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To the Editor:

In a recent article in the American Journal of Human Genetics, biallelic

pathogenic KDELR2 variants were described as a novel cause of

autosomal recessive (AR) osteogenesis imperfecta (OI) (MIM:

#166200) in four families with six affected individuals (van Dijk

et al., 2020). The KDELR family of proteins is important in inter-

organelle communication by regulating protein trafficking between

the Golgi apparatus and the endoplasmic reticulum (Capitani &

Sallese, 2009). KDELR2-related OI results from the inability of

HSP47 (heat shock protein 47) to bind KDELR2, leading to failure of

HSP47 to dissociate from collagen type 1. HSP47-bound extracellu-

lar collagen cannot form collagen fibers in individuals with patho-

genic biallelic KDELR2 variants (Figure 1; van Dijk et al., 2020). We

read the authors' work with great enthusiasm and would like to

share clinical and genetic information from two additional unrelated

consanguineous families with three affected children with OI with

additional phenotypic features, therefore expanding the phenotypic

spectrum of KDELR2-related OI.Stephanie Efthymiou and Isabella Herman contributed equally to this study.

Received: 12 January 2021 Revised: 16 March 2021 Accepted: 2 April 2021

DOI: 10.1002/ajmg.a.62221

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2021 The Authors. American Journal of Medical Genetics Part A published by Wiley Periodicals LLC.

Am J Med Genet. 2021;185A:2241–2249. wileyonlinelibrary.com/journal/ajmga 2241

https://orcid.org/0000-0003-4900-9877
https://orcid.org/0000-0002-7359-6832
https://orcid.org/0000-0003-1312-1007
https://orcid.org/0000-0001-6860-372X
https://orcid.org/0000-0003-0401-1877
https://orcid.org/0000-0003-2233-3423
https://orcid.org/0000-0002-1356-5698
https://orcid.org/0000-0003-4814-6765
https://orcid.org/0000-0001-9907-9246
mailto:s.efthymiou@ucl.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/ajmga
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fajmg.a.62221&domain=pdf&date_stamp=2021-05-08


OI is a clinically and genetically heterogeneous connective tissue

disorder hallmarked by increased susceptibility to bone fractures and

is most commonly caused by monoallelic de novo pathogenic variants

in COL1A1 (MIM: 120150) or COL1A2 (MIM: 120160). However,

biallelic variants in genes involved in collagen type I biosynthesis have

been frequently reported in consanguineous populations (Essawi

et al., 2018; van Dijk et al., 2020; Van Dijk & Sillence, 2014). Cur-

rently, 20 different types of OI are identified in Online Mendelian

Inheritance in Man (OMIM) (Amberger et al., 2015) with variable

severity and phenotypic spectrum affecting primarily the skeletal sys-

tem, although neurodevelopmental and other systemic complications

have been observed in some autosomal recessive forms (e.g., MESD,

MIM: 618644) (Moosa et al., 2019).

Here, we describe three affected children from two unrelated

consanguineous families in order to expand the phenotype and fur-

ther support the role of KDELR2 in AR OI. Informed consent, including

consent to publish photographs, was obtained from the childrens' par-

ents and institutional review board approval was obtained. All three

children were clinically diagnosed with progressively deforming OI

and neurodevelopmental delay. Three children had motor delay and

two of three children had speech delay. The detailed clinical features

of each patient are described in Table 1. Pedigrees, radiographs, and

brain magnetic resonance images (MRIs) are shown in Figure 2. Com-

mon features observed in the affected patients include musculoskele-

tal abnormalities, including short stature and failure to thrive,

Wormian bones, bowed limbs, chest deformity, hypotonia, joint

hypermobility, and dysmorphic facies (Figure 2). Family 1 consists of

two affected children, a boy and a girl (P1, P2), born to consanguine-

ous (first cousins) parents of Pakistani origin. Both patients have mar-

ked motor delay with inability to walk independently at 6 years and

2 years 8 months of age, respectively. The older child crawls as a

means of ambulation and has never walked. He has had four fractures

in his lifetime, the last at 4 years of age. The younger sister has not

had any documented fracture to date at 2 years and 8 months of age.

She is not independently ambulatory but can take few steps with

great support. In addition, she has speech delay with the first word

spoken recently at 2 years of age. Common dysmorphic features in

both siblings include epicanthus inversus, deep, sunken eyes, short

neck, and thin, sparse hair. Brain MRI obtained from P1 at 6 years of

age shows brachycephaly but is otherwise unremarkable (Figure 2(e)).

P3 was born to consanguineous first cousin Turkish parents with two

prior miscarriages of unknown etiology. He was prenatally suspected

to have OI due to ultrasounds showing abnormal bone structure. The

patient has one unaffected sibling who does not carry the variant

(Figure 2). The patient's first fracture occurred at 21 days of age

(Figure 2(d)). Additional features observed include dentinogenesis

imperfecta, blue sclera, scoliosis, and neurodevelopmental delay

involving both motor and speech. Independent ambulation and speech

emerged at 2 years of age; currently at age 4 years he is comparable

to his neurotypical peers. Therefore, although he may have had early

F IGURE 1 KDELR2 loss of function (LoF) leads to inability of heat shock protein 47 (HSP47) to dissociate from procollagen. In wildtype cells,
alpha collagen fibers assemble to form procollagen. Procollagen binds HSP47 and is transferred to the Golgi apparatus where KDELR2 binds
HSP47 and leads to dissociation of HSP47 from procollagen. HSP47 is recycled back to the ER. Procollagen is further processed in the Golgi and
secreted into the extracellular matrix (ECM) as tropocollagen. In mutant KDELR2 cells, KDELR2 is unable to bind HSP47. HSP47 cannot
dissociate from procollagen and is retained in the Golgi and not secreted into the extracellular matrix [Color figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 2 Three affected patients with
KDELR2-related osteogenesis imperfecta from
two consanguineous families. (a) Photographs

of patient P1 showing short stature, barrel
shaped chest (I), sunken eyes, epicanthus
inversus (II), and sparse thin hair (III).
(b) Photographs of P2 showing short stature,
barrel shaped chest (I), blue sclera (II), sunken
eyes secondary to molding of the soft cranium
(II), thin sparse hair (III), and dentinogenesis
imperfecta (IV). (c) Photographs of P3 showing
infantile short stature a right leg cast following
a pathological femoral fracture (I), current
short stature at age 4 years (II), scoliosis (III),
and dentinogenesis imperfecta (IV).
(d) Radiographs of affected subjects depicting
infantile femoral fracture from P3 (I), vertebral
compression fractures and platyspondyly from
patient P1 (II), short bowed limbs from P1 (III),
and Wormian bones from P1 (IV). (e) Brain
MRI sections from P1 obtained at 6 years of
age. (I) Sagittal T1 showing normal brain
appearance. (II) Axial T2 showing
brachycephaly. (III and IV) Axial T2 images
showing age-appropriate myelination. (f)
Sanger segregation of KDELR2 variants in
family 1 and 2. (g) Conservation of amino acid
residues across species for both variants.
(h) Location of current (red) and previously
reported (black) KDELR2 pathogenic variants.
All identified variants to date affect
transmembrane domains (TMs) 1, 5, and 6 of
the KDELR2 protein product [Color figure can
be viewed at wileyonlinelibrary.com]
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childhood developmental delay with speech and motor affected, he

has caught up to his peers and it is therefore difficult to dissect if the

KDELR2 variant identified contributes to the speech delay observed

or if it is due to lack of exposure or other unidentified genetic etiolo-

gies. Additionally, at 4 years of age, he is currently independently

ambulatory. Neurodevelopmental cognition (developmental quotient/

intelligence quotient) of all three patients is unknown nor has formal

testing been performed in any of the patients.

Family-based exome sequencing (ES) with rare variant analysis

was performed in both families followed by Sanger segregation for

the identified variants as described before (Efthymiou et al., 2019;

Manole et al., 2020). All three affected subjects were found to have

homozygous variants in KDELR2 (GenBank: NM_006854.3). P1 and

P2 have a c.13C > T (p.Arg5Trp) missense variant and P3 has a c.485

A>G (p.Tyr162Cys) missense variant (Table 2). Neither variant is pre-

sent in gnomAD and both variants are predicted to be pathogenic via

in silico prediction analysis (CADD v1.4, MutationTaster, PolyPhen,

SIFT). All current and previously reported variants affect highly con-

served amino acids located in the KDELR2 transmembrane domains

(Figure 1(h)).

The role of KDELR2 in human development has not been well

established until this point. However, animal studies of KDELR2 loss

of function (LoF) demonstrate an essential role in embryonic develop-

ment. The characterization of Kdelr2-LoF mice by the International

Mouse Phenotypic Consortium (IMPC)(Dickinson et al., 2016) scored

several statistically significant phenotypes, including preweaning

lethality, decreased animal size, bone structural abnormalities, abnor-

malities in head shape and size, facial dysmorphology, and abnormal

body wall structure (Table 3), features which overlap with human

biallelic pathogenic KDELR2 variants.

In conclusion, the data presented here support the role of KDELR2

in AR OI and expand the phenotypic spectrum of recessive KDELR2-

related AR OI first described by van Dijk et al. (2020) to include neu-

rodevelopmental disorders such as motor and speech delay, as well as

blue sclerae, dentinogenesis imperfecta, and hypotonia. However,

motor delay and hypotonia are common features of OI and one reason

they have not previously been reported may have been due to the

small sample size of patients with this newly identified genetic etiology

of OI. Additionally, it is unclear if the speech delay seen in early devel-

opment is related to KDELR2, lack of exposure, or some other uni-

dentified etiology. Noteworthy, the phenotypic spectrum of IMPC-

generated Kdelr2-LoF mice overlaps with human KDELR2-OI patients

and provides a model system in which to better characterize this type

of AR OI. Combined data from humans and mouse models could lead

to further studies investigating the pathologic mechanism of KDELR2-

related OI and to the development of novel disease treatments. With

the current rate of novel disease gene discovery and pathogenic dis-

ease mechanisms, it is expected that more as of yet undiscovered

molecular causes of OI exist. Therefore, it becomes important to per-

form family-based genetic analysis in these molecular undiagnosed

patients in order to work toward a diagnosis with implications for prog-

nosis, family planning, and potential treatments to mitigate the clinical

consequences of this deforming disorder. T
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