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 Soybeans (Glycine max L.) are an important crop globally for its food, feed, and oil 

purposes. It is impacted by many diseases, including Cercospora sojina, the causal agent of 

Frogeye Leaf Spot (FLS). Chemical and cultural controls to this fungal pathogen are insufficient, 

so genetic resistance must be acquired for adequate control. To this end, two recombinant inbred 

populations were screened in a greenhouse setting for their relative resistance to FLS, and their 

genomes were analyzed for contributing quantitative trait loci (QTL). In the Essex ´ Forrest 

population, one QTL was discovered on chromosome 13, and in the Forrest ´ Williams 82 

population, two QTL were identified on chromosomes 6 and 11, respectively. These populations 

were then also screened in a field setting for agronomic traits. These traits were analyzed to 

detect one superior line for both FLS resistance and advanced agronomic traits, F´W 125. This 

line should be used in future breeding projects to increase FLS resistance and reduce linkage 

drag for other desired characteristics. 
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CHAPTER 1 

REVIEW OF LITERATURE 

A. Soybean History and Physiology 

Soybeans (Glycine max L. Merrill) are a legume plant used globally for its edible seed. 

Also known as soja bean or soya bean, this crop is one of the cheapest sources of protein in the 

world and is a staple in millions of people and animals’ diets globally (Britannica, 2019). The 

origins of soybeans are mottled, but it is believed to have originated in northeast China. These 

soybeans were smaller than current beans and had a black seed coat, much like the ‘Peking’ 

variety has today (Singh 2010). It is believed that soybeans were first domesticated in China as 

early as 7000 BC. From there, it moved to Japan and was first cultivated around 5000-3000 BC 

(Lee et al., 2011). Edamame, soy sauce, tofu, and other soybean-based products are still quite 

popular in these regions due to the crop’s abundance (Britannica, 2019). From East Asia, 

soybeans migrated to Indonesia, the Philippines, Vietnam, Thailand, Malaysia, Burma, Nepal, 

and North India, which are known as the secondary gene centers of soybeans. This movement 

was in large part due to sea and land trade routes that were being newly created, such as the Silk 

Road (Hymowitz, 1990). In 1765, the surveyor general of Georgia named Henry Yonge planted 

what he referred to as ‘Chinese vetch’ after receiving the seeds from a merchant at the East India 

Trading Company (Yonge, 1767). This would be the first patch of soybeans planted in the 

United States, and the crop was widely distributed to the Midwest by 1882 (Singh 2010). Over 

time, the crop has been introduced to much of the world, and it is currently grown wherever 

conditions are adequate. 

Soybeans are successfully grown in regions where summers stay between 20-30°C 

(Singh 2010). They grow well in soils with a pH of 6.0-7.0, with 6.3-6.5 being the most ideal 
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range for nutrient availability (Staton, 2012). This makes it an ideal crop for the Northern 

Hemisphere, but difficult for countries in the Southern Hemisphere. The added heat and 

humidity of tropical regions used to hinder growth and production. The plants would also reach 

flowering during the summer solstice, when determinate varieties reach maximum height. This 

caused early pod set and reduced yields. After many years of crossbreeding, tropical soybean 

varieties were developed, allowing Brazil to become a top-producing country of soybeans 

(Alves, Boddey, & Urquiaga, 2003).  

In 2018, Brazil was the top soybean-producing country in the world with 126 million 

tons, with the United States closely following with 124 million tons. There is a sharp drop off 

after the US, with Argentina, China, and India producing 38, 14, and 14 million tons, 

respectively (Food and Agriculture Organization of the United Nations, 1997). Eighty-five 

percent of all soybeans produced will go to animal feed, with the remaining 15% being used for 

many edible and non-edible products such as soy-based foods, biodiesel, cooking oil, and 

industrial applications. Globally, 80% of all soybean production comes from large-scale farming 

operations, and the remaining 20% comes from small-scale farmers (Voora, Larrea, & 

Bermudez, 2020). Demand continues to grow yearly as biodiesel demands increase, along with 

global meat consumption. In Western countries where meat consumption is decreasing, it is 

expected that soy-based alternatives will take their place in the market, making it a stable 

commodity for farmers to grow regardless of market status (Voora, Larrea, & Bermudez, 2020). 

Soybean seeds are pulses that are comprised of epicotyl that will form the shoot and 

leaves, a radicle that becomes the roots, a hypocotyl that connects the cotyledon and radicle, 

cotyledons that act as a food source and beginning leaves, and a seed coat to protect the seed 

(Singh, 2010). When the seed is exposed to optimal moisture and temperature, germination 
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begins. The seed will double in size and increase its seed moisture by 50%. Respiration 

increases, and in ideal temperatures, the radicle emerges in four days. Next, the hypocotyl 

emerges and the two cotyledons fold out and act as temporary leaves for the plant. Over time, 

these cotyledons will fall off and the true leaves will take over photosynthesis (Purcell, 

Salmeron, & Ashlock, 2014). Next, the soybean will produce one set of unifoliate leaves, and all 

following sets of leaves are grown as trifoliates. When the first trifoliate emerges, the plant is in 

the V1 (Vegetative 1) stage. The V2 stage is when the second trifoliate emerges, and this system 

of growth continues until flowering.   

Once blooms begin to form on any node of the main stem, the plant is said to be in 

Reproductive 1 (R1) phase. Reproductive phases also continue numerically, with R2 being full 

bloom, R3 being beginning pod, R4 being beginning seed, R6 being full seed, R7 being 

beginning maturity, and R8 being full maturity (Purcell, Salmeron, & Ashlock, 2014). Soybeans 

are self-pollinating with either white or purple flowers, depending on the variety. Flowering and 

pod set are short-day photoperiod sensitive and begin flowering when days are shorter than 

twelve hours (Destro, Carpentieri-Pipolo, Kihl, & Almeida, 2001). Two types of growth patterns 

exist in soybeans as well: determinate and indeterminate. Determinate plants halt lateral growth 

once flowering begins, and indeterminate plants continue to grow post-flowering (Bernard, 

1972). In this way, yield, growth pattern, and time to flowering are directly intertwined.  

Another particularly intriguing characteristic of soybeans is their ability to fix nitrogen 

from the soil. Nitrogen is abundant in the soil in a form unusable to most crops, and therefore 

fertilizers must be applied. Soybeans, like many other legumes, have nodules on the roots that 

can convert soil nitrogen into a usable form. This happens through a symbiotic relationship 

between the soybean plant and Bradyrhiyzobium japonicum, a type of rhizobacteria (Miransari, 
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2016). Much of the time, soybeans do not need any assistance in this task. However, studies have 

shown that when B. japonicum is added to the environment, soybeans can be even more 

productive at nitrogen fixing (Elhady, Hallman, & Huer, 2020). After soybeans have been 

removed from a field, nitrogen in its usable form is left behind, making soybean an ideal crop to 

be grown in rotation with corn. Corn is infamous for using drastic amounts of nitrogen during 

growth, and applications of nitrogen can become costly. When planted in a field after soybeans, 

this cost can be reduced significantly (Laur, Porter, & Oplinger, 1997).   

B. Diseases of Soybeans 

Pathogens effecting soybeans come in various forms. Fungi, bacteria, viruses, and 

nematodes all use soybeans as their host, causing damage to the plant and farmers’ yield. 

Hundreds of thousands of bushels of soybeans are lost to soybean diseases yearly, though 

farmers tend to underestimate how much they are losing to disease (Allen et al., 2017). Instead, 

producers tend to view weeds as the top stealer of yield, likely because diseases can commonly 

be an invisible enemy (Aref & Pike, 1998).  

Fungal organisms can attack soybean plants in many ways. They can attack as soilborne 

pathogens, root diseases, stem diseases, or foliar diseases (Boerma & Specht, 2004). There are 

also various classifications of fungal diseases based on spore type: ascomycetes, basidiomycetes, 

deuteromycetes, oomycetes, and zygomycetes being the most common (Cooper, 2007). Fungal 

diseases are the most common type of diseases in plants, with sudden death syndrome, frogeye 

leaf spot, and charcoal rot being the most destructive on soybean in 2014 (Allen et al., 2017). 

Fungal life cycles are complex, and they can reproduce sexually or asexually depending on the 

type of disease and where it is in its life cycle. Plant-pathogenic fungi usually enter through an 

open wound in the plant, or they bore through the cuticle of the plant by utilizing a specialized 
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structure called an appressorium at the end of a germ tube. As turgor pressure builds along the 

appressoria, an infection peg is used to breach plant cells and infect the plant (Carrls, Little, & 

Stiles, 2012). Cultural control of fungal pathogens is largely dependent on what type of disease it 

is and its life cycle. Chemical control exists for many economically important species, as well as 

genetically modified soybean varieties as a method of host resistance (Boerma & Specht, 2004). 

Bacteria are less common sources of disease, but nonetheless important. Bacterial blight 

(Pseudomonas syringae pv. glycinea)is the most common bacterial disease, followed by bacterial 

pustule and bacterial wilt (Ralsonia solanacearum) (Boerma & Specht, 2004). Bacterial diseases 

do not normally devastate crops and fields, though bacterial wilt has done considerable damage 

in the Ukraine (Hartman et al., 1999). Like fungi, most bacteria enter through a wound on the 

plant. Bacterial cells can also travel on wind-driven rain, allowing the pathogen to spread for 

miles. Bacterial diseases can overwinter on seed, weed residue, and crop residue. For this reason, 

cultural control generally includes removal of prior crop residues, weed management, and the 

use of clean seed (Boerma & Specht, 2004). Crop rotation can also be used as a cultural method 

by planting non-hosts between hosts so that cells cannot survive in the field for a year. Very few 

genetically resistant soybean lines have been implemented for bacterial diseases (Boerma & 

Specht, 2004). 

Viral pathogens are generally carried on vectors such as aphids. Viruses most typically 

show early symptoms on the leaves as a mosaic, mottle, or chlorosis. However, they can also 

show symptoms on stems, pods, and seeds (Boerma & Specht, 2004). There are fifteen viruses 

that commonly effect soybeans in the US, with the most common genera being Potyvirus, 

Comovirus, and Nepovirus. Identifying viral infections can be quite challenging. Sometimes they 

can be identified based on symptomology, but many times serological methods like enzyme-
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linked immunosorbent assays (ELISA) tests must be conducted. Other times polymerase chain 

reaction (PCR) tests or genotyping must be done to conclusively determine which virus has 

infected a field (Boerma & Specht, 2014). So far, viruses have not caused severe economic 

impact in the United States, so cultural methods to reduce insect vectors have been historically 

sufficient. However, there is continuing research being conducted to find genes of resistance to 

implement host resistance (Hill & Whitham, 2014). 

Nematodes are one of the most economically important types of soybean pest, following 

fungi. The major pathogenic nematode in the world is soybean cyst nematode (Heterodera 

glycines). Others include lance nematodes, root-lesion nematodes, and reniform nematode, but 

their economic importance is paled in comparison to H. glycines (Boerma & Specht, 2014). Cyst 

nematode was the most damaging plant pathogen, and cost farmers of the most yield in the 2010-

2014 growing seasons (Allen et al., 2017). Adult female cyst nematodes burrow into soybean 

roots where she is fertilized by a male and remains until her death. It is at this point that she is a 

cyst, which can be seen on the root surface with the naked eye. As juveniles hatch, they break 

through the body of the deceased mother, and the cycle continues. The entire life cycle can 

happen in as little as four weeks (Atibalentja, Jakstys, & Noel, 2004). The major cultural method 

available for cyst nematode has been non-host rotation, but this alone is not effective enough due 

to this species’ ability to lie dormant for years on end (Niblack, 2007). Genetic resistance is 

implemented widely with the utilization of the rhg1-b allele, and work continues to stack 

resistance genes (Cook et al., 2012). 

C. Frogeye Leaf Spot 

Frogeye leaf spot of soybeans (FLS) is caused by a fungal pathogen known as 

Cercospora sojina. It is signified by lesions that start out small, gray, and water-soaked. As the 



7 
 

fungus spreads, these lesions can coalesce and gain a dark red-brown border. When infection has 

been present for some time, conidiophores can be detected with the bare eye in the center of the 

lesion (Lin & Kelly, 2018). While FLS is generally a foliar disease, it can spread to stems, pods, 

and seeds in the late growing season. This loss of photosynthetic tissue reduces the productivity 

of the plant, and can cause the plant to wither and fall prematurely in severe infections (Lin & 

Kelly, 2018).  

The first case of FLS was reported in the United States in 1924 (Boerma & Specht, 

2004). Historically, this disease was most prevalent in the southern United states, but it has 

spread north in recent years, with reported cases as far north as Wisconsin (Mengistu, Kurtzweil, 

& Grau, 2007). In the southern United States, Frogeye Leaf spot was listed as one of the top five 

most destructive soybean diseases during the 2012-2014 growing seasons (Allen et al., 2017). In 

highly infected fields, yield losses have been estimated as high as 60% (Mengistu, Kurtzewil, & 

Grau, 2007). As northern states have warmer weather, it is expected that northern states will have 

higher incidence and yield loss from this disease.  

Historically, there were five well-understood races of C. sojina, races 1-5. It was well 

understood that there were likely many more races that had not been characterized, with an 

acceptance that there were likely at least twelve races in the U.S. Brazil reported 22 races, and 

China reported 14 races when trying to characterize genetic variability (Boerma & Specht, 

2004). In 2007, eleven new race designations were proposed. These races are known as race 5-

15, and are the currently accepted race designations (Mian, Missaoui, & Walker, 2007). 

C. sojina has a life cycle that is repeated throughout a growing season. In this way, the 

more fungal spores present in the primary inoculum greatly determines how severe an infection 

will be. C. sojina thrives in high humidity (>90%) and the spores spread through rain and dew. 
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After infection, lesions can show on leaves in 7-14 days (Lin & Kelly, 2018). Conidiophores 

grow on the leaf tissue, and conidia are dispersed to repeat the life cycle. If it is the end of the 

growing season, the fungus can instead overwinter on leaf tissue and other plant parts. Next 

growing season, the conidia that overwintered will become the primary inoculum in the next year 

(Lin & Kelly, 2018). 

Cultural control methods include crop rotation to prevent overwintered spores from 

having a host. Tillage shows minor benefits, but does not greatly reduce inoculum from year to 

year. Planting inoculum-free seed is also integral to preventing large outbreaks, though it is 

believed plant residue is the most important source of inoculum (Lin & Kelly, 2018). Quinone 

outside inhibitor fungicides (FRAC group 11) were historically used to control C. sojina, but 

resistance has been obtained by the pathogen. Resistance had been detected in the southern 

United States as early as 2010, and had reached as far north as Iowa in 2017 (Zhang et al., 2018).  

There are three main genes of resistance that confer resistance: Rcs1, Rcs2, and Rcs3. 

These resistance genes distinguish which races of C. sojina they confer resistance to in the 

original races 1-5. Rcs1 confers resistance to race 1, Rcs2 confers resistance to race 2, and Rcs3 

confers resistance to all other known races (Mian et al., 2007). Work is still currently being done 

to distinguish how these resistance genes transfer to the new race 5-11 system. In 2012, two 

resistance alleles were identified: Rcs (PI 594891) and Rcs (594774). It is believed that these two 

alleles are related to the Rcs3 gene, but more work is being done to understand the exact 

relationship (Pham et al., 2015). 

D. Plant Breeding  

The science of plant breeding is defined as the improvement of plant genetics through 

crossing plants that have desired traits and selecting progeny plants with improved combinations 
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of traits (Chahal & Gosal, 2002). It is a science of targeted evolution that also requires an 

understanding of how plants interact with their environment. The genotype for a trait interacts 

with its environment to create a phenotype that is either desired or undesirable (Chahal & Gosal, 

2002). Much of plant breeding today focuses on adapting plants to biotic or abiotic stresses. 

Biotic stresses include diseases, insects, and weed pressure. Abiotic stressors can be drought, 

flooding, poor soil conditions, and other climate or nutrient related stressors. Creating plants that 

can tolerate all of these stresses allow for farmers to produce crops in a stable manner every year, 

regardless of what challenges the growing season provides (Chahal & Gosal, 2002). 

Traditional methods of plant breeding include sexual hybridization, wide crossing, tissue 

culture, and mutagenesis (Chahal & Gosal, 2002). Sexual hybridization is the crossing of two 

plants either in nature, or selectively by breeders to create progeny. It is generally imprecise, and 

is the most traditional breeding method (Negrutiu et al., 1989). The most popular hybridization 

methods are single crossing with two parents, three way crosses with three parents over two 

generations, four way crosses with four parents over two generations, and complex crosses with 

greater than four parents (Cahal & Gosal, 2002). Wide crossing uses genetic material from 

outside of that particular species to add genetic variation. This can be done with historic versions 

of modern crops, and alters the genome in ways traditional crossing cannot (Yang et al., 2020). 

Tissue culture is a process of maintaining plant cells and tissues in a lab for the purpose of 

creating new plants from functional cells (Cahal & Gosal, 2002). Mutagenesis is the process of 

using chemicals known as ‘mutagenic compounds’ that can alter the genome in a targeted way 

either through radiation or chemical reactions to create an intended change (Ling & Robinson, 

1997). From here, seeds can be grown in the greenhouse or field to examine which plants have 

desired characteristics.  
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A more modern approach to plant breeding is the use of marker-assisted selection (MAS). 

Molecular markers are a gene with known functions and locations that can be used to study the 

genes around it and the inheritance of that gene. These markers can be either DNA markers, or 

protein markers (Cahal & Gosal, 2002). There are different types of markers, with varying levels 

of precision. From least to most precise, the most common markers used are allozymes, random 

amplified polymorphic DNA (RAPD), amplified fragment length polymorphisms (AFLPs), 

multi-locus fingerprints (RFLPs), microsatellites (SSRs), and single nucleotide polymorphisms 

(SNPs) (Cahal & Gosal, 2002). Allozymes are a protein electrophoresis-based marker, and are 

the least precise method. These proteins are detected using electrophoresis, and signify 

differences among alleles (Krause & Brand, 2016). RAPDs are a marker that was developed by 

amplifying random sequences of markers through random primers. It is quick and easy, but it is 

not easily reproduced (Cahal & Gosal, 2002). AFLPs use the cleavage of two DNA fragments 

with enzymes to amplify subsets of the DNA. This polymerase chain reaction (PCR) product is 

then is separated on an acrylamide gel and combinations of links are readily available to analyze 

the results. It is by far the most complicated method with only moderate sensitivity (Cahal & 

Gosal, 2002). RFLPs use a restriction enzyme to recognize variation in a DNA sequence. Gel 

electrophoresis is used to visualize the RFLPs, and the bands shown on the gel indicate nucleic 

acids present (National Human Genome Research Institute, 2020). SSR satellites are used by 

amplifying specific known sequences in the genome to view it on a gel configuration. It is very 

precise, but can be expensive (Cahal & Gosal, 2002). Finally, SNPs use differences of a single 

base pair as markers. Any two individuals that are unrelated usually have one base pair 

difference every 1,000 base pairs, with no effect on cell function. This makes it an incredibly 

sensitive marker (Cahal & Gosal, 2002). SNP markers are now considered to be the gold 
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standard of MAS for its sensitivity, relative cheapness, and ease of use (Mammadov, Aggarwal, 

Buyyarapu, & Kumpatla 2012).  

Quantitative trait loci (QTL) are defined as a portion of a chromosome that can be 

identified by a molecular marker and has a significant effect on a quantitative trait. The use of 

QTL related to a desired trait is much cheaper, faster, and more efficient than large phenotypic 

assays. Any marker type can be related to a QTL, and using lab techniques to identify what traits 

a seed holds before planting it can speed up the breeding timeline of a given project. The use of 

QTL removes many random errors and can be coupled with field and greenhouse assays to 

quickly produce high-performing lines quickly and efficiently (Yin, Stam, Kropff, & 

Schapendonk, 2003). 

Recombinant inbred lines (RILs) are another powerful tool plant breeders have in modern 

genetic mapping. RIL populations are created by crossing two parents to create an F1 generation 

with half of the genome from each parent. These progeny are then self-pollinated for five or 

more generations to reach a stable genome (Broman 2005). This creates a population with mixed 

genetics of both parents. A normal distribution should occur at any given QTL, and extremes on 

either end of the distribution can lead researchers to new discoveries. Coupled with QTL and 

SNP methods, RILs are an effective way for plant breeders to reach their research goals (Broman 

2005).  
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CHAPTER 2 

PINPOINTING FLS RESISTANCE IN TWO SOYBEAN POPULATIONS BY UTILIZING QTL 

‘Essex’ × ‘Forrest’ data has been published in “QTL mapping for resistance to Cercospora 

sojina in ‘Essex’ × ‘Forrest’ soybean (Glycine max L.) lines”. Journal of Plant Breeding and 

Crop Science 13(1): 14-22. 

ABSTRACT 

Frogeye leaf spot (FLS), caused by Cercospora sojina Hara, is observed as red-brown 

lesions on leaves that can coalesce and decrease the photosynthetic ability of soybeans. The 

average yield loss due to Frogeye Leaf Spot is estimated at approximately 40% in established 

fields, whereas 100% incidence was previously recorded. Quinone outside inhibitor fungicides 

were considered an effective control method, but the pathogen quickly evolved an ability to 

thrive post-application. This trait quickly spread across North America. Therefore, genetic host 

resistance is likely the most effective method to prevent the disease. To achieve this goal, we 

aimed to screen 91 recombinant inbred lines (RILs) of ‘Essex’ × ‘Forrest’ and 190 RILS of 

‘Forrest’ × ‘Williams’ under greenhouse conditions for FLS resistance and used single 

nucleotide polymorphism (SNP) markers to identify associated quantitative trait loci (QTL). 

Three QTL were mapped in this study. In ‘Essex’ × ‘Forrest’, one QTL was reported on Chr. 13, 

and in ‘Forrest’ × ‘Williams 82’ two QTL were reported on Chr. 6 and Chr. 11. Overall, this 

study will help to better understand the underlying mechanisms of soybean resistance to C. 

sojina Hara as well as to develop soybean varieties with resistance to FLS using marker assisted 

selection.    

Keywords: Cercospora sojina Hara, quantitative trait loci, Frogeye Leaf Spot, Essex × 

Forrest, Forrest × Williams 82, disease resistance, genotypic and phenotypic traits 
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INTRODUCTION 

Frogeye leaf spot (FLS), caused by the pathogen Cercospora sojina Hara, is a foliar 

disease indicated by water-soaked lesions on the leaves of soybeans. The lesions begin as small 

brown spots and develop a dark, red-brown border, whereas in severe cases, they can also form 

on the stems, pods, and seeds. When lesions appear on seeds, the fungus spreads to new 

seedlings the following year (Malvick, 2018). Yearly soybean losses to FLS in the United States 

have been measured at 106.3 thousand metric tons, with the most losses in the southern states 

(Wrather et al., 2001). In heavily infected fields, FLS can reduce soybean yield by 40% in 

conducive environmental conditions (Byamukama et al., 2019). Together, these characteristics 

create a cycle of reduced yield and reduced profits for infected fields. 

The first verified case of FLS in the United States of America was recorded in 1925 

(Lehman, 1928). The disease was particularly problematic in the southern states for many years, 

with cases first recorded in the Midwest in the late 1940s (Philips and Boerma, 1981). For many 

years, chemical control, mostly using uinone outside inhibitor (QoI) fungicides (also known as 

FRAC Group 11), was the most effective method for disease management. FLS resistance to QoI 

inhibitors was detected in North America by 2010 (Zhang, 2012), making genetic host resistance 

to FLS more crucial to high-yielding soybean production. 

Single nucleotide polymorphisms (SNPs) for disease resistance in soybean are usually 

centralized on chromosomes (Chr.) 7, 13, and 18. Chr. 13, in particular, is known to be a rich 

area of disease resistance, as it harbors the resistance gene rich Satt114 marker and the Rsp8 

gene. This area is associated with resistance to two races of Phytophthora sojae, the causal agent 

of Phytophthora root rot. (Gordon et al., 2006). Satt114 is also commonly used as a flag marker 

for other disease resistance studies (Pham et al., 2015).  However, resistance genes are not 
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restricted to these areas and can be scattered across the genome. For example, SNPs that are 

significant to Soybean cyst nematode resistance can be found on Chr 3, 4, 7, 9, 10, 11, 13, 14, 

15, 18, 19, and 20 (Chang et al., 2016).  

Currently, there are 12 known races of C. sojina Hara and three main genes conferring 

resistance. These genes are Rcs1, which codes for resistance to race 1; Rcs2, which provides 

resistance to race 2; and Rcs3, which confers resistance to all other known races of C. sojina 

Hara (Mian et al., 2007). In 2012, two additional dominant resistance alleles were identified as 

Rcs (PI 594891) and Rcs (PI 594774) (Pham et al., 2015). More research is needed in this area to 

understand specific QTL that are associated with each resistance gene to make their 

implementation more feasible for breeders. New race designations were also implemented in 

2007, with the new races being races 5-11. Work is still being done to associate the known 

resistance genes with the new race designations (Mian et al., 2007). 

The ‘Essex’ × ‘Forrest’ (E × F) cross was made at Southern Illinois University 

Carbondale to be a mapping population for a variety of traits (Lightfoot et al., 2005). Essex was 

chosen for its partial resistance to FLS, whereas Forrest for its partial susceptibility (Sharma and 

Lightfoot, 2017). Forrest has been extensively studied and mapped alongside ‘Williams 82’, 

making it an ideal candidate line for QTL identification. Essex and Forrest share a common 

germplasm heritage that accounts for 25% of their genomes. (Lightfoot, 2008). From the initial 

cross, approximately 4,500 F2 plants were advanced to F5 using single-pod descent. After 

harvest, 150 F5 plants were randomly selected and planted into progeny rows. Of these, 100 

recombinant inbred lines (RILs) were kept for various phenotypic assays. In total, 94 RILs were 

used to construct a mapping population for quantitative trait loci (QTL) discovery and also 
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released for research purposes (Lightfoot et al., 2005). The plant material used in this study 

consisted of 91 F5:8  selected RILs. 

The ‘Forrest × Williams 82’ population was created by crossing ‘Forrest’ × ‘Williams 82’ 

to create F1 seeds. This generation was advanced to F2, and each F2 plant was advanced to F7 by 

the single seed descent (SSD) method. In the F8 generation, the F2:7 seeds were bulked in 1m 

rows to create 1,025 F2:7 recombinant inbred lines (RILs) to be used for genetic mapping (Wu et 

al., 2011). Of these lines, 190 were used and maintained at Southern Illinois University for this 

study. 

Markers closely linked to QTL can be used to screen hundreds of lines at once for the 

genes of interest. For the purpose of developing resistant cultivars, the use of marker assisted 

selection is an efficient and accurate way to identify resistant lines as opposed to large 

phenotypic surveys (Yousef and Juvik, 2001). Phenotypic assays require more labor, take longer 

to complete, and are less precise compared to genotypic methods. Two major QTL for FLS 

resistance were detected in the E × F population for C. sojina Hara race 2 on Chr. 6 near Satt319 

and on Chr. 8 near Satt632 as well as 13 minor QTL across various chromosomes (Sharma and 

Lightfoot, 2017).  However, this study used simple sequence repeat (SSR) to find regions of 

interest. The use of SNP markers are more precise than SSR and are the preferred method in 

genetic diversity studies (Singh et al., 2013). For this reason, SNP were used in this study. 

Having a precise location in the genome for FLS resistance allows for simpler implementation in 

commercial lines. 

The objectives of this study were to analyze the phenotypic variation of FLS resistance in 

E×F in a greenhouse setting, create a genetic linkage map for the population, and identify 

candidate QTL that code for resistance to C. sojina Hara race 15 using SNPs. 
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MATERIALS AND METHODS 

A. Greenhouse Assay 

Greenhouse assays were conducted by planting one population and their parental lines in 

six-inch plastic nursery pots filled with Berger BM1 growing medium. Soybean plants were 

grown in open benches with no supplemental lighting and were allowed to experience ambient 

conditions. Plants were watered according to environmental needs, generally twice a week, with 

tap water. No fertilization was used in this experiment. Pots were arranged in a randomized 

complete block design with two blocks per replication. Each population was replicated twice in 

time, with the E ´ F experiments taking place in March 2019 and October 2019, and F ´ W 

experiments taking place in August 2019 and February 2020. Temperatures stayed between 18-

35°C over the duration of the experiments, Seven seeds were planted in each pot. One treatment, 

the application of C. sojina Hara spores, was applied to all blocks. Shortly after emergence, 

thinning was performed to a density of one plant per pot. Plants were inoculated for the first time 

with C. sojina Hara solution at V2–V5 stages. Plants were then inoculated a second and third 

time with a week between inoculations. 

Race 15 of C. sojina Hara was cultured in petri dishes filled with clarified V8 solid 

medium (Salas et al., 2007). After two weeks in a growth chamber at 25°C, the petri dishes were 

flooded with a 0.1% Tween 20 solution and spores were knocked into the solution using a 

sterilized metal spatula. Approximately eight petri dishes of seven colonies were used to make 

300 mL of solution. The solution was mixed thoroughly on a stirring plate for 5 min, and then 

was filtered through a cheesecloth to remove mycelium. Final spore concentration was 

approximately 6 x 104 conidia/mL. This final product was poured into a spray bottle and 

immediately used for inoculation.  
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All lines were sprayed to dripping with the fungal solution and covered using a gallon-

sized plastic bag to create a highly humid microenvironment. Gallon-sized bags were left on for 

72 h. For the rest of the experiment, the plants were left under a humidity tent using plastic 

sheeting and a humidifier. Relative humidity was maintained at 80–90% and temperature was 

maintained at 28–30°C until the end of the experimental period.  

Two weeks after the first inoculation, plants were rated for disease severity using a numeric 

scale from 1-10. This method allowed for characterization of disease development over time. 

Plants were rated on a scale of 1–10; rating of 1 indicates 0–10% of the leaf surface showing 

disease symptoms, whereas a rating of 10 indicates 90–100% of the leaf showing symptoms. 

Defoliation due to disease presence was also counted as a 10 (Sinclair, 1982). In total, six ratings 

were taken within 2 wks. 

B. DNA Isolation 

For DNA isolation, all lines screened in the greenhouse were planted in six-pack trays 

and allowed to grow in a dark room to minimize cuticle growth and chloroplastic DNA 

expression. When plants reached the V1 stage (first trifoliate emergence), 50 mg of tissue from 

the first trifoliate was collected and stored in a -20°C freezer until isolation. Upon collection of 

all tissues, samples were thawed, flash frozen with liquid nitrogen, and crushed. DNA isolation 

was performed using the DNeasy 96 Plant Kit (Qiagen, Hilden, Germany), following the 

manufacturer’s instructions. DNA purity was tested using a gel electrophoresis visualized with a 

1% EtBr stained agarose gel, and DNA quantification was carried out with NanoDrop 2000 

(Thermo Scientific, Waltham, MA, USA). SNP genotyping was conducted at the Soybean 

Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, using the 

BARCSoySNP6K BeadChip array.  
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C. Phenotypic Variation 

To compare FLS resistance across the population, the sixth and final greenhouse rating 

for each line was used to run a distribution analysis. Lines with a lower FLS score than the 

susceptible parent were labelled “susceptible lines” and lines with higher FLS scores than the 

resistant parent were labelled “resistant lines.” JMP Pro 15 software was utilized to run 

distributions and average disease scores.  

D. Genetic Map and QTL Analysis 

The genetic map and QTL analysis were done with the r/QTL package for R 

Studio(Broman et al., 2003; Broman and Sen, 2009). The final rating for each line was used to 

measure the overall FLS resistance. Frogeye leaf spot scores were used to find phenotypic and 

genotypic differences between the parental lines and the RILs. Single marker analysis and 

interval mapping were used to identify the chromosomes of interest (data not shown), the Cim() 

function was subsequently used for composite interval mapping (CIM). The Fitqtl() function was 

used to estimate the variance of QTL of interest, and a 1,000 permutation test was ran to 

determine approximate logarithm of odds (LOD) thresholds of significance using operm.ag.  

E. Gene Ontology and Kyto Encyclopedia of Genes and Genomes Pathways 

The SoyBase database (Wm.82 version 1) was utilized to analyze the gene ontology (GO) 

and kyto encyclopedia of genes and genomes (KEGG) pathway of the candidate QTL and 

identify which proteins are coded for in the CIM interval. The UniProt Consortium database was 

then used to understand what these proteins do within the plant so that overall gene function can 

be understood. 
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RESULTS 

A. Phenotypic Variation 

The distribution of FLS scores across E × F population was normal (P=0.158), the 

kurtosis of the distribution was 0.004 and the skewness was 0.31. Overall, the average of the FLS 

score was 3.23 ± 1.32, and the scores ranged from 1 to 7.25. Five lines were identified as more 

resistant than Essex (average score, 1.50 ± 0.50), whereas two lines were more susceptible than 

Forrest (average score, 5.75 ± 2.49) (Fig 1.). Lines more resistant than Essex were noted as E × F 

2, E × F 9, E × F 10, E × F 11, and E × F 54 (average score, 1.0 ± 0). The lines more susceptible 

than Forrest were E x F 29 (average score, 7.25 ± 1.79) and E × F 63 (average score, 6.0 ± 2.0).  

The distribution of FLS scores in the F × W population was not normal (P=0.0021)(Fig. 

2), but this can be expected according to the Central Limit Theorem. There was a positive 

skewness of 0.53, suggesting segregation is contributing to lines with more resistance to C. 

sojina Hara. The mean FLS score was relatively low at 3.19 ± 1.02, with scores ranging from 

1.00-6.33. Forrest had an FLS score of 2.25 ± 0.43, and Williams 82 had an FLS score of 5.00 ± 

2.73. There were 26 lines with FLS scores lower than Forrest (Table 1), and seven lines with 

higher FLS scores than Williams 82 (Table 2). Resistant lines had an average score of 1.70 ± 

0.31 and susceptible lines had an average score of 5.94 ± 0.30. 

B. Construction of Genetic Linkage Maps 

A genetic map was created of the E × F population with a total of 1,959 markers across 

20 chromosomes (Fig 3.). The total map length was 2,121.01 cM with an average distance 

between markers of 1.08 cM (Table 3). The average chromosome length was 105.05 cM with 

97.95 markers on each chromosome. The largest chromosome was Chr. 19 with a length of 

133.66 cM and 95 markers, while the shortest was Chr. 16 with a length of 84.27 cM and 55 
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markers. The most genetically dense chromosome was Chr. 3 with 1.17 markers/cM. The gaps of 

< 5 cM were at a rate of 99.97%. 

Across 20 chromosomes in the F × W population, 2,186 were identified (Fig. 4). The map 

was 2,105.23 cM long with an average distance of 0.97 cM separating markers (Table 4). The 

largest gap between markers was 74.35 cM, with 97.16% of gaps being <5 cM. Average 

chromosome length was 105.26 cM. The longest chromosome was Chr. 18 at 137.47 cM long 

with 164 markers. The shortest chromosome was Chr.16 at 83.40 cM long with 73 markers. The 

most genetically dense chromosome was Chr. 20 with 1.81 markers/cM. 

C. Identification of QTL 

A total of three QTL were identified across both populations (Table 5). In E × F, the 

ss715614578–ss715615158 interval (Position: 61.81–69.27 cM) (QTL1) was identified to 

underlie FLS resistance on chromosome 13 (LG F). A single peak was observed at the 

ss715614724 marker (Position: 64.04 cM) with a LOD score of 6.36, the variation of the 

phenotype explained by the QTL was 14.33% (Fig. 5). The LOD threshold 4.38 was used for 

95% confidence, and our QTL exceeds this criteria.  

Two QTL were identified in the F × W population to underlie FLS resistance. The first is 

on chromosome 6 (LG C2) from ss715594329-ss715594474 (Position 87.11-99.97 cM)(QTL2). 

One peak was noted in this interval at ss715594440 (Position: 64.04 cM) with an LOD score of 

5.16 (Fig.6). This QTL explains 5.16% of phenotypic variation. The second QTL is on 

chromosome 11 (LG B1) from ss715610717-ss715610843 (Position 9.90-13.04 cM) (QTL3) 

with a peak at ss715610720 (Position 9.94 cM) (Fig.7). This QTL explains another 6.75% of 

phenotypic variation. Interaction effects of the two QTL were insignificant (P=0.14). With the 
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95% confidence LOD threshold from the permutation test set at 4.48, we can be 95% confident 

that QTL2 is significant. QTL1 meets the 80% confidence threshold of 3.67.  

D. Resistance Alleles 

The genotypes of RILs in the E × F population that were more resistant than Essex were 

found to have a Forrest-like genotype at QTL1 (Table 6), whereas those that were more 

susceptible than Forrest to have Essex-like alleles at the same location. These results suggested 

that Forrest was the parent contributing to the QTL of resistance. To confirm this hypothesis, 

one-way ANOVA was conducted comparing FLS scores of all RILs (n=81). This test compared 

lines with Forrest-like alleles, Essex-like alleles, and recombinant genotypes (Fig. 8). The 

ANOVA test was statistically significant to 95% confidence (F2,80 = 7.64, P < 0.0009). Lines 

with Forrest-like alleles had mean FLS ratings 1.15 smaller, which equates to approximately 

11.5% less foliar damage, compared to Essex-like alleles. Heterozygous lines were not 

statistically different from either Forrest-like or Essex-like lines.   

Similar one-way ANOVAs were ran in the F × W population to see if the alleles present 

at the QTL of interest significantly impacted FLS score. These tests compared lines with Forrest-

like alleles, Williams 82-like alleles, and recombinant alleles. The ANOVA ran on QTL2 was 

not significant (F2,175=2.89, P > 0.05), and neither was the ANOVA ran on QTL3 (F2,177=2.38, P 

> 0.05). 

E. Gene Ontology and Kyto Encyclopedia of Genes and Genomes Pathways 

Within QTL1, a wide variety of genes have been published and identified (Table 7), 

(Grant et al., 2010). The nearest gene to the peak at ss715614724 are the BT089187.1 and 

M31024.1 genes, both of which code for ribosomal protein S11. This protein resides within the 
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cytosolic small ribosomal subunit and plays a major role in rRNA binding and overall ribosomal 

structure. (UniProt Consortium, 2020). 

Many genes of resistance have also been published in the QTL2 interval (Table 8). The 

closest known genes to the peak of the interval are AK246052.1 and AB331959.1, both of which 

code for the peroxisomal 3-hydroxyacyl-CoA dehydrogenase-like protein. This protein is a 

catalyst in fatty acid metabolic processes (UniProt Consortium 2020).  

In QTL3, there are a handful of published genes (Table 9). Nearby to the interval peak 

are the BT094200.1 and AF004806.1 genes, which code for the 24kDa seed maturation protein. 

It is known that this protein resides in the endoplasmic reticulum of soybean cells, but so far its 

function is unknown (UniProt Consortium 2020). 

Twenty-six model genes are located in the QTL1 interval that code for Leucine-rich 

repeat (LRR) and WRKY domain proteins (Table 10). There are 24 such model genes in QTL2 

(Table 11), and six model genes in QTL3 (Table 12). All of these genes are candidate genes to 

code for FLS resistance in their respective intervals, as these types of genes are known to play an 

integral role in disease resistance (Gururani et al., 2012). Since they are genes modeled in 

Arabidopsis, the ways these genes work in plants are not well understood. 

DISCUSSION 

The parents of the E × F population were scored for FLS resistance. Forrest received an 

FLS score 2.3-fold higher than Essex. This confirms that Forrest is more susceptible against C. 

sojina Hara race 15 than Essex. These results aligned with those presented in prior studies on 

resistance to race 2 (Sharma and Lightfoot, 2017). Since our histogram fit the normal 

distribution, the skewness was near zero, suggesting that the segregation equally contributed to 

high and low FLS scores. The same was done for the parents of F × W and Williams 82 was 
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2.22-fold more susceptible than Forrest. This confirms that Forrest is the resistant parent for this 

population. The population had a negative skewness of -0.53, suggesting that segregation 

contributed more to low FLS scores. However, based on the Central Limit Theorem, this is not 

actually the case (Reeve, 2016). Since only 190 lines were used out of 1,025 original lines, a 

normal distribution would be expected across the whole population.  It should also be noted that 

in the E × F experiments, Forrest received a mean score of 5.75 ± 2.49, while in the F × W 

experiments, it received a score of 2.25 ± 0.43. Similar differences in scores were reflected in the 

‘Blackhawk’ and ‘Lincoln’ checks planted in each block. Across the E × F experiments, Lincoln 

had an FLS score of 3.0 ± 1.58 and Blackhawk had a score of 6.5 ± 1.63. In the F × W 

experiments, Lincoln had an FLS score of 2.50 ± 1.5 and Blackhawk had a score of 5.50 ± 1.5.  

From this, we can conclude that there was higher disease pressure in the E × F experiments. 

Among all three parental lines, Essex holds the most resistance, while Forrest is partially 

resistant, and Williams 82 is the most susceptible.  

A single QTL associated with FLS resistance was identified on Chr. 13 of E × F at the 

ss715614578–ss715615158 interval, which coincides with the region of SNP41647 that is known 

for Rcs (PI594891) in linkage group F (Pham et al., 2015). PI594891 is a Chinese plant 

introduction, and its resistance pathway is not yet well documented (Hoskins, 2011). QTL1 could 

be allelic to Rcs (PI594891). It is believed that this resistance gene is conditioned by Rcs3, but it 

likely carries different resistance alleles from one or two other genes (Pham et al., 2015). Two 

QTL, QTL2 and QTL3, were indicated in the F × W study for association with FLS. These genes 

were found on Chr. 6 and Chr. 11, respectively. Prior research indicates that neither of these 

QTL are a part of the Rcs3 gene. QTL 2 on chromosome 6 has been reported in the E × F 

population in prior studies (Sharma and Lightfoot, 2014). This experiment used Race 2 of C. 
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sojina Hara, so this implies QTL2 holds resistance to multiple races. It was also found to be 

allelic to the Rcs2 gene. This confirms this QTL’s existence across multiple populations. QTL3 

has not been priorly published.  

In the E × F study, Forrest contributed the resistance allele. These results are 

contradictory to prior studies on race 2, in which Essex donated the resistance allele (Sharma and 

Lightfoot, 2017). Since Rcs2 generally confers resistance to race 2, we assumed the existence of 

a different resistance mechanism for race 15. Although it seems counterintuitive for Forrest to 

donate the resistant allele, it might be possible since Forrest was only partially susceptible. The 

use of only Race 15 of C. sojina Hara may have also played a role in this finding. More research 

should be conducted on which specific races Forrest is susceptible to. It is possible Race 15 is 

one that Forrest holds resistance for. Many prior resistance tests use mixed races, which can 

skew results when individual races are used. However, since the two one-way ANOVA for F × 

W was insignificant, there is no simple way to determine which parent donated the allele of 

resistance. This could be due to lower disease pressure within the F × W greenhouse assays. 

Higher disease pressure would allow us to see if there are more minor QTL adding to the disease 

resistance in this population. Since Forrest is the shared parent in the two populations, we can 

hypothesize that Forrest would also donate the resistance allele in F × W. Future studies should 

also be conducted to see if epistatic effects are at play. 

In this study, all QTL were minor. QTL1 contributed 14.33% of variance, QTL2 

contributed 6.01% of variance, and QTL3 contributed 6.75% of variance in their respective 

populations. This is probably due to the low disease pressure across the experiments. Therefore, 

differences among genes of small effect might not have been identified. Future research is 

needed under field or greenhouse conditions with relatively high disease pressure to confirm the 
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presence of the QTL and identify any interaction with the environment. The use of mixed races 

or other individual races of C. sojina Hara would be also beneficial to better understand the 

underlying mechanism of resistance and the role of the QTL. These markers should be used in 

future breeding projects to fine-tune marker-assisted selection for resistance to FLS. 

QTL1 was found to be associated with ribosomal S11 protein. In soybeans, it was found 

that ribosomal S11 was significantly elevated when immature plants were treated with 2,4 D 

(Gantt and Key, 1985). Since this study, the presence of S11 has been associated with cellular 

proliferation. It is abundant in meristematic tissue and allows the plant to produce new cells 

efficiently (Lenvik, 1994). To this end, we can hypothesize that the found SNP alters the amount 

of S11 produced in the plant and allows it to overcome damage from C. sojina Hara. 

QTL2 is associated with peroxisomal 3-hydroxyacyl-CoA, and these peroxisomes have 

been documented to be connected to various cell functions in soybeans. Major functions include 

fatty acid β-oxidation, photorespiratory glycolate metabolism, the glyoxylate cycle, metabolite 

transport, and stress response (Arai et al., 2008). Further research should be done to investigate 

this connection between peroxisomes and FLS resistance. 

While the exact function of the 24kDa seed maturation protein associated with QTL3 is 

unknown, there is prior research on its expression in plants during the maturation process. This 

protein was able to be detected in the final stages of seed maturation in the parenchyma and 

aleurone layers of the seed coat. The gene coding for 24kDa seed maturation protein was also 

well expressed in vegetative tissues that had been wounded by pathogens, suggesting it also 

plays a part in wound response (Dhaubhadel et al., 2005). Future studies should be conducted to 

solidify this link, along with experiments to confirm the link between the model genes reported 

and FLS resistance. 
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CONCLUSIONS 

In summary, we report a total of three QTL associated with FLS resistance. The QTL in 

E × F is related to Rcs (PI594891) and production of the S11 ribosomal protein that aids in cell 

proliferation. The associated markers should be used in future projects to stack resistance genes 

for FLS. Two novel QTL were reported in the F × W population on Chr. 6 and Chr. 11 that are 

associated with the production of peroxisomal 3-hydroxyacyl-CoA dehydrogenase-like protein 

and 24kDa seed maturation protein, respectively. Both proteins are associated with wounding 

response and could prove useful for future breeding projects aiming at FLS resistance. QTL2 on 

Chr.6 was also confirmed in prior experiments, suggesting it holds resistance to multiple races of 

C. sojina Hara. Environment played a large part in our experiments, and future studies should be 

conducted with higher and more consistent disease pressure to determine if the identified QTL 

could confer a higher percentage of resistance. Overall, Forrest and its derivatives are a good 

source for the advancement of FLS resistance in soybean. 
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TABLES 

Table 1: Lines with FLS scores less than Forrest (2.25). 

Line FLS Score 
F × W  30 2.00 
F × W  50 1.75 
F × W  52 2.00 
F × W  60 2.00 
F × W  90 1.00 
F × W  108 1.00 
F × W  125 1.75 
F × W  132 2.00 
F × W  151 1.75 
F × W  153 2 .00 
F × W  157 1.25 
F × W  158 2.00 
F × W  173 2.00 
F × W  188 1.5 
F × W  191 1.75 
F × W  192 1.5 
F × W  200 1.25 
F × W  201 2.00 
F × W  205 2.00 
F × W  215 2.00 
F × W  219 1.5 
F × W  249 2.00 
F × W  263 1.75 
F × W  266 1.67 
F × W  269 1.75 
F × W  282 1.5 

Table 2: Lines with FLS Scores higher than Williams 82 (5.00). 

Line FLS Score 
F × W  121 5.5 
F × W  129 6.33 
F × W  147 6.00 
F × W  176 6.00 
F × W  178 6.00 
F × W  227 5.5 
F × W  243 6.25 
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Table 3: Characteristics of genetic map of E × F population. 

Chromosome Number of 
Markers 

Genetic 
distance 
(cM) 

Average 
distance 
between 
markers 
(cM) 

Gaps ≤ 5 
(%) 

Maximum 
gap (cM) 

1 76 126.05 1.68 90.78 26.33 
2 81 115.46 1.44 97.53 30.13 
3 128 108.79 0.85 98.43 16.48 
4 109 98.64 0.91 99.08 9.90 
5 94 94.61 1.01 96.80 53.42 
6 128 114.33 0.90 98.43 41.76 
7 90 101.99 1.14 96.66 19.76 
8 98 99.97 1.03 96.93 45.04 
9 76 96.45 1.28 96.05 24.39 
10 91 114.06 1.26 95.60 22.35 
11 87 89.45 1.04 95.49 13.28 
12 80 91.25 1.15 97.50 33.12 
13 163 94.47 0.58 99.38 6.07 
14 85 110.02 1.30 95.29 18.32 
15 113 114.66 1.02 99.11 71.47 
16 55 84.27 1.56 98.18 55.73 
17 84 94.97 1.14 95.23 24.60 
18 150 133.35 0.89 98.66 13.95 
19 76 133.66 1.51 94.73 42.00 
20 95 104.56 1.11 94.73 17.67 

Total 1959 2121.01 1.08 99.97 71.47 
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Table 4: Characteristics of the F × W genetic linkage map 

Chromosome Number of 
Markers 

Genetic 
distance 
(cM) 

Average distance 
between markers 
(cM) 

Gaps ≤ 
5 (%) 

Maximum 
gap (cM) 

1 105 121.60 1.15 99.04 69.88 
2 155 117.21 0.75 58.06 8.61 
3 109 108.05 0.99 98.16 32.15 
4 62 112.24 1.81 96.77 74.35 
5 97 92.39 0.95 94.84 10.23 
6 116 114.33 0.95 95.87 10.18 
7 123 98.00 0.79 98.27 6.10 
8 151 100.39 0.66 98.01 7.06 
9 123 93.27 0.75 99.18 10.84 
10 110 114.12 1.03 98.18 57.99 
11 86 88.67 1.03 95.34 12.01 
12 72 88.77 1.03 91.66 11.52 
13 152 91.36 1.26 98.68 8.70 
14 61 111.40 1.82 91.80 27.86 
15 107 115.74 1.08 96.26 14.96 
16 73 83.40 1.14 97.26 48.07 
17 101 94.97 0.94 98.01 6.86 
18 164 137.47 0.83 98.17 39.22 
19 125 115.39 0.92 96.80 10.9 
20 94 106.46 1.13 94.68 28.92 
Total 2186 2105.23 0.97 97.16 74.35 
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Table 5: Summary table of all QTL reported. 
Name Population Interval LG/Ch

r 
Position of 

Interval 
(cM) 

Position 
(cM) 

LOD R2 

(%) 

QTL1 E × F ss715614578
–

ss715615158 

F/13 61.81–69.27 
 

64.04 
(ss715614724) 

6.64 14.33 

QTL2 F × W ss715594329
-

ss715594474 

C2/6 87.11-99.97 97.72 
(ss715594440) 

 

5.16 6.01 

QTL3 F × W ss715610717
-

ss715610843 

B1/11 9.90-13.04 9.94 
(ss715610720) 

 

3.39 6.75 

Table 6: Genotyping results at QTL1. 

Line FLS Score Genotype at ss715614724 
E × F 2 1 C 
E × F 9 1 C 
E × F 10 1 C 
E × F 11 1 C 
E × F 29 7.25 T 
E × F 54  1 C 
E × F 63  6 T 
Essex 1.5 T 
Forrest 5.75 C 
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Table 7: All published genes in the ss715614578-ss715615158 (QTL1) interval on chromosome 

13. 

Gene Protein 
BT096972.1 ABC transporter/family member 1-like 
FJ014823.1 protein kinase 
BT093809.1 calmodulin-like protein 5-like 
FJ014792.1 calmodulin-binding receptor-like cytoplasmic kinase 
GQ422779.1 bifunctional purple acid phosphatase 26-like 
BT089187.1* ribosomal protein S11 
M31024.1* ribosomal protein S11 
BT097035.1 pre-rRNA-processing protein TSR2 homolog 
BT097614.1 CASP-like protein N24-like 
BT094321.1 formate dehydrogenase 1, mitochondrial-like 
DQ468343.1 SNI1 
CYP93C1v2 cytochrome P450 monooxygenase CYP3C1v2p 
ifs2 isoflavone synthase 2 
CYP93C1 isoflavone synthase 2 
FJ014793.1 receptor-like protein kinase HSL1-like 
KC876033.1 Drought-induced family protein 

BT089855.1 17.5 kDa class I heat shock protein-like 
AK244336.1 mediator-associated protein 2-like 
BT099462.1 mediator-associated protein 2-like 
DQ857259.1 Dof9 
BT096749.1 40S ribosomal protein S6-like 
BT094501.1 probable RNA 3'-terminal phosphate cyclase-like protein-like 
BT097216.1 epoxide hydrolase 2-like 
BT098969.1 monoglyceride lipase-like 
AK285956.1 secretory carrier-associated membrane protein-like 
BT094395.1 secretory carrier-associated membrane protein-like 
BT095720.1 putative 12-oxophytodienoate reductase 11-like 

*Closest genes to interval peak 
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Table 8: Published genes in the ss715594329-ss715594474 (QTL2) interval on chromosome 6. 

Gene Protein 

BT097968.1 Early nodulin-like protein 2-like 
AK246086.1 NAC domain protein NAC3 
NAC3 NAC domain protein NAC3 
SNAC23 NAC transcription factor 
SNAC41 NAC domain-containing protein 18-like 
AK286350.1 Proteasome IOTA subunit 
IOTA Proteasome IOTA subunit 
AK246052.1* Peroxisomal 3-hydroxyacyl-CoA dehydrogenase-like 

protein 
AB331959.1* Peroxisomal 3-hydroxyacyl-CoA dehydrogenase-like 

protein 
*Closest genes to interval peak 

Table 9: Published genes in the ss715610717-ss715610843 (QTL3) interval on chromosome 11. 
Gene  Protein 

BT094200.1* 24kDa seed maturation protein 
AF004806.1* 24kDa seed maturation protein 
BT094706.1  Polyneuridine-aldehyde esterase-like 
CYP82C1 Cytochrome P450 CYP82C1 
BT093995.1 NASP-related protein sim3-like 
AK286723.1 Oxygen-evolving enhancer protein 1%2C 

chloroplastic-like 
BT095172.1 Oxygen-evolving enhancer protein 1%2C 

chloroplastic-like 
Y10493.1 Putative cytochrome P450 
bZIP118 bZIP transcription factor bZIP118 
GBF1 G-box binding factor 

BT094253.1 HVA22-like protein k-like 
BT094413.1 Tyrosyl-tRNA synthetase-like 

       *Closest genes to interval peak 
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Table 10: Model genes in the QTL1 interval. 

Gene Pfam (Family) Panther (Function) 

Glyma13g24330 PF00069(Protein kinase 
domain) 

PTHR24420 (Leucine-Rich Repeat 
Receptor-Like Protein Kinase) 

Glyma13g24340* PF00560(Leucine Rich 
Repeat) 

PTHR24420 (Leucine-Rich Repeat 
Receptor-Like Protein Kinase) 

Glyma13g24550 PF00560 (Leucine Rich 
Repeat) 

PTHR24420 (Leucine-Rich Repeat 
Receptor-Like Protein Kinase) 

Glyma13g24980 PF07714 (Protein tyrosine 
kinase) 

PTHR24420 (Leucine-Rich Repeat 
Receptor-Like Protein Kinase) 

Glyma13g25340 PF07714 (Protein tyrosine 
kinase) 

PTHR24420 (Leucine-Rich Repeat 
Receptor-Like Protein Kinase) 

Glyma13g25420 PF00931 (NB-ARC 
domain) 

PTHR23155 (Leucine-Rich Repeat-
Containing Protein) 

Glyma13g25440 PF00931 (NB-ARC 
domain) 

PTHR23155 (Leucine-Rich Repeat-
Containing Protein) 

Glyma13g25724 PF07714 (Protein tyrosine 
kinase) 

PTHR24420 (Leucine-Rich Repeat 
Receptor-Like Protein Kinase) 

Glyma13g25750 PF00931 (NB-ARC 
domain) 

PTHR23155 (Leucine-Rich Repeat-
Containing Protein 

Glyma13g25780 PF00560 (Leucine Rich 
Repeat 

PTHR23155 (Leucine-Rich Repeat-
Containing Protein) 

Glyma13g25800 
PF11883 (Domain of 
unknown function 
(DUF3403)) 

PTHR24420 (Leucine-Rich Repeat 
Receptor-Like Protein Kinase) 

Glyma13g25811 PF07714 (Protein tyrosine 
kinase) 

PTHR24420:SF430 (Leucine-Rich 
Receptor-Like Protein Kinase) 

Glyma13g25820 PF07714 (Protein tyrosine 
kinase) 

PTHR24420 (Leucine-Rich Repeat 
Receptor-Like Protein Kinase) 

Glyma13g25920 PF00931 (NB-ARC 
domain) 

PTHR23155 (Leucine-Rich Repeat-
Containing Protein) 

Glyma13g25950 PF00560 (Leucine Rich 
Repeat) PTHR23155:SF121 

Glyma13g25970 PF00931(NB-ARC 
domain) 

PTHR23155 (Leucine-Rich Repeat-
Containing Protein). 

Glyma13g26141 PF00931 (NB-ARC 
domain) 

PTHR23155 (Leucine-Rich Repeat-
Containing Protein) 

Glyma13g26230 PF00931 (NB-ARC 
domain) 

PTHR23155 (Leucine-Rich Repeat-
Containing Protein) 

Glyma13g26310 PF00560 (Leucine Rich 
Repeat) 

PTHR23155 (Leucine-Rich Repeat-
Containing Protein) 

Glyma13g26380 PF00931 (NB-ARC 
domain) 

PTHR23155 (Leucine-Rich Repeat-
Containing Protein) 

Glyma13g26400 PF01582 (TIR domain) PTHR11017 (Leucine-Rich Repeat-
Containing Protein) 
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Glyma13g26420 PF00931 (NB-ARC 
domain) 

PTHR11017 (Leucine-Rich Repeat-
Containing Protein) 

Glyma13g26450 PF01582 (TIR domain) PTHR11017 (Leucine-Rich Repeat-
Containing Protein) 

Glyma13g26460 PF01582 (TIR domain) PTHR11017 (Leucine-Rich Repeat-
Containing Protein) 

Glyma13g26530 PF00560 (Leucine Rich 
Repeat) 

PTHR23155 (Leucine-Rich Repeat-
Containing Protein) 

Glyma13g26650 PF01582 (TIR domain) PTHR11017:SF20 (Subfamily Not 
Named) 
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Table 11: Model genes in within the QTL2 interval. 

Gene Pfam (Family) Panther (Function) 

Glyma06g37100 PF03106 (WRKY DNA -
binding domain) - 

Glyma06g37441 PF07714 (Protein tyrosine 
kinase) PTHR24420:SF692 

Glyma06g37505 PF07714 (Protein tyrosine 
kinase) PTHR24420:SF692 

Glyma06g39725* PF00931 (NB-ARC 
domain) 

PTHR23155 (Leucine-Rich 
Repeat-Containing Protein) 

Glyma06g39930* PF00954 (S-locus 
glycoprotein family) PTHR24420:SF703 

Glyma06g39943 PF01582 (TIR domain) PTHR23155 (Leucine-Rich 
Repeat-Containing Protein) 

Glyma06g39990 PF00931 (NB-ARC 
domain) 

PTHR23155 (Leucine-Rich 
Repeat-Containing Protein) 

Glyma06g40000 PF00069 (Protein kinase 
domain) PTHR24420:SF703 

Glyma06g40021 PF07714 (Protein tyrosine 
kinase) 

PTHR24420:SF430 (Leucine-
Rich Receptor-Like Protein 
Kinase) 

Glyma06g40030 PF00954 (S-locus 
glycoprotein family) 

PTHR24420 (Leucine-Rich 
Repeat Receptor-Like Protein 
Kinase) 

Glyma06g40050 PF00954 (S-locus 
glycoprotein family) 

PTHR24420 (Leucine-Rich 
Repeat Receptor-Like Protein 
Kinase) 

Glyma06g40110 
PF11883 (Domain of 
unknown function 
(DUF3403) 

PTHR24420 (Leucine-Rich 
Repeat Receptor-Like Protein 
Kinase) 

Glyma06g40130 PF00069 (Protein kinase 
domain) PTHR24420:SF703 

 
Glyma06g40141 

 

PF00069 (Protein kinase 
domain) 

PTHR24420 (Leucine-Rich 
Repeat Receptor-Like Protein 
Kinase) 

 
Glyma06g40161 

 

PF07714 (Protein tyrosine 
kinase) 

PTHR24420:SF430 (Leucine-
Rich Receptor-Like Protein 
Kinase) 

Glyma06g40170 PF00954 (S-locus 
glycoprotein family) PTHR24420:SF703 

Glyma06g40240 PF00954 (S-locus 
glycoprotein family) 

PTHR24420 (Leucine-Rich 
Repeat Receptor-Like Protein 
Kinase) 

Glyma06g40350 PF00954 (S-locus 
glycoprotein family) PTHR24420:SF703 
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Glyma06g40370 PF07714 (Protein tyrosine 
kinase) 

PTHR24420 (Leucine-Rich 
Repeat Receptor-Like Protein 
Kinase) 

Glyma06g40400 PF00954 (S-locus 
glycoprotein family) PTHR24420:SF432 

Glyma06g40461 PF00069 (Protein kinase 
domain) 

PTHR24420:SF430 (Leucine-
Rich Receptor-Like Protein 
Kinase) 

 
Glyma06g40480 

 

PF00954 (S-locus 
glycoprotein family) 

PTHR24420 (Leucine-Rich 
Repeat Receptor-Like Protein 
Kinase) 

 
Glyma06g40490 

 

PF00954 (S-locus 
glycoprotein family) 

PTHR24420 (Leucine-Rich 
Repeat Receptor-Like Protein 
Kinase) 

Glyma06g40515 PF00954 (S-locus 
glycoprotein family) 

PTHR24420 (Leucine-Rich 
Repeat Receptor-Like Protein 
Kinase) 

*Closest genes to interval peak 

Table 12: Model genes in the QTL3 interval. 

Gene Pfam (Family) Panther (Function) 

Glyma11g06260* 

PF05659 (Arabidopsis 
broad-spectrum 
mildew resistance 
protein RPW8) 

PTHR23155 (Leucine-Rich Repeat-
Containing Protein) 

Glyma11g06270 PF00560 (Leucine 
Rich Repeat) 

PTHR23155 (Leucine-Rich Repeat-
Containing Protein) 

Glyma11g06451 PF00069 (Protein 
kinase domain) 

PTHR24420 (Leucine-Rich Repeat 
Receptor-Like Protein Kinase) 

Glyma11g06740 PF00069 (Protein 
kinase domain) 

PTHR24420 (Leucine-Rich Repeat 
Receptor-Like Protein Kinase) 

Glyma11g06750 PF00069 (Protein 
kinase domain) 

PTHR24420 (Leucine-Rich Repeat 
Receptor-Like Protein Kinase) 

Glyma11g07175 PF07714 (Protein 
tyrosine kinase) PTHR24420:SF822 

*Closest genes to interval peak  
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FIGURES 

 

Figure 1: Histogram depicting the frequency of FLS scores in the E × F experiments. 
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Figure 2: Histogram depicting the frequency of FLS scores across the F × W experiments. 

 

Figure 3: Genetic linkage map of E × F population. 
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Figure 4: Genetic linkage map of F × W population 

 

Figure 5: CIM interval of QTL1. 

 

Figure 6: CIM interval of QTL2. 

 



40 
 

 

Figure 7: CIM interval of QTL 3. 

 

Level Grouping 
(Allele) Mean 

Essex T 3.90 
Recombinant TC 3.25 
Forrest C 2.75 

Figure 8: One-way ANOVA comparing genotypes at QTL1 (F2,80=7.64, P<0.0009). 
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CHAPTER 3 

ANALYZING AGRONOMIC TRAITS OF TWO SOYBEAN POPULATIONS UNDER FIELD 

CONDITIONS 

ABSTRACT 

 Soybeans are an important cash crop globally that majorly contributes to food, fiber, and 

oil production. Many variables contribute to a farmer’s decision about which soybean variety to 

plant, some of which include high germination, maturity group, and perspective yield. Secondary 

considerations can include resistance to a specific pathogen or pest that is prevalent in the area. 

For this reason, breeders need to take various agronomic traits into consideration whenever 

developing new soybean lines, as needs and desires can vary across geographic regions. To this 

end, we have characterized the germination rate, flower color, days to 90% flowering, days to 

90% maturity, and yield of the ‘Essex’ × ‘Forrest’ population and the ‘Forrest’ × ‘Williams’ 

population. These populations have priorly been characterized for their resistance to Cercospora 

sojina, and after understanding the agronomic characteristics, can be used for implementation of 

disease resistance. One line, F×W125, stood out among all others for desired agronomic traits 

and Frogeye Leaf Spot resistance. This line should be used for future breeding projects to 

develop the latest elite lines. 

Keywords: soybeans, C.sojina, flowering, maturity, agronomic traits 

INTRODUCTION 

Soybeans are a major crop globally, with production in the U.S. climbing every year 

(Pagano & Miransari, 2016). It is commonly used for oil, feed, and biofuels, and accounts for 

90% of U.S. oilseed production.  More than 80% of U.S. soybeans are grown in the midwestern 

states, where it is rotated annually with corn to add nitrogen back to the soil. The United States 
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government subsidizes this crop, making market fluctuations less volatile. For all these reasons, 

it is a safe plant for many farmers to choose, and production has only increased every year since 

1990 (Ash, Livezey, & Dohlman, 2006). 

There are many factors farmers think about when selecting which soybean variety to 

plant each year. One of the most important is maturity group (MG), which indicates how long it 

will take for a variety to reach full pod set. The larger the number, the longer the variety takes to 

fully flower and mature. In Southern Illinois, many farmers use MG 4-5. The southern United 

States will use MG 5-6 in order to optimize the full growing season (Mourtzinis & Conley, 

2017). Many times, farmers want shorter maturity plants for added flexibility when dealing with 

rainy planting seasons or early snow. These are all considerations to make when farmers are 

selecting lines and as breeders work to make new varieties.  

Flowering and Maturity are largely attributed to three main genes: E1, E2, and E3 

(Bernard, 1971; Watanabe et al., 2009). Soybeans are a short-day photoperiod sensitive plant that 

induces flowering when there is a <12 hr day length (Destro, Carpentieri-Pipolo, Kihl, & 

Almeida, 2001). Multiple quantitative trait loci (QTL) have been associated with photoperiod 

responses and the correlating E1, E2, and E3 genes (Wantanabe, Harada, & Abe, 2012). Both 

traits are also tangibly intertwined with plant height and architecture, which is controlled by the 

Dt1 gene. (Bernard, 1972). There are two different methods of soybean growth: determinate 

(lateral growth halts after flowering), or indeterminate (continue lateral growth after flowering). 

If flowering is induced early in a determinate line, total pod number can be drastically decreased, 

along with yield (Bernard, 1972). It is understood in the soybean breeding community that there 

is no one gene that correlates with yield, but instead it is a mixture of hundreds of various genes 

that contribute to the overall well-being and success of the plant.  
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Traditionally bred soybeans are an equal blend of both parents. For this reason, many 

breeders focus on crossing two elite lines to try and achieve a hybrid progeny with better 

characteristics than either parent. To implement novel genes, backcrossing would be used over 

multiple generations to try and implement a new trait of interest while maintaining all other 

characteristics from an elite parent (Concibido et al., 2003). A line with a plethora of undesirable 

traits increases the odds of linkage drag into progeny lines and should be avoided. To this end, 

the objectives of this experiment were to characterize two soybean RIL populations for their 

desirable agronomic traits, and identify which lines carry the least linkage drag for Frogeye Leaf 

Spot (FLS) resistance.  

MATERIALS AND METHODS 

A. Plant Material 

The Essex x Forrest (E × F) and Forrest x Williams (F × W) RIL populations were used 

for this field experiment, as are described in Chapter 1. These lines were allowed to self-

pollinated in the field to provide refreshed seed for the next year’s field experiments and other 

lab research.  

B. Field Design and Conditions 

Field experiments took place at the Agronomy Research Center at Southern Illinois 

University Carbondale. There were two years of experiments, with each year taking place in a 

different location on the research center. Each year was divided into two blocks with the F × W 

and E × F populations inside (Fig. 9). A complete randomized block design was utilized. Each 

line was planted in two-row plots 10 ft in length. Four foot gaps separated individual plots. Three 

hundred seeds were planted in each plot with 150 seeds in each row. 
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No irrigation was used and plants were allowed to experience natural field conditions. 

Summer 2019 was particularly rainy during the planting season, which prevented planting until 

May 28. After the field had been planted, Carbondale experienced a drought that likely 

contributed to decreased germination. As the summer progressed, there were pest issues. Deer 

ate the tops of many different lines. Summer 2020 had more ideal conditions, but planting was 

delayed due to the COVID-19 pandemic and logistical issues. The field was planted on June 2, 

and there was light rainfall in the following weeks.  

Both fields were soil tested in the spring before planting, and no fertilizer was applied in 

accordance with the results. Pre-emergence herbicides used were FirstRate (cloransulam-methyl) 

at a rate of .60 oz/A and Prefix (S-metolachlor, sodium salt of fomesafen) at a rate of 40 oz/A. 

Post-emergence herbicides applied were Select (clethodim) at a rate of  4.8 oz/A, Flexstar 

(sodium salt of fomesafen) at a rate of  .5 pts/A, Dual (S-metolachlor) at a rate of 9.6 oz/A, and 

FirstRate (cloransulam-methyl) at a rate of .12 oz/A. 

C. Note Taking 

Five different notes were taken during the growing season: germination, flower color, 

days to 90% flowering, days to 90% maturity, and yield. Germination notes were taken two 

weeks after planting to allow for slow-germinating lines to sprout. The field was walked twice a 

week post-germination to monitor growth stages of the plants and any pest infestations. Days to 

90% flowering was recorded when 90% of the flower buds in a given plot had opened. When a 

plot reached this milestone, the date was recorded and days to 90% maturity was calculated. This 

method was also used for days to 90% maturity. This note was taken when 90% of the plants in a 

plot were fully dried down and ready for harvest. The plots were harvested with a two-row small 

plot combine and individually bagged. After harvest was complete, all plot bags were cleaned 
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using a shaking gravity table. This clean seed was weighed in grams and was converted into 

kg/ha for analysis. 

D. Statistical Analysis 

JMP Pro 15 software was used for all distributions, means, t-tests, and other statistical 

analyses. A nested ANOVA model was used to measure blocking interactions using the Fit 

Model function with blocks nested within the year of experiment. A 95% confidence interval 

was used for all significance tests.  

RESULTS 

A. Germination 

In 2019, 250 F × W lines were planted in the field experiment. This seed stock had not 

been planted the season prior, so it had lower germination. A total of 154 of the lines germinated, 

and a germination test was conducted to determine the best lines to plant the following year. In 

2020, all lines that germinated in 2019 were replanted, along with an extra 50 lines for a total of 

204 lines. 172 of these lines germinated and grew to maturity under field conditions in 2020. In 

2019, there was a germination rate of 61.6%. The 2020 growing season had a germination rate of 

84.31%. Out of all the lines planted across the two growing seasons, 71% of lines germinated.  

The 91 E × F populations were planted in 2019, and 85 lines germinated and continued to 

maturity, for a germination rate of 93%. These 85 lines were replanted in 2020, and 74 

germinated and provided seed for future projects. The 2020 growing season had a germination 

rate of 88%. This leaves 81% of the original lines for future experiments.   

B. Flower Color 

The F × W population maintained all white flowers through both growing seasons. The E 

× F population, however, continued to segregate by flower color (Fig.10). In 2019, 45 lines had 
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white flowers, 38 lines had purple flowers, and 2 lines had a mix of purple and white. In 2020, 

32 lines had white flowers, 30 lines had purple flowers, and 12 had a mix of purple and white 

flowers. Mixed flower colors increased to 16.21% of the population in 2020 from a mere 2.35% 

in 2019.  

C. Days to 90% Flowering 

The nested ANOVA ran on the F × W population determined that there was not a 

significant blocking interaction (P < 0.05). However, there was a significant difference between 

lines (F189,462 = 1.60; P < 0.0001). A Tukey’s HSD test distinguished two lines of interest. 

F×W180 took significantly longer to reach 90% flowering at 71.25 ± 1.45 days. F × W235 had a 

significantly shorter time to reach flowering at 61.50 ± 1.45 days. All other lines were not 

significantly different from one another. The mean time to 90% flowering across the F×W 

population was 65.69 ± 3.16 days. The distribution of days to 90% was not normal (GOF 

<0.0001)(Fig.11), but this can be explained with the Central Limit Theorem (Reeve, 2016). 

There was a positive skewness of 0.83, suggesting segregation has contributed to shorter 

flowering times (n=652).  

The E × F population was also determined to have an insignificant blocking interaction (P < 

0.05). There was also an no significant differences across lines (P < 0.05). The population had an 

average of 67.7 ± 4.18 days to 90% flowering. The distribution was not normal (GOF < 

0.001)(Fig.12), which could be due to the missing lines that did not germinate. Like F×W, the 

E×F population has a positive skewness of 0.79, suggesting the population is segregating for 

shorter flowering periods (n=304).  

An ANOVA was ran to determine if the two populations were significantly different 

from one another, and it indicated a significant difference (F1,954 = 19.96; P < 0.0001). A 
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student’s t-test indicated that with 99.9% confidence, F×W has shorter time to 90% flowering, 

with a difference of 2.07 days (Table 13).  

D. Days to 90% Maturity 

A nested ANOVA for the F × W population indicated no significant blocking interaction 

(P < 0.05). The ANOVA indicates a significant difference in lines (F186,459 = 1.53; P < 0.002). 

However, Tukey’s HSD does not distinguish a difference among lines, so no conclusions can be 

drawn about which lines are significant. The population overall has a mean days to 90% maturity 

of 135.51 ± 4.01 days. The distribution is not normal (GOF <0.001)(Fig.13), and has a negative 

skewness of -0.34 (n=648). This would suggest the population is segregating for longer time to 

maturity.  

For E × F, there is a significant blocking interaction (F2,213 = 5.29, P < 0.0057). A 

Tukey’s HSD test indicates that both blocks in 2019 are significantly different from the 2020 

blocks (Table 14). However, there is no significant difference across lines. In 2019 Block 1, the 

mean days to maturity is 138.73 ± 4.38 days. 2019 Block 2 has a mean of 140.91 ± 2.32. In 

2020, the overall mean days to maturity was 135 ± 0. An analysis of the distribution across all 

blocks shows an overall mean of 137.39 ± 3.54. The distribution is not normal (GOF 

<0.0001)(Fig.14), and has a positive skewness of 0.36. This suggests the population is 

segregating for shorter days to 90% maturity (n=295).  

A student’s t-test was used to compare F × W and E × F on a population level, and there 

is a significant difference between the two. With 99.9% confidence, we can state that E×F takes 

longer to reach 90% maturity, with a difference of 1.87 days (Table 13). 
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E. Yield 

The yield distribution of F × W is normal (GOF > 0.05)(Fig.15), with a slight positive 

skewness of 0.55. This would indicate that segregation is contributing to lower yield (n=654). An 

ANOVA ran on the population shows no blocking interaction or significant difference in lines. 

Mean yield is 1,397.66 ± 1,185.22 kg/ha.  

The E × F population also did have a normal distribution (GOF > 0.05)(Fig.16). It has a 

small positive skewness of 0.07, and has a bimodal pattern with peaks around 0-250 kg/ha and 

2000-2250 kg/ha (n=293). This could be due to environmental factors in specific parts of the 

fields in both years that create more low yielding lines. The overall mean is 1,577.00 ± 1,024.23 

kg/ha.  

A pooled t-test was ran to compare the F×W population and the E × F population. With 

95% confidence, we can state that E × F is a higher-yielding population with an average 

difference of 179.64 kg/ha (P < 0.0125) (Table 13).  

F. Characteristics of FLS-resistant Lines 

Similar nested ANOVAs were conducted on the lines distinguished in Chapter 1 as being 

resistant to FLS. There are 31 total lines that are characterized as being FLS resistant, with five 

of them from the E × F population and 26 of them from the F × W population. Their days to 90% 

flowering, days to 90% maturity, and yield were analyzed separately to distinguish which lines 

would be most ideal for breeding FLS resistance into current lines without linkage drag (Table 

15). 

A distribution analysis of the resistant lines was not normal for 90% flowering (GOF 

<0.0001)(Fig.17). There is a positive skewness of 1.14, implying more lines have a smaller 

number of days to 90% flowering (n=90). There is no significant blocking interaction in resistant 
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lines when looking at 90% flowering (P > 0.05). However, there is a significant difference 

among lines (P = 0.0041). There is a range of 18 days, from 77-64 days with a mean of 65.54  ± 

3.06 days. A Tukey’s HSD distinguished one line, E×F 10, that took significantly longer to reach 

90% flowering. Fourteen lines took significantly less time to reach 90% flowering, with least 

square means ranging from 65.25-62 days. These lines were F × W 52, F × W 188, F × W 205, F 

× W 215, F × W 30, F × W 125, F × W 132, F × W 151, F × W 153, F × W 191, F × W 269, F × 

W 219, F × W 108, and F × W 192. The remaining 14 lines were not significantly different from 

any lines. Two lines had missing data.  

As for days to 90% maturity, the distribution is not normal (GOF <0.0001)(Fig. 18). 

There is a slight negative skewness of 0.23, which implies there is almost an even amount of 

smaller and larger numbers of days to maturity (n=79). There is no significant blocking 

interaction (P > 0.05), but there is a significant difference in lines (P = 0.0046). Five lines had 

missing data, and days to 90% maturity ranged from 143.5-127.5 with a mean of 135.02 ± 4.59 

days. A Tukey’s HSD test identified one line that took significantly longer to reach 90% 

maturity: F × W 191 (143.50 days). The F × W 125 line had a significantly shorter time to 90% 

maturity, at 127.5 days. All other lines were not significantly different from one another.  

A distribution analysis of FLS-resistant lines’ yield was not normal (GOF <0.0001) (Fig. 

19). There is a positive skewness of 0.50, indicating there are more lines with smaller yields 

(n=77). Yield in FLS-resistant lines had no significant blocking interaction (P > 0.05). There was 

also no significant difference among lines (P > 0.05). Yield measures ranged by 3,668.35 kg/ha 

from 21.52-3689.87 kg/ha, with a mean of 1,240.33 ± 1,184.01.  
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DISCUSSION 

No distribution in the population-wide analyses were normal, but this can be explained by 

the Central Limit Theorem (Reeve, 2016). Not all available lines were planted, so it can be 

expected to see non-normal distributions. The germination decreases that were seen both years 

were likely due to weather conditions, the age of the seed in 2019, and pests. We would expect 

that with each given year the lines were planted, germination percentages would increase as 

selection pressure for well-germinating lines increases.  

It appears that the F × W population’s flower color is stable and genes for flower color 

are no longer segregating. This can be concluded since over both the 2019 and 2020 growing 

seasons, all lines had white flowers. However, E × F appears to have unstable genes for flower 

color, due to the increase in mixed flower colors. Another possibility for this variability is seed 

contamination. While all measures were used to keep individual lines pure, it is possible that the 

combine did not fully clean out during a plot and contaminated the next few plots of seed. This 

should become more obvious in future generations if the flower color stabilizes or continues to 

be mixed. 

Both populations seem to be segregating for decreased time to 90% flowering. This is 

beneficial to breeding programs, as shorter flowering times are generally desired by farmers and 

producers in the Midwestern US. Since F × W has significantly shorter times to 90% flowering, 

it would be the ideal population to use if shortened flowering times were the main objective of 

the project. The F × W population is segregating for more days to 90% maturity, leaving a wider 

gap between flowering and maturity. The E × F population is segregating for shorter days to 90% 

maturity, which is also more ideal for farmers. However, F × W still has significantly shorter 

times to 90% maturity, so it is currently more ideal for breeding programs looking for shortened 
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time to maturity. With shorter times to flowering and maturity, farmers can still have a 

productive year if conditions in the spring are unconducive to planting. The sooner the beans are 

mature, the faster farmers can harvest and prevent frost or snow damage.  

Since E × F has significantly higher yield, it would be beneficial to the many programs 

aiming for high-yielding varieties. The average yield in the US in 2019 was 47.4 bu/ac, which 

converts to approximately 3,187.70 kg/ha (Intel, 2020). Both populations have much lower yield, 

likely due to them being put under experimental field conditions. The populations had no seed 

treatments, fungicides, or other precautionary applications done like would happen in a standard 

production setting, likely contributing to lower yield. Since E × F has statistically higher yield, it 

would be less likely to drastically reduce yields in a breeding project for any other desired traits.  

When deciding between using the F × W or E × F populations for breeding projects, it is 

important to know the goals of the project before deciding. If the intended goal is decreased time 

to flowering or maturity, F × W is the more qualified candidate. E × F is more likely to be 

beneficial in a project that is trying to increase soybean yield. 

One line stands out among all others for both FLS resistance and other desirable field 

traits: F × W125. It  has significantly lower days to 90% flowering and significantly lower days 

to 90% maturity when compared to other lines that are FLS-resistant (Table 16). Since no lines 

were deemed significantly higher in yield, this is not a measure we can take into account. 

However, F × W125 should be used as a line for implementing FLS resistance in current 

commercial lines in accordance with all of the ideal field characteristics it has obtained.  

CONCLUSIONS 

Field experiments are important for a comprehensive understanding of the characteristics 

of a given soybean line or population. When deciding on using the F×W or E×F populations for 
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breeding programs, it is important to note the objectives of the experiment to make the proper 

selection. F × W has more desirable characteristics for flower color, days to 90% flowering, and 

days to 90% maturity. E × F, however, is a higher yielding line. For integration of FLS 

resistance, the F × W125 line should be used for enhanced resistance to C. sojina with limited 

linkage drag. Future experiments should analyze these populations for potential QTL that can be 

associated with these desired traits. 
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TABLES 

Table 13: Summary of field characteristics by population 

Table 14: Results of Tukey’s HSD for 90% maturity of the E × F population 

Level Grouping Least Square 
Mean 

2019 Block 2 A 138.50 
2020 Block 1 AB 137.48 
2020 Block 2 AB 137.48 
2019 Block 1 B 136.47 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristic F × W E × F Significance 
Mean Days to 90% 

Flowering 65.69 ± 3.16 67.76 ±4.18 P < 0.0001 

Mean Days to 90% 
Maturity 135.51 ± 4.01 137.39 ± 3.54 P < 0.0001 

Mean Yield 
(bushels/hectare) 1397.66 ± 1185.22 1577.30 ± 1024.23 P<0.0125 



54 
 

 

Table 15: Field characteristics of FLS-resistant lines 

Line Days to 90% 
Flowering Days to 90% Maturity Yield (kg/ha) 

F × W  30 64 ± 0.00 138.25 ± 3.26 2746.95 ± 942.92 
F × W  50 65.5 ± 2.59 135 ± 6.00 32.28 ± 10.76 
F × W  52 65.25 ± 1.29 135.5 ± 0.50 1639.33 ± 1512.95 
F × W  60 65.5 ± 2.59 136.75 ± 2.48 1468.19 ± 1020.22 
F × W  90 67 ± 3.00 129 ± 0.00 21.52 ± 0.00 
F × W  108 62.75 ± 2.16 131.25 ± 3.89 1252.91 ± 743.57 
F × W  125 64 ± 0.00 127.5 ± 1.50 43.05 ± 0.00 
F × W  132 64 ± 0.00 132 ± 3.67 1164.65 ± 1205.20 
F × W  151 64 ± 0.00 131 ± 5.00 43.05 ± 0.00 
F × W  153 64 ± 0.00 133 ± 4.06 1504.79 ± 1281.49 
F × W  157 67.75 ± 2.48 139.25 ± 4.38 1241.07 ± 699.89 
F × W  158 67 ± 3.00 136.75 ± 2.48 1294.89 ± 983.78 
F × W  173 68.5 ± 3.35 138.25 ± 3.26 1469.27 ± 1149.51 
F × W  188 65.25 ± 1.29 136.75 ± 2.48 1314.27 ± 1223.91 
F × W  191 64 ± 0.00 143.5 ± 1.50 43.05 ± 21.53 
F × W  192 62.75 ± 2.16 132 ± 3.67 939.68 ± 777.59 
F × W  200 67 ± 3.00 138.25 ± 3.26 1886.91 ± 928.22 
F × W  201 67.75 ± 3.89 135.5 ± 0.50 1652.25 ± 1051.62 
F × W  205 65 ± 1.00 129 ± 0.00 64.58 ± 0.00 
F × W  215 64.75 ± 1.29 131.25 ± 3.89 1140.96 ± 1075.27 
F × W  219 63.25 ± 2.58 133.5 ± 4.50 1351.94 ± 1312.77 
F × W  249 - - - 
F × W  263 65.5 ± 1.50 135 ± 0.00 163.60 ± 81.80 
F × W  266 65.5 ± 1.50 135 ± 0.00 2152.77 ± 1016.11 
F × W  269 64 ± 0.00 135 ± 0.00 846.04 ± 372.43 
F × W  282 65.5 ± 1.50 135 ± 0.00 2975.14 ± 598.46 

E × F 2 73 ± 0.00 - - 
E × F 9 66 ± 0.00 142 ± 0.00 43.06 ± 0.00 
E × F 10 77 ± 0.00 - - 
E × F 11 - - - 
E × F 54 - - - 
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Table 16: Field characteristics of F × W125 compared to other FLS-resistant lines 

Characteristic F×W125 Mean Across FLS-Resistant Lines 

Days to 90% Flowering 64.00 ± 0.00 65.54 ± 3.06 

Days to 90% Maturity 127.5 ± 1.50 135.02 ± 4.59 

Yield 43.05 ± 0.00 1240.33 ± 1184.01 
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FIGURES 

        Block 1                 Block 2 
F×W E×F F×W E×F 

Figure 9: Depiction of field design each year. 

 

Figure 10: Bar chart comparing flower colors per year. 
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Figure 11: Distribution of the F × W population’s days to 90% flowering 

 

Figure 12: Distribution of the E × F population’s days to 90% flowering 
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Figure 13: Distribution of the F × W population’s days to 90% maturity 

 

Figure 14: Distribution of the E × F population’s days to 90% maturity 
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Figure 15: Distribution of the F × W population’s yield 

 

Figure 16: Distribution of the E × F population’s yield 
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Figure 17: Distribution of FLS-resistant lines’ days to 90% flowering 

 

Figure 18: Distribution of FLS-resistant lines’ days to 90% maturity 
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Figure 19: Distribution of FLS-resistant lines’ yield 
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