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Abstract  18 

Artificial light at night (ALAN) is a disruptive form of pollution, impacting physiological and 19 

behavioural processes that may scale up to population and community levels. Evidence from 20 

terrestrial habitats show that the severity and type of impact depends on the wavelength and 21 

intensity of ALAN; however, research on marine organisms is still limited. Here we experimentally 22 

investigated the effect of different ALAN colours on marine primary producers. We tested the effect 23 

of green (525 nm), red (624 nm), and broad-spectrum white LED ALAN, compared to a dark control, 24 

on the green microalgae Tetraselmis suesica and a diatom assemblage. We show that green ALAN 25 

boosted chlorophyll production and abundance in T. suesica. All ALAN wavelengths affected 26 

assemblage biomass and diversity with red and green ALAN having the strongest effects, leading to 27 

higher overall abundance and selective dominance of specific diatom species, some known to cause 28 

Harmful Algal Blooms. Our findings show that green and red ALAN should be used with caution as 29 

alternative LED colours in coastal areas, where there might be a need to strike a balance between 30 

the strong effects of green and red light on marine primary producers with the benefit they appear 31 

to bring to other organisms. 32 

 33 
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Introduction  42 

During the last century the use of artificial light at night (ALAN) has increased considerably. 43 

Recent analyses have suggested that ALAN, which is strongly associated with the increasing 44 

worldwide urbanisation [1], is still currently spreading spatially at a rate between 2 and 6% per year 45 

[2,3], with a parallel increase in irradiance at 2.2 % per year [3]. The surge of ALAN has altered natural 46 

lightscapes, which in turn may have dramatic effects on wild species and ecosystems [4]. Indeed, the 47 

impact of ALAN on wildlife and ecosystems has received a lot of attention in the last two decades [5–48 

8]. In vertebrates, ALAN has been linked to several behavioural and physiological effects, such as 49 

disruption of circadian rhythms [9], altered reproductive timing [7,10], poor sleep [11,12], reduced 50 

immune function [13] and altered metabolism [14]. Insects are also heavily affected [15–17], 51 

particularly because of the strong phototaxis found in many species [18,19].  52 

Despite the surge of interest in the ecological effects of ALAN, most of the evidence collected 53 

so far comes from terrestrial habitats, while studies on marine populations and communities are 54 

currently limited [20–25]. Although a small number of studies have investigated the effects of 55 

monochromatic ALAN on cyanobacteria and microalgae, these focused on benthos and periphyton 56 

[2,26–30], while no study so far has investigated the effects of polychromatic LEDs on marine 57 

phytoplankton. Due to the continuous expansion of coastal urbanisation [31,32], artificial light at 58 

night is a source of pollution that is increasingly relevant for coastal ecosystems [4,21]. Coastal 59 

ecosystems globally are also increasingly affected by eutrophication and harmful algal blooms due to 60 

nutrient-rich inflows from either agricultural or urban sources [33,34]. Given the ecological 61 

importance of light for photoautotrophic phytoplankton species, the potential severity of ripple 62 

effects from phytoplankton to higher trophic levels [29], and the existing vulnerability of coastal 63 

systems to eutrophication, it is imperative to determine the type and magnitude of the response of 64 

marine primary producers to ALAN. 65 
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In primary producers, light is a strong modulator of photosynthesis and associated processes 66 

driving growth and cell fitness [35]. Light absorption by chlorophyll peaks at approximately 430 nm, 67 

although a second, lower peak is also present at longer wavelengths of 670 nm [27,36,37]. Moreover, 68 

light serves as an informational cue, regulating the synchronization of diverse intracellular processes 69 

ranging from phototactic, photoprotective and physiological responses essential for growth and 70 

development [38–40]. For example, green algae have an “eyespot” with which, through a rhodopsin 71 

mediated signalling pathway that is sensitive to green light, are able to direct their movement [41,42]. 72 

Therefore, disruption of light cycles by ALAN has the potential to impact organism’s physiology and 73 

consequently assemblage structure via multiple pathways that are responsive to different light 74 

wavelengths. This is a topical question because the spectral composition of ALAN is also changing 75 

along its surge in intensity, since many countries are replacing traditional lighting sources with the 76 

cost-efficient, energy-saving light‐emitting diode (LED) technology [8]. LEDs are very flexible light 77 

sources whose colour can be easily modified. Indeed, new light installations use LEDs of different 78 

colours. While cool white LEDs (richer in blue/green wavelengths) are the most widespread, warm 79 

white (rich in yellow/orange/red wavelengths), green and red LEDs are also in use [8,21]. 80 

Recent findings have demonstrated that ALAN from warm white High Pressure Sodium (HPS) 81 

lamps can affect multiple signalling events and metabolic pathways essential for photosynthesis in 82 

freshwater cyanobacteria [43]. ALAN from cool white LEDs  can increase the photosynthetic biomass 83 

of microphytobenthos [29] and its temporal variability [30], alter periphyton composition [44] and 84 

modify community structure of freshwater benthic microorganisms [26]. However, the 85 

aforementioned studies experimented with a single ALAN wavelength, while it is increasingly 86 

recognised that different wavelengths can cause profoundly different responses in wild organisms 87 

[45–51]. This can potentially lead to competing conservation goals [51]. Compared to the open ocean 88 

where short (blue) wavelengths propagate best, in coastal waters, green-yellow wavelengths, including those 89 
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produced by ALAN sources [52] are more dominant [53,54]. In coastal areas, red LED light has been 90 

recommended as a source of illumination because it doesn’t interfere with sea turtle nesting and 91 

hatching [55], as well as with coral biology [56], whereas green light was suggested to minimise the 92 

impact of ALAN on seabird navigation [57]. To understand and therefore inform the ecological 93 

management of coastal areas, it is also essential to establish the effects of different wavelengths of 94 

ALAN on important aspects of microalgae assemblages, ranging from single species growth to 95 

community level properties such as diversity and species composition. 96 

 In the present study we investigate experimentally the response of marine phytoplankton to 97 

three ALAN wavelengths [white 4500K, green (525 nm) and red (624 nm)] compared to dark nights. 98 

Our first objective is to determine whether different wavelengths of ALAN can have different impact 99 

on the growth of a single phytoplankton species. Furthermore, we aim to assess whether different 100 

wavelengths can have different impacts on the diversity and species composition of a phytoplankton 101 

assemblage. We hypothesize that white ALAN might stimulate growth compared to the dark, as it 102 

partly overlaps in wavelength with the first absorption peak of chlorophyll-a, an abundant pigment 103 

in all microalgae, at approximately 465 nm [36]. Conversely, we predict that the green and red ALAN 104 

should have a weaker, if any, effect as its spectral properties have a minimal overlap with the light 105 

absorption range of chlorophyll-a (Figure S1). Finally, we predict that the effect on single species 106 

growth could cascade to the community level, as phytoplankton species’ competitive ability has been 107 

shown to shift with water colour [36]. 108 

 109 

Materials and methods 110 

Experimental set up and light sources 111 

To test the effect of ALAN wavelengths on single species growth and assemblage biomass and 112 

diversity we run two concurrent experiments from 23/11/2020 and for a period of 18 days: 113 
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Experiment 1 tested the effects of ALAN on the green microalgae Tetraselmis suesica and experiment 114 

2 on a natural coastal assemblage dominated by diatom species. The experimental design comprised 115 

of four treatments: control (12:12 Light-Dark), and three different ALAN wavelengths, green, red and 116 

white (12:12 Light-ALAN). Each of the two experiments comprised of five replicated cultures within 117 

each of the four treatments for a total of 40 experimental units (Erlenmeyer flasks of 200ml each). 118 

Since algae use light as a source of both information and energy [58,59], light treatments were 119 

standardised to levels of irradiance (i.e. energy content) rather than illuminance (i.e. luminous flux 120 

incident on a surface). Daytime light irradiance was 6.5 Watt m-2 and was provided by a 10W flood 121 

light (Prolite, Ritelite Systems Ltd, UK) equipped with two arrays of high-power LEDs (6,000K). Each 122 

ALAN source consisted of a strip of 3 LED diodes. The green ALAN wavelength was 525 nm 123 

(MULTICOMP), the red was 624 nm (MULTICOMP) and the broad-spectrum white LED light contained 124 

a higher peak at 470 nm and lower peaks between 550-600 nm (BROADCOM) (for full spectral 125 

characteristics of LED lights see Fig. S1). The emission spectra were measured by a spectrometer 126 

(AvaSpec-2048L, Avantes, Apeldoorn, The Netherlands). Night-time light irradiance was measured 127 

with a LI-200R pyranometer (LI-COR, USA) and was standardised at 0.023 Watt m-2 for all three ALAN 128 

treatments. This irradiance level is within the range of values reported in previous studies on ALAN 129 

[26,28,60,61].  With respect to illuminance, our standardised irradiance level corresponds to 8.51 lux 130 

for the white light, to 3.4 lux for the red light and 12.81 lux for the green light. These values are 131 

ecologically relevant and within plausible ranges of ALAN observed in near shore epifaunal 132 

invertebrate assemblages (0.005-21.6 lux) [23,62,63]. 133 

The distance between the surface of the water in the flasks and the LED lights was 134 

approximately 40 cm. Each light treatment was applied inside a light-proof box (55x62x62cm), where 135 

the experimental replicates were introduced (see below for details on how these were produced in 136 

each experiment). The replicates were partially submerged (by 1/3 of the flask height) into water 137 
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baths (44x41x22cm). Light irradiance was measured at mid flask height at six different locations 138 

within each water bath and was not statistically different between the ALAN treatments both during 139 

the day (linear mixed model, χ = 3.9, p = 0.41) and during the night (linear mixed model, χ = 4.1, p = 140 

0.13). Temperature in the water baths was maintained at a temperature of 14-15°C chosen to reflect 141 

the mean annual sea surface temperature of mid-latitude seas. To minimise box effects, water in the 142 

baths had identical temperature as it was fed from a central tank where temperature was regulated. 143 

Cultures were mixed once a day when their position inside each treatment box was also randomised.  144 

 145 

Experimental procedure for experiment 1: single species response 146 

The green microalgae T. suesica was selected for the single species response experiment 147 

because of its use as a model species in studies using continuous illumination with monochromatic 148 

LEDs [64–66], because of the industrial potential of the species as a high-lipid content strain [67], and 149 

its importance as fish and shellfish aquaculture feed [68].  150 

 Inoculum from our T. suesica culture (sourced by CCAP 66/4) was grown in F/2 medium 151 

(Guillard 1975) made by ultrapure artificial seawater at 35ppm salinity (V= 200mL). All cultures were 152 

initiated at a concentration of 5,000 cells/mL. Every second day, 5ml samples were taken from each 153 

replicated culture, two hours after the onset of day light in the morning, to calculate cell numbers 154 

and growth rate. Cells were counted using Fast-Read® 102 counting chambers under a light 155 

microscope. T. suesica growth showed a lag phase of 8 days due to the acclimation of cells from 20°C 156 

to 15°C and thereafter growth entered the exponential phase. Maximum growth rate for each 157 

replicate culture was determined based on the formula μ = ln(N2/N1)/(t2 − t1), where μ is the specific 158 

growth rate, and N1 and N2 are the cell number at time 1 (day 8) and time 2 (day 18), respectively. 159 

At day 18 of the experiment, 50ml samples were also taken to determine chlorophyll-a concentration 160 

according to Parsons et al. (1984). 161 
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 162 

Experimental procedure for experiment 2: diatom assemblage response 163 

We used a natural diatom-dominated marine sample in our assemblage response experiment. 164 

Specifically, we assorted at equal volume (200ml) across the 20 experimental replicates, an inoculum 165 

of unfiltered marine surface water collected at 50cm depth from the shore of Largs, Scotland 166 

(55.794659, -4867615) on 22/11/2020, 11:00 am. The initial inoculum had a chlorophyll-a 167 

concentration of 0.7 μg/L and salinity 30 psu which is lower than the salinity of the open sea as the 168 

area receives freshwater inflows. 169 

The culture medium consisted of the collected marine sample and added nutrients 170 

commensurate with F/2 medium concentration [70]. Species identities, cell counts and chlorophyll 171 

concentration were determined on day 12 of the experiment when cultures just entered the 172 

stationary phase as determined by the cell counts of selected replicates. Specifically, a 5 ml sample 173 

was collected for species identification and was preserved with Lugol’s iodine solution. Samples were 174 

subsequently filtered through a SartoriusTM Cellulose Nitrate Membrane Filters (0.45μm pore size, 175 

25mm diameter) and dried in an incubator at 40oC for an hour. The filter was made transparent by 176 

the addition of a drop of immersion oil and was observed under a light microscope (40x/0.65) where 177 

15 randomly-selected fields of view were used to identify and enumerate the different species. The 178 

volume of sample examined was equal across all samples thus species’ cell counts as well as total 179 

assemblage cell counts are directly comparable across replicates and reported as counts. Chlorophyll 180 

concentration was determined from 50 ml samples as in the case of the T. suesica experiment. 181 

 182 

Data analysis 183 

For the T. suesica single species response, we used three Gaussian linear models to determine the 184 

effect of ALAN treatment (4 levels: green, red and white ALAN and the dark control) on each of three 185 
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response variables: the growth rate, and the cell number and chlorophyll-a measured on the final 186 

day of the experiment (day 18).  187 

 For the diatom assemblage response, we used four linear models to test the effect of ALAN 188 

treatment on each of four response variables: assemblage total cell count, chlorophyll-a, Menhinick 189 

richness [71] and Pielou’s evenness [72]. The Menhinick species richness index, is defined as the 190 

number of species in the sample divided by the square root of the total abundance of individuals in 191 

the sample and was used to enable standardisation of species richness across samples based on the 192 

total cell abundance. Pielou’s evenness index is defined as the Shannon diversity divided by the 193 

maximum possible value of Shannon (if all species had equal abundance in the sample) and was used 194 

to provide a measure of dominance in cell counts by specific species in a sample. The Menhinick and 195 

Evenness indices were sensitive in expressing changes in phytoplankton diversity in previous studies 196 

comparing multiple diversity indices using phytoplankton species abundance data [73]. Assemblage 197 

total cell count, chlorophyll-a and Menhinick richness were modelled with Gaussian models. 198 

Evenness was modelled with a beta distribution model as its values were confined between 0 and 1 199 

and the effect of treatment was tested using likelihood ratio test (LRT) between the null model (not 200 

containing treatment) and the full model (which contained the factor treatment).  201 

 To test the effect of ALAN treatment on assemblage composition, we performed analysis of 202 

similarity between all pairwise combinations of the 20 replicates using the Bray-Curtis similarity index 203 

[74] on non-transformed species-abundance data. We visualised these similarities using cluster 204 

analysis to check the grouping of samples based on the different treatments. We fitted additional 205 

linear models to test for the effect of treatment on the abundance of specific diatom species. Finally, 206 

the percentage changes we report in the first paragraph of the discussion eg for the cell number were 207 

calculated according the formula: [(Cell number of ALAN treatment - Cell number of dark control)/ 208 

Cell number of dark control]*100. 209 
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 Model selection was carried out based on the least squares approach apart for the evenness 210 

model where we used the LRT test. We also conducted post-hoc pair-wise t-tests to assess 211 

differences between the four treatment levels. All statistical analyses was carried out in R v.3.5.0 212 

(RStudio Team, 2016). The packages ggplot2 v.3.3.0 [75], ggpubr v.0.2.5 [76], ggdendro v0.1-20 [77] 213 

and dendextend v.1.13.4 [78] were employed for plot generation and data visualisation. The package 214 

emmeans was used for pairwise comparisons between treatment levels [79]. For data manipulation, 215 

reshape2 v.1.4.3 [80] , plyr v.1.8.6 [81]. For modelling the beta distribution, we used the function 216 

glmmTMB and family function beta_family(link = "logit") in the package glmmTMB [82]. We used the 217 

vegan v.2.5-6 R [83] and cluster v.2.1.0 packages [84] to perform the pairwise similarity of species-218 

abundance data and related cluster analysis. 219 

 220 

Results 221 

Green and red ALAN promote growth of the green microalgae Tetraselmis suesica. 222 

The ALAN treatments had a statistically significant effect on the growth rate of T. suesica cells 223 

(F3,16 = 6.64, p =0.004) and this was shown to be wavelength specific. Specifically, a significantly higher 224 

growth rate was observed under the green ALAN treatment compared to white ALAN and the dark 225 

treatment. Furthermore, the red ALAN was also higher than the white ALAN treatment (Fig. 1A and 226 

Supplementary Table S1). 227 

 The T. suesica cell concentration was significantly affected by the ALAN treatment (F3,16 = 228 

7.691, p<0.002). Specifically, on day 18 of the experiment, the cell number was significantly higher in 229 

response to the green ALAN treatment compared to the white ALAN and dark treatments and was 230 

also higher in the red ALAN compared to white. No difference was observed between the white and 231 

dark treatments (Fig. 1B and Supplementary Table S1). These results are comparable to those 232 

obtained in a pilot experiment where LED colours were allocated to different experimental boxes and 233 
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light intensity was standardised at 20 lux (for details of this pilot experiment and relative results, see 234 

Supplementary Fig. S2). 235 

 The chlorophyll-a concentration of Tetraselmis cultures on day 18 was also significantly 236 

affected by the ALAN wavelength (F3,16 = 20.584, p<0.001). Specifically, chlorophyll-a content was 237 

significantly higher in the red and green ALAN treatments compared to the dark and white 238 

treatments, whereas no difference was observed between the white and dark treatments (Fig. 1C 239 

and Supplementary Table S1). 240 

 241 
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Figure 1. ALAN affects growth rate, cell and chlorophyll-a concentration of Tetraselmis suesica in a 242 

colour-dependent manner. Effect of ALAN treatments (dark, green, red and white) on the growth 243 

rate calculated during the exponential growth phase (days 8-18) (panel A), on the cell concentration 244 

at day 18 (panel B) and chlorophyll-a concentration at day 18 (panel C). Pairwise comparisons show 245 

differences between treatments (not shown: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001). 246 

 247 

ALAN affects assemblage biomass and diversity 248 

Analysis of the initial inoculum upon collection from the sea showed that the assemblage was 249 

comprised of 14 species of which 11 species were Diatomophyceae, two were Dinophyceae and one 250 

was Dictyochophyceae. Most dominant species were Skeletonema sp. (28% dominance), Cyclotella 251 

sp.1 (19% dominance), Cyclotella sp.2 (17% dominance), Ceratium lineatum (15% dominance) and 252 

Navicula sp.1 (6% dominance) whereas all other species were subdominant with relative abundance 253 

<2%. On day 12 of the experiment, overall biomass had considerably increased and stabilised across 254 

treatments and assemblages. Experimental units on day 12 comprised of 4-7 species of diatoms (13 255 

species overall across all treatments). The planktic colonial diatoms Skeletonema sp., Thalassiosira 256 

nordenskioeldii, and to a lesser extend T. eccentrica were more dominant across treatments. 257 

However, the absolute and relative abundance of Skeletonema sp., T. nordenskioeldii presented 258 

differences between treatments as discussed below. 259 

 ALAN affected assemblage cell counts and diversity independent of colour whereas 260 

chlorophyll-a concentration was affected in a wavelength specific manner. Specifically, the total 261 

diatom assemblage cell count (i.e., cells summed across all species in the assemblage) was 262 

significantly affected by every ALAN treatment tested (F3,16=9.589, p< 0.001).  Cell count was 263 

statistically higher under all ALAN wavelength conditions compared to the dark but no differences 264 

were observed between the ALAN wavelengths (Fig. 2A and Supplementary Table S2). The 265 
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chlorophyll-a concentration of the diatom assemblage was also significantly affected by the variable 266 

treatment (F3,16=12.393, p< 0.001), with all ALAN wavelengths having a higher concentration 267 

compared to the dark control whereas the red wavelength was also higher from the green and white 268 

(Fig. 2B and Supplementary Table S2). A significant effect of treatment was also observed on the 269 

assemblage evenness (LRT, DF=3, p<0.001), whereby the assemblages under all ALAN wavelengths 270 

had significantly higher evenness (more evenly distributed species’ populations) compared to the 271 

dark control (Fig. 2C and Supplementary Table 2 for results of post-hoc tests). A significant effect of 272 

ALAN was observed on the Menhinick richness (F3,16=3.260, p=0.049), with the dark treatment 273 

showing significantly higher richness compared to all ALAN wavelengths tested (Fig. 2D and 274 

Supplementary Table S2). 275 
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 276 

Figure 2. ALAN affects assemblage biomass and diversity. Effect of treatment (dark, green, red and 277 

white) on the total cell counts (panel A), chlorophyll-a (panel B), evenness (panel C) and Menhinick 278 

richness (panel D) measured on day 12 of the diatom assemblage experiment. Pairwise comparisons 279 

show differences between treatments (not shown: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 280 

0.001). 281 

 282 

ALAN affects species’ relative abundances 283 
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ALAN did not lead to a shift in the species’ identities comprising the assemblages. However, ALAN 284 

affected the absolute and relative abundance of species (measured as standardised cell counts) 285 

within treatments in a wavelength specific manner. In particular, assemblages growing under the 286 

green and red ALAN were 80% similar and were 44% dissimilar from the assemblages under the dark 287 

control and white ALAN conditions, respectively, with the exception of two replicates which grouped 288 

with the dark/white cluster mainly due to lower numbers in Skeletonema sp. (Fig. 3A). This was due 289 

to a significant increase in the species Skeletonema sp. and T. nordenskioeldii relative to the 290 

subdominant species in the assemblage (i.e. all species excluding Skeletonema sp., T. nordenskioeldii 291 

and T. eccentrica). Specifically, Skeletonema sp. had a significantly higher abundance in all ALAN 292 

colours compared to the control (F3,16=7.708, p=0.002) (Fig. 3B). T. nordenskioeldii was significantly 293 

higher in response to the red ALAN treatment compared to the white and the dark control 294 

(F3,16=8.8574, p=0.001) (Fig. 3C). No differences between the treatments were observed in the 295 

abundance of the subdominant species (F3,16=0.833, p=0.495) (Fig. 3D). These differences in relative 296 

abundances between dominant and subdominant species (Fig. 3B,C,D) suggest that the increased 297 

evenness in ALAN treatments compared to the dark control (Fig. 2C) was likely due to increased 298 

evenness of the dominant species in the assemblage (Fig. 3B,C) rather than an increase in evenness 299 

across dominant and subdominant species. 300 
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 301 

Figure 3. Red and green ALAN lead to similar responses in assemblage composition. Cluster showing 302 

the pairwise similarities between the replicate assemblages based on the Bray-Curtis similarity index 303 

calculated on non-transformed species-abundance data (panel A). Pairwise comparisons of 304 

abundances of Skeletonema sp. (panel B), Thalassiosira nordenskioeldii (panel C), the sum of all 305 

subdominant species in the assemblage (panel D) (not shown: p > 0.05, *: p <= 0.05, **: p <= 0.01, 306 

***: p <= 0.001). 307 

 308 

Discussion 309 

In this study, we tested the effect of different ALAN wavelengths on phytoplankton growth, 310 

assemblage diversity and species composition. We predicted that the effect on single species and 311 

assemblage level would be more pronounced under white ALAN, compared to dark and red and 312 

green ALAN, as it partly overlaps in wavelength with the first absorption peak of chlorophyll-a, an 313 
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abundant pigment in all microalgae [36]. Contrary to our expectations, our findings suggest that red 314 

and green ALAN have more pervasive impact on phytoplankton growth and assemblage structure 315 

compared to the white ALAN. More specifically, our experiments showed that exposure of the green 316 

microalgae Tetraselmis suesica to green ALAN led to a 5% increase in growth rate, 67% in cell number 317 

and 49% in chlorophyll-a concentration, compared to the dark night condition. Exposure to red ALAN 318 

led to a similar response to the green ALAN, as it resulted in higher chlorophyll-a, but it did not affect 319 

growth rate and total cell numbers compared to the dark treatment. Red and green ALAN treatments 320 

also affected the diatom-dominated phytoplankton assemblage. For example, red ALAN led to higher 321 

total cell count and chlorophyll-a concentration by 118% and 80% respectively compared to the dark 322 

control. More interestingly, red and green ALAN led to a similar assemblage response by balancing 323 

the biomass of the most abundant species (thus leading to higher evenness), but also by enhancing 324 

the biomass of the most abundant species relative to the subdominant species. These effects were 325 

less pronounced in response to the white ALAN treatment although it had a significant impact on 326 

assemblage richness.  327 

 Previous studies on the effect of white ALAN on freshwater primary producers have reported 328 

longer-term (6 week experiments) increases in the abundance of benthic microalgae [26] but also 329 

shorter-term (3 weeks) decreases in periphyton abundance, as well as community composition shifts 330 

[27]. Our experimental findings provide additional insights into ALAN effects by offering comparative 331 

information on different LED colours. Our findings show that although exposure to white ALAN can 332 

lead to changes in diatom assemblage diversity, species’ relative abundances and biomass increase 333 

within 12 days of exposure, this effect was less pronounced compared to the red and green LED, and 334 

our white ALAN treatment had no effect on the growth rate of the green microalgae Tetraselmis.  335 

 Our findings also suggest that the red and green ALAN colours have the potential to enhance 336 

the growth of Harmful Algal Bloom (HAB) species such as the diatom Skeletonema sp.. This species is 337 
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commonly known for forming dense blooms causing mortality to other organisms through physical 338 

damage (e.g. fish gill lesions) or anoxia, consequently impacting trophic interactions, biodiversity and 339 

overall ecosystem health [85]. This finding is supported by Oh et al. (2008) who showed that green 340 

LEDs can selectively stimulate the growth of the diatom Skeletonema costatum compared to other 341 

species in the assemblage. In addition, the biomass of planktic colonial diatoms such as Skeletonema 342 

and Thalassiosira was enhanced under red and green ALAN compared to epiphytic (i.e., growing on 343 

macroalgae and rocks) and epipsamic (i.e., growing on sand) diatom genera. Given that maximal 344 

transmission of light in coastal systems is around 550 nm (green/yellow) [53] and that coastal 345 

seafloors are susceptible to ALAN, particularly within the green range (495–560) [52], we could 346 

anticipate impacts of ALAN on phytoplankton biomass and assemblage structure in coastal 347 

ecosystems.  348 

 A key question is why green and to some extent also red ALAN had a stronger effect on the 349 

growth and photosynthetic biomass of Tetraselmis compared to white light. A first insight stems from 350 

comparisons with previous studies that focused on maximizing the growth and biochemical 351 

composition of Tetraselmis to fully exploit the industrial potential of this algae. Unlike our 12:12 352 

light:dark period, these studies used continuous (24 h) high intensity LED illumination of different 353 

monochromatic LEDs [64–66]. Abiusi et al. (2014) reported maximum growth and biomass 354 

concentration under red and white continuous light, whereas these traits were less pronounced 355 

under green light (all light conditions were standardised at 160 μmol m-2 s-1). Aidar et al. (1994) also 356 

reported increased growth under continuous red and white light compared to the blue-green light 357 

(all light conditions were standardised at 25 μmol m-2 s-1). These results contrast with the higher 358 

growth rate under green, dim night-time illumination found in our experiment. This discrepancy 359 

raises the question of whether dim artificial light at night has the potential to induce different 360 

responses to LED wavelengths compared to higher intensity light at night.  361 
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 Stimulated growth and photosynthetic activity in our green algae monoculture and diatom 362 

assemblage under the red light could be explained by the partial overlap of chlorophyll a absorption 363 

spectra with the red emission range [87] (see also Fig. S1). Absorption of other photosynthetic 364 

pigments present in diatoms (chlorophyll c, β-carotene, Zeaxhanthin, Diatoxanthin, Diadinoxanthin, 365 

Fucoxanthin) and green algae (chlorophyll b, β-carotene, Zeaxhanthin, Violaxanthin, Neoxanthin, 366 

Loroxanthin) [66] typically peak in the 420-480 nm range [see datasets from 78] and although they 367 

partially overlap with our green ALAN spectrum this does not justify why higher growth and biomass 368 

was not also observed also in the white ALAN treatment with which they overlap significantly more 369 

(see Fig. S1 for our ALAN light spectra).  370 

Although pigments such as chlorophylls within chloroplasts absorb light energy to fix 371 

inorganic CO2 towards biomass production and growth, other photopigments act as photoreceptors 372 

and are involved in functions that regulate circadian clocks and phototaxis [54,59]. Some of these, 373 

such as phytochromes, are sensitive to specific wavelengths of light. One conceivable hypothesis to 374 

explain increased growth under red and green, but not white ALAN, is that the white ALAN has 375 

disrupted the natural photocycle of Tetraselmis sp., with downstream consequences on 376 

photosynthesis, cell division and growth [59,88,89]. This hypothesis could be tested by 377 

simultaneously monitoring chlorophyll, growth and clock gene expression under different ALAN 378 

colours.  379 

Nevertheless, the strong effects of green ALAN on abundance and photosynthetic biomass 380 

seen in our study and are still puzzling considering that a green light receptor has never been found 381 

and that cell division is typically stimulated by blue light. A photoreceptor that may have played a 382 

role in our study could be rhodopsin, which is sensitive to light in the mid-range of the visible 383 

spectrum, peaking at ~ 500 nm. Rhodopsins are known from all algae groups and are associated with 384 

phototactic responses [54,90]. Although the activity of such photoreceptors can benefit microalgae 385 
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growth in the marine environment where light is variable and often limiting, it is unclear how this 386 

mechanism led to growth stimulation in our controlled experiment where light conditions were more 387 

homogeneous. Nevertheless, this rhodopsin-mediated effect cannot be precluded since Tetraselmis 388 

is a flagellated microalgae and capable of movement to more optimal positions for capturing light 389 

(eg water surface in flaks). This would merit further testing with appropriate experiments that would 390 

track phototaxis in flagellated algae. Finally, although cryptochromes are the primary receptors of 391 

UV-A and blue light, it has been reported that green light affects cryptochrome photochemistry and 392 

activity as green light reverts cryptochromes to their inactive state [54,91]. In particular, 393 

cryptochromes integrate green light signals into the circadian system as well as modulating plant 394 

growth and architecture in response to an increase in green/blue light ratio under a canopy  [92–94].  395 

Our data show that there is a significant impact of green and red ALAN on phytoplankton that 396 

should be taken into account when planning nocturnal illumination in marine environments. In fact, 397 

these results may lead to conservation dilemmas, as both red and green LED lights have been 398 

suggested as alternative ALAN sources for public illumination. Specifically, red light illumination has 399 

been recommended in coastal areas because it interferes less with sea turtle nesting and hatching 400 

compared to broad-spectrum white light [55]. Similarly, the use of green light has been 401 

recommended to minimise the impact of light pollution on migratory birds [57]. In general, shifting 402 

spectral signatures towards longer wavelengths than blue light seems to be less harmful to many 403 

organisms, including insects [15], bats [95] and songbirds [96]. However, our study shows that the 404 

use of green and red ALAN LEDs can impact aquatic primary producers by enhancing the growth of 405 

different taxonomic groups (green algae and diatoms) indicating a potential to encourage 406 

eutrophication phenomena in marine coastal (but potentially also freshwater) systems where these 407 

taxonomic groups are also present. Although the batch culture set-up used in our study is more 408 

representative of coastal systems affected by pulsed nutrient inputs [97], it would be interesting to 409 
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also simulate systems that show less pronounced fluctuations using continuous or semi-continuous 410 

nutrient supply setups. 411 

 The equivalent illuminance to the standardised irradiance used in our experiment ranged 412 

between 3.4 and 12.8 lux (depending on the colour). This is within the range of illuminance measured 413 

in coastal systems near ALAN affected areas by previous studies (0.005-21.6 lux) [23,62,63]. We thus 414 

conclude that effects on marine microalgae can be expected in coastal ecosystems and particularly 415 

in the proximity to shoreline illuminations, heavily urbanised environments and ports. In addition, 416 

given that both green algae and diatoms are also found in freshwater systems, we anticipate that our 417 

results may be relevant also for slowly moving riverine systems or lake systems also affected by ALAN. 418 

 419 

Our pre-print: [98] 420 
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