
Performance Analysis of a Hybrid MPI/OpenMP
Application on Multi-core Clusters

Martin J. Chorleya, David W. Walkera

aSchool of Computer Science and Informatics, Cardiff University, Cardiff, UK

Abstract

The mixing of shared memory and message passing programming models
within a single application has often been suggested as a method for improving
scientific application performance on clusters of shared memory or multi-core
systems. DL POLY, a large scale Molecular Dynamics application programmed
using message passing programming, has been modified to add a layer of shared
memory threading and the performance analysed on two multi-core clusters. At
lower processor numbers, the extra overheads from shared memory threading in
the hybrid code outweigh performance benefits gained over the pure MPI code.
On larger core counts the hybrid model performs better than pure MPI, with
reduced communication time decreasing the overall runtime.

Keywords: multi-core, hybrid programming, message passing, shared memory

1. Introduction

The cluster architecture currently dominates the field of High Performance
Computing (HPC). The Top 500 (http://www.top500.org) ranking of world
supercomputers in November 2002 showed 18.6 percent of the list were classified
as having a cluster architecture. By the November 2009 list, this percentage
had grown to 83.4 percent. Multi-core processors are also more popular, with
almost all of the Top 500 systems in November 2009 containing processors with
a multi-core architecture.

These multi-core clusters represent a change in hardware architecture from
previous generations of HPC systems, which were typically either symmetric
multi-processors (SMP shared memory systems) or clusters of single core nodes.
Multi-core clusters may be considered to be a blend of both these previous gen-
erations of HPC architectures. As the number of processing cores within a node
increases the nodes begin to resemble SMP machines, where identical processors
all share access to a large global memory. However, across the whole cluster the
architecture retains the characteristics of a distributed memory machine, where

Email addresses: m.j.chorley@cs.cf.ac.uk (Martin J. Chorley),
d.w.walker@cs.cf.ac.uk (David W. Walker)

Preprint submitted to Journal of Computational Science May 20, 2010



the memory is distributed between the individual nodes of the system. It is im-
portant to make the distinction between individual multi-core nodes and SMP
systems. Multi-core processors often involve some level of cache sharing, which
can have performance implications for parallel codes [1].

With this change in hardware architecture there is a need to assess applica-
tion performance and the programming models used within parallel applications
to ensure maximum efficiency is being achieved from current HPC codes and
systems.

1.1. Hybrid Parallel Programming

MPI [2] is the de facto standard for message passing parallel programming,
offering a standard library interface that promotes portability of parallel code
whilst allowing vendors to optimise communication code to suit particular hard-
ware. OpenMP [3] is the de facto standard for shared memory parallel program-
ming, offering a simple yet powerful method of specifying work sharing between
threads. Compiler directives are used to allow the programmer to specify where
parallelism should occur while leaving low level implementation to the compiler.
The mixing of shared memory and message passing programming has been sug-
gested many times as a method for programming applications on multi-core
clusters. Combining MPI and OpenMP to create hybrid message passing and
shared memory applications is a logical step when using multi-core clusters.

1.2. Previous Work

Although the combining of message passing and shared memory program-
ming models is often suggested as a method for improving application perfor-
mance on clusters of shared memory systems, a consensus to its effectiveness
has not been reached.

Cappello and Etiemble have compared a hybrid MPI/OpenMP version of the
NAS benchmarks with the pure MPI versions [4], and found that performance
depends on several parameters such as memory access patterns and hardware
performance. Henty considers the specific case of a Discrete Element Modelling
code in [5], finding that the OpenMP overheads result in the pure MPI code
outperforming the hybrid code, and that the fine-grain parallelism required
by the hybrid model results in poorer performance than in a pure OpenMP
code. In [6], Smith and Bull find that in certain situations the hybrid model
can offer better performance than pure MPI codes, but that it is not ideal for
all applications. Lusk and Chan have examined the interactions between MPI
processes and OpenMP threads in [7], and illustrate a tool that may be used to
examine the operation of a hybrid application. Jost et al. also look at one of
the NAS parallel benchmarks [8], finding that the hybrid model has benefits on
slower connection fabrics. A well known example of a hybrid MPI and OpenMP
code is the plane wave Car Parrinello code, CPMD [9]. The code has been
extensively used in the study of material properties, and has been parallelised
in a hybrid fashion based on a distributed-memory coarse-grain algorithm with
the addition of loop level parallelism using OpenMP compiler directives and

2



multi-threaded libraries (BLAS and FFT). Good performance of the code has
been achieved on distributed computers with shared memory nodes and several
thousands of CPUs [10, 11].

Recently the hybrid model has also been discussed on clusters of multi-core
nodes [12, 13]. The use of the hybrid model on multi-core clusters, and the
performance of the model on such systems has been looked at in general terms
with different test tools and performance models. Adhianto and Chapman have
considered factors affecting performance of the hybrid model in [14] during the
creation of a general performance model for such codes. Thakur and Gropp [15]
discuss a test suite that enables the study of the cost of supporting thread safety
in MPI implementations, and notice that a slower interconnect “masks some of
the overhead of maintaining thread safety”. Rabenseifner et al. [12] look at the
problems associated with trying to match hybrid model parallelism to multi-core
cluster architecture and examine the performance of different methods of hybrid
implementations. Bull et al. describe a microbenchmark suite for analysing
hybrid code performance and present results of the suite in [13]. In [16] Brunst
and Mohr describe the profiling of hybrid codes with Vampir NG.

1.3. Contribution

The work in this paper examines the performance of a real world scientific
molecular dynamics code, DL POLY, under hybrid parallelisation on current
production HPC multi-core clusters. Much of the previous work on the hybrid
model has been focused on SMP systems or clusters of SMP systems; it is only
recently that multi-core clusters have begun to be examined. While multi-core
systems share characteristics with SMP systems, there are important differences
that make the examination of the hybrid model on these systems a novel di-
rection. Many studies choose to look at the performance of benchmark suites
when considering programming model or hardware performance. These suites
give a good overall picture of system performance, but do not tell us how specific
large scale applications will perform on such systems. This work focuses on the
performance of one large scale application: DL POLY. It also examines two dif-
ferent multi-core clusters with differing characteristics and considers the effect
the choice of communication interconnect has on the hybrid model performance.

1.4. Structure

The application used for this performance study is described in Section 2.
The hardware and methodoly used for testing are described in Section 3, while
performance results and analysis are presented in Section 4. Finally, conclusions
are given in Section 5.

2. Hybrid Application

DL POLY 3.0 is a general purpose serial and parallel molecular dynamics
simulation package developed at Daresbury Laboratory [17]. This version of the

3



application uses domain decomposition to parallelise the code and is suitable
for large scale simulations on production HPC systems.

As with typical parallel molecular dynamics applications a simulation run is
characterised by a repeating pattern of communication and forces calculations
during each time step of the simulation. Processes carry out force and other
calculations on their respective portions of the data domain, and then commu-
nicate the necessary data in order to carry out the next step of the simulation.
Communication phases typically send and receive boundary data to and from
neighbouring processes, migrate particles from one process to another and col-
lectively sum contributions to system characteristics such as energy and stress
potentials.

DL POLY is a large scale application, written in Fortran 90, capable of
a wide range of functionality. As such it contains many routines specifically
for carrying out calculations for particular scenarios. The hybrid version of the
application was created by modifying those functions and routines that were ex-
ercised by specific test cases. Test cases 10, 20 and 30 were used for performance
analysis. Test case 10 simulates 343,000 SiC atoms with a Tersoff potential [18],
Test case 20 simulates 256,000 Cu3Au atoms with a Gupta potential [19]. Test
case 30 simulates 250,000 Fe atoms with a Finnis-Sinclair potential [20]. These
test cases are some of the larger of the provided test cases, which demonstrated
acceptable scaling during initial testing.

2.1. Hybrid Version

The hybrid version of DL POLY was created by adding OpenMP directives
into the existing message passing source code. Analysis of the original code
demonstrated that the test cases chosen for performance testing exercise the
tersoff_forces (Test 10 only) and two_body_forces (Test 10, 20 and 30)
routines primarily; these routines (and sub-routines called from within) were
therefore taken as the focus of the hybrid parallelisation. These routines have
a structure that includes a loop over all atoms in the system; this is the main
work loop of the routine, and the part of the code taking the most runtime.
It is this loop that is parallelised using OpenMP in order to create the hybrid
code. A parallel region is started before the main work loop to allow each
thread to allocate its own temporary arrays to be used in the forces calculation.
omp reduction clauses are used to synchronise and sum contributions to the
data values common to all threads such as energy and stress values. All MPI
communication occurs outside of the OpenMP parallel regions as in a master
only [21] style of hybrid code. The application can therefore be used without
any specific support for multi-threading in the MPI library.

There are several differences in the operation of the pure MPI and the hy-
brid MPI and OpenMP code. Firstly, the hybrid code adds an extra layer of
overheads to the molecular dynamics simulation, as with each time step a set of
threads must be forked, synchronised and joined for each MPI process. These
overheads are not present in the pure MPI code. Secondly, the communication
profile of the hybrid code is changed from that of the MPI code. In the hy-
brid code there are in general fewer messages being sent between nodes, but

4



the individual messages themselves are larger. Collective communication is also
carried out between relatively fewer processes than in the pure MPI code run-
ning on the same number of cores. Thirdly, some sections of code have a smaller
level of parallelism in the hybrid code as they lie outside the parallel region of
shared memory threading. These differences are considered in the analysis of
performance results (Section 4).

2.2. Instrumentation

The code has been instrumented in order to gain detailed information about
the timing of certain parts of the application. In particular the routines respon-
sible for carrying out MPI communication have been timed so that data may
be collected on the communication profile of the code; the time spent carry-
ing out point-to-point communication and collective communication has been
recorded. Code both inside and outside the molecular dynamics simulation has
been differentiated, allowing us to examine the overall application performance
as well as the performance of the molecular dynamics simulation itself without
the start up and IO overheads. The code has also been profiled using Intel Trace
Collector and Analyzer to gather statistics on MPI communication.

3. Performance Testing

The code has been performance tested on two modern multi-core clusters:
Merlin, a production HPC cluster, and Stella, an experimental benchmarking
cluster.

3.0.1. Merlin

Merlin is the main HPC cluster at the Advanced Research Computing facility
at Cardiff University (ARCCA). It is comprised of 256 compute nodes linked
by a 20GB/s Infiniband interconnect. Each node contains two quad-core Intel
Xeon E5472 Harpertown processors with a clock speed of 3.0GHz and 16.0GB
RAM. The interconnect has a 1.8 microsecond latency and each node has one
Infiniband connection. The system software is Red Hat Enterprise Linux 5, with
version 11 of the Intel compilers used for compilation of code. Bull MPI 2-1.7
is the MPI library used.

3.0.2. Stella

Stella is a test cluster provided by Intel consisting of 16 nodes linked by
a 10 Gigabit Ethernet communication network. Each node has two quad-core
Intel Nehalem processors running at 2.93Ghz (giving a total of 128 cores for
the whole system), and 24 Gigabytes of DDR3 memory. The communication
network is linked with an Arista 7124S switch. The software stack is again based
on Red Hat Enterprise Linux 5, with version 11 of the Intel compilers used for
compilation and the Intel MPI library used for running the parallel code.

5



(a) MPI (b) Hybrid 1 (c) Hybrid 2

Figure 1: MPI and Hybrid versions

3.1. Methodolody

The code has been tested using three of the supplied DL POLY test cases,
which exercise the specific parts of the code modified in this work. As in-
put/output performance is not of interest here, the DL POLY code was modi-
fied to remove unnecessary input and output (such as the printing of statistics
during simulations) and the test cases were modified to remove keywords relat-
ing to the creation of large output files. Each test was run three times on a
range of core counts, and the fastest time of each run was used for comparison.

When running the performance tests a number of MPI processes were started
on each node and the OMP_NUM_THREADS environment variable used to spawn the
correct number of threads to use the rest of the cores in the node, giving (MPI
processes)×(OpenMP threads) cores used per node. Each simulation size and
processor core count was tested with three combinations of MPI processes and
OpenMP threads, as illustrated in Fig. 1 (showing each case running on a node
with four cores) and described below:

1. MPI - One MPI process started for each core in a node, no OpenMP
threads: (Figure 1(a))

2. Hybrid 1 - One MPI process started on each node, all other cores filled
with OpenMP threads: (Figure 1(b))

3. Hybrid 2 - Two MPI processes started on each node, all other cores filled
with OpenMP threads: (Figure 1(c))

4. Results

As with our previous work using a simpler molecular dynamics code [22]
the performance results show an overall pattern linking the performance of the
hybrid code, the problem size and the number of processor cores used. At low
processor counts, the pure MPI code outperforms the hybrid code, due to the
extra overheads introduced in the OpenMP parallelisation. At higher processor
numbers the hybrid code performs better than the pure MPI code, as com-
munication becomes more of a limiting factor to performance and the reduced
communication times of the hybrid code result in a better overall performance.

6



1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256 512

Sp
e
e
d
u
p

Cores

Pure MPI (Merlin)
Hybrid (1 MPI) (Merlin)
Hybrid (2 MPI) (Merlin)
Pure MPI (Stella)
Hybrid (1 MPI) (Stella)
Hybrid (2 MPI) (Stella)
Linear

Figure 2: Speedup, Test 10

The previous work with a simpler molecular dynamics code did not show
any benefit to the hybrid model on an Infiniband connection; benefits were only
seen on slower interconnects. The results from the more complex DL POLY
application do show a benefit to using the hybrid code at high core counts, even
on a fast low latency interconnect such as the Infiniband connection on Merlin.
We also see that the hybrid model delivers performance benefits on the slower
10GigE connection on Stella, achieving better performance than the pure MPI
code on lower processor core numbers than on Merlin.

4.1. Overall Timing

Figures 2 and 3 show the speedup for Test 10 and Test 20 on both clusters.
For Test 10 the code scales very well up to 128 cores on Stella and 512 cores
on Merlin, scaling better than linearly in some cases. From this plot it can be
seen that the hybrid code scales better than the pure MPI at the upper limits
of the core counts for both clusters. Test 20 exhibits much worse scaling than
Test 10, but still shows the hybrid codes outperforming the pure MPI codes at
higher core counts for both clusters.

Table 1 shows the total times for all three tests at all processor core counts
on both Merlin and Stella. All three test cases exhibit the behaviour described
above, with MPI performing best at lower processor numbers, and hybrid per-
forming best at higher core counts. The point where the hybrid performance
improves beyond that of pure MPI is not static.

In order to understand the performance difference between the hybrid and
pure MPI codes it is necessary to examine the factors influencing the hybrid

7



Merlin Stella
Pure MPI Pure MPI

Cores Test 10 Test 20 Test 30 Test 10 Test 20 Test 30
1 4117.78 244.861 420.727 3570.254 991.268 950.12
8 254.748 347.812 622.872 237.962 280.127 637.684

16 115.048 184.933 320.848 89.495 153.123 358.943
32 59.892 113.086 210.053 45.889 86.251 213.152
64 33.461 61.883 117.93 38.61 61.098 162.447

128 22.699 43.381 101.383 28.914 42.137 137.836
256 17.023 36.599 77.58
512 14.742 29.822 130.05

Hybrid (1 MPI) Hybrid (1 MPI)
Cores Test 10 Test 20 Test 30 Test 10 Test 20 Test 30

1 4117.78 244.861 420.727 3570.254 991.268 950.12
8 889.514 413.678 756.38 1558.429 341.197 901.38

16 301.109 293.243 581.246 377.229 237.64 577.69
32 116.428 154.874 297.767 124.379 124.857 280.447
64 53.58 82.141 150.113 43.615 61.447 159.069

128 28.533 51.052 90.144 20.536 39.309 110.959
256 17.146 32.339 54.108
512 12.014 20.681 32.545

Hybrid (2 MPI) Hybrid (2 MPI)
Cores Test 10 Test 20 Test 30 Test 10 Test 20 Test 30

1 4117.78 244.861 420.727 3570.254 991.268 950.12
8 509.274 420.914 845.346 723.777 356.974 820.162

16 188.618 229.697 424.977 217.888 186.295 417.888
32 81.588 123.048 229.781 71.049 94.837 228.779
64 41.264 71.296 144.279 31.127 55.938 162.962

128 23.98 46.088 92.674 17.385 36.181 117.978
256 16.575 31.25 61.295
512 12.776 27.341 52.545

Table 1: Overall Timing Results, Stella and Merlin

8



1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256 512

Sp
e
e
d
u
p

Cores

Pure MPI (Merlin)

Hybrid (1 MPI) (Merlin)

Hybrid (2 MPI) (Merlin)

Pure MPI (Stella)

Hybrid (1 MPI) (Stella)

Hybrid (2 MPI) (Stella)

Linear

Figure 3: Speedup, Test 20

code performance:

1. Communication Profile. The changes to the communication profile
of the code may have a large effect on performance, as the number of
MPI processes is greatly reduced when running the hybrid code. Message
numbers and sizes will therefore be different between the two codes, so the
communication sections of code will perform in a different manner. This
difference is examined in Section 4.2.

2. OpenMP Related Overheads. The extra overheads introduced by
shared memory threading may be direct or indirect. Direct overheads
are a result of the OpenMP implementation and include time taken to
fork/join threads, carry out reduction operations etc. Indirect overheads
are not caused by OpenMP itself. For instance, some parts of the code
are run in serial on one node in the hybrid version as they are outside
the parallel region, where they would be run in parallel in the pure MPI
version. The use of OpenMP can also cause the compiler to refrain from
carrying out loop transformations and optimisations that would improve
performance [23]. These overheads are examined in Section 4.3.

4.2. Communication Profile

Simple statistics collection from the code illustrates the difference between
the communication profiles of the hybrid and the pure MPI code. Figure 4 shows
the average data transferred per process per time step and the total amount of
data transferred between all processes per time step for Test 20. The general

9



100

1,000

10,000

100,000

32 64 128 256

D
at

a 
Tr

an
sf

e
rr

e
d

 p
e

r 
Ti

m
e

st
e

p
 (

b
yt

e
s)

Cores

Hybrid (1 MPI) Average per Process
Hybrid (2 MPI) Average per Process
Pure MPI Average per Process
Hybrid (1 MPI) Total
Hybrid (2 MPI) Total
Pure MPI Total

Figure 4: Communication Profile, Test 20

pattern revealed is that the average amount of data transferred per MPI process
is higher in the hybrid code, while the total amount of data transferred is larger
in the MPI code. The communication profile could be generalised by saying
that the hybrid code has fewer large messages per timestep while the pure MPI
code has more smaller messages per timestep. The ability of the interconnection
network of a cluster to handle multiple small messages or fewer larger messages
will therefore have an effect on the performance of the hybrid code relative to
the pure MPI code.

Examining the time spent carrying out communication shows the empirical
difference between the communication profile of the hybrid and pure MPI codes.
The total communication time for Test 30 (Fig. 5) on Merlin illustrates that the
total time spent in communication reduces for the hybrid codes as the number of
cores increases, while it remains relatively constant for the pure MPI code. On
the 10 GigE connection on Stella the total communication time has an overall
upward trend for both hybrid and pure MPI codes, but remains consistently
lower for the hybrid (1 MPI) code.

Looking at the time spent carrying out communication as a percentage of
run time illustrates further the difference in communication pattern between
the MPI and hybrid codes. Figure 6 shows these results for Test 10 on both
clusters. It is clear that the communication as a percentage of total runtime is
much lower in the hybrid code at higher core counts on both clusters.

We can also break down the communication to see the difference between
collective communication, point-to-point communication and barrier synchroni-
sation time. The time spent in MPI_BARRIER synchronisation is not a large part

10



0.001

0.010

0.100

1.000

10.000

100.000

1000.000

8 16 32 64 128 256 512

Ti
m

e
 (

Se
co

n
d

s)

Cores

Pure MPI (Merlin)

Hybrid (1 MPI) (Merlin)

Hybrid (2 MPI) (Merlin)

Pure MPI (Stella)

Hybrid (1 MPI) (Stella)

Hybrid (2 MPI) (Stella)

Figure 5: Communication Time, Test 30, Merlin and Stella

0

5

10

15

20

25

30

35

40

45

8 16 32 64 128 256 512

P
e
rc
e
n
ta
ge

Cores

Pure MPI (Merlin)

Hybrid (1 MPI) (Merlin)

Hybrid(2 MPI) (Merlin)

Pure MPI (Stella)

Hybrid (1 MPI) (Stella)

Hybrid (2 MPI) (Stella)

Figure 6: Communication Time as percentage of Total Time, Test 10

11



0.001

0.01

0.1

1

10

8 16 32 64 128 256 512

Ti
m

e
 (

Se
o

n
d

s)

Cores

Pure MPI (Stella)

Hybrid (1 MPI) (Stella)

Hybrid (2 MPI) (Stella)

Pure (MPI) Merlin

Hybrid (1 MPI) (Merlin)

Hybrid (2 MPI) (Merlin)

Figure 7: Synchronisation Time, Test 10

of the total runtime for either the pure MPI or hybrid codes, but examining the
timings (Fig. 7) shows that the hybrid code performs much better on the slower
10 GigE connection than the pure MPI code, as may be expected due to the
smaller number of MPI processes. This is especially true at 64 and 128 cores.
Over the faster Infiniband connection on Merlin there is less difference between
the codes, but in general the hybrid code performs better here too.

The time spent carrying out collective communication (Fig. 8 shows Test 20
results on Merlin and Stella) folows a similar pattern to that of the synchroni-
sation time. The hybrid code spends far less time on collective communication
than the pure MPI code above 64 cores on Merlin and 32 cores on Stella, while
the pure MPI code performs better below those counts. Again, this is largely
due to the reduced number of MPI processes in the hybrid code,

A different pattern is seen in the point-to-point communication time (Test
30 results shown in Fig. 9). Here we see that the hybrid code spends less time
on point-to-point communication than the pure MPI code even at lower core
numbers.

4.3. Threading Overheads

We can gain an understanding of the direct and indirect overhead introduced
by the shared memory threading by looking at the difference in runtime of the
main work loops in both the pure MPI and hybrid codes. Looking at the
runtime of the main work loop in the two_body_forces routine, we can take
the pure MPI time as a baseline, and examine the difference between that and
the hybrid code runtime to get an understanding of the overheads that result

12



1

10

100

8 16 32 64 128 256 512

Ti
m

e
 (

Se
co

n
d

s)

Cores

Pure MPI (Merlin)
Hybrid (1 MPI) (Merlin)
Hybrid (2 MPI) (Merlin)
Pure MPI (Stella)
Hybrid (1 MPI) (Stella)
Hybrid (2 MPI) (Stella)

Figure 8: Collective Communication Time, Test 20, Merlin and Stella

0

2

4

6

8

10

12

14

16

18

8 16 32 64 128 256 512

Ti
m

e
 (

Se
co

n
d

s)

Cores

Pure MPI (Stella)
Hybrid (1 MPI) (Stella)
Hybrid (2 MPI) (Stella)
Pure MPI (Merlin)
Hybrid (1 MPI) (Merlin)
Hybrid (2 MPI) (Merlin)

Figure 9: Point to Point Communication Time, Test 30, Merlin and Stella

13



-2

0

2

4

6

8

10

12

14

16

8 16 32 64 128 256 512

D
if

fe
re

n
ce

 f
ro

m
 P

u
re

 M
P

I c
o

d
e

 (
Se

co
n

d
s)

Cores

Hybrid (1 MPI) diff (Test 20) Stella
Hybrid (2 MPI) diff (Test 20) Stella
Hybrid (1 MPI) diff (Test 30) Stella
Hybrid (2 MPI) diff (Test 30) Stella
Hybrid (1 MPI) diff (Test 20) Merlin
Hybrid (2 MPI) diff (Test 20) Merlin
Hybrid (1 MPI) diff (Test 30) Merlin
Hybrid (2 MPI) diff (Test 30) Merlin

Figure 10: two body forces Loop Timing, Test 20 and 30

directly from the shared memory threading of the loop compared to the pure
MPI parallelisation (Figure 10). It is apparent that while the overheads are
quite large on small numbers of cores, they shrink considerably as the code is
run on larger numbers of cores. These overheads are therefore less of an issue at
the large core counts, where the better performance of the hybrid code is seen.

We can look at the performance of an individual routine that has been
mostly parallelised in the hybrid version. The metal_ld_compute routine is
called from within the two_body_forces routine, and contains two loops that
have been parallelised with OpenMP and some global communication. Again,
we take the pure MPI timing as a baseline and calculate the difference between
that and the hybrid code runtime (Fig. 11). Here we see a different pattern to
that observed previously - namely that the hybrid code outperforms the pure
MPI at a higher core count on Merlin, but not Stella. On Stella the hybrid
code outperforms the pure MPI in two instances (Hybrid (2 MPI) Test 20 at 32
cores, and Hybrid (1 MPI) Test 30 at 128 cores), but otherwise the pure MPI
code performs better. On Merlin, the hybrid code performs better for Test 30
after 32 cores, and for Test 20 after 128 cores.

5. Conclusions and Future Work

We have modified the parallel molecular dynamics application DL POLY
3.0 to create a hybrid message passing and shared memory version by adding
OpenMP into the already existing MPI code. This code was tested on two
multi-core clusters.

14



-15

-10

-5

0

5

10

15

20

25

8 16 32 64 128 256 512

D
if

fe
re

n
ce

 f
ro

m
 P

u
re

 M
P

I c
o

d
e

 (
Se

co
n

d
s)

Cores

Hybrid (1 MPI) diff (Test 20) Stella
Hybrid (2 MPI) diff (Test 20) Stella
Hybrid (1 MPI) diff (Test 30) Stella
Hybrid (2 MPI) diff (Test 30) Stella
Hybrid (1 MPI) diff (Test 20) Merlin
Hybrid (2 MPI) diff (Test 20) Merlin
Hybrid (1 MPI) diff (Test 30) Merlin
Hybrid (2 MPI) diff (Test 30) Merlin

Figure 11: metal ld compute Timing, Test 20 & 30

Performance analysis of the hybrid DL POLY code shows that at smaller
core numbers on both systems the pure MPI code outperformed the hybrid
message passing and shared memory code. The slower performance of the hy-
brid code at low core numbers is due to the extra overheads from the shared
memory implementation, and the lack of any significant benefit from a reduced
communication profile. For more cores on both systems, the hybrid code deliv-
ered better performance. In general the hybrid code spends less time carrying
out communication than the pure MPI code, performing better at point to point
communication at all core counts, and collective communication at higher core
counts. This reduced communication is the main driver for performance im-
provements in the hybrid code. At low core counts the added overheads from
OpenMP parallelisation reduce the hybrid code performance, but the effects of
these overheads lessen as the number of cores increases.

The choice of system interconnect has an effect on the performance of the
hybrid code when compared to the pure MPI code. Using a fast Infiniband
interconnect the pure MPI code outperforms the hybrid up to a larger number
of cores than when using a slower 10 GigE interconnect.

In order to understand the hybrid shared memory and message passing model
further, investigation needs to be carried out to examine the effect the hybrid
model has on other large scale applications in other computational science do-
mains.

15



Acknowledgements

Thanks to ARCCA and Martyn Guest for access to cluster resources and
their help and advice, and to William Smith and Ilian Todorov at Daresbury
Laboratory for their assistance with the DL POLY code.

References

[1] S. Alam, P. Agarwal, S. Hampton, J. Vetter, Impact of Multicores
on Large-Scale Molecular Dynamics Simulations, 2008 IEEE Interna-
tional Symposium on Parallel and Distributed Processing (2008) 1–
7.doi:10.1109/IPDPS.2008.4536181.

[2] Message Passing Interface Forum, MPI: A message-passing interface stan-
dard, International Journal of Supercomputer Applications 8 (3&4) (1994)
159–416.

[3] OpenMP Architecture Review Board, OpenMP Application Program In-
terface Version 2 (2005).

[4] F. Cappello, D. Etiemble, MPI versus MPI+ OpenMP on the IBM SP for
the NAS Benchmarks, in: Proceedings of the ACM/IEEE 2000 Supercom-
puting Conference, 2000, p. 12.

[5] D. S. Henty, Performance of Hybrid Message-Passing and Shared-Memory
Parallelism for Discrete Element Modelling, in: Supercomputing, ACM
IEEE 2000 Conference, 2000, p. 10.

[6] L. Smith, J. Bull, Development of Mixed Mode MPI/OpenMP Applica-
tions, Scientific Programming 9 (2001) 83–98.

[7] E. Lusk, A. Chan, Early Experiments with the OpenMP/MPI Hybrid Pro-
gramming Model, Lecture Notes in Computer Science 5004 (2008) 36.

[8] G. Jost, H. Jin, D. an Mey, F. Hatay, Comparing the OpenMP, MPI, and
Hybrid Programming Paradigms on an SMP Cluster, in: Fifth European
Workshop on OpenMP (EWOMP03) in Aachen, Germany, Vol. 3, 2003.

[9] R. Car, M. Parrinello, Unified Approach for Molecular Dynamics and
Density-Functional Theory, Physical Review Letters 55 (22) (1985) 2471–
2474.

[10] M. Ashworth, I. Bush, M. Guest, A. Sunderland, S. Booth, J. Hein,
L. Smith, K. Stratford, A. Curioni, HPCx: Towards Capability Comput-
ing, Concurrency and Computation: Practice and Experience 17 (2005)
1329–1361. doi:10.1002/cpe.895.

[11] J. Hutter, A. Curioni, Dual-level Parallelism for ab initio Molecular Dy-
namics: Reaching Teraflop Performance with the CPMD Code, Parallel
Computing 31 (1) (2005) 1–17.

16



[12] R. Rabenseifner, G. Hager, G. Jost, Hybrid MPI/OpenMP Parallel Pro-
gramming on Clusters of Multi-Core SMP Nodes, Proceedings of the 17th
Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing (PDP 2009), Weimar, Germany (2009) 427–436.

[13] J. Bull, J. Enright, N. Ameer, A Microbenchmark Suite for Mixed-Mode
OpenMP/MPI, Springer (2009) 118–131.

[14] L. Adhianto, B. Chapman, Performance modeling of communication and
computation in hybrid MPI and OpenMP applications, Simulation Mod-
elling Practice and Theory 15 (2007) 481–491.

[15] R. Thakur, W. Gropp, Test suite for evaluating performance of multi-
threaded MPI communication, Parallel Computing 35 (12) (2009) 608–617.

[16] H. Brunst, B. Mohr, Performance Analysis of Large-scale OpenMP and Hy-
brid MPI/OpenMP Applications with VampirNG, Lecture Notes in Com-
puter Science 4315 (2008) 5.

[17] W. Smith, I. Todorov, The DL POLY 3.0 User Manual, Daresbury Labo-
ratory, 2009.

[18] J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for mul-
ticomponent systems, Physical Review B 39 (8) (1989) 5566–5568.

[19] F. Cleri, V. Rosato, Tight-binding potentials for transition metals and al-
loys, Physical Review B 48 (1) (1993) 22–33.

[20] X. Dai, Y. Kong, J. Li, B. Liu, Extended Finnis–Sinclair potential for bcc
and fcc metals and alloys, Journal of Physics: Condensed Matter 18 (2006)
4527–4542.

[21] R. Rabenseifner, Hybrid parallel programming: Performance problems and
chances, in: Proceedings of the 45th Cray User Group Conference, Ohio,
2003, pp. 12–16.

[22] M. Chorley, D. Walker, M. Guest, Hybrid Message-Passing and Shared-
Memory Programming in a Molecular Dynamics Application On Multicore
Clusters, International Journal of High Performance Computing Applica-
tions 23 (2009) 196–211. doi:10.1177/1094342009106188.

[23] G. Hager, G. Jost, R. Rabenseifner, Communication Characteristics and
Hybrid MPI/OpenMP Parallel Programming on Clusters of Multi-core
SMP Nodes, in: Proceedings of the Cray User Group, 2009, pp. 4–7.

17


