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In this work, an improved approach for computing cluster dissociation rates using Monte Carlo
(MC) simulations is proposed and a discussion is provided on its applicability as a function of
environmental variables (e.g., temperature). With an analytical transformation of the integrals
required to compute variational transition state theory (vTST) dissociation rates, MC estimates of
the expectation value for the Dirac delta 8(g,.—¢.) have been made free of the discretization error
that is present when a prelimit form for 6 is used. As a by-product of this transformation, the
statistical error associated with (8(¢,.—g.)) is reduced making this step in the calculation of vIST
rates substantially more efficient (by a factor of 4-2500, roughly). The improved MC procedure is
subsequently employed to compute the dissociation rate for Lennard-Jones clusters X;3_,Y,
(n=0-3) as a function of temperature (7), composition, and X-Y interaction strength. The X;5_,Y,
family has been previously studied as prototypical set of systems for which it may be possible to
select and stabilize structures different from the icosahedral global minimum of X5. It was found
that both the dissociation rate and the dissociation mechanism, as suggested by the statistical
simulations, present a marked dependence on n, T, and the nature of Y. In particular, it was found
that a vacancy is preferentially formed close to a surface impurity when the X-Y interaction is
weaker than the X-X one whatever the temperature. Differently, the mechanism was found to depend
on T for stronger X-Y interactions, with vacancies being formed opposite to surface impurities at
higher temperature. These behaviors are a reflex of the important role played by the surface
fluctuations in defining the properties of clusters. © 2008 American Institute of Physics.
[DOL: 10.1063/1.2937914]

I. INTRODUCTION proportional to the pressure exerted by the cluster on the

containing sphere, a fact that paves the way for the use of
classical Monte Carlo (MC) simulations in estimating kffl(T).
Besides, the variational nature of vTST is exploited not only
to minimize dF/dr (hence the rate constant) but also to pro-
vide an estimate of the cluster radius.

A more direct approach to the calculation of ki(T) starts
from the fundamental TST equation for a monomolecular

3.4
process

Dissociation of atomic and molecular clusters plays a
pivotal role in the description of several important phenom-
ena such as the nucleation of liquid droplets or metal aggre-
gates from supersaturated vapor phases. Indeed, knowing the
relative concentration of clusters of different sizes and the
value of their dissociation rate constant k¢ makes it possible
to compute their condensation or growth rate. With this in
mind, it is therefore clear why a substantial theoretical effort
has been focused on the development of sophisticated theo-
ries or efficient computational methods capable of accurately
predicting k¢ as a function of environmental variables.

Jdx dp Jf(S)]H-(S)Se "
Jdxdp H[f(S)]e P~

k(T) = (2)

One such method is the approach developed by Schenter
et al.,l who proposed the use of variational transition state
theory2 (VTST) to compute the rate constant kﬁl(T) for the
dissociation process

M, —M, +M (1)

in the NTV ensemble. With the assumption of a spherical
separatrix of radius r centered on the cluster center of mass,
it was possible to show that k% (T) is proportional to 9F/ dr, F
being the free energy of a cluster enclosed inside the separa-
trix. As a consequence of this result, k(7) is proved to be
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where H is the Heaviside function, H is the Hamilton func-
tion for the system, S is the reaction coordinate, f(S)=0 de-
fines the separatrix, and B=(kzT)~". In Eq. (2), H-(S) selects
the trajectories that, starting on the surface (8 f(S)]) separat-
ing the reactant (R) from the products (P), are leaving the R
region, while H[f(S)] selects only points in configuration
space within the volume associated with R. In the case of a
dissociation process, a useful reaction coordinate is provided
by the distance between the center of mass of the dissociat-
ing moiety and of the remaining cluster (g,.), so that the
dividing surface is defined by the node of F(S)=g,.-s,
where s is the position along ¢,. at which the critical surface
is located. For this choice of the reaction coordinate and
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assuming that H=7(p)+V(x), it is possible to recast Eq. (2)
into the simpler form

<|q.rc|>TfRdX g, — s)e—BV(X)
2 [ rdx oAV

k(T) = 3)

Here, the phase space average in Eq. (2) is conveniently
reduced to a configuration space one that could be evaluated
using metropolis MC (MMC) sampling,” and (|g,.|)y is the
average value of the time derivatives of the reaction coordi-
nate in the NVT ensemble. The latter can be computed ana-
lytically for our choice of ¢, obtaining {|q,|)r
=(2kgT/ mu)""?, with u being the reduced mass of the disso-
ciating moiety with respect to the remaining cluster.® In the
case of barrierless dissociation reactions such as the one de-
scribed by Eq. (1), a key step in evaluating the dissociation
rate is represented by choosing the location of the separatrix.
This task can be accomplished by exploiting the variational
nature of TST and choosing the location of the separatrix in
order to minimize the dissociation rate [Eq. (2)] or the inte-
gral ratio in Eq. (3) with respect to the “size” of the reactant
configuration space R in the framework of the canonical
ensemble.

Unfortunately, the direct evaluation of the integral over
the configuration space using a straightforward MMC simu-
lation is hampered by two problems, especially in the case of
low temperature or high dissociation energy cases. First, the
extremely local nature of the Dirac delta forces one to use a
prelimit form for &(g,.—s),” the latter being often approxi-
mated with a normalized rectangular box of width Ax.
Clearly, this introduces a finite discretization error. Second, a
low temperature MMC sampling would visit the regions
around ¢q,.—s=0 rarely, making the statistical evaluation of
the expectation value quite inefficient. The latter problem
can be ameliorated either by forcing the MMC simulation to
sample the critical region more often with a more diffuse
sampling distribution,’ by using a stratified sampling
approach,8 or employing the umbrella sampling (US) scheme
originally proposed by Torrie and Valleau’ and adapted by
Grimmelmann et al."’ to study the detachment of Xe from
metal surfaces (see also the work by Chandler'' for a de-
tailed discussion on the relevance of the potential of mean
force in condensed phase reactions). The latter scheme has
been adapted to the microcanonical ensemble with a modifi-
cation of the sampling distribution'? and shown to provide a
substantial gain in efficiency in the calculation of k%(E) for
the Zundel cation, H:O,.

Despite these improvements, the usage of a prelimit
form for &(q,.—s) is still far from being ideal, an issue that is
not only aesthetic but, more importantly, related to a possible
increase in efficiency. Indeed, recent work in the field of
electronic structure quantum MC simulations has led to the
development of improved estimators for S(x—x;) with much
lower variance than the prelimit form.">* Interestingly, the
new estimators proposed in both Refs. 13 and 14 use all
available samples, even though weighted differently as a
function of [x—x|. This is in sharp contrast with the prelimit
approach, where, assuming that an US window of width L is
used to force the sampling around g¢,.—s=0 and that
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(q,.—s) is approximated with a bin of width Ax, only a
fraction Ax/L of the samples is used to estimate the integral
ratio in Eq. (3).

With the aim of estimating statistical dissociation rates
for large clusters, this work presents a discretization error-
free approach for the calculation of (&(g,.—s)) with MMC
simulations. As shown in Sec. II, this is based on an analyti-
cal transformation of the integrals in Eq. (3) and allows one
to use an appropriate variance reduction technique. In Sec.
III, the performance of the new estimator is compared to the
prelimit form of the Dirac delta using, first, an analytically
solvable model composed by two particles and, second, a
cluster composed of six Lennard-Jones particles (LJ¢) with a
potential chosen to mimic the two-body Ne—Ne interaction.
The new method is subsequently employed to estimate the
dissociation rate of X;3_,Y,, a family of LJ clusters, as a
function of 7 and composition. These results are discussed in
Sec. IV and Sec. V. Finally, Sec. VI presents our conclusions
and suggests future applications for the new estimator in the
realm of cluster chemical physics.

Il. THEORY AND METHODS

Starting from the fundamental equation [Eq. (3)] and the
discussion in Ref. 12, in the following we provide the work-
ing equations that make transparent the use of US in this
context and that allow one to estimate k“ free of discretiza-
tion errors. Let us start defining the boxcar distribution

1 (r i = qrc = S)

o(qeri) {0 . ¢
where s gives the location of the Dirac delta along ¢,. (i.e.,
of the reflecting surface that keeps the sampled points inside
the R region). Assuming a series of r; (i=0,n) such that
riog<r;<s and ry=0 (i.e., free sampling), one can exploit
the extreme locality of the Dirac delta to rewrite Eq. (3) as

ki(T) = <|qg|>TH Ii—l(ri’s)
i=1

fRdX w(qrc’ rn?s) 5(qrc - s)e_BV(X)

s 5
T rdx @(q,esr,,5)e PY® )
where
f dx w(qrc’ri’s)e_'BV(X)
Ii_y(ry,s) = . “AVx) (6)

fRdX w(qrc’ri—l’s)e

We notice that this way of recasting Eq. (3) requires the
calculation of a set of overlap integrals (I;_,(r;,s)) between
distributions differing only by their range of definition. In
each of those, r;_; defines the lowest value of g,. allowed
during the MMC sampling. Clearly, appropriately chosen
values for r;_; are needed to efficiently estimate the total
overlap (S)=I1% I,_;(r;,s). The latter can also be interpreted
as a ratio between partition functions, from which the revers-
ible work needed to separate a molecule from the rest of the
cluster by, at least, the distance r,, can be computed. At this
stage, it is important to mention the conditions under which
Eq. (5) and the ones presented in the rest of this section are
valid. In this respect, the range of temperature for which Eq.
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(5) can be used must be such that the dissociation of a mol-
ecule from the cluster is a rare event (i.e., the probability of
finding the dissociating moiety at s is very small) with the
remaining M,,_; species satisfying at least one of the pos-
sible cluster definitions (for a discussion on this issue, see
Ref. 15). Another way of recasting this condition is to ask for
the geometrical fluctuations of the surface particles to be of
size comparable with the ones in the core of the cluster, the
different magnitude of such fluctuation being important to
rationalize the peculiar thermodynamics behavior of clusters
when compared with bulk matter.'® The fulfillment of this
hypothesis allows one to interpret the results of the MMC
simulations on the basis of a compact cluster-molecule frag-
mentation, therefore avoiding the possibility of a partial or
complete cluster evaporation that may lead to a false fulfill-
ment of the dissociation condition. This chance is easily
monitored by computing either molecule-center-of-mass dis-
tributions or the instantaneous bond order for each molecule.
Alternatively, a good indication of the failure of the rare
event hypothesis is provided by the disappearance of the
minimum of kil(T) as a function of s and a nonexponential
behavior for (S) as a function of T.

In order to make progress with respect to Eq. (5), let us
focus on the remaining integral ratio. With our choice of
reaction coordinate, it is possible to substitute Cartesian co-
ordinates with Jacobi ones so that the vector connecting the
center of mass of the dissociating moiety and of the remain-
ing cluster appears explicitly as an integration variable. Re-
calling that the Jacobian of the transformation from Carte-
sian to Jacobi coordinates is unit, the integral ratio becomes

Sszdqrch w(‘]rc’rmS)N(Qrc)e_B[V(X,Q,Q)_V(qrC,Q’Q)]e_BV(qu’Q,Q)
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fRdX w(Qrc’ Ty S) 5(qrc — s)e_ﬂv(x)

fRdX w(qrca T, S)e_ﬁV(X)
— TrAdq::dQ (G 1yy8) G — 5)e ParQ)
) fquerQ w(qrm rn,s)e_ﬁv(qrc!Q)

<5(Qrc - S)>n(rnas) =

>

(7)

where q,. is the vector whose magnitude represents the re-

action coordinate and Q the remaining set of Jacobi coordi-

nates. In this form, it is possible to use the integral identity
fx)

J fX)g)]d'x= [ ——d"'x, (8)
1% v |V8|

where JV is the surface implicitly defined by g(x)=0 and x
e R". In our case, the surface is a sphere defined by ¢,.—s
=0 and |V, g|=1. Thus, the volume element on the right
hand side of Eq. (8) becomes d" 'x=5s%d() dQ, where we
have introduced the surface element dd V=s2dQ), with d()
representing the solid angle element. Inserting Eq. (8) in Eq.
(7) and making use of the new form for d"~'x, one gets

%[ xdQ dQ ¢ PVE2.Q)
fqurch w(qrc, Ty S)e—ﬂV(qur,Q) ’

where, at the denominator, dqm:qfcdqmdﬂ.

In order to make Eq. (9) amenable to MMC simulations,
one needs to recast it in terms of a standard expectation value
calculation, a task that is accomplished by choosing an inte-
grable function N(g,,.) such that [ N(g,.)¢%.dq,.=1 and in-
serting the latter integral in the numerator. By means of
straightforward manipulations, one finally gets

<5(Qrc - S)>n(rms) = (9)

<5(Qrc - s)>n(rms) =

which suggests the canonical average of A(s,B3,N)
=52N(g,.)e PV 2.QV4, Q] gyer the volume constrained
distribution w(q,.,r,,s)e P4 Q a5 new estimator for
(8(q,c—5))u(r,,s). Here, it is important to stress that the an-
gular coordinates () appearing in V(s,{),Q) are chosen ac-
cordingly to the MMC sampling of the distribution
V(q,.,2,Q), i.e., representing q,, in spherical coordinates
and using the angular part to define ().

The transformation used to obtain Eq. (10) bears some
resemblance with a similar analytical approach proposed by
Dumont and Jain.!” There are, however, two important dif-
ferences, namely, the introduction of the weight function
N(g,.) and the fact that the integral over N(q,.) is over a
range of g,. inside the location of the separatrix instead than
outside. Whereas the usefulness of introducing N(g,.) will be
discussed in the following, it is mentioned here that the in-
ternal integration range allows one to use many more
samples than other way. This is expected to improve the
statistical error of the (&(q,.—s)),(r,,s) estimate.
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From Eq. (10), one can easily outline the steps of a
possible simulation procedure:

(1) select the temperature T (or B=(kzT)7!);

(ii)  select the location s of the critical surface along the
reaction coordinate ¢,. and of r;, the lower limit of
the first overlapping window [Egs. (4)—(6)]. s is also
used to constrain the MMC sampling by rejecting dis-
placements for which the distance ¢,. becomes larger
than s;

(iii)  simulate the cluster with atoms constrained to have
q,.<s and compute Iy(r;,s) using all atoms to im-
prove statistics (notice, however, that /,_; are all de-
fined with respect to a specific dissociating moiety);

(iv)  choose the atom that is “driven out” by the US pro-
cedure and compute the set of integrals /;_; for i=2
—n with it. Notice that this approach effectively deals
only with one of the possible dissociation channels, so
that the kjin(T) obtained using this and the following
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steps refers to the dissociation of a “tagged” particle.
Assuming ergodic behavior for the MMC simulations,
the total dissociation rate for M, is obtained by mul-
tiplying the rate obtained with this procedure by the
channel degeneracy;

(v)  while running the MMC simulation sampling
we Pare2Q) for the chosen atom, compute q,, for it
and generate the vector q/,=sq,./|q,.| placing the dis-
sociating atom on the surface with the correct angular
coordinates;

(vi)  shift the position of the dissociating atom using q/,
and compute the value of the potential ) in the shifted
configuration; and

(vii) average the value of s*N(g,.)e PVHGQ-Na2.Q]
over all samples.

From Eq. (10) and the sequence of steps outlined above,
it should be clear that the original source of fluctuation
present in the prelimit estimate of the delta has now been
substituted by the fluctuation of A(s,B3,N). However, one
also realizes that the new estimator enjoys a zero variance in
the limit of N(g,.)e PV&®Q-VaeQl=const. The latter can-
not be obtained for the prelimit estimator even in the limit of
no interactions between the dissociating atom and the rest of
the cluster. To clarify this point further, let us assume that for
ra<q,,<s one has BV(s,Q,Q)-V(q,..Q)|=0 and that
N(q,.) is chosen to be constant over the interval. In this case,
the fluctuation of A(s,8,N) is largely reduced, whereas the
prelimit estimator would still suffer from the limited amount
of sampling falling in the thin spherical crown defined by the
interval s—Ax<g,.<s.

In cases where B|V(s,Q,Q)-V(q,.,Q)|>0), one can
chose the analytical form of N(g,.) to reduce the variance of
the estimator. Many possibilities are available for this goal,
the best form for N(gq,.) being likely to depend on the spe-
cific cluster details. Nevertheless, it is possible to provide
guidelines for the case in which a large value s is chosen,
considering the difference V(s,Q,Q)-V(q,.,Q) to be a
function of ¢,. only. This is equivalent to a mean field ap-
proach that neglects the instantaneous structural fluctuation
of the cluster. With this assumption, one would be allowed to
interpret e PV 2.Q- Y4 Q] 4 the ratio between the angular
averaged probability density of the dissociating particle at s
and ¢,. and to choose N(q,.) as proportional to the radial
probability density p(g,.) defined by

[2dQ dQ (g7, S)e—ﬁV(me)
fqurch w(Qrc’ rn’s)e_BV(me) .

p(‘irc) = (11)

Another advantage provided by N(g,.) relates to the expo-
nential nature of A(s,B,N): a carefully chosen form may
produce a more compact distribution of its values, thus re-
ducing possible biases due to the limited set of statistical
measurements performed during the simulation.'® Indeed, a
more compact distribution of weights may help in satisfying
the hypothesis of the central limit theorem, the latter being
implicitly assumed in computing averages over a set of mean
values.

J. Chem. Phys. 128, 244515 (2008)

lll. TESTS ON MODEL SYSTEMS

In this section, simulations on two model systems are
used to test the performance of A(s,8,N) when compared to
the prelimit form of the Dirac delta.

A. Dimer with square-well interaction

To make sure that the simulation method was correctly
implemented, the simple test case provided by two identical
particles interacting by means of the square-well potential

Vo (x1-x5] <§)

2
0 (x-%xo|>9 (12)

V(X],Xz) ={

has been studied. Here, V, is the well depth, ¢ is the distance
at which the interaction terminates, and x; is the absolute
position of the ith particle. For this choice of V), the expec-
tation value (&(q,.—s)),(ro,s) can be computed analytically,
providing us with a useful reference to test the algorithm.
Using Eq. (3) and V as defined in Eq. (12), one gets

352

(8(qye = $)lro,s) = (e Fo_NE 15

DNE+5¥ (13)

where B=(kzT)~" and it has been assumed that s=¢.

The top panel of Fig. 1 presents the average values of
(8(q,.—s)) for the specific choice of parameters V,
=-0.047 hartree and £=3 bohrs at two different tempera-
tures (kgT=0.005, 0.009 hartree). These results were ob-
tained by straightforward MMC simulations (i.e., no US was
employed) using both the prelimit estimator and Eq. (10)
with N(g,.)=const. To reduce the computational cost of the
MMC simulations, {(&(q,.—s)) values at different s;’s were
computed simultaneously constraining the MMC sampling
within a sphere of radius s, (the largest s; chosen) and
using only configurations falling within ¢,.<s; to estimate
the Dirac delta at si.7 Although this implementation may
have an effect on the statistical precision of (8(g,.—s)) in
region where s is short, it allows one to effectively compute
the integral ratio in Eq. (3) for different sizes of the reactant
space in a single simulation. As a consequence, choosing the
location of the separatrix by means of the variational crite-
rion could be carried out during a postsimulation processing
stage. Standard errors were estimated by means of nine sta-
tistical independent simulations, the latter being composed
by 100 blocks of 103 MC steps each. The length of attempted
displacements was adjusted in order to obtain an acceptance
ratio of 35%—-60% for the MMC moves. The analytical re-
sults provided by Eq. (13) are also shown for comparison.

From this figure, it is clear that the two estimators [i.e.,
prelimit and A(s,B,N) with N(g,.)=const] are in good
agreement with (&(q,.—s)) from Eq. (13), a fact that confirms
the robustness of both procedures and their correct imple-
mentation. It also appears that Eq. (10) is able to produce
fairly more precise results than the prelimit estimator at low
temperature, a result that is supported by the absolute value
of the relative standard error o/(5) at kzT=0.005 hartree
(lower panel of Fig. 1). This is particularly evident at small
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FIG. 1. Top panel: values of (5(g,.—s)) as a function of s for the square-well
dimer [Eq. (12)] for 8=0.005 and 0.009 hartree. Lower panel: relative stan-
dard error for (S8(q,.—s)) for the prelimit estimator and Eq. (10) (see main
text) at kz7=0.005 hartree. In the case of Eq. (10), three different B values
for the weight function N(q,.) were used [see Eq. (14)].

values of s, which are sampled less frequently during the
MMC simulation. To provide one with indications on the
effect of N(g,.) on the statistical precision of our estimates,
results obtained using the natural weight function

B (0=gq,<¥§
Ngr) =1 | ey (14)

with B=10,100 are also shown in the lower panel of Fig. 1.
For this choice of B, the improvements in efficiency obtained
by using Eq. (10) become even more apparent, the standard
error being reduced by a factor of 3—10 when B=10 and
7-200 when B=100. These improvements in precision di-
rectly translate into a substantially reduced computational
cost (roughly, a factor of 9-100 for B=10 and 49-10 000 for
B=100), stressing the importance of an appropriate choice
for N(q,.). Notice that the additional computational cost due

J. Chem. Phys. 128, 244515 (2008)

to the evaluation of N(g,.) and V(s,{),Q) during the MMC
simulation is made negligible by computing A(s,3,N) only
after the serial correlation between configurations has
vanished.

B. Neg dissociation

To test further the improvements introduced by using
A(s,B,N) as an estimator for (&(q,.—s)), simulations were
carried out on a system composed of six particles interacting
by means of a standard LJ potential whose well depth
(e=1.1274 X 107 hartree) and width (0=5.194 bohr) were
chosen to mimic the Ne—Ne interaction. For this case, the
straightforward MMC sampling as done in the square-well
dimer is hindered by the long range intermolecular forces
between the particles and by the low temperature range we
would like to explore (3—10 K), the latter spanning a range
of phases going from solidlike to fluidlike. Thus, the step-
wise US scheme provided by Eq. (5) should be used to
“drive” the dissociating particle far from the cluster and to
compute (&(q,.—s)) over the appropriate range of s. Since
the performance of the US scheme in driving the sampling
toward the dissociation region and in estimating the overlap
integrals [Eq. (6)] has already been discussed in
literature,'*'? in this section we focus only on comparing the
performance of the different estimators over the r,<g,.
< e Window (in this case r,=9.5 and s,,,,,=20 bohrs). To
cover the relevant range of 7 and to help alleviate problems
with broken ergodicity, simultaneous sampling at several
temperatures was conducted using a standard implementa-
tion of the parallel tempering (PT) scheme.'” We would ex-
pect the calculation of (8(g,.—s)) to benefit from PT simula-
tions when simulating systems whose energy landscape is
characterized by a multifunnel character or that may undergo
phase changes over the relevant temperature range. With a
procedure similar to the one used in the square-well interac-
tion case, the value of (8(g,.—s)) at several locations (s;) was
computed for all temperatures during the same simulation.

Another issue present for this system, which is present
for more general molecular clusters as well, is the selection
of the analytical form for the weight function N(q,.). Pro-
vided that the locations s; of the generalized TS’s are far
enough from the center of mass of the remaining cluster, a
suitable form for N(g,.) could be built fitting the shape of p
as obtained by short preliminary simulations. To do so, we
employed a piecewise exponential form (i.e., the logarithm
of p was piecewise fitted with straight lines). With this
choice, the normalization of N(g,.) can be easily computed
using standard integral formulas.

The top panel of Fig. 2 presents the results for
(8(q,c—5)) OVEr r,<(,.=<Smax Using the prelimit form of the
Dirac delta and Eq. (10). In the latter case, both N(g,.)
=const or the piecewise representation just discussed were
used. Simulations were run using a protocol similar to the
square-well case and standard errors were obtained using
seven statistically independent simulations. As found previ-
ously, the three estimates agree well at all temperatures, in-
dicating the correct implementation of the procedure. At low
temperature, it is apparent that the prelimit form presents a
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FIG. 2. Top panel: (8(g,.—s)) for the Ne-like LI, at three different tempera-
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tion, whereas fitted N(g,.) indicates the use of a piecewise approximation for
N(q,.). Lower panel: ratio of the standard errors obtained computing
(8(q,.—s)) with Eq. (10) and the prelimit estimator. Temperatures in kelvins.

much noisier behavior and a substantially larger standard er-
ror. This impression is validated by the lower panel of Fig. 2,
where the ratio between standard errors is shown. Worth
mentioning at this stage is the fact that over all range of
temperature explored during the simulations with ¢,.=r, no
evidence was found of multiple particle dissociation and that
Nes remained quite compact as evidenced by plotting cluster
center-of-mass-particle distribution functions. This is, of
course, a consequence of the large ratio between the evapo-
ration energy (equivalent to roughly 128 K) and the simula-
tion temperature. Additionally, the top panel of Fig. 2 shows
the presence of a minimum for (8(g,.—s)) for all three simu-
lations, a good indication of the validity of the TST hypoth-
esis as discussed in the Introduction.

Overall, the results shown in the lower panel of Fig. 2
suggest that both choices of N(g,.) provide one with a sub-
stantial improvement with respect to the prelimit estimator, a
fact that is clearly evident at 7=3.47 K and 7=5.36 K. In
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these cases, the increased precision provided by A(s,B,N)
translates into a large reduction in the number of samples
(roughly, by a factor of 9-1600) needed to obtain a chosen
statistical accuracy in the range of s around the minimum of
(8(q,.—s)) where the sampling is scarce. For systems whose
interaction potential is written as a sum of pairwise poten-
tials, this improvement should open up the chance of simu-
lating clusters 3—40 times larger than the ones amenable to
the prelimit form. Needless to say, this factor may be further
increased with a more sensible choice of N(g,,).

IV. DISSOCIATION OF COMPACT LJ-LIKE
Xy5.,Y, CLUSTERS

To demonstrate the capability of the proposed estimator
to deal efficiently with larger systems, the dissociation rate
k4(T) of the 13 particle LJ cluster X,5_,Y, (Ref. 20) has been
computed. The topology of the X;5_,Y, potential energy sur-
face was shown to differ substantially from the X;; one,
these differences being dependent on both n and the strength
of the Y-Y and X-Y interactions.” In fact, both the geometry
of the global minima and the height of its isomerization bar-
riers could be tuned with an appropriate selection of those
parameters. Isomerization rates were also computed using a
harmonic version of TST (Ref. 21) to provide one with in-
formation on the lifetime 7 of the clusters. The latter is an
important element in the design of cluster motives.

The possibility of cluster thermal dissociation is another
element that should be kept in consideration, even though it
may be slower than isomerization due to higher energy bar-
riers. However, dissociation (to X,,_,Y,+X) and isomeriza-
tion barriers appear to have comparable heights for
X 13_nYn,22 therefore suggesting the dissociation as a possible
competing channel. Besides, investigating the behavior of
k4(T) for X,5_,Y, as a function of the nature of Y, n, and T
may contribute to a better understanding of the role played
by each variable in defining the dissociation rate.

For this family of systems, the LJ interaction between
particles is characterized by different energies and length
scales (respectively, eyy and oyy for X-X, and €yy and oyy
for Y-Y), with the X-Y interaction parameters being chosen
using the standard mixing rules eyy=(exy€yy)? and oyy
=(oyx+0yy)/2. €y and oyy (3.7935X107* hartree and
6.4354 bohrs, respectively) were chosen to represent the
Ar-Ar interaction, with the remaining parameters being de-
fined on the basis of the ratios (o, €)=(0oyy/ oxy, €yy/ €xx)-
As done in Ref. 20, we used four different (o,€) pairs
[(0.8,0.5), (0.8,1.0), (0.8,1.5), and (0.8,2.0)] and n=1-3 to
explore the effect on k%(T) in a systematic way. The structure
of the lowest energy isomers obtained by quenching low
temperature PT samples for all (o, €) pairs and n=1-3 is
shown in Fig. 3 together with X,5; the lowest energy isomers
conserve the icosahedral structure featured by X3 in all
cases.

PT-MMC simulations, covering the range of temperature
5-25 K, were run as described earlier for Neg. In the chosen
range of temperature, the phase of all clusters changes from
solidlike to fluidlike as in the Neg case. The US was carried
out with r;’s (i=1-63) in the range 7.7—14 bohrs (r;—r;_;
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FIG. 3. Lowest energy isomers of X;3_,Y,, as obtained by local minimization
of low temperature samples during PT runs. These differ from the global
minimum isomers only for n=1, in which case the Y impurity resides in the
center of the cluster. Notice that the lowest energy isomer is independent of
(0, € and depends only on the composition parameter n. Also shown is the
global minimum of LJ;5 (X;5 in our notation).

=0.1 bohr), a set of parameters that was roughly optimized
to obtain the highest possible efficiency from the MC simu-
lations. The standard error for (S) was estimated using the
error propagation formula 0'2(T)=[<S>]22i(of_1(T))/If_].
Here, o;_;(T) is the standard error associated with ;_;, the
value of the ith ratio of integrals [see Eq. (6)].2* The standard
error for (&(q,.—s)), computed at several values of s, was
estimated using a set of seven independent simulations car-
ried out over the window r,=14, s,,,,=40 bohrs. Worth men-
tioning is the fact that with this choice of simulation param-
eters and window width, we were not able to collect
sufficient statistics to obtain a prelimit estimate for
(8(g,.—s)) in the appropriate range of s. In our view, this
indicates, once again, the need for the new estimator to ex-
tend the range of applicability of Eq. (3) and the fact that our
simulations are indeed correctly sampling the appropriate
configuration space (i.e., the one in which the two dissoci-
ated fragments are represented by a single particle and a
compact M,,_; cluster). As before, further evidences for the
correctness of our sampling were found by looking at the
behavior of (8(g,.—s)) versus s and at the cluster distribution
functions. To provide an estimate for the computational time
involved in the calculations, we point out that collecting 107
PT-MMC samples for 20 temperatures required roughly
13 min on a single processor Intel Xeon 2.0 GHz, so that the
total cost was roughly 15 h per species.

Figures 4 and 5 show the average lifetime 7 (in seconds)
for the four families of X;5_,Y,,. Since we focus primarily on
the dissociation of an X atom from the cluster, the lifetime
was estimated as 7=[(13—-n)k%T)]™!, where k%(T) has units

J. Chem. Phys. 128, 244515 (2008)

of s~ In all cases, 7 was computed using the lowest value of
kZ(T) [or of the integral ratio in Eq. (3)] as a function of s
over an equispaced set s; (As;; ;=1 bohrs) of separatrix
locations.

We start discussing the results by noticing that X;5_,Y,
species with (o, €)=(0.8,0.5) and (0.8,1.0) [panels (a) and
(b), Fig. 4] have shorter 7 than X, for all n, whereas (o, €)
=(0.8,1.5) and (0.8,2.0) species [panels (a) and (b), Fig. 5]
have a longer lifetime. The substantially shorter 7 and its
decrease upon increasing n for (o, €)=(0.8,0.5) can be un-
derstood by referring to the cluster thermal dissociation en-
ergy (AV4(T)), estimated as the difference between the aver-
age potential energy of a free species and of an aggregate
with g,.= 14 bohrs. AV4(T) substantially decreases upon in-
creasing n, indicating the effect of the reduced X-Y well
depth as a possible root cause of this finding [panel (a), Fig.
4] and justifying the fact that low temperature configurations
for X5_,Y, present the vacancy left by the dissociating X
atom close to the Y impurities.25 Upon increasing the tem-
perature, this feature is gradually reduced; vacancies also
appear further away from the Y atoms, a fact that is due to
the increased probability of visiting higher energy configura-
tions during the MMC sampling.

The reversed trend of 7(T) versus n for (o,e€)
=(0.8,1.0) is also in agreement with the AVY(T) values,
which indicate the X atoms to be slightly more bound when
n=2 and 3. At the atomic level, this may be interpreted as
due to a substantial release of frustration in X;,Y thanks to a
structural relaxation upon dissociation. Supporting this inter-
pretation, it is the fact that a vacancy was found to form
mainly opposite to the surface impurities when n=1 and
close to them when n=2 and 3.

As for (0,€)=(0.8,1.5) and (0.8,2.0), the increased
strength of the X-Y interaction and the slightly higher AV4(T)
values for Xy5_,Y, than for X;; fully account for the longer
lifetime and for the fact that the vacancy if often created
opposite to the surface Y atoms. This mechanism clearly al-
lows the system to minimize the energetic cost associated
with the dissociation process. In the less frequent cases in
which the dissociating X atom leaves a vacancy near a sur-
face Y impurity, the cluster was found to orient so as to
maximize the X-Y interaction, a finding suggesting the pos-
sibility that nonstatistical effects may play a role in defining
the value of k%(T) for these two families of systems. It would
therefore be conceivable to improve the choice of a spherical
separatrix, allowing it to deform in response to the cluster
structure.

Comparing the results in Figs. 4 and 5 with the data
shown in Fig. 14 of Ref. 20 for the isomerization lifetime,
one notices similar trends for these two quantities as a func-
tion of n and (o, €), with both 7’s increasing upon increasing
the interaction strength and n. Differences in lifetime of up to
20 orders of magnitude between isomerization (faster) and
dissociation are, however, present. At the moment, it is found
difficult to reconcile these differences in the light of the simi-
lar barrier heights and of the two different TST approaches
used to estimate the lifetimes.
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V. DISSOCIATION OF LJ-LIKE X;;_,Y, CLUSTERS
WITH EXOTIC STRUCTURES

As shown in Fig. 3, the clusters so far investigated fea-
tured compact structure as low energy isomers, clearly a
good choice in terms of structural stability. Clusters with low
coordinated surface atoms may, instead, be more active in
processes such as heterogeneous catalysis despite the possi-
bly lower lifetimes than their compact counterparts. To in-
vestigate quantitatively the possible correlation between
structure and dissociation lifetime in the framework of the
same model system,20 (0,€)=(0.45,0.65) for XY, (0,€)
=(0.65,1.0) for X,,Y,, and (o, €)=(0.42,1.0) for X, Y5 were
chosen as suitable parameter sets. The corresponding global
minima are shown in Fig. 6.

The simulation protocol and temperature range used for
the species in Fig. 6 are identical to the one employed in the
previous section. Also in these cases, the cluster phase
changes from solidlike to fluidlike over the spanned tempera-

0.25

ture range. Noteworthy, X;,Y undergoes a solid-solid phase
change (a peak in the C,, is found around 3-8 K), converting
the structure shown in Fig. 6 into the structure shown in Fig.
3 (top right). The latter is the global minimum when o
<0.35 a fact that suggests that these two species have
similar free energies despite the different structures.

Figure 7 shows both the overlap (S) and the final value
of the lifetime as a function of 1/7. (S) appears to be fairly
small and closely follows an exponential behavior as a func-
tion of 1/7T in spite of the less compact cluster structures, a
finding supporting the suitability of TST in computing the
X15_,Y, dissociation rates. Besides, no indication for mul-
tiple dissociations was found during the simulations.
Quantitatively, (S) for X5_,Y, (n=1-3) is several orders of
magnitude larger than for the “pure” X5, already suggesting
a larger k? for the doped species. The relative value of
AVY(T) (T=5 K) for the four species also supports this idea;
AV4(T) is 0.001 838(1), 0.000956(1), 0.001386(4), and
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0.000 856(5) hartree for X3, X;,Y, X,,Y,, and X (Y3, respec-
tively, values that follow a trend similar to the (S)(1/7) one
in agreement with simple statistical mechanics arguments.

The logarithm of the average lifetimes In(7) (in s, lower
panel of Fig. 7) follows closely the linear trend set by
AVY(T) and In({S)), the only exception being the low tem-
perature (5—8 K) rate of X,,Y. In this region, one notices a
change in slope of log[7(1/T)] over the solid-solid transfor-
mation temperature range, the decrease in the slope of
log[ 7(1/T)] upon decreasing 1/7 being justified by a trans-
formation into a more compact structure for X;,Y. A similar
effect, although less evident from the graph, is also seen for
X,,Y, in the range 0.08<1/T<0.12 K~!, with an accompa-
nying structural modification of the cluster in the same tem-
perature range.

VL. DISCUSSION AND CONCLUSIONS

Assuming a spherical separatrix between reactants (M,,)
and products (M,_, plus M), a novel estimator for

0.25

(8(q,.—s5)), an expectation value required to estimate canoni-
cal TST cluster dissociation rates, has been derived and
implemented for stochastic simulations. This estimator,
based on an analytical transformation of the original integral
ratio, allows one to eliminate completely the discretization
error associated with the usually employed prelimit form for
the Dirac delta and, with a sensible choice for the weight
function N(g,.), benefits from a large reduction in the asso-
ciated variance substantially decreasing the computational
costs. For instance, the computational cost of estimating
(8(g,.—s)) for Neg was reduced by a factor of 20-1600 de-
pending on the system temperature. With the current imple-
mentation, the variational nature of TST can be exploited to
find the “best” separatrix location by means of a simple post-
processing of the (8(g,.—s;)) data. In our view, this result
paves the way for similar calculations on systems 4—40 times
larger than previously accessible. Besides, the same ap-
proach could easily be extended to compute microcanonical
reaction rates with the minor modification suggested in Ref.
12.
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FIG. 6. Lowest energy isomers for X,5_,Y, as obtained by local minimiza-
tion of low temperature samples during PT runs. Interaction parameters are
(0.45, 0.65) for X,Y, (0.45, 1.0) for X,;Y,, and (0.42, 1.0) for X,,Y;.

The new estimator was subsequently employed to esti-
mate TST dissociation rates for the family of systems
X15_,Y, in the temperature range 5 <7 <25 K. The behavior
of k? versus T,n, and interaction strength was discussed us-
ing the thermally averaged dissociation energy as guideline.
Importantly, the statistical accuracy provided by the new es-
timator allowed us to highlight subtle changes in the behav-
ior of 7 versus T for X,,Y with (o,€)=(0.45,0.65) (Figs. 6
and 7). These changes were interpreted as due to the onset of
solid-solid morphological modification for X5_,Y,,.

At this stage, it is, however, important to mention that an
alternative, and perhaps more complete, explanation for the
behaviors of 7 versus T discussed in the previous sections
would be available. This rests on the interpretation of (S) as
a ratio of partition functions, which gives the reversible work
needed to pull a molecule apart from the remaining cluster.
The latter quantity is minimum due to the reversible condi-
tions (absence of dissipation). In this respect, the weaker
surface interaction due to the presence of the impurities al-
lows larger structural fluctuations of the surface particles,
therefore increasing the overlap with the dissociating region
(g,.>r,) and reducing the amount of work necessary for the
dissociation process. This explanation appears in line with all
the findings discussed above, bearing in mind that at higher T
the system shows a higher likelihood of performing greater
amount of work (molecules dissociating far from weakly in-
teracting impurities). For the case of strongly interacting im-
purities, wider surface fluctuations are expected to be located
opposite to the surface impurities, therefore minimizing the
amount of work necessary for the dissociation.

In our view, the successful application of the new esti-
mator to compute TST dissociation rates for 13 atom clusters

J. Chem. Phys. 128, 244515 (2008)
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is a clear indication of the improved performance provided
by the combination of a partial analytical integration and
MMC sampling. This paves the way for similar calculations
on much larger atomic and molecular clusters, the extension
of the current implementation to deal with rigid body inter-
action models being trivial. Indeed, it would be sufficient to
define the Jacobi coordinates employed in this work using
the Cartesian coordinates of the molecular centers of mass,
letting the MMC sampling to carry out the integration over
the orientations. In the case of flexible models, instead, one
could define the center of mass for M,,_; and the dissociating
molecule separately and use the simple coordinate transfor-
mation Xtotz(mMm_lme_l+meM)/(mMm_l+mM) and q,,
==Xy  +Xy to define the reaction coordinate. Here, Xy,
and x,, are, respectively, the centers of mass of M,,_; and the
of dissociating molecule, my and m,, being their masses.

Despite the substantial improvement introduced by the
new estimator, two important issues still remain, namely, the
cost of the US calculations and the possibility of morphing
the shape of the separatrix into a nonspherical one. As for the
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first, it is worth mentioning that we were forced to use 63 US
simulations of 107 samples each to reach a 10% precision on
(S), whereas only seven identical simulations were necessary
to reach a similar result for (&(q,.—s)). This fact clearly
highlights the need for a more efficient procedure to compute
(S) [or the ratio of partition functions in Eq. (3)]. Possible
approaches to this task are the compensating potential
method,10 metadynarnics,26 and the “fast growth” method”’
associated with Jarzynski’s equality.28 Whether any one of
these represent a more efficient way to compute (S) than US
is an issue currently under investigation in our laboratory.

In contrast to the previous discussion with respect to US,
the issue of the shape of the separatrix concerns more the
absolute accuracy of the dissociation rates than the total
computational cost. Indeed, our simulations have highlighted
a possible change of mechanism, with the location of a va-
cancy generated by the dissociating atom being a function of
T. A similar behavior is expected to be likely for clusters
with elongated shapes, suggesting that an ellipsoidal separa-
trix may be better suited for the task. Thus, further exten-
sions of the approach proposed in this work may be needed
to make it more accurate and to avoid the necessity of testing
the accuracy of TST rates with molecular dynamics
simulations.” Needless to say, larger clusters may have a
more spherical shape, automatically ameliorating the perfor-
mance of a spherical separatrix. This is exactly the case for
atomic (e.g., Ausy_;o0) and molecular [e.g., (NH3)sq_100] clus-
ters approaching nanometer size, the calculation of their
k%(T) being currently carried out in our laboratory. Needless
to say, the thrust in this direction is provided by the techno-
logical and scientific importance of both Au and NHj
clusters.
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