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Distributed-element Preisach model for hysteresis of
shape memory alloys

C Song, J A Brandon* and C A Featherston

Mechanical Engineering and Energy Studies Division, CardiV School of Engineering, CardiV University, Wales, UK

Abstract: The paper describes the development of distributed-element models for non-linear hys-

teresis in materials and structures. The physical model is based on an approach that views the system

as comprising a series of ideal elastoplastic elements. Parameter identi® cation, numerical simulation

and inversion of the model through the application of the Preisach model for hysteresis are discussed.

Experimentally obtained data using Nitinol are compared with the model prediction, thus establishing
the eVectiveness of distributed-element Preisach elements for predicting complex hysteresis eVects

including high-order hysteresis transition curves.

Keywords: shape memory alloys, hysteresis, non-linear modelling

NOTATION

f system output

F function de® ned in equation (18)
P play operator

R relay operator

S stop operator

u system input

¬ operator switch value

­ operator switch value

" stress

· weight function

¼ strain

1 INTRODUCTION

Hysteresis phenomena are present in many physical

systems. These range from systems comprising a single
element, such as shape memory alloys (SMAs), piezo-

ceramics, electrorheology (ER) and magnetorheology

(MR), where material damping may be signi® cant, to

structures consisting of a number of separate elements.

In the latter case, the hysteresis of the system can result
from the behaviour of one or more elements (for

example, the plastic yielding of some portion of a

structure) or from such mechanisms as slip between
diVerent elements of the system.

From the physical point of view, hysteresis can be a

byproduct of fundamental mechanisms (such as phase

transitions in SMAs and domain wall motion in ferro-

magnetic materials) or a consequence of a degradation

or imperfection, or built deliberately into a system in

order to monitor its behaviour, as in the case of heat
control via thermostats.

There is a need either to develop new models or to

exploit existing theory to represent the underlying phy-

sical process while attaining compatibility with design
representations. In the current paper the operator

models devised by Preisach [1] in the 1930s, for magnetic

materials, are demonstrated to apply to the bulk prop-

erties of the most common SMA. The resulting stress±

strain map is consistent with the use of local modi® ca-
tion theory in otherwise linear models [2, 3].

Hysteresis is a genuinely non-linear phenomenon that
is not straightforward to treat mathematically. A variety

of mathematical models for hysteresis have been devel-
oped. Among these, the Preisach model plays a key role

owing to its clear de® nition and simple identi® cation.
The Preisach model can be tracked back to the land-

mark paper published by Preisach in 1935 [1]. It was ® rst
regarded as a physical model of hysteresis, but it was
subsequently realized that it is more phenomenological

in nature. In the 1970s and 1980s, the mathematical
properties of the Preisach model were developed by
Russian mathematicians Krasnoselskii and Pokrovskii

[4], who abstracted the model and represented it in
a purely mathematical form similar to a spectral
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decomposition of operators. Signi® cant recent contribu-
tions to the general theory of hysteresis operators can also

be found in references [5] to [7]. The Preisach model has
several attractive features including its ability to model
complex hysteresis types, a well-de® ned identi® cation

algorithm and a convenient numerical simulation
method. It has been used successfully for modelling

various types of hysteresis.
As will be demonstrated, the pseudoelastic hysteresis

with non-local memory exhibited by SMAs can be

modelled by the Preisach model. A form of the Preisach

model with four parameters was applied to represent
individual SMA crystals by Huo [8]. The model pre-

dictions were consistent with experimental data [8]. The

control parameter was stress and the observed para-

meter was strain; all the experiments were performed at

constant temperatures. A standard Preisach model was

applied to a single large crystal of CuZnAl by Ortin [9]

with a satisfactory correlation between the model and
experiment. Hughes and Wen [10] applied the Preisach

model for the hysteresis of piezoceramic and shape

memory materials, with complex hysteresis eVects

such as minor loop congruency and wiping-out (q.v.)
modelled successfully.

Originally, the Preisach model was based on hypoth-
eses concerning the physical mechanism of magnetiza-

tion. For this reason, it was ® rst regarded as a restricted

physical model of hysteresis. However, in the applica-

tions mentioned above, the Preisach modelling of SMA
hysteresis was a much more abstract model where the

identi® ed parameters in the Preisach model lack physical

meaning. For this reason, the current paper applies the

distributed-element model for hysteresis and rede® nes

the elementary hysteresis operators, relating them to the

observed properties of SMAs. A hysteresis model with

concise mathematical expression and clear physical

explanation is then formulated.

The distributed-element model for hysteresis in

mechanical systems has been researched by Iwan [11± 13]

and by Cifuentes and Iwan [14]. It was based on the

assumption that a general hysteretic system may be

thought of as comprising a large number of ideal

elastoplastic elements with diVerent yield levels. This

approach was suggested by Timoshenko [15] as early as

1930 but had subsequently received little attention. The

most likely reason for this is that the idea of a dis-

tributed-element system is somewhat oversimpli® ed [16]

and the feeling that a distributed-element approach

might lead to complex formulation of the force± de¯ ec-

tion relations. This, however, is not the case. The

intention of the present paper is to show that the dis-

tributed-element formulation can be used to generate a

relatively simple hysteretic model that exhibits the

essential features of complex hysteresis phenomena and

can be readily applied to investigate a hysteretic system

by using the mathematical advantages of the Preisach

model.

2 HYSTERESIS OPERATORS

Hysteresis operators play a key role in the mathematical
study of hysteretic phenomena. A hysteresis operator

maps an input function u ˆ u t… † into a corresponding

output function f ˆ f t… †, where t represents the time

variable. Using this formulation, the paper illustrates

the structures and the memory eVects of various basic

hysteresis models. The relevant connections between the

diVerent types of hysteresis operator are established.
The approach via hysteresis operators originates from

the Krasnoselskii and Pokrovskii school [4] (see also

references [5] and [6]).

2.1 Relay operator

The simplest example of a hysteresis non-linearity is

given by a relay operator, as shown in Fig. 1. The relay
is characterized by two switch values, ¬ and ­ , and two

output values, which, without loss of generality, are

assumed to be equal to ‡1 and ¡1 respectively; alter-

natively, the mean value s ˆ ¬ ‡ ­… †=2 and the half-

width r ˆ ¬ ¡ ­… †=2 may be used. The input± output
relation behaviour described by Fig. 1 can be expressed

by an operator of the form

f ˆ R¬;­ u‰ Š …1†

where R¬;­ is the relay operator with switch values

­ < ¬.

2.2 Play operator

A slightly more complex example of non-linearity is
given by the mechanical play operator which has two

elements. The play is modelled as a combination of a

Fig. 1 Relay with hysteresis
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linear spring with stiVness k and a Coulomb or slip

damper which has a maximum allowable yield force r. If
force f is regarded as the input, and displacement u as

the output, the corresponding input± output relation is

given by the hysteresis diagram in Fig. 2b. In operator

form, for r50,

f ˆ Pr u‰ Š …2†

where Pr is the operator of scalar mechanical play or

simply the play operator. The play operator can be

expressed as a linear superposition of relay elements:

Pr u‰ Š t… † ˆ 1
2

…‡1

¡1
Rs¡r;s‡r u‰ Š t… † ds …3†

2.3 Stop operator

Another basic hysteresis non-linearity is given by the

force± displacement (stress± strain) relation in a one-

dimensional elastoplastic element (Fig. 3a). Once the
output force has reached the yield value, it remains

constant with further increases in the displacement.

Elastic behaviour, however, is recovered when the dis-

placement is lowered again. Here

f ˆ Sr u‰ Š …4†

where Sr is the stop operator or elastoplastic operator.

The operators Pr and Sr are closely related through
the following equation:

Pr ‡ Sr ˆ Id …5†

Fig. 2 Hysteresis behaviour of mechanical play

Fig. 3 Hysteresis behaviour of the stop operator
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Id is the identity operator. This means that, for the

monotone input during t 2 ‰ti; ti‡1Š, the output is

f ˆ f u‰ Š ˆ Pr u‰ Š ‡ Sr u‰ Š ˆ Id u‰ Š ˆ u …6†

Through equations (5) and (6), it can be seen that the
stop operator can also be expressed as a linear super-

position of the basic relay operators.

3 SMA HYSTERESIS

Strong hysteretic eVects have been found in all SMAs,

including NiTi and Cu-based alloys. From a macro-

scopic point of view, there are two primary hysteretic

properties of SMAs: the shape memory eVect (SME)
and pseudoelasticity (PE), which is the concern of this

paper.

Hysteresis in SMAs is strongly in¯ uenced by tem-

perature. When an SMA is at high temperature (speci-
® cally exceeding the austenite ® nish temperature, Af) a

large inelastic strain due to stress-induced austenite to

martensite transformation will occur after linear elastic

deformation, but this strain recovers completely through

hysteresis on unloading by the reverse transformation
shown in Fig. 4. When the yield load is exceeded (Fig.

4b), the austenite variant transforms into martensitic

twins, accompanied with a large strain (Fig. 4c). On

unloading, the austenite phase is re-established, and the

original shape is recovered (Fig. 4d). The reason for this

full recovery of the inelastic strain is that the stress-

induced martensites are unstable in the absence of stress
at temperatures above Af, so that the reverse transfor-

mation to stable austenite occurs upon unloading [17].

The hysteresis of SMA shows two remarkable fea-

tures:

1. The hysteresis is static, i.e. within some limits it is

independent of the variation rate of the parameter

controlling the transformation (temperature or

stress).

2. The hysteresis exhibits global memory (as opposed

to local memory), i.e. the transformed volume for a
given value of temperature or stress can only be

determined from the path that has been followed in

the T ± ¼ ± " space.

The hysteretic shapes of SMA can be aVected sig-

ni® cantly by several factors, such as temperature and
strain rate, loading history and some comparatively

complicated fatigue eVects. A number of hysteretic

models have been developed on the basis of thermo-

dynamic considerations, micromechanics or phenom-

enology [18 ± 20].

The eVects of elastic strain energy and frictional force
are the controlling factors for the generation of trans-

formation hysteresis. The release of frictional energy

creates an energy loss. The greater the frictional energy,

the broader the hysteresis. The elastic energy that is

stored or released during transformation will hinder the
forward transformation but will assist the reverse

transformation [21].

Based on the analysis above, and the hysteresis

behaviour shown in Fig. 4, the SMA crystal can be

modelled as a stack of layers parallel to the habit plane,
the plane whose direction will not change during phase

transformation where only shear strain is allowed in that

plane. Because no volume change occurs during the

transformation, it can be assumed that the displacement,

d, in that direction depends only on the x coordinate

which is perpendicular to the habit plane (i.e. x runs in
the stacking direction), as well as on the time, t. The

model is shown in Fig. 5.

With the displacement d…x; t†, the local shear strain

"…x; t† is de® ned by

" x; t… † ˆ @d

@x
x; t… † ˆ dx x; t… † …7†

while the velocity in the shear direction is given by

v x; t… † ˆ @d

@t
x; t… † ˆ dt x; t… † …8†

Fig. 4 Schematic illustration of the mechanism of hysteresis in an SMA: P for parent phase; M for martensite
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4 DISTRIBUTED-ELEMENT MODEL

Based on the de® ned hysteresis operators and the ana-
lysis for SMA, a distributed-element model for the

hysteresis of SMA, regarded as a system comprising a

series of basic hysteresis elements, can now be devel-

oped. Taking stress as the input u…t† and strain as the

output f …t†, the model for an SMA shown in Fig. 5 can

be regarded as a series of plays as indicated in Fig. 6a.

If the stress± strain relation for the entire system in
Fig. 6a is now considered, it can be seen that the total

strain of the system is made up of contributions from

those elements that have already yielded. Without loss

of generality, it can be assumed that the elements are

arranged in order of increasing yield force ri. Thus, the
total strain upon loading will be

f t… † ˆ
Xn

iˆ1

Pri
u t… †‰ Š …9†

where n is the number of elements in a yielded state.
By using equation (3), the following may be obtained:

f t… † ˆ
Xn

iˆ1

1
2

…‡1

¡1
Rs¡ri;s‡ri

u t… †‰ Š ds …10†

Fig. 5 One-dimensional model for SMAs

Fig. 6 (a) Distributed-elementmodel with stress as input and strain as output and (b) the inverse model with

strain as input and stress as output
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If the total number of elements, N, becomes in® nite, the

yield force will increase to in® nity, and equation (10)
then becomes

f t… † ˆ
…‡1

0

1
2

dr

…‡1

¡1
Rs¡r;s‡r u t… †‰ Š ds …11†

Actually the r and s are limited values, since

s ˆ ¬ ‡ ­… †=2 and r ˆ ¬ ¡ ­… †=2 as shown in Fig. 1. To

aid understanding and identi® cation of relays, equation

(11) can be rewritten in terms of ¬ and ­ :

f t… † ˆ ¡̂¡ u t… †‰ Š ˆ
… …

¬5­

· ¬; ­… †R¬­ u t… †‰ Š d¬ d­ …12†

Equation (12) for hysteresis de® nes the Preisach model.

Here ¡̂¡ is used for the concise notation of the Preisach

hysteresis operator which is de® ned by the integral in

equation (12) and ·…¬; ­ † is a weight function with a

support area ¬5­ . Since ¬; ­ …4M† are limited values, it
is assumed that ·…¬; ­ † is zero for ¬; ­ larger than M.

4.1 Main properties of the model

Now it can clearly be seen that, for modelling the hys-

teresis of SMAs, the Preisach model is physically based.

If all the parameters (that is, ri; ki) of the mechanical

plays shown in Fig. 6a can be identi® ed through input/
output experiments, the output f …t† can be predicted

from equation (11). Actually, from equation (12) it can

be seen that the output of the Preisach model is the

integral of function ·…¬; ­ †R¬­ , and the outputs of R¬­

are 1 and ¡1 only. Therefore, once the weight function

·…¬; ­ † is identi® ed, the output of the system can be

calculated through equation (12).

It follows that, at any instant t, the Preisach plane S

may be divided into two areas, S‡ where the relay out-

puts are ‡1, and S¡ where relay outputs are ¡1. They

are illustrated in Fig. 7 which shows the geometric
interpretation of the Preisach model. The two areas are

separated by a staircase interface. The vertices of the

staircase are determined by the previous reversal points

of the inputs.

At any instant of time, therefore, the integral in (12)
can be subdivided into two integrals, over S‡…t† and

S¡…t†, respectively:

f t… † ˆ ¡̂¡ u t… †‰ Š

ˆ
……

S‡…t†

· ¬; ­… † d¬ d­ ‡
……

S¡ …t†

· ¬; ­… † d¬ d­ …13†

since

R¬­ u t… †‰ Š ˆ ‡1 if …¬; ­ † 2 S‡…t† …14†

and

R¬­ u t… †‰ Š ˆ ¡1 if …¬; ­ † 2 S¡…t† …15†

The geometric interpretation explains how the output is

aVected by the integration support area S which is

Fig. 7 Geometric interpretation of the model

678 C SONG, J A BRANDON AND C A FEATHERSTON

Proc Instn Mech Engrs Vol 215 Part C C01300 ß IMechE 2001 at Cardiff University on April 4, 2012pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


changed by the input extrema. Not all the input extrema

are remembered by the model. The input maximum
wipes out the vertices whose ¬ coordinates are below

this input, and each input minimum wipes out the ver-

tices whose ­ are above this minimum. This is called the

wiping-out property of the model.

As the input increases, a vertical line of ¼…t† moves in

the positive ¬ direction in S, changing all the relay
outputs to the left of the line to the ‡1 state. As the

input decreases, a horizontal line moves in the negative

­ direction in S, changing all the relay outputs above the

line to the ¡1 state.

At the starting point t ˆ 0, the input u…t† is at mini-
mum ­ min and all the relay outputs are in ¡1 (Fig. 7a).

As the input increases to ¬1 at t1, a vertical line moves to

¬1 from ­ min, and the outputs of the relays on the left

side of the line switch to ‡1 (Fig. 7b). From t2 to t3, the

input is lowered to ­ 1, and a horizontal line sweeps
down to ­ 1, changing some of the relay outputs back to

¡1 (Fig. 7c). When the input is increased again to ¬2,

some relays are changed to ‡1 (Fig. 7d). The output f …t†
at each time t is simply the integral of ·…¬; ­ † weighted

by the corresponding relay outputs. It depends on the

® nal staircase interfaces between S‡ and S¡. A constant
input u…t† will keep the output f …t† constant.

Another characteristic property of the Preisach model

is called the congruency property. If the input varies

within the same range, from Fig. 7 it can be seen that the

® nal link of the staircase interfaces will move identically
within the same triangles. If the input goes mono-

tonically from u1 to u2 and then back to u1, the change

in the relay output is the same irrespective of the initial

conditions. The only eVect of the initial condition is to

produce a shift in the output. These two properties
constitute the necessary and suYcient conditions for a

non-linear hysteresis to be represented by the Preisach

model for a set of piecewise monotonic inputs [5].

4.2 Identi® cation of l…¬¬¬; b†

The weight function ·…¬; ­ † can be identi® ed from a set

of experimental ® rst-order transition curves. The term

®̀ rst order’ is used to emphasize the fact that each of

these curves is formed from the ® rst reversal of input.
Figure 8 shows the use of ® rst-order reversal curves for

identi® cation of the weight function ·…¬; ­ †. From the

geometric interpretation it is clear that f¬ and f¬­ can be

written as

f¬ ˆ
……

S‡‡T

· ¬; ­… † da db ‡
……

S¡

· ¬; ­… † da db …16†

f¬­ ˆ
……

S‡

· ¬; ­… † da db ‡
……

S¡‡T

· ¬; ­… † da db …17†

Now it is possible to de® ne the function

F…¬; ­ † ² 1
2

f¬ ¡ f¬­

¡ ¢
…18†

From equations (16) to (18) it can be established that

F ¬; ­… † ˆ
… …

¬5a5b5­

· a; b… † da db

ˆ
…¬

­

da

…a

­

· a; b… † db …19†

DiVerentiating equation (19) twice yields

· ¬; ­… † ˆ ¡ @2F ¬; ­… †
@¬ @­

…20†

Hence, the weight function ·…¬; ­ † can be calculated

from F…¬; ­ †, which in turn can be obtained from the set

of experimental ® rst-order transition curves. This makes

the Preisach model particularly attractive. It not only
reproduces the local memory features of partial hyster-

esis loops but also is able to predict the higher-order

transition curves (i.e with multiple loops within the

envelope) using a limited set of ® rst-order experimental

data.

Fig. 8 (a) f¬ and f¬­ from ® rst-order reversal and (b) the support of integration associated with F(¬; ­ †
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4.3 Numerical simulation

The Preisach model can be numerically implemented by

using equation (12) for the computation of output u…t†
and equation (20) for the identi® cation of the weight
function ·…¬; ­ †. However, the use of this approach

creates two diYculties:

1. It requires the numerical evaluation of the double

integral in equation (12), which is time consuming.

2. The identi® cation of the weight function requires
diVerentiation of experimental data, which may

strongly amplify noise.

However, another approach can be developed for the

numerical implementation of the Preisach model.

For an input history, a set of dominant maxima and
minima can be determined. The relay outputs are then

determined by the support area S. It is easy to see that

the output of the Preisach model can be expressed as

follows:

For an ascending branch

f t… † ˆ fmin ‡
Xn t… †¡1

iˆ1

f¬i­ i
¡ f¬i­ i¡1

¡ ¢

‡ fu t… † ¡ fu t… †­ N¡1

¡ ¢
…21†

For a descending branch

f t… † ˆ fmin ‡
Xn t… †¡1

iˆ1

f¬i­ i
¡ f¬i­ i¡1

¡ ¢

‡ f¬Nu t… † ¡ f¬N­ N¡1

¡ ¢
…22†

where fmin is the output corresponding to the starting

point umin, when all relay outputs are ¡1, and N is the
number of input extrema.

Equations (21) and (22) can be used for direct calcu-

lation of the output based only on F…¬; ­ † and not

·…¬; ­ †. These expressions constitute the basis for the

numerical implementation of the Preisach model.

Detailed derivations can be found in reference [5]. This
procedure avoids the important uncertainties associated

with a double derivative of function F…¬; ­ †, aVected by

experimental noise, and the time-consuming double

integral in equation (12).

4.4 Inverse problem

The inverse Preisach model is clearly physically repre-
sented (Fig. 6b) by the parallel distributed-element

hysteresis model. With the same experimental data, the

numerical inverse of the Preisach model can be easily

derived from (21) and (22) if the ® rst-order output f …t†
curves are strictly monotonic with the input u…t†. This
has been observed to be the case for SMA hysteresis

behaviour, where strain in the ® rst-order curves varies

monotonically with stress.
Reviewing equations (18) and (19), given z ˆ F…¬; ­ †,

¬ ˆ G¬…z; ­ † can be de® ned as the inverse of F…¬; ­ † with

­ ® xed, or ­ ˆ G­ …¬; z† as the inverse with ¬ ® xed.

Applying this to (21) and (22), the u…t† required to

produce a desired output f …t† is obtained:

For an ascending branch

u t… † ˆ G¬
f t… † ¡ fmin

2
¡ Pn

µ ¶
; mn¡1

³ ´
…23†

For a descending branch

u t… † ˆ G­ Mn;
¡f t… † ‡ fmin

2
‡ Pn ‡ F Mn; mn¡1… †

µ ¶³ ´

…24†

where

Pn ˆ
Xn t… †¡1

kˆ1

F Mk; mk¡1… † ¡ F Mk; mk… †‰ Š

5 EXAMPLES OF SMA

Based on the previous analysis, experiments have been

carried out on Nitinol shape memory material to allow

the modelling of the pseudoelasticity hysteresis.
Through the explicit equations (18), (21) and (22), the

weight function ·…¬; ­ † has been identi® ed. The experi-

ments have been compared with the model prediction

within the SMA two-phase regions.

The test sample considered in this paper was an SMA
Nitinol wire of 0.83 mm diameter and 200 mm length.

Testing was limited to tension because the wires can

only practically be tested in tension, so the relay output

of elementary operators can be assumed only to take the

values 0 and ‡1; the principle for the model calculation
was the same as that used previously [22]. All of the tests

were carried out at room temperature.

Figure 9 shows part of the collection of experimental

® rst-order reversal curves used to compute the weight

function ·…¬; ­ † for the Preisach model. The ® rst-order

transition curves are attached to the limiting ascending
branch. Each of these curves was obtained by increasing

the input monotonically to a certain value from zero and

decreasing it to zero again. By using the experimental

data shown in Fig. 9, values of F…¬; ­ † on an evenly

spaced grid of 36¬ and 233­ values have been obtained
from numerical interpolation between these curves. A

cubic spline interpolation algorithm on the evenly

spaced grid enabled computation of F…¬; ­ † at any point

¬; ­ within the grid using programs written in Matlab

[23]. Figure 9 also shows that the ® rst-order reversal
curves reproduced the experimental results.
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Based on the identi® ed weight function ·…¬; ­ †, a

simulation model was constructed by using Matlab/
Simulink. Only simple hysteresis relays were constructed

in parallel, which establishes the eVectiveness of the

Preisach model as a mathematical model for memory.

Figure 10 illustrates the weight function identi® ed

from the ® rst-order reversal curves. It is clear that the
density of the weight function grid is diVerent at dif-

ferent positions. Figure 11 is an example of the high-

order transition curves predicted by the model. Minor

loops 4± 5± 6 and 7± 8± 9 lie in the autensite/martensite

two-phase region, where the wiping-out property can be
seen clearly. The accuracy of the model can be aVected

by the density of the weight function and the diVerent

dissipation mechanisms between the forward and

reverse phase transformation. The high-order internal

curves are dependent on all the previous external curves

through the return points, so errors will accumulate in
the later internal curves, and therefore the error may be

larger in the internal minor loop 7± 8± 9 than in minor

loop 4± 5± 6.

6 CONCLUSIONS

A distributed-element hysteresis model has been devel-

oped. This model is based on an approach that views the

systems as consisting of a series of elementary hysteresis

elements. As such, the model is consistent with the
physical system.

EYcient and convenient equations based on the

Preisach model have been obtained for the modelling of

the input± output hysteresis behaviour. Simple identi® -

cation and numerical implementation algorithms have
been used to predict the response of the complex hys-

teresis system, based only on the ® rst-order reversal

transition curves. The present distributed-element model

has been used for the analysis of hysteresis in SMA

NiTi. The stress± strain curves followed by an NiTi wire

under uniaxial tension have been investigated. At room
temperature the alloy displays pseudoelasticity through

martensite transformation, which results in the hys-

teretic eVect.

The distributed-element hysteresis model can repro-

duce the essential features of the NiTi SMA transfor-
mation:

1. Inside the two-phase region the transformation
curves depend on the previous inversion points,

which the system can memorize.

2. The memory of the previous return points is wiped-

out when the curve runs over the given point again.

3. If the input varies back-and-forth, the minor will be

generated, and, between the same input extrema, the
congruent minor loops can be generated.

The distributed-element Preisach model has been used
satisfactorily to predict the hysteresis eVect of SMAs.

The higher-order transition curves are produced by

using only ® rst-order experimental data. In addition,

since the model has a compact numerical form, it might

® nd more applications for modelling other hysteresis
materials.

Fig. 9 First-order reversal curves for identi® cation of ·…¬; ­ †

Fig. 10 Weight function ·…¬; ­ †

Fig. 11 Internal hysteresis loop: comparison between experi-

ment and model prediction
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Through all these experiments and simulations, the

hysteresis is assumed to be static and time plays no role
other than as a parameter. Actually, the latent heat of

transformation is exchanged between specimen and

environment at a limited speed. The hysteretic eVect of

SMA has some relationship with the stress and strain

rate. A modi® ed Preisach model might be useful to

model this rate-dependent eVect [24].
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