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Abstract 
Simulation of mould filling in high pressure die casting has been an attractive area of research for 
many years. Several numerical methodologies have been adopted in the past to study the flow 
behaviour of the molten metal inside the die cavities. However, many of these methods require 
stationary mesh or grid which limits their ability in simulating highly dynamic and transient flows 
encountered in high pressure die casting processes. In recent years, the advent of meshfree methods 
have led to the opening of new avenues in numerical computational field. Consequently, particle based 
methods have emerged as an attractive alternative for modeling mould filling simulation in pressure 
die casting processes. In this paper the Corrected Smooth Particle Hydrodynamics (CSPH) method is 
used to simulate fluid flow in the high pressure die casting cavity. CSPH is a Lagrangian method based 
on Smooth Particle Hydrodynamics (SPH) techniques. In CSPH method, the quantities determining 
the flow are localised on set of particles, which move with the flow. This enables the method to easily 
follow complex free surfaces, including fragmentation. This paper mainly deals with the formulation 
of  governing equation required CSPH simulation of high pressure die casting process and presents a 
number of numerical results  to demonstrate the capabilities of the numerical model. 
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1 Introduction 

High pressure die casting process is widely used for mass production of components based on 
aluminium, magnesium or zinc alloys. In high pressure die casting, molten alloy is injected into a 
metal mould, called the die, and then solidification of the alloy creates the desired shape. During a 
high pressure die casting cycle, molten metal is initially poured into the shot sleeve and then injected 
into the die cavity by the plunger under pressure [1]. After die cavity is filled, pressure intensification 
occurs during the solidification to reduce the amount of gas porosity, feed shrinkage porosity and 
dimensional inaccuracies. Finally, the die is opened and casting is separated from the die. Among 
these steps the mould filling sequence is the crucial part to the quality of the casting. Improvements to 
both product quality and process productivity can be brought about through improved die design. 
These include developing more effective control of the die filling and die thermal performance. 
Numerical simulation offers a powerful and cost effective way to study the effectiveness of  different 
die designs and filling processes. Conventional computational modelling techniques such as finite 
element, finite volume and volume of fluid methods have been used with reasonable success to model 
low pressure slow die casting processes [2,3]. However, these methods are unable  to cope with the 
extremely complex free surface behaviour found in high pressure die casting. 
       The aim of this paper is to present a  Lagrangian particle method for mould filling simulation in 
high pressure die casting process. The meshless method used in the present work is based on SPH 
techniques called the corrected SPH [4,5] method. This is a truly meshfree Lagrangian method. The 
particles are the computational framework on which governing equations are solved. The Lagrangian 
nature of the method makes it particulary suited for fluid flows that involve droplet formation, 
splashing and complex free surface motion. In the past SPH and CSPH methods have been 
successfully used in numerical simulations of various engineering applications [4-8]. In recent years 
Clearly et al [9] developed a procedure for numerical simulation of high pressure die casting based on 
traditional SPH techniques. Present work deviates significantly from the previous approach by 
formulating governing equations based on a variational framework and  introducing a variationally 
consistent method to handle contact boundary conditions. In addition, this paper presents a number of 
numermical examples to demonstrate the successful implementation of the numerical procedure. 

2 Numerical Methodology 

The Corrected Smooth Particle Hydrodynamics (CSPH) [4,5] method is developed based on Smooth 
Particle Hydrodynamics(SPH) techniques [6-8]. The SPH method approximates a given function 

( )f x  and its gradient  ( )f∇ x  in terms of values of the function at a number of neighbouring 

particles and kernel function ( ) ( ), ,b bW h W h− =x x x  as, 

  

( ) ( ) ( ) ( )
1 1

, and
M M

h b b b b h b b
b b

f V f W h f f
= =

= ∇ =∑ ∑x x x g x   (1) 

 
where h is the smoothing length and determines the  support of the kernel  (see figure 1); bV  denotes a 
tributary volume associated to particle b generally evaluated as the particle mass divided by density; 
and in the traditional SPH formulations, the gradient vectors g are simply b b bV W= ∇g . However, in 
corrected  SPH methods gradient functions are amended to ensure  that the gradient  of a general 
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constant or linear function is correctly evaluated. This requirement leads to two simple conditions for 
these gradient vectors, namely: 
 

( ) ( )
1 1

and
M M

b b
b b= =

= ⊗ =∑ ∑g x 0 x g x I    (2) 

 
One simple way of fulfilling the above conditions can be obtained by introducing a vector and tensor 
correction terms, ε and L respectively, to give: 
 

( ) ( )b b b a abV W ε δ = ∇ + Lg x xa a a     (3) 

 
Substituting this equation into equation (2) leads to explicit equations for the correction terms as: 
 

( ) ( ) ( )
1

1 1

and
a aM M

a b b b b a b a
b b

V W V Wε
−

= =

 
= − ∇ = − ⊗∇ 

 
∑ ∑Lx x x xa a   (4) 

 
Evaluation of these terms will enable the second expression in equation (1) to yield the correct 
gradient for constant and linear functions. A detailed description of various methodologies that can be 
adopted to fulfill the conditions in equation (2) can be found in the literature [4,5]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: SPH Interpolation 

3 Governing Equations 

This section briefly describes the formulation of governing equations based on  SPH interpolation 
techniques. To formulate the descrete form of the equations of  motion, a Lagrangian description of a 
continuum is considered.   A continuum is represented by a large set of particles where each particle a  
is described by a mass am , a position vector ax , and a velocity vector av .  In order  to proceed with a 

xb
h

( )bW x

f

( )hf x
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variational formulation of the equations of motion of the continuum, it is necessary to define the 
kinetic, internal and external energy of the system. For instance, the equations of motion can be 
expressed in variational form by defining  total kinetic energy K, total internal energy intΠ and total 

external energy extΠ  as; 

( )

( )

( )

int

1
2

,..

a a a
a

a
a

ext a a
a

K m

m

m

π ρ

= ⋅

Π =

Π = − ⋅

∑

∑

∑

v v

gx

     (5) 

where π  the internal energy per unit mass, will depend on the deformation, density or other 
constitutive parameters. And g represents the gravitational field. The equation of motion of 
the system of particles representing the continuum can now be evaluated following the 
classical Lagrangian formalism to give: 
 

( ) ( ) ( ) ( )int0; ,a a a a ext a
a a

d L L
L K

dt
   ∂ ∂

− = = − Π − Π   ∂ ∂   
v v

v
x x xx   (6) 

 
Substituting equations (5) into the above expressions leads to the standard Newton’s second 
law for each particle as: 

a a a am = −a F T       (7) 
where: aa  is the acceleration of the particle; the external forces aF , for the simple 
gravitational case, are: 

ext
a a

a

m
∂Π

= − =
∂xF g       (8) 

and the internal constitutive forces are defined as: 
 

( )int ,...a b b
ba a

m π ρ
∂Π ∂

= =
∂ ∂ ∑x xT     (9) 

 
The evaluation of the internal forces will depend on the constitutive definition of the material. 
For an incompressible fluid by using the density equation given by, 
 

( ) ( )
1

,
aM

b a a
b

m W hρ
=

= ∑x xa a      (10) 

 
an expression for internal forces can be obtained as: 
 

( ) 2
2 2 ;a b

a a b a b
b a b

p p d
m m W p

d
π

ρ
ρ ρ ρ

 
= + ∇ = 

 
∑T x    (11) 

where pressure  p and the internal energy are related as shown in the second expression of the 
above equation. 
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         In the  context of the proposed variational formulation, viscosity can be introduced via a 
dissipative potential. This leads to a new term in the Lagrange equations as, 

dis

a a a

d L L
dt

    ∂Π∂ ∂
− = −   ∂ ∂ ∂   xv v

     (12) 

 
In general, the dissipative potential are expressed as the sum of viscous potentials per unit 
mass ψ , which in turn are functions of rate of deformation tensor d, as, 
 

( ) ; 2 T
dis a

a

m ψΠ = ∇ ∇∑ =d d v + v     (13) 

For instance, in the case of a Newtonian fluid, the viscous stresses are defined by: 

( )1
2 ;

3
vis trσ µ= = −' 'd d d d I     (14) 

where µ is the material viscosity  and ′d  is deviatoric rate of deformation tensor. The gradient 
of the velocity at each cotinuum particle is obtained with the help of equation (1) as,  
 

( )
1

aM

a b b
b=

∇ = ⊗∑v v g xa      (15) 

 
After some algebraic manipulation the internal forces due to viscous effects can be evaluated 
as, 

( )vis
vis

dis b
a b a b

ba b

m
σ
ρ

 ∂Π
= =  ∂  

∑T g
v

x     (16) 

 
Thermal effects associated with the dynamics of the material can also be similarly 
incorporated with the above equations to simulate the mould filling in high pressure die 
casting process. The velocity and positions of the particles are updated by an explicit leap-frog 
time integration scheme defined by, 
 

1 1 1 1
2 2 2 2;

n n n nn n
a a a a a at t

+ − + +
= + ∆ = + ∆x xv v a v    (17) 

4 Applications 

In order to validate the above formulations and to demonstrate the ability of corrected  SPH method a 
number of numerical simulations are performed to compare with corresponding experimental 
observations [10]. Two such comparisons are described in this section.  In both cases experiments 
were carried out using water at room temperature. Figure 2 illustrates the die used in case 1. In this 
comparison, a die with a circular cross-section and a circular core was filled with water.  The thickness 
of the die is 2mm and the gate velocity is 18 m/s. Both experimental and numerical simulation are 
shown in figures 4a and 4b. In case 2, a die geometry shown in figure 4 is used. In this experiment, the 
die thickness is again 2mm and gate velocity is 7.85 m/s. Numerical and corresponding experimental 
observations are shown in Figure 5a and 5b. It can be seen from the figures 4 and 5 that the method 
compares favourably with the experimental observations. 
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Figure 2:  Die Geometry I 

 

  

Figure 3a: Experimental results of filling die I 

 

  

Figure 3b: Numerical simulation of filling  die I 
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Figure 4:  Die Geometry II 

  
Figure 5a: Experimental simulation of filling die II 

  

Figure 5b: Numerical simulation of filling die II 
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