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Fuzzy control of a three-tank system

D T Pham* and D Li

Intelligent Systems Laboratory, Manufacturing Engineering Centre, School of Engineering, CardiV University,

Wales, UK

Abstract: Fuzzy inverse reasoning performed using fuzzy relational equations can be employed to

deduce control actions appropriate for a desired process output. The three-tank plant to be controlled

has two inputs and hence the fuzzy relational equation describing the dynamics of the plant is a two-

decision-variable equation. Algorithms are only available for solving equations that have a single

decision variable. A method is proposed in this paper to decompose the two-decision-variable fuzzy

relational equation into single-decision-variable equations so that existing algorithms can be applied
to produce control actions for the plant.

Keywords: fuzzy logic, inverse reasoning, process control

NOTATION

azi opening of the ith valve

A cross-sectional area of a tank

A; A0; C; C 0 fuzzy sets

Ai; B j; C k; D l fuzzy sets

g gravitational constant

hi liquid level in the ith tank
_hhi derivative of hi with respect to time

h
j
i;

_hh j
i; q

j
i degrees of membership

Hi; _HHi; Qi fuzzy variables corresponding to hi, _hhi

and qi

Mp maximum overshoot

qi inlet ¯ owrate for the ith tank

rij element of R0

rijkl element of R

R; R0; Ri; R0
i fuzzy relations or fuzzy relational

matrices

Sl cross-sectional area of the outlet pipe

Sn cross-sectional area of the connecting

pipes

ui…t† control action of the ith control loop
xijk element of X

X input matrix of a multiple-decision-

variable fuzzy relational equation

X1; X2; X; Y fuzzy variables

yi…t† output response of the ith control loop

Yd fuzzi® ed desired process output

" steady state error

½ rise time

1 INTRODUCTION

Fuzzy reasoning can be classi® ed as fuzzy forward rea-

soning and fuzzy inverse reasoning. Forward reasoning
involves ® nding a logical consequence of a given con-

dition. It starts by comparing the given condition and

the antecedent part of a fuzzy rule. If they match, the

conclusion part of the fuzzy rule will be taken as a

consequence of the given condition. Fuzzy inverse rea-
soning (FIR) aims to deduce a suYcient condition for a

speci® ed conclusion called a goal. It searches for a suf-

® cient condition, A0, through fuzzy relations such as

A ) C. If A0 is found, the given goal is considered true.

FIR can be expressed as follows [1, 2]:

goal : y is C 0

fuzzy relation : If x is A Then y is C

sufficient condition : x is A0

…1†

Consider that the given goal is a desired process output

and the suYcient condition to be derived is a control

action. FIR can thus be used to produce a control action

for a speci® ed process output. The technique of deter-
mining control actions by using FIR is called FIR

control or fuzzy backward reasoning control (FBRC)

[3]. In FIR control, the fuzzy relation represents the

dynamics of a controlled process, the output of which
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can be expressed using a fuzzy relational equation such

as

X ¯ R ˆ Yd …2†

where R is a fuzzy relation X ) Y representing the

process dynamics, X is a control action and Yd is a given

goal. FIR is performed by solving the fuzzy relational
equation in order to obtain a control action X that is

suYcient to yield Yd.

FIR ensures that the produced control actions are

suYcient to generate the desired process output. Algo-

rithms exist for solving linear fuzzy relational equations

that contain one decision variable to obtain the appro-

priate control actions [4 ± 6].
A three-tank plant is a multiple-input± multiple-out-

put (MIMO) plant. When used to describe the dynamics

of this plant, a fuzzy relation will contain more than one

input in its antecedent part. Consequently, there will be

multiple decision variables included in the correspond-
ing fuzzy relational equation and existing algorithms

cannot be applied to determine control actions.

This paper introduces an approach to FIR control

that can deal with MIMO systems such as a three-tank
plant. The idea is to decompose the fuzzy relational

equation that describes an MIMO plant into single-

decision-variable equations and apply an available

algorithm to deduce control actions. The remainder of

this paper is organized as follows. Section 2 describes the

three-tank plant employed to illustrate the proposed

approach. Section 3 discusses the decomposition of
MIMO processes where there are interactions between

the diVerent process variables. Section 4 presents the

experimental results obtained.

2 THREE-TANK PLANT

The plant is illustrated in Fig. 1. The tanks all have the

same cross-sectional area. They are linked by con-

necting pipes. Liquid levels in the tanks are regulated

by manipulating the inlet ¯ ows of which there are two,

one into tank I (the left-most tank) and the other into
tank II (the right-most tank). Two pumps, P1 and P2,

drawing liquid from a reservoir control the ¯ owrates of

the inlets. The ¯ ows in the pipes between tank I and

tank II and the middle tank, tank III, are manipulated

using ball valves V1 and V3. The plant output ¯ ow is

from a pipe connected to tank II. Ball valve V2 con-
trols the outlet ¯ ow. Disturbances to the plant are in

the form of leakages from the tanks which are con-

trolled by ball valves V4, V5 and V6 respectively.

Pressure sensors are used to measure the levels of liquid

in the tanks.
When the tanks are coupled together through the

connecting pipes, the eVects of q1 and q2 will interact

with one another. For example, assume that the plant is

in a steady state initially. A new desired level for tank I

is set that is higher than the current level. The level h2

for tank II is to remain the same. The variable q1 must

increase to bring the level h1 in tank I to its new set

point. This is the direct eVect of q1 on h1. However,

because the tanks are coupled, q1 will also disturb h2. A

reduction in q2 is required to compensate for the

increase in h2 due to q1. The decrease in q2, in turn,
reduces h1. This is called the indirect eVect of q1 on h1.

These interactions can be seen from the following

mathematical model of the plant:

A
dh1

dt
ˆ q1 ¡ az1Sn sgn…h1 ¡ h3†

����������������������
2gjh1 ¡ h3j

p
…3a†

A
dh3

dt
ˆ az1Sn sgn…h1 ¡ h3†

����������������������
2gjh1 ¡ h3j

p

¡ az3Sn sgn…h3 ¡ h2†
����������������������
2gjh3 ¡ h2j

p
…3b†

A
dh2

dt
ˆ q2 ¡ az3Sn sgn…h2 ¡ h3†

����������������������
2gjh2 ¡ h3j

p

¡ az2Sl

����������
2gh2

p
…3c†

where azi represents the opening of the ith valve, A is the

cross-sectional area of a tank, Sn is the cross-sectional
area of the connecting pipes and Sl is the cross-sectional

area of the outlet pipe. The interactions between q1 and

q2 make it diYcult to implement FIR control for the

three-tank plant. This will be discussed in the next sec-

tion.

3 DIMENSION REDUCTION FOR FUZZY

INVERSE REASONING CONTROL

The plant can be viewed as a two-input± two-output

process. The two inputs are q1 and q2 and the two
outputs are _hh1 and _hh2. The fuzzy relational equation thatFig. 1 A three-tank plant
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describes the dynamics of the process has two decision

variables and is not a linear equation. It needs to be
transformed into linear single-decision-variable equa-

tions before an existing fuzzy inverse reasoning algo-

rithm can be applied.

A commonly used method when dealing with a

complex problem is to assume that some unknown

factors are known to reduce the complexity of the
problem. If, in a two-decision-variable equation

‰X1 X2Š ¯ R ˆ Y; X2 is assumed known, a fuzzy relation

between X1 and Y can then be constructed, denoted as

R0. Consequently, the fuzzy relational equation becomes

X1 ¯ R0 ˆ Y, which is a linear single-decision-variable
equation. However, when there is interaction between

X1 and X2, this straightforward simpli® cation cannot be

made.

The concept of a decoupler [7] in conventional con-

trol can be employed to decompose interactions in an
MIMO plant. A decoupler cancels the eVect of the

control actions of one control loop, uk…t†, on the

outputs of other loops, yi…t† …i 6ˆ k†, and hence

decomposes interactions between uk…t† and ui…t† …i 6ˆ k†.
The decoupler works by providing an additional action

due to uk…t† on yi…t† …i 6ˆ k† to compensate for the
in¯ uence of uk…t† on yi…t† …i 6ˆ k†. In the time domain, it

maintains yi…t† equal to yi…t ¡ 1† when uk…t† …i 6ˆ k†
changes.

Two FIR controllers have been designed for the three-

tank plant based on the concept of the decoupler. One
has q1 as the input variable and _hh1 as the output vari-

able. It also has two auxiliary variables, h1 and h3. The

fuzzy relation employed by this controller is a relation

from q1, h1 and h3 to _hh1, called R1. The fuzzy relational

equation for the controller is

‰Q1 H1 H3Š ¯ R1 ˆ _HH1 …4†

where Q1, H1, H3 and _HH1 are fuzzy variables corre-

sponding to q1; h1; h3 and _hh1. When a new set point h1sp

is chosen, _hh1…t ‡ 1† ’ h1sp ¡ h1…t† is calculated and a

goal _HH1 is formed. By solving equation (4), control

actions q1 can be deduced. When _hh1…t ‡ 1† is computed,

the auxiliary variable h3 is kept unchanged so that the

controller works by providing an additional eVect to
counteract the in¯ uence of q1 on h3, thereby cancelling

the indirect eVects of q1 on h1.

The auxiliary fuzzy variables H1 and H3 are computed

from the measured data, h1 and h3. Equation (4) is then

rewritten as a linear equation, namely

Q1
¯ R0

1jH1 ;H3
ˆ _HH1 …5†

where R0
1 is calculated from R1; H1 and H3.

A three-dimensional matrix is de® ned as X ˆ
‰Q1 H1 H3Š. Entry xijk ˆ qi

1 ^ h
j
1 ^ h k

3 stands for the
antecedent part of some fuzzy rule, ÌF Q1 is Ai and H1

is B j and H3 is C k, THEN _HH1 is D l, where qi
1; h

j
1 and h k

3

are degrees of membership of fuzzy sets Ai; B j and C k

respectively.

The fuzzy relational matrix R1 is a four-dimensional

matrix. Element rijkl of R1 is the truth degree of the given
fuzzy rule.

With equation (4), _hh l
1, the degree of membership of

fuzzy set Dl, is computed:

_hh l
1 ˆ ‰…x111 ^ r111l†_…x112 ^ r112l†_ ¢ ¢ ¢ _…x11K ^ r11Kl†Š

_‰…x121 ^ r121l†_…x122 ^ r122l†_ ¢ ¢ ¢ _…x12K ^ r12Kl†Š

_ ¢ ¢ ¢

_ ‰…x1J1^r1J1l†_…x1J2 ^ r1J2l†_ ¢ ¢ ¢ _…x1JK ^ r1JKl†Š

_ ¢ ¢ ¢

¢ ¢ ¢

_ ‰…xI11^ rI11l† _ …xI12 ^ rI12l†_ ¢ ¢ ¢ _…xI1K ^ rI1Kl†Š

_ ‰…xI21^ rI21l† _ …xI22 ^ rI22l†_ ¢ ¢ ¢ _…xI2K ^ rI2Kl†Š

_ ¢ ¢ ¢

_ ‰…xIJ1^ rIJ1l† _ …xIJ2 ^ rIJ2l†_ ¢ ¢ ¢ _…xIJK ^ rIJKl†Š

…6†

Replacing xijk with qi
1 ^ h

j
1 ^ h k

3 and employing the

associativity and commutativity of the t-norm and t-

conorm (^ and _) to rearrange equation (6) gives

_hh l
1 ˆ f‰q1

1^…h1
1^ h1

3 ^ r111l†Š_ ¢ ¢ ¢ _ ‰q1
1 ^ …h1

1 ^ hK
3 ^ r11Kl†Šg

_ ¢ ¢ ¢

_f‰q1
1^…h J

1^ h1
3 ^ r1J1l†Š_ ¢ ¢ ¢ _ ‰q1

1^ …h J
1^ h K

3 ^r1JKl†Šg

_ ¢ ¢ ¢

¢ ¢ ¢

_f‰qI
1^ …h 1

1^ h1
3 ^ rI11l†Š_¢ ¢ ¢_ ‰qI

1 ^ …h 1
1^ hK

3 ^ rI1Kl†Šg

_ ¢ ¢ ¢

_f‰qI
1^ …hJ

1^ h1
3 ^ rIJ1l†Š_ ¢ ¢ ¢ _ ‰qI

1^ …hJ
1 ^ hK

3 ^ rIJKl†Šg

…7†
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Equation (7) is rewritten as

…q1
1 q2

1 ¢ ¢ ¢ qI
1† ¯

r 0
1l

r 0
2l

..

.

r 0
Il

0

BBBBBBB@

1

CCCCCCCA

ˆ _hhl
1 …8†

Applying the above procedure to all elements of _HH1,
_hhl
1 …l ˆ 1; . . . ; L†, yields the two-dimensional fuzzy rela-

tional matrix

R0
1 ˆ

r 0
11 r 0

12 ¢ ¢ ¢ r 0
1L

r 0
21 r 0

22 r 0
2L

..

. ..
.

r 0
I1 r 0

I2 ¢ ¢ ¢ r 0
IL

0

BBBBBBB@

1

CCCCCCCA

With R0
1 completely de® ned, given a new set point

h1sp, it is possible to apply an algorithm for solving

linear fuzzy relational equations to equation (5) to

produce control actions q1.
The other FIR controller possesses a similar structure.

It has q2 as the input variable and _hh2 as the output

variable. The auxiliary variables are h2 and h3. Inverse

reasoning is again implemented with the decoupling

technique to derive control actions q2 from a speci® ed

set point h2sp.

4 EXPERIMENTAL RESULTS

The designed FIR controllers were applied to regulate

the liquid levels under diVerent operating conditions.
First, the plant was set up as follows: the three tanks

were empty and fully connected, the outlet valve open-

ing was in the medium range, there was no leakage and

the set points h1sp and h2sp were 200mm. With the sys-

tem starting from a steady state, the set points were
suddenly changed to h1sp ˆ h2sp ˆ 400 mm. A dis-

turbance was simulated by abruptly increasing the inlet

¯ owrate for tank II by 20 per cent and holding it there

for about 120 s when the plant was in the steady state.

Fig. 2 Responses of the three-tank plant with the set points raised from 0 to 200 mm
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The following design speci® cations were set for all the

diVerent operating conditions:

Steady state error …"† 42:50% …9a†

Rise time …½† 490 s …9b†

Maximum overshoot …Mp† 45% …9c†

Figure 2 shows time domain plots of the liquid levels

h1 and h2. It can be seen from these plots that the FIR
controllers could successfully regulate the liquid levels

and satisfy the design speci® cations.

Figure 3 presents the results when the set points were

changed. Compared with the previous case, the plant

needed a longer time to reach the higher set point. The

rise time of the closed-loop system, denoted as ½, is not
proportional to the height of the set point. This is

because of the non-linear property of the ball valve. The

plant was stable at the various set points. The steady

state errors were less than 1.20 per cent when the set

points were 200 mm and below 0.65 per cent when the
set points were 400mm in both tank I and tank II.

The results with a disturbance added to tank II are

depicted in Fig. 4. Figure 4a illustrates that the con-
trollers produced small control actions to reject the

disturbance. Figure 4b shows the eVects of the dis-

turbance on the liquid level of tank II. It can be seen

that the disturbance caused little change in the liquid

level.

For comparison, a conventional fuzzy logic con-
troller (FLC) was developed based on human expertise

in manipulating the liquid levels in the same three-tank

plant. With this controller, the responses of the plant

when the set points were 200 and 400 mm were as

shown in Figs 2 and 3 respectively. Although the FLC
performed similarly to the FIR controller, it took 2

days for an engineer with a strong fuzzy logic control

background to gain the required knowledge and con-

vert it into fuzzy rules. On the other hand, the con-

struction of the FIR controller required only less than
15 min. It is expected that, for more complex plants,

the diVerence in development times will be even larger,

which clearly demonstrates the advantage of the FIR

approach.

Fig. 3 Responses of the three-tank plant with the set points raised from 0 to 400 mm
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5 CONCLUSION

The three-tank plant is an MIMO plant and therefore

the fuzzy relational equation describing its dynamics is a

multiple-decision-variable equation. The proposed FIR

control approach ® rst involves transforming this fuzzy

relational equation into a number of linear single-deci-
sion-variable equations. These equations are then solved

using one of the available algorithms to deduce appro-

priate control inputs to the plant. Experiments have

shown that FIR controllers can provide satisfactory

steady state and transient responses and successfully
reject disturbances and handle set point changes.
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