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___________________________________________________________ 

We study a generalised order-up-to policy that has highly desirable properties in terms of order 

and inventory variance and customer service.  We quantify exactly the variance amplification in 

replenishment orders, i.e. the bullwhip effect, and the variance of inventory levels over time, for 

i.i.d. and the weakly stationary Auto Regressive (AR), Moving Average (MA) and Auto 

Regressive Moving Average (ARMA) demand processes. We demonstrate that high customer 

service as measured by fill rate, and smooth replenishments need not increase inventory cost 

substantially.  We observe that in some instances of the ARMA demand pattern this comes at the 

expense of a relatively small increase in safety stock, whilst in other instances inventory levels 

can actually be reduced.  

(Order-up-to policies; ARMA demand; Bullwhip; Inventory variance; Fill rates) 
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1.  Introduction  

Inventory is used to provide a service to the customer, i.e. to give an immediate source of supply, 

and to buffer the production system from fluctuations in demand, but the prevalence of the 

bullwhip effect (Lee Padmanabhan and Whang, 1997a and b) suggests that this benefit is often 

lost (Baganha and Cohen, 1998).    Both marketing and production executives clearly have a 

fundamental interest in inventory.   Marketing will wish to set inventory levels to ensure a 

suitable customer service level.   Additionally, production executives wish to use the inventory to 

reduce the “strain” on the production system resulting from the uncertain demand.   These strains 

manifest themselves as lost capacity, transport and subcontracting premiums, over and under-

time labour, training, and quality issues.   The financial implications of these problems are often 

hard to determine, although academia and management have realised for a long time the benefit 

of designing replenishment rules to control inventory levels, maintain customer service and set 

production targets, see Magee (1956) and, Deziel and Eilon (1967) and Graves (1999).   In reality 

a qualitative judgement is often taken by executives to manage the trade-off between the 

bullwhip effect, inventory holding and backlog costs whilst aligning the service proposition to 

the market place. 

Inventory managers must consider two primary factors when making replenishments. First, a 

replenishment rule has an impact on order variability (as measured by the bullwhip effect, i.e., 

the ratio of the variance of orders over the variance of demand) shown to the supplier. Second, 

the replenishment rule has an impact on the variance of the net stock (as measured by the net 

stock amplification, i.e., the ratio of net stock variance over the variance of demand). The 

bullwhip effect mainly contributes to upstream costs, while the variance of net stock determines 

the stage’s ability to meet a service level in a cost-effective manner. This is the key trade-off 

faced by a single-stage member of a supply chain. This is the key issue addressed in this paper. It 

is interesting to note that the problem described above may lead to non-cooperative behaviour. 
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Indeed, the bullwhip effect is driving costs at the upstream stage (e.g. the manufacturer or 

supplier) and consequently, the downstream stage (e.g. the retailer) may not worry about it. Even 

worse, dampening the bullwhip effect may have a negative impact on customer service. Why 

should a downstream stage be concerned with upstream costs?  One answer becomes clear if the 

lead-time is also considered. By dampening the order variability, the upstream supply chain 

member will most likely be able to offer shorter lead times and this of course is beneficial for the 

downstream stage. However, the impact of dampening order variance on lead-time is not 

considered in this paper.  Our referee has also suggested another reason why a downstream 

player should be concerned about upstream costs; the supplier may approach the downstream 

player with a co-ordination incentive.  That is, the supplier may be able to reduce costs so much 

that they can offer to offset the downstream players increased costs.  

 

The replenishment rule contributes to both the inventory levels and the production rates1 of a 

product.  The key to designing a good replenishment rule is to balance the inventory and 

production costs whilst ensuring a customer service level.    In simple terms it is easy to visualise 

that we can “buy” a smoothed production level and customer service level with inventory.   This 

is how inventory is supposed to be used, but often an improperly designed replenishment rule 

will destroy this beneficial inventory effect.  General solutions are also hard to provide as 

inventory and production costs and service level requirements vary widely in practice.  

Furthermore, the trade-off also depends very much on the demand pattern.   

 

There are two basic types of inventory replenishment rules; continuous time, fixed order and 

periodic re-ordering systems, Magee (1956) and Rao (2003).  Fixed order systems result in the 

same quantity (or multiples thereof) of product being ordered at varying time intervals.  In 

periodic systems a variable amount of product is ordered at regular, repeating intervals and the 
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decision maker has to determine an order-up-to (OUT) level in each period. At fixed time 

intervals he compares the inventory position with the order-up-to level, and orders the difference. 

Given the common practice in retailing to replenish inventory frequently (e.g. daily), and the fact 

that OUT policies generate regular repeating schedules of inventory replenishments, we chose to 

model a periodic re-ordering system.  As the decision operates at fixed time intervals, we may 

use the z-transform as a modelling and analysis tool (see Disney and Towill (2002)). In control 

systems engineering, the transfer function of a system represents the relationship describing the 

dynamics of the system under consideration. It algebraically relates a system’s output 

(replenishment order) to its input (the demand process) and is defined as the ratio of the z-

transform (the discrete time, z-domain, equivalent of the Laplace transform) of the output 

variable to the z-transform of the input variable. It is possible to develop a transfer function for 

every linear replenishment rule. We model time in integer multiples of a planning period, but our 

results will provide valuable insight regardless of the actual length of the planning period used in 

a particular application. 

 

We have also chosen to model the demand pattern as a stochastic demand pattern with Auto 

Regressive and Moving Average (ARMA) components of order one, i.e. ARIMA (1,0,1).   This 

is a weakly non-stationary demand pattern with wide applicability, Box and Jenkins (1970).  So 

studying the response to the ARMA demand pattern is particularly important as our analysis will 

be relevant for any echelon of a supply chain that uses the OUT policy.  Furthermore, the i.i.d, 

AR and MA demand patterns are also instances of the general class of ARMA demands.  

 

We also generalise the classical OUT policy in an important way.   We incorporate proportional 

controllers into the OUT policy in order to increase the flexibility of the policy when balancing 

the inventory and capacity related costs.   Finally, the paper also explicitly integrates the order 
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rate variance amplification, the inventory level variance and customer service levels for 15 real 

life demand patterns. 

 

The combination of the ARMA demands and the generalised Order-Up-To policy results in an 

(myopic and not necessarily optimal) adaptive base-stock control policy in which the base stock 

is adjusted as the demand forecast changes (also see Graves (1999)). It should be remembered 

that we are modelling a generic single echelon of a supply chain.   This echelon could be a 

retailer, distributor or manufacturer. 

 

Our paper proceeds as follows.  Section 2 reviews literature and section 3 introduces the 

generalised OUT policy, which we analyse under the assumption that demand is i.i.d.   This 

allows a concise presentation of our methodology.  Section 4 investigates the response of the 

classical OUT policy in response to the ARMA demand pattern.  Section 5 considers our 

generalised OUT policy in response to the ARMA demand pattern.  Section 6 highlights the link 

between ARMA demand, the OUT policy and customer service levels for 15 real life demand 

patterns. Section 7 concludes. 

 

2. Literature Background 

Bullwhip has become a short-hand expression, originally coined by Procter and Gamble 

(Schmenner, 2001) but popularised by Lee et al (1997b), for the phenomenon where the variance 

of the demand signal increases as the demand signal flows up the supply chain.  It has been an 

academic concern for a long time as initiated by Forrester (1958) and Magee (1956).   There is 

certainly no lack of empirical evidence from industry.  For example, Holmström (1997) 

documents a confectionary supply chain where the bullwhip increases the variance of the orders 

by 9 to 1 in a high volume product and 28 to 1 in a slow moving product.    
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Baganha and Cohen (1998) present empirical evidence and theoretical results based on the (s, S) 

model and highlight the link between bullwhip and inventory variance for Auto Regressive (AR) 

demand.    Chen, Drezner, Ryan and Simchi-Levi (2000) showed the classical OUT policy with 

exponential smoothing and moving average forecasting for AR demands always resulted in 

bullwhip.   Furthermore they extended these results to a multi-echelon environment both with 

and without information sharing.  Dejonckheere, Disney, Lambrecht and Towill (2003) showed 

that the classical OUT policy with exponential smoothing, moving average and demand signal 

processing forecasting and a dynamic target “orders placed but not yet received” or WIP target 

will produce bullwhip for all demands, not just AR demands.  They also showed how to modify 

the OUT policy to create a smoothing rule, i.e. one that is able to produce replenishment orders 

with less variance than the demand rate.  

 

The base-stock model that we propose in this paper can be classified as an adaptive control 

policy. Several components adjust the order-up-to level; the forecast of demand over the lead-

time, a net stock discrepancy and a pipeline stock discrepancy term. There is a rich literature on 

adaptive inventory control models (see e.g. Treharne and Sox (2002) and Lovejoy (1992)). These 

papers focus on the impact of adaptive policies on expected inventory related costs. In this 

contribution however we focus not only on inventory aspects, but we also investigate the 

bullwhip consequences. Given the complexity of the problem, we do not establish the optimality 

of the policy. 

 

Sterman (1989) has presented seminal work on the effect of human behaviour on the bullwhip 

problem via a tabletop management game, the MIT “Beer Game”.   Based on an analysis of 2000 

sets of results he showed that a player’s decision-making behaviour could be mimicked by an 

anchoring and adjustment heuristic. There are also many inventory related theoretical results 
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available, but only a small proportion of the literature relates it to the bullwhip problem; for 

example see Graves (1999), Deziel and Eilon (1967) and Magee (1956). We firmly believe that 

we should focus more on analysing inventory models not only from an inventory 

holding/backorder cost perspective but also on the impact these replenishment rules have on the 

bullwhip effect. These are the two sides of the coin. That’s what we demonstrate in this paper. 

However, once we can describe the probability density function of the inventory levels, we can 

determine the customer service provided by the replenishment rule, see Deziel and Eilon (1967).   

Customer service can be measured in various ways, for example: the percentage of periods that 

inventory levels are positive at the end of the planning period, the percentage of product shipped 

on time to the customer, or the expected length of a stock out. We have selected a volume service 

level measure (fill rate, i.e. the percentage of volume supplied from shelf). 

 

In essence, we use exactly the same methodology as the Box and Jenkins (1970) approach. 

However rather than use the backward difference operator we exploit the z-transform as an 

analysis tool. The use of transform methods to solve production and inventory control system 

problems has a long history.    Herbert Simon initiated this research stream with an analysis in 

continuous time (Simon, 1952) using the Laplace transform.   This approach was quickly 

replicated in discrete time by Vassian (1955) using the newly developed z-transform.    The z-

transform is the discrete time analogue of the Laplace transform.    Yakov Tsypkin (1964) 

documents a detailed list of properties of the Discrete Laplace Transform that are easily 

converted into z-transform notation, many of which we exploit in this paper.  

 

Surprisingly few publications have exploited the z-transform for discrete time analysis.  Indeed 

continuous time approaches appear to have dominated the research field, see Axsäter (1985).  

However, Vassian (1955), Magee (1956), Brown (1962) and Deziel and Eilon (1967) are 



Disney, S.M., Farasyn, I., Lambrecht, M., Towill, D.R. and Van de Velde, W., (2006), “Taming the bullwhip effect whilst watching customer service in a single 
echelon of a supply chain”, European Journal of Operational Research, Vol. 173, pp151–172. DOI: 10.1016/j.ejor.2005.01.026. 

 8

significant contributions that explicitly exploit exactly the same techniques as we do here using 

the z-transform2.    

 

Deziel and Eilon (1967) studied a variant of the OUT policy with a different order of events than 

those considered here and the analysis was conducted via computer simulation.   It is this latter 

research that inspired this investigation.    A possible cause for the relative lack of recent interest 

in the z-transform method is the amount of algebraic manipulation required.   However, recent 

advancements in software (for example Mathematica by Wolfram Research, Illinois) have made 

the method very attractive, as there are some very powerful theorems to exploit.  We will use this 

to derive bullwhip and inventory variance ratios for the OUT policy, provide a solution to the 

bullwhip problem, and study the implications of our solution on inventory levels and customer 

service in an extended range of demand processes. 

 

3. A generalised Order-Up-To (OUT) policy under strictly stationary demand 

In this Section we assume the demand is a stationary (i.i.d.) stochastic normally distributed 

random process, or white noise.   White noise is any stationary stochastic process whose spectral 

density is a constant3.  That is, it contains frequency components of equal amounts. A stationary 

i.i.d. demand  process defined by (1) 








ttD

D


0            (1) 

where tD = Demand in time t,  = the mean or level of demand, t = a standard normal variant at 

time t; i.e.  1,0N ; t  is a white noise stochastic process.  

In an order-up-to system, the ordering decision is as follows: 

 tt SO inventory positiont         (2)  

where 
tO  is the ordering decision made at the end of period t, 

tS  is the order-up-to level used in 
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period t and the inventory position equals net stock plus on order (or WIP), and net stock equals 

inventory on hand minus backlog. The order-up-to level is updated every period according to  

L

t

L

tt kDS ̂ˆ            (3) 

where L

tD̂  is an estimate of mean demand over L (see infra) periods (we assume that 
t

L

t DLD ˆˆ  ), 

L

t̂  is an estimation of the standard deviation of the error of the forecasted demand over L 

periods, and k is a chosen constant to meet a desired service level or to achieve the economic 

stock out level (Chen et al, 2000). To simplify the analysis many authors set k equal to zero and 

increase the lead-time by one, for example see Dejonckheere et al, 2003 and 2004.   However, we 

elect to set k equal to zero and increase the lead-time by a variable a (where a  0).   This results 

in a more general form of the OUT model as we can then consider the impact of different 

customer service requirements and demand signal properties on the inventory levels.   

 

In an OUT policy we need to forecast demand over the lead-time and the review period in order 

to determine the order-up-to level, S.  As the process is i.i.d., the best possible forecast to use 

every time an order is placed )ˆ( tD is the average of all previous demands (i.e. D ).  This we 

know, from the demand process assumption, is equal to . Hence,  DDt
ˆ . 

 

The order of events in our replenishment system essentially follows Vassian (1955):  We receive 

inventory and satisfy demand throughout the planning period; at the end of the planning period 

we observe the inventory level and place an order.  Thus, even if the physical production / 

distribution lead-time is zero, it does not appear in the order decision until the end of the next 

planning period.   Hence, L includes a nominal order of events delay – the review period.   In 

other words L not only represents the physical lead-time, Tp, but also a safety lead-time (a) and a 

review period (+1). Thus we have L=Tp+a+1.  
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Finally the order-up-to policy definition is completed as follows; inventory position equals net 

stock (NS) + products on order (WIP). We then successively obtain: 

 
















)()(ˆ
)ˆ()ˆ(ˆ

ˆ)1(

tttttt

tttttt

tttt

WIPDWIPNSTNSDO

WIPDTpNSDaDO

WIPNSDaTpO

      (4) 

 

where, TNS is the Target Net Stock position and DWIP is the Desired WIP position. Now we 

propose that the following alteration to the OUT system is made (compare (5) with (4)); 

 

Tw

WIPDWIP

Tn

NSTNS
DO tttt

tt





 ˆ            (5) 

 

Setting Tw equal to Tn is particularly beneficial for system robustness as demonstrated by Disney 

and Towill (2002). In such a setting we will denote both parameters as Ti. In the classical order-

up-to policy, the order quantity is a summation of the demand forecast, a net stock discrepancy 

(or error) term and a WIP discrepancy term, but both the net stock and WIP errors are completely 

taken into account. This is a full adjustment strategy.  The key difference in our decision rule as 

expressed in (5) is that the errors are included only fractionally (Dejonckheere et al, 2003).   

 

Hence the errors are only partially recovered during the next ordering period.  These fractional 

adjustments are second nature to control engineers, especially when automating a process plant 

(Towill and Yoon, 1982).   This modification is the reason why the decision rule (5) will be able 

to generate orders without introducing the bullwhip effect in supply chains.  In fact, this is not a 

new concept; it actually has a long history.    For example, John, Naim and Towill (1994) studied 

the system defined by (5) in the Laplace domain when the two feedback loop gains were allowed 
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to be independent of each other.  Sterman (1989) showed that decision makers in the beer game 

mimicked a policy with proportional controllers.    Deziel and Eilon studied an OUT system with 

proportional controllers in their seminal paper in 1967.   However they studied a variant of this 

OUT system with a slightly different order of events than we have considered here.   Magee 

(1956) uses proportional controllers in a production ordering policy. Disney and Towill (2002) 

have shown that this ordering decision is guaranteed to produce a stable response if Ti>0.5.    

 

As here we are studying the OUT policy reacting to i.i.d. demand here, the OUT can be further 

simplified to 

Ti

WIPTp

Ti

NSa
O tt

t

)()( 






 .           (6) 

Balakrishnan, Geunes and Pangburn (2004) propose a general (linear) order smoothing policy, 

where the order quantity is a convex combination of previous demand realisations. It can be 

shown that our smoothing rule (6) is a special case of the Balakrishnan et al. replenishment rule. 

Our research group and Balakrishnan et al. independently came to the same conclusion. It is 

interesting to see that different methodological approaches converge to the same insights.   

Using the procedure described in Appendix A we derive the following closed form expressions 

for the bullwhip (7) and inventory variance (8).    

1Ti2

1
Bullwhip

2

D

2

O







         (7) 

In (7) 2
D  denotes the variance of demand (input), and 2

O  is the variance of orders (output). 

 

Interestingly we note that under the assumptions of stationary i.i.d demand, bullwhip is 

independent of the lead-time. The classical OUT policy’s order rate variance amplification ratio 

is unity.  By using a Ti>1 the generalised OUT policy will dampen order variance amplification. 
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As we already mentioned in the introduction, this paper also focuses on the variance of the net 

stock because this has an impact on customer service. We therefore introduce the metric NSAmp 

defined by (8), 

    BullwhipTiTp
Ti

Ti
TpNSAmp

D

NS 



 2
2

2

2

12
11




.     (8) 

In which 2
NS denotes the variance of the Net Stock.  From (8) we learn that for stationary i.i.d 

demand:  

 

 If Ti =1, i.e. a “chase sales” strategy, then NSAmp = 1 + Tp and is minimal, as we would 

expect as the OUT policy is optimal at reducing inventory related costs. 

 If Ti >1 or Ti < 1 then NSAmp increases.  

 NSAmp contains a lead-time component, Tp1 , and a smoothing component, 
12
)1( 2




Ti

Ti .  

 Decreasing the lead-time (Tp) reduces NSAmp.  

 The longer the lead-time the smaller the relative importance of Ti on NSAmp as by increasing 

Ti,  

 NSAmp approaches Tp+Ti asymptotically.   

 For a “level scheduling” strategy, Ti , in which case the net stock variance amplification is 

 .   
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Figure 1.   Bullwhip produced by the OUT policy in response to i.i.d. demand  
 

 

We may plot the bullwhip and net stock amplification ratios as shown in Figure 1.   Here we 

have plotted 1/Ti as it allows the complete domain to be viewed concisely.  It is easy to see the 

role of the lead-time (Tp) in the net stock variance amplification ratio.  Interestingly the net stock 

variance amplification is symmetrical about Ti=1, but bullwhip is not.  Clearly, the proportional 

controllers can be used to remove bullwhip in the OUT policy.   This is achieved by tuning Ti 

until the appropriate amount of smoothing is achieved, at the cost of holding extra inventory.  

The fact that bullwhip is not symmetrical about Ti=1 and that by changing Ti we are indeed 

capable of reducing bullwhip can intuitively be understood with the following analogy; 

“Consider for a moment the act of taking a shower.  Ti is like a tap in a shower. The time the 

water takes to travel through the shower pipe is a lead-time.  Just as it takes time for hot/cold 

water to travel through the shower to fall on our head, it takes time for an order to be produced 

by our factory (or delivered by our supplier).  Standing in the shower we know that to get the 

water temperature just right, we must turn the taps very slowly.  Therefore, in a supply chain we 
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must turn the taps (Ti) very slowly to match supply with demand to avoid bullwhip”.  In this 

analogy, if we turn the tap at an equal speed to the demand changes (Ti=1) we chase demand. 

Turning the taps more slowly (by setting Ti>1) will smooth the orders and over-reacting (by 

setting Ti<1) to the demand changes will result in bullwhip.  

 

Figure 1 illustrates the trade-off between production (replenishment) order rate and net stock 

variability (note that the bullwhip curve is the same for all values of Tp). A “best of both worlds” 

solution, minimising the sum of bullwhip and net stock variance amplification, is to set 

Ti=1.61803, the “Golden Ratio”, for all lead-times4. By adding up the bullwhip effect metric and 

the net stock amplification metric, we assume that both factors are equally important. The 

“Golden Ratio” solution holds under that assumption. It is clear that in the real world companies 

may consider bullwhip effect related costs as more important than inventory/customer service 

related costs (or vice versa). In this case the shape of the “total cost curve” may be different and 

the optimal smoothing parameter may no longer be “golden”. It is interesting, however, that the 

golden solution exists in the simplest scenario.  

 

3.1. Customer service implications for i.i.d. demand 

Now we will turn our attention to customer service.   We have elected to use the “fill rate” as a 

suitable Customer Service Level (CSL) metric (Zipkin, 2000 and Silver, Pyke and Peterson, 

1998). The fill-rate is popular in industry and we will use it to investigate the link between 

bullwhip and inventory requirements (via a) to meet a target CSL. The target CSL could be set to 

position the company’s service proposition in the market place or to minimise holding and 

backlog costs via the economic stock-out probability.  We propose here to use a predetermined 

fill-rate target of 99.5%.  We proceed first by expressing the Target Net Stock as; 
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NSzTNS             (9) 

 

where z = safety factor and NS  = standard deviation of the net stock, from (8)  

12
)1(1

2





Ti

Ti
TpDNS                     (10) 

Now, 
demand expected

backordersofolumevexpected
Rate Fill 1                (11) 

Expression (11) can be rewritten as;  

D
)(1Rate Fill NS zL


                                                                (12) 

where )(zL  is  the expected number of units backordered per period for a safety factor, z, of the 

standard normal distribution. 

 

We can determine L(z) from (12). Once L(z) is known, we can easily determine z using standard 

tables. This in turn will determine the Target Net Stock (TNS) to be used in (9) or equivalently, 

expressing TNS as a number of periods coverage of average demand, a: 

NSzDaTNS             (13) 

While the safety factor z is related to NS , a represents how many periods of average demand, 

D , are covered by TNS.   By way of illustration of how much smoothing or bullwhip removal 

we can buy with inventory whilst maintaining a 99.5% service level by tuning Ti, we have 

developed a typical numerical example, where Tp=2, 500ˆ  DDt  and 100D , in Table 

1.  
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Ti Bullwhip NSAmp 
a, number of periods of inventory 

to ensure a 99.5% fill rate 
TNS ( Da ) 

(units) 
0.6 5 3.8 0.718 359 
1 1 3 0.631 316 

1.61803 0.4472 3.1708 0.644 322 
2 0.3333 3.3333 0.664 332 
3 0.2 3.8 0.719 360 
4 0.1429 4.2857 0.773 387 
6 0.0909 5.2727 0.876 438 

10 0.0526 7.2631 1.061 531 
20 0.0256 12.256 1.446 723 

Table 1.  Sample results highlighting the inventory cost of Bullwhip avoidance when Tp= 2 

 

Table 1 shows that we can remove 90% of bullwhip (i.e. by setting Ti = 6 rather then Ti= 1) with 

a quarter of a period’s extra inventory (0.876 - 0.631 = 0.245), whilst maintaining 99.5% fill rate.    

 

4. Forecasting ARMA demand in the classical OUT policy with exponential smoothing 

Consider now the case of ARMA stochastic demand.  This demand is characterised by (14). We 

have elected to use the ARMA demand pattern in order to create a situation where the use of a 

forecasting mechanism in the OUT policy is justified to investigate its impact on dynamic 

performance.  ARMA is weakly stationary and for particular settings it does exhibit some non-

stationary properties that can be forecasted. We note that truly non-stationary demand patterns 

have no natural mean and infinite variance5. The mean centred ARMA demand pattern can be 

generated from stationary white noise as follows; 

  









 



ttt
ARMA

t
ARMA

ARMA

DD

D

1

0

)1(1

0

       (14) 

where; t  = white noise,   = mean of the ARMA demand pattern,   = auto regressive 

coefficient,  -1 <   < 1,   = moving average coefficient, 0      2 and t
ARMA

D = ARMA 

demand at time t.  A positive autoregressive coefficient will result in “meandering demand 
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patterns”, whereas a negatively correlated demand patterns will be more erratic over time, 

alternating about the mean. 

 

Appendix A details our analysis of (14) in order to determine the variance of the ARMA demand.    

This procedure has been used throughout our paper to produce variance ratios, but for brevity we 

have not given any other examples.   

 

Recall that the “classical” OUT policy is defined by 

tttt WIPNSDaTpO  ˆ)1(         (15) 

and that the policy requires an estimate or forecast of demand over the lead-time.  For stationary 

uncorrelated demands, the best forecast of demand in the future is well known to be the average 

of all previous demands D .   However, for correlated demands such as AR and ARMA 

demands, a forecast ( D̂ ) can be produced with less forecast error than D  by using a forecasting 

mechanism such as exponential smoothing, Muth (1960). This is defined in (16) where Ta is the 

average age of the demand data in the forecast. Ta>-0.5 ensures a stable response, because the 

range ],5.0( Ta  corresponds to ]2,0(  as
Ta


1

1  so, 

 11
ˆ

1
1ˆˆ

 


 tttt DD
Ta

DD .              (16) 

We have selected exponential smoothing as it is well understood and popular with practitioners. 

For example, empirical research by Makridakis et al. (1982) has shown simple exponential 

smoothing to be a good choice for one-period-ahead forecasting. It was the preferred option from 

among 24 other commonly used time series methods compared under a variety of accuracy 

measures and theoretical models for the process underlying the observed time series.  
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As shown in Appendix B, we may investigate the performance of exponential smoothing in 

response to the ARMA demand and determine the optimum smoothing parameter, Ta that will 

minimise the one period ahead mean squared forecast error for particular values of   and  .   

The resulting closed form for the optimal Ta is given by (17) which we have plotted in Figure 2 

for various   and  .   

      
)31()1(4)1(4

1112

)1(22)1(6)2(

_ 222

222
























TaOpt       (17) 

 (17) results in negative or complex values recommendations if   
 








18

932323
1 . 

This expression is very nearly, but not quite, 
3

21    for  <1. In this case Ta= should be 

used, as exponential smoothing will not produce a forecast with less mean squared error than the 

unconditional mean of the demand process,  .  It should be remembered that our recommended 

Ta is optimal for minimising the one period ahead forecast error and we have defined the Order-

Up-To level as   tDTpaS ˆ1   in this analysis.  We do not claim Ta to be optimal at 

minimising inventory / shortage or bullwhip (or their sum) costs or that this is the optimal way of 

calculating S or that OptTa  minimises the forecast error of the demand over the lead-time. 
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Figure 2.  The optimal exponential smoothing forecasting parameter (Ta) that minimises 
the ARMA one period ahead forecasting error 

 
 

 

Figure 3.  Enumeration of (B3) with Tp=2, a =1 and an optimal Ta 
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Recall that the classical OUT system simply passes on orders for i.i.d. demands. Furthermore, an 

exponential smoothing forecasting mechanism will always produce a forecast with less variance 

than the ARMA demand.   This can be determined from (B1), a closed form expression for the 

forecasting variance amplification ratio.   We ask ourselves… “So why is there a bullwhip 

problem?”   If our forecast has less variance than demand, why can’t our orders have less 

variance than demand?   The answer is that it is the combination of the forecasting mechanism, 

order delay and inventory feedback loops in the OUT system that causes bullwhip. Remember 

that in the “classical” OUT policy, the order quantity is the summation of the demand forecast 

and two inventory feedbacks, the net stock discrepancy term and the WIP discrepancy term (see 

equation (4)). The weights attached to these discrepancies are each time one (the so-called full 

adjustment strategy). This full adjustment strategy causes bullwhip. The key difference with the 

generalised OUT policy is that the errors in the feedback loops are only included fractionally (see 

section 5). This smoothing principle is also discussed in Balakrishnan, Geunes and Pangburn 

(2004).   

 

Using our methodology, the closed form expression (B3) shown in Appendix B is obtained for 

the bullwhip produced by the “classical” OUT policy when Ti=1.  It can be shown that (B3) is 

always greater (or equal to) than one for all   and  .  We have plotted the bullwhip produced in 

response to some ARMA demands in Figure 3. For each case, Ta was set as defined by (17).   

We can see that the “classical” OUT policy with Ti=1 produces bullwhip when exponential 

smoothing forecasting is used.   In fact, it is known that the “classical” OUT policy with 

exponential smoothing forecasting produces bullwhip for all demands from a frequency domain 

analysis (Dejonckheere, et. al. 2003), but we can now also confirm this for ARMA demands. 

Note that in Figure 3 there is a zone where the bullwhip effect equals 1. This happens for 

negatively correlated demands, and the optimal Ta is infinity in this case; consequently the 
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exponential forecasting is replaced by the long term average demand (see expression (16)). This 

is the case of the “classical” OUT policy, using D as a forecaster, where it is well known that the 

bullwhip effect equals one. 

 

To summarise this section we have shown how to tune the exponential smoothing to minimise 

the one period ahead forecast error in response to ARMA demand.  We note that the unity gain in 

the two feedback loops induces bullwhip in the classical OUT policy with exponential smoothing 

forecasting.    

 

5.  The generalised OUT policy under ARMA demand  

Now we consider the case of the generalised OUT with an exponential smoothing forecasting 

mechanism in response to ARMA demand.   Recall, our generalised OUT policy: 

Ti

WIPDWIP

Ti

NSTNS
DO tttt

tt





 ˆ            (18) 

Note, (18) is exactly the same as the “classical” policy studied in section 4 except for the 

proportional controller (1/Ti).  The bullwhip and net stock amplification ratios for this 

generalised OUT policy in the complete ARMA plane are tractable but they are very lengthy and 

are shown in Appendix B.  They actually have a number of very nice properties.  Firstly, as all 

the ARMA demands when 1   are i.i.d., the variance ratios are the same as those presented 

in Section 3.   

 

For ARMA demands when    is only slightly greater than 1, the characteristic U-shaped 

inventory variance curves flexes to the right.  See Figure 4 and Figure 6 where the average 

inventory holding (a) is one period of demand.  It is better in terms of inventory holding and 

backlog costs to use a Ti<1, i.e. lower inventory variability is achieved by over-reacting to the 
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ARMA demand signal. This is intuitive as we are effectively gambling on trends in demand 

having a lasting impact, and over-reacting to changes in demand will reduce the error between 

demand and supply after the lead-time, thus reducing inventory requirements.  Hence in these 

situations if we want to remove bullwhip, we will be forced to hold extra inventory (when 

compared to case when Ti is set to minimise inventory costs and when compared to the case of 

the “classical” OUT policy).  

 

 
 
 

Figure 4.  Bullwhip and net stock amplification when  =0.75 and   =0.5, Ta = 25.22 
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Figure 5. Bullwhip and net stock amplification when  =0.25 and   =0.5, Ta =  

 

However, if 1   and when    is much greater than 1, the U shaped net stock curve 

flexes to the left (see Figure 5, where Ta has been set to minimise the one-period ahead forecast 

error and Figure 6).  Inventory variability is reduced by smoothing the demand signal (Ti>1). In 

this case, bullwhip can be removed whilst reducing net stock variance (when compared to the 

“classical” OUT policy at Ti=1).  We can also see in Figures 4 and 5 the role of the lead-time, Tp 

and the feedback gain, Ti on bullwhip and inventory variance.   Lead-time (Tp) increases the net 

stock variance for all cases but its effect is greatly reduced when  +  <1.   For ARMA demands 

when  +  >1, Tp also increases bullwhip6, something that did not happen for i.i.d demands or 

for the ARMA demands when  +  <1.  This effect has been introduced by the forecasting 

mechanism.   Ti’s symmetrical impact on net stock variance and bullwhip curves has been 

influenced by the ARMA constants.   
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The precise manner in which this curve bends to the right or to the left is described in Figure 6. 

We can see that sometimes the inventory variance curve bends to the right (region B in Figure 6), 

in which case, if we want to avoid bullwhip then the customer service level achieved with the 

one period inventory holding decreases when compared to the “classical” OUT policy.  When the 

inventory variance curve flexes to the left (regions A and C in Figure 6), bullwhip reductions 

may be achieved whilst simultaneously improving the customer service levels offered by the one 

period’s inventory holding, when compared to the “classical” OUT policy. We notice that most 

of the ARMA demands result in this win-win scenario.  

 

 

Figure 6. Net stock variance behaviour of the generalised OUT policy with optimal one 
period ahead forecasting in the ARMA plane for various lead-times when a=1 

 
 

For situations where the optimal Ta , the complex bullwhip and inventory variance 

expressions ((B4) and (B5)) simplify a little.  They are shown in Table 2 for different classes of 

the ARMA demand pattern. We can see clearly here that when we use the unconditional mean as 

the forecast in the OUT policy that bullwhip is independent of lead-time and reducing the lead-

time reduces NSAmp.  Furthermore   has a smaller relative impact on NSAmp for longer lead-
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times. We can also confirm the results of Chen et al (2000) for AR demands, that is; positively 

correlated demands decrease bullwhip and negatively correlated demands increase bullwhip in 

the OUT policy with exponential smoothing forecasting. 

 

Demand 
Pattern Bullwhip NSAmp 

i.i.d. 
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Table 2. Simplified closed form expressions for Bullwhip and NSAmp when Ta=  

 

6. Customer service insights 

We now investigate the generalised OUT policy more explicitly in terms of the Customer Service 

metric, the “fill-rate”.    We already know the variance (see (B3), (B4) and (B5) in Appendix B) 

and mean of the orders ( D ) and inventory levels ( D a), hence we have all the information 

needed to describe the ability of our OUT policy to meet a desired fill-rate.   

 

It is difficult to consider the complete solution space herein as it requires manipulation of the 

probability density function of the normal distribution that is essentially non-algebraic.  So we 

will take two approaches to study the CSL implications.  First we consider graphically the 

relationship between the feedback gain, Ti, and the inventory required to achieve 99.5% fill-rate 
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at various points in the ARMA plane.  We then analyse 15 representative demand patterns from 

Procter and Gamble’s home-care and family-care product range with a numerical approach.  

 

 
 

Figure 7.  Average number of periods inventory holding (a) required to the 99.5% fill-rate 
objective as a function of Ti in the ARMA plane with one period ahead forecasting 

 
 

Figure 7 details the relationship between Ti and a needed to achieve the fill-rate objective. Here 

Tp=2 and Ta was set to minimise the one period ahead forecast error. The contour in each plot 

indicates the minimum a required the meet the fill-rate objective.  The area below the contour 

results in a service level below the target; with 1 , it becomes increasingly difficult to achieve 

the CSL target as   increases. We can see that it is possible to end up in four different scenarios 
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when compared to the classical OUT policy (Ti=1) whilst maintaining the fill-rate objective; 

Win-Win, we can remove bullwhip (by using a large enough Ti) and reduce inventory levels, 

Win-Lose, sometimes bullwhip can only be removed at the expense of holding extra inventory, 

Lose-Win, sometimes bullwhip can be endured because it results in a policy that requires less 

inventory to be held, Lose-Lose, sometimes excessive bullwhip and inventory may exist. 

 

We now turn our attention to the real-life demand patterns from Procter and Gamble.  We 

identified the ARMA constants that minimised the mean squared error between the auto-

correlogram of 15 real life demand patterns and the impulse response of the ARMA demand 

pattern. Our results are shown in Figure 8. Our co-authors from Procter & Gamble have carefully 

examined and exploited the impact of the OUT policies (classical and generalised) on 

performance in terms of inventory /customer service related costs and flexibility adjustment costs 

in their business.  
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Figure 8.  Real demand patterns in the ARMA parameter plane 

 

We can see that our real life demand patterns, selected on their basis of being qualitatively 

similar to ARMA demand patterns, are predominantly positively correlated and lie to the right of 

the stationary and i.i.d. demand patterns on the 1   line. However, they lie in all three 

regions of Figure 6. 

 

Using the fill-rate procedure (Eqs 9 to 12) and the variance ratio expressions (B3, B4 and B5) we 

have investigated the link between bullwhip, inventory variance and customer service levels as 

follows; For Tp=2 and Ta set with (17), we then set the Target Net Stock gain (a) required to 

achieve 99.5% fill-rate and note the value of bullwhip at Ti=1.   This serves a benchmark for the 

amount of inventory required to achieve 99.5% fill-rate and the amount bullwhip produced by the 
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classical OUT policy. Next we find the value of Ti that will minimise a to achieve the CSL 

objective and note the value of bullwhip at this point.  This gives us a setting for the generalised 

OUT that will minimise the average inventory holding.  Our results are shown in Table 3. 

 

    Ta 

Classical OUT policy, Ti=1 Modified OUT policy 
Periods 

inventory 
Bullwhip Ti 

Periods 
inventory Bullwhip 

0.926 0.371  0.218 1 0.7322 0.2125 1.7314 
1.454 -0.35  0.1705 1 0.9246 0.1703 1.1580 
1.133 0.711 0.041 0.498 7.9232 2.3697 0.4735 3.4673 
1.024 0.289  0.218 1 0.7318 0.2128 1.7128 
1.072 0.694 0.149 0.465 7.7231 2.3981 0.445 3.3616 
1.597 0.611 -0.325 0.725 13.228 1000 0.534 1.1841 
1.296 0.607 -0.075 0.552 10.606 1000 0.446 1.0497 
0.001 0.704  0.143 1 400 0.1195 0.00001 
0.332 0.657  0.1559 1 1.0251 0.1558 0.9516 
0.893 0.324  0.199 1 0.7855 0.1958 1.5573 
1.295 -0.018  0.201 1 0.7849 0.1987 1.5074 
0.872 0.629 0.896 0.3505 5.6324 1.2453 0.3486 4.3868 
0.658 0.673 2.383 0.2744 3.3732 0.9443 0.2741 3.6493 
0.541 0.641 23.39 0.206 1.2748 0.8084 0.2029 1.8698 
0.001 0.760  0.145 1 64.52 0.1346 0.0005 

  Average 0.3014 3.8507 Average 0.2749 1.8391 
    Average percentage gain 8.77 52.23 

 

Table 3.  Numerical results for 15 real world demand patterns 

 

It can be seen that Ti always allows us to reduce inventory requirements to meet the CSL when 

compared to the classical OUT policy (or at least match the classical OUT policy’s performance). 

In some cases this is realised by actually reducing bullwhip, but in others, bullwhip has been 

increased.   This yields two insights.  Bullwhip avoidance, inventory reduction and CSL 

objectives can sometimes all be achieved simultaneously.    Whilst in other situations bullwhip is 

actually useful, as it allows an increase in CSL and/or a reduction in inventory holding.  We also 

note from Table 3 that Ta is sometimes a small negative value.   In such cases the exponential 

smoothing forecast over-reacts to changes in the demand pattern.  However, a stable forecast is 

achieved when Ta>-0.5, so these cases are perfectly reasonable recommendations. 
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To summarise this section we have studied the service implications of the generalised OUT 

policy.  This was done in the general ARMA case and also for 15 real world demand patterns.  

Of particular interest is the conclusion that for the OUT policy, when compared to the case when 

Ti=1, the following four general solutions are possible; Win-Win, Win-Lose, Lose-Win and 

Lose-Lose when considering bullwhip and stock levels that meet the CSL objective.  

 

It is clear that it is worth monitoring the demand statistics to determine the ARMA parameters 

and thereby find “better” policy settings that lead to competitive advantage.   We have shown 

how the OUT policy can be “tuned” to suit a variety of objectives.   The one that will be the best 

in a given situation will depend on a number of factors. For example in an industry with high 

inventory related costs, it may be advantageous to flex capacity.  A retailer may want to reduce 

inventory in order to be able to offer a broad product range through its facilities. Whereas for a 

manufacturer, buy-backs and obsolescence may be the more significant inventory related costs.   

In contrast, in an industry with long production runs and high capacity related costs, exploiting 

inventory holding to avoid bullwhip related costs may be more economically desirable.  

Bullwhip related costs in a retailer may be concerned with distribution activities, whereas for a 

manufacturer they may result from production matters.   

 

Clearly, a properly defined OUT policy can help industry to exploit properties of the demand 

signal to balance bullwhip and inventory issues or reduce them both concurrently.  However, in 

general, there will only be a win-win scenario for certain demand patterns.  We do not think one 

can identify upfront the likelihood of being in a win-lose or win-win scenario in a particular 

business without some investigation into the business’s demand streams.  However if demand 
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can be characterised by the ARMA model we may use Figures 6 and 7 to gain some insight into 

this question. 

 

7. Conclusions 

We have shown that the adaptation of the classical OUT policy to include proportional 

controllers in the order decision is highly desirable.   It gives considerably more flexibility to 

“tune” the purchasing/production/distribution ordering decision to exploit supply chain 

characteristics. For example, by minimising inventory exposure or by using inventory to “buy 

stability”.  How this will be achieved in a given situation clearly depends on the peculiarities of 

each individual case.   

 

However it is clear we can tune an ordering system to exploit the statistical properties of the 

demand process.   We have shown that it is possible to actually achieve bullwhip and inventory 

level reduction together whilst maintaining CSL. This is a true win-win situation resulting from 

our generalised OUT policy.  However this cannot be achieved in all cases as it depends on the 

demand pattern.   Neither is bullwhip avoidance always desirable, for instance we may even 

choose to induce bullwhip as it sometimes enables further inventory reductions to be achieved.    

 

Appendix A.  Deriving closed form variance amplification expressions 

Our procedure for determining the closed form expressions of the variance amplification ratios 

will now be illustrated by example.   We have chosen to use the ARMA demand variance 

amplification ratio as it is concise, but the procedure is essentially the same for all the ratios. 

Departing from the difference equation representation (14) of the demand pattern we first convert 

it into a z-transform model via the block diagram shown in Figure A1.    For a useful overview of 

block diagrams and control theory we refer readers to Nise (1995).    
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Figure A1.  Block diagram of the ARMA demand generator 

 

Manipulation of this block diagram using standard techniques yields the following transfer 

function (where z is the z-transform operator) that describes completely the demand pattern in the 

discrete complex frequency domain; 
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zDARMA 1
         (A1) 

In order to calculate the variance amplification ratio between the pure white noise input and the 

ARMA demand pattern we exploit Tsypkin’s relation (Tsypkin, 1964) that states that the 

variance of a system’s output divided by the variance of the input (when the input is pure white 

noise) is equal to the sum of the squared impulse response in the time domain.  This relationship 

is described by (A2) and is covered in more detail in Disney and Towill (2003).   A summary of 

Tsypkin’s relationships between; the variance amplification ratio (VR) in question, its statistical 

definition, the system transfer function via the area under the squared frequency response, the 

noise bandwidth, WN, and sum of the squared impulse response in the time domain, is as follows; 

 

 





0

2

0

2

2

2

)1(1
n

N nf
W

dwwFVR

Input

Output



 

     (A2) 

 



Disney, S.M., Farasyn, I., Lambrecht, M., Towill, D.R. and Van de Velde, W., (2006), “Taming the bullwhip effect whilst watching customer service in a single 
echelon of a supply chain”, European Journal of Operational Research, Vol. 173, pp151–172. DOI: 10.1016/j.ejor.2005.01.026. 

 33

The ARMA lattice function (f[n]) is the inverse z-transform of (A1) and is given by; 

 

  ]1[1][ 1  
nhnf

n

DARMA
        (A3) 

 

where 


 


otherwise

x
xh

,1
0,0

][  is the Heaviside step function.  Using (A2), the variance ratio of the 

ARMA demand is therefore given by (A4).   We have used this technique throughout this paper, 

without referring to or presenting the details, as the equations involved are often very lengthy. 
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Appendix B. The closed form ARMA forecasting and OUT variance ratios 

For brevity, only the starting point in the analysis (the block diagram) and the end point (the 

variance amplification ratio) are presented.   Our results were obtained by using Mathematica 

(Wolfram Research, Illinois) to assist in the algebraic manipulation required.   They were 

crosschecked by comparison to a difference equations simulation in a spreadsheet and via 

previous results in the literature where available (for example Chen et al 2000). 

 

B.1 The ARMA forecast variance ratio 

The required block diagram is shown below.   Note that )1/(1 Ta . The procedure is as 

follows; Manipulate the block diagram for the /ˆ
ARMAD  transfer function, take the inverse z-

transform, exploit Tsypkin’s relation (A2) to find the variance ratio ( 22
ˆ / 

ARMAD
) and finally 

divide by the variance of DARMA.  This yields (B1), the variance amplification ratio of exponential 

smoothing forecasting mechanism when reacting to ARMA demands. 
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Figure B1.  Block diagram of the exponential forecast of ARMA demand 
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B.2 The variance of one period ahead forecast error  

Minimising the variance of the one period ahead forecast error is the same as minimising the 

mean squared error of the one period ahead forecast error.   Thus we may differentiate (and solve 

for zero gradient) the variance of the forecast error to derive the optimal Ta for forecasting 

ARMA demand.   It is not necessary to divide by the ARMA variance.   The necessary procedure 

to find the variance of the forecast error is to; find the z-transform of the block diagram, take 

inverse and sum its square from zero to   to give (B2).  

 

 

Figure B2.   Block diagram of the forecast error transfer function 
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B.3  Order rate variance ratio 

We have used three bullwhip expressions in our story.  They were all found using the following 

block diagram.    In Section 3 0 , Section 4 
Ta


1

1 , Ti=1 and in Section 5 
Ta


1

1 .   

 

 

Figure B3.   Block diagram of the generalised OUT policy 

 

The procedure to derive the bullwhip expression was the same in all three cases, that is; re-

arrange the block diagram to get the order rate transfer function of the OUT policy, multiply by 

the transfer function of the demand signal, take the inverse z-transform of the product, find the 

closed form sum of the square of the difference equation and divide the result by the variance of 

the demand pattern. 

The closed form bullwhip equation for the generalised OUT policy reacting to i.i.d demands was 

shown in (7).    The bullwhip expression for the classical and generalised OUT policy in response 

to ARMA demands is given by (B3) and (B4) respectively, where aTppT  , 

  2222  , and )3(3   . 
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B.4  Net stock variance ratio 

Eq (B5) is the resulting closed form for the inventory variance produced by the generalised OUT 

policy in response to ARMA demand.   Notice this closed form is valid for all lead-times (Tp) 

and inventory feed-forward (a) and feedback gains (Ti).  This was arrived at by using the same 

procedure as the bullwhip expressions, except we started by manipulating Figure B3 for the Net 

Stock transfer function.   The expression is also very lengthy, thus we have made the following 

substitutions in (B5); aTppT  ,  Ta 1 ,  1 Ti ,  1  ,   Ti1 , 

 ,Ti    Ta .   None of these substitutions contain Tp, but the following do; 

      TpTp
TaTiTapT   1 , TpTp

Ta
   , 

     TT
TaTipT 1 ,      TpTpTp

pTTiTiTa  1 . 
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All of the variance ratios in this paper have been incorporated into a Microsoft Excel Add-in that 

is available upon request. 
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1 We may use the terms production rates, order rates, purchase orders and replenishments interchangeably depending 
on context.  For example if our OUT policy was placed in a factory context, production or order rates might be a 
descriptive term.  Whereas for a distributor or retailer, purchase orders or replenishments might be more appropriate.   
2 Interestingly, Vassian, Magee and Brown all worked at the Boston based OR consulting company, Arthur D. Little. 
3 In this contribution, the closed form variance ratios are independent of the actual distribution of the white noise 
process driving the demand generator.  However, for the fill-rate expressions used later in our story we have 
assumed they are normally distributed.  
4 Differentiating 
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 , solving for zero 

gradient and selecting the relevant root yields the optimum Ti to minimise the sum of bullwhip and inventory 

variance.  It is, 
2

51 , that we will recognise as the “Golden Ratio”. 

5 Thus any analysis where the target inventory level is a function of demand will not be tractable as the inventory 
levels will also have infinite variance and no natural mean.  Neither will an analysis of bullwhip.  However, studies 
on the inventory variance in a constant target inventory system are possible for a non-stationary demand, for 
example see Graves (1999).  
6 Confirming managerial expectations, see Forrester (1958), and re-emphasizing the time-compression paradigm. 


