain

12



Figure 4: Base surface reconstruction. For the input mesh (left), each triangle is locally

reoriented to agree with the smoothed normal field. The triangles become disconnected

(center). The Poisson equation stitches the triangles together again in new positions,

giving the base surface underlying the bumpyplane (right).

technique [17], in which the outer vertices are used as fixed vertex constraints

(this assumes that the relief does not extended to the boundary).

In detail, for each triangle ti with vertices (va,vb,vc), we compute a local

rotation matrix Ri to bring its normal into alignment with the smoothed

normal. The rotation matrix Ri is defined by a rotation axis u, given by the

unit cross-product of the two normals, and the angle θ of rotation around u

needed to align the two normals.

Applying these local rotations separately to each mesh triangle would

cause them to become disconnected. Constraining corresponding vertices of

adjacent triangles to agree leads to a Poisson system in which the altered

normals act as a guidance field. Solving it, with boundary conditions to keep

the outer part of the mesh belonging to the background unchanged, gives the

desired smooth base surface. Figure 4 illustrates the concept of base surface

reconstruction using the smoothed normal field.

3.3. Thresholding for relief extraction

Having estimated the base surface, we compute the height of each vertex

relative to it by using a simple moving-least-squares projection algorithm [31].

13



Figure 5: Upper (red) and lower (yellow) extraction boundaries.

We then use a Gaussian mixture model (GMM) on the distribution of the

height values [5] to segment the relief R from the background G. In practice,

a relief typically has two natural threshold boundaries corresponding to a

lower value where the relief starts to rise from the background, and a higher

inner one where the relief tends to flatten out (see Figure 5). The intersection

of the GMM is used as the threshold for segmentation.

3.4. Experiments and discussion

Figures 6 and 7 show reliefs extracted from porcelain and lacquerware

respectively. Our results are comparable to those of [2, 3, 5], and at times

show some improvements. A further advantage of our algorithm is that it is

fully automatic without the requirement for the user to initialize a snake [2,

3], or to determine parameters for base surface estimation [5]. Like [5], our

algorithm can determine background holes within the relief, while Liu’s snake

methods needs further background surface estimation steps to do so [2, 3].

14



Figure 6: Left to right: duck reliefs extracted by methods in [2] and [5], and by our

approach. Highlighted artifacts in the first two are absent from our result.

15



Figure 7: Lacquerware relief extraction using the method in [3] (left, the red curve is the

boundary), the method in [5] (middle), and our method (right).

Our method at times avoids artifacts produced by these earlier methods,

leading to more precise results—see Figure 6, in which subtle but important

differences can be seen. Figure 7 shows that our approach also can handle

reliefs with textured backgrounds with reasonable success, and again, gives

a cleaner result.

As our approach relies on solving a sparse linear system, relief extraction

is fast. A model with 60K vertices takes less than 2 seconds to process, while

the method in [5] requires about 16 seconds to achieve similar results, and

the methods in [2, 3] take even longer.

4. Relief editing

In addition to being able to extract reliefs, we provide a range of relief

editing tools to meet the needs of designers, again using differential coordi-

nates. These tools provide both global transformations (translation, rotation,

and scaling) of the whole relief, as well as a local deformation tool for detail

16



modification (see Figure 8). In each editing process, a Poisson-based com-

position step is used to merge the edited relief with the background G. The

same basic approach can be used to transfer the relief onto a new object after

editing, using the automatic correspondence establishment approach in [17].

4.1. Global transformations

Our global transformation tools allow the user to move the relief to an-

other location on the background, to re-orient it, or to resize it. We first ex-

plain how translation is performed; the other transformations follow a similar

approach.

4.1.1. Translation

Pseudocode for our translation algorithm is given in Algorithm 1, while

the translation mechanism is illustrated in Figure 9. The user selects one

point vh of the relief as a handle, and drags it arbitrarily across the surface

to a new position. We track the handle as it moves, and project the path

onto the base surface by simple use of the MLS algorithm [31]. We divide

this path into small equal length polygonal segments on the surface, which

are used to incrementally move the relief across the surface (we use a segment

length equal to half the mean mesh edge length). During each incremental

step, we calculate the normal nh of the projected handle at the starting

position, and the associated local displacement ∆dj between the start and

end positions. The position of each vertex vi of the relief is updated by

the UpdatePosition function. We firstly project each vertex onto the base

surface, and calculate the normal ni of that point. The two outward normals

are aligned by rotating nh to ni; if this would imply a rotation larger than

17



Figure 8: Editing the duck relief: translation, rotation, scaling, locally stretching the neck,

stretching the rear of the duck after global scaling.

90◦, we reverse the orientation of ni. This rotation also rotates the associated

∆dj. We use its component perpendicular to ni as the direction in which to

move vi, through a distance ‖∆dj‖ to give a preliminary new vertex position.

18



Algorithm 1 Relief translation

1: Subdivide the projected handle trace

2: for each incremental step j do

3: Calculate normal of projected handle nh

4: Calculate projected handle displacement ∆dj

5: for each vertex vi in R do

6: UpdatePosition(vi, ∆dj, nh);

7: for (k = 0; k ≤ maxIterations; k ++) do

8: EdgeLengthPreservation(R);

9: for each vertex vi in R do

10: UpdateHeight(vi);

11: PoissonComposition(R,G);

Figure 9: During global translation of a relief, as the user drags the handle vh, the height

hi of each vertex vi above the base surface should be preserved, and so should the length

li,i+1 of the edge between vertices vi and vi+1.

19



We next update these preliminary new positions to bring the relief into

close agreement with its original shape, by initially adjusting the lengths

of mesh edges in the relief, and then heights of relief vertices above the

background. To do the former, we use the EdgeLengthPreservation function,

which iteratively adjusts vertex positions to satisfy the desired constraint

that each relief edge (v1,v2) should have an unaltered length l. Constraints

of the form

C(v1,v2) = ‖v1 − v2‖ − l, (4)

each yield a non-linear equation whose derivatives with respect to vertex

positions are

∇
v1
C(v1,v2) = w, ∇

v2
C(v1,v2) = −w, (5)

where w = (v1 − v2)/‖v1 − v2‖. Thus, the corrections made to v1 and v2

are

∆v1 = −
1

2
(‖v1 − v2‖ − l)w, ∆v2 =

1

2
(‖v1 − v2‖ − l)w. (6)

Following [29], we repeatedly apply each edge constraint in a Gauss-Seidel

type fashion, i.e. to each edge independently in turn.

We adjust the height of translated relief vertices above the base surface to

agree with those in the original relief using the function UpdateHeight. This

is done by simply moving each vertex to the correct height, in the direction

of the base surface normal. (While this in principle changes the edge lengths,

the overall effect is small, as shown later in our experimental results).

The final step is to use function PoissonComposition to merge the trans-

lated relief with the background surface where they meet: the background

surface serves to provide Poisson boundary conditions for the Poisson-based

20



mesh composition technique in [17]. Correspondences are automatically es-

tablished by matching every vertex on the relief boundary to the nearest

vertex on the background boundary. The second boundary of the underlying

background is obtained by removing the triangles along the boundary curve

of the translated relief.

4.1.2. Rotation

To perform a global rotation operation, the user first selects a vertex to

act as the centre of rotation. Although the vertex could be any point on the

relief, it is both more intuitive and results in reduced distortion if this point

is near the center of the relief. The normal nc of the projection of this vertex

(vc) on the base surface is treated as the rotation axis. Thus, let vc be the

center of rotation, and the tangent plane pr of vc be the rotation plane. The

user then selects a second vertex vh as a handle, and rotates it around the

axis nc. We calculate a global rotation matrix R from nc and the rotation

angle of the projection of vh on the plane pr. Then, R is incrementally

applied to each vertex vi in the relief. The trace of the path of vi projected

on the base surface is again divided into small segments of equal length, and

a similar process to that given in Section 4.1.1 is applied to the vi. In this

case, however, each vi has its own trace.

4.1.3. Scaling

For global scaling, the user selects a vertex as an origin; again for best

results this should be near the center of the relief. Let its projection point on

the base be vs, and the tangent plane there be the scaling plane ps. Another

vertex is chosen as the scaling handle vh. We then project vh and all vertices

21



of the relief onto the plane ps. As the user drags the handle, the scaling

implied by the handle is computed on ps, as the fraction relating its distance

to vs and the distance between the projection of vh and vs. Scaling is then

applied individually to each projected vertex outward from the center. We

then obtain the trace of each projected vertex on the base surface, and again

update the relief as before.

4.2. Local deformations

To perform non-rigid local deformation of the relief, we use a Poisson-

based editing approach. Unlike the original Poisson-based editing algo-

rithm [17], we use harmonic fields [32] to propagate user specified transforma-

tions at user chosen deformation handles to the remaining vertices, to update

the gradient field. The geodesic distance field is used in [17], but is not in gen-

eral smooth, and as a result, transformations for highly-protruding features

of the mesh are attenuated. Harmonic propagation uses a smooth harmonic

field on the mesh to overcome this problem. Specifically, we compute a har-

monic scalar field on the relief using the formula Ls = 0, where L is the

Laplacian matrix computed from the relief, and s is the desired scalar field.

Here, we use the cotangent Laplacian operator, i.e., wij = (cotα + cot β)/2,

where α and β are angles opposite the edge in the two triangles that share

edge eij. (For boundary edges, wij = (cotα)/2). This harmonic equation

is solved with Dirichlet boundary conditions, which require that si = 1 for

handles which have moved (the source of the propagation) and si = 0 for

fixed handles (the sink of the propagation). We follow [32] in solving this

problem.

22



Again, to edit the extracted relief, we project traces of handles represent-

ing each deforming vertex on the base surface, and proceed as before.

4.3. Results

We present various editing results in this section. Our system supports

both global transformations: translation, rotation, and scaling of the whole

relief, and local deformation of detail. Figures 1, 8, and 10 show various

examples. Our scheme is robust, in the sense that in both global transfor-

mation and local editing, the results are pleasing, as distortion is avoided.

While earlier work such as [5] provides a cut-and-paste operation that can

glue reliefs to other objects, our editing tools go further in providing practi-

cal tools that let the user directly manipulate the reliefs over the background

surface. Furthermore, as shown in Figure 8 (bottom), global translation and

local editing can be combined to modify the relief. In our editing approach,

handle manipulation is a direct yet powerful means to control the shape of

a relief via user-controlled motions of a few vertices. This gives the user a

uniform approach for all of our editing tools, which are simple to understand

and use. A further advantage of our approach is that editing can be per-

formed at interactive rates once the relief has been extracted, allowing the

user to see the effects of his changes in real time.

It is difficult to provide a quantitative measure of success, however. Dis-

tortion is a tricky thing to measure, when reliefs are applied to different base

surfaces. Furthermore, human vision and understanding are involved, simple

geometric measures do not adequately capture the perceived quality of the

results. Nevertheless, we believe our results to be of an acceptable standard

for aesthetic use, and for completeness we summarize the distortion mea-

23



Figure 10: Relief extraction and editing. From left to right, top to bottom: input model,

extracted relief, global translation, global rotation, global scaling, and local shape modi-

fication.

24



Table 1: Relative distortion error produced by editing. For global editing (translation,

rotation, and scaling), SD error is standard deviation of errors in edge length ratios (before

and after editing), while local editing error is measured by the root-mean-square (RMS)

angular errors.

Example SD error RMS error

Translation Rotation Scaling Local Editing

Fig. 1 0.023 — 0.014 2.3◦

Fig. 6 0.037 0.029 0.009 1.8◦

Fig. 7 0.043 0.018 0.026 1.3◦

surements for several editing results illustrated in this paper in Table 1: they

demonstrate that the relative distortion is low. For global editing (transla-

tion, rotation, and scaling), we measured edge length ratios i.e. new edge

lengths after editing divided by original lengths, as a proxy for distortion,

and computed their standard deviation (taking any scaling into account, of

course). For local edits, we instead computed the root-mean-square angular

error for each triangle to assess its distortion, as edge lengths are intended

to vary in this case.

5. Conclusions

Overall, we have provided a set of relief extraction and editing tools which

meet real industrial requirements in a reverse engineering context. Relief

extraction is fully automatic and rapidly obtains accurate results on real

scanned reliefs, with fewer artifacts than previous approaches. Our relief

25



editing tools are the first specifically designed to manipulate reliefs on un-

derlying base surfaces, as needed in the industrial relief design applications.

Our editing results are plausible, and our editing tools are fast, simple, and

easy to use. At the core of our methods is a differential-coordinates-based

approach which has a solid theoretical foundation, yet is simple to implement.

In future, we will consider various limitations of the current approach.

Certain types of reliefs cannot be expressed as a height function over a base

surface—for example reliefs with undercuts. Reliefs with a similar height

to a textured background are problematic to detect. Ideally we should take

into account other constraints during relief editing, such as bending con-

straints [29], and the need to avoid collisions between topologically distant

but geometrically close parts of the relief. More sophisticated distortion mea-

sures would be advantageous in assessing relief editing methods. Finally, a

further useful operator would be one which could merge different reliefs to

build a new composite relief.

References

[1] S. Liu, R. R. Martin, F. C. Langbein, P. L. Rosin, Segmenting reliefs on

triangle meshes, in: Proceedings of the 2006 ACM symposium on Solid

and physical modeling, ACM, New York, NY, USA, 2006, pp. 7–16.

[2] S. Liu, R. Martin, F. Langbein, P. Rosin, Background surface estimation

for reverse engineering of reliefs, International Journal of CAD/CAM 7.

[3] S. Liu, R. Martin, F. Langbein, P. Rosin, Segmenting geometric reliefs

26



from textured background surfaces, Computer-Aided Design and Appli-

cations (2-3) (2007) 565–583.

[4] S. Liu, R. Martin, F. Langbein, P. Rosin, Segmenting periodic reliefs on

triangle meshes, in: Mathematics of Surfaces XII, 2007, pp. 290–306.

[5] R. Zatzarinni, A. Tal, A. Shamir, Relief analysis and extraction, ACM

Transaction on Graphics (SIGGRAPH Asia) 28 (5) (2009) Article No.:

136.

[6] J. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, Computer Graphics:

Principles and Practice, Addison-Wesley, 1995.

[7] O. Sorkine, M. Botsch, Tutorial: Interactive shape modeling and defor-

mation, Eurographics (2009).

[8] M. Botsch, O. Sorkine, On linear variational surface deformation meth-

ods, IEEE Transactions on Visualization and Computer Graphics 14 (1)

(2008) 213–230.

[9] W. Xu, K. Zhou, Gradient domain mesh deformation - A survey, Journal

of Computer Science and Technology 24 (1) (2009) 6–18.

[10] S. Anderson, M. Levoy, Unwrapping and visualizing cuneiform tablets,

IEEE Computer Graphics and Applications 22 (6) (2002) 82–88.

[11] M. Alexa, Differential coordinates for local mesh morphing and defor-

mation, The Visual Computer 19 (2-3) (2003) 105–114.

27



[12] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl, H.-P. Seidel,

Differential coordinates for interactive mesh editing, in: Shape Modeling

International, IEEE Computer Society, 2004, pp. 181–190.

[13] O. Sorkine, D. Cohen-Or, M. Alexa, C. Rössl, H.-P. Seidel, Laplacian

surface editing, in: Proceedings of the Eurographics/ACM SIGGRAPH

Symposium on Geometry Processing, 2004, pp. 179–188.

[14] A. Nealen, O. Sorkine, M. Alexa, D. Cohen-Or, A sketch-based interface

for detail-preserving mesh editing, ACMTransactions on Graphics 24 (3)

(2005) 1142–1147.

[15] K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, H.-Y. Shum,

Large mesh deformation using the volumetric graph laplacian, ACM

Transactions on Graphics 24 (3) (2005) 496–503.

[16] H. Fu, O. K.-C. Au, C.-L. Tai, Effective derivation of similarity transfor-

mation for implicit laplacian mesh editing, Computer Graphics Forum

26 (1) (2007) 34–45.

[17] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, H.-Y. Shum, Mesh edit-

ing with Poisson-based gradient field manipulation, ACM Transactions

on Graphics 23 (3) (2004) 644–651.

[18] R. Zayer, C. Rossl, Z. Karni, H.-P. Seidel, Harmonic guidance for surface

deformation, Computer Graphics Forum 24 (3) (2005) 601–609.

[19] T. Popa, D. Julius, A. Sheffer, Material-aware mesh deformations, in:

IEEE Conference on Shape Modeling and Applications, Eurographics

Association, 2006, pp. 22–30.

28



[20] R. W. Sumner, J. Popović, Deformation transfer for triangle meshes,

ACM Transactions on Graphics 23 (3) (2004) 399–405.

[21] D. Xu, H. Zhang, Q. Wang, H. Bao, Poisson shape interpolation, Graph-

ical Models 68 (3) (2006) 268–281.

[22] J. Huang, X. Shi, X. Liu, K. Zhou, L.-Y. Wei, S.-H. Teng, H. Bao,

B. Guo, H.-Y. Shum, Subspace gradient domain mesh deformation,

ACM Transactions on Graphics 25 (3) (2006) 1126–1134.

[23] O. K.-C. Au, C.-L. Tai, L. Liu, H. Fu, Dual Laplacian editing for

meshes, IEEE Transactions on Visualization and Computer Graphics

12 (3) (2006) 386–395.

[24] W. Xu, K. Zhou, Y. Yu, Q. Tan, Q. Peng, B. Guo, Gradient domain

editing of deforming mesh sequences, ACM Transactions on Graphics

26 (3) (2007) Article No.:84.

[25] Y. Lipman, O. Sorkine, D. Levin, D. Cohen-Or, Linear rotation-

invariant coordinates for meshes, ACM Transactions on Graphics 24 (3)

(2005) 479–487.

[26] O. K.-C. Au, H. Fu, C.-L. Tai, D. Cohen-Or, Handle-aware isolines for

scalable shape editing, ACM Transactions on Graphics 26 (3) (2007) 83.

[27] Y.-K. Lai, S.-M. Hu, D. X. Gu, R. R. Martin, Geometric texture syn-

thesis and transfer via geometry images, in: ACM symposium on Solid

and physical modeling, ACM, New York, NY, USA, 2005, pp. 15–26.

29



[28] H. Biermann, I. Martin, F. Bernardini, D. Zorin, Cut-and-paste editing

of multiresolution surfaces, in: Proceedings of the 29th annual confer-

ence on Computer graphics and interactive techniques, SIGGRAPH ’02,

ACM, New York, NY, USA, 2002, pp. 312–321.

[29] M. Müller, B. Heidelberger, M. Hennix, J. Ratcliff, Position based dy-

namics, Journal of Visual Communication and Image Representation

18 (2) (2007) 109–118.

[30] A. Nealen, T. Igarashi, O. Sorkine, M. Alexa, Laplacian mesh optimiza-

tion, in: Proceedings of the 4th international conference on Computer

graphics and interactive techniques in Australasia and Southeast Asia,

GRAPHITE ’06, ACM, New York, NY, USA, 2006, pp. 381–389.

[31] M. Alexa, S. Rusinkiewicz, M. Alexa, A. Adamson, On normals and

projection operators for surfaces defined by point sets, in: Eurographics

Symposium on Point-Based Graphics, 2004, pp. 149–155.

[32] K. Xu, H. Zhang, D. Cohen-Or, Y. Xiong, Dynamic harmonic fields for

surface processing, Computer Graphics 33 (3) (2009) 391–398.

30


