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Synopsis

Different software packages are available commercially which can be applied to oscillatory shear
data to recover an estimate of the relaxation spectrum of the viscoelastic material tested. The
underlying algorithms, based on some form of regularization, are indirect and technically involved.
Davies and Anderssed. Non-Newtonian Fluid Mechz3, 163-179(1997] have derived exact
sampling localization results for the determination of elastic moduli fterac) storage and loss
moduli. It is now shown how their results can be exploited to construct simple and explicit
moving-average formulae which recover estimates of the relaxation spectrum from oscillatory shear
data, with realistic observational errors. Explicit moving-average formulae are presented which
experimentalists can apply immediately to appropriately sampled oscillatory shear measurements.
The given formulae are validated on noisy data obtained from synthetic relaxation spec2801©

The Society of RheologyDOI: 10.1122/1.1332787

I. INTRODUCTION

Many methods have been proposed for estimating the discrete relaxation spectrum
{7j,9j} of a viscoelastic fluid from oscillatory shear measurements. The majority of these
methods attempt, in various ways, to fit the dual model

N w7
Gw = 2 g —1+w2’sz, (1)
N WT;

J

to measurements of the storage and loss mo@ul{w) andG”(w), respectively. In(1),
7j denotes the relaxation time, aggl the elastic modulus, associated with fftle Max-
well mode. The corresponding approximations to the linear relaxation modali},
and the continuous relaxation spectrus(,r), take the form
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N
Z | exp(—t/r), 3)
and
N
H(7) = 2 7 A7), 4

wheren; = gj7j denotes the partial viscosity associated withjttheMaxwell mode, and
o(7— ;) is the delta-function centered at= 7;.

The problem of fitting the modell) and (2) to given measurements &’ (w) and
G"(w) is ill posed, for the same reason that the problem of inverting the Fredholm
integral equations

N w’? dr
Glw) = JO H(z )1+wT T’ ©
. o ot dr

which are the continuous counterparts(bf and(2), is also ill posed. The mathematical
aspects of this subject are treated in many books including &najl (1996 and Gro-
etsch(1984.

Algorithms for determining the discrete spectrym),g;} use various techniques to
stabilize the inherent ill posedness. Honerkamp and WEE3®9, 1990, and 1993and
Mead (1994, use different forms of regularization, under the assumption that the relax-
ation timesr; are known, and thereby recover a model with a large nurivbefrmodes.

On the other hand, Baumgaertel and Wintg®89 achieve stabilization through least-
squares fitting the fully nonlinear modél) and(2) for a small numbeN of the modes.
Yanovsky et al. (1996 advocate the use of fitting in the uniform norm, rather than a
Sobolev norm, while Emri and Tschoed993, and Brabec and Schausberg&995,
achieve stabilization through various filtering routines. Yet another approach, based on
the Laplace transform, is proposed by Carrot and Verii®@6. Here, stabilization is
achieved by controlling the order of a Paalgproximant.

The main difficulty with all such methods is that they rely on the choice of a stabi-
lizing functional, one or more regularization parameters, or a filter. The resulting accu-
racy of the recovered spectrum is controlled by these choices, and, therefore, is not
necessarily optimal. For example, tharsimoniousapproach used by Baumgaertel and
Winter (1989 to determineN, the number of modes to be fitted to the available data, is
an application of the much-usellorozov discrepancy principl¢Morozov (1966,
which is at best onlyveakly optimalDavies(1992].

No practical method of determining the spectrum can be free of control parameters.
The advantage of the approach introduced in this paper is that of great simplicity of
implementation. The aim is to computeean valuef the relaxation spectrum over
small intervals of relaxation times < 7 < b (or, equivalently, Ira < In7 < Inb),
where 0 < a < b < . For this purpose, Davies and Anders$&897) definedelas-
tic moduli

dr nb
G = jh H(r) — = f H(7d(In 7) @)
a T Ina



DIRECT RECOVERY OF THE RELAXATION SPECTRUM 3

for the intervals(a,b) or (Ina,Inb) over which the mean values are taken.

Once estimates for the elastic moduli have been obtained, on some grid of relaxation
times or the logarithms of relaxation times, they can be interpreted and utilized in various
ways to construct approximations to the relaxation spectr(mr).

In this paper, the goal is the construction of moving-average formulas which can be
applied directly to given measurements of the storage and loss m&dgtb) and
G"(w), in order to estimate the various elastic moduli of Eg). This is achieved by
exploiting a theoretical result of Davies and Anders$&897) that, provided Inif/a)

< 1, the elastic modulug,y,, defined by(7), has the following data-functional repre-
sentations:

, —Ina+m/2 . " ,
Oab = %ap = _J_In b—7r/2{E [In(bw)]-ETIn(aw)[}G" (w)d(In w), (8)
4 7In a+17/2 ! U "
G = o= | A TIn(h)]—EIn(@w) 6 @)n o), ©
with
E'(x) = lim EL(x), E"(x) = lim EL(x), (10)
e— 0 e— 0

where the functionsE;(x) and E’E’(x) are the real and imaginary components of the
elementary sampling function

o o 1 X+ % i
- (x) = E.L)+IE(x) = —erf , € > 0. (12)
™ Ve

In (8), the notationgéb indicates that the elastic modulggy, is obtained directly from
G’ (w), the storage modulus, while, i®), ggb indicates thagy,p is obtained directly
from G”(w), the loss modulus. In theory, &’ (w) andG”(w) were known exactly as
continuous functions ofy, theng}, and gy, would both generate the same value. In
practice, this is not possible, since the storage and loss moduli are only available as
inexact, discrete measurements.

Formulae(8) and(9) make explicit use of the sampling localization theorems derived
by Davies and Anderssdii997); namely, provided that lifa) < , the elastic modu-
lus on the intervala,b) is determined solely from the values @f (w) andG"(w) at the
frequencies in the rangeexp(—37/b),expGm/a)] (or, equivalently, in the range Inb
—im < Inw < —Ina+3w). Starting from(8) and(9), it is shown below how to con-
struct and apply moving-average formulae which enable one to recover the relaxation
spectrum directly from experimental measurements of the storage and loss moduli.

II. CONTINUOUS AND DISCRETE MOVING-AVERAGE FORMULAE FOR THE
ELASTIC MODULI

Equations(8) and (9), for the elastic moduli, can be transformed to continuous
moving-average formulae using the transformation

b
X = Inw+3in(ab), A = In(;), 0< A< (12
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They become, respectively,

/ F(”“) [ x4 2a E”( 1A”G’ ¢ dx, (13
Oab = Oap = — X+—=A|—-E"| x—= — | dx,
ab ab 7%(77+A) 2 2 /ab
1 1 1 e*
(m+A) ’ ’ "
Oap = O =f2 E'|x+=A|-E (x——A) G"| — | dx. (14
ab ™ Sab —Ym+a) 2 2 \ab

The discrete moving-average formulae presented in this paper are derived by applying
product-integration to the earlier continuous moving-average formulae. Initially, the na-
ture of the discretization to be utilized must be defined. This must reflect the fact that,
experimentally, the storage and loss modali and G” will only be measured at a
discrete set oK+ 1 frequencies

wkl k: 051121'” uKa (15)

which are assumed to increase as a functiok @nce the discretization is specified, the
form of the product-integration to be applied can be defined.

A. The discretization

The discrete moving-average formulae, to be constructed (i@rand(14), will take
the form

L
g = - ;LmG'(a)jH), j=LL+1,-- K-L, (16)

L
g = | _E_L BG (wp4), | =LL+L KL, 17)

whereL is an integer not less than 2, and taeand 8; denote constant coefficients. The
discrete elastic modui; andg] will be associated with the relaxation timg defined by

m=w b = LL+L KL (18)
It is important to recall at this stage that, if the storage and loss moduli are sampled at

frequencies in the range
W) =S 0= wg,

then the relaxation modggentified by the subscriptj”) are recoverable only in the
reduced reciprocal range

“’EEL ST< o L

That it is impossible to recover information about the relaxation spectrum in the full
reciprocal rangewg1 s 1< wgl is a direct consequence of sampling localization
[Davies and Anderssefl997]. The range of the indek in (16)—(18) is deliberately
chosen to reflect the reduced limits. For exampleK i= 28 (29 sampling pointsand
L = 4, no more than 21 relaxation modes can be recovered using the moving-average
formulae(16) and (17).

The length of the moving-average formulae is defined to be+2l. Alternatively,
these formulae can be referred to as (21)-point formulae, since each moddentified
by j) will recover information from(at mosj 2L +1 sampled frequencies.
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For (16) and(17), the length 2 + 1 is determined by the following two factors:

(1) ThelengthA = In(b/a) of the interval of relaxation timea < 7 < b over which
the elastic modulugyy, is defined. This intervala,b) will be called theaveraging
interval for reasons which will be explained later.

(2) Therate at which the frequenciesy are sampled.

In order to establish a correspondence between the continuous forth8laend (14)
and their discrete counterpaits) and(17), the geometric cented% of the averaging
interval (a,b) is chosen to coincide with the discrete relaxation timei.e.,

1

7-]':\/%’ or C!)J' :\/—_.
ab

It is also necessary to ensure that there is a local{ghjild —L < | < L, at which the
arguments ofs’ andG” in (13) and(14) and in(16) and(17) are matched; i.e.,

19

% = wjy, O X = In(%) (20)
]

This is possible if and only if the measurement frequencigsare exponentially
sampledi.e.,

o = wgexpkh), 0=sk=K, (21

where the constartt is called thesampling interval Exponential sampling clearly cor-
responds tainiform samplingn the log-frequency domain; i.e.,

)
IN(wg) = In(wg)+kh, h = In( "“). 22)
Wy
The local grid point420) then take the form
x =l -L=<l=sL, (23

and coincide locally with the uniformly-spaced log-frequency diit(wy)}. The central
pointxg = O corresponds to the point kaf) which itself corresponds to the central term
(I = 0) in both(16) and (17).

Exponential sampling, coupled with the translational invariance of the forn{lie
and(14) with respect to (Ira,Inb), ensures that the coefficientg andB; in (16) and(17)
are independent of thgh mode or thgth relaxation time. The coefficients depend only
on the half-length. of the formulae. In particular, they do not depend on the oscillatory
shear data.

The way in which the coefficientg, and B are determined is explained in subsequent
subsections. A rigorous derivation would be quite technical, so only formal arguments are
presented. Once these coefficients are determined, however, the numerical implementa-
tion of the resulting moving-averages takes a matter of seconds of programming time.
Estimates of the relaxation spectrum are then computed in a fraction of a second.

Notation. In the discrete setting, the interval of integration(B) and (9) will be
centered at the log—frequency pointsdp while the quantitiegéb andggb are replaced

by their discrete approximatiorsy andg;’, respectively.
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B. Product midpoint integration

Without loss of generality, the product-integration process will only be outlined for the
calculation of the elastic modu@j’ from the storage modulu§’(w). A similar argu-
ment to that constructed later applies to the calculation of the elastic rrgﬁjtm')m the

loss modulusG”(w). The experimentally sampled storage modali(wy) are used to
construct the following approximation B8’ (w):

K

G'(w) = 2 G'@dy(w) (24

where thegy(w) represent the box functions

1, if exp(—h2)wy < o < exph/2)wy

D) = 0, otherwise ' @9

Substituting(24) into (8), before taking the limit ag — 0 in (10), one obtains, after
applying the change of variable = In(w/wj),

L

gjale) = _IZL W' (e)G' (@) 1)), (26)
with
B (LT
Wit = [ L 1)~ Ellx- 1) Jox. (27

For finite e > 0, equationg26) and(27) provide the product midpoint integration rule

for (8), with the geometric centei/ﬁ coincident Withwj_l. The relationship between

the half-lengthL of the formula(26) and the sampling intervdd will be discussed later.
The counterpart fof9) is given by

L

dhal® = | :E_L W (96" (i) (28)
where
. (I+12h | ,
W/ (€) = j(l—l/Z)h [EL(x+3A)—EL(x—3A)]dx. (29

C. Choosing the sampling and averaging intervals

It follows from the original definition(7) that, whenH(7) is continuous, the elastic
modulusg,p can be given the following mean-value interpretation, with respect to the
(In 7)-measure

Gap = ﬁ "PH(Adn A = H( in(bla), (30
na

where7* € (a,b) denotes any one of the relaxation times where the mean-¥au&)
is achieved. Since, fay andgy,
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b
T = wj_l = \/5, and A = In(a),

the counterparts of the earlier mean-value interpretation become
H(7) = gi /A, and H(7) = gjs/A, (31)

where7] and7] are contained in the intervexp(—A/2)7j ,expA/2)7j] and denote the
corresponding counterparts &f.

The interval Inrj—%A < In7<ln rj+%A is the averaging intervalover which the
mean value is estimatgdee Sec. Il A earligr

Because of the reciprocity between the relaxation tinaed the frequencw, there is
a natural sense in which the lengthof the averaging interval, in log-relaxation time,
should, in principle at least, correspond to the lengthf the sampling interval, in log
frequency. However, the problem of determinidgr) from either the storage or loss
modulus is ill posed. Moreover, the degree of ill posedness in recovering the functional
depends on the length of the interval 8inb). The smaller the value af, the more ill
posed is the recovery problem. For this reason, it is advantageous to choose the length of
A to be larger thah, since this improves the stability of the resulting moving-average
formulae. Similar techniques have been applied by Anderssah (1998 to construct
stable moving-average formulae for the numerical differentiation of observational data.

Suppose, therefore, that > h. Since the averaging procedure discussed above can
be centered at each of the relaxation timgs= wj_l, it is convenient to reidentify the
mean values given b§81) with the mean values

H(7[) = gjy/h, and H(r) = giy/h, (32

which would have been obtained if the averaging had been performed over averaging
intervals of lengthA = h. The valuesr’ and 7’ in (32) now belong to the shorter
interval In;—3h < In7 < In7+3h.

Having estimated the values gf’A and gj”A on the largerA grid, it is necessary to
map them back to the correspondigl]’g andgj' values on the originai grid. The form of
the mapping is an immediate consequence of Eg®. and (32), since, for a suitably
smallh,

H(7) = H(r),  HE) = H(z).

One obtains

h h
gj/ _ gj’,h _ ngI’A’ and 9]’ _ g;,,h - Xg;,vA (33

With this rescaling in force, by summing over all the intervals of lerfgtbne obtains
the following familiar relation for the elastic moduli:

«H
>4 = fo iT)dT. (34)

Finally, specific choices for thaveraging intervalA and thesampling interval hmust
be made. As explained earlier, it is advantageous to talgreater tharh. Since the
moving-average formulae to be presented later are intended to be applied to the type of
experimental data currently collected on oscillatory shear rheométeemnot be greatly
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different from h, because of limited availability of data. In this paper, attention is re-
stricted to the choic& = 2h.

The actual choice dfi must take into account the fact that, for a giventhe sample
pointsih,l = —L,—L+1,..L—1L, at which the weightsv| (¢) andw; (€) [as defined
by Egs.(29) and(27), respectively, are applied, must satisfy

—Hm+A) < Ih < +3(7+A).
This implies that, forA < 7,

o
hs —,
2(L—1)

The choiceh = 7/(2L—1) therefore gives the most efficient use of the data for a
midpoint rule in that the subintervals for the midpoint rule fit exactly into the interval of
integration.

v

(35

[lI. CONSTRUCTION OF THE MOVING-AVERAGE FORMULAE

As explained in Sec. IIB, the construction of the moving—averagesgﬁoand gf('
reduces to the derivation of the weights(e) andw, (e) of Egs.(29) and(27), respec-
tively. This process can be further simplified by introducing the functions

a a
I(a) = fo ELx)dx, 1%(a) J; E/(x)dx a > 0. (36)

In this way, the evaluation of the weightg (€) andw| () reduces to the evaluation
of

W(e) = 1[I+ Hh+2A1-1 (1 —Hh+3A]
11+ Hh— AT+ (- Hh—1A], (37

W'(€) = I1(1+)h+ 31171 - )h+2A]

—I(1+3h=3AT+7[(1 - 3h—3A], (38)

SinceE;(x) and E'é’(x) are, respectively, even and odd functions, it follows that:
wo = 2{1 [3(A+h)]—1 [3A—h)]}, (39

5= 0. (40)

It is not possible to simply compute the weights by evaluating the functigns and
|Z(X) numerically for various choices af andx. In particular, if 0 < a < /2, then
IZ(a) oscillates without bound as — 0; i.e., takes on any positive or negative value an
infinite number of times.

In the methodology presented later, explicit use will be made of the following Lem-
mas.

Lemma 1 For a = 3m,

lim 17(a) = 3. (42)

e—0

Proof. It is an immediate consequence of the fact thate as 0,
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a [ X+ i 1 2 e (a%— 7%
ferf dx~ |a+ -z |+ \[-——F—exg———5—
0 Vie 2 T (a+ 27i) 2¢
mrai \F463 772 5
xXex —g + ;?GX Q . (4 )

Lemma 2. For arbitrary € and |
W’ (e) = w(e), W' (&) = —w(e).

Proof. This is an immediate consequence of the form of the weigh(s) andw, (€)
in terms of the even and odd functiohx) and1”(x), respectively.

The explicit construction of a moving-average formula is explained below for the
situation wheréh = 7/7,A = 2h = 2#/7 andL = 4. On the basis of33), the moving-
average formulg26) becomes

4
1
gi(e) = — 2 W(9G @) (43)

For reasons already mentioned, the limiteas> 0, of each weight in the last equation
will not normally exist. However, as will be indicated later, the equation can be given a
rigorous meaning if appropriate properties of the complex error function and the defini-
tion of the weightsw'(€) are suitably exploited. From E¢38), it follows that:

wy(e) = I (Tam)— I (Gm) =1 (Gm)+ 1 (2m), (44)
and, hence, on invoking Lemma 1, that
Wy(e) = —3+1(5m)+25y,

whered, — 0 ase — 0.
Again from (38), it follows that:

Wa(e) = I (Zm) —17(Gm) — 1 (Zm) +1(5m),
= —I(&m)+IU(5m)+ 83, (45)
wheredz — 0 ase — 0. Similarly, one finds
Wh(e) = 31 (&m) — 1 U(&m)+1(1am)+ 85, (46)
and
h(€) = 1U(gm)— 1 (&m)— 27 (fm)+ 68y, (47)
whered, — 0 andd; — 0 ase — 0.
For any givene, we can eliminate the three unknowHs5/14a), 17(3/14), and
I'E’(1/14q7) from the four Eqs(44)—(47). The weights then satisfy the constraint
W) (€)+2wh(€)+3ws(e)+ 4w (e) = —(1+8;+28,+383+48,).

Consequently, as — 0, we find
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4
IZl W/'(e) — —1. (48

The limit (48) holds even though each weigi' () oscillates without bound as
— 0.

The interpretation of the constraitt8) is the key to giving equatiof43) a rigorous
meaning in the limite — 0. Recall that we are approximating the integral(& by
product midpoint quadrature. If we choo&€ (w) in (8) to be a quadratic function of
Inw, i.e., G'(»w) = A+BIn w+C(In w)? then the integral has the exact valB&(b/a).
Using (48) it can be easily checked that the form&) takes on this precise value in the
limit e — 0.

This means that there exists a family of moving-average formulae of the form

g = - 2 G @) (49)
with
a1 =—-qo, ay=0, (50)
L
1
I;llaI =5 (51)

such that each formula in this family evaluates the integra(8nexactly whenever
G’ (w) is quadratic in Inw in the interval

1
L+
2

penls
L+—-|h<In|—| <
2 wj
Although (49) and (51) have been derived for the cake= 4, they hold true for all
L = 2. The constraint$50) and (51) are theonly constraints satisfied by the coeffi-
cients of formula(49). They are insufficient to determine the coefficients themselves.
For the analysis of the numerical performance of forn{d, one can exploit the fact
thatgj’ is simply a linear combination of the same differef@& w; ) — G’ (wj—) on
larger and larger gridé.e., withl = 1,2,...); namely,
L

g = = 2 alG(wj:) =G (o)) ®3

h. (52

For such an analysis, one can exploit the methodology developed by Andetsden
(1998 for the analysis of moving-averagénite difference differentiators.

We now discuss the moving average-formula for loss moduli. On the ba&38)pothe
formula (28) becomes, wheh = #/(2L—1),

L

1
gi(e =5 2 W9 @) (54)

A similar procedure to that used in derivirtg9) from (43) may be used to derive a
family of moving-average formulae of the form

L
g = > BG(w) (55
=L
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from (54). The coefficients, satisfy the conditions

L L
h 1 h

Ba=B, > B==— =Bt X B=-—. (56)

dd 2 T

l=1T o 27’ | =21 even 2

These conditions are sufficient to guarantee that forni6E is exact whenever
G"(w) is linear in Inw in the interval(52), but are insufficient to determine the coeffi-
cients themselves.

For the analysis of the numerical performance of forn{GE), one can exploit the fact
thatgj’ is simply a linear combination of the same suBfy w; 1) +G"(w; ) on larger
and larger gridgi.e., withl = 1,2,...); namely,

L

o = BoC"(w)+ Zl BIG" (wj—)+G"(wj4))]. 7

One can therefore anticipate that, because@meoving-average has this summation
interpretation, it will behave in a more stable manner thandifmoving averagéwhen
applied to data with the same noise leye{3n the other hand, one would expect that the
a-moving average, when it performs well because the level of the noise on the data is
suitably small, will give a better resolution of the relaxation spectrum thagim®ving
average. These tentative conclusions will be verified for noisy synthetic data in the
sequel.

It has already been stated that the constraid®—(51) and (56) are insufficient to
determine the coefficients. Indeed, the constraaltsme impart to the formulae only a
very basic accuracy, as we have seen. For practical purposes it is necessary to improve on
this accuracy, and this can be done by optimizing the choice of coefficients. There is no
unigue way of doing this. The strategy proposed in this paper is to maximize the resolv-
ing power of each formulésee Sec. IV ¢ The approach is the same for both ta@nd
the B coefficients. For thex coefficients, the evaluation reduces to the following steps:

(1) Choose as a representative basis functionHér), the delta-functionS(7— 7q)
centered at an arbitraryg > 0, for which the corresponding values &' (w) and
G"(w) can be determined analytically. In particular, if one chooses

H(7) = &1, (58
the corresponding values &' (w) andG”(w), as defined by Eqg5) and(6), become
G’ = o G'(w) = @ (59
W-ne @Oz
(2) In Egs. (1) and (2), replaceGy(w) and Gy (w) by the corresponding analytic
expressions fo6' (w) andG”(w), and replace thg; by the expressiofiL6) for gj’ . For
the choice(58), one thereby obtains the expressions

2 K-L L 2 2

Wy wij
Glo) = —> = - G (0j4) — 23, 60
(e 1+ oy jZU;_L “ (wHI)l-i-a)ij (€0
and
(O] K-L . Wy T
y K , K'J
G'(ay) = = - oG (i) =27, 61
@)= 2= "2, 2 @ () T 22 (61)

wherek ranges over the set of integers which satisfisk < K, and7j = 1/wj.



12 ANDERSSEN AND DAVIES

TABLE I. The MA[L,G’] moving-average formulae.

= —3[_ _ G (0j41, a_| = —a

L h ag aq ay as ay Vg

2 7_7 0.0 —0.749 848 22 0.124924 11 1.08
3

3 T 0.0 —2.366 704 01 117865243 —0.16353362 3.75
5

4 T 0.0 —10.885787 11 8.49765772 —2.60305279 0.299 907 51 19.88
7

(3) Apply weighted least squares to solve the overdetermined systems of equations
constructed in Step 2 along with the constraints
L

ap=0, a_|=—a, |=12.1, 21 lay = -4, (62

For the choice of the basis function being examined, this reduces to finding the values
of the @ which minimize

K K-L L w2 2 12
k7]
Z G (o)) | Z :E_ G’ (wJH) +w§ 12]
K K-L L 2
+ 3 < )]2 2 G (o7 é 121 (63

subject to the constraint§2).
The size of the noise amplification factof,, which is defined by

L

vy = > ol (64)

=L

is a measure of the stability of the resulting moving-average formula whichathe
generate.

A similar argument applies for the determination of {Be coefficients. The corre-
sponding noise amplification factars is defined by

=/ E BE. (65)
I =—L

For the delta basis function examined before, Tables | and Il list, respectively, the
values ofa; and 8| for L = 2, 3, 4, along with the corresponding values of the ampli-
faction factorsv, and vg. Though basis functions other than the delta-functiim
—1) could have been invoked to estimate appropriate values fagthed g, , they are
not pursued in this paper. Since any spectidify) can be approximated by a linear
combination of basis functions of the for@{In(7/7j)], which correspond to various
translations of the single-mode delta-function spectrum, and since the forfi6)aznd
(17), as well as(49) and (55), are also translationally invariant, it follows that the
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TABLE Il. The MA[L,G"] moving-average formulae.

g = 37_ L BIG" (0], B-i = B

L h Bo B1 B2 B3 Ba vg

2 7_7 0.650 686 23 1/6 —0.158 676 45 0.73
3

3 T 1.498 82489 —0.07096359 —0.64941244 0.170963 59 1.78
5

4 Z 6.20451011 —1.67024098 —2.73004184 1.741 66954 —0.300 784 64 8.08
7

moving-averages tabulated in Tables | and Il are able to recover such a basis function
representation for an arbitrary spectrum with the same accuracy with which they recover
a single-mode spectrum.

Notation. In the sequel, use will be made of the following notation: the moving-
average formulae of length2+1 constructed from thex; will be denoted by
MA[L,G"], whereas the correspondiiy formulae will be denoted bMA[L,G"]. The
parametet. can be viewed as the independent variable of these formulae as it determines
both thelength2L + 1 of these moving-averages and tampling interval h= /(2L
—1) of the grid on which they are applied.

It is important to note that, as the sampling interval(2L —1) for each moving-
average formula decreases, the corresponding noise amplification(titter v, or v)
increases. The noise amplification factor @ieect measur®f the degree of ill posedness
for recovering the spectrum from sampled oscillatory shear data. The smaller the sam-
pling interval, the greater is the resolution to be expected when recovering the spectrum
from exactdata. On the other hand, when working with noisy data, the greater the
amplification of the noise in these data. In practice, the correct balance between high
resolution and low noise amplification must be found. In the sequel, an algorithm is
proposed which involves the dual application of thand 8 moving-average formulae to
the G"(w) data.

IV. NUMERICAL IMPLEMENTATION AND VALIDATION
A. Introduction

When the storage and loss mod@ll (w) andG”(w), are sampled at+ 1 frequen-
cies wyg = wgexpkh), k = 0,...K, with sampling intervah = #/(2L—-1), the appli-
cation of the moving average formulae of Tables | and Il will generate estimates of the
discrete elastic modulg; and gj corresponding to the relaxation times = wfl,
j =L,....K—L. As explained in Sec. Il C, point estimates of the continuous relaxation

spectrum are then given by

1 1
Hr(7) = —gj or Hg(r)) = ng/, (66)

h
whereHR(7) denotes theecovered spectrumn addition, the discrete elastic modglj’|

and gj’ can be used to reconstruct the following continuous estimates of the storage and
loss moduli:
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KL 2.2 KL
G&(w)=j;gj’1+—w2’7j2, G&(w)=j;g,-’l+—w£7j2, 67)
and
K—L (1)2-2 K—L or
Gﬁ(w)=jEng’1+—w2'sz, G’F'q(w)=j§L gj’1+—w§7j2. 68)

14

Thesereconstructions (,%(w) and Gg(w) of the storage and loss moduli can be
compared with the actual sampled d&a(wy) andG” (wy).

Because the recovery of the relaxation spectrum is ill posed, a good fit of the recon-
structions to the sampled storage and loss moduli measuremeris assufficient con-
dition for an accurate recovery of the spectruii.is, however, anecessary conditioh
This crucial fact is often overlooked in situations where the underlying nature and con-
sequences of the ill posedness of the reconstruction problem are not fully understood.

B. Recovering the delta-function from exact data
For a single-mode relaxation spectrum

H(r) = &7—1) = &lIn 7), (69

the moving-average formulad A[L,G’] andMA[L,G"] not only recover estimates of
the elastic moduli but also the following continuous approximations, respectively, to the
delta-function:

L
1
HR(7) = 0 ;L a/G'[exp(h)/7], (70)

and
L

1
HR(7) = 1 > ) BG"Texplh)/7], (72)
whereG’ (w) andG”(w) take the forms given ir61).

The exact oscillatory shear data were generated by evalu&lifg) and G”(w),
given in Eq.(61), on four grids of frequencies given hy, = wgexpkh), k = 0,...K,
with sampling intervah = #/(2L—1). The values oK were 12, 20, 28, and 36, while
the values olL were 2, 3, 4, and 5. In each case; = exp(—2m).

The results obtained, when the moving-average formudé[L,G’'] and
MA[L,G"],L = 2,3,4,5, are applied to the exact storage and loss moduli, are plotted in
Figs. I@ and Za), respectively. It is clear from these plots that

(i) Both theMA[L,G’] andMA[L,G"] formulae give stable recoveries of the delta-
function even when the value afis small.

(i) Increasingly better and better recovery of the delta-function is obtained with both
formulae as the value df increases. In addition, as Figsbl and Zb) show, whenL
= 4, the reconstructed data functio@@(w) and G’F'Q(w), agree to graphical accuracy
with the values ofG’ (w) andG"(w).

(iii) The recovery obtained from thA[L,G’] formulae,L = 2,3,4,5, are clearly
sharper and better resolved than the corresponding recovery obtained from the
MA[L,G"] formulae. This observation can be explained in terms of the numerical per-
formance of theMA[L,G’'] andMA[L,G"] formulae. Because they correspond to com-
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FIG. 1. (a) Plots ofHr(7) vs In7, given by(4.5), with L = 2, 3, 4, 5. Basewidth of each curve indicates the
resolving power of the formuldb) Reconstructions of the storage and loss mo@ﬂ(w) andGE(w) given by
(4.2 whenL = 4.

bining differences on larger and larger grig$. (53)], the MA[L,G’] formulae behave
“notionally” like numerical differentiators in a derivative spectroscopy contgoft
O’Haver (1997)], and therefore will tend to sharpen the higher frequency components in
a reconstruction. On the other hand, becauseM#g L,G"”] formulae correspond to
combining summations on larger and larger gridé (58)], they behave more like
smoothers, although the alternating signs of the coefficients also contribute a sharpening
contribution. This essential difference will be explicitly exploited in the duality algorithm

to be proposed later.
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(a)

_ ("Ww)
++ 4+ Giw)

oF

Inw

FIG. 2. (a) Plots ofHr(7) vs In7, given by(4.6), with L = 2, 3, 4, 5. Basewidth of each curve indicates the
resolving power of the formuldb) Reconstructions of the storage and loss mo@,ﬁg(a)) andG’FQ(w) given by
(4.3) whenL = 4.

C. Resolving power

In recovering the relaxation spectrum using moving-average formulae, temporal reso-
lution is limited by the finite sampling interval of the data. This is evident from Fi¢s. 1
and Za) which show that a delta function is recoverable as a broadened pulse, the breadth
of which decreases as the sampling interval becomes smaller. Calculating the maximum
possible temporal resolution requires an arbitrary definition of what is meant by resolving
two features. A working definition of resolving power is given later.
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Consider a relaxation spectrum consisting of two delta-functions centeree-atg
andr = 7-51, respectively; i.e.,

H(7) = &1+ 815 0). (72)
The separationbetween these two peaks, measured in decades, is given by
w(7) = 2logyof 7). (73

The MA[L,G’] moving-average formula recovers the continuous approximation to
the spectrum given by

L

1
HR(7) = —FHE aG'[exp(h)/7], (74)
=L
where
2 2 2 —2
, w TO w TO

+ 5
I+ 1+o'r

If 7o is not too small, the graph dflg(7) will consist of two broadened pulses of
separationu, with a central minimum of heightir(1). As 7q is increased, the height of
the central minimunHr(1) decreases until it reaches zero, at which point the two pulses
are completely resolved. If,5x > 0 is the smallest value ofy for which HRr(1)

= 0, the corresponding value of( 7m4y) is defined to be thieast completely resolvable
separation(LCRS). All separations withrg > 7yaxWill also be completely resolvable.
Figure 3a) shows the graph ofig(7) recovered from the formulMA[4,G’], where
70 = Tmax = 2.5S. The LCRSu(mmay takes the value of 0.8 decades.

On the other hand, ifg is decreased, the height of the central minimd(1) will
grow until it is no longer a central minimum, at which point the two pulses appear as a
single, completely unresolved pulse.df,, > 0 is the greatest value afy for which
Hgr(1) is not a minimum, andrmin < 7max, the corresponding value Qi(7min) is
defined to be thegreatest completely unresolvable separati@CUS. All separations
with 79 < 7pin Will also be completely unresolvable. FiguréBshows the graph of
HRr(7) recovered from the formuldMA[4,G'], whererqg = 7min = 1.46s. The GCUS
1(Tmay takes the value of 0.33 decades.

The LCRS and GCUS represent two extreme situations, that of complete resolution
and that of no resolution, respectively. In practice, valuegydietween the two extreme
values tmin and Tmax Will result in partially resolved peaks. The concept ofreean
resolvable separatiofMRS) is introduced and defined to be the separajoior which

70 = Tmean™ N TminTmax (76)

the geometric mean. Figure(c® shows the graph oHg(7) recovered by formula
MA[4,G’'], when g = Tmean= 1.91s. The MRSu(7mea) takes the value of 0.56
decades. This is a realistic expectation of resolvable separation from this nine-point
formula. Tables Il and IV give the LCRS, GCUS, and MRS values for the six moving-
average formulae which appear in Tables | and II.

It is clear from these tables that the MRS decreases lyithe sampling interval. In
addition, the resolving power of th@formulae are not as great as for théormulae, for
the reasons explained above. The MRS values given in the tables should be used to assess
whether peaks which appear in the recovered spectrum are real or squequgsulting
from noise amplification
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FIG. 3. Plots of HR(7) vs In7, given by (4.9 with L = 4, for two delta functions with separation 24g.
(a) Shows the least completely resolvable separationLfer 4 (79 = 2.5). (b) Shows the greatest com-
pletely unresolvable separation for= 4 (rg = 1.46). (c) Shows the mean resolvable separationlfor 4
(7o = 1.91).



DIRECT RECOVERY OF THE RELAXATION SPECTRUM 19

TABLE Ill. LCRS, GCUS, and MRS values for the moving-average formulae of Table I.

LRCS GCUS MRS

Formula (decadep (decadep (decadep
MA[2,G’] 2.16 0.60 1.38
MA[3,G’] 1.18 0.42 0.80
MA[4,G’] 0.80 0.33 0.56

D. Noise and measurement errors

In order to simulate the measurement error&ir(w) andG”(w) in a realistic man-
ner, it is necessary to allow for the fact that these quantities have been computed from the
amplitude ratiod and the phase lag obtained from a conventional oscillatory test, using
the following formulae:

() = a;Sﬂ(cosc—ﬁ) ’ an
9 —29cosc+1
and
&) = —— wSdsinc | 79
¥ —239cosc+1
whereS corresponds to a geometric parameter of the form
K 2 >
S= —(@%-w), (79

with k and Q) denoting constants which depend on the rheogoniometer being used. In
particular, {) corresponds to the natural frequency of the instrument, a representative
value of which is taken to berad/s. The value of is chosen to be 0.0%), wherezg
is the zero-shear-rate viscosity of the material being tested.

Given an exact relaxation spectrudy(7), one first calculates the exact values for
G'(w) and G"(w) from (5) and (6), and hence the exact complex viscosiy (w)
= 0 1[G’ (0)—iG"(w)]. Next, the exact amplitude rati¢ and phase lag are cal-
culated, as a function of frequenay from the formula]Walters(1987, p. 127

exdic(w)] i
Hw) 7" (o)
Random Gaussian noise is then added todfey) andc(wy) in proportion to their

magnitudes. For thé(wy), a standard deviation of 3% is chosen, while, é¢o), the
standard deviation is 1%. The required noisy storage and loss moduli are then computed

(80)

TABLE IV. LCRS, GCUS, and MRS values for the moving-average formulae of Table II.

LRCS GCUS MRS

Formula (decadep (decades (decades
MA[2,G"] 2.76 0.54 1.65
MA[3,G"] 1.43 0.45 0.94

MA[4.G"] 0.92 0.36 0.64
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from (77) and(78). It is important to note that the resulting noise ®@h(wy) andG” (wy)
is not proportional to their magnitudes, particularly at high frequencies.

Where necessary, allowances will be made for natural frequency err@r'y in) and
G"(wy) resulting from the use of77), (78), and(79). Here, use is made of the interpo-
lation procedure proposed by Walt€i987), pp. 151-155. No account is taken of other
possible errors.

E. Recovering the delta function from noisy data

Using theG’ (w) andG"(w) of (59), the noisy(inexac) oscillatory shear data were
generated by applying the procedure outlined in Sec. IV D. The noisy data are shown in
Figs. 4b), 4(d), and 4f) for sampling interval$ corresponding td. = 2,3,4.

The results obtained, when the moving-average formMa¢ L,G"] are applied to
the noisy data, are plotted in Figsiaj 4(c), and 4e). It is clear from these plots that:

(i) The amplification of the noise in the loss modulus by M&[L,G”] formulae is
not a problem whei. = 2 andL = 3. However, wherL = 4, the noise in the data is
amplified to give several spurious peaks, the largest of which occurs at the low relaxation
time of 7 = exp(—4), and results from the amplification of high frequency noise.

Next, the effect of reduced noise levels in the data is considered. Two new data sets
were generated for a sampling interval correspondingi te 4. The first had random
Gaussian noise with a standard devation of 1.5% in the amplitude datmd 0.5% in
the phase lag. The results obtained with thd A[4,G”] formula are shown in Fig.(8),
with the data and corresponding reconstructions in Fig).5The second data set had
noise with a standard devation of 0.6%drand 0.2% inc. The results obtained with the
MA[4,G"] formula are shown in Fig.(6), with the data and corresponding reconstruc-
tions in Fig. §d). It is clear that:

(i) As the noise level decreases, the recovery of the spectrum ¥tédv,G”] ap-
proaches the spectrum recovered from exact data.

In this way, one obtains the following very important conclusions about the numerical
performance of thélA[L,G’] andMA[L,G"] formulae.

Conclusion 4.1 For a giverL, there is an upper level to the noise on the data such that
below this level the moving-average formulae give good recoveries of the spectrum to
within the resolving power of the formulae.

Conclusion 4.2 With respect to the noisy data, the moving-average formulae
MA[L,G’] andMA[L,G"] are “asymptotically-stablein that, as the level of noise on
the data decreases, one obtains a closer and closer agreement with the reconstructions
obtained using exact data.

Clearly, the results obtained W A[4,G"] in Fig. 4(e) are far from satisfactory. The
resulting reconstruction§x and G§ in Fig. 4(f), however, provide good smoothing
curves for the noisy data. In what follows we exploit this result in an iterative algorithm
which improves the performance of both sets of formulae.

F. A duality algorithm

So far, it has been demonstrated that the moving average forvi#dé. ,G’] and
MA[L,G"] are capable of recovering delta functions, to within finite resolution depen-
dent onlL, provided the noise levels in the storage and loss moduli are not too high.
Furthermore, the noise amplification factor for the formM®&[L,G"] is less than that
for MA[L,G’], while the resolving power oMA[L,G’] is greater than that of
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FIG. 4. Left column shows recovery of the delta function from a noisy loss modd#snoise in phase lag,
3% noise in amplitude ratjo(a) UsingMA[2,G"]; (c) usingMA[3,G"]; (e) usingMA[4,G"]. Right column
shows the original noisy data and their reconstructions ftér8). (b) L = 2; (d) L = 3; (f) L = 4.
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FIG. 5. Left column shows recovery of the delta function from a noisy loss modulus Miigh,G”]. Right
column shows the original noisy data and their reconstructions 8. (a) and(b) 0.5% noise in phase lag,
1.5% noise in amplitude ratigc) and(d) 0.2% noise in phase lag, 0.6% noise in amplitude ratio.

MA[L,G"]. It is now demonstrated that, implemented correctly, both these formulae
may be used to advantage to recover arbitrary spectra to within finite resolution.
The following algorithm is proposed.

(1) Exponentially sample the loss modul@$(w) for a sampling intervah = #/3, 7/5,
or 7/7. If the sampled values correspond to some other grid, use linear interpolation
to produce data on the nearésgrid.

(2) For the corresponding value af (namely, 2, 3, or fuse MA[L,G"] formula to
generate estimates of the elastic mocg.j(li.

(3) From (68), reconstruct the storage modul%(w) on theh grid.

(4) UseMA[L,GR] to generate estimates of the elastic mo@TﬁIl

(5) From (67), reconstruct the loss modul@H(w) on theh grid.

(6) Repeat steps 2—5 as many times as necessary, using the most recently reconstructed
data at each step.
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Unless the originaG” (w) data are very noisy, only a few cycles are needed before the
elastic moduli converge.

As an example of the use of this algorithm, consider the unacceptable spectrum shown
in Fig. 4(e), obtained from the application of the moving-average formdia[L,G"] to
the noisy data for the delta function. Using step 3 of the algorithm, the reconstructed
storage modulus shown in Fig(f4was obtained. It is much smoother than the original
G’ (w) data. From step 4, the spectrum shown in Fi@) 6vas recovered. The noise in
this recovered spectrum is now at an acceptable level, and there is no need for further
iterations. The corresponding data reconstructions are shown in (B)g. 6

G. Recovering the double-Gaussian spectrum of Honerkamp and Weese

As a second application of the duality algorithm in Sec. IVF, it is applied to recover
the double-Gaussian spectrum of Honerkamp and WEE3®9. The noisy oscillatory
shear data published by Honerkamp and Weese are exponentially sampled on a grid with
h = 7/6.6. In step 1 of the duality algorithm, it is therefore necessary to linearly inter-
polate the loss modulus onto argrid with h = 7/7; i.e.,L = 4. One should also note
that the noise perturbations in the Honerkamp—Weese data have standard deviations
proportional to the magnitude of the storage and loss mdd¥t). Consequently, at high
frequencies, the absolute noise level in the loss moduli is far less than the absolute noise
level in the storage moduli. Even so, one applicationMoA[4,G"] in step 2 of the
algorithm leads to the recovery shown in Figa)7 The original data and its reconstruc-
tion in step 3 are shown in Fig([3). After only two cycles of the algorithm, an excellent
recovery of the original spectrum is obtained, as shown in Fig3.ahd 7d).

V. DISCUSSION

The purpose of this paper is twofold: first, to derive in an elementary manner simple
moving average formulae for determining the relaxation spectrum from oscillatory shear
data, and second, to demonstrate how these formulae behave when the data are contami-
nated with realistic levels of noise. It has been shown using synthetic noisy data that good
estimates of the spectrum can be recovered if the formulae are used iteratively. Several
issues remain to be addressed, and we discuss four of them here, briefly.

Non-negativity of the spectrun well-known theorem of Bernstein tells us that a
function is completely monotonic if and only if it is the Laplace transform of a positive
measure. It may be inferred that the memory kernel of a viscoelastic fluid is completely
monotonic if and only if the relaxation spectrum is non-negative. The recovered estimates
of the delta-function which appear in Figgaland Za), however, show negative lobes,
and would give rise to nonmonotonic memory kernélhe oscillations are discernible
only at very long times and on very small scales.

The negative lobes in Figs(d) and 2a) are Gibbs-type phenomena resulting from the
discontinuous nature of the delta function. As the sampling interval gets smaller the size
(and number of the negative lobes increases. The moving-average formulae, therefore,
can never recover a perfect delta function from exact data, even in the limit of small
sampling intervalh. Fortunately, if the delta function is replaced by a smoilbeit
peaked function such as a gaussian, then for sufficiently sinatif the order of the half
width of the peakthe negative lobes disappear. Moreover the function may be recovered
perfectly from exact data in the limit of smdil

Of course, it is easy to construct moving-average coefficients which preserve the
non-negativity of the spectrum, either by choosing broader basis functions than delta-
functions for the spectrum, or by imposing non-negativity of the spectrum as a constraint
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FIG. 6. (a) Recovery of the delta function from noisy loss moduld$e noise in phase lag, 3% noise in
amplitude ratig, after two cycles of the duality algorithni.(= 4). (b) Shows the original noisy data and their
reconstructions after two cycles of the duality algorithim= 4).

on the least-squares solution(@0) and(61). Either way this results in a reduction in the
resolving power of the formula and is therefore not optimal.

In practice, the appearance of negative elastic moduli will be the result of noise rather
than a delta function in the spectrum. We have found that negative moduli can be
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FIG. 7. Left column shows recovery of the double-Gaussian spectrum of Honerkamp—Weese from noisy loss
modulus using the duality algorithmi (= 4). Right column shows the original noisy data and their recon-
structions.(a) and (b) after 1 cycle.(c) and(d) after 2 cycles.

removed through iteratioffat the cost of loss in resolutipror simply by combining
neighboring positive and negative moduli, thereby preserving the(84mn

Working with storage and loss modulihe duality algorithm proposed in Sec. IVF
works from the loss modulus. Similar duality algorithms may be devised to work from
the storage modulus, or from both dynamic moduli. The performance of such algorithms
on actual(in contrast to synthetjcexperimental data is discussed in Davies and Ander-
ssen(1998. Two issues are investigated in some detail, namely, the balance between
resolution and noise amplification, and the effect of truncated data, i.e., sampling over too
limited a frequency range.

Arbitrary sampling intervals The moving-average formulae derived in this paper
work on exponentially sampled data with a sampling interlralyhich is an odd integer
divisor of 7. Linear interpolation is recommended if the data are not available in this
form. Similar moving-average formulae may be derived whénhan even integer divisor
of 7. Newbury (1999 shows that it is possible to obtain moving average formulae for
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arbitrary values oh, but that, because of the phenomenon of sampling localization, the
most effective use of the data is made wieis an integer divisor ofr (even or odd

Optimal number of iterationsThe number of cycles used in a duality algorithm
controls the balance between resolution of the spectrum and amplification of the noise in
the data. Too few cycles result in insufficient filtering of the amplified noise, while too
many cycles result in oversmoothing and loss of resolution in the recovered spectrum.
The number of cycles, therefore, may be interpreted as another regularization parameter
in the recovery of the spectrum. The question of how to choose the number of cycles
optimally, so that the choice may be incorporated automatically by the algorithm, has not
yet been answered. A pragmatic approach is to stop iterating once the peaks in the
recovered spectrum are separated to at least the mean resolvable separation of the for-
mula being usedsee Tables Ill and 1V
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