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Synopsis

Different software packages are available commercially which can be applied to oscillatory shear
data to recover an estimate of the relaxation spectrum of the viscoelastic material tested. The
underlying algorithms, based on some form of regularization, are indirect and technically involved.
Davies and Anderssen@J. Non-Newtonian Fluid Mech.73, 163–179~1997!# have derived exact
sampling localization results for the determination of elastic moduli from~exact! storage and loss
moduli. It is now shown how their results can be exploited to construct simple and explicit
moving-average formulae which recover estimates of the relaxation spectrum from oscillatory shear
data, with realistic observational errors. Explicit moving-average formulae are presented which
experimentalists can apply immediately to appropriately sampled oscillatory shear measurements
The given formulae are validated on noisy data obtained from synthetic relaxation spectra. ©2001
The Society of Rheology.@DOI: 10.1122/1.1332787#

I. INTRODUCTION

Many methods have been proposed for estimating the discrete relaxation spectrum
$t j ,gj % of a viscoelastic fluid from oscillatory shear measurements. The majority of these
methods attempt, in various ways, to fit the dual model
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11v2tj
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to measurements of the storage and loss moduli,G8(v) andG9(v), respectively. In~1!,
t j denotes the relaxation time, andgj the elastic modulus, associated with thej th Max-
well mode. The corresponding approximations to the linear relaxation modulus,G(t),
and the continuous relaxation spectrum,H(t), take the form
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GN~t! 5 (
j 5 1

N

gj exp~2t/tj!, ~3!

and

H~t! 5 (
j 5 1

N

hjd~t2tj!, ~4!

whereh j 5 gjt j denotes the partial viscosity associated with thej th Maxwell mode, and
d(t2t j ) is the delta-function centered att 5 t j .

The problem of fitting the model~1! and ~2! to given measurements ofG8(v) and
G9(v) is ill posed, for the same reason that the problem of inverting the Fredholm
integral equations
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, ~5!
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dt

t
, ~6!

which are the continuous counterparts of~1! and~2!, is also ill posed. The mathematical
aspects of this subject are treated in many books including Englet al. ~1996! and Gro-
etsch~1984!.

Algorithms for determining the discrete spectrum$t j ,gj % use various techniques to
stabilize the inherent ill posedness. Honerkamp and Weese~1989, 1990, and 1993!, and
Mead ~1994!, use different forms of regularization, under the assumption that the relax
ation timest j are known, and thereby recover a model with a large numberN of modes.
On the other hand, Baumgaertel and Winter~1989! achieve stabilization through least-
squares fitting the fully nonlinear model~1! and~2! for a small numberN of the modes.
Yanovskyet al. ~1996! advocate the use of fitting in the uniform norm, rather than a
Sobolev norm, while Emri and Tschoegl~1993!, and Brabec and Schausberger~1995!,
achieve stabilization through various filtering routines. Yet another approach, based
the Laplace transform, is proposed by Carrot and Verney~1996!. Here, stabilization is
achieved by controlling the order of a Pade´ approximant.

The main difficulty with all such methods is that they rely on the choice of a stabi-
lizing functional, one or more regularization parameters, or a filter. The resulting accu
racy of the recovered spectrum is controlled by these choices, and, therefore, is n
necessarily optimal. For example, theparsimoniousapproach used by Baumgaertel and
Winter ~1989! to determineN, the number of modes to be fitted to the available data, is
an application of the much-usedMorozov discrepancy principle@Morozov ~1966!#,
which is at best onlyweakly optimal@Davies~1992!#.

No practical method of determining the spectrum can be free of control parameter
The advantage of the approach introduced in this paper is that of great simplicity o
implementation. The aim is to computemean valuesof the relaxation spectrum over
small intervals of relaxation timesa , t , b ~or, equivalently, lna , ln t , ln b),
where 0 , a , b , `. For this purpose, Davies and Anderssen~1997! definedelas-
tic moduli

gab 5 E
a

b
H~t!

dt

t
5 E

ln a

ln b
H~t!d~ ln t! ~7!
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for the intervals~a,b! or (lna, ln b) over which the mean values are taken.
Once estimates for the elastic moduli have been obtained, on some grid of relaxation

times or the logarithms of relaxation times, they can be interpreted and utilized in various
ways to construct approximations to the relaxation spectrumH(t).

In this paper, the goal is the construction of moving-average formulas which can be
applied directly to given measurements of the storage and loss moduliG8(v) and
G9(v), in order to estimate the various elastic moduli of Eq.~7!. This is achieved by
exploiting a theoretical result of Davies and Anderssen~1997! that, provided ln(b/a)
, p, the elastic modulusgab , defined by~7!, has the following data-functional repre-

sentations:

gab [ gab8 5 2E
2ln b2p/2

2 ln a1p/2
$E9@ ln~bv!#2E9@ln~av!#%G8~v!d~ln v!, ~8!

gab [ gab9 5 E
2ln b2p/2

2 ln a1p/2
$E8@ ln~bv!#2E9@ln~av!#%G9~v!d~ln v!, ~9!

with

E8~x! 5 lim
e → 0

Ee8~x!, E9~x! 5 lim
e → 0

Ee9~x!, ~10!

where the functionsEe8(x) and Ee9(x) are the real and imaginary components of the
elementary sampling function

Ee* ~x! 5 Ee8~x!1iEe9~x! [
1

p
erfS x1 1

2 p i

&e
D , e . 0. ~11!

In ~8!, the notationgab8 indicates that the elastic modulusgab is obtained directly from

G8(v), the storage modulus, while, in~9!, gab9 indicates thatgab is obtained directly
from G9(v), the loss modulus. In theory, ifG8(v) andG9(v) were known exactly as
continuous functions ofv, then gab8 and gab9 would both generate the same value. In
practice, this is not possible, since the storage and loss moduli are only available a
inexact, discrete measurements.

Formulae~8! and~9! make explicit use of the sampling localization theorems derived
by Davies and Anderssen~1997!; namely, provided that ln(b/a) , p, the elastic modu-
lus on the interval~a,b! is determined solely from the values ofG8(v) andG9(v) at the

frequencies in the range@exp(21
2p/b),exp(12p/a)# ~or, equivalently, in the range2 ln b

21
2p , ln v , 2ln a11

2p). Starting from~8! and ~9!, it is shown below how to con-
struct and apply moving-average formulae which enable one to recover the relaxation
spectrum directly from experimental measurements of the storage and loss moduli.

II. CONTINUOUS AND DISCRETE MOVING-AVERAGE FORMULAE FOR THE
ELASTIC MODULI

Equations~8! and ~9!, for the elastic moduli, can be transformed to continuous
moving-average formulae using the transformation

x 5 ln v11
2ln~ab!, D 5 lnSbaD, 0 , D , p. ~12!

3DIRECT RECOVERY OF THE RELAXATION SPECTRUM
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4 ANDERSSEN AND DAVIES
They become, respectively,

gab [ gab8 5 2E
2

1
2~p1D!

1
2~p1D! FE9S x1

1

2
D D 2E9S x2

1

2
D D GG8S ex

Aab
D dx, ~13!

gab [ gab9 5 E
2

1
2~p1D!

1
2~p1D! FE8S x1

1

2
D D 2E8S x2

1

2
D D GG9S ex

Aab
D dx. ~14!

The discrete moving-average formulae presented in this paper are derived by applyi
product-integration to the earlier continuous moving-average formulae. Initially, the na
ture of the discretization to be utilized must be defined. This must reflect the fact tha
experimentally, the storage and loss moduliG8 and G9 will only be measured at a
discrete set ofK11 frequencies

vk , k 5 0,1,2,̄ ,K, ~15!

which are assumed to increase as a function ofk. Once the discretization is specified, the
form of the product-integration to be applied can be defined.

A. The discretization

The discrete moving-average formulae, to be constructed from~13! and~14!, will take
the form

gj8 5 2 (
l 5 2L

L

alG8~vj1l!, j 5 L,L11,¯ ,K2L, ~16!

gj9 5 (
l 5 2L

L

blG9~vj1l!, j 5 L,L11,¯ ,K2L, ~17!

whereL is an integer not less than 2, and thea l andb l denote constant coefficients. The
discrete elastic moduligj8 andgj9 will be associated with the relaxation timet j defined by

tj 5 vj
21, j 5 L,L11,¯ ,K2L. ~18!

It is important to recall at this stage that, if the storage and loss moduli are sampled
frequencies in the range

v0 < v < vK ,

then the relaxation modes~identified by the subscript ‘‘j’’ ! are recoverable only in the
reduced reciprocal range

vK2L
21 < t < vL

21.

That it is impossible to recover information about the relaxation spectrum in the ful
reciprocal rangevK

21 < t < v0
21 is a direct consequence of sampling localization

@Davies and Anderssen~1997!#. The range of the indexj in ~16!–~18! is deliberately
chosen to reflect the reduced limits. For example, ifK 5 28 ~29 sampling points! and
L 5 4, no more than 21 relaxation modes can be recovered using the moving-avera
formulae~16! and ~17!.

The length of the moving-average formulae is defined to be 2L11. Alternatively,
these formulae can be referred to as (2L11)-point formulae, since each mode~identified
by j! will recover information from~at most! 2L11 sampled frequencies.
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5DIRECT RECOVERY OF THE RELAXATION SPECTRUM
For ~16! and ~17!, the length 2L11 is determined by the following two factors:

~1! The lengthD 5 ln(b/a) of the interval of relaxation timesa , t , b over which
the elastic modulusgab is defined. This interval~a,b! will be called theaveraging
interval for reasons which will be explained later.

~2! The rate at which the frequenciesvk are sampled.

In order to establish a correspondence between the continuous formulae~13! and~14!
and their discrete counterparts~16! and~17!, the geometric centerAab of the averaging
interval ~a,b! is chosen to coincide with the discrete relaxation timet j ; i.e.,

tj 5 Aab, or v j 5
1

Aab
. ~19!

It is also necessary to ensure that there is a local grid$xl%,2L < l < L, at which the
arguments ofG8 andG9 in ~13! and ~14! and in ~16! and ~17! are matched; i.e.,

exp~xl!

Aab
5 v j 1 l , or xl 5 lnSvj1l

vj
D. ~20!

This is possible if and only if the measurement frequenciesvk are exponentially
sampled; i.e.,

vk 5 v0 exp~kh!, 0 < k < K, ~21!

where the constanth is called thesampling interval. Exponential sampling clearly cor-
responds touniform samplingin the log-frequency domain; i.e.,

ln~vk! 5 ln~v0!1kh, h 5 lnSvk11

vk
D. ~22!

The local grid points~20! then take the form

xl 5 lh, 2L < l < L, ~23!

and coincide locally with the uniformly-spaced log-frequency grid$ ln(vk)%. The central
point x0 5 0 corresponds to the point ln(vj) which itself corresponds to the central term
( l 5 0) in both ~16! and ~17!.

Exponential sampling, coupled with the translational invariance of the formulae~13!
and~14! with respect to (lna,ln b), ensures that the coefficientsa l andb l in ~16! and~17!
are independent of thej th mode or thej th relaxation time. The coefficients depend only
on the half-lengthL of the formulae. In particular, they do not depend on the oscillatory
shear data.

The way in which the coefficientsa l andb l are determined is explained in subsequent
subsections. A rigorous derivation would be quite technical, so only formal arguments a
presented. Once these coefficients are determined, however, the numerical impleme
tion of the resulting moving-averages takes a matter of seconds of programming tim
Estimates of the relaxation spectrum are then computed in a fraction of a second.

Notation. In the discrete setting, the interval of integration in~8! and ~9! will be
centered at the log–frequency points lnvj , while the quantitiesgab8 andgab9 are replaced

by their discrete approximationsgj8 andgj9 , respectively.
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B. Product midpoint integration

Without loss of generality, the product-integration process will only be outlined for th
calculation of the elastic moduligj8 from the storage modulusG8(v). A similar argu-

ment to that constructed later applies to the calculation of the elastic moduligj9 from the
loss modulusG9(v). The experimentally sampled storage moduliG8(vk) are used to
construct the following approximation toG8(v):

Ĝ8~v! 5 (
k 5 0

K

G8~vk!fk~v!, ~24!

where thefk(v) represent the box functions

fk~v! 5 H1, if exp~2h/2!vk , v , exp~h/2!vk

0, otherwise
. ~25!

Substituting~24! into ~8!, before taking the limit ase → 0 in ~10!, one obtains, after
applying the change of variablex 5 ln(v/vj),

gj,D8 ~e! 5 2(
l2L

L

wl9~e!G8~vj1l!, ~26!

with

wl9~e! 5 E
~l21/2!h

~ l 11/2!h
@Ee9~x1 1

2D!2Ee9~x2 1
2D!#dx. ~27!

For finite e . 0, equations~26! and ~27! provide the product midpoint integration rule
for ~8!, with the geometric centerAab coincident withv j

21. The relationship between
the half-lengthL of the formula~26! and the sampling intervalh will be discussed later.

The counterpart for~9! is given by

gk,D9 ~e! 5 (
l 5 2L

L

wl8~e!G9~vk1l!, ~28!

where

wl8~e! 5 E
~l21/2!h

~ l 11/2!h
@Ee8~x1 1

2D!2Ee8~x2 1
2D!#dx. ~29!

C. Choosing the sampling and averaging intervals

It follows from the original definition~7! that, whenH(t) is continuous, the elastic
modulusgab can be given the following mean-value interpretation, with respect to th
(ln t)-measure

gab 5 E
ln a

ln b
H~t!d~ln t! 5 H~t* !ln~b/a!, ~30!

wheret* P(a,b) denotes any one of the relaxation times where the mean-valueH(t* )
is achieved. Since, forgj8 andgj9 ,
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tj 5 vj
21 5 Aab, and D 5 lnSbaD,

the counterparts of the earlier mean-value interpretation become

H~t̄j8! 5 gj,D8 /D, and H~t̄j9! 5 gj,D9 /D, ~31!

wheret̄ j8 andt̄ j9 are contained in the interval@exp(2D/2)t j ,exp(D/2)t j # and denote the
corresponding counterparts oft* .

The interval lntj2
1
2D , ln t , ln tj1

1
2D is the averaging intervalover which the

mean value is estimated~see Sec. II A earlier!.
Because of the reciprocity between the relaxation timet and the frequencyv, there is

a natural sense in which the lengthD of the averaging interval, in log-relaxation time,
should, in principle at least, correspond to the lengthh of the sampling interval, in log
frequency. However, the problem of determiningH(t) from either the storage or loss
modulus is ill posed. Moreover, the degree of ill posedness in recovering the function
depends on the length of the interval (lna,ln b). The smaller the value ofD, the more ill
posed is the recovery problem. For this reason, it is advantageous to choose the length
D to be larger thath, since this improves the stability of the resulting moving-average
formulae. Similar techniques have been applied by Anderssenet al. ~1998! to construct
stable moving-average formulae for the numerical differentiation of observational data

Suppose, therefore, thatD . h. Since the averaging procedure discussed above ca
be centered at each of the relaxation timest j 5 v j

21, it is convenient to reidentify the
mean values given by~31! with the mean values

H~tj8! 5 gj,h8 /h, and H~tj8! 5 gj,h9 /h, ~32!

which would have been obtained if the averaging had been performed over averagi
intervals of lengthD 5 h. The valuest8 and t9 in ~32! now belong to the shorter
interval lntj2

1
2h , ln t , ln tj1

1
2h.

Having estimated the values ofgj ,D8 andgj ,D9 on the largerD grid, it is necessary to

map them back to the correspondinggj8 andgj9 values on the originalh grid. The form of
the mapping is an immediate consequence of Eqs.~31! and ~32!, since, for a suitably
small h,

H~t̄j8! ' H~tj8!, H~t̄j9! ' H~tj9!.

One obtains

gj8 5 gj,h8 5
h

D
gj,D8 , and gj9 5 gj,h9 5

h

D
gj,D9 . ~33!

With this rescaling in force, by summing over all the intervals of lengthh, one obtains
the following familiar relation for the elastic moduli:

( gj8 5 E
0

` H~t!

t
dt. ~34!

Finally, specific choices for theaveraging intervalD and thesampling interval hmust
be made. As explained earlier, it is advantageous to takeD greater thanh. Since the
moving-average formulae to be presented later are intended to be applied to the type
experimental data currently collected on oscillatory shear rheometers,D cannot be greatly
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different from h, because of limited availability of data. In this paper, attention is re-
stricted to the choiceD 5 2h.

The actual choice ofh must take into account the fact that, for a givenD, the sample
pointslh,l 5 2L,2L11,...,L21,L, at which the weightswl8(e) andwl9(e) @as defined
by Eqs.~29! and ~27!, respectively#, are applied, must satisfy

21
2~p1D! < lh < 11

2~p1D!.

This implies that, forD , p,

h <
p

2~L21!
, L > 2. ~35!

The choiceh 5 p/(2L21) therefore gives the most efficient use of the data for a
midpoint rule in that the subintervals for the midpoint rule fit exactly into the interval of
integration.

III. CONSTRUCTION OF THE MOVING-AVERAGE FORMULAE

As explained in Sec. II B, the construction of the moving-averages forgk8 and gk9
reduces to the derivation of the weightswl8(e) andwl9(e) of Eqs.~29! and~27!, respec-
tively. This process can be further simplified by introducing the functions

Ie8~a! 5 E
0

a
Ee8~x!dx, Ie9~a!E

0

a
Ee9~x!dx, a . 0. ~36!

In this way, the evaluation of the weightswl8(e) andwl9(e) reduces to the evaluation
of

wl8~e! 5 Ie8@~l1
1
2!h11

2D#2Ie8@~l2
1
2!h11

2D#

2Ie8@~l1
1
2!h21

2D#1Ie8@~l2
1
2!h21

2D#, ~37!

wl9~e! 5 Ie9@~l1
1
2!h11

2D#2Ie9@~l2
1
2!h11

2D#

2Ie9@~l1
1
2!h21

2D#1Ie9@~l2
1
2!h21

2D#. ~38!

SinceEe8(x) andEe9(x) are, respectively, even and odd functions, it follows that:

w08 5 2$Ie8@
1
2~D1h!#2Ie8@

1
2~D2h!#%, ~39!

w09 5 0. ~40!

It is not possible to simply compute the weights by evaluating the functionsI e8(x) and

I e9(x) numerically for various choices ofe andx. In particular, if 0 , a , p/2, then

I e9(a) oscillates without bound ase → 0; i.e., takes on any positive or negative value an
infinite number of times.

In the methodology presented later, explicit use will be made of the following Lem-
mas.

Lemma 1. For a > 1
2p,

lim
e → 0

I e9~a! 5 1
2 . ~41!

Proof. It is an immediate consequence of the fact that, ase → 0,
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E
0

a
erfS x1 1

2 p i

&e
D dx ; S a1

1

2
p i D 1A2

p

e3

~a1 1
2 p i !2 expF2 ~a22 1

4 p2!

2e2 G
3expS2

pai

2e2D1A2

p

4e3

p2 expS p2

8e2D. ~42!

Lemma 2. For arbitrary e and l

w2l8 ~e! 5 wl8~e!, w2l9 ~e! 5 2wl9~e!.

Proof. This is an immediate consequence of the form of the weightswl8(e) andwl9(e)

in terms of the even and odd functionsI e8(x) and I e9(x), respectively.
The explicit construction of a moving-average formula is explained below for t

situation whereh 5 p/7, D 5 2h 5 2p/7 andL 5 4. On the basis of~33!, the moving-
average formula~26! becomes

gj8~e! 5 2
1

2 (
l 5 24

4

wl9~e!G8~vj1l!. ~43!

For reasons already mentioned, the limit, ase → 0, of each weight in the last equation
will not normally exist. However, as will be indicated later, the equation can be given
rigorous meaning if appropriate properties of the complex error function and the defi
tion of the weightswl9(e) are suitably exploited. From Eq.~38!, it follows that:

w49~e! 5 Ie9~
11
14p!2Ie9~

9
14p!2Ie9~

1
2p!1Ie9~

5
14p!, ~44!

and, hence, on invoking Lemma 1, that

w49~e! 5 21
21Ie9~

5
14p!12d4,

whered4 → 0 ase → 0.
Again from ~38!, it follows that:

w39~e! 5 Ie9~
9
14p!2Ie9~

1
2p!2Ie9~

5
14p!1Ie9~

3
14p!,

5 2Ie9~
5
14p!1Ie9~

3
14p!1d3, ~45!

whered3 → 0 ase → 0. Similarly, one finds

w29~e! 5 1
22Ie9~

5
14p!2Ie9~

3
14p!1Ie9~

1
14p!1d2, ~46!

and

w19~e! 5 Ie9~
5
14p!2Ie9~

3
14p!22Ie9~

1
14p!1d1, ~47!

whered2 → 0 andd1 → 0 ase → 0.
For any givene, we can eliminate the three unknownsI e9(5/14p), I e9(3/14p), and

I e9(1/14p) from the four Eqs.~44!–~47!. The weights then satisfy the constraint

w19~e!12w29~e!13w39~e!14w49~e! 5 2~11d112d213d314d4!.

Consequently, ase → 0, we find



10 ANDERSSEN AND DAVIES
(
l 5 1

4

lwl9~e! → 21. ~48!

The limit ~48! holds even though each weightwl9(e) oscillates without bound ase
→ 0.

The interpretation of the constraint~48! is the key to giving equation~43! a rigorous
meaning in the limite → 0. Recall that we are approximating the integral in~8! by
product midpoint quadrature. If we chooseG8(v) in ~8! to be a quadratic function of
ln v, i.e., G8(v) 5 A1Bln v1C(ln v)2 then the integral has the exact valueBln(b/a).
Using~48! it can be easily checked that the formula~43! takes on this precise value in the
limit e → 0.

This means that there exists a family of moving-average formulae of the form

gj8 5 2 (
l 5 2L

L

alG8~vj1l!, ~49!

with

a2l 5 2al , a0 5 0, ~50!

(
l 5 1

L

lal 5 2
1

2
, ~51!

such that each formula in this family evaluates the integral in~8! exactly whenever
G8(v) is quadratic in lnv in the interval

2SL1
1

2Dh < lnS v

vj
D < SL1

1

2Dh. ~52!

Although ~49! and ~51! have been derived for the caseL 5 4, they hold true for all
L > 2. The constraints~50! and ~51! are theonly constraints satisfied by thea coeffi-
cients of formula~49!. They are insufficient to determine the coefficients themselves.

For the analysis of the numerical performance of formula~49!, one can exploit the fact
that gj8 is simply a linear combination of the same differenceG8(v j 1 l )2G8(v j 2 l ) on
larger and larger grids~i.e., with l 5 1,2,...); namely,

gj8 5 2 (
l 5 1

L

al@G8~vj1l!2G8~vj2l!#. ~53!

For such an analysis, one can exploit the methodology developed by Anderssenet al.
~1998! for the analysis of moving-average~finite difference! differentiators.

We now discuss the moving average-formula for loss moduli. On the basis of~33!, the
formula ~28! becomes, whenh 5 p/(2L21),

gj9~e! 5
1

2 (
l 5 2L

L

wl8~e!G9~vj1l!. ~54!

A similar procedure to that used in deriving~49! from ~43! may be used to derive a
family of moving-average formulae of the form

gj9 5 (
l 5 2L

L

blG9~vj1l!, ~55!
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from ~54!. The coefficientsb l satisfy the conditions

b2l 5 bl , (
l 5 1,l odd

L

b l 5
h

2p
,

1

2
b01 (

l 5 2,l even

L

b l 5
h

2p
. ~56!

These conditions are sufficient to guarantee that formula~55! is exact whenever
G9(v) is linear in lnv in the interval~52!, but are insufficient to determine the coeffi-
cients themselves.

For the analysis of the numerical performance of formula~55!, one can exploit the fact
thatgj9 is simply a linear combination of the same sumsG9(v j 1 l )1G9(v j 2 l ) on larger
and larger grids~i.e., with l 5 1,2,...); namely,

gj9 5 b0G9~vj!1 (
l 5 1

L

bl@G9~vj2l!1G9~vj1l!#. ~57!

One can therefore anticipate that, because theb moving-average has this summation
interpretation, it will behave in a more stable manner than thea-moving average~when
applied to data with the same noise levels!. On the other hand, one would expect that the
a-moving average, when it performs well because the level of the noise on the data
suitably small, will give a better resolution of the relaxation spectrum than theb-moving
average. These tentative conclusions will be verified for noisy synthetic data in t
sequel.

It has already been stated that the constraints~50!–~51! and ~56! are insufficient to
determine the coefficients. Indeed, the constraintsalone impart to the formulae only a
very basic accuracy, as we have seen. For practical purposes it is necessary to improv
this accuracy, and this can be done by optimizing the choice of coefficients. There is
unique way of doing this. The strategy proposed in this paper is to maximize the reso
ing power of each formula~see Sec. IV C!. The approach is the same for both thea and
the b coefficients. For thea coefficients, the evaluation reduces to the following steps:

~1! Choose as a representative basis function forH(t), the delta-functiond(t2t0)
centered at an arbitraryt0 . 0, for which the corresponding values ofG8(v) and
G9(v) can be determined analytically. In particular, if one chooses

H~t! 5 d~t21!, ~58!

the corresponding values ofG8(v) andG9(v), as defined by Eqs.~5! and~6!, become

G8~v! 5
v2

11v2, G9~v! 5
v

11v2. ~59!

~2! In Eqs. ~1! and ~2!, replaceGN8 (v) and GN9 (v) by the corresponding analytic

expressions forG8(v) andG9(v), and replace thegj by the expression~16! for gj8 . For
the choice~58!, one thereby obtains the expressions

G8~vk! 5
vk

2

11vk
2 5 2 (

j 5 L

K2L

(
l 5 2L

L

alG8~vj1l!
vk

2tj
2

11vk
2tj

2, ~60!

and

G9~vk! 5
vk

11vk
2 5 2 (

j 5 L

K2L

(
l 5 2L

L

alG8~vj1l!
vktj

11vk
2tj

2, ~61!

wherek ranges over the set of integers which satisfy 0< k < K, andt j 5 1/v j .
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~3! Apply weighted least squares to solve the overdetermined systems of equatio
constructed in Step 2 along with the constraints

a0 5 0, a2 l 5 2a l , l 5 1,2,...,L, (
l 5 1

L

la l 5 2 1
2, ~62!

For the choice of the basis function being examined, this reduces to finding the value
of the a l which minimize

(
k 5 0

K F11
1

G8~vk!
(

j 5 L

K2L

(
l 5 2L

L

alG8~vj1l!
vk

2tj
2

11vk
2tj

2G2

1 (
k 5 0

K F11
1

G9~vk!
(

j 5 L

K2L

(
l 5 2L

L

alG8~vj1l!
vktj

11vk
2tj

2G2, ~63!

subject to the constraints~62!.
The size of the noise amplification factorna , which is defined by

na 5 A (
l 5 2L

L

a l
2, ~64!

is a measure of the stability of the resulting moving-average formula which thea l
generate.

A similar argument applies for the determination of theb l coefficients. The corre-
sponding noise amplification factornb is defined by

nb 5 A (
l 5 2L

L

b l
2. ~65!

For the delta basis function examined before, Tables I and II list, respectively, th
values ofa l andb l for L 5 2, 3, 4, along with the corresponding values of the ampli-
faction factorsna and nb . Though basis functions other than the delta-functiond(t
21) could have been invoked to estimate appropriate values for thea l andb l , they are
not pursued in this paper. Since any spectrumH(t) can be approximated by a linear
combination of basis functions of the formd@ ln(t/tj)#, which correspond to various
translations of the single-mode delta-function spectrum, and since the formulae~16! and
~17!, as well as~49! and ~55!, are also translationally invariant, it follows that the

TABLE I. The MA@L,G8# moving-average formulae.

gj8 5 2S l 5 2L
L a lG8(v j 1 l , a2 l 5 2a l

L h a0 a1 a2 a3 a4 na

2
p

3
0.0 20.749 848 22 0.124 924 11 1.08

3
p

5
0.0 22.366 704 01 1.178 652 43 20.163 533 62 3.75

4
p

7
0.0 210.885 787 11 8.497 657 72 22.603 052 79 0.299 907 51 19.88
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13DIRECT RECOVERY OF THE RELAXATION SPECTRUM
moving-averages tabulated in Tables I and II are able to recover such a basis functio
representation for an arbitrary spectrum with the same accuracy with which they recove
a single-mode spectrum.

Notation. In the sequel, use will be made of the following notation: the moving-
average formulae of length 2L11 constructed from thea l will be denoted by
MA@L,G8#, whereas the correspondingb l formulae will be denoted byMA@L,G9#. The
parameterL can be viewed as the independent variable of these formulae as it determine
both thelength2L11 of these moving-averages and thesampling interval h5 p/(2L
21) of the grid on which they are applied.

It is important to note that, as the sampling intervalp/(2L21) for each moving-
average formula decreases, the corresponding noise amplification factor~eitherna or nb)
increases. The noise amplification factor is adirect measureof the degree of ill posedness
for recovering the spectrum from sampled oscillatory shear data. The smaller the sam
pling interval, the greater is the resolution to be expected when recovering the spectru
from exact data. On the other hand, when working with noisy data, the greater the
amplification of the noise in these data. In practice, the correct balance between hig
resolution and low noise amplification must be found. In the sequel, an algorithm is
proposed which involves the dual application of thea andb moving-average formulae to
the G9(v) data.

IV. NUMERICAL IMPLEMENTATION AND VALIDATION

A. Introduction

When the storage and loss moduliG8(v) andG9(v), are sampled atK11 frequen-
cies vk 5 v0 exp(kh), k 5 0,...,K, with sampling intervalh 5 p/(2L21), the appli-
cation of the moving average formulae of Tables I and II will generate estimates of the
discrete elastic moduligj8 and gj9 corresponding to the relaxation timest j 5 v j

21,
j 5 L,...,K2L. As explained in Sec. II C, point estimates of the continuous relaxation
spectrum are then given by

HR~tj! 5
1

h
gj8 or HR~t j ! 5

1

h
gj9 , ~66!

whereHR(t) denotes therecovered spectrum. In addition, the discrete elastic moduligj8
andgj9 can be used to reconstruct the following continuous estimates of the storage an
loss moduli:

TABLE II. The MA@L,G9# moving-average formulae.

gj9 5 S l 5 2L
L b lG9(v j 1 l ) , b2 l 5 b l

L h b0 b1 b2 b3 b4 nb

2
p

3
0.650 686 23 1/6 20.158 676 45 0.73

3
p

5
1.498 824 89 20.070 963 59 20.649 412 44 0.170 963 59 1.78

4
p

7
6.204 510 11 21.670 240 98 22.730 041 84 1.741 669 54 20.300 784 64 8.08
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GR8~v! 5 (
j 5 L

K2L

gj8
v2tj

2

11v2tj
2, GR9~v! 5 (

j 5 L

K2L

gj8
vtj

11v2tj
2, ~67!

and

GR8~v! 5 (
j 5 L

K2L

gj9
v2tj

2

11v2tj
2, GR9~v! 5 (

j 5 L

K2L

gj9
vtj

11v2tj
2. ~68!

Thesereconstructions GR8 (v) and GR9 (v) of the storage and loss moduli can be
compared with the actual sampled dataG8(vk) andG9(vk).

Because the recovery of the relaxation spectrum is ill posed, a good fit of the recon
structions to the sampled storage and loss moduli measurements isnot a sufficient con-
dition for an accurate recovery of the spectrum.~It is, however, anecessary condition.!
This crucial fact is often overlooked in situations where the underlying nature and con
sequences of the ill posedness of the reconstruction problem are not fully understood

B. Recovering the delta-function from exact data

For a single-mode relaxation spectrum

H~t! 5 d~t21! 5 d~ln t!, ~69!

the moving-average formulaeMA@L,G8# andMA@L,G9# not only recover estimates of
the elastic moduli but also the following continuous approximations, respectively, to th
delta-function:

HR~t! 5 2
1

h
(

l 5 2L

L

alG8@exp~lh!/t#, ~70!

and

HR~t! 5
1

h
(

l 5 2L

L

blG9@exp~lh!/t#, ~71!

whereG8(v) andG9(v) take the forms given in~61!.
The exact oscillatory shear data were generated by evaluatingG8(v) and G9(v),

given in Eq.~61!, on four grids of frequencies given byvk 5 v0 exp(kh), k 5 0,...,K,
with sampling intervalh 5 p/(2L21). The values ofK were 12, 20, 28, and 36, while
the values ofL were 2, 3, 4, and 5. In each case,v0 5 exp(22p).

The results obtained, when the moving-average formulaeMA@L,G8# and
MA@L,G9#,L 5 2,3,4,5, are applied to the exact storage and loss moduli, are plotted i
Figs. 1~a! and 2~a!, respectively. It is clear from these plots that

~i! Both theMA@L,G8# andMA@L,G9# formulae give stable recoveries of the delta-
function even when the value ofL is small.

~ii ! Increasingly better and better recovery of the delta-function is obtained with both
formulae as the value ofL increases. In addition, as Figs. 1~b! and 2~b! show, whenL
5 4, the reconstructed data functionsGR8 (v) andGR9 (v), agree to graphical accuracy

with the values ofG8(v) andG9(v).
~iii ! The recovery obtained from theMA@L,G8# formulae,L 5 2,3,4,5, are clearly

sharper and better resolved than the corresponding recovery obtained from th
MA@L,G9# formulae. This observation can be explained in terms of the numerical per
formance of theMA@L,G8# andMA@L,G9# formulae. Because they correspond to com-
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bining differences on larger and larger grids@cf. ~53!#, the MA@L,G8# formulae behave
‘‘notionally’’ like numerical differentiators in a derivative spectroscopy context@cf.
O’Haver ~1997!#, and therefore will tend to sharpen the higher frequency components
a reconstruction. On the other hand, because theMA@L,G9# formulae correspond to
combining summations on larger and larger grids@cf. ~58!#, they behave more like
smoothers, although the alternating signs of the coefficients also contribute a sharpen
contribution. This essential difference will be explicitly exploited in the duality algorithm
to be proposed later.

FIG. 1. ~a! Plots ofHR(t) vs lnt, given by~4.5!, with L 5 2, 3, 4, 5. Basewidth of each curve indicates the

resolving power of the formula.~b! Reconstructions of the storage and loss moduliGR8 (v) andGR9 (v) given by
~4.2! whenL 5 4.
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C. Resolving power

In recovering the relaxation spectrum using moving-average formulae, temporal res
lution is limited by the finite sampling interval of the data. This is evident from Figs. 1~a!
and 2~a! which show that a delta function is recoverable as a broadened pulse, the bread
of which decreases as the sampling interval becomes smaller. Calculating the maximu
possible temporal resolution requires an arbitrary definition of what is meant by resolvin
two features. A working definition of resolving power is given later.

FIG. 2. ~a! Plots ofHR(t) vs lnt, given by~4.6!, with L 5 2, 3, 4, 5. Basewidth of each curve indicates the

resolving power of the formula.~b! Reconstructions of the storage and loss moduliGR8 (v) andGR9 (v) given by
~4.3! whenL 5 4.
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Consider a relaxation spectrum consisting of two delta-functions centered att 5 t0

andt 5 t0
21, respectively; i.e.,

H~t! 5 d~t2t0!1d~t2t0
21!. ~72!

The separationbetween these two peaks, measured in decades, is given by

m~t0! 5 2 log10~t0!. ~73!

The MA@L,G8# moving-average formula recovers the continuous approximation to
the spectrum given by

HR~t! 5 2
1

h
(

l 5 L

L

alG8@exp~lh!/t#, ~74!

where

G8~v! 5
v2t0

2

11v2t0
21

v2t0
22

11v2t0
22. ~75!

If t0 is not too small, the graph ofHR(t) will consist of two broadened pulses of
separationm, with a central minimum of heightHR(1). As t0 is increased, the height of
the central minimumHR(1) decreases until it reaches zero, at which point the two pulses
are completely resolved. Iftmax . 0 is the smallest value oft0 for which HR(1)
5 0, the corresponding value ofm(tmax) is defined to be theleast completely resolvable

separation~LCRS!. All separations witht0 . tmax will also be completely resolvable.
Figure 3~a! shows the graph ofHR(t) recovered from the formulaMA@4,G8#, where
t0 5 tmax 5 2.5 s. The LCRSm(tmax) takes the value of 0.8 decades.

On the other hand, ift0 is decreased, the height of the central minimumHR(1) will
grow until it is no longer a central minimum, at which point the two pulses appear as a
single, completely unresolved pulse. Iftmin . 0 is the greatest value oft0 for which
HR(1) is not a minimum, andtmin , tmax, the corresponding value ofm(tmin) is
defined to be thegreatest completely unresolvable separation~GCUS!. All separations
with t0 , tmin will also be completely unresolvable. Figure 3~b! shows the graph of
HR(t) recovered from the formulaMA@4,G8#, wheret0 5 tmin 5 1.46 s. The GCUS
m(tmax) takes the value of 0.33 decades.

The LCRS and GCUS represent two extreme situations, that of complete resolutio
and that of no resolution, respectively. In practice, values oft0 between the two extreme
valuestmin and tmax will result in partially resolved peaks. The concept of amean
resolvable separation~MRS! is introduced and defined to be the separationm for which

t0 5 tmean[ Atmintmax, ~76!

the geometric mean. Figure 3~c! shows the graph ofHR(t) recovered by formula
MA@4,G8#, when t0 5 tmean5 1.91 s. The MRSm(tmean) takes the value of 0.56
decades. This is a realistic expectation of resolvable separation from this nine-poi
formula. Tables III and IV give the LCRS, GCUS, and MRS values for the six moving-
average formulae which appear in Tables I and II.

It is clear from these tables that the MRS decreases withh, the sampling interval. In
addition, the resolving power of theb formulae are not as great as for thea formulae, for
the reasons explained above. The MRS values given in the tables should be used to ass
whether peaks which appear in the recovered spectrum are real or spurious~i.e., resulting
from noise amplification!.
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FIG. 3. Plots of HR(t) vs lnt, given by ~4.9! with L 5 4, for two delta functions with separation 2lnt0.
~a! Shows the least completely resolvable separation forL 5 4 (t0 5 2.5). ~b! Shows the greatest com-
pletely unresolvable separation forL 5 4 (t0 5 1.46). ~c! Shows the mean resolvable separation forL 5 4
(t0 5 1.91).
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D. Noise and measurement errors

In order to simulate the measurement errors inG8(v) andG9(v) in a realistic man-
ner, it is necessary to allow for the fact that these quantities have been computed from the
amplitude ratioq and the phase lagc, obtained from a conventional oscillatory test, using
the following formulae:

G8~v! 5
vSq~cosc2q!

q222q cosc11
, ~77!

and

G9~v! 5 2
vSq sinc

q222q cosc11
, ~78!

whereS corresponds to a geometric parameter of the form

S 5
k

v
~V22v2!, ~79!

with k and V denoting constants which depend on the rheogoniometer being used. In
particular,V corresponds to the natural frequency of the instrument, a representative
value of which is taken to be 4p rad/s. The value ofk is chosen to be 0.02h0 , whereh0
is the zero-shear-rate viscosity of the material being tested.

Given an exact relaxation spectrumH(t), one first calculates the exact values for
G8(v) and G9(v) from ~5! and ~6!, and hence the exact complex viscosityh* (v)
5 v21@G8(v)2 iG9(v)#. Next, the exact amplitude ratioq and phase lagc are cal-

culated, as a function of frequencyv, from the formula@Walters~1987!, p. 127#

exp@ic~v!#

q~v!
5 12

i

h* ~v!
S. ~80!

Random Gaussian noise is then added to theq(vk) andc(vk) in proportion to their
magnitudes. For theq(vk), a standard deviation of 3% is chosen, while, forc(vk), the
standard deviation is 1%. The required noisy storage and loss moduli are then computed

TABLE III. LCRS, GCUS, and MRS values for the moving-average formulae of Table I.

Formula
LRCS

~decades!
GCUS

~decades!
MRS

~decades!

MA@2,G8# 2.16 0.60 1.38
MA@3,G8# 1.18 0.42 0.80
MA@4,G8# 0.80 0.33 0.56

TABLE IV. LCRS, GCUS, and MRS values for the moving-average formulae of Table II.

Formula
LRCS

~decades!
GCUS

~decades!
MRS

~decades!

MA@2,G9# 2.76 0.54 1.65
MA@3,G9# 1.43 0.45 0.94
MA@4,G9# 0.92 0.36 0.64
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from ~77! and~78!. It is important to note that the resulting noise onG8(vk) andG9(vk)
is not proportional to their magnitudes, particularly at high frequencies.

Where necessary, allowances will be made for natural frequency errors inG8(vk) and
G9(vk) resulting from the use of~77!, ~78!, and~79!. Here, use is made of the interpo-
lation procedure proposed by Walters~1987!, pp. 151–155. No account is taken of other
possible errors.

E. Recovering the delta function from noisy data

Using theG8(v) andG9(v) of ~59!, the noisy~inexact! oscillatory shear data were
generated by applying the procedure outlined in Sec. IV D. The noisy data are shown in
Figs. 4~b!, 4~d!, and 4~f! for sampling intervalsh corresponding toL 5 2,3,4.

The results obtained, when the moving-average formulaeMA@L,G9# are applied to
the noisy data, are plotted in Figs. 4~a!, 4~c!, and 4~e!. It is clear from these plots that:

~i! The amplification of the noise in the loss modulus by theMA@L,G9# formulae is
not a problem whenL 5 2 andL 5 3. However, whenL 5 4, the noise in the data is
amplified to give several spurious peaks, the largest of which occurs at the low relaxation
time of t 5 exp(24), and results from the amplification of high frequency noise.

Next, the effect of reduced noise levels in the data is considered. Two new data set
were generated for a sampling interval corresponding toL 5 4. The first had random
Gaussian noise with a standard devation of 1.5% in the amplitude ratioq, and 0.5% in
the phase lagc. The results obtained with theMA@4,G9# formula are shown in Fig. 5~a!,
with the data and corresponding reconstructions in Fig. 5~b!. The second data set had
noise with a standard devation of 0.6% inq and 0.2% inc. The results obtained with the
MA@4,G9# formula are shown in Fig. 5~c!, with the data and corresponding reconstruc-
tions in Fig. 5~d!. It is clear that:

~ii ! As the noise level decreases, the recovery of the spectrum fromMA@4,G9# ap-
proaches the spectrum recovered from exact data.

In this way, one obtains the following very important conclusions about the numerical
performance of theMA@L,G8# andMA@L,G9# formulae.

Conclusion 4.1. For a givenL, there is an upper level to the noise on the data such that
below this level the moving-average formulae give good recoveries of the spectrum to
within the resolving power of the formulae.

Conclusion 4.2. With respect to the noisy data, the moving-average formulae
MA@L,G8# andMA@L,G9# are ‘‘asymptotically-stable’’ in that, as the level of noise on
the data decreases, one obtains a closer and closer agreement with the reconstructio
obtained using exact data.

Clearly, the results obtained byMA@4,G9# in Fig. 4~e! are far from satisfactory. The
resulting reconstructionsGR8 and GR9 in Fig. 4~f!, however, provide good smoothing
curves for the noisy data. In what follows we exploit this result in an iterative algorithm
which improves the performance of both sets of formulae.

F. A duality algorithm

So far, it has been demonstrated that the moving average formulaeMA@L,G8# and
MA@L,G9# are capable of recovering delta functions, to within finite resolution depen-
dent onL, provided the noise levels in the storage and loss moduli are not too high.
Furthermore, the noise amplification factor for the formulaMA@L,G9# is less than that
for MA@L,G8#, while the resolving power ofMA@L,G8# is greater than that of
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FIG. 4. Left column shows recovery of the delta function from a noisy loss modulus~1% noise in phase lag,
3% noise in amplitude ratio!. ~a! Using MA@2,G9#; ~c! usingMA@3,G9#; ~e! usingMA@4,G9#. Right column
shows the original noisy data and their reconstructions from~4.3!. ~b! L 5 2; ~d! L 5 3; ~f! L 5 4.
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MA@L,G9#. It is now demonstrated that, implemented correctly, both these formulae
may be used to advantage to recover arbitrary spectra to within finite resolution.

The following algorithm is proposed.

~1! Exponentially sample the loss modulusG9(v) for a sampling intervalh 5 p/3, p/5,
or p/7. If the sampled values correspond to some other grid, use linear interpolatio
to produce data on the nearesth grid.

~2! For the corresponding value ofL ~namely, 2, 3, or 4! use MA@L,G9# formula to
generate estimates of the elastic moduligj9 .

~3! From ~68!, reconstruct the storage modulusGR8 (v) on theh grid.

~4! UseMA@L,GR8 # to generate estimates of the elastic moduligj8 .

~5! From ~67!, reconstruct the loss modulusGR9 (v) on theh grid.
~6! Repeat steps 2–5 as many times as necessary, using the most recently reconstru

data at each step.

FIG. 5. Left column shows recovery of the delta function from a noisy loss modulus usingMA@4,G9#. Right
column shows the original noisy data and their reconstructions from~4.3!. ~a! and~b! 0.5% noise in phase lag,
1.5% noise in amplitude ratio.~c! and ~d! 0.2% noise in phase lag, 0.6% noise in amplitude ratio.
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23DIRECT RECOVERY OF THE RELAXATION SPECTRUM
Unless the originalG9(v) data are very noisy, only a few cycles are needed before
elastic moduli converge.

As an example of the use of this algorithm, consider the unacceptable spectrum s
in Fig. 4~e!, obtained from the application of the moving-average formulaMA@L,G9# to
the noisy data for the delta function. Using step 3 of the algorithm, the reconstru
storage modulus shown in Fig. 4~f! was obtained. It is much smoother than the origin
G8(v) data. From step 4, the spectrum shown in Fig. 6~a! was recovered. The noise in
this recovered spectrum is now at an acceptable level, and there is no need for f
iterations. The corresponding data reconstructions are shown in Fig. 6~b!.

G. Recovering the double-Gaussian spectrum of Honerkamp and Weese

As a second application of the duality algorithm in Sec. IV F, it is applied to reco
the double-Gaussian spectrum of Honerkamp and Weese~1989!. The noisy oscillatory
shear data published by Honerkamp and Weese are exponentially sampled on a gr
h 5 p/6.6. In step 1 of the duality algorithm, it is therefore necessary to linearly in
polate the loss modulus onto anh grid with h 5 p/7; i.e.,L 5 4. One should also note
that the noise perturbations in the Honerkamp–Weese data have standard dev
proportional to the magnitude of the storage and loss moduli~4%!. Consequently, at high
frequencies, the absolute noise level in the loss moduli is far less than the absolute
level in the storage moduli. Even so, one application ofMA@4,G9# in step 2 of the
algorithm leads to the recovery shown in Fig. 7~a!. The original data and its reconstruc
tion in step 3 are shown in Fig. 7~b!. After only two cycles of the algorithm, an excellen
recovery of the original spectrum is obtained, as shown in Figs. 7~c! and 7~d!.

V. DISCUSSION

The purpose of this paper is twofold: first, to derive in an elementary manner sim
moving average formulae for determining the relaxation spectrum from oscillatory s
data, and second, to demonstrate how these formulae behave when the data are c
nated with realistic levels of noise. It has been shown using synthetic noisy data that
estimates of the spectrum can be recovered if the formulae are used iteratively. S
issues remain to be addressed, and we discuss four of them here, briefly.

Non-negativity of the spectrum. A well-known theorem of Bernstein tells us that
function is completely monotonic if and only if it is the Laplace transform of a posit
measure. It may be inferred that the memory kernel of a viscoelastic fluid is compl
monotonic if and only if the relaxation spectrum is non-negative. The recovered estim
of the delta-function which appear in Figs. 1~a! and 2~a!, however, show negative lobes
and would give rise to nonmonotonic memory kernels.~The oscillations are discernible
only at very long times and on very small scales.!

The negative lobes in Figs. 1~a! and 2~a! are Gibbs-type phenomena resulting from th
discontinuous nature of the delta function. As the sampling interval gets smaller the
~and number! of the negative lobes increases. The moving-average formulae, there
can never recover a perfect delta function from exact data, even in the limit of s
sampling interval,h. Fortunately, if the delta function is replaced by a smooth~albeit
peaked! function such as a gaussian, then for sufficiently smallh ~of the order of the half
width of the peak! the negative lobes disappear. Moreover the function may be recov
perfectly from exact data in the limit of smallh.

Of course, it is easy to construct moving-average coefficients which preserve
non-negativity of the spectrum, either by choosing broader basis functions than d
functions for the spectrum, or by imposing non-negativity of the spectrum as a cons



ther
be

24 ANDERSSEN AND DAVIES
on the least-squares solution of~60! and~61!. Either way this results in a reduction in the
resolving power of the formula and is therefore not optimal.

In practice, the appearance of negative elastic moduli will be the result of noise ra
than a delta function in the spectrum. We have found that negative moduli can

FIG. 6. ~a! Recovery of the delta function from noisy loss modulus~1% noise in phase lag, 3% noise in
amplitude ratio!, after two cycles of the duality algorithm (L 5 4). ~b! Shows the original noisy data and their
reconstructions after two cycles of the duality algorithm (L 5 4).
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25DIRECT RECOVERY OF THE RELAXATION SPECTRUM
removed through iteration~at the cost of loss in resolution! or simply by combining
neighboring positive and negative moduli, thereby preserving the sum~34!.

Working with storage and loss moduli. The duality algorithm proposed in Sec. IV F
works from the loss modulus. Similar duality algorithms may be devised to work fro
the storage modulus, or from both dynamic moduli. The performance of such algorith
on actual~in contrast to synthetic! experimental data is discussed in Davies and Ande
ssen~1998!. Two issues are investigated in some detail, namely, the balance betw
resolution and noise amplification, and the effect of truncated data, i.e., sampling ove
limited a frequency range.

Arbitrary sampling intervals. The moving-average formulae derived in this pape
work on exponentially sampled data with a sampling interval,h, which is an odd integer
divisor of p. Linear interpolation is recommended if the data are not available in th
form. Similar moving-average formulae may be derived whenh is an even integer divisor
of p. Newbury ~1999! shows that it is possible to obtain moving average formulae f

FIG. 7. Left column shows recovery of the double-Gaussian spectrum of Honerkamp–Weese from noisy
modulus using the duality algorithm (L 5 4). Right column shows the original noisy data and their recon
structions.~a! and ~b! after 1 cycle.~c! and ~d! after 2 cycles.
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26 ANDERSSEN AND DAVIES
arbitrary values ofh, but that, because of the phenomenon of sampling localization, t
most effective use of the data is made whenh is an integer divisor ofp ~even or odd!.

Optimal number of iterations. The number of cycles used in a duality algorithm
controls the balance between resolution of the spectrum and amplification of the nois
the data. Too few cycles result in insufficient filtering of the amplified noise, while to
many cycles result in oversmoothing and loss of resolution in the recovered spectr
The number of cycles, therefore, may be interpreted as another regularization param
in the recovery of the spectrum. The question of how to choose the number of cy
optimally, so that the choice may be incorporated automatically by the algorithm, has
yet been answered. A pragmatic approach is to stop iterating once the peaks in
recovered spectrum are separated to at least the mean resolvable separation of th
mula being used~see Tables III and IV!.
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