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Abstract

Relationships between system states contained in the neutral equation are used to address the
delay-dependent stability of a neutral system with time-varying state delay. Using linear matrix
inequalities, we present a new asymptotic stability criterion, and a new robust stability criterion,
for neutral systems with mixed delays. Since the criteria take into account the sizes of the neutral
delay, discrete delay and the derivative of discrete delay, they are less conservative than those
produced by previous approaches. Numerical examples are presented to demonstrate that these
criteria are indeed more effective.
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1 Introduction

A neutral time delay system contains delays both in its state, and in its derivatives of state. Such
systems are often encountered in engineering (e.g. in heat exchanger analysis), and in biology (e.g.
in population ecology). Various modern control technologies, like repetitive control, use neutral
systems via the insertion of an artificial neutral delay into a control loop, in order to boost control
performance for systems with periodic signals [8]. Studies of delay-dependent stability criteria for
neutral systems have focused mainly on cases with identical delays in neutral and discrete terms:
see, for example [1, 2, 6, 12, 13, 16]. Other papers have presented criteria that depend only on the
size of the discrete delays, and not on the size of the neutral delays: see, for example, [5, 10, 15, 17].

Recently, He et al [9] presented a new delay-dependent stability criterion for neutral systems
with mixed delays, i.e. where the discrete delay and neutral delay are different constants. In order
to obtain their criteria, the relation between the state z(t — 7) and x(¢t) — j;t_T #(s) ds is taken
into account in the derivative of a Lyapunov-Krasovskii functional through the Leibniz-Newton
formula. Obviously, however, this stability criterion can not be applied to neutral systems with
time-varying discrete delay. Their stability criterion does not take into account the information
contained in the system equation, and so their stability conditions have a conservatism which can
be improved upon.

The contribution of this paper is to make use of the information contained in the system equa-
tion to investigate stability criteria for neutral systems with mixed delays. Initially, we consider
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the nominal neutral system:
(t) — Cz(t — h) = Az(t) + A1zt — 7(1)).

This equation implies that

2(t) = Cx(t—h) —z(t—7())+ Cx(t —7(t) — h) = /t_ o Ax(s) + Arx(s — 7(s))ds

and
t

xz(t) = (C+ Dx(t —h) + Cx(t — 2h) = / Az(s) + Arx(s — 7(s))ds.
t—h
These two equations motivate us to consider relationships between the state vectors z(t), z(t—7(t)),
x(t—7(t)—h), z(t—h), x(t—2h), and the derivative of the state vector at 2:(t—h), i.e. Z(¢—h). The
relationships between these state vectors and the derivative of the state vector can be expressed
using suitable matrices whose entries can be chosen. Based on these relations and the Leibniz-
Newton formula, a new Lyapunov functional is introduced. A new, less conservative stability
criterion for such a nominal neutral system is derived without the use of inequalities (such as
those due to Moon [14]) to bound the time derivative of the Lyapunov functional.

Furthermore, this criterion is both neutral delay dependent and discrete delay dependent, and
at the same time, is dependent on the derivative of the discrete delay. This criterion can easily be
extended to a neutral system with time-varying uncertainties.

Finally, we give numerical examples to demonstrate that our proposed criteria significantly
improve the allowed maximum upper bounds for the delay compared to existing results.

For simplicity, in the rest of the paper, in symmetric block matrices or long matrix expressions,
we use * to represent some term that is induced by symmetry.

2 System description and main results

In this section, we establish new stability criteria for a neutral system with mixed delays.
Consider the following neutral system with time-varying delay in the state:

@(t) — Ci(t — h) (A+ AA@)z() + (A + AA 1)zt — (1)),
z(t) = o), te€[-H0], (1)

where z(t) € R™ is the state vector, and C'is a constant matrix. A and A; represent the fixed parts,
and AA(t) and AA;(t) the time-varying unknown parts, respectively, of the system matrices.

The spectral radius of the matrix C, p(C), must satisfy p(C') < 1. The time delay 7() is a
time-varying continuous function satisfying

0<7(t)<m, T(t) <p<l, (2)

where 7 and p are constants. H is defined by H = max(r,h). ¢(¢) is a continuous vector-valued
function of t € [-H,0]. The time-varying uncertainties are of the form

[AA(t), AL ()] = DF(H)[E, Er], (3)

where D, E, and E; are constant matrices of appropriate dimensions. F(t) is an unknown and
possibly time-varying real matrix with Lebesgue measurable elements and with Euclidean norm
satisfying

Pl <1, . (4)
We start by considering the nominal system associated with the system in Equation (1):
z(t) = Cx(t—h) = Azx(t)+ Azt —7(t)),
z(t) = ¢@), te[-HUO0L (5)



In order to simplify the treatment of the problem, we define the operator G and the function £(t)
as follows:

Gzy = z(t) — Cz(t — h) (6)

and

E(t) = Ax(t) + Arx(t — 7(1)). (7)

Definition 1. The operator G is said to be stable if the solution of the homogeneous difference
equation
Gry =0, t>0, zo=1¢€{¢peC[-h,0]:Gp=0}

is uniformly asymptotically stable.

In the rest of this section, a new delay-dependent stability criterion for the nominal neutral
system given in Equation (5) will be presented and its correctness proved.

Theorem 1. For given scalars h > 0, 7 > 0, and p, the neutral system in Equation (5) is
asymptotically stable for any delay 7(t) satisfying Condition (2) if the operator G is stable, and
there exist positive definite matrices P >0, P, >0, Q1 >0, Q2 >0, Q3 >0, and R >0, S > 0,
Zr >0, k= 1,2, and appropriately dimensioned matrices T;, N;, Y;, Wi, i = 1,...,6 such that
the following symmetric linear matriz inequality (LMI) holds:

i Qll 012 ng 014 015 QlG 7TT1 7TN1 7hY1 7hW1 ATM ATS T
¥ Qo Moz Qoy Qs Qe —7T2 —TNa —hYy —hWo ATM AfS
* * Q33 934 935 936 —TT3 —TNg —hY3 —hW3 0 0
* * * Q44 945 946 —TT4 —TN4 —hY4 —hW4 0 0
* * * * Q55 956 —TT5 —TN5 —hY:r, —hW5 0 0
* * * * x Q¢ —TIg —TNg —hYs —hWs 0 cTs <0 (8)
* * * * * * —TR; 0 0 0 0 0
* * * * * * * —TRs 0 0 0 0
* * * * * * * * —hZq 0 0 0
* * * * * * * * * —hZy 0 0
* * * * * * * * * * —M 0
L * * * * * * * * * * -S
where
Oy = PA+ATP+PIA+ATPL+ Qi+ 5+ 5 +
Vi+Y! + T+ T + Wi+ W+ Ny + N
Qe = PA+PA+Y)] —Ty+TF + Wl — N, + NT,
Qi = Y +TC+TF + Wi + NY,
Qu = -ATpc-viC+D+Yl-nCc+1F —wy+wWl + N,
M5 = NC+Y + T8 + W + N,

Qe = PC+Y{ +T§ +Wg + N,

oy = —(1-p)S —Tp— Ty —No— Ny,

M3 = ToC—-T4 — N{,

oy = —ATPC—Y3(C+1) ~ToC —TF — W, — NY,
Qus = Y20 -1 — N7,

Q26 = _T6T _N6T?

Qz3 = —(1—p)Sy+T5C +CTTY,

Qs = —Y3(C+1I)—T30+CTT] — W,

Q5 = YsC+CTTT,

Q36 = CTTGTa



~1+ Q- Ya(C+ 1) - (C+ DY) —TuC - C'T] =Wy — W/,
(C+DTY - T — W,

—(Cc+DnTYd -o'T - wy,

—Q2 +Y;C 4+ CTYY,

CTY6T7

YiC —

_Q37

th + TRlv
Qs+ hZs + TR,.

Proof. Choose the Lyapunov functional candidate for the system with time-varying state delay
given in Equation (5) to be:

Vg(xt)

Vi(ze) + Va(ae) + V(@) + Vo) + Vs () + Vi (ze); (9)
e (t) Pa(t) + (Gay)" PGy, (10)
/ 27 (@)Qrx(a) da—i—/ 27 (0)S12(0) db, (11)
t—h t—7(t)
t—h t

/ 27 (@) Qo () da + / x7(0)Sox(0) db, (12)
t—2h t—=7(t)

| @ @quia)da (13)
t—h

/ €7(0) Z1€(a)dov ds + / €7(0)Ry€(0)d0 ds, (14)

t+s — t+s
/ /+9 a)Zyi(a)dads + - /+9 0)Rox:(6)d6 ds, (15)

where z;(0) = z(t + 6), —2H < 6 < 0, and the matrices involved satisfy P > 0, P; > 0, Q1 > 0,
Q2>0,Q3>0,R; >0,5; >0,and Z; >0, i =1,2. Now calculate the derivative of V (z;) along
the trajectory of the system given in Equation (5):

Vl(J?t)

VQ,(%‘)

Va(xy)

V()

V5(It)

Vi ()

I IA

IN

= 2:T(t)Pi(t) + 2(Gay)T PGy

e (t)(PA+ PLA)x(t) + 227 (t)(PA; + PL A )x(t — 7(t)) — 227 (1) AT PyCa(t — h)
+22T () PCi(t — h) — 227 (t — 7(t)) AT PL.Cx(t — h). (16)
2Tt — R)Quz(t — h) 4+ zT (1) S 2(t)

e (t)Qua(t) —

—(1 = 7(t)a" (t — 7(t)Sra(t — 7(1))
2" (1) (Qu+ S)x(t) — 2 (t — h)Qua(t — h) — (1 — w)a™ (t — 7())S1a(t — 7(t)). (17)
2T (t — R)Qox(t — h) — 2T (t — 2h)Qox(t — 2h) + 2™ (t)Sax(t)
—(1 —7(@))zT(t — 7(t) — h)Sax(t — 7(t) — h)
a7 (t — h)Qox(t — h) — zT(t — 2h)Qax(t — 2h) + 2T (t) Sy (t)
—(1 = )T (t — 7(t) — h)Sax(t — 7(t) — h). (18)
&7 ()Qai(t) — &7 (t — h)Qaid(t — h). (19)
BT (B 1 (1) / €7(0) Z1€ () da + €T (D) Rr&(1) / ET(O)RIE(6

T (t)[hZy + TRy )€

/ €7 () 216 (0) dar — / T (O)Ri(6) do (20)
t—7(t)

&7 (t) Zad(t) — tg';Ta s@(a) do+ Ti7 (£) Rok(t) — t:‘cT 2
i (0)22(0) — [ 7(@) 20 (o) do i (O Rai (1)~ [T (O)Rai(0) o

4



< @7 (t)[hZay + TRE(t) — t iT (o) Zai () da — t @" () Roi(6) df.
< ORI - [ @i e [ ORH0)

Let S=Q3+ hZs + TRy, and M = hZy + TRy. Since

@7 (8)[Qs + hZy + TRy)&(t)

T () AT S Ax(t) + 22T (1) AT SA1x(t — 7(t))
+22T () AT SCia(t — h) + 2T (t — 7(t)) AT SAz(t — 7(1))
4227 (t — 7(t)) AT SCi(t — h) + &7 (t — h)CTSCi(t — h),

and
EEW)hZy + TRIER) = [Ax(t) + Arx(t — 7(1)]T M[Ax(t) + Arz(t — 7(1))]
o () AT M Ax(t) + 227 () AT M Ay (t — 7(t))
+al(t — 7)) AT M A2 (t — 7(1)),
adding Equations (16)—(21) yields

Ve = Vilwe) + Va(we) + Va(ze) + Va(ae) + Vs(xe) + Vo(ae)

< 2T(W)[2PA+ 2P A+ Q1+ S+ Sz + AT(S + M)Al ()
+22T (1) [PAy + P A + AT (S 4+ M)Az (t — 7(t))
—22T () AT PyCx(t — h) + 227 (t)[PC + AT SC)i(t — h)
+aT(t — 7(t))[~(1 — w)S1 + AT (S + M) Ai]a(t — 7(t))
=227 (t — () AT PyCx(t — h) + 227 (t — 7(t)) AT SCi(t — h)

( pat (t—7(t) — )Szw(t = 7(t) = h) + 2T (t = h)[~Q1 + QaJa(t —

o’ (t = 2h)[~Qola(t — 2h) + @7 (t — h)[-Qs + CT SCla(t — h)

t

— Talaa—tj:agdcaa
[ @z~ [ i) Zil0)a

- / o) Rie(0) do #7(6) Ry (6) db.
t—7(t)

t—7(t)

Since &(t) — Cx(t — h) = Az(t) + A1z(t — 7(¢)) and £(t) = Az(t) + A1z(t — 7(t)), then

z(t) = Cx(t—h) —xz(t —7(t)) + Cx(t —7(t) — h) = /t o £(6)do

and
x(t) — (C+ Ix(t —h) + Cx(t — 2h) = /tih ¢(a)da

From the Leibniz-Newton Formula, we have that
t
2(t) =t —7(t) = / #(0)d6,
t—7(t)

z(t) —xz(t—h) = /tih:'c(a)da.

Therefore, for any matrices T3, i = 1,...,6 of appropriate dimension

2T ()T 4+ 2T (t — 7)) Ty + 2T (t — 7(t) — h)T3 + 27 (t — h)Ty + 27 (t — 2h) Ty

5

[Az(t) + Ajx(t — 7(t)) + Ci(t — h)|TS[Az(t) + Ajx(t — 7(t)) + Ci(t — h))

h)

(21)

(22)



il (t — h)Tg)[x(t) — Ca(t — h) — x(t — 7(t)) + Cx(t — 7(t) — h)]

=202 (T + 2T (t — 7)) T + 27 (t —7(t) — h)T3 + 27 (t — h)Ty

+aT(t — 2h)T5 + 37 (t — h)T] / £(0)do = 0,
t—7(t)
and so
n+T1d -1+ TF TiC + T3T ~TC+Tf T5T
* T —-T¢ ThC-TT ~TC - TF -TF
T * * T:C +CTTF T3¢+ CcTrtf  OTTd
* * -T,C -0ty -CTT¥
* * * 0
* * * *
T
T
! T
—2/ XT | 23 | ¢)do=o,
t—7(t) Ty
Ts
Ts
where
x(t)
a(t — (1))
_ |zt =7(t) = h)
X=1 2it—n)
x(t — 2h)
z(t—h)

(29)
TGTT
el
TG
X
—cTTy
0
0
(30)

Similarly, there exist matrices Y;, N;, and W;, (i = 1,...,6) associated with Equations (26)—(28),
respectively, such that

XT

XT

2y, Y& v v C+I)+Y]l Y1C + YL Y
* 0 0 Y5 (C +1) Y>C 0
* * 0 -Y;(C+1) Y5C 0 ¥
* * * =2Y4(C'+1I) V,C - (C+DTYL —(C+DTYL
* * * * YsC + CTYFL crtyf
* * * * * 0
Y
Yo
! Y:
72/ X" | éa)da=0, (31)
t—h 4
Y5
Ys
Ni+NI -Ni+Ny Nf N[ NS N
* -Ny - N} -NI NP NI —NF
* * 0 0 0 0
* * * 0 0 0 X
* * * * 0 0
* * * * * 0
Ny
Ny
! N.
72/ XT | 31 (0)ds =0, (32)
t—r(t) Ny
Ns
Ng



* 0 0 —Ws 0 0
X * * x  —Wy—-WwI -wI —w{ X

* * * * 0 0

* * * * * 0
Wy
¢ W

2 / x| W | sia)da =0 (33)

t—h Wy
Wi
We

Combining Equations (30)—(33) with Inequality (24) and noting that 7(¢) < 7, we have
Viz,) < aT(t)[PA+ATP+PlA+ATP + Q1+ S+ S+ AT(S+ M)A

Y + Y+ T+ T+ Wy + W+ Ny 4 Nia(t)
+22T()[PA, + PLA, + AT(S + M)A, +YF — Ty + T + W — Ny + NT)a(t — 7(t))

+22T (W)Y + 10 + T + Wi + Nzt — 7(t) — h)

+2eT ()[-ATPC - Y (C+ D)+ Y] —TWC+TF — Wy + Wi + Nzt — h)
+2eT (OO + Y + T + W + NP Jx(t — 2h)

+227 (4)[PC + ATSC + Y§" + T + Wi + N Ja(t — h)

+al (t = 7()[=(1 = @) S1 + A{ (S + M)Ay = Ty = T3 — Ny — Ny Ja(t — 7(t))

+22T(t — 7 (1)) [TC — T — N )a(t — 7(t) — h)
+2x(t — 7(t))[-AT P,C — Yo(C + I) — ToC — T] — Wy — N ]x(t — h)
+2x(t — 7(1))[YoC — TE — N (t — 2h)

+22T(t — 7(t))[ATSC — T — N&i(t — h)
2T (t = 7(t) — h)[~(1 — p)S2 + T3C + CTT 2 (t — 7(t) — h)
4227 (t — 7(t) — h)[=Y3(C + I) = T3C + CTTT — Walz(t — h)
+227(t — 7(t) — h)[Y3C + CTTT )2 (t — 2h)
+22T(t — 7(t) — W)[CTTT)2(t — h)
( M[Qrwb—ﬂKHJ)(C+Dﬁf—ﬂC—Cﬁf—Wﬁ—Wﬂﬂﬂw)
+2x —hW[YiC — (C+ DTYE - CcT'Td — Whx(t — 2h)
4227 ( h)[— (C+I)TY6 —CTTT —Wli(t — h)
2T (t — 20)[-Qa + Y5C + CTY x(t — 2h)

t
raut (t - 20)[CTY i (t - ) — B)[=Qs + CTSCli(t — h)

) +ei(
,%l he (o) 7 a%(>af%L%MWm%%MwMa

h
]. t 1 1 t 1
T(t)/t (t)T(t)ET(t‘));Rn(t)ﬁ(f)) o — %/p (t)T(t)iT(G);RQT(t)i(Q) do
Y1 T
t Y . Ts
2
_%/t_hXT }Yfi hg(a)da—m/t (t)XT ;i F(DE(0)dh —
Ys .
Ys T,



W1 Nl
W2 N2
2 /t | Ws , 2 ft 7| N3 .
- X hx(a)da——/ X T(t)x(6)do
hJi-n Wy 7(t) t—7(t) Ny
W5 N5
Ns

W
1 t t .

da/ t,h,0,a)n(t,h,0,a)dd,
hr(t) /t—h t—‘r(t)n ( Jan )

where 7n(t, h,0,a) =

=
D
S
2
&
D
S
D
&
2
>

- -Ny -7 -W

* Qo Qa3 oy o5 Qg —To —No =Yy —Wy
* * 33 Q3q Q35 Q3¢ —T3 —N3 Yz —Wj
* * * gy s e Ty —Nyg Yy Wy
0- * * * * Qss Q56 —T5 —Ns —-Y; —W;s
- * * * * x Qe —T¢ —Ng —Yg —Ws |’
* * * * * * Iil 0 0 0
* * * * * * 7% 0 0
* * * * * * _% 0
| * * * * * * * _% |
and
Q1 = PA+ATP+PA+ATP +Q1+ S +So+AT(S+ M)A +
Vi + Y+ T+ T + Wi+ W+ Ny + NY
Qs = PA+PA+AT(S+ M)A + Yy —Ty + TS + Wi — Ny + NS,
Q3 = Y +no+18 +wl + N
Qy = -ATPCc-vi(C+D+Y! -TnC+T1F — Wy + W + N,
Qs = YNC+Y8 +T8 + Wi + N,
Qg = PC+ATSC+Y] +T§ + W + N{,

Qo = —(1— )8+ AT(S + M)A =T~ T] — N — N].,

923 = TQC_T3T_N£3T7
oy = —ATPIC—Yy(C+1)—ToC —TF — Wy — N,
ng, = }/QC_TE:F_Ng’

Qs = ATsc -1 — N7,

Qz3 = —(1—p)S2+TC+C'TY,

Qg = —Y3(C+1)—T3C+CTT] — W3,

Q35 = Y3C+CTT,

Q6 = CT'TY,

Qu = - Q+Q-Yi(C+I)—(C+DNTYI -1,0-CT1] — Wy — W],



Qs = YiC—(C+DTYS -o'rd - wl,

Qe = —(C+DTYL -CcT'Td —wy,
Qss = —Q2+Ys5C+ CTYE)Ta
Qs = Oyl
Qs = —Q3+0CTSC,
M = hZ +71Ry,

S = Qs+ hZy+TRs.

Obviously, V(z;) < 0if Q < 0 and n(t, h, 8, «) # 0. Therefore, when Q < 0, the system given
in Equation (5) is asymptotically stable. Applying Schur complement, 2 < 0 is equivalent to

[ Qi Qo Qs Qs s e T8 N2 Y1 -Wi ATM ATS
* QQQ Qgg QQ4 QQS QQG 7T2 7N2 7Y2 7W2 A,{M A{S
* x Qzg Qaq Qa5 Qe T3 —N3 -Y; —W; 0 0
* * * Q44 045 Q46 —T4 —N4 —Y;l —W4 0 0
* * * x  Qss Q56 —T5 —Ns —-Y5 —-Wy; 0 0
* * * * x Qg —£6 —Ng —-Ys —Ws 0 CcTs <0. (37
* * * * * * =t 0 0 0 0 0
* * * * * * * —% 0 0 0 0
* * * * * * * * 7% 0 0 0
* * * * * * * * * —% 0 0
* * * * * * * * * -M 0
| * * * * * * * * * * -5 |
Multiplying both sides of Inequality (37) by the matrix diag(l,I,I,I,I,I,7I,7I,hI,hI,1,1I)
gives Inequality (8), i.e. Q < 0. This completes the proof of Theorem 1. O

He et al [9] studied the delay-dependent stability of the following neutral system with fixed
time delays:
z(t) — Cz(t — h) = Ax(t) + Ayz(t — 1), (38)
and obtained a delay-dependent stability criterion. We now restate their result as Corollary 1,
and show that He et al’s result in [9] is a special case of our Theorem 1.

Corollary 1. Given scalars h > 0 and 7 > 0, the nominal system given in Equation (38) is
asymptotically stable if the operator G is stable and there exist positive definite matrices Py > 0,
S1 >0, @ > 0, Qs > 0, non-negative definite matrices X;; > 0, Yy > 0, ¢ =1,...,5 and
otherwise arbitrary matrices X;;, Yij, 1 <4 < j <5 such that the following LMIs are satisfied:

Dy Do Dy3 D1y ATS

CI),{Q @22 @23 @24 A?S

o = | @, OL @y Dy 0 | <0, (39)
of, @ @5 Py CTS

SA SA;, 0 SC -8

X1 X2 X3 X Xis

X{y, Xoo Xog Xoa Xos

v o= X{y XI5 Xsz3 Xsa X35 | >0, (40)
Xlg X% X??:L Xy Xys

X15 X25 X??Z”) ng Xs5

Yiu Y2 Y3 Yo Yis

Yih Yoo Yoz You Yo

E o= | Yy Yiy Ya3 Yar Yi | 20, (41)
Vi Yy Y Y Yis

| Y5 Yah Vi Vi Yas




where

& B
© o
I

®yy =

AL
X R N
[ | .

S
5K
I

PIA+ATP + 8 + Q1 + X15 + X5 4+ Yis + YL+ 7X11 + AV,
PiA) — X5+ X35+ 7X12 + hY1o,
~ATPC+ XL +YE —Yis +7X13 + hYis,
XE+YLE+7X14 + hY1y,

—S1 — Xos — X35 + 7X20 + hYao,

— AT PIC — X35 — Yas + 7 X3 + hYos,

— X5+ T X4 + hYoy,

—Q1 — Yas5 — Yg5 + 7X53 + hY3s,

—Y.E +7X34 4+ hYay,

—Q3 + 7X44 + hYyy,

Q3+ 7X55 + hY5ss5.

Proof. Case 1: suppose X55 > 0, Y55 > 0.
Since ¥ > 0, it is clear that

X1 X2 X1z X 0 Xys
Xl Xoo Xoz Xou 0 Xos
Xy X33 X33 Xsa 0 Xss >0
Xl X3, Xiy Xu 0 Xy5 | T
0 0 0 0 0 0
XE XL XL XE 0 Xss

By Schur Complement,

X1

SO

X2 X3 X4 O Xis
Xoz Xoz3 Xo4 O Xos
X5 Xaz Xas 0| — | Xas | X5t [Xis X2 X X 01 >0,
X1, XL Xu 0 Xys
0 0 0 0 0

P1; —7X11 Pro—7Xia P13 —7Xy3 Py —7X14 ATS
OT, — XL, ®oy —7Xon Pog —7Xo3 Poy —7Xoy ATS
ol —rXT, 0, —7X]; P33 —7X33 Pyy—7X3y 0

<I)1T4 - TXﬂ @54 — TXQE (I>3T4 — TXg:l by —7X4yy CTS

SA SA; 0 SC -5
—X15
—Xos
+7 | —Xss | X X — X — X& — XL 0] <o.
—Xs5
0

Applying Schur Complement again, we find that

Oy —7X11 P2 —7X12 Pz —7Xiz Py —7Xyy —7Xis ATS

¥ X X ¥ ¥

By — 7Xoo Poz —7Xoz Poy —7Xos —7Xos AlTS

* @33 —TX33 @34 —TX34 —TX35 0

* * @44 — TX44 —TX45 CTS <0
* * * —7X55 0

* * * * =S
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(42)

(44)

(45)



Similarly, since Z > 0, then

(46)

(47)

(48)

Yiu Yi2 Yi3 Yiu 0 0 Yis
Yfé Yz% Yoz You 0 O Yaos
Yis Yo Yaz Yz 0 0| | Yss ~1jyvT T T 37T
le }/22 }/32 Y44 0 0 Y45 Y:’)E) [Y15 Y25 }/35 Y45 0 0] 2 0.
0 0 0 0 0 O 0
0 0 0 0 0 O 0
Therefore,
D1y —7X11 Do —7X12 P13 —7Xiz P — 71X —7Xi5 ATS
* (1)22 — TXQQ (1)23 — TX23 (1)24 — TX24 7TX25 A?S
* * (1)33 —TX33 @34 —TX34 —TX35 0
* * * CI)44 — TX44 —TX45 CTS
* * * * —7X55 0
* * * * " _S
Yiu Yi2 Yi3 Yiu 0 O -Yi5
Y1§ Yng Yo3 You 0 O —Yos
o | Yz Yay Yaz Yaa 0 O —Y35 “1[_vT _ T _ T _ T
h YL YL YE Vi 0 0 +h Y Yis [=Yi5 —Yos — Y35 —Y;500] <O0.
0 0 0 0 0 O 0
0 0 0 0 0 O 0
Using Schur Complement gives
[ @11 Py P13 Py —7X15 —hYis ATS
¥ Doy Poy Poy —TXps —hYs AfS
* k  Pgz Pyy —TXz5 —hYs O
* * * Dyy —7X4s —hYss cTs <0,
* * * x  —7Xs5 0 0
* * * * * —hYss 0
| x * * * * * -S ]

where for simplicity, we have introduced the notation @ij =&;; — 7X;; — hY;.
There exists a positive definite matrix M with appropriate dimension, such that

Dy ‘?12
Doy
*

*
*
*
*
*
*

¥ X X ¥

ATM
AT M

s}

o O OO

B1s
o3
D33

* X ¥ ¥

Q14 —7X15 —hYi5; ATS
‘1324 —7X25 —hYas A?S
B3y —7X3s —hYss 0
Py —7Xy5 —hYys CTS

* —TX55 0 0

* * —hYss 0

* * * -5

M~ [MAMA; 00000] <O0.
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By Schur Complement,

Q11 P12 Pus
* Doy Pog
* * @33
* * *
* * *
* * *
* * *
* * *

Dy
Poy
P34
Pug

*
*
*
*

7TX15
7TX25
—TX35
—TX45
—TX55

*

*

*

—hY15
—hYa5
—hY3s
—hYys
0
—hYss
*
*

ATM
ATM
0
0
0
0
-M
*

ATS
ATS
0
crs
0
0
0
-8

< 0.

Since M is a positive definite matrix, it can be decomposed into the sum of two positive definite

matrices TRy and hZq,ie. M =7TRy + hZ;.

D11 Do
* ‘i’22
* *
* *
* *
* *
* *
* *
* *
* *

P13 Pus

Qo3 Poy

P33 P34
* 6)44
* *
* *
* *
* *
* %
* %

o O O

o

—TR1

EE G

—TX15
7TX25
—TX35
—TX45
0
—7X55

* ¥ X %

***ioooooo

—hY3s
—hYys
0
0
0
—hYss
*

*

We can now choose appropriate positive definite matrices Sy and Q2

[ @11+ S2 P12
* o2
* *
* *
* *
* *
* *
* *
* *
* *
* *

L * *

0
0
-S
*
*
*
*
*
*
*
*
*

2

P13
Pos
0

P35 + Qo
*

* X X ¥ X ¥ ¥

|
**%****@OOOO
M

7TX15
—TX25

¥ ¥ x o000 0000 O

N

Since 7Ry and hZ; are positive definite, then

ATM ATS
AlTM AlTS
0 0
0 cTs
0 0
0 0 < 0.
0 0
0 0
—M 0
* -S |
such that
—hY1is ATM  ATs
—hYas AFM  ATS
0 0 0
—hYss 0 0
0 0 0
—hYys 0 cTs
0 0 0
0 0 0
0 0 0
—hYss 0 0
* —M 0
* * -5

(50)

< 0.

(51)

The proof of Theorem 1 makes it clear that if the positive matrix P in Theorem 1 is replaced by
a non-negative matrix, Theorem 1 still holds. Let P =0, Ry = X55, Z2 = Y55, p = 0, N1 = X5,
Nz = Xo5, N3 = 0, Ny = X35, N5 = 0, Ng = Xy5, W1 = Y15, Wa = Ya5, W3 = 0, Wy = Y35,
Ws =0, Wsg=Yy5, T, =Y;=0,i=1,...,6. Then Corollary 1 for the case X55 > 0,Y55 > 0 can
be obtained from Theorem 1.

Case 2: Suppose X55 =0, Y55 = 0.

Since ® < 0, there exists some small € > 0 such that

@11 cDlg @13 (1314 AT(S + (T + h)EI)

(I)?Q @22 (I)Qg @24 A,{(S + (T + h)EI)

(I)P{S (bgd P33 Py 0 <0

(I)’{Zl @%:1 @3T4 @44 CT<S + (T + h)EI)
(S+(t+h)eA (S+(t+h)eA 0 (S+(r+h)eC  —(S+ (14 h)el)

Furthermore, since ¥ > 0 and = > 0, it is clear that

X1 X2 X3 X Xis
X!, Xoo Xog Xoa Xos
X{y XI5 Xsz3 Xsa X35 | >0,
quzl X;; X:ﬂ Xaa Xus
X1T5 X2T5 Xg; XZ5 el



and
Yi; Y2 Yiz3 Yiu Yis
Yh Yoo Yoz You Yo
Y Yy Yaz Yao Yis | >0.
le Y2£ Y?ﬁ Yia Y5
Y1:g Y2:g Y?EQ ng el

Let Xs5 = Ys5 = el and S = Q3 + 7X55 + hY55. Then Corollary 1 in the case X55 = 0, Y55 = 0
can be proved by following the same lines of proof as for Case 1.

Case 3: X55 =0, Y55 >0 o0r X55 >0, Y55 = 0.

Following a similar approach to that used for Case 2, it is easy to show that Corollary 1 holds
for X55 =0, Y55 > 0, or X55 > 0, Y55 = 0.

This completes the proof of Corollary 1. O

A retarded system is a special case of a neutral system with mixed delays, so we now compare
our method and existing methods in the literature both for retarded systems, and more general
neutral systems with delays.

Setting C = 0, h = 0 in Equation (5) causes the associated neutral systems with mixed
delays to become retarded systems. By slightly modifying the proof of Theorem 1, we can obtain
Corollary 2 from Theorem 1.

Corollary 2. If 0 < 7(t) < 7, 7(t) < p < 1, then the linear retarded system i(t) = Ax(t) +
Arx(t —7(t)) is asymptotically stable if there exist matrices P > 0, Q > 0, R > 0, Ty and Ty such
that the following LMI holds:

PA+ATP+ T+ TF +Q ~T1 + PA, + T -ty TATR
* “B-Tf —(1-wQ —T TAR
< 0.
* * —TR 0
* * * —TR

Remark 1. Xu and Lam [21] studied delay-dependent stability criteria for retarded systems with
constant delay—their results are restricted to a time-invariant delay. Wu et al [19] studied the
robust stability of retarded systems with time-varying delay and devised delay-dependent stability
criteria. Their stability condition includes two complicated linear matriz inequalities (LMI) re-
lating the system matrices of the problem. These LMIs contain many unnecessary free matrizc
variables which must be stored and computed. In this paper, unlike earlier methods used to derive
delay-dependent stability criteria such as those in [3, 4], finding an upper bound on the weighted
cross-products of the state and the delayed state is avoided. Thus, inequalities such as those used by
Park [18] or Moon [14] to bound these cross terms are not needed. We also introduce various slack
matriz variables in the derivative of the Lyapunov functional, which reduces conservatism. Setting
C =0, h =0 in Equation (1) or Equation (5) causes the associated neutral systems with delays to
become retarded systems. Corollary 2 in this paper is a stability criterion for such retarded systems.
It is theoretically established that the stability results in this paper are less conservative than those
in [3] and [22]. The systems Wu et al [19] studied are limited to linear systems of retarded type
with time-varying delay instead of linear neutral systems with mixed time delays, and therefore, the
results in [19] are special cases of our results here. Corollary 2 in this paper extends the stability
result in [21] to the case of systems with time-varying delay. Corollary 2 is equivalent to Theorem
2 in [19]. Furthermore, Corollary 2 eliminates the unnecessary matriz variables in [19].

Remark 2. A descriptor model transformation was introduced for analysis of delay-dependent
stability of neutral systems in [2]. Fridman and Shaked [/] extended the results in [2] to the case of
systems with time-varying delays by finding tighter bounds on the cross terms introduced by Park
in [18]. This method produces less conservative criteria than those in [11]. However, since the basic
approach in [4] is based on the substitution of x(t) — ftt_T z(s)ds for x(t— 1), and Park’s inequality
for bounding of the cross terms, it can not entirely overcome the conservatism of the methods given
by Park [18]. Stability criteria obtained in [4] are neutral-delay-independent. Furthermore, these
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stability criteria do not take into account the information contained in the system equation, i.e.,
relationships between the state vectors xz(t), x(t — 7(t)), =(t — 7(t) — h), z(t — h), x(t — 2h) and
the derivative of the state vector at x(t — h). Our paper presents a new approach to establishing
both neutral-delay-dependent and discrete-delay-dependent stability criteria for time-varying-delay
systems which makes use of this information without requiring use of Park’s inequality [18] or
Moon’s inequality [14].

Remark 3. Recently, Han [7] studied the stability of linear neutral systems with mized time delays
and time-varying system matrices, using a novel discretized Lyapunov functional approach. The
stability criteria obtained by Han are applicable to linear neutral systems with both small and large
discrete delays. These criteria show significant improvements over earlier results, but they are only
discrete-delay dependent, and are neutral-delay independent. Furthermore, these criteria cannot
be applied to neutral systems with time-varying state delay. In contrast, the stability criterion for
time-varying-delay systems established in this paper is both neutral-delay dependent and discrete-
delay dependent.

In the rest of this section, using Theorem 1, we obtain a new delay-dependent robust stability
criterion for the neutral system with time-varying uncertainties given in Equation (1).
Xie [20] provides the following useful lemma:

Lemma 1. Given matrices Q = QT, H, E and R = RT > 0 of appropriate dimensions,
Q+HFE+ETFTHT <0
for all F satisfying FTF < R, if and only if there exists some X\ > 0 such that
Q-+ HHT + \"'ETRE < 0.

Theorem 2. For given scalars h > 0, 7 > 0, and u, the neutral system given in Equation (1)
is robustly stable for any delay 7(t) satisfying Condition (2) if the operator G is stable, and there
exist positive definite matrices P > 0, Pp > 0, Q1 > 0, Q2 > 0, Q3 > 0, Ry > 0, S > 0,
Z >0, k= 1,2, and appropriately dimensioned matrices T;, N;, Y;, Wi, i =1,...,6 such that
the following linear matriz inequality (LMI) holds:

r Qll le ng Q14 Q15 ng 7TT1 7TN1 7hY1 7hW1 ATM ATS (P + Pl)D ]
x Qoo Qoz Qos Qs Qa¢ —7T2 —7TN2  —hY> —hWo ATM ATS 0
* * Qgg Qg4 Qg5 QSG 7TT3 7TN3 7hY3 7hW3 0 0 0
* * * Qaa Qus e —7Tyw  —7Ny  —hYy —hW, 0 0 -CcTPiD
* * * * Qss Qs —7Ts —7Ns —hYs —hWs 0 0 0
* * * * x Qe —71T6 —7Ne¢ —hYs —hW;s 0 cTs 0
* * * * * * —T7Ry 0 0 0 0 0 0 < 07
* * * * * * * —TRo 0 0 0 0 0
* * * * * * * * —hZ4 0 0 0 0
* * * * * * * * * —hZsy 0 0 0
* * * * * * * * * * —M 0 MD
* * * * * * * * * * * -5 SD
L * * * * * * * * * * * * -1 i
(52)
where
Qi = PA+ATP+PA+ATP + Q1+ S1+ Sy +
Vi+Y + T+ T8 + Wi+ Wi+ N+ Ny +ETE,
A T T T T T
ng = PA1+P1A1+Y2 _T1+T2 +W2 —N1+N2 +E El,
Qs = Y +T0+T] + Wi + Ni,
Oy = —ATPC-Yi(C+ D)+ Y] —TiC+T] — Wy + Wi + N,
A T T T T
Qs = VC+YS + T + W + NY,
A T T T T
916 = PC+Y6 +T6 +W6 +N6 3
a T T T
QQQ = 7(17”)317T27T2 7N27N2 +E1 El,
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Qo = TO-T] — NT,

—ATPIC —Yo(C+ 1) —ToC — T — Wy — NI,
YO —TF — N7,

Qo = —T¢ — N7,

D 2
[\ no
wt >
1

Qzz = —(1—p)Se+T3C+CTTT,
Qs = —Y3(C+1)—T5C +CTTE — W3,
Q35 = Y3C+CTTY,
Q6 = CTTY,
Qs = —-Qq+Q—Yy(C+I)—(C+DTY! —TyC¢ -1l — W, — W[,
Qus = YiC—(C+ DY —c'1r —wl,
Qe = —(C+DTYL -ty —wi,
Qs5 = —Qo+ Y50 +CTYY,
Q56 = CTY,
Qs = —Qs,
M = hZ +7Ry,
S = Q3+ hZy+ TRo.

Proof. If A and A; in Inequality (8) in Theorem 1 are replaced by A+ DF(t)E and A; + DF(t)E;
respectively, then Inequality (8) for the uncertain system given in Equation (1) is equivalent to
the following condition:
Q+ T FOTT + T . FT(#)rY <o, (53)
where
r? = [DT(P+ P),0,0,—DTP,C,0,0,0,0,0,0, DT M, DT 3],
I'.=|[E, F,0,0,0,0,0,0,0,0,0,0].

By Lemma 1, a necessary and sufficient condition to satisfy Inequality (53) for the system given
in Equation (1) is that there exists a A > 0 such that

Q4+ AT 4+ 27'1TT, < 0. (54)

Multiplying both sides of Equation (54) by A, replacing AP, APy, AQ1, AQ2, A\Qs, AZ1, \Z3, ARy,
ARz, AS1, AS2, AT;, \Y;, AN;, and A\W; by P, Py, Q1, Q2, Q3, Z1, Z2, Ry, Ra, S1, S2, T, Vi, N;,
and W; for i = 1,...,6, and applying Schur complement, we find Inequality (54) is equivalent to
Inequality (52). This completes the proof of Theorem 2. O

3 Numerical examples

In this Section, we provide two examples as a demonstration that the methods presented in this
paper are effective and are an improvement over existing methods.

Example 1. Consider the following neutral system with time-varying discrete delay:
. —0.2 0 . -0.9 0.2 —-1.1 —-0.2
&0 - { 0.2 —0.1 ]x(th) - [ 0.1 —0.9 }WH [ —0.1 —1.1 }x(tT(t»'

Let the state delay 7(t) be time-varying with derivative p = 0.01; in this example we use a delay
with fized derivative. Table 1 shows the mazimum allowable state delays which guarantee stability
of this system as h wvaries from 0.1 to 1.7076, computed using Theorem 1. Note that the stability
criterion in [9] can not be applied to this example since it is only applicable to systems with a
constant state delay 7, while here the state delay 7(t) is a function of t. Clearly, in this sense, our
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Table 1: Allowable time delay 7(¢) from Theorem 1 for Example 1 with © = 0.01

h 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T(t) 1.7728 1.7641 1.7552 1.7464 1.7378 1.7296 1.7221 1.7156 1.7110
h 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7076 10000
T(t) 1.7086 1.7078 1.7076 1.7076 1.7076 1.7076 1.7076 1.7076 1.7076

Table 2: Allowable time delay 71 for Example 1 with 7(¢) = 7y and h = 1

Method 7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Heetal 75 1.7100 1.6987 1.6883 1.6792 1.6718 1.6664 1.6624 1.6591 1.6564
Ours 7 1.7844 1.7757 1.7669 1.7581 1.7495 1.7413 1.7338 1.7273 1.7226
Method 7 1.0 1.1 1.2 1.3 14 1.5 1.6 1.6527 10000
Heetal 7 1.6543 1.6531 1.6527 1.6527 1.6527 1.6527 1.65627 1.6527 1.6527
Ours 7 1.7201 1.7193 1.7191 1.7191 1.7191 1.7191 1.7191 1.7191 1.7191

criterion is an improvement over that in [9]. When p = 0.01 and h = 0.1, the allowable mazimum
time delay T(t) is 1.7728. For pn = 0.01, the mazimum allowable delay 7(t) is approximately 1.7076
when h is in the range 1.2 to 1000. Initially, the allowable time delay 7(t) decreases as the neutral
delay h increases, for small h, but the allowable time delay 7(t) remains almost unchanged when
h>1.2.

Chen [1], Fridman [2], Lien et al [13] and He et al [9] studied the above neutral system in the
case when 7(t) = 11, h = T2, 4 = 0 and 71 = 7. The upper bounds on delays under which it is
possible to guarantee the stability of this system using the methods in [13, 1, 2, 9] are 71 = 75 = 0.3,
71 = T2 = 0.5658, 71 = 75 = 0.74 and 71 = 15 = 1.6527, respectively. In contrast, by solving the
matriz inequality (8) in Theorem 1 of this paper for 71 = 1o, we obtain maximum upper bounds
on the allowable delay of 1 = 170 = 1.7191, which are greater than those obtained by any of the
aforementioned methods, demonstrating the superiority of our approach.

In the particular case when 7(t) = 71, h = 7o and 71 # T2, Table 2 lists the upper bounds on T
for which stability can be guaranteed, for various values of 7o from 0.1 to 10000, using the methods
in this paper and the approach in [9]. It can be seen that our delay-dependent stability criterion is
considerably less conservative than that in [9]. Note again that the upper bound on 11 decreases as
To increases when Ty is small, but the upper bound on T remains almost unchanged when 7o > 1.2.

Remark 4. When h = 75 = 0.1 and . = 0 in Example 1, He et al [9] obtained the mazimum upper
bound 11 = 1.7100 for which stability of the system in Example 1 can be guaranteed. Theorem 1
in this paper gives a mazimum upper bound on the allowable delay of 7 = 1.7844. Let us consider
the contribution of the additional matrices in Theorem 1 for this particular case, i.e. h =17 = 0.1
and/,Lzo IfwesetN3:N4:N5:NG:T3:T5:T6:W2:W3:W5:W6:Y1:
Yo =Y;5 =Y, =Ys =0 and replace Q2 by 0 in Matriz Inequality (8) in Theorem 1 of this paper,
we obtain a solution to Matriz Inequality (8), giving the mazimum upper bound on the allowable
delay 0f7'1 = 1.7844. Matrices P, Pl, Ql, Q3, Rl, RQ, Sl, SQ, Zl, Zg, Nl, NQ, Tl, Tg, T4, }/5,
W1, and Wy contribute to this allowable mazimum time delay. Compared to the result in [9], the
additional matrices P, Ry, Sa, Z1, Th, Tz, Ty, and Ys in Matriz Inequality (8) contribute to the
improvement of the allowable maximum time delay 7.
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Table 3: Allowable time delay 7, for Example 2 with 7(¢) = 7, and h = 72

Method c 0 0.06 01 015 02 025 03 035 04

Han [6] Ty=T 177 163 148 133 1.16 098 0.79 0.59 0.37
He et al Ty =T 239 205 1.7 149 127 1.08 091 0.76 0.63
Theorem 2 7o =7 239 213 189 1.67 148 130 1.15 1.00 0.87

He et al T =10000 2.39 2.05 1.75 149 127 1.08 091 0.76 0.63
Theorem 2 75 =10000 2.39 2.13 189 1.67 148 1.30 1.15 1.00 0.87
He et al T2 =0.1 239 225 211 196 181 166 150 133 1.16
Theorem 2 7 =0.1 239 225 211 196 1.82 166 1.52 134 1.18

Remark 5. Next, we illustrate the contribution of the additional matrices P and T when h =
70 =0.1 and =0 in Example 1.

1) If P is replaced by 0 in Matriz Inequality (8), then the allowable mazimum time delay 7 under
which the neutral system given in Example 1 is asymptotically stable decreases from 1.7844 to
1.7802. Thus, the additional matriz P in Theorem 1 clearly contributes to the improvement
in the allowable time delay.

2) If’LU@S@tN5:N3:T6:T5:T4:T3:T2:W5:W3:}%:}%:Y4:Y3:Y2:Y1:0
and P is replaced by 0 in Matriz Inequality (8), the allowable mazimum time delay 7 under
which the neutral system given in FExample 1 is asymptotically stable remains the same at
1.7802. If we further set Ty = 0, then the allowable mazimum time delay 71 decreases from
1.7802 to 1.7100. Thus, the additional matrix Ty in Theorem 1 clearly contributes to the
improvement in the allowable time delay.

Example 2. Consider the robust stability of the neutral system in the form given in Equation (1)
which is associated with the following nominal system:

j;(t)—{g 2]3’:(t—h) - [02 099}95(15)%_} _Ol}m(t—T(t)),

where D =1, and E = E1 = 0.21. Again, no conclusions can be made using the stability criteria
in [9]. We only consider the special case h = 19, 7(t) = 1. The upper bounds on the delay 7 under
which robust stability of this system can be guaranteed using the methods in [6, 9] and Theorem 2
of this paper are listed in Table 3, as ¢ varies from 0 to 0.4. For 7y = 7o, it is clear that our
results are significantly better than those in [6, 9] because our allowable mazimum time delay T
is larger. For 11 # 1o Han’s method [6] is inapplicable; setting 7o = 10000, again our results are
much better than those provided by the approach in [9]. For 71 # 1o and 72 = 0.1, our results are
slightly better than those in [9]. Owverall, again these results demonstrate that the delay-dependent
robust stability condition in our paper is less conservative than the existing approaches in [6, 9].

Remark 6. He et al [9] obtained the allowable mazimum time delay 71 = 0.63 for which the
robust stability of the system given in Example 2 is guaranteed, with settings 7(t) = 11, h = 7o,
71 = T and ¢ = 0.4. However, the upper bound on the delay 71 under which robust stability of
this system can be guaranteed using Theorem 2 of this paper is 0.87 when ¢ = 0.4. With the same
settings, let us now set N3 = Ny = N5 = Ng =Ty =T =T33 =T, =T5 =Tg = W1 = Wy =
Ws=W5s=Wsg=Y, =Yy =Y3 =Y, = Y5 =0 and replace matrices Q2 and Ry by zero matrices
in Theorem 2. Since Ry is replaced by 0, Matrixz Inequality (52) has to be modified. Noting that
u = 0, we solve the modified Matriz Inequality (52). The allowable maximum time delay under
which robust stability of this system can be guaranteed is still 1 = 0.87. Matrices P, Q1, Q3, Ra,
S1, Sa, Z1, Za, P1, N1, Na, Y5 in Matriz Inequality (52) contribute to this allowable mazimum
time delay 71 = 0.87. Therefore, compared with the result in [9], the additional matrices P, Sa, Z1,
and Ys in Theorem 2 contribute to the improvement of the allowable time delay in this example.
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4

Conclusion

New delay-dependent stability criteria for neutral systems with time-varying discrete delay and
time-varying structured uncertainties have been obtained. These criteria are dependent on the
neutral-delay, the discrete-delay and the derivative of the discrete-delay, and as a result, our
approach reduces the conservatism present in existing methods. Numerical examples have been
given to demonstrate that results derived using the criteria in this paper are less conservative than
various existing ones in the literature.
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