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Synopsis

The creep compliance and relaxation functions used in characterizing the mechanical response of
linear viscoelastic solids are traditionally found by conducting two separate experiments.
Alternatively, one of the functions may be determined from a single experiment while the other is
obtained through interconversion. All direct interconversion methods, however, require the solution
of an ill-posed problem. The goal of this paper is to present the theoretical framework for
developing a new apparatus, based on “spring loading,” which facilitates the determination of both
creep and relaxation functions from a single experiment. There is no need for interconversion.
Questions of stability with respect to the measured data are discussed and a stable numerical
algorithm is presented. © 2005 The Society of Rheology. �DOI: 10.1122/1.2072027�

I. INTRODUCTION

The creep compliance and relaxation functions used in characterizing the mechanical
response of linear viscoelastic materials are traditionally found by conducting two sepa-
rate experiments, e.g., Ferry �1980�. Alternatively, one of the functions may be deter-
mined from a single experiment while the other is obtained through interconversion
�Tschoegl �1989��. All direct interconversion methods, however, require the solution of an
ill-posed problem. The standard approach is to solve a Volterra integral equation of the
first kind �Hopkins and Hamming �1957�; Knoff and Hopkins �1972�; Mead �1994��.
Knoff and Hopkins appear to be the first to note that the conversion from creep compli-
ance to relaxation is more unstable than the conversion from relaxation to creep �at least
for viscoelastic solids�. In the former case they advocate transforming the first kind
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Volterra equation to a second kind equation, for which their algorithm is more stable. A
rigorous analysis of the benefits of this type of approach is beyond the scope of our paper,
but we refer interested readers to the review of Baker �2000�.

An alternative algebraic approach is possible if the material is modeled by a finite
number of viscoelastic elements �Gross �1953�; Park and Schapery �1999��. However this
does not remove the ill-posedness of the underlying problem �Tschoegl and Emri �1992��.
In the algebraic approach it can be shown that the degree of instability grows exponen-
tially with the number of elements in the model. A small number of elements is, in effect,
a coarse regularization. The degree of instability also depends on the distribution of the
discrete relaxation �or retardation� times. These remarks are discussed further in the
Appendix.

In this paper we determine both creep and relaxation functions without recourse to
interconversion. The goal of the paper is to present the theoretical framework for devel-
oping a new apparatus, based on “spring loading,” which facilitates the determination of
both creep and relaxation functions from a single experiment. The general theory is
developed in Sec. II of the paper. It will be shown that there is no need for interconver-
sion. Moreover, the integral equations which are solved are effectively Volterra equations
of the second kind. Such problems are well-posed and stable in response to errors in the
data �Baker �2000��, although care must be taken to address inherent instabilities in the
data.

The proposed apparatus consists of a viscoelastic bar connected in series to a Hookean
spring which will be called “the load spring.” This spring, initially deformed by a con-
stant tensile deformation, will impose a force upon the bar, causing its time-dependent
elongation. As the bar elongates the deformation of the load spring diminishes, causing a
decrease in the force acting upon the bar. If the viscoelastic bar is made of rheodictic1

material, as time passes, the deformation of the spring will become zero, and the length
of the bar, will be increased by the initial deformation of the spring. On the other hand,
if the tested material is arrheodictic,1 the deformation of the spring will diminish to a
certain equilibrium value, defined by the equilibrium modulus of the tested material. The
length of the bar will be, at the same time, increased by the difference between the initial
and the remaining deformation of the spring.

For convenience we discuss the response of the bar loaded in the uniaxial direction.
Generalization to the loading in shear is straight forward. The key issue which enables the
simultaneous determination of creep and relaxation functions is the fact that the force on
the bar is related linearly to the deformation of the bar. �This is valid at all times provided
the elastic limit of the load spring is not exceeded.� Within the linear viscoelastic regime
the force is related to the creep function by an integrodifferential equation, while the
deformation of the bar is related to the relaxation function by an equation of identical
form. Measurement of force over a period of time therefore yields an inverse problem for
creep, while measurement of deformation yields an identical inverse problem for relax-
ation. Furthermore, it is not necessary to measure both force and deformation, since one
may deduced linearly from the other.

The inverse problems for creep and relaxation may be solved analytically by means of
Laplace transforms. Closed form solutions are given in Sec. III of the paper. In practice,
however, a numerical approach is more direct since only discrete time measurements of
force and deformation can be made. In Sec. IV we present a stable numerical algorithm

1A material is said to be rheodictic if it is capable of showing steady-state flow, and is arrheodictic otherwise

�Tschoegl �1989�, p. 93�.
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for solving for creep and relaxation, and demonstrate its validity by comparing numerical
results with the analytical solutions obtained when the bar is represented by a three-
element generalized Kelvin-Voight model.

II. GENERAL THEORY

A. Force and deformation under spring-loading

Consider a bar and load spring of lengths lb and ls, respectively, connected in series, as
shown in Fig. 1. Let Ab be the cross section of the bar and ks is the stiffness of the spring.
Let the uniaxial linear viscoelastic behavior of the material be given with the relaxation
function E�t�, and the creep compliance function, D�t�, where

E�t� = E� + �
0

�

H���exp�− t/��
d�

�
, �1�

D�t� = D0 + �
0

�

L����1 − exp�− t/���
d�

�
. �2�

Here E� is the equilibrium modulus, D0 is the instantaneous elastic compliance, H��� is
the relaxation spectrum, L��� is the retardation spectrum, while � and � are relaxation and
retardation times, respectively.

At time t=0 the lower end of the spring is instantly �as a step function� displaced
through a distance �l, as shown in Fig. 1. The lower end of the spring is thereafter kept
in a fixed position. Due to the applied load the viscoelastic bar will elastically deform to
an initial extension �lb

0, leaving the initial deformation of the spring to be �ls
0. As time

progresses the viscoelastic bar will elongate due to the applied load, and the initial
deformation of the spring will decrease. This will, in return, decrease the force acting
upon the bar �the specimen�. The tension in the spring, Fs�t�, and the force applied to the
bar, Fb�t�, are equal because the spring and the bar are connected in series. In this
analysis the weight of the bar and the spring will be neglected.

Let �lb�t� and �ls�t� denote the deformation of the bar and spring at any time t,

FIG. 1. A viscoelastic bar loaded instantaneously with a spring.
respectively.
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As the elongation of the viscoelastic specimen increases, the deformation of the spring
will decrease such that the sum of the two is at any time equal to the initial �constant�
displacement

�lb�t� + �ls�t� = �l .

The deformed spring is acting on the viscoelastic bar with the force proportional to its
extension. Consequently

Fb�t� = Fs�t� = ks · �ls�t� = ks · ��l − �lb�t�� . �3�

The stress in the bar, which is proportional to Fb�t�, and the deformation of the bar, are
related through the relaxation function by the Volterra integral equation

Fb�t� =
Ab

lb
�

0

t

E�t − ��
d

d�
��lb����d� +

A0

lb
�lb

0E�t� . �4�

The stress and deformation are also related through the creep function by the equation

�lb�t� =
lb

Ab
�

0

t

D�t − ��
d

d�
�Fb����d� +

lb

Ab
Fb�0�D�t� . �5�

From Eqs. �3� and �4� we may deduce

�lb�t� +
Ab

kslb
��

0

t

E�t − ��
d

d�
��lb����d� + �lb

0E�t�� = �l , �6�

while from Eqs. �3� and �5� we obtain similarly

Fb�t� +
kslb

Ab
��

0

t

D�t − ��
d

d�
�Fb����d� + Fb�0�D�t�� = ks�l . �7�

Equations �6� and �7� are the two key equations in the analysis. Equation �6� gives
deformation in terms of the relaxation function only, while Eq. �7� gives the force in
terms of the creep function only.

If the deformation of the bar is measured, then Eq. �6� may be solved to yield the
relaxation function E�t�. This is a well-posed inverse problem since Eq. �6� is a Volterra
integral equation of the second kind. �See, however, Sec. II B.� Similarly, if the force is
measured, then Eq. �7� may be solved to yield the creep function D�t�.

It is not difficult to see that, using Eq. �3�, Eq. �6� may be rewritten so as to give force
in terms of relaxation, while Eq. �7� may be rewritten so as to give deformation in terms
of creep. Thus both material functions may be obtained directly from the deformation
only, or both from the force. The two inverse problems may be solved simultaneously
�that is, in parallel�, or sequentially.

B. Consistency, well-posedness and ill-posedness

We begin by writing down the four basic equations which relate the force, deforma-
tion, creep, and relaxation functions to each other

�lb�t� +
Ab

kslb
��t

E�t − ��
d

d�
��lb����d� + �lb

0E�t�� = �l , �8a�

0
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Fb�t� +
kslb

Ab
��

0

t

D�t − ��
d

d�
�Fb����d� + Fb�0�D�t�� = ks�l , �8b�

Fb�t� = ks��l − �lb�t�� , �8c�

�
0

t

D�t − ��E���d� = t . �8d�

We reiterate the method we have outlined to determine both creep and relaxation func-
tions:

Step 1. Measure the deformation �lb�t� of the bar over a range of time.
Step 2. Calculate the force on the bar Fb�t� from �8c�.
Step 3. Solve the inverse problem �8a� for the relaxation function E�t� over the time

range of the experiment, and either simultaneously or sequentially solve the inverse
problem �8b� for the creep function D�t� over the same time range.

A fundamental strength of the earlier method is that the functions E�t� and D�t� so
determined will automatically satisfy the interconversion condition.

The above result is a consequence of the following:
Consistency theorem. Any three equations from the set ��8a�–�8d�� imply the fourth

equation.
The proof of this theorem by means of Laplace transforms is elementary. We show

only that Eqs. �8a�–�8c� imply Eq. �8d�, since the proofs of the other permutations are
similar. The Laplace transforms of Eqs. �8a�–�8c� may be written �in obvious notation�

�lb�s� +
Ab

kslb
Ē�s�s�lb�s� =

�l

s
, �9a�

F̄b�s� +
kslb

Ab
D̄�s�sF̄b�s� =

ks�l

s
, �9b�

and

F̄b�s� = ks��l

s
− �lb�s�	 . �9c�

Eliminating the two variables �lb and F̄b between these three equations immediately
yields

Ē�s� · D̄�s� =
1

s2 , �9d�

which is the Laplace transform of �8d�. �

Equations �8a� and �8b� are Volterra integral equations of the second kind for E�t� and
D�t�, respectively. This makes the determination of E�t� and D�t� stable with respect to
the data. On the other hand, Eq. �8d� is a Volterra integral equation of the first kind, which
makes the interconversion from E�t� to D�t�, and vice-versa, an unstable process. At first
sight it would appear that an ill-posed interconversion problem has been circumvented by
determining both E�t� and D�t� together by solving two well-posed problems. This is
technically true, but the instability has been transferred to the data. The kernel functions
�part of the data� in �8a� and �8b� are derivatives of the measured quantities �lb�t� and

Fb�t�.
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Differentiation is also an ill-posed process, and the degree of ill-posedness in differ-
entiation is exactly equivalent to the degree of ill-posedness of the interconversion prob-
lem �8d� when the initial values E�0� and D�0� are nonzero.

Notwithstanding these remarks there are distinct advantages in determining E�t� and
D�t� together as in the method proposed. First there is a reduction in the time required in
experimentation: a single experiment takes half the time of two. Second, the linear con-
straint �8c� may be used to reduce the level of experimental noise in measurements of
both force and deformation, using standard statistical regression methods. Third, as is
shown in Sec. IV below, it is possible to devise a simple numerical algorithm for both
Eqs. �8a� and �8d� which is stable with respect to the measured data �lb�t�.

C. Analysis of limiting cases

By observing Fig. 1 it can be easily seen that when the stiffness of the spring ap-
proaches infinity the spring-loading experiment becomes the relaxation experiment �the
stiffness of the spring essentially represents the stiffness of the load cell�. In this case Eq.
�8a� reduces to

�lb�t� = �l = const.

Hence, there will be no change in deformation. At the same time Eq. �8b� becomes

lb

Ab
��

0

t

D�t − ��
d

d�
�Fb����d� + Fb�0�D�t�� = �l ,

which is equivalent to Eq. �8d� provided

Fb�t� =
Ab�l

lb
E�t� .

Hence, the stress in the bar relaxes in proportion to the relaxation function.
On the other hand, when the stiffness of the spring approaches zero the spring-loading

experiment loses its meaning, except if we assume that the initial elongation, �l, is
simultaneously increased such that the force acting upon the specimen remains constant,
i.e., �lks=const.

With this additional assumption the spring-loading experiment becomes the creep
experiment. Equation �8a� becomes

Ab

��lks�lb
��

0

t

E�t − ��
d

d�
��lb����d� + �lb

0E�t�� = 1,

which is again equivalent to �8d� provided

�lb�t� =
��lks�lb

Ab
D�t� .

From these analyses one may immediately conclude:

• The usage of a soft spring instead of a dead-load should be avoided in creep experi-
ments. This is because the load applied via a spring is not constant, but reduces with
time. This introduces an error into the measurement of creep. The error can be made
small only if the initial extension of the spring is made very large relative to the

deformation of the specimen.
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• Conversely, if the initial deformation of the spring is kept constant, and the stiffness of
the spring is small the prediction of the strain has an “inherent weakness,” i.e., the error
of the strain prediction will significantly increase as the stiffness of the spring
decreases.

D. Optimal choice of spring constant

It is important to provide some insight into the optimal value of the spring constant to
get the “best” data for E�t� and D�t� in one experiment. It should be evident from the
analysis in Sec. II C earlier that the larger the spring constant, the more the relaxation
process dominates the creep process, whereas the smaller the spring constant, the more
the creep process dominates the relaxation process. To be quantitative, we rewrite Eq. �3�
in the form Fb�t�+ks ·�lb�t�=ks ·�l.

The first term on the left-hand side represents the contribution of the relaxation pro-
cess under varying deformation, while the second term on the left represents the creep
process under varying load. The stiffness of the spring should be selected such that the
mean values over all times of the two contributions on the left hand side should have
equal weight. However, the solution of this problem is a complex issue.

III. CLOSED FORM SOLUTIONS FOR THE GENERALIZED KELVIN-VOIGHT
„GKV… MODEL

Analytical and closed form solutions for deformation and force in the bar as functions
of time will now be derived in the simple case where the bar is represented by Kelvin-
Voight elements together with a spring, all in series, the so-called GKV model �Tschoegl
�1989��. The spring in the GKV model contributes to the viscoelastic response of the bar,
and should not be confused with the load-spring. For demonstration purposes it is enough
to include only 3 kV elements: the general case of N elements can easily be inferred from
the analysis. The relaxation function in �1� may then be written as

E�t� = E� + E1e−t/�1 + E2e−t/�2 + E3e−t/�3, �10�

where 
Ei ,�i�i=1
3 represents the discrete spectrum of elastic moduli, Ei, and relaxation

times �i. This GKV model has seven parameters.
The corresponding creep function, with discrete retardation spectrum 
Di ,�i�i=1

3 ,

D�t� = D0 + D1�1 − e−t/�1� + D2�1 − e−t/�2� + D3�1 − e−t/�3� , �11�

also has seven parameters, which may be found by inverting the integral Eq. �8d�. A
simple way of doing this is provided by the consistency theorem of Sec. II B. Details are
given in the Appendix. Defining

D� = D0 + D1 + D2 + D3 �12�

and

E0 = E� + E1 + E2 + E3, �13�

it is easily shown that

D0 =
1

E0
and D� =

1

E�

. �14�

Table I contains an example of a discrete three-mode relaxation spectrum and its

corresponding three-mode retardation spectrum.



1200 NIKONOV, DAVIES, AND EMRI
The corresponding creep and relaxation functions are shown in Fig. 2.
The deformation of the bar at time t, �lb�t�, is given by Eq. �8a�. Writing �

=Ab / lbksh, this becomes

�lb�t� + ��
0

t

E�t − ��dl̇b���d� + ��lb
0E�t� = �l , �15�

from which the Laplace transform of the deformation is found to be

�lb�s� =
�l

s�1 + �sĒ�s��
. �16�

For the seven parameter model, the right side of Eq. �16� may be written in the form

�l

�1 + �E0��1�2�3
·

�1 + �1s��1 + �2s��1 + �3s�
s�s3 + As2 + Bs + C�

, �17�

where the constants A, B, and C are given by

A = � 1

�1
+

1

�2
+

1

�3

 −

�

1 + �E0
�E1

�1
+

E2

�2
+

E3

�3

 ,

B = � 1

�1�2
+

1

�2�3
+

1

�3�1

 −

�

1 + �E0
�E1

�1
� 1

�2
+

1

�3

 +

E2

�2
� 1

�3
+

1

�1

 +

E3

�3
� 1

�1
+

1

�2

	 ,

TABLE I. Relaxation and corresponding retardation spectra.

i Ei �i Di �i

0 10.0 0.1
1 1.0 0.1 0.0092 0.1101
2 7.0 1.0 0.1105 3.0115
3 1.0 5.0 0.7803 15.0784
� 1.0 1.0
FIG. 2. Creep and relaxation curves for the parameters in Table I.
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C =
1 + �E�

1 + �E0
·

1

�1�2�3
. �18�

The inverse Laplace transform of Eq. �16� may then be found in terms of the three roots,
−a, −b, and −c, of the cubic equation

�s + a��s + b��s + c� � s3 + As2 + Bs + C = 0. �19�

Assuming these roots are distinct, it follows that the deformation in the bar takes the form

�lb�t� = �l� − ��l1e−at + �l2e−bt + �l3e−ct� = �l0 + �l1�1 − e−at�

+ �l2�1 − e−bt� + �l3�1 − e−ct� . �20�

The coefficients are best simplified using the identity

�1�2�3abc =
1 + �E�

1 + �E0
,

and may be written

�l0 =
�l

1 + �E0
, �l� =

�l

1 + �E�

,

�l1 = �l��1 − �1a��1 − �2a��1 − �3a�
bc

�a − b��1 − c�
,

�l2 = �l��1 − �1b��1 − �2b��1 − �3b�
ca

�b − c��b − a�
,

�l3 = �l��1 − �1c��1 − �2c��1 − �3c�
ab

�c − a��c − b�
. �21�

Starting from the creep function �11�, in exactly the same way as before, Eq. �8b� may be
solved to give the force on the bar. This takes the form

Fb�t� = F� + F1e−at + F2e−bt + F3e−ct = F0 − F1�1 − e−at� − F2�1 − e−bt� − F3�1 − e−ct� ,

�22�

where a, b, and c are the same �reciprocal time� constants as for the deformation in �20�.
The other constants in �22� are given by

F0 =
�ks�l

� + D0
= �Ab

lb
E0
�l0, F� =

�ks�l

� + D�

= �Ab

lb
E�
�l�,

F1 = − F��1 − �1a��1 − �2a��1 − �3a�
bc

�a − b��a − c�
,

F2 = − F��1 − �1b��1 − �2b��1 − �3b�
ca

,

�b − c��b − a�
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F3 = − F��1 − �1c��1 − �2c��1 − �3c�
ab

�c − a��c − b�
. �23�

That the decay rates for the force in Eq. �22� are the same as the decay rates for the
deformation in Eq. �20� should be no surprise, since force and deformation are related
linearly by Eq. �8c�. Physically this is a consequence of the fact that there is no time-
dependent forcing term to induce a time-lag between stress and strain.

This behavior is illustrated using the relaxation and retardation spectra in Table I. We
have selected the following parameters: Ab=100, lb=100, ks=1, �l=1, and �=1. The
values of the constants in Eqs. �19� and �20� are given in Table II, while the functions
�lb�t� and Fb�t� are shown in Fig. 3.

To produce the entries in Tables I and II correct to four places of decimal it was
necessary to work with an accuracy of at least eight places of decimal.

IV. NUMERICAL METHODS

To complete the specification of the method, a numerical algorithm for solving the
inverse problems associated with Eqs. �8a� and �8b� must be presented. The algorithm
must be stable with respect to experimental measurements of the deformation �lb�t�
taken on a discrete time grid 
tn� which in general will be nonuniform. Moreover, the
accuracy of the computed values 
E�tn�� and 
D�tn�� should be such as to satisfy the
interconversion condition �8d� at all values of tn, to within an acceptable tolerance. In
other words, the consistency theorem must be satisfied numerically to within a prescribed
accuracy.

TABLE II. Constants A ,B ,C ,a ,b ,c with �=1.

A 9.6364
B 4.4182
C 0.3636
a 0.1070
b 0.3711
c 9.1583
FIG. 3. Elongation and force in the bar.
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A. A stable algorithm for the relaxation modulus E„t… and creep
compliance D„t…

Equation �8a� represents an inverse problem for determining the relaxation function
from measurements of deformation, while Eq. �8b� represents an inverse problem for
determining the creep compliance function from measurements of force. Both these equa-
tions, however, may be written in the form of direct problems. Thus �8a� may be rewritten
in the form

E�t� −
1

�lb�0��0

t

E���
d�lb�t − ��

d�
d� =

�l − �lb�t�
��lb�0�

. �24�

The modulus E�t� on a discrete grid may be obtained iteratively using the finite-
difference integration method first introduced by Lee and Rogers �1963�. However, there
is an additional source term in Eq. �24� which does not arise in the Volterra integral
equations solved by Lee and Rogers. Although it is a trivial matter to include this addi-
tional source term numerically, nevertheless, it changes the stability criterion in Lee and
Rogers original work. At t=0, E�0� takes the value

E�0� =
1

�
� �l

�lb�0�
− 1	 . �25�

whereas at subsequent times t= tn we may solve Eq. �24� using the iteration

E�tn� =
2�l − 2�lb�tn� + �E�tn−1���lb

0 − �lb�tn − tn−1�� + ��i=1

n−1
�E�ti� + E�ti−1����lb�tn − ti� − �lb�tn − ti−1��

���lb
0 + �lb�tn − tn−1��

.

�26�

The denominator in Eq. �26� is of a different form than that encountered by Lee and
Rogers. The criterion for stability of the iterative scheme is

��lb
0 − �lb�tn − tn−2�

�lb
0 + �lb�tn − tn−1�

� � 1. �27�

It may be shown that the stability criterion is satisfied for all finite positive values of the
parameter �, provided the time step is not greater than 2�l0 / ��lb�. This is the same as
saying that the stability criterion is satisfied for all finite positive values of the spring
constant ks. The proof makes use of the monotonicity of the deformation �lb�t�, which is
an important feature for stability as pointed out by Hopkins and Hamming �1957�.

Equation �8b� may be solved in exactly the same way for the creep compliance D�t�.
The initial value is given by

D�0� = �� ks�l

Fb�0�
− 1	 , �28�

and successive values are found iteratively from

D�tn� =
2�ks�l − 2�Fb�tn� + D�tn−1��Fb�0� − Fb�tn − tn−1�� + �i=1

n−1
�D�ti� + D�ti−1���Fb�tn − ti� − Fb�tn − ti−1��

�Fb�0� + Fb�tn − tn−1��
.

�29�
The stability criterion for the iteration �29� is
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�Fb�0� − Fb�tn − tn−2�
Fb�0� + Fb�tn − tn−1�

� � 1, �30�

which is valid for all positive values of �, independent of time-step. Since the ratios in
�27� and �30� are both functions of the spring constant ks, an optimal value for this
constant, from the numerical viewpoint, is that which minimizes the maximum value of
both ratios over all times. Again, this is not a simple matter to determine.

To demonstrate the stability and accuracy of the algorithm we perform the iterations
�26� and �29� on a time grid consisting of 101 discrete times tn which are exponentially
distributed over the range 10−4� t�104, or equivalently, uniform in log t in the interval
�−4,4�.

Exact values of �lb�tn� and Fb�tn� on the time grid are obtained from the closed form
solutions �20� and �22� using the model with parameters in Tables I and II, but linear
interpolation is used to find values of �lb�tn− tk� and Fb�tn− tk� off-grid. There are there-
fore no measurement errors on-grid, but there are interpolation errors off-grid. Additional
numerical errors are encountered in the quadruatures by taking mean values of E�t� and
D�t� over each time subinterval.

The numerical and analytic curves are shown in Fig. 4 and are seen to be indistin-
guishable from each other on the log-log scale of the diagram. The absolute errors of the
numerical prediction of the relaxation modulus and creep compliance are shown in Fig. 5.
Roughly speaking the greatest errors correspond to the regions of greatest slope, and in

FIG. 4. Numerical and analytic curves for E�t� and D�t� compared.
FIG. 5. Absolute errors in numerical solution of E�t� and D�t�.
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these regions the errors in predicting the relaxation function are greater than those for the
creep compliance, a result which has been reported by other authors �Hopkins and Ham-
ming �1957�; Knoff and Hopkins �1972��. The maximum relative errors are 1% in E�t�
and 0.6% in D�t�.

B. Numerical validation of the interconversion condition

From an analytic viewpoint, the creep compliance and relaxation functions obtained
from Eqs. �8a� and �8b� will automatically satisfy the interconversion condition �8d�. To
validate the method of this paper, it must now be shown that the interconversion condi-
tion holds, to within acceptable accuracy, for numerically derived values of E�t� and D�t�.
This is by no means an easy matter since there are several sources of error in calculating
the convolution integral in �8d�, namely:

�a� errors of measurement and interpolation of the deformation �lb�t� which contribute
to data errors in �8a� and �8b�;

�b� discretization errors in the Volterra solver of Sec. IV A applied to �8a� and �8b�;
�c� quadrature errors in evaluating the convolution;
�d� truncation error due to lack of information close to t=0; and
�e� interpolation errors in evaluating off-grid values of E�t� and D�t�.

In the absence of measurement errors in �a� it will be demonstrated below that �c� and �e�
are the most dominant sources of error.

Consider, first, the two convolution integrals

C1�t� = �
0

t

D�t − ��E���d� , �31a�

C2�t� = �
0

t

E�t − ��D���d� . �31b�

Analytically, the two are equivalent, and the interconversion condition �8d� may be re-
written in the form

C1�t� = C2�t� = t .

When calculated numerically, however, the two convolutions will differ, in general, and it
is of distinct advantage to calculate both, since a combination of the two results may be
used to reduce the numerical error.

In particular let 	 be a constant, and let

C�t� = �1 − 	�C1�t� + 	C2�t� . �32�

Analytically we know that C�t�=C1�t�=C2�t� for all values of 	. Numerically, however,
the value of 	 may be chosen to reduce the error in C�t� through cancellation of the
errors in C1�t� and C2�t�. Such an approach can be very effective as we shall demonstrate
later.

Let the two convolution integrals �31a� and �31b� be discretized using the composite
trapezium rule as follows:

C1�tn� �
1

2�
n

�D�tn − ti−1�E�ti−1� + D�tn − ti�E�ti���ti − ti−1� , �33a�

i=1
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C2�tn� �
1

2�
i=1

n

�E�tn − ti−1�D�ti−1� + E�tn − ti�D�ti���ti − ti−1� . �33b�

Off-grid values of E and D at times tn− tk are obtained by linear interpolation in the
appropriate time subinterval.

First we show that errors resulting from the Volterra solver �source �b�� are of little
significance. Using exact values of E�t� and D�t� on-grid obtained from Eqs. �10� and
�11� with the parameters in Table I and using linear interpolation off-grid, we calculate
the convolution in �33a�, and denote the results by 
Cthe�tn��. Next we repeat the calcu-
lation in �33a�, but this time using the numerical values of E�t� and D�t� on-grid obtained
from the Volterra solver iterations �26� and �29�. These results are denoted by 
C1�tn��.
Any difference between the two sets of results will be due to errors from the Volterra
solver.

The two sets of discrete convolutions, 
C1�tn�� and 
C1
the�tn��, computed from �33a�,

are plotted relative to their exact values, t, on a linear-log scale in Fig. 6.
In the range 10−4� t�1, both convolutions are in close agreement with the exact

value, t, but as t increases further to 104, the exact value is underpredicted by as much as
9% in each case.

It is clear from the figure, however, that it makes little difference as to whether exact
or inexact data were used in the discrete convolutions, which demonstrates that the
greatest errors stem from sources �c� and �e�.

The same calculations are now shown for the second discrete convolution �33b�.
Figure 7 shows the difference between using exact and inexact data in the convolution,
when compared relative to the exact value t. The difference is indistinguishable on a
linear-log scale. At the larger times near 104, the discrete convolution �33b� overpredicts
its exact value, t, by some 90%, whether exact or inexact data are used. The second
formulation �33b� is therefore considerably less accurate than the first formulation �33a�.

In Fig. 8 we compare, relative to the exact quadrature value t, the three quadrature
estimates, C�t� with a value of 	=0.09, C1�t� and C2�t�, obtained from �32�, �33a�, and
�33b�, respectively. This choice of 	 reduces the error in C�t� to 4%. Here we must
discuss, therefore, how this choice of 	 is made.

From Fig. 8 we see that the larger quadrature/interpolation errors associated with �33a�
and �33b� are, roughly speaking,

FIG. 6. Comparison of trapezium quadrature results from �33a� using exact and inexact on-grid data.
�i� of opposite sign; and
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�ii� grow approximately in proportion as t increases.

Observation �i� implies that taking an average of the two estimates would reduce the
error. Observation �ii� implies that the two error distributions may be described by the
same �approximate� shape factor. If we denote the common shape factor by 
�t� and
choose two scalings of opposite sign, which add up to unity, we may write the errors in
the form

C�t� − C1�t� = � − 	

1 − 2	


�t� , �34a�

C�t� − C2�t� = � 1 − 	

1 − 2	


�t� , �34b�

where 	 is a constant which we choose below. Here C�t� denotes the exact value of the
convolution integral �31a�, or �31b�, whereas C1�t� and C2�t� denote numerical approxi-
mations �33a� and �33b�. Eliminating the unknown shape factor 
�t� between these two
equations gives �32�.

FIG. 7. Comparison of trapezium quadrature results from �35b� using exact and inexact on-grid data.

FIG. 8. Comparison of three quadrature estimates C�t�, C1�t�, and C2�t� relative to the exact quadrature

value t.
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It is evident that we can make the linear combination in �32� exact, at a chosen value
of t, by choosing 	 appropriately. Let us force the identity C�t*�= t* at one point t= t*.
This requires the following choice of 	:

	 =
t* − C1�t*�

C2�t*� − C1�t*�
. �35�

If we pick the value of t* wisely then the linear combination �32� together with the choice
of 	 in �35� will redistribute the errors and induce cancellations.

Since the errors are greatest at the largest time we choose t*=104, which gives a value
of 	�0.09. As seen from Fig. 8 the improvement in accuracy is significant, reducing a
maximum error of 90% in C2�t� to only 4% in C�t�. The new error distribution is also
very different, the maximum error now occurring at t�100.

Of course, higher order quadrature rules and higher order interpolation could be used
to reduce the convolution errors even more, but that is not the aim of this paper. It has
been successfully demonstrated that, using the method proposed, both creep and relax-
ation functions may be determined simultaneously from a single experiment, and that
they can be shown to satisfy the interconversion constraint to within an acceptable
tolerance.

V. CONCLUSIONS

We have presented the theoretical framework for the simultaneous measurements of
creep compliance and relaxation functions with a single spring-loading experiment. It has
been shown that the proposed iterative numerical algorithm for determining both E�t� and
D�t� is stable, and yields results that satisfy the interconversion constraint to within an
acceptable tolerance.

It has been shown also that care is needed in calculating long-time discrete convolu-
tions. Numerical errors can be significantly reduced by calculating the two estimates
obtained from reversing the order of convolution, and taking an appropriate linear com-
bination of the two estimates. This approach may be used as an alternative to increasing
the number of measured data points per unit of time, when this is experimentally costly
or infeasible.

All the data encountered in this work have been simulated. More sophisticated nu-
merical methods based on spline interpolation or smoothing may be required when deal-
ing with experimental data.

The developed mathematical framework presented here may serve as the underlying
theory for new generation apparatus for the characterization of time-dependent behavior
of solid polymers in the linear viscoelastic regime. However, by determining the two
material functions of creep and relaxation simultaneously we can examine whether the
determined functions satisfy the linear constraint �8d�. If this is found not to be the case,
then the material behavior is outside the linear viscoelastic regime. The experimental-
computational �hybrid� approach embodied here, therefore, can be used for determining
the linear-viscoelastic limit of polymeric materials.
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APPENDIX: EXACT DETERMINATION OF THE DISCRETE RETARDATION
SPECTRUM FROM THE DISCRETE RELAXATION SPECTRUM

In this Appendix we show that the retardation times 
�k�k=1
N may be determined as the

zeros of a polynomial of degree N, whose coefficients are functions of the relaxation
spectrum 
Ek ,�k�k=1

N . This is not in itself a new result, but the algorithm we propose
enables the analysis of the degree of instability in the interconversion process. We use the
consistency theorem in Sec. II B which shows that the relaxation and creep functions
obtained from Eqs. �8a�–�8c�, given the deformation, automatically satisfy Eq. �8d�.
Again we give the algebra only for the case N=3, which is easily generalized to any
value of N.

First we find the three roots, −a, −b, and −c, of the cubic Eq. �19�. Then, substituting
the expressions for �lb�t� and Fb�t� in �20� and �22� into �8c� and comparing coefficients
of the exponential terms, we observe that the constants are related by

Fi = ks�li, i = 1,2,3.

Hence, from �21� and �23� we find

�1 − �1a��1 − �2a��1 − �3a� = f�a� ,

�1 − �1b��1 − �2b��1 − �3b� = f�b� ,

�1 − �1c��1 − �2c��1 − �3c� = f�c� ,

where

f�x� = −
�1 − �1x��1 − �2x��1 − �3x�

�E�

.

The moments

X1 = − ��1 + �2 + �3� ,

X2 = �1�2 + �2�3 + �3�1,

X3 = − �1�2�3,

may then be calculated by solving the matrix system

�a a2 a3

b b2 b3

c c2 c3 ��
X1

X2

X3
� = � f�a� − 1

f�b� − 1

f�c� − 1
� . �A1�

The retardation times �1 ,�2 ,�3 are then given by the three roots of the equation

s3 + X1s2 + X2s + X3 = 0.

This appears to be the simplest algebraic method for obtaining discrete retardation times
from the relaxation spectrum in the case of the GKV model.

We have already discussed the ill-posedness of the interconversion of one spectrum to
the other, which emerges since Eq. �8d� is a Volterra integral equation of the first kind.
The algebraic approach does not circumvent the ill-posedness. In the case of an
N-element GKV model the N retardation times 
�k�k=1

N are given by the zeros of a poly-
nomial of degree N, where the coefficients of the polynomial are simple functions of the

relaxation spectrum. Although we may calculate the zeros to arbitrary accuracy using
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mathematical software packages such as MAPLE, the ill-posedness of the interconver-
sion manifests itself in the sensitivity of the zeros to very small changes in the coeffi-
cients. Thus, small changes in the relaxation spectrum lead to small changes in the
coefficients which in turn lead to very large changes in one or more zeros, particularly as
N increases.

A quantitative analysis of this may be made by noting that the matrices encountered in
�A1� above and �A2� below are of Vandermonde form. The ill conditioning of such
matrices is well known. Gautschi �1975a, 1975b� has shown that their condition numbers
can grow exponentially with matrix order, and also how the condition number depends on
node distributions �element sizes�. A very useful recent survey has been given by Li
�2005�.

It remains to determine exactly the discrete compliances 
Dk�k=1
3 from the relaxation

spectrum 
Ek ,�k�k=1
3 . Again, the generalization to larger values of n is straightforward.

Taking the Laplace transforms of Eqs. �10� and �11� we find

sĒ�s� = E� + � Ek�ks

1 + �ks
,

sD̄�s� = D� − � Dk�ks

1 + �ks
.

Expanding these summations in powers of s and substituting the result in Eq. �9d� gives

�E� + � Ek�ks
1 − �ks + ��ks�2 − . . . ���D� − � Dk�ks
1 − �ks + ��ks�2 − . . . �� = 1.

Comparing powers of s on both sides of this equation yields

E�D� = 1,

− E� � �kDk + D� � �kEk = 0,

E� � �k
2Dk − �� �kDk��� �kEk� − D� � �k

2Ek = 0,

− E� � �k
3Dk + �� �k

2Dk��� �kEk� + �� �kDk��� �k
2Ek� + D� � �k

3Ek = 0.

Hence, the compliances Dk may be obtained by solving the matrix system

��1 �2 �3

�1
2 �2

2 �3
2

�1
3 �2

3 �2
3��

D1

D2

D3
� = ��1

�2

�3
� �A2�

with

�1 =
1

E�
2 � �kEk,

�2 =
1

E�
2 � �k

2Ek +
1

E�
�� �kEk��1,

�3 =
1

E2 � �k
2Ek +

1

E�
�� �k

2Ek��1 +
1

E�
�� �kEk�� .
�
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