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Abstract
Nanoindentation techniques provide a unique opportunity to obtain
mechanical properties of materials of very small volumes. The
load–displacement and load–area curves are the basis for nanoindentation
tests, and their interpretation is usually based on the main assumptions of the
Hertz contact theory and formulae obtained for ideally shaped indenters.
However, real indenters have some deviation from their nominal shapes
leading researchers to develop empirical ‘area functions’ to relate the
apparent contact area to depth. We argue that for both axisymmetric and
three-dimensional cases, the indenter shape near the tip can be well
approximated by monomial functions of radius. In this case problems obey
the self-similar laws. Using Borodich’s similarity considerations of
three-dimensional contact problems and the corresponding formulae,
fundamental relations are derived for depth of indentation, size of the
contact region, load, hardness, and contact area, which are valid for both
elastic and non-elastic, isotropic and anisotropic materials. For loading the
formulae depend on the material hardening exponent and the degree of the
monomial function of the shape. These formulae are especially important
for shallow indentation (usually less than 100 nm) where the tip bluntness is
of the same order as the indentation depth. Uncertainties in nanoindentation
measurements that arise from geometric deviation of the indenter tip from
its nominal geometry are explained and quantitatively described.

1. Introduction

Indentation testing is widely used for the analysis and
estimation of mechanical properties of materials [1, 2].
The introduction of depth-sensing techniques [3] provided
an opportunity to extract information about both plastic
and elastic properties of materials, in particular their
elastic characteristics and the hardness. Modern sensors
can accurately monitor the load and the depth of
indentation in the micro-Newton and nanometric scale,
respectively. Nanoindentation tests have become an active
research area due to the recent investigations into nanosystems
and thin film coatings. However, the estimations of the thin
film mechanical properties can be affected by various factors,
such as for example the substrate effects [4, 5], the pile-
up and sink-in phenomena [5, 6], effects of adhesion [7–9],

adsorption [9], surface steps [10], surface roughness [11], non-
ideal shape of the indenter [1, 12, 13] and so on. Evidently,
interpretation of nanoindentation tests may be improved by
a clearer understanding of the processes taking place during
the test. It is widely accepted that the most significant
source of uncertainty in nanoindentation measurement is the
deviation of the indenter tip from nominal geometry [12, 14].
Even in the case of micrometric scale indentation testing,
empirical corrections are used to account for the above effects
while accomplishing the testing. To account for the actual
shape of indenters has therefore become more important for
nanoindentation tests, where empirically-fit area functions are
utilized to take into account non-ideal indenter geometries.

Usually, the theoretical analysis of indentation is based on
either the classical Hertz analysis [15] or the Galin–Sneddon
analysis of axisymmetric frictionless Hertz-type problems of
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contact between a punch of arbitrary profile and an isotropic
linear elastic solid [16–18]. The equation for the stiffness S of
the upper portion of the load–displacement curve at unloading

S = dP

dh
= 2√

π

√
AEr ,

1

Er
= 1 − ν2

E
+

1 − ν2
1

E1
(1)

is an example of the fundamental relations that can be obtained
from the analysis of contact problems. Here P is the external
load, h is the indentation depth of the indenter tip, A is the
contact area, E, ν and E1, ν1 are the Young’s modulus and
the Poisson ratio of the material and the indenter, respectively.
This fundamental relation was originally derived for spherical
and conical indenters [19, 20] and later its validity was shown
for arbitrary convex bodies of revolution [2].

However, if the indenter is neither a sphere nor a cone
(a Rockwell indenter), but is either a Vickers or Berkovich
indenter whose tip is a nominally four sided or a three-
sided pyramid, respectively, then the Galin–Sneddon solution
is invalid. In addition, the solution is invalid when the
tested material is anisotropic. Hence, the derivation of other
fundamental theoretical formulae, which are valid for three-
dimensional schemes of nanoindentation by indenters of non-
ideal shapes, is also important.

2. Similarity approach

Let us put the origin of a Cartesian coordinate system Ox1x2x3

at the peak of the indenter. We direct the axis x3 into
the depth of the indenter and the axes x1 and x2 along the
plane of the surface. The theoretical analysis of Hertz-
type contact problems based on similarity transformations of
three-dimensional contact problems does not depend on the
anisotropy of the material [21]. The conditions under which
Hertz-type contact problems possess classical self-similarity,
are as follows [21, 22]: ‘the constitutive relationships are
homogeneous with respect to the strains or the stresses and
the indenter’s shape is described by a homogeneous function
whose degree is greater than or equal to unity. It is also assumed
that during the process of the contact, the loading at any point
is progressive’. This statement means that the shape function
of the indenter f identically equals hd , where hd satisfies
hd(λx1, λx2) = λdhd(x1, x2) for an arbitrary positive scaling
parameter λ. Here d is the degree of the homogeneous function
f , in particular, d = 2 for the elliptic paraboloid considered
by Hertz and d = 1 for a pyramid or a cone. Additionally,
operators of constitutive relations F for materials of contacting
bodies should be homogeneous functions of degree κ with
respect to the components of the strain tensor ei j , i.e.

F(λei j ) = λκ F(ei j ). (2)

The material behaviour of the medium may be linear
or nonlinear, elastic or inelastic, anisotropic or isotropic,
depending on the form of the operator F . If the stress–strain
relation of the coating isσ ∝ εκ , whereκ is the work-hardening
exponent of the constitutive relationship, and the indenter
shape is described by f ≡ hd , then the problem is self-similar.
For isotropic materials, self-similar approaches to three-
dimensional contact problems were independently introduced
by Galanov [23] and Borodich [24]. Galanov [25, 26]
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θ

Figure 1. Berkovich indenter geometry.

has also used this approach for numerical simulations of
sharp indentation tests for both linear elastic materials and
materials with nonlinear stress–strain relations described by
the following relation:

σ D
i j = C�κ−1εi j (3)

where σ D
i j and εi j are components of the stress deviator

(σ D
i j = σi j − δi jσkk/3) and the strain tensor, respectively,

� =
√

εD
i j ε

D
i j /2 is an invariant of the strain tensor (the intensity

of shear strains), δi j is the Kronecker delta, and C is a material
constant. Evidently, the relations of deformation plasticity of
the form equation (3) is a particular case of equation (2), i.e. it
is a homogeneous relation.

We argue that a three-dimensional shape of the indenter
at its tip can be well described as a homogeneous function
of degree d. In polar coordinates r, θ , the shape can be
described by a monomial function of radius x3 = B(θ)rd

where x1 = r cos θ, x2 = r sin θ , and B(θ) is a function
of the indenter heights at r = 1. The idea to approximate
the indenter shape by a power law function is not new. For
example, this idea was realized materially by Rockwell [27] in
1922, who introduced a sphero-conical indenter. Recently, it
has been shown [28] that conical axi-symmetric indenters can
be well approximated by monomial functions. As we noted
above, the indenters used in nano-tests are not axi-symmetric,
but three-dimensional pyramidal indenters. However, instead
of considering the original three-dimensional shape of the
indenter, an effective equivalent cone of revolution is usually
considered. To take into account the non-ideal shape of a
three-dimensional indenter, others have used equivalent cones
connected with spheres or power-law functions of revolution
(see, e.g., [29, 30]). Note that the solution to the elastic contact
problem for an arbitrary indenter of revolution was obtained by
Galin [16, 31] in 1946, in particular for an arbitrary power-law
indenter. This solution can be used to solve the problem for an
indenter described as a power-law series of the radius [32, 33].

Let us describe the three-dimensional geometry of a three-
sided Berkovich and cube-corner pyramidal indenters. The
Berkovich indenter (figure 1) has an angle of 65.3◦ (115.13◦
corresponding face angle), while the cube corner indenter
(90◦ face angle) has an angle of 35.26◦ [29]. The horizontal
cross sections of both indenters are equilateral triangles.
However, if we describe them as x3 = B(θ)rd then B(θ) is not
constant. In fact, B(θ) describes the height of the indenter at a
point (θ, r) on a circle r = 1. Table 1 gives B(θ) in the range
0 � θ � π/3. Other values can be obtained using symmetry
of the geometrical shapes of the indenters. One can see that
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Table 1. Values of B(θ) for Berkovich and cube-corner indenter
geometries.

θ BB(θ) BC (θ)

0 0.2300 0.7072
π/10 0.3418 1.0511
π/8 0.3649 1.1222
π/6 0.3983 1.2249
π/4 0.4443 1.3662
π/3 0.4599 1.4144

the BC(θ) values for the cube-corner indenter can be obtained
from the values for the Berkovich indenter, BB(θ), with c =
BC(θ)/BB(θ) = 3.075. The following formula has been used
in our calculations: BB(θ) = tan

[
90◦ − arctan

(
tan 65.3◦

sin(30◦+θ)

)]
. To

get the values for the cube-corner indenter, we should substitute
the respective angle 35.26◦ instead of 65.3◦.

This coefficient c could be obtained directly as the
ratio of tangents of angles in vertical cross sections c =
tan 65.3◦/ tan 35.26◦ = 3.075. Evidently, if one considers
a sharper three-sided pyramidal indenter, e.g. with an
angle of 28.98◦ (80◦ corresponding face angle) then c =
tan 65.3◦/ tan 28.98◦ = 3.93.

Let P1 be some initial value of the external load, l(P1)

and h(P1) be respectively the characteristic size of the contact
region and the depth of indentation (displacement) at this
load. Then l and h at any other value of the load for three-
dimensional monomial indenters and materials with power-
law stress–strain relations can be re-scaled using the following
formulae [34]

l(P) =
(

P

P1

) 1
2+κ(d−1)

l(P1), h(P) =
(

P

P1

) d
2+κ(d−1)

h(P1). (4)

Equation (4) is valid not only in the case of frictionless contact
but also for frictional contact problems, in particular when both
regions of stick and slip are within the contact region [35]. If
we assume that the material behaves linearly, i.e. κ = 1, then
we have

l(P) =
(

P

P1

)1/d+1

l(P1), h(P) =
(

P

P1

)d/d+1

h(P1).

3. Fundamental relations for nanoindentation tests

Let us denote by P1, A1, l1 and h1 some initial load, the
corresponding contact area, the characteristic size of the
contact region and the displacement, respectively. Then
equation (4) can be re-written as

l

l1
=

(
P

P1

) 1
2+κ(d−1)

,
h

h1
=

(
P

P1

) d
2+κ(d−1)

. (5)

In an ideal scheme, the whole load–displacement curve in
a depth-sensing test can be approximately described as

P

P1
=

(
h

h1

) 2+κ(d−1)
d

and
P

Pmax
=

(
h − h f

hmax − h f

)1+1/d

(6)

Figure 2. Schematic illustration of the P–h curve.

for the loading and unloading branches, respectively. In the
latter case it is assumed that κ = 1 for unloading [2, 25] and
the non-homogeneity of the residual stresses can be neglected.
Here Pmax, hmax are the maximum load and the respective
displacement, and h f is the residual displacement (figure 2).

Oliver and Pharr [2] noted that the experimental unloading
data for various materials can be described as a power-law
function of h, i.e. P = αhm , with the exponent m ranging
from about 1.25 to 1.51, for which d is within the range 1.96–
4 because it follows from equation (6) that m = 1 + 1/d.
Evidently, for d = 4 the tip is rather flat.

We can also write other general relations of nanoindenta-
tion, in particular

h

h1
=

(
l

l1

)d

,
h

h1
=

(
A

A1

)d/2

. (7)

Hence, if the indenter tip is described as a monomial function of
degree d, then h ∝ Ad/2 independently of the work-hardening
exponent κ . Equation (7) allows us to determine an indenter
tip shape from an area–displacement curve. An example of
such a curve was given by Doerner and Nix [1]. Employing
equation (7), we obtain from their data that the indenter shape
for h � 90 nm can be described as a monomial function of
degree d = 1.44 (see figure 3).

Equations (4) and (5) were obtained assuming the
homogeneity of material properties and that the stress–strain
relation remains the same for any depth of indentation,
e.g. equation (3) is valid for any depth of indentation.
However, it is known that plastic deformation exhibits a strong
dependence on sizes below micrometric length scales (see,
e.g. [36–38] and literature therein). One possible way to model
these effects is to employ models of strain gradient plasticity.
However, non-ideal indenter geometries can also affect the
interpretation of the experimental results.

Let us discuss the possible influence of a non-ideal shape
of indenters on hardness. Originally, the hardness H was
defined as the ratio of the maximum indentation force to the
area of imprint after unloading. However, it is now often
defined as the ratio of the maximum indentation force to the
contact area or as the ratio of current contact force to the current
contact area. For example, Bhattacharya and Nix [39] defined
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Figure 3. A–h curve for a Berkovich indenter (experimental data
from [1]).

it as the load divided by the projected area under the indenter
at various points on the loading curve.

If we adopt this definition, then from equation (7) the
following formula for the hardness is obtained:

H

H1
= P/P1

A/A1
=

(
P

P1

)1− 2
2+κ(d−1)

=
(

P

P1

) κ(d−1)
2+κ(d−1)

or
H

H1
=

(
h

h1

) κ(d−1)
d

. (8)

Hence, the hardness depends on the depth of penetration for
all monomial indenters of degree d, except ideal conical or
pyramid-shaped indenters. This is in accordance with the
numerical results of Bhattacharya and Nix [39] for indentation
by a perfectly sharp indenter, whose simulations showed that
the hardness is essentially independent of depth of indentation
of a homogeneous material described by a continuum-based
constitutive model. It follows from equation (8) that for
spherical indenters, we have

H

H1
=

(
P

P1

)κ/2+κ

=
(

h

h1

)κ/2

.

Experimental studies of various materials using Berkovich
indenters show that the hardness is a function of depth [40, 41].
For example, when the indenter was used for studies of
fused silica and single-crystal Si(111) [40], the hardness was
an increasing function of depth up to about 200 nm. One
possible source for this in addition to the influence of material
properties, is that the indenter shapes were not ideal and d �= 1
at shallow depths. Studies of amorphous carbon films showed
that H(h) ∝ h0.38 for the first 20 nm [41]. By taking into
account that at such shallow depths, plastic deformations under
a blunted indenter are relatively small, we can assume that
κ = 1. Hence, if there was no material influence on this then
as it follows from equation (8) an indenter tip approximated as
a monomial function of degree d = 1.61 could cause such an
effect.

We would like to note that various numerical schemes can
be used for calculation of the initial contact area A1 and depth
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Figure 4. A–h curve for a Berkovich indenter and a sharper
indenter with angle 29◦ (experimental data from [40]).

of indentation h1, in particular numerical schemes developed
by Galanov and colleagues [22, 23, 25, 26], which fully utilize
the self-similarity of three-dimensional contact problems.

If a three-sided pyramid-shaped indenter is sharper than
the Berkovich indenter, then the results obtained by this
indenter can be re-scaled for the Berkovich indenter and vice
versa. Similar re-scaling is valid for ball-shaped indenters of
different radii [34, 35]. Thus, if the indenter shape is described
by a homogeneous function hd = B(θ)rd and we would like
to re-scale the results from this indenter to another indenter
chd = cB(θ)rd where c is some positive number, then we
have [34, 35]

l(P, c) = c
−κ

2+κ(d−1)

(
P

P1

) 1
2+κ(d−1)

l(P1, 1),

h(P, c) = c
2−κ

2+κ(d−1)

(
P

P1

) d
2+κ(d−1)

h(P1, 1).

(9)

Evidently, equations (4) are a particular case of equations (9).
After some simple calculations, one can obtain

A(P, c)

A(P1, 1)
=

(
c−1 h(P, c)

h(P1, 1)

)2/d

. (10)

Applying equation (10), one obtains that for the sharper
indenter (an angle of 28.98◦ and c = 3.93) the linear
log A– log h plot will shift down 2 log 3.93 = 1.19 (figure 4).
It was observed experimentally [40] that for a sharper than
Berkovich indenter, the difference between the real and ideal
shapes is larger than for a standard Berkovich indenter (see
figure 4, cf figure 3). Similar behaviour was observed in
nanoindentation experiments of fused quartz [29] by a cube-
corner indenter (figure 5). The shift down of the cube-corner
results, utilizing the same procedure as illustrated above, is
0.98. Note that once again the experimental results deviate
greatly from the theoretical values for ideal pyramids.

Finally, let us apply the obtained formulae to ball-
shaped diamond indenters. Such indenters are gaining
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Figure 5. A–h curve for a Berkovich indenter and a cube-corner
indenter (experimental data from [29]).

increasing importance in nanoindentation because they allow
investigations in the region of purely elastic deformations [12].
For ball-shaped indenters, the deviation from nominal
geometry can also be observed. For example, the scanning
force microscopy (SFM) studies of a ball with nominal radius
Rn = 10 µm showed that the radius (R) is about 8250 nm at
h = 100 nm and rises rapidly with increasing indentation
depth. Therefore, R ≈ 9000 nm at h = 300 nm and
R ≈ Rn at h ≈ 1000 nm [12]. Equation (10) cannot
be applied directly in this case because we do not consider
two balls of different radii but a ball whose radius varies.
However, we can use equation (10) to compare the relations
for a ball with radius observed at the shallow depths with an
asymptotic result for an ideal-shaped ball at a large depth of
indentation. For a ball-shaped indenter, d = 2, x3 = r 2/2R
and c = R/R1. In the above case we have therefore c−1 =
Rn/R1 = 10 000/8250 = 1.21. Hence, A = kh for h less
then 100 nm where k = A(P1, 1)/h(P1, 1) and the relation
asymptotically approaches the classical relation A = k1h with
k1 = c−1k for h about 1000 nm.

4. Conclusion

In this paper we have derived formulae that allow us
quantitatively to take into account the geometric deviation
of a three-dimensional indenter from its nominal geometry.
The formulae follow from strict mathematical treatment of
Hertz-type contact problems. They are valid for both isotropic
and anisotropic materials and under condition of frictionless
or frictional contact. Evidently, there are some restrictions
on their validity, which follow from the geometrically
linear formulation of the problem, and some of the above
mentioned factors can also affect the results. Nevertheless, the
formulae will help to exclude uncertainty in nanoindentation
measurements due to tip geometry by taking into account
real geometry and the non-elastic power-law behaviour of
materials. We have shown through examples how the formulae

can be applied to extract the non-ideal geometry of diamond
and spherical indenters. This method, which takes into
account three-dimensional indenter geometry, can be applied
as a correction to the ideal indenter geometry to develop
relationships between contact area and depth for depth-sensing
indentation in a simple manner.
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