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Abstract. A fractional step projection method is introduced here to achieve incompressibility 
in the SPH method. Fractional step method is a popular approach used to solve 
incompressible fluid dynamics problems in traditional grid based methods and involves a 
two-step process to achieve incompressibility. Essentially, the velocity update over a time step 
is split into a component that does not take into account the divergence free condition, plus a 
pressure correction term which restores the incompressibility of the velocity. This paper 
mainly focuses on the variational formulation of fractional step method for SPH fluid 
applications by presenting a detailed description of the formulation of governing equations.  
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1 INTRODUCTION 

Smooth Particle Hydrodynamics (SPH) is a fully Lagrangian, particle based technique 
which does not require grid and can be used to simulate the motion of fluids and solids. SPH 
was originally invented to model astrophysical phenomena and more recently has been 
extended by many researchers to simulate various engineering applications [1-4].  In fluid 
applications, incompressibility in SPH was generally approximated by assuming large sound 
speed, and hence the real fluid was simulated as an artificial fluid with slightly more 
compressible characteristics [2,3]. The results using this approach have  been impressive but 
requirement of a large sound speed leads to smaller time step constraint in order to satisfy 
stability. 

In the present work, incompressibility in SPH is introduced by employing a fractional step 
projection method. Fractional step methods are frequently used in incompressible 
computational fluid dynamics [5]. This is a popular approach used to solve incompressible 
fluid dynamics problems in traditional grid based methods and involves a two-step process to 
achieve incompressibility [5,6]. First, the momentum equation is integrated in time to predict 
an intermediate velocity. This intermediate velocity field will, in general not satisfy continuity 
so the second step is to project this intermediate velocity onto the space of divergence free 
vector fields, thus transforming the intermediate velocity into an incompressible velocity 
field. Typically, the pressure correction term involves the implicit solution of a Poisson type 
of problem. 

This paper mainly focuses on the variational formulation of fractional step method for SPH 
fluid applications. A detailed description of the formulation of governing equations is 
presented with a number of numerical simulations to demonstrate the capabilities of the 
proposed computational model. 

 

2 SMOOTH PARTICLE HYDRODYNAMICS METHODOLOGY 

In meshfree methods such as SPH, any problem variable and its gradient are generally 
interpolated from values at a discrete number of particles by using the following 
approximations: 
 

( ) ( )

1

N

b b b
b

V Wf f
=

= ∑x x      (1) 

( ) ( )

1

N

b b b
b

V Wf f
=

∇ = ∇∑x x      (2) 

 
where bV   denotes the volume of material associated to a given particle and bW  represents the 
‘kernel’ or interpolation function, which usually has a bell shape with a compact support as 
shown in Figure 1. Most commonly used kernel function in SPH is a cubic spline kernel 
function given by, 
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where d is the number of dimensions of the problem and c is a scaling factor to normalise the 
kernel function. Here, the length parameter h has a similar interpretation to the element size in 
finite element method. 

 
 
For instance, applying equation (1) to density of a continuum leads to the classical  SPH 
equation 

( ) ( )

1

N

b b
b

m Wr
=

= ∑x x      (4) 

In this way, the SPH representation of  the governing equations can be built from fundamental 
equations of motion. 

3 VARIATIONAL FORMULATION OF CENTRAL DIFFERENCES 

To introduce the variational formulation of the fractional step method, consider first the 
standard case of the commonly used central difference time integrator. For this purpose, recall 
first that the equations of motion of a Hamiltonian system represent the stationary conditions 
of the action integral:  

      
0

;Nt
t

S Ldt L K= = − Π∫  (5) 

2h 

Vb 

x 

Wb(x) 

Figure 1: Particle interpolation and kernel function 
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where L  denotes the Lagrangian, K is the kinetic energy and extintΠ = Π + Π  is the total 
potential energy with, typically, an internal elastic component and an external component due 
to applied forces. 
 
Consider now a sequence of timesteps 1 , 0,1,...,n nt t t n N−= + ∆ = . The position of the 

solid at each step is defined by a mapping ( , )n nt=x Xf .  The discrete Lagrangian between 
two steps is now defined as: 

 ( )1 1
2 2

1
2, 1 1( , ) , ( )n nn n n n nL M+ + + += − Πx x v v x  (6) 

where the intermediate velocity is 1
2 1( )/nnn t++ = − ∆v x x  and the mass bilinear form is: 

 

0

0( ) ( )
V

M dVr= ⋅∫u,v u v  (7) 

The action integral is now approximated as: 

 
1

0 , 1 1
0

( ,..., ) ( , )
N

nn n nN
n

S t L
−

+ +
=

= ∆∑x x x x  (8) 

The stationary conditions of S  with respect to a variation dv  the body position at n are: 
 2 1, 1 , 1[ ] [ ] [ ]n n n n nD S t D L t D Ld d d− += ∆ + ∆v v v =0 (9) 

where iD  denotes directional derivative with respect to i -th variable. Substituting for the 
Lagrangian expressions from equation (6) leads, after some simple algebra, to the standard 
explicit central difference time integration scheme: 

 
1 12 2, ( ; ) ( ; )n n

n nM F Ttd d d+ −−  = −  ∆
v v

v v x v x  (10) 

where the external and internal forces are respectively, 

 
ext

int

( ; ) ( )[ ]
( ; ) ( )[ ]

n n

n n

F D
T D

d d
d d

= − Π
= Π

v x x v
v x x v

 (11) 

Identical explicit equations are in fact obtained if the Lagrangian is approximated as: 

 ( )1 1
2 2

1
2, 1 1 1( , ) , ( )nn n n nn nL M+ + ++ += − Πx x v v x  (12) 

or indeed, 

 ( )1 1
2 2

1 1 1
2 2 2, 1 1 1( , ) , ( ) ( )n nn n n nn nL M+ + ++ += − Π − Πx x v v x x  (13) 

 
 

4 FRACTIONAL STEP VARIATIONA FORMULATION 

In order to separate the volumetric from the isochoric components of the deformation during 
the time increment, consider the internal energy decomposition into volume preserving and 
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volumetric components as: iso volintΠ = Π + Π . In general the volumetric component will be 

a function of volume ratio 
0

VJ V= . In order to introduce the pressure as an extra variable, 

however, the volumetric strain energy can be expressed in terms of the complementary energy 
via the Legendre relationship: 
 vol vol

0

0 ˆ( ) ( 1) ( )
V

p J dV pΠ = − − Π∫x  (14) 

where, typically, the complementary volumetric energy is: 

 

0

21
2 0

1ˆ( )
V

p p dVkΠ = ∫  (15) 

The discrete Lagrangian between any two steps is now expressed as: 

 
( ) extiso

vol

1 1 12 2 2

1 12 2
0

1
2, 1 1

1
2 01

( , , ) , ( ) ( )
ˆ( 2) ( )

n n nn n n n n n

nnn n
V

L p M

p J J dV p
+ + + + +

++ +

= − Π − Π

− + − + Π∫
x x v v x x

 (16) 

 Note that a central approximation for the volumetric components has been used. The 
stationary conditions of the action integral with respect to position at step n can now be 
obtained with the help of the expression div[ ] [ ]DJ Jd d=v v , and lead to: 

 
div

1 12 2

1 12 2
1
2

, ( ; ) ( ; )

( )
n

n n
n n n n n

n nn n
V

M F Tt
p p dV

d d d

d

+ −

− +

−  ′= −  ∆
− +∫

v v
v v x v x

v
 (17) 

 
where T ′  represent the deviatoric component of the internal forces. Note also that the 
divergence of ndv  is taken at the known configuration n. The above expression can now be 
re-arranged in a more traditional fractional step format as: 

 div
1 12 2

12
1
2, ( ; ) ( ; )

n

n n
n n n n n n nn

V
M F T p dVtd d d d

∗
+ −

−
−  ′ = − −  ∆  ∫v v

v v x v x v  (18) 

 div
1 12 2

12
1
2,

n

n n
n n nn

V
M p dVtd d

∗
+ +

+
−   = −  ∆  ∫v v

v v  (19) 

 
Note that the first of the above equations is explicit, whereas the second equation will require 
the solution of a set of equations for the pressure increment. These equations are derived from 
the stationary conditions of the action integral with respect to the pressure, which lead to an 
additional set of constitutive equations as: 
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 12
0

1
2 01( , ) ( 2)n nk n

V
M p p J J pdVd d++ = + −∫  (20) 

where the notation 
0

1
0( ) kk V

M pq pqdV= ∫  has been used. Note that for incompressible 

materials k = ∞  and the above expression enforces that the average volume ratio should be 
one.  
 
 
5  SPH DISCRETIZATION 
 
Consider now discretized version of  equation (16)  as, 

( ) ( ) ( )
1 1

12 2
, 1 0

1 1 ˆ2
2 2

n nn n n n a
n n a a a iso a ext a a a a vol a

a a a

m
m p J J p

ρ

+ ++
+

 
= ⋅ − Π − Π − + − + Π  

 
∑ ∑L v v x x (21) 

 
 
For fully incompressible case (as k → ∞ ) equation (15) yields, 
 

1
2ˆ 0

n

vol ap
+ 

Π = 
 

     (22) 

 
Therefore (21)  can be simplified as, 

( ) ( ) ( )
1 1 1

12 2 2
, 1 0

1 1
2

2 2

n n nn n n n a
n n a a a iso a ext a a a a

a a a

m
m p J J

ρ

+ + + +
+ = ⋅ − Π − Π − + −∑ ∑L v v x x  (23) 

 
Similarly, equation (23) for time steps between n-1 and n can be written as, 
 

( ) ( ) ( )
1 1 1

1 1 12 2 2
1, 0

1 1
2

2 2

n n nn n n n a
n n a iso a ext a a a a

a a a

m
m p J J

ρ

− − −− − −
− = ⋅ − Π − Π − + −∑ ∑a aL v v x x  (24) 

Consider now the stationary condition given by, 
 

, 1 1, 0n n
n n a n n aD Dδ δ+ −   + =   L v L v     (25) 

 
Substituting equations (23) and (24) in (25) gives, 

( )

1 1
2 2

1 1
2 2

2

1
2

n n

a a
n nn n n n na

a a iso a ext a a a a a
na a
a

m
m D D p p D

t
δ δ δ ρ δ

ρ

+ −

+ −

 
− 

        ⋅ = − Π − Π + +      ∆  
∑ ∑

v v
v v v v

(26) 
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Using the notations as in equation (17), the above equation can be re-written as, 

( ) ( )
( )

1 1
2 2

1 1
2 2

2

1
; ;

2

n n

a a
n nn n n n n n na

a a a a a a a a a a
na a
a

m
m F T p p D

t
δ δ δ ρ δ

ρ

+ −

+ −

 
− 

   ′  ⋅ = − + +   ∆  
∑ ∑

v v
v v x v x v

(27) 
Now to evaluate n n

a aDρ δ  v , consider the density equation (4) at time level n as, 

 

( ),n n
a b a b a

b

m W hρ = ∑ x     (28) 

Linearising density in equation (28) with respect to velocity gives, 
 

( ) ( ),n n n n n
a a b a b a b a

b

D m W hρ δ δ δ  = ∇ ⋅ −  ∑v x v v    (29) 

Substituting n n
a aDρ δ  v  from (29) into equation (27)  yields, 

 

( ) ( )

( ) ( )
( )

( ) ( )
( )

1 1
2 2

1 1
2 2

2 2

1 1
2 2

2 2

; ;

1
,

2

1
,

2

n n

a a
n n n n n

a a a a a a
a

n n

n nb a
a b b a a an na b

b a

n n

n nb a
a b b a a a

n na b b a

m F x T x
t

p p
m m W x h

p p
m m W x h

δ δ δ

δ
ρ ρ

δ
ρ ρ

+ −

− −

+ +

 
− 

  ′⋅ = − +
∆

 
 + ∇ ⋅ +  
 
 
 + ∇ ⋅   

∑

∑∑

∑∑

v v
v v v

v

v

  (30) 

 
Hence, for a given node ‘a’ the above equilibrium equation can be written as, 
 

( ) ( )
( )

( ) ( )
( )

1 1
2 2

1 1
2 2

2 2

1 1
2 2

2 2

1 ,
2

1
,

2

n n

a a
n n

a a a

n n

nb a
a b b a an nb

b a

n n

nb a
a b b a an nb b a

m F T
t

p pm m W x h

p p
m m W x h

ρ ρ

ρ ρ

+ −

− −

+ +

 
− 

  ′= − +
∆

 
 + ∇ +  
 
 
 + ∇   

∑

∑

v v

  (31) 
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Rewriting equation (31) by taking 
1 1 1
2 2 2

n n n
p p p

+ − +
= + ∆    gives,  

 
 

( ) ( )
( )

1 1
2 2 1 1

2 2

2 2 ,

n n
n na a

n n nb a
a a a a b b a an nb

b a

p p
m F T m m W x h

t ρ ρ

+ −
− −

 
−   

   ′= − + + ∇ ∆   
∑

%v v
          (32) 

and, 

( ) ( )
( )

1 1
2 2 1 1

2 2

2 2

1 ,
2

n n
n na a

nb a
a a b b a an nb

b a

p p
m m m W x h

t ρ ρ

+ +
+ +

 
−    ∆ ∆   = + ∇ ∆   

∑
%v v

                     (33) 

 
As noted in the previous section, equation (32) is explicit, whereas the equation (33) will 

require solution for the pressure increment 
1
2

n
p

+
∆ . To evaluate pressure increment , consider 

the density equation (4) as follows. 
 

( ),n n
a c a c a

c

m W x hρ = ∑                                   (34) 

 
Differentiating (34) with respect to  time yields, 

( ) ( ),
n

n n na
c a c a c a

c

m W h
t

ρ∂
= ∇ ⋅ −

∂ ∑ x v v                                    (35) 

 

For incompressible flow 0
n
a

t
ρ ∂

= ∂ 
 , 

 

( ) ( ), 0n n n
c a c a c a

c

m W h∇ ⋅ − =∑ x v v                                      (36) 

The above equation can be re-written as, 
 

( )
1 1 1 1
2 2 2 2, 0

n n n nn
c a c a c c a a

c

m W h
+ − + −    

∇ ⋅ + − + =    
     

∑ x v v v v                   (37) 

 
Simplifying equation  (37) results in, 

( ) ( )
1 1 1 1
2 2 2 2, ,

n n n nn n
c a c a c a c a c a c a

c c

m W h m W h
+ + − −   

∇ ⋅ − = − ∇ ⋅ −   
   

∑ ∑x v v x v v       (38) 
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From equation (33)  
1
2

n

a

+v  can be evaluated as, 

( ) ( )
( )

1 1
1 1 2 2
2 2

2 2 ,
2

n n
n n nb a
a a b b a an nb b a

p pt
m W x h

ρ ρ

+ +
+ +

 
∆ ∆∆  = + + ∇   

∑%v v                              (39) 

Using equation (39), 
1 1
2 2

n n

c a

+ +
−v v  can be evaluated as, 

 

( ) ( )
( )

( ) ( )
( )

1 1
1 1 1 1 2 2
2 2 2 2

2 2

1 1
2 2

2 2

,
2

,
2

n n
n n n n nd c
c a c a d d c cn n

d d c

n n

nb a
b b a an nb

b a

p pt m W x h

p pt m W x h

ρ ρ

ρ ρ

+ +
+ + + +

+ +

 
∆ ∆∆  = + + ∇   

 
∆ ∆∆  − + ∇  

 

∑

∑

% %v -v v -v
  (40) 

 
From (40) , set of equations for solving pressure increment can be derived as, 

 

( )
1 1 1 1 1
2 2 2 2 2,

n n n n nn
ab b a c a c a c a c a

b c

K p m m W h
+ − − + + 

∆ = − ∇ ⋅ − + − 
 

∑ ∑ % %x v v v v   (41) 

and abK  can be decomposed as, 1 2 3 4
ab ab ab ab abK K K K K= + + +  where, 

 

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( )

( ) ( )

1
2

2
2

3
2

4
2

2

2

2

2

n n
ab a c b a c b cn

cb

n n
ab a c b a b c b

n c
b

n n
ab a b c a c b an

cb

a ab n n
ab c c a d d an

c d
b

t
K m m m W W x

t
K m m m W W x

t
K m m m W W x

t m
K m W m W x

ρ

ρ

ρ

δ

ρ

∆
= ∇ ⋅∇

∆
= ∇ ⋅∇

∆
= ∇ ⋅∇

∆    
= ∇ ⋅ ∇   

   

∑

∑

∑

∑ ∑

x

x

x

x

  (42) 

 
Hence, the equations  (32),(33) and (41) can be employed to enforce  incompressibility and to 
solve fluid dynamics problems  in SPH method. 

6 CONCLUSIONS 

The formulation discussed above should provide a novel approach for the simulation of 
incompressible fluid dynamics problems using SPH method. Further work is clearly needed in 
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order to assess the range of problems for which the extra cost induced by the fractional step 
method is compensated by the larger step size permitted. A number of numerical example will 
be presented  to illustrate the capability of the methodology described  here. 
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