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Abstract: The current paper outlines recent developments to algorithms and software for critical
buckling and natural vibration analysis and optimum design of prismatic plate assemblies, based
on the exact strip approach and the Wittrick–Williams algorithm. The current paper acts as a
single source document discussing recent progress and planned future explorations in: initial
local postbuckling of stiffened panels; discrete optimization of composite structures to satisfy
manufacturing requirements; discontinuous cost functions; constraints on fundamental natural
frequencies and frequency-free bands; a feasibility study of response surface optimization; and
multi-level optimization of composite aircraft wings. The numerous references provide fuller
technical details and illustrative examples.

Keywords: aerospace structures, buckling, postbuckling, vibration, optimization

1 INTRODUCTION

The analysis and design of aerospace and lightweight
structures are typically complex problems. In order to
achieve high standards of operating efficiency, com-
ponents need to be as light as possible, while at
the same time a multitude of structural and other
constraints need to be satisfied.

For many years, the finite-element method
(FEM) [1–3] has provided a particularly versatile
approach, allowing structures of great complexity
to be analysed. However, this approach still often
comes at an exceptionally high computational cost,
particularly where repeated analysis is required, e.g.
in iterative solutions of non-linear problems and in
optimum design.

Although the FEM has been continuously devel-
oped, particularly in the context of commercial soft-
ware solutions, to provide highly reliable means
of analysis, simulation and design, most alterna-
tive methods and procedures have failed to mature,
so that typically very expensive experiments are
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needed to verify analytical results and provide
adequate benchmarking. In this context, alternative
approaches such as the finite-strip method [4–8]
have proved particularly valuable; in that precision
and efficiency are enhanced by using an analytical
solution in one direction.

Additionally, the modelling and computational
costs of discretization can be avoided altogether by
using analytical solutions of the governing differ-
ential equations [9, 10]. This approximate analytical
approach, which is exact for certain simple cases
(e.g. prismatic assemblies of orthotropic rectangular
plates with simply supported ends and no shear load-
ing), is often referred to as the ‘exact strip’ method.
For buckling and vibration problems it results in tran-
scendental eigenproblems, rather than the linear ones
resulting from FEM discretization of the structure.

Coupled with a highly efficient and extremely
reliable algorithm [11, 12], which ensures that any
eigenvalue (i.e. critical buckling load or natural fre-
quency of free vibration) can be found with absolute
certainty, the exact strip method has been found to
be much faster than the FEM for the analysis of
prismatic plate structures [13]. Although advances
in computational technology enable extremely large
and complex structures to be analysed by special pur-
pose FEM software, aerospace designers continue to
seek faster, reliable alternatives, for example, to avoid
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400 D Kennedy, M Fischer, and C A Featherston

excessive modelling costs when carrying out para-
metric preliminary design studies, or for use in con-
junction with FEM and optimization software when
repeated analysis is required within a multi-level or
multi-disciplinary design scenario.

The exact strip method forms the foundation of
the specialist analysis and optimum design soft-
ware VICONOPT [13] (subsequently referred to as
‘the software’), which has been developed for typi-
cal aerospace structures, such as aircraft wing panels
made from isotropic (e.g. metallic) or anisotropic
(e.g. carbon-fibre composites and fibre-metal lam-
inates) materials. However, while the software can
analyse and design integral prismatic structural com-
ponents, e.g. stiffened panels and wing boxes, it is
unable to handle general three-dimensional struc-
tures subject to complex external loading. Typically,
a finite-element analysis of the overall structural sys-
tem is required to determine the loads acting on the
individual components before they are analysed or
optimized. Despite this limitation and some approxi-
mations necessary as a part of the modelling process,
the software has been used for analysis and design
purposes, in both industry and academia, for more
than a decade.

Following recommendations made by the Group
for Aeronautical Research and Technology in Europe
during the 1990s [14], many enhancements have
been made to further improve the software’s exact
strip analysis and optimum design capabilities. These
include: the development of a geometrically non-
linear procedure for the local postbuckling analysis
of perfect or imperfect longitudinally compressed
plate assemblies [15]; the provision of discrete
design capability [16]; discontinuous cost func-
tions [16]; optimization with vibration constraints
[16]; response surface applications [17]; and the
development of a multi-level optimization interface
linking the software with the finite-element solver
MSC/NASTRAN [18].

The purpose of the current paper is to provide
a single source document giving an overview of
the recent developments that have taken place. The
main theoretical principles involved are discussed,
and references are made to papers giving more
details and some practical applications. In the con-
text of the issues discussed above, the future potential
of the exact strip method and its likely benefits to
the aerospace industry are explored.

2 THE EXACT STRIP METHOD AND
WITTRICK–WILLIAMS ALGORITHM

The exact strip method assumes a continuous dis-
tribution of stiffness over the structure rather than
discretized stiffnesses at nodal points, as is the case for

the FEM. The method is based on analytical solutions
to the partial differential equations, which (after any
modelling assumptions) govern the in-plane and out-
of-plane deformation of the component plates.Where
possible, a closed form solution procedure [19] is used
to determine the member stiffness matrices km, which
are subsequently assembled into the global stiffness
matrix K for the overall structure. If a closed form solu-
tion of the member equations is not available the km

matrices can be found by solving the member equa-
tions numerically [20]. The global stiffness matrix K
relates a finite set of displacements D at the nodes
of the structure to their corresponding perturbation
forces P, by

KD = P (1)

K consists of transcendental, and thus highly non-
linear, functions of the load factor F or frequency
ω [10]. The critical buckling loads or natural frequen-
cies of the structure correspond to the eigenvalues
found by solving

KD = 0 (2)

The solution of the transcendental eigenvalue prob-
lem requires an iterative search for the values of F
or ω at which equation (2) is satisfied. The software
makes use of theWittrick–Williams algorithm [11, 12],
which allows the eigenvalues to be found with abso-
lute certainty. The algorithm calculates J , the number
of eigenvalues lying between zero and any trial value
of F or ω. Any change in J between two trial values
is equal to the number of eigenvalues lying between
these trial values.

In its general form the Wittrick–Williams algorithm
can be stated as

J = J0 + s{K} (3)

where s{K} is known as the sign count of K, and cor-
responds to the number of negative leading diagonal
elements of the upper triangular matrix K� obtained
by applying conventional Gauss elimination, without
pivoting, to the matrix K. J0 is the value that J would
have if all the freedoms corresponding to K were fully
restrained. Unless substructures are used, J0 can be
calculated as

J0 =
∑

m

Jm (4)

where the summation is over all members m of the
structure, and Jm is calculated for each member as
the number of eigenvalues exceeded by the trial value
when the member ends are fully restrained.

For computational efficiency, the algorithm allows
the use of substructures. Their contribution to J0 can
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be determined by prior application of the algorithm
to each substructure, with all points of attach-
ment between the substructure and parent structure
clamped [12].

3 VICONOPT SOFTWARE

The VICONOPT software [13] incorporates the ear-
lier programs VIPASA (vibration and instability of
plate assemblies including shear and anisotropy) [19]
and VICON (VIPASA with constraints) [21]. It covers
elastic buckling, local postbuckling, and free vibra-
tion of prismatic plate assemblies, and provides an
efficient design tool for structural optimization. In
contrast to the conventional FEM, the software’s exact
strip analysis uses a transcendental stiffness matrix
derived from analytical solutions of the governing
differential equations of the component plates. For
any longitudinally invariant loading combination (of
longitudinal, transverse, in-plane shear, and pres-
sure loads), critical buckling loads, undamped natural
frequencies, and mode shapes can be found with
certainty, using procedures based on the Wittrick–
Williams algorithm [11, 12]. Typical sections that the
software can analyse, and a typical component plate
showing in-plane loading, are shown in Figs 1 and 2.
In the VIPASA analysis [19], the mode of buckling
or vibration is assumed to vary sinusoidally in the
longitudinal (x) direction, with a half-wavelength λ,
which divides exactly into the panel length �, so that
exact solutions are obtained for simply supported
isotropic and orthotropic panels without shear load-
ing. For panels that are anisotropic or loaded in
shear, the VICON analysis [21] couples such modes,

Fig. 1 Typical sections that VICONOPT can analyse

Fig. 2 Component plate, showing axis system and
in-plane loading

using Lagrangian multipliers to approximate the end
conditions.

4 LOCAL POSTBUCKLING ANALYSIS OF
AEROSPACE STRUCTURES

Aerospace structures such as longitudinally stiffened
panels can often carry loads far in excess of their
critical buckling loads. This postbuckling reserve of
strength is primarily because of stress redistributions
within the structure following buckling in a local
mode and, if allowed for in minimum mass design,
can make a valuable contribution to the overall effi-
ciency of such structures. However, with the onset of
buckling, the growth of the out-of-plane deflections
typically leads to significant stress redistributions
across the overall structure, and the stiffness of any
buckled component plates is reduced against fur-
ther compression. It is important to note that such
postbuckling behaviour is significantly influenced
by geometric imperfections such as manufacturing
faults.

An understanding of the postbuckling behaviour
of a structure is essential, in order to fully optimize
reserves by extending the design envelope as far as
possible into the postbuckling region. Early analy-
ses involved examination of the initial postbuckling
behaviour of structures to provide more accurate
estimates of critical loads for use in design. In the
early 1940s von Karman et al. [22–24] showed that
the large discrepancies between test and theory for
the buckling of particular types of shell structures
were because of their highly unstable postbuckling
behaviour and worked to obtain an indication of
the minimum load a structure could support in its
buckled state to act as a design load, which would
recognize this. In 1945, Koiter [25] elaborated the
modern theory of structural stability for continu-
ous elastic systems, which was further developed by
Budiansky [26] and then Thompson [27] who used
generalized coordinates to develop the general the-
ory for discrete systems. In each of these theories,
the emphasis was shifted to determine the maxi-
mum load, which could be supported by a structure
before buckling was triggered, and to relate this load
to the magnitude and forms of any imperfections
present. Interest in the initial postbuckling approach
increased significantly in the 1960s [28–31]. Since
then, many studies have been carried out to deter-
mine the postbuckling behaviour of particular struc-
tures and these are summarized in reviews [32–34].
Significant themes have been the sensitivity of struc-
tures to geometric imperfections and load eccen-
tricities [35, 36], coupled instabilities [37–40], mode
jumping [41, 42], and plasticity [43]. More recently,
this work has been extended to predict the behaviour
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much further into the postbuckling range in order
to extend the design envelope towards collapse and
to extend theory from homogeneous, metallic struc-
tures, to those made from newer materials such as
fibre composites [44–46].

This section describes a geometrically non-linear
procedure, which has been implemented within the
limitations of the software, for the local postbuck-
ling analysis of perfect or imperfect longitudinally
compressed prismatic plate assemblies [15]. Areas
of application will be outlined; fuller details being
available in the references provided.

4.1 Theory

The exact strip analysis and the Wittrick–Williams
algorithm presented in section 2 provide valuable
opportunities for the postbuckling analysis of plate
and shell structures. Using an iterative procedure, the
software permits determination of the ratio of post-
buckling to prebuckling axial stiffness K ∗/K and the
relationship between applied load P and the longitu-
dinal end-shortening strain εx well into the postbuck-
ling region. The overall accuracy of the postbuckling
results is improved [15] by taking into account the
stabilizing effects of the transverse tension developed
in the central portion of a plate whose longitudi-
nal edges are constrained to remain straight. The
analysis is based on the assumption that the panel
has simply supported ends, and buckles locally with
a half-wavelength λ, which divides exactly into the
panel length �. The method allows for prismatic plate
assemblies having a general cross-section. As illus-
trated in Fig. 3, a component plate of width b is divided
into ns longitudinal strips of equal width

bs = b
ns

(5)

The material properties can be either isotropic or
anisotropic, and a uniform thickness t is assumed
across each plate. The analysis optionally allows for
initial geometric shape imperfections with maximum
out-of-plane displacement γ0. Restricting attention

Fig. 3 Typical flat plate of width b, subdivided into ns

strips of width bs

to a single plate (for simplicity), the initial stress
resultants are calculated for each strip as

Nxs = NL = P
b

(6)

The iterative procedure of the non-linear analy-
sis consists of a predefined number of cycles, each
defined by a maximum out-of-plane displacement γ2.
At the start of each new cycle, γ2 is incremented by
a predefined amount. During each cycle, the applied
load P and the longitudinal end-shortening strain εx ,
which correspond to the displacement γ2, are deter-
mined. This process requires a number of iterations
for convergence, because of changes in the postbuck-
ling mode shape and the stress distributions across
the cross-section of the structure.

At the start of each iteration, the buckling load Pc

and mode shape (of amplitude γ2) for a perfect struc-
ture with the present stress distribution are found.
Imperfections are assumed to have the same shape
as the buckling mode but for an amplitude of γ0, so
that the applied load P for the imperfect structure is

P =
(

1 − γ0

γ2

)
Pc (7)

For the first iteration of the second and all sub-
sequent cycles, the buckling load, mode shape, and
applied load calculations are replaced by estimated
values, derived from the converged results from the
previous cycle.

The longitudinal strain due to the applied load P
is P/S1, where S1 is defined in terms of the in-plane
elastic properties Aij by

S1 = b
(

A11 − A2
12

A22

)
(8)

The longitudinal strain εx0 at the initial buckling load
Pc0 is thus given by

εx0 = Pc0

S1
(9)

For the plate shown in Fig. 4, the change in pro-
jected length of a linear element of length dx in the
longitudinal direction due to an out-of-plane dis-
placement w2 is given by (∂w2/∂x)2dx/2. The flexural
strain εFx due to bending of an imperfect plate with
half-wavelength λ is thus given, by considering the
difference between the final and initial projected
lengths, as

εFx = 1
2λ

∫ λ

0

[(
∂w2

∂x

)2

+
(

∂v2

∂x

)2

−
(

∂w0

∂x

)2

−
(

∂v0

∂x

)2
]

dx (10)
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Fig. 4 Cross-section of a part of a thin rectangular plate
having an initial imperfection w0 with maximum
value γ0: (a) unloaded; (b) loaded

The displacement v (in the global y-direction) has
been included in addition to w, to allow for the
arbitrary alignment of plates in a stiffened panel.

Assuming sinusoidal variations of the modal dis-
placements along any longitudinal line, so that

w2 = w̄2 sin(πx/λ) (11)

equation (10) can be evaluated to give

εFx =
(

π2

4λ2

)
(w̄2

2 + v̄2
2 − w̄2

0 − v̄2
0) (12)

the overbars denoting the amplitudes. The stress
resultant for flexure is then given by

NFx = εFx
S1

b
(13)

After buckling has occurred, stress redistribution
takes place in the plate, as illustrated in Fig. 5. The
average stress resultant is NL(=P/b). At the edges, the
stress resultant due to flexure is zero and the stress is
taken as S2 NL, where

S2 = 1 +
(

1
P

) ∑
s

(bsNFxs) (14)

and NFxs is taken as the mean of the values of NFx at
the two edges of strip s. The overall stress resultant Nxs

Fig. 5 Variation of stress resultants across a plate

Fig. 6 Variation of stresses in a simply supported square
plate whose longitudinal edges remain straight

in a strip is given by

Nxs = S2NL − NFxs (15)

and the end-shortening strain εx due to the applied
load and postbuckling mode is given by

εx = S2P
S1

(16)

Note that if the plate is supported so that the
longitudinal edges can move transversely but are
required to remain straight, a transverse stress dis-
tribution develops as shown in Fig. 6. Tension and
compression regions develop such that the resultant
transverse load, obtained by integrating the trans-
verse stress resultant along the length of the plate,
remains zero. Because the compression regions occur
close to the supported ends, while the tension region
occurs in the central portion where (∂w2/∂y) is large,
the transverse tension region proves to be the more
important and provides a net stabilizing effect to the
postbuckled plate. Taking such stabilizing effects into
account improves the accuracy of the postbuckling
analysis [15, 47].

Convergence within each cycle is based on finding
consistent estimates of P, εx , and Nxs. The ratios P/Pc0

and εx/εx0 from each cycle are plotted to determine
the ratio of postbuckling to prebuckling axial stiffness
K ∗/K .

Prior to the commencement of each new cycle, the
imperfection shape is altered to that of the latest con-
verged mode, representing the worst possible shape.
Although the amplitude of the imperfection remains
unaltered, the postbuckling mode is rescaled using
an increased value of γ2 for the maximum out-of-
plane displacement. An estimated buckling load is
then obtained by straight line extrapolation through
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the converged values of Pc and γ2 from the last two
cycles, and used in place of Pc in equation (7) to esti-
mate the applied load for the first iteration of the next
cycle.

4.2 Applications

The above procedure has been used for local post-
buckling analyses of isotropic and anisotropic, per-
fect and imperfect, longitudinally compressed, plates
and panels. Their convergence behaviour was stud-
ied, as were the effects of increasing transverse
tension, imperfection sizes, and buckling mode
changes [15, 47].

Given the regular geometry of typical aerospace
panels, it is often possible to divide the structure
into repeating portions of identical geometry and to
assume that these portions remain identically loaded.
Because of the repetitive nature of the overall struc-
ture, it is then sufficient to analyse just one of the
repeating portions. Case studies have been carried
out [15, 47, 48] for the postbuckling behaviour of
perfect isotropic and infinitely wide simply supported
panels (Fig. 7(a)), curved panels (Fig. 7(b)), and

Fig. 7 Typical applications for postbuckling analysis:
(a) cross-section of a perfect isotropic infinitely
wide panel with simply supported ends, show-
ing the local buckling mode, and dimensions of
a typical repeating portion (ABCA′); (b) curved
simply supported panel, showing repeating por-
tion and local buckling mode; and (c) longitudi-
nally stiffened cylindrical shell

longitudinally stiffened cylindrical shells (Fig. 7(c)).
Although good agreement was obtained with pre-
viously published results, there is evidence that for
some problems convergence can be impeded by
limited numerical accuracy of the buckling modes,
interaction between similar local modes and mode
jumping. Mode accuracy has been improved for two-
dimensional frame structures [49] by combining the
Wittrick–Williams algorithm with a recursive Newton
method involving inverse iteration, and it is planned
to extend these ideas to the mode calculations of the
postbuckling analysis. A preliminary study on mode
jumping [50] has provided useful insights, which will
lead to further analysis of advanced postbuckling
behaviour.

5 OPTIMIZATION OF AEROSPACE STRUCTURES

The main objective of aerospace structural optimiza-
tion is to design structures as light as possible without
jeopardizing any safety requirements, e.g. to satisfy
constraints on structural stability. Although the widely
used FEM is very versatile, allowing structures with a
wide range of loading and boundary conditions to be
analysed, it comes at a very high computational cost.
This is, particularly, the case when performing design
optimization, which requires many finite-element
analyses to be carried out.

The efficiency of such optimization tasks can be
dramatically improved if the analyses are instead
based on the exact strip method described in
section 2. For more than a decade the software [13]
has been used extensively [51] for the design of both
isotropic and anisotropic structural components,
such as aircraft wing panels. Possible design vari-
ables include the geometric dimensions of individual
component plates, as well as individual layer thick-
nesses and ply orientations in the case of composite
materials. Structures can be designed subject to initial
buckling, material strength, overall stiffness, and/or
geometric constraints, to provide minimum weight
or to minimize an alternative cost function [52].

The following subsections describe recent enhan-
cements to the design capability of the software,
including discrete optimization [16], discontinuous
cost functions [16], vibration constraints [53–55], and
multi-level optimization [18, 56]. A new optimization
strategy based on response surfaces has also been
explored [17].

5.1 Continuous optimization

The continuous design phase (CDP) is based on the
sizing strategy of steps 1–8 and 12 in Fig. 8. Any set
x = {xj , j = 1, . . . , n} of plate widths, layer thicknesses

Proc. IMechE Vol. 221 Part C: J. Mechanical Engineering Science JMES432 © IMechE 2007
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and ply orientations may be chosen as indepen-
dent design variables, while other dimensions may
be held fixed or linked to the design variables. Sizing
is performed (step 5) using the mathematical pro-
gramming optimizer CONMIN [57], together with a
stabilization (i.e. thickness factoring) procedure [51]
(steps 2 and 6), which achieves a just stable config-
uration. Move limits are adjusted intelligently by the
program (step 4). Because the stiffness matrix varies
transcendentally with the load factor, the buckling
sensitivities cannot easily be obtained analytically
and so are found (step 3) by an efficient estimation
technique [51].

Fig. 8 Panel design strategy showing the continuous
and discrete design phases

5.2 Discrete optimization

Steps 9 to 12 in Fig. 8 cover the extensions made
to the software in order to allow discrete optimiza-
tion. This new discrete design phase (DDP) [16] is
intended to provide rapid convergence on practical
panel configurations satisfying discrete manufactur-
ing constraints. It, therefore, follows the continuous
phase, using the final continuous design as a starting
configuration (xC, fC) having design variables xC and
objective function value fC. The DDP encompasses a
two-stage process for convergence to an adjacent fea-
sible discrete solution (x̂, f̂ ). The objective function f
to be minimized (e.g. panel mass) is here assumed to
vary monotonically with each of the discrete design
variables.

The first stage of the DDP uses a simple sequen-
tial rounding technique (SRT) to determine an initial
feasible discrete solution. The SRT is made up of a
sequence of three separate steps. The first step iden-
tifies all the d (�n) discrete design variables xDj ( j =
1, . . . , d) from x and rounds them from their continu-
ous values xCj down to their next lower discrete values
x−

Dj . The second step ranks the variables in descend-
ing order of the sensitivities of the objective function
with respect to each variable, by perturbing the vari-
able values in turn from x−

Dj to the next upper discrete
value x+

Dj . In the final step, the design configuration
is checked for stability following successive adjust-
ment of each discrete variable xDj in turn (according
to rank) from x−

Dj to x+
Dj . The adjustments are contin-

ued until the first stable configuration is achieved. The
design (x̂, f̂ ) thus obtained becomes an incumbent
upper bound solution (xU, f U) for the second stage of
the DDP. The continuous design (xC, fC) is made the
lower bound solution (xL, f L).

Once upper and lower bound solutions have been
established, the second stage of the DDP is entered.
This stage is based upon the binary enumeration
tree concept involving branching and fathoming of
nodes [58]. The nodes serve as intermediate steps to
achieving configurations in which the variables xDj

all take appropriate discrete values. From each node
at level j, two descendant nodes are generated at
which variable xDj is restricted to take the values x−

Dj

and x+
Dj , respectively. The complete discrete configu-

rations are only attained at level d of the enumeration
tree, yielding a combinatorial problem of size 2d .

The decision to branch from a typical node k is
subject to the outcome of a feasibility test. The test
requires the determination of lower ( f −

k ) and upper
( f +

k ) limits for the objective function value at descen-
dants of node k. The initial limits f −

0 and f +
0 are

calculated using the sensitivities found in the first
stage of the DDP; the limits are successively tight-
ened at subsequent levels as variables are fixed to
their discrete values x−

Dj and x+
Dj . The limits f −

k and
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f +
k are checked against the global bounds f L and

f U. Node branching is only continued if both (a)
f +

k � f L and (b) f −
k � f U. Otherwise, node k is aban-

doned as either (a) infeasible or (b) unable to improve
on the incumbent solution. Descendant configura-
tions of such fathomed nodes are thus implicitly
disregarded.

Each candidate design at level d is abandoned if f
exceeds the incumbent value f̂ . Otherwise the design
is checked for stability by a single iteration of the
Wittrick–Williams algorithm [11] and, if found to be
feasible (i.e. if J = 0 in equation (3)), becomes the
new incumbent solution (x̂, f̂ ). The enumeration pro-
cedure terminates when all outstanding nodes have
been branched on or abandoned, at which point
the incumbent design (x̂, f̂ ) is declared as the opti-
mal discrete solution of the problem adjacent to the
continuous solution (xC, fC) previously determined by
the CDP.

Important aerospace applications include the
design of metallic plate structures with a specified
discrete set of permissible plate thicknesses, and the
design of laminated composite structures, where each
layer must comprise an integer number of plies of
a standard thickness [59]. Illustrative examples [16]
demonstrate substantial mass savings over the sim-
ple expedient of rounding up of every discrete design
variable from its value at the continuous optimum to
the next permitted discrete value. A recent study [60]
has demonstrated the feasibility of continuing the
branching in pursuit of the global discrete opti-
mum solution. Areas for future work include the
discrete optimization problems associated with ply
angle selection and stacking sequence design.

5.3 Discontinuous cost functions

Next, an innovative approach is proposed, enabling
the software to solve optimization problems possess-
ing discontinuous cost functions, which may vary
non-monotonically with the design variables at the
discontinuities [16]. Any gradient-based optimizer
will clearly have difficulty in predicting objective
function values and slopes for design moves that
straddle such discontinuities. It has been estab-
lished that if the software is applied to such prob-
lems in the conventional way, the generation of
search directions within the linear optimizer is
severely compromised. As a result, the program
is unable to traverse the discontinuities intelli-
gently, thus preventing the location of an optimum
design.

The new strategy entails a systematic consideration
of the different regions of the design space separated
by the discontinuities in the cost functions. Parti-
tioning of the design space into regions is, in fact,

necessary to handle these discontinuities. The sug-
gested approach does not require the introduction of
a new optimization technique, but rather repeats the
existing strategy of the software over the different par-
titions of the design space. For simplicity the objec-
tive function is assumed to comprise discontinuous
‘stepped’ cost functions, each of a single ‘stepped’
design variable. The main features include classifi-
cation of the stepped cost function types, stepped
variable position checks and alteration of variable
limits, to be used in additional ‘CONMIN procedures’,
which each comprise a number of the CONMIN cycles
of steps 4 to 7 of Fig. 8.

Each sizing cycle commences with a CONMIN pro-
cedure (i.e. a number of CONMIN cycles) in which
moves are permitted throughout the design space,
i.e. the steps in the cost function are ignored. The
program automatically updates and retains the best
design it has encountered so far, which is assumed
to be locally optimal within its own region, i.e. a
step must be crossed in order to reach any better
solution. By calculating appropriate function values
and gradients, each of the stepped cost functions
is now classified according to whether each step
represents an increase or decrease in the function
value and whether the gradient is positive or negative
immediately above and below the step. By check-
ing the positions of the stepped variables against
this classification, it is possible to determine whether
a better solution can occur in any adjacent region.
If so, an additional CONMIN procedure is initiated,
in which the bounds of one of the stepped vari-
ables are adjusted so as to restrict attention to this
adjacent region. For example, to force a variable
upwards across a step, its lower bound is set to
the position of the step and its upper bound is set
to the user-specified upper bound, or to the posi-
tion of the next step in the cost function (if there
is one). Bounds for the remaining design variables
are set by the usual move limit calculations of step
4 of Fig. 8. The starting configuration for the addi-
tional CONMIN procedure is that of the best design
found so far, with the stepped variable shifted to
the bound at the step across which it has been
forced.

Further CONMIN procedures are performed to
ensure a search over all regions likely to contain
improving solutions, the best solution found over the
whole sizing cycle being retained. The optimization
process terminates if no further improvement is made
from one sizing cycle to the next, or if the difference
between the objective function values at the ends of
two consecutive sizing cycles is within a specified
tolerance.

The method has been evaluated by the optimization
of stiffened panels with arbitrary discontinuous cost
functions of varying complexity [16, 59].
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5.4 Optimization with vibration constraints

Previously, the optimization strategy of the soft-
ware [13] primarily considered buckling and mate-
rial strength constraints [51]. Fundamental natural
frequency constraints and frequency free band con-
straints have now been incorporated into this strategy.

As before, a stabilization procedure (steps 2 and
6 of Fig. 8) is used in conjunction with the lin-
ear optimizer to obtain a just feasible configuration.
However, in contrast to buckling design situations,
simply factoring the plate thicknesses does not ensure
that the fundamental natural frequency will shift
monotonically and rapidly. Thus a revised method
of stabilization is now used to guarantee accurate
convergence on a stabilized design having a funda-
mental natural frequency chosen by the designer. The
revised method factors both layer thicknesses and
the widths of the plates containing the layers (pro-
vided the widths have also been declared as design
variables). The amount by which each plate width is
factored is governed by the factor, which is applied to
each layer thickness until an upper or lower bound is
reached. If the total thickness of a plate is thus fac-
tored by F̄ then the plate width is factored by F̄ α,
where 0.1 � α � 0.4. This valid range of α has been
determined by analytical consideration of the effects
of thickness and width factoring for various modes of
vibration [53].

The above method of stabilization ensures mono-
tonic behaviour with respect to buckling, material
strength, overall stiffness, geometric, and fundamen-
tal natural frequency constraints. However, a fur-
ther important practical requirement is the creation
of frequency free bands [55] and such constraints
are ignored by the method thus far described. A
consequence is that, although the linear optimizer
attempts to move natural frequencies out of a band,
the stabilization procedure could force them back
into the band. Thus it is desirable that the linear
optimizer produces a design for which stabilization
requires minimal thickness and width factoring, and
where the frequencies have been shifted a reason-
able distance beyond the band limits specified by
the designer. The design move made by the opti-
mizer is guided by the sensitivities, which are defined
as approximate (and appropriately normalized) par-
tial derivatives of the natural frequency with respect
to the design variables. Typically some natural fre-
quencies will increase while others decrease. The
intention here is to force all natural frequencies ini-
tially in the lower half of the required band downwards
and to force those in the upper half upwards, while
also considering all other constraints and minimizing
mass.

In practise, more than one frequency free band con-
straint may be specified, and it may not always be
possible for the optimizer to locate a design where all

such constraints are satisfied. In such cases, a search
is employed to find other frequency free bands of
sufficient width that may be shifted into the posi-
tion of the specified band locations. Such bands
must always be shifted upwards to avoid violating
the fundamental frequency constraint. Mass is, there-
fore, added as though stabilization had been further
employed to obtain a design where the fundamen-
tal frequency constraint is not critical. Stabilization
is not an optimizing step, and a severe mass penalty
can be incurred if the optimizer does not easily find a
solution.

The strategic positioning of discrete scalar quan-
tities of mass on a structure’s surface has the ben-
eficial effect of forcing sound to be radiated less
efficiently [61]. Strategic point mass positioning could
also be used to shift natural frequencies away from
one or more forcing frequencies, although obtain-
ing an overall optimum design is dependent upon
the position of nodal lines of higher frequencies [62].
Ideally the optimal solution is to position the point
masses at the locations of greatest out-of-plane dis-
placement. This is not always possible since the
region above the intended frequency free band could
be of high spectral density, possibly involving fre-
quencies of different longitudinal and transverse
half-wavelengths.

The software can now produce an optimum design
with specified frequency free bands. However, if
the actual load and/or edge conditions are differ-
ent from those modelled, the structure’s stiffness will
inevitably change and thus frequencies will shift, per-
haps becoming unacceptably close to the forcing fre-
quency. In this case, non-load carrying point masses
could be added efficiently to redefine the band. The
software uses a variant of its Lagrangian multiplier
analysis to calculate the natural frequencies and
mode shapes of such structures [63].

Illustrative results have been obtained [16, 53–55]
for a range of stiffened panel examples including fun-
damental natural frequency and frequency free band
constraints.

5.5 Response surface optimization

Response surface methodology [64] comprises a
number of mathematical and statistical techniques
used to approximate the relationship between a
response (output) variable and a number of design
(input) variables.The intention is not to determine the
underlying physical relationships, but to approximate
them locally by fitting a multi-dimensional surface
through a discrete set of sampling points. Analytical
optimization of the surface then provides an approx-
imately optimal solution to the physical problem.
The methodology is commonly used in the pure and
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applied sciences, and is increasingly being applied to
structural optimization [65].

Figure 9 shows schematic contour plots of natu-
ral frequencies for an isotropic blade-stiffened panel
of aerospace proportions, for a range of values of
(non-dimensional) skin thickness t1 and stiffener
thickness t2. The plots were obtained [17] by inter-
polation through natural frequencies found by the
software [13] at the 36 grid points shown, and cover
local, overall and torsional modes of vibration. For the
local mode, the contour plot of Fig. 9(a) shows that
the natural frequency increases monotonically with
both t1 and t2. This plot appears to be quite suitable
for the gradient-based optimization of the software,
and closely resembles the corresponding plot of the
critical buckling load. In contrast, for the overall
and torsional modes represented by Figs 9(b) and
(c), respectively, there is non-monotonic behaviour,
which could cause serious difficulties in gradient-
based optimization.

Polynomial response surfaces were fitted to the data
of Fig. 9 using unweighted least squares regression.
For example, the coefficients c1, . . . , c6 for a quadratic
surface

F (t1, t2) = c1 + c2t1 + c3t2 + c4t 2
1 + c5t1t2 + c6t 2

2 (17)

were found by minimizing

n∑
i=1

[F (t1i, t2i) − fi]2 (18)

the sum of squares of the discrepancies between the
fitted function F (t1, t2) and the data values fi at the
n data points t1 = t1i, t2 = t2i (i = 1, . . . , n). Such a
quadratic response surface gave a good approxima-
tion to the actual behaviour of Fig. 9(a), while for
Figs 9(b) and (c), a cubic response surface was needed
to obtain appropriate accuracy.

A great advantage of using polynomial response
surface models to represent natural frequency con-
straints during structural optimization is that many
computationally intensive natural frequency calcu-
lations can be avoided. Indeed, the optimization
of the surface can be carried out independently of
the structural analysis software, and for the present
work this was performed using the Solver opti-
mizer of Microsoft Excel [66]. Illustrative results [17]
gave errors of the order of 1 per cent between the
actual natural frequencies and those predicted by the
response surface.

As a refinement, the ‘zooming’ strategy of Fig. 10
was adopted, using the software MATLAB [67], and
was shown [17] to improve accuracy by adding more
sampling points in the vicinity of the supposed opti-
mum. Further algorithmic refinements [64] are desir-
able for problems with larger numbers of design

Fig. 9 Schematic contour plots of natural frequen-
cies against non-dimensional skin thickness t1

and stiffener thickness t2 for a blade-stiffened
panel: (a) local mode; (b) overall mode; and (c)
torsional mode; the arrows denote increasing
natural frequencies

variables, so as to keep the number of sampling
points and polynomial coefficients in manageable
proportions. A similar approach has recently led to
increased understanding of the initial buckling of
aircraft wing spars under combined loading [68].
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Fig. 10 Illustration of ‘zooming’ strategy, showing
coarse, medium, and fine level grids over a
two-dimensional design space

5.6 Multi-level optimization

The software interface Viconopt MLO [18, 56] has
been developed for the multi-level optimization of
lightweight structures, such as composite aircraft
wings. By means of a robust and easy-to-use windows
interface, the software links one of the most widely
used finite element solvers, MSC/NASTRAN [69],
with the fast and efficient design capabilities of
the VICONOPT software [13]. MSC/NASTRAN mod-
els of entire plate assemblies are readily translated
into a panel format by Viconopt MLO. Using the
MSC/NASTRAN input file and initial results from
an existing finite-element model, panel optimization
models are generated for each of the component
plates (or assemblies thereof). Most of the soft-
ware’s existing analysis and design features have been
implemented in Viconopt MLO for user selection.

The iterative multi-level optimization process is
based on the interaction between models at the
MSC/NASTRAN andVICONOPT levels. These two lev-
els are commonly referred to as system level and
panel level, respectively. In the current version of
Viconopt MLO, design changes are only made at
panel level, and are automatically fed back into the
finite-element model at system level. Because of these
design changes the load carrying capacity of the over-
all structure is altered and stress redistributions must
be determined at the beginning of each new multi-
level optimization cycle. The panel level models are
then updated and the process is repeated until an
overall mass convergence criterion is met.

In addition to providing an interface for multi-
level optimization, Viconopt MLO is currently being
developed as a pre/postprocessor for conventional
panel level models. These can either be generated
from scratch or imported from system level models.
Where panel level models have been imported from
system level models, any additional parameters nec-
essary for a panel analysis or optimization can be
specified in Viconopt MLO. This approach completely

avoids the need for text input files to be generated
manually, so that models can be assembled, analysed
and optimized much more quickly and efficiently.

Figure 11 gives a detailed flowchart representation
of the multi-level optimization procedure adopted by
Viconopt MLO. It is important to note that the soft-
ware interfaces directly with MSC/NASTRAN, making
the procedures for the data transfer independent
of any pre/postprocessor used to generate the sys-
tem level model. The present implementation uses
MSC/PATRAN [70].

Once a MSC/NASTRAN model has been gener-
ated for the overall structure at system level, an
initial finite-element analysis is carried out in order to
determine the internal stress distribution across the

Fig. 11 Flowchart of multi-level optimization proce-
dure in Viconopt MLO
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structure. All the structural components that consti-
tute plates in a panel level model must be modelled as
plates at the system level and must be assigned their
individual property cards, so that all the model infor-
mation required to specify the optimization problem
at the panel level can be translated by the ‘NASTRAN
to VICONOPT’ converter in Viconopt MLO. Any addi-
tional parameters required to create the panel models
may be specified using the preprocessing capabilities
of Viconopt MLO.

When all the panel level models have been cre-
ated, Viconopt MLO automatically generates the
VICONOPT input files needed to analyse and optimize
each of the panels separately.

The next stage uses the ‘VICONOPT to NAS-
TRAN’ converter to feed all the design changes made
to the panels back into the original finite-element
model, which is subsequently re-analysed. A new sys-
tem level finite-element analysis is carried out, and
the stress redistributions resulting from the design
changes are determined. All the panel level mod-
els are updated and re-optimized. Viconopt MLO
repeats the above procedure until a final conver-
gence criterion on the overall mass of the structure
is satisfied (e.g. <1 per cent change in mass between
successive cycles).

A case study has been recently carried out for a com-
posite aircraft wing consisting of 12 panels, for which
a total of 144 design variables were defined. The multi-
level process showed good convergence behaviour, in
terms of both mass and stress redistribution following
the design changes [18, 71]. Although only relatively
simple problems have been solved to date, there is
potential for further development, including the pos-
sibility of links to alternative finite-element software
and specialist panel codes.

6 CONCLUSIONS

The exact strip approach provides an attractive alter-
native to the conventional FEM for the analysis of
a range of isotropic and anisotropic prismatic plate
assemblies, including typical aircraft wing and fuse-
lage panels. By using theWittrick–Williams algorithm,
structural eigenvalues, i.e. critical buckling loads, and
natural frequencies of free vibration, can be found
with certainty. This approach is central to the soft-
ware VICONOPT, in which the eigenvalue analysis
is coupled with gradient-based optimization tools to
minimize the structural mass (or an alternative cost
function).

Recent analytical developments to the software
include the extension of the critical buckling analysis
into the initial local postbuckling range. The conse-
quent non-uniform longitudinal stress distribution is
approximated by dividing each component plate into

strips, whereas the transverse stress is modelled by
introducing an empirical tension factor.

The continuous optimum design capability of the
software has been extended by adjusting the opti-
mal values of the design variables to adjacent discrete
values, e.g. in order to satisfy manufacturing require-
ments for composites where each layer thickness
must be an integer multiple of a standard ply thick-
ness. The adjustments are made locally, by sequential
rounding and binary branching, after the continuous
optimization and they incur a relatively small mass
penalty.

Other optimum design developments include
special algorithms to handle discontinuous cost
functions, as well as constraints on the fundamen-
tal natural frequency and the removal of all nat-
ural frequencies from specified frequency bands.
Optimization has also been performed efficiently
by approximating the constraints using response
surfaces.

Finally, VICONOPT has been linked with the finite-
element software MSC/NASTRAN to form a powerful
tool for the multi-level optimization of a complete
aircraft wing.
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APPENDIX

Notation
Aij in-plane elastic properties
b, bs width of plate, longitudinal strip
c1, . . . , c6 response surface coefficients
d number of discrete design variables
dx length of linear element
D vector of global displacements

Proc. IMechE Vol. 221 Part C: J. Mechanical Engineering Science JMES432 © IMechE 2007

 at Cardiff University on April 4, 2012pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


Recent developments in exact strip analysis 413

f objective function
f −

k , f +
k lower and upper objective func-

tion value limits at descendants of
node k

F load factor
F (t1, t2) polynomial response surface
F̄ , F̄ α total plate thickness factor, plate

breadth thickness factor
j, k enumeration tree level, node
J number of eigenvalues lying

between zero and a trial value
Jm number of eigenvalues lying

between zero and a trial value for a
constituent member of a structure
with its ends clamped

J0 value of J when the components
of the displacement vector corre-
sponding to K are clamped

km member stiffness matrix
K global stiffness matrix
K , K ∗ prebuckling, postbuckling axial

stiffness
K� upper triangular matrix obtained

by applying conventional Gauss
elimination to K

� element length
n number of design variables, num-

ber of data points
ns number of longitudinal strips of a

component plate
NFx, NFxs stress resultant for flexure of a com-

ponent plate, plate strip
NL, NT, NS longitudinal, transverse, shear in-

plane loading components
Nxs initial strip stress resultant
P vector of global perturbation forces
P, Pc applied load, buckling load
Pc0 initial value of Pc

s{K} sign count of K, calculated as the
number of negative elements on
the leading diagonal of K�

S1, S2 see equations (8) and (14)
t component plate thickness
t1, t2 skin, stiffener thicknesses

v0, v2 initial and subsequent out-of-
plane displacements in the global
y direction

v̄0, v̄2 amplitudes of out-of-plane
displacement in the global y
direction

w0, w2 initial and subsequent out-of-
plane displacements in the global
z direction

w̄0, w̄2 amplitudes of out-of-plane dis-
placement in the global z direction

x, y, z global coordinate axes
x = {xj} vector of independent design vari-

ables
x̂, f̂ feasible discrete design solution

(design variable values, objective
function value)

xC, fC starting configuration for DDP
(final continuous design, objective
function value)

xCj initial continuous values of dis-
crete design variables xDj

xDj discrete design variables (j =
1, . . . , d)

x−
Dj , x+

Dj nearest lower, upper discrete
design variable values

xL, f L lower bound solution (design vari-
able values, objective function
value)

xU, f U upper bound solution (design
variable values, objective function
value)

γ0 maximum out-of-plane displace-
ment because of initial imperfec-
tion

γ2 maximum out-of-plane displace-
ment allowed per postbuckling
analysis cycle

εFx, εx flexural strain, longitudinal end
shortening strain

εx0 initial value of εx

λ half-wavelength
ω frequency
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