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To the Editor:

In a recent article in the American Journal of Human Genetics, biallelic
pathogenic KDELR2 variants were described as a novel cause of
autosomal recessive (AR) osteogenesis imperfecta (Ol) (MIM:
#166200) in four families with six affected individuals (van Dijk
et al., 2020). The KDELR family of proteins is important in inter-
organelle communication by regulating protein trafficking between
the Golgi apparatus and the endoplasmic reticulum (Capitani &

Stephanie Efthymiou and Isabella Herman contributed equally to this study.

Sallese, 2009). KDELR2-related Ol results from the inability of
HSP47 (heat shock protein 47) to bind KDELR2, leading to failure of
HSP47 to dissociate from collagen type 1. HSP47-bound extracellu-
lar collagen cannot form collagen fibers in individuals with patho-
genic biallelic KDELR2 variants (Figure 1; van Dijk et al., 2020). We
read the authors' work with great enthusiasm and would like to
share clinical and genetic information from two additional unrelated
consanguineous families with three affected children with Ol with
additional phenotypic features, therefore expanding the phenotypic
spectrum of KDELR2-related Ol.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2021 The Authors. American Journal of Medical Genetics Part A published by Wiley Periodicals LLC.

Am J Med Genet. 2021;185A:2241-2249.

wileyonlinelibrary.com/journal/ajmga 2241


https://orcid.org/0000-0003-4900-9877
https://orcid.org/0000-0002-7359-6832
https://orcid.org/0000-0003-1312-1007
https://orcid.org/0000-0001-6860-372X
https://orcid.org/0000-0003-0401-1877
https://orcid.org/0000-0003-2233-3423
https://orcid.org/0000-0002-1356-5698
https://orcid.org/0000-0003-4814-6765
https://orcid.org/0000-0001-9907-9246
mailto:s.efthymiou@ucl.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/ajmga
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fajmg.a.62221&domain=pdf&date_stamp=2021-05-08

EFTHYMIOU ET AL.

2242 AMERI.EAN JDURNAL.UF PART
—I—WI L E'Y —medical genetics

Wildtype

procollagen a chains

!

procollagen /////////////////
1 @ Hspa7

L J
| %%
KDELR2
Golgi
cis L & 2
ECM l
Yo 4
tropocollagen ”//”////
Yoo
prrr s
prrr sz a

FIGURE 1

KDELR2 LoF

-

procollagen

procollagen o chains

~

!

W rr oo s
1 @ Hspa7

Y . 4

@
| ke
mutant KDELR2

X

KDELR2 loss of function (LoF) leads to inability of heat shock protein 47 (HSP47) to dissociate from procollagen. In wildtype cells,

alpha collagen fibers assemble to form procollagen. Procollagen binds HSP47 and is transferred to the Golgi apparatus where KDELR2 binds
HSP47 and leads to dissociation of HSP47 from procollagen. HSP47 is recycled back to the ER. Procollagen is further processed in the Golgi and
secreted into the extracellular matrix (ECM) as tropocollagen. In mutant KDELR2 cells, KDELR2 is unable to bind HSP47. HSP47 cannot
dissociate from procollagen and is retained in the Golgi and not secreted into the extracellular matrix [Color figure can be viewed at

wileyonlinelibrary.com]

Ol is a clinically and genetically heterogeneous connective tissue
disorder hallmarked by increased susceptibility to bone fractures and
is most commonly caused by monoallelic de novo pathogenic variants
in COL1A1 (MIM: 120150) or COL1A2 (MIM: 120160). However,
biallelic variants in genes involved in collagen type | biosynthesis have
been frequently reported in consanguineous populations (Essawi
et al., 2018; van Dijk et al., 2020; Van Dijk & Sillence, 2014). Cur-
rently, 20 different types of Ol are identified in Online Mendelian
Inheritance in Man (OMIM) (Amberger et al., 2015) with variable
severity and phenotypic spectrum affecting primarily the skeletal sys-
tem, although neurodevelopmental and other systemic complications
have been observed in some autosomal recessive forms (e.g., MESD,
MIM: 618644) (Moosa et al., 2019).

Here, we describe three affected children from two unrelated
consanguineous families in order to expand the phenotype and fur-
ther support the role of KDELR2 in AR Ol. Informed consent, including
consent to publish photographs, was obtained from the childrens' par-
ents and institutional review board approval was obtained. All three
children were clinically diagnosed with progressively deforming Ol
and neurodevelopmental delay. Three children had motor delay and
two of three children had speech delay. The detailed clinical features
of each patient are described in Table 1. Pedigrees, radiographs, and
brain magnetic resonance images (MRIs) are shown in Figure 2. Com-
mon features observed in the affected patients include musculoskele-

tal abnormalities, including short stature and failure to thrive,

Wormian bones, bowed limbs, chest deformity, hypotonia, joint
hypermobility, and dysmorphic facies (Figure 2). Family 1 consists of
two affected children, a boy and a girl (P1, P2), born to consanguine-
ous (first cousins) parents of Pakistani origin. Both patients have mar-
ked motor delay with inability to walk independently at 6 years and
2 years 8 months of age, respectively. The older child crawls as a
means of ambulation and has never walked. He has had four fractures
in his lifetime, the last at 4 years of age. The younger sister has not
had any documented fracture to date at 2 years and 8 months of age.
She is not independently ambulatory but can take few steps with
great support. In addition, she has speech delay with the first word
spoken recently at 2 years of age. Common dysmorphic features in
both siblings include epicanthus inversus, deep, sunken eyes, short
neck, and thin, sparse hair. Brain MRI obtained from P1 at 6 years of
age shows brachycephaly but is otherwise unremarkable (Figure 2(e)).
P3 was born to consanguineous first cousin Turkish parents with two
prior miscarriages of unknown etiology. He was prenatally suspected
to have Ol due to ultrasounds showing abnormal bone structure. The
patient has one unaffected sibling who does not carry the variant
(Figure 2). The patient's first fracture occurred at 21 days of age
(Figure 2(d)). Additional features observed include dentinogenesis
imperfecta, blue sclera, scoliosis, and neurodevelopmental delay
involving both motor and speech. Independent ambulation and speech
emerged at 2 years of age; currently at age 4 years he is comparable

to his neurotypical peers. Therefore, although he may have had early
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FIGURE 2 Three affected patients with
KDELR2-related osteogenesis imperfecta from
two consanguineous families. (a) Photographs
of patient P1 showing short stature, barrel
shaped chest (1), sunken eyes, epicanthus
inversus (1), and sparse thin hair (Il1).

(b) Photographs of P2 showing short stature,
barrel shaped chest (1), blue sclera (Il), sunken
eyes secondary to molding of the soft cranium
(11), thin sparse hair (lll), and dentinogenesis
imperfecta (IV). (c) Photographs of P3 showing
infantile short stature a right leg cast following
a pathological femoral fracture (), current
short stature at age 4 years (Il), scoliosis (ll1),
and dentinogenesis imperfecta (IV).

(d) Radiographs of affected subjects depicting
infantile femoral fracture from P3 (l), vertebral
compression fractures and platyspondyly from
patient P1 (ll), short bowed limbs from P1 (llI),
and Wormian bones from P1 (IV). (e) Brain
MRI sections from P1 obtained at 6 years of
age. () Sagittal T1 showing normal brain
appearance. (Il) Axial T2 showing
brachycephaly. (Il and 1V) Axial T2 images
showing age-appropriate myelination. (f)
Sanger segregation of KDELR2 variants in
family 1 and 2. (g) Conservation of amino acid
residues across species for both variants.

(h) Location of current (red) and previously
reported (black) KDELR2 pathogenic variants.
All identified variants to date affect
transmembrane domains (TMs) 1, 5, and 6 of
the KDELR2 protein product [Color figure can
be viewed at wileyonlinelibrary.com]
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childhood developmental delay with speech and motor affected, he

has caught up to his peers and it is therefore difficult to dissect if the
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KDELR2 variant identified contributes to the speech delay observed = g g g % g g
or if it is due to lack of exposure or other unidentified genetic etiolo- [©) E o o a o o o
. - . . 2 2 o o [ S =
gies. Additionally, at 4 years of age, he is currently independently g & & o z z o o z o o
ambulatory. Neurodevelopmental cognition (developmental quotient/
intelligence quotient) of all three patients is unknown nor has formal é
testing been performed in any of the patients. 8 o =l p 3
. . . . . < S n n o ©® 0O O © 0 o
Family-based exome sequencing (ES) with rare variant analysis U a ®» » ® I & 8§ & « N _g
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homozygous variants in KDELR2 (GenBank: NM_006854.3). P1 and e M ° B °H° B © g
P2 have a c.13C > T (p.Arg5Trp) missense variant and P3 has a c.485 o o %
A>G (p.Tyr162Cys) missense variant (Table 2). Neither variant is pre- o # = %
sent in gnomAD and both variants are predicted to be pathogenic via o NONN NN NN 2 ¥ :
T it . . s £ £ E E £ £ £ £ £ w
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N
(Figure 1(h)). > N N g
The role of KDELR2 in human development has not been well °3° N NN = = E’:
established until this point. However, animal studies of KDELR2 loss R ic = ic) c icl c § g E
of function (LoF) demonstrate an essential role in embryonic develop- ‘é"
ment. The characterization of Kdelr2-LoF mice by the International g = ) ) g
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several statistically significant phenotypes, including preweaning = 5 5 9 o R S R
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lethality, decreased animal size, bone structural abnormalities, abnor- ‘é I & 2 % % % a_g % [= % [= .g
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malities in head shape and size, facial dysmorphology, and abnormal 3
[0
body wall structure (Table 3), features which overlap with human E
biallelic pathogenic KDELR2 variants. < < %
In conclusion, the data presented here support the role of KDELR2 ;i: - - L,? Lé [CRNG) ': [C) é [G) é %
A A A A A A c
in AR Ol and expand the phenotypic spectrum of recessive KDELR2- § ) O L S 3008 o S us8 3
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related AR Ol first described by van Dijk et al. (2020) to include neu- Z 5 5 5 9 5 6 G 3 QG % 15
rodevelopmental disorders such as motor and speech delay, as well as ;
blue sclerae, dentinogenesis imperfecta, and hypotonia. However, § § 'é_
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motor delay and hypotonia are common features of Ol and one reason 2 R Z
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they have not previously been reported may have been due to the I S N -%
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small sample size of patients with this newly identified genetic etiology % < < O ol o I < 8 8 g
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Phenotype Zygosity Life stage p-value TABLE 3 Interna.t|onal mouse
. phenotyping consortium Kdelr2 LOF

Abnormal embryo size htz, hmz E9.5,E18.5 0.00 phenotypes

Abnormal head size hmz E18.5 0.00

Abnormal heart looping htz E.9.5 0.00

Increased exploratory behavior htz early adult 1.17 x 1077

Abnormal bone mineralization htz early adult 1.39 x 10°¢

Abnormal facial morphology hmz E18.5 0.00

Preweaning lethality, incomplete penetrance hmz early adult 0.00

Abnormal head shape hmz E18.5 0.00

Abnormal bone structure htz early adult 1.75 x 1077

Abnormal body wall morphology hmz E18.5 0.00

Abbreviations: hmz, homozygous; htz, heterozygous.
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