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Abstract

We analyze a class of stochastic differential games of singular control, motivated by the study of
a dynamic model of interbank lending with benchmark rates. We describe Pareto optima for this
game and show how they may be achieved through the intervention of a regulator, whose policy is
a solution to a singular stochastic control problem. Pareto optima are characterized in terms of the
solutions to a new class of Skorokhod problems with piecewise-continuous free boundary.

Pareto optimal policies are shown to correspond to the enforcement of endogenous bounds on
interbank lending rates. Analytical comparison between Pareto optima and Nash equilibria provides
insight into the impact of regulatory intervention on the stability of interbank rates.
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1 Introduction

The market for interbank lending offers an interesting example of strategic interaction among financial
institutions in which players react to the distribution of the actions of other players. One of the widely
commented features of the interbank market is the fixing mechanism for interbank benchmark interest
rates, the most well-known example of which is the London Interbank Offer Rate (LIBOR) which plays
a central role in financial markets. Historically these benchmarks have not been negotiated rates but a
‘trimmed’ average of quotes collected daily from major banks. Every day, participating banks contribute
a quote representing their offered rate; a calculation agent then ‘trims’ the tails of the distribution by
removing the highest and lowest quotes and computes the value of the benchmark rate as a weighted
average of the remaining non-discarded quotes (Avellaneda & Cont|, [2010)). The resulting benchmark
rate —the LIBOR rate— then serves as a reference for the valuation of interbank loans and debt contracts,
as well as many other financial contracts indexed on the benchmark rate. A deviation (spread) of a
bank’s rate from the benchmark may lead to a perception of credit risk and loss of market share -if the
spread is positive- or an opportunity cost if the spread is negative, thus incentivizing banks to align
their offered rates with the benchmark.

This mechanism leads to strategic interactions among market participants in a dynamic setting,
where interactions are mediated through an average action, or more generally through the distribution
of actions of other participants and has been criticized for its vulnerability to manipulations (Avellaneda
& Cont, [2010), which have been extensively documented (H. M. Treasury, [2012; Dutfie & Stein, [2015)).
One of the lessons from the manipulation of LIBOR and other benchmarks is that insufficient attention
had been paid to incentives, strategic interactions, mechanism design and the role of the regulator in
such markets.

1.1 A model of interbank lending with benchmark rates

We shall now describe a stylized model of interbank rates which represents interactions among banks
in terms of a stochastic dynamic game.

Consider first an exogenous process r; representing a rate set by the central bank, with respect
to which banks will position their lending rates. r; is typically modeled as a mean-reverting diffusion
process driven by a multidimensional Brownian motion B representing risk factors driving random
macroeconomic shocks. Each bank i quotes a rate 7! at a ‘spread’ X with respect to the reference rate
re: i =1+ X}. The spread of each bank i is affected by the macroeconomic shocks but the bank may
control its rate r! through positive or negative adjustments to its spread X/, which we may represent
by a pair (¢4, £57) of non-decreasing processes representing increases (resp. decreases) in the spread:

dX! =o' dB, +d&t —de), (1.1)

where o' is a volatility matrix representing the sensitivity of the spread X to macroeconomic factors.
The benchmark (‘LIBOR’) rate L; is then defined as a weighted average of these offered rates:

N N
Lt:rt+7t7 yt:ZG’ZXtZ and a; 20, Zai: 1.
=1 =1

Note that the ‘drift’ term in the dynamics (1.1)) originates from the control. One may also consider an
additional drift term p'dt in the uncontrolled dynamics, a positive drift corresponding to a bank whose



creditworthiness is gradually deteriorating, leading to a steady increase of its spread. (See more general
set-up in Section [2])

We now turn to the incentives and costs faced by the banks. Each bank 7 receives interest income
from its lending activity, at rate ri. The interest income of the bank over a short period [t, t+dt] is riQ! dt
where Q! > 0 is the volume of lending activity (loan volume). Given that the bank can borrow at the
interbank L; = r, + X, this represents an opportunity cost of (X; — X})Q! dt. In a competitive lending
market, the loan volume Q! of bank i will be a decreasing function ¢;(.) of its spread 7! — L, = X} — X,
relative to the benchmark rate: Q¢ = ¢;(X; — X;). Assuming an inter-temporal discount rate of p > 0,
this leads to a running cost term

/ (X, — XP) (X — X)) dt.
0

For example, an affine dependence ¢;(r) = Q) — k;x, where k; > 0 represents the sensitivity of loan
volume to the interest rate, leads to a linear-quadratic cost [~ e [Q4 (X, — X}) + r;(X, — X})?]dt.

These considerations only pertain to the relative costs of bank simultaneously engaging in borrowing
and lending. Other constraints prevent the banks from deviating from the reference rate beyond a certain
level; these are often ‘soft’, rather than hard (i.e., inequality), constraints and may be modeled by a
penalty on |r{|, or equivalently a running cost f;(X}) where f; is centered at some reference value and
increases fast enough (e.g., quadratically) at infinity. As an example we shall use f;(z) = v;(x — s0)?
with v; > 0.

The benchmark fixing mechanism described above may be incorporated in the model through a cost
term associated with the control (¢4, £%7). Recall that the LIBOR is computed as a trimmed average
of quotes, discarding the highest and lowest ‘outliers’. This means an offered rate X* will not be taken
into account if it lies too far from the mean. In absence of collusion between banks, this mechanism
discourages them from making large daily adjustments to their offered rates, as a large upward or
downward adjustment may result in their quotes being disregarded in the benchmark calculation. This
may be modeled through a cost term which penalizes the size of the adjustment e.g., K" deit+ K ;dg”*,
with K", K; > 0, where 1/K, (resp. 1/K;") represents a typical distance (X' — X) (resp. (X —X?),)
beyond which quotes are discarded. For instance one can take K;" = K; = 1/ where v represents a
measure of dispersion (interquartile range or multiple of standard deviation) of the quote distribution.
The case of an asymmetric penalty K;" > K, (resp. K;" < K, ) is useful to model the case of a bank ¢
systematically quoting above (or below) the benchmark. This leads to an objective function

Ji(z;€) =E

[ ( (X0 = X0) 0 () = X0) dt 0 (X0 — s0)’ db + K dgi + Wﬁ)
0

XO— = il,'] (12)

for bank 7, where the control variable is a pair of non-decreasing processes (£%T, £%7) representing the
rate adjustments of bank 7 and the expectation is taken with respect to the law of the controlled process
(L.I). The controls £-F, -~ are in general allowed to be right-continuous with left limits (cadlag) with
possible jumps as well as continuous adjustments to the rates. Such controls are called singular controls
(Benes et all |1980; Karatzas, 1983) and have been used for analyzing optimal investment policy and
option pricing and hedging problems with transaction costs (Davis & Norman, [1990; |Davis et al., [1993;
Kallsen & Muhle-Karbe, |2017; Zariphopoulou, 1992]).

In the case where a; = %, ¢ = qj, v; = vj and KijE =K ji for ¢ # j, the payoff structure is symmetric
under permutation of indices and this can be formulated as mean field game (Lasry & Lions, 2007}
Huang et al., 2006), which was studied under Nash equilibrium in (Guo & Xu, [2019)). However we shall
not need this assumption and will treat below the case of a more general, not necessarily symmetric,
cost function h?(X;). This is more natural for the interbank lending problem.



1.2 A class of stochastic differential games of singular control

Motivated by the example above, we study a class of N-player stochastic differential games, where each
player i = 1,--- , N controls a diffusive process X} through & := (£%T, £%7) additive control terms

dX} = pi'dt + o' - dB, +d&yT —de™, Xi_ =, (1.3)

and seeks to minimize the sum of a discounted running cost and a proportional cost of intervention

Ji(z;€) =E

/ e (B(X,)dt + K;F ey + K dgi)
0

XO, :.’E]

The first two terms in (|1.3]) correspond to the ‘baseline’ (uncontrolled) diffusion dynamics, and the
last two term correspond to the control £ = (£47 £€57), modeled as a pair of non-decreasing cadlag
processes. Here we focus on Pareto-optimal outcomes.

Contribution. The present work is a study of Pareto-optimal policies for the class of stochastic
singular control games considered above, motivated by the interbank lending problem. We relate the
Pareto optima of this game to the solution of a regulator’s problem, characterized as a high-dimensional
singular stochastic control problem which we study in detail. The regularity analysis of the value
function, following the approach of Soner & Shreve| (1989), for the regulator’s problem enables us to
characterize the optimal controls for this problem and subsequently the Pareto-optimal policies for the
N-player game.

We obtain a description of Pareto-optimal policies in terms of a multidimensional Skorokhod problem
for a ‘regulated diffusion’ in a bounded region whose boundary is piece-wise smooth with possible
corners. The state process follows a diffusion process in the interior, and the control intervenes only at
the boundary to reflect it back into the interior.

Finally, we derive explicit descriptions of Pareto-optimal policies when N = 2. This complements
the existing literature on Nash equilibrium for stochastic two player games (De Angelis & Ferrari,
2018; Dianetti & Ferrari, [2020; Hernandez-Hernandez et al., 2015, |Kwon & Zhang), [2015]). Analytical
comparison between the Pareto-optimal and the Nash equilibrium solutions demonstrates the role of
regulator in the interbank lending market.

Our analysis for the general case (N > 2) provides insights for regulatory intervention on the
interbank market. In particular, it allows us to quantify the impact of a regulator on the stability of
the benchmark rate.

Relation with previous literature. Stylized mean-field models of interbank borrowing and lending
have been considered by (Carmona et al. (2015) and [Sun (2018), who focus on Nash equilibria in the
case of a large number of (indistinguishable) players. Here we consider the case of a finite number of
players, allowing them to be non-identical which is more realistic in terms of the interbank problem at
hand, and our focus is on Pareto optima and the role of a regulator.

A related strand of literature consists of studies for central bank interventions on interest rates and
exchange rates using an impulse control approach (Bensoussan et al. 2012; |(Cadenillas & Zapatero,
2000; |Jeanblanc-Picqué, [1993)). In these approaches, interventions are associated with a fixed cost. The
singular control framework adopted here seems more natural for modeling situations such as interbank
markets where the cost of intervention is proportional to the action rather than fixed. Singular controls
allow for discontinuities and include impulse controls as special cases.

Nash equilibria for stochastic games of singular control have been studied by |Chiarolla et al.| (2013));
De Angelis & Ferrari (2018); Dianetti & Ferrari (2020); Hernandez-Hernandez et al.| (2015); on the



other hand, there are few studies of Pareto-optimal strategies for such games. |Aid et al.| (2017)) consider
a two-player game in an impulse control framework between a representative energy consumer and a
representative electricity producer, and derive an asymptotic Pareto-optimal policy. [Fischer & Livieri
(2016)) solve explicitly a mean-variance portfolio optimization problem with N stocks. [Ferrari et al.
(2017) and Wang & Ewald (2010) consider the problem of public good contribution and analyze the
Pareto-optimal policy for the N-player stochastic game under the framework of regular control and
singular control, respectively.

The analysis of Pareto optima in stochastic games is often through studying an auxiliary N-
dimensional stochastic control problem. This approach can be traced back to the economic literature
on mechanism design and social welfare optimization in Bator| (1957) and |Coleman (1979). The math-
ematical challenge lies in the associated high-dimensional Hamilton—Jacobi-Bellman (HJB) equations
and characterizing the optimal control policy from the regulator.

Outline. The remainder of the paper is organized as follows. Section [2| presents the mathematical
formulation of the N-player stochastic differential game, and describes its relation with the auxiliary
control problem. Section |3| provides detailed analysis of the auxiliary control problem and the con-
struction of the optimal strategies. Section [4| characterizes the Pareto optima in terms of a sequence
of Skorokhod problems. Implications of our analysis for the interbank lending problem are discussed
in Section [4.3] Section [] provides explicit solutions in the case N = 2, and compares it with the Nash
equilibrium.

2 Mathematical formulation of the game

In this section, we describe the mathematical framework of the N-player game.

Controlled dynamics. Let (X});>0 € R denote the state of player i at time ¢, 1 < i < N. With
absence of controls, X; := (X},..., X) € RY follows

Xt:XO‘I—Mt"—O'Bt, on(ml,...7$N), (21)

where B := (B!,..., BP) € RP is a D-dimensional Brownian motion on a filtered probability space
(Q, F,{F: }1>0,P), and p := (1, ..., un) € RY and o := (0)1<i<ni<j<p € RV*P are constants with
oo’ = M\ for some A\ > 0.

When player i chooses a control £ := (£F £57) from an admissible control set %, then X} evolves
as

dX] = pldt + o' - dB, +d&t —dgT, Xoo =a', (2:2)

Here £ = (£47,£%7) is a pair of non-decreasing cadlag processes and ¢ is the i row of the volatility
matrix . We will denote by P the law of the process (2.2]) and E, the expectation with respect to this
law.

Admissible controls. The set U% of admissible controls for player i is defined as

Uy ={(&7, 6 )0 | & and & are Fy-progressively measurable, cadlag non-decreasing,

00 , 00 A . . 2.3
with E {/ e_”tdf,f’Jr} < oo, E {/ e_ptdf,f’_} <00, &7 =0,8" = 0} ) (2:3)
0 0



Objective functions. Each player i chooses a control (£%7,£%7) in UY to minimize
Ji(x:€) = B, / e~ [hU(X,)dt + KFdeyt + K de)] . (N-player)
0

Here p > 0 is a constant discount factor, K", K;” > 0 are the cost of controls, and hi(z) : RY — R, is
the running cost function.

We have focused on characterizing Pareto optima of the game (N-player| subject to the dynamics
22).

Definition 1 (Pareto optimality). & € Uy := Y UL is a Pareto-optimal policy for the game
(N-player|) if and only if there does not exist & € Uy such that, for all x € RY,

Vie{l,....,N}, J'(z;&) < J (x;€"); and Fje{l,....N}, J (2;6) < J (z;¢%).

Pareto optima correspond to efficient outcomes of a game, which may or may not come from de-
centralized optimization by N players. The intervention of a regulator may be necessary to enforce a
Pareto-optimal policy.

3 Regulator’s problem

To study Pareto optima for game (N-player]), we introduce a ‘welfare function’ defined as an aggregate
cost:

J@:6) = Y LiJ'(z.8) (3.1)

o N N
= E, / et [H(Xt)dt + Y LKAt + LK dg |
0 i=1 i=1
where the dynamics of X, is given by (2.2), and

N N
H(z):=» Lih'(z), with L; >0and > L;=1. (3.2)
=1

=1

We will show that Pareto optima of (IN-player|) correspond to solutions of the following auxiliary
stochastic control problem

v(z) = min J(z;§), (Regulator)
€eln

which may be interpreted as the problem facing a market regulator seeking to optimize the aggregate

cost (3.1)).

To ensure the well-definedness of the game, the following assumptions will be made throughout,
unless otherwise specified.

Assumptions. There exist C' > ¢ > 0 such that
Al. Vz e RV 0 < H(z) < C(1+ |z|).
A2. Vo, o' e RN |H(z) — H(Z')| < OC(1 + ||z|| + ||| ||z — =']].

A3. H(z) € C*(RY), H is convex, with 0 < ¢ < 92H(x) < C for all unit direction z € RV,

6



For example, for the payoff described in the interbank lending problem in Section 1.1

N 2

H(z) = ZLi K (x’ — Zajxj) + (2> with  &;,v; > 0. (3.3)
i=1 i

Then H satisfies A1-A3 for any choice of weight L; > 0.

We shall first analyze the regularity of the value function v, which is necessary for subsequently
establishing the existence and uniqueness of the optimal control. As we shall see, the optimal control

for (Regulator]) yields a Pareto-optimal policy for game (N-player)).

The regularity analysis of the value function involves several steps. The first step is to show that

the value function for (Regulator| is a viscosity solution to the following HJB equation
max{pu — Lu — H(z), B(Vu) — 1} =0, (3.4)

+ 3N 40, and

i + i -
q q
Y ] 3.5
(LiKi> (Lin> ]’ 39
where ¢ := (¢, ,¢"), (a)T = max{0,a} and (a)~ = max{0, —a} for any a € R. The second step is

to show that the value function for (Regulator) is leofo
Let us start with the following property of the value function v for (Regulator|). Throughout the

paper, K will be used in the proof for generic positive constants which may represent different values
for different estimates.

with the operator £ =1 ij:l o' -0l 0%

zixd

B(g) = max

1<i<N

Proposition 2. Under Assumptions A1-A2, there exists K > 0 such that
(i) 0 <w() < K(1+ [[o]?), Vo € RY;
(i) v(z) —v(@)| < K1+ |lz| +[l2']) | — '], V.2’ € RY.

Proof. First, v(zx) > 0 is clear by the non-negativity of H(x). Moreover, by the property that oo’ = AI
with A > 0, it follows from a known estimate and martingale argument (Menaldi & Robin| 1983, (2.15))
that the solution {X,}i>0 := {& + put + 6B, }1>0 with £ = 0 satisfies

]Ex/ X2 < K(1+ |z]?), Ve RY,
0
for some constant K > 0. By Assumption A1, there exists a constant K > 0 such that

v(z) < J(x,0) < K(1+ ||z|?), VxR,

Thus (¢) of Proposition [2] is established.
For each fixed £ € RY, let

U, ={E el J(z,&) < J(z;0)}. (3.6)

By Assumption A1,

Ez/ e X, |2dt < K(1+ ||z]?),  Vz € RY.€ €Uy (3.7)
0



For € € Uy, it is easy to verify
B, [ el < KL+ ) 33)
0

and
0(@) — ()] < sup {|./(z:€) — J(&3)] - € € Uy Uy} Vi, 7' € RY.
Meanwhile,

J(z:€) — J(@'€)| <E / " H(XE) - H(XE)dt.

Statement (ii) for v follows by Assumption A2, along with the facts that X* — X% =z — 2’ and that
for any & € Uy U Uy,

E, / X2 dt < K(1+ |zl + |l2']), (3.9)
0

Em// X At < K(1+ [lal| + 2]):
0

In fact, if & € Uy, (3.9) follows immediately from (3.8) by the Holder inequality. Meanwhile, if & € Uy,

(3.9) holds because
XTI < [1IXT 1+ llz — '] < [IXT 1+ ll= + [l

Next, we establish the viscosity property of the value function in the following sense.

Definition 3 (Continuous viscosity solution). The wvalue function v for problem (Regulatori) is a
continuous viscosity solution to (3.4) on RN if

o Vzy, € RY V¢ € C2(RYN) such that xq is a local minimum of (v — ¢)(x) with v(xy) = d(x),
max{pé — Lo — H(z), 3(V) — 1} > 0.
e Vzy € RY V¢ € C2(RY) such that xy is a local mazimum of (v — ¢)(x) with v(xy) = ¢(x),

max{pé — L6 — H(x), 5(Ve) — 1} < 0.

Theorem 4 (Viscosity solution). Under Assumptions A1 - A3, the value function v to the control

problem (Regulator|) is conver and a continuous viscosity solution of the HJB equation (3.4)).

Proof. The convexity of v follows from the joint convexity of J(z;&) in the following sense:

holds for any z,,z, € RY and any &;,& € Uy. To see this, X? depends linearly on (z,£), and both
the set Uy and the function H are convex. Under Assumption A1l - A3, the existence of the optimal
control to problem follows from Theorem 4.5 and Corollary 4.11 in (Menaldi & Taksar,
1989). The convexity of v is verified as below, which follows the standard argument (Guo & Pham),
2005; Williams et al., [1994). Take & = argmingey,, J(z1; €) and € = argmingey, J (22 ; &), then by
definition,

07 (z1:€5) + (1 — 0)J(22:€5) = Ou(z1) + (1 — 0)v(@s). (3.11)

8



Note that 6] + (1 — 0)&€; € Uy by the convexity of Uy, therefore
v(Pzs + (1= 0)zz) = min J (0 + (1 = 0)22;8) < J(01 + (1 = O)z2: 061 + (1 - 0)6).  (3.12)
N
Combining (3.10), (3.11)), and (3.12),

v(0z, + (1 — 0)xz) < bv(x1) + (1 — O)v(2s).

We now show that v is both a viscosity super-solution and a viscosity sub-solution to the HJB equa-
tion (i3.4]).

Sub-solution. Consider the following controls: &'~ = 0 and
i+ 0, t - 0—,
oot t=0,

where 0 < n»* < e. Define the exit time
7= inf{t > 0,X; ¢ B.(zo)}.
Note that X has at most one jump at ¢ = 0 and is continuous on [0,7.). The dynamic programming

principle states that for any z € R",

v(z) = inf E,
ey

0 N N
/ (th(Xt)dt + Y LKA+ LMN&") +ePu(X e)] , (313)
0

i=1 i=1
for any 6 € F possibly depending on £ in the infimum of (3.13]). Therefore,

Te AR N )
D(xo) = v(x) < Eq / e Pt [H(Xt)dt + Z LiKFdE | + By [e?™"MWo(X o 00)] . (3.14)
0

i=1

Applying Ito’s formula to the process e "¢ (X ;) between 0 and 7. A h, and taking expectation, we obtain
TeNh
Be, [0 )] = 0(e0) + Bn, | [ e (pot Lo
0

+ Ky,

> [6(X0) _¢(Xt—)]] : (3.15)

0<t<TeAR

Combining (3.14)) and (3.15]), we have

E, V We’”(pas—w—H)(Xt)df] - E / WQ’”&L%W@*)
0 0 0 0 — %

Eay | D ¢<Xt)—¢><Xt_>]so. (3.16)

LO<t<T.Ah

e Taking first n** =0 for all i = 1,2,--- , N, i.e., €47 = £~ = 0, we see that X is continuous and
that only the first term in the LHS of (3.16) is nonzero. Dividing the above inequality (3.16) by
h and letting h — 0, then by the dominated convergence theorem,

po(@o) — LO(@o) — H (o) < 0.

9



e Now, by taking %" > 0 and 7** = 0 for j # ¢ in (3.16)), and noting that £** and X jump only
at t = 0 with size n>*, we get

TeNh
Ezo |:/ e*pt(pcﬁ — E(b — H) (Xt)dt — LiK;r’f]Z’+ — ¢($0 -+ nl’Jrei) + (b(xo) <0.
0
Taking h — 0, then dividing by n** and letting  — 0, we have

e Meanwhile, taking an admissible control such that £+ = 0 and

e [0, t=0-,
S _{nl"? t>0,

where 0 < n»~ < e. By a similar argument, we have

Vi=1,2,--- N, 0uéx) < LK.

This proves the sub-solution viscosity property

max{pp — Lo — H(z), 5(Vd) — 1} < 0.

Super-solution. This part is proved by contradiction. Suppose otherwise. Then there exist ¢, € RY,
€ >0, ¢(x) € C2(RY) with ¢(zg) = v(zp), v > ¢ in B.(xy) and v > 0 such that for all z € B.(z),

po(xo) — Lo(xo) — H(2o) < —v, (3.17)

and foralli=1,2,--- | N,
LK +v <06 < LK, — 1. (3.18)
Given any admissible control £, consider the exit time 7. = inf{t > 0, X, ¢ B.(z¢)}. Applying It6’s

formula (Meyer, (1976, Theorem 21) to e #'¢(z) and any semi-martingale {X,;};>¢ under admissible
control (£F, £57)N | leads to

Ba, [ 70X )] = blao) + B, | / T pok Lo
' Ea, / —ﬂtzaxl i) — (dgi )]]

+ Eao | Y e " [0(X0) —¢(Xt—)]] :

_0§t<7'5

Note that for all 0 < t < 7., X; € B.(zo). Then, by (3.17), and noting that AX} = Agf* a Aé‘f’_, we
have for all 0 <t < 7,

N
P(X¢) — (X4 ZAX’/ 0,i0( Xy + 2AX)dz < Z LK— g (LiK;_—V)Afz’_],
=1 i=1

10



Similarly,

N
S(X1) —d(Xi) 2> [—(LiK; —v)AGT — (LK) —v)AgT] . (3.19)
=1
In light of relations (3.17))-(3.19)),
Esy [e 77 0(X.2)] > ¢(x0) + Egy {/ e P(—H + y)(Xt)dt]
0
Te_ N . .
+ B / ey (LK) —v)dg™ — (LK —V)déi"]
0 i=1
- N ‘ N .
= p(x)) — Eg / e [H(Xt)dt+ZLind§§’+ + ZLiKi‘dﬂ’_]
0 i=1 i=1
N
+ > (g, [e 7 LiKFAGT] 4 By, [e7 7 LK ALT])
=1
+ V{Ezo { / e—f’tdt] + Eq, { / e Pt(deyt +d§§’_)} } (3.20)
0 0

Note that X, € B.(x¢), X, is either on the boundary dB,.(x,) or out of B.(xy). However, there is

some random variable ¢ valued in [0, 1] such that
s =X, _+0AX, =X, _+ (A& — AE) € OB (xo).

Then similar to (3.19)), we have

N
(zs) — Z (LK, =)A= (LK —v)ALT]. (3.21)
Note that X, = x5+ (1 — §)(A§L — A&), thus
N
—0) Y (L AE + LK AST) +o(X.,). (3.22)
i=1
Recalling that v(zs) > ¢(zs), inequalities (3.21])-(3.22)) imply
N N
=0) ) (LT AE + LK MG ) +0(X7) 2 (X5, )40 ) [—(LilG —v)ALT — (LK —v)A&T] .
i=1 =1
Therefore,

> (LK = o)A + (LK = 0)A&T ) +v(Xs) = 6(X,).

N
=1

7
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Plugging the last inequality into (3.20]), along with ¢(xg) = v(xo), yields

E,, e’

0

N
Z (LK — 6v) AL + (LK, — dv)AET) + U(XTE)]

i=1

e N ' N '
> v(@)) — Fa, /0 et [H(Xt)dt + Y LKFET + ) LiKidfz’]
i=1

i=1

+ ) (Bap [ LAY | + By [0 LT AGT])

M-

Il
—

7

+ V< Ey, { / e”tdt} + Eq, { / e (dgr™ +d§§")} }
0 0

Egoe " v(X ) +Ez0/ e P!
0

Hence

N N
H(X)dt+ Y LK dg™t + Y LK, dgy™
i=1

=1

> wv(xg) + v {]Ezo {/ e_ptdt} + Eq, [/ e Pt det + dﬁtz_)} + 0B, [e7 P AT + e AL } :
0 0
We now claim that there exists a constant gy > 0 such that for all admissible control &,
Ez, {/ eptdt} + E,, {/ e Ptdeyt + dﬁf’)] + 0E,, [e*’”ﬁAﬂ"f + e*”TEAf‘i’;] > g0 (3.23)
0 0

Indeed, one can always find some constant G such that the C? function

(@) = Gol(x — 20)* — €)

satisfies

ming{py) — L+ 1,1 —[0,4|} >0, on B.(z),
¥ =0 on 0B (x).

Applying It6’s formula to e ”4)(z) and any semi-martingale {X;};>o under admissible control
(£%,6"7)L, leads to

Te—

Te N . .
B, [ 0(X0)] < o) + B, | [ et| 4 308, | [T e vagn)|. e
0 P 0
Since 0,i)(xg) > —1 foralli=1,2,--- | N,
N
G0 ) = (@) = —VH(X, —35) = —6 > AL,

i=1

which, combined with ([3.24)), yields

TE N Te* . .
o [ [C ] + Sk [ [ 4 a)] B
0 P 0
> By [e77(@5)] — ¥(m0) = Goe®.
Hence (3.23) holds with gy = Goe?. O

N
e PTeS Z A&Z-’;

=1

12



We can further show that the value function is a Wliso (RY) solution to the HJB equation (3.4)).

Theorem 5 (Regularity). Under Assumption A3, the value function v defined by (Regulator|) belongs
to W2°(RN) and is a solution to the HJB equation (3.4). In addition,

loc
0<dv(z) <O, ae. forxecRY, (3.25)
with C' > 0 defined in Assumption A3. Furthermore the continuation region
Cny:={z|B(Vv(z)) <1} (3.26)
is bounded and non-empty. In addition, we have v € C**(Cy).

Note that W>®(RY) c C'(RY) by the Sobolev embedding (see Corollary 9.15 in Chapter 9 from

loc

Brezis (2010)).

Remark 6 (Uniqueness). Our primary goal is to identify and characterize Pareto optimal policies.
To this end, it suffices to show that the value function of is in WE*(RY) and a convex
solution to the HJB equation (3.4). Uniqueness of the HJB solution, although not essential, can be
established by a verification argument as discussed in Appendix [A} the regularity, the convexity, and
the bounded second-order derivative of the value function allow to apply an It6-Tanaka-Meyer Formula.

Proof. To prove (3.25)), let A;(n) := (0,---,0,1,0,---,0) be the N-dimensional row vector with the i-th
entry being 1 for i = 1,2,--- , N. For any function F' : RV — R, define the second difference of F' in
the x* direction by

67 (Fz,m) == F (. + Ai(n)) + F (x — Ai(n)) — 2F (z). (3.27)
It is easy to check
62 (v,x,n) <sup{6Z(J (€),z,n) : € €Uy} (3.28)

Since H € C*(RY), for x € RV,

1 A
5§(H,x,n):(n)2// OLH(z', ... a4+, ..., 2™ )dud\. (3.29)
0 -2

By Assumption A3,

1 A
62(H,z,m) < Cn2/0 /}\dpd)\ =n*C. (3.30)

Hence
0 <6 (v,x,n) <On?, zcRY |n| < 1. (3.31)

The lower bound of (3.31)) follows from the convexity of v by Theorem .
To prove v € W2 let G C RY be any open ball and let ¢ € C5°(RY) be any test function such

loc

that supp(¢)) C G. According to ([3.31)), we have

262 (v, 2,m)| < C for z € G and |n| < 1.

13



Therefore by Theorem 1.1.2 in (Evans, (1990), there is a sequence 7, — 0+ as k — oo such that, denoting
by gr(x) := 1, 202(v, x,m1.), we have gi(z) — Q weakly in LP(G) for some p with 1 < p < oco. It is then
easy to see that

Y(@)Q(x)dr = | yv(x)dr, Vi € CP(Q), (3.32)
RN RN
where () = 8;.@. The existence and local boundedness of second order derivatives is now immediate:
for k =1,2,..., N, let e; denote the unit vector in the direction of the positive x; axis; for any fixed
ez-—&-ej

1 # 7 with 1 < 14,5 < N, let y be a new coordinate whose axis points to the 7 direction, then
07,0 = Ogv — 5(0%v + 02v).

Since |9 v(z)| < Limax{K;",K; } (i =1,2,--- ,N) on R but H grows at least quadratically by
Assumption A3, Cy must be bounded.

Finally, let G be any open ball such that G € Cy. By Theorem 6.13 in (Gilbarg & Trudinger, [2015),
the Dirichlet problem in G,

{ gf) — L0 = H(z), Vi € G, (3.33)

—= ”U, va‘ E 8G7

has a solution # € C°(G)NC**(G). In particular, o —v € W?>(Q), therefore by (3.33), o —v € Wy(G).
By Theorem 8.9 in (Gilbarg & Trudinger} 2015), v = ¥ in G, thus v € C**(G). By Theorem 6.17 in
(Gilbarg & Trudinger}, 2015)), v € C**(G) thus v € C**(Cy) for all a € (0, 1).

0

Remark 7. The proof of Theorem is inspired by the approach in (Soner & Shreve, |1989, Theorem 4.5)
and (Williams et al. {1994, Theorem 3.1). In (Soner & Shreve, [1989), the following HJB equation ((3.34)
(See Eqn. (3.1) in (Soner & Shreve, |1989)) has been studied for an N-dimensional control problem

max } pu — Lu — H(z), (3.34)

Comparing the gradient constraints in (3.34) with (3.4), it is clear that the operator 8 in ([3.4) is less
regular than ||Vul|2 in as ||Vu(-)||2 has smoother and gradual changes in the state space RY. In
contrast, 3 in (3.4) involves a maximum operator as a result of game interactions.

The HJB equation has appeared in Menaldi & Taksar| (1989)) for analyzing the convergence
of finite variation controls. To our best knowledge, our characterization of the optimal control and
regularity results are novel.

4 Pareto-optimal policies

The regularity analysis of the value function for problem (Regulator|) enables us to establish the
existence and the uniqueness of its optimal control, for any given weight (Ly,--- , Ly) such that L; > 0

and Zfil L; =1 (Section . The optimal control in (Regulator]) is then shown to lead to a Pareto-
optimal policy for game (N-player|) (Theorem for each choice of weights (L, -+, Ly).

4.1 Optimal policy for the regulator

To ensure the uniqueness of the Pareto-optimal policy, we impose the following assumption on the value
function v.

14



A4. The diagonal dominates the row/column in the Hessian matrix V?v. That is,
O2v(x)> Y |02 ,0(@)| Vi,=1,2,--- N and z € Cy. (4.1)
JF

Note that a similar assumption has been used in (Gomes et al., [2010, Assumption 3) to analyze Nash
equilibrium strategies. This assumption guarantees that the reflection direction of the Skorokhod prob-
lem is not parallel to the boundary, and that the controlled dynamics are continuous when & € Cy.
Assumption A4 can be relaxed using techniques of Kruk (2000) to deal with possible jumps at the
reflection boundary.

Given this additional assumption and the regularity of the value function, we are now ready to

characterize the Pareto-optimal policy to game (N-playery.
We shall show that when x € Cy, the optimal policy may be constructed by solving a sequence

of Skorokhod problems with piecewise C! boundaries, then passing to the limit of this sequence of -
optimal policies. We shall also show that the reflection field of the Skorokhod problem can be extended
to the entire state space under appropriate conditions, completing the construction of the Pareto-optimal
policy when z is outside Cy.

Optimal policy for x € Cy. First, recall the definition of the Skorokhod problem in (Ramanan,
2006)).

Definition 8 (Skorokhod problem). Let G be an open domain in RN with S = 0G. Let T'(a,b) = {x €
RN : |z —a| = b}. To each point x € S, we will associate a set r(x) C ['(0,1) called the directions of
reflection. We say that a continuous process

£t:/0 Nsd/r/sa (42)

with n; = \/[O,t]€ the total variation up to time t, is a solution to a Skorokhod problem with data
(x + pt+0B,,G,r,x) if

(a) |Ni| =1, n; is continuous and nondecreasing;
(b) the process X; = x + ut + oB; + fOthdnS satisfies X, € G, 0 < t < 00, a.s;

(c) for every 0 <t < oo,

t
77t=/ 1(XS€8G,Ns€r(XS))d775-
0

Now let us introduce some notations for the Skorokhod problem associated with the continuation
region Cy defined in (3.26]). By definition,

Cy ={z | B(Vu(z)) < 1} =Y, G;, (4.3)
where for e =1,2,--- , N,
G ={z | Opv(z) < L;K; }, Gion ={z | Opv(z) > —L;K;'}. (4.4)

Denote S = dCy as the boundary of Cy, denote I(x) ={j |z ¢ G;, j =1,2,--- ,2N} as the boundary
that x lies on, and define the vector field v; on each face G as

Yi = —€i, Yi+N = €, (4-5)
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where e; = (0,---,0,1,0,---,0) with the 7 component being 1. Then the directions of the reflection
is defined as

r(z) = Z cjvj(®) + ¢ >0 and Z @) =1,. (4.6)

jeI(x) JEl(z)

Theorem 9 (e-policy). Assume Assumptions A1-A4 and x € Cy. For any € > 0, there exist C. C Cy
non-empty and r. such that the unique solution to the Skorokhod problem with data (x+pt+0By,Ce, 1., )

is an e-optimal (admissible) policy of the control problem (Regulator| with
t
&~ [ N:-a (4.7
0
and NSer (XS) on S, where X{ =x + pt + 0B, +&. That is,
(1 - COE)J<377§€> < U(Z’),

for some constant Cy that is independent of . Here C. C C has piecewise smooth boundaries.

Proof. The proof consists of two steps. We first construct an approximation C. of Cy with piecewise
smooth boundaries. Clearly, if OCy itself is piecewise smooth, the C, = Cy. We then show that the
solution to the Skorokhod problem with piecewise smooth boundary provides an e-policy to the control

problem (Regulator)).

Step 1: Skorokhod problem with piecewise smooth boundary. Let ¢°(x) € C°(R" R, ) be
such that ¢°(z) = 0 for |z| > § and

¢ (z)dx = 1. (4.8)

RN

Since v € W2°(RN), consider a regularization of v(x) via ¢¢ such that

v (x) == ¢° * v(x). (4.9)

Similarly define H°(x) := ¢° + H(x). The boundedness of v, Vv, D*v on Bg(0), with Cy C Br_1(0),
implies that H° and v° are bounded uniformly on Cy for § < 1, and

v v, V' —=Vu, H°— H uniformly in Cy.

Denote Kpax = max;—io.. N{Li K", LiK; }, Kpin = mini—1 .. v{L;K;", L; K; } and recall C' in (3.25)
such that 0 < dZv(z) < C for any second order directional derivative 7. Then, for any €, € (0, 1),
there exists 0 = 0x(e) € (O,%KT““) such that for all § € [0,0;], |[Vv? — V|l < Kupmer. Take a
non-negative and non-increasing sequence {¢; };, such that lim,_,. ¢, = 0. Denote w’ (z) = 3(Vv’(z))

and C., = {x | w*(x) <1—2¢} =N G, wherei = 1,2,--- | N,

G = {x | 0 (x) < (1 —2e) LK},
Gy = (o] 000" (@) > (=1 +26) LK} (4.10)

Since ||V — Vol|; < Kpin€x in Cy and by the definition in (4.10)), we have C., C Cy.
First, let us show C,, is non-empty when ¢, € (0, i) We claim that v attains its minimum in Cy.
To see this, let 6§ € (0, %£=in) be given, and choose z € RY such that v(z%) < v(z) + 0, vz € RV.
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Define ¢y(x) := v(x) + 0|z’ — z||? for all z € RY, and note that 1)y attains its minimum over RY at
some point g?. In particular,

0= Viu(y’) = Voy®) + 20" — 2%). (4.11)

But also
v(y’) + 0y’ — 2’| = we(y’) < () = v(a’) <o(y’) + 6.

It follows that ||z —y?|| < 1. Returning to (4.11]), we have ||[Vo(y?)||* < 46% < K2,,. Hence |0,:v(y?)| <
Kyin (1 =1,2,--- /N) and y? € Cy for all 6 (0 M) Since Cy is bounded, there exists a sequence
0y € (0, %) with limk_m 0, = 0 such that limy_.. y% = y° for some y° € (_YN. From (4.11)) we have
Vu(y®) = 0 and hence y° € Cy. In addition, the convexity of v implies that v attains its minimum at

y°. We now show that B(y°, li"ém) CC,, for all ¢ € (0, ) For any z € B(y", K ) andi=1,2,---, N,

10,0 (@)] < |9,0()] + Kunine < KJ& — 30| + Kunine < %Kmin.
The first inequality holds by the definition of §; and the second inequality holds since ||V?v|| < C. By
definition of C,, in (£.10)), we have B(y°, £zir) C C,, and hence C,, # () holds for all ¢, € (0,1).
Also notice that 8G6’“ NC., € C? because v°* is smooth Now, take any € = ¢ from the sequence {eg }
and take 0 € [0, 9, and denoteS = O0C, as the boundary ofCcand I(x) = {j [z ¢ G5, j=1,2,--- 2N }.
Define the vector field ; on each face G as and the dlrectlons of reflection by

r.(z) = Z ¢jvj(®) + ¢ >0 and Z @) =1,. (4.12)

jele(@) jel@)

When € = 0, denote I(z) := Iy(x) and r(z) := ro(z) for the index set and reflection cone of region Cy,
respectively. Then define the normal direction on face G§ as n§ (j = 1,2,--- ,2N) with

nE—— V(@ziv(s) ne . V(@xivd)
V@)l Y IV (@sd)]

Note that the normal direction n§ (j=1,2,--- ,2N) is well-defined by the construction of .
2 .8 2 .6

Next we show that nj -, = HV&% >0 and nj, y - Vipn = W%;#)\b >0fori=1,2--- N.

To do so, we shall show that Bs(z) € Cy for £ € S.. Note that (=1 + 2¢)L;K;” < dv(z) <
(1 —2¢)L;K; for x € C.. For any y € B;(z), |0,v(x) — dv(y)| < Cllz —y|| < C§ < €K pin. Therefore,
(—1+6) LK < (=142¢)L; K;f — e Kppin < 0piv(y) < (1-26)LiK; +eKpin < (1—€)L;K; . Thus, y € Cx
for ally € Bs(z) and z € S.. Moreover, under Assumption A4, 82 V() = fy €Bs(a iiv(y)gb‘s(x—y)dy >
0 for all z € S,.

Furthermore, at each point & € S, there exists v € r.(z) pointing into C.. This is because there
is no & € JC, such that {i,i + N} € I.(z) for any i = 1,2,--- , N, and this implies |I.(z)] < N for
all z € JC.. Now Assumption A4 implies the following condition (3.8) in (Dupuis & Ishii, [1993): the
existence of scalars b; > 0 j € I.(z), such that

bj (@), ms(2)) > Y bel{m(@) na(x))]

kele(@)\ (i}

i=1,2,--- N.

Here we can simply take b; = 1 for all j € I(x). Therefore, by Theorem 4.8 and Corollary 5.2
of (Dupuis & Ishii, 1993), there exists a unique strong solution to the Skorokhod problem with data
({x + pt + 0B }1>0,Ce,Te, T).
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Step 2. e-optimal policy. Now we shall show that the solution to the Skorokhod problem with data
(x + pt + 0By, C., 1., ) is an e-optimal policy of the control problem (Regulator|) with

t
£ = / Ne - dy, (4.13)
0

and NS € r.(X¢) on S, with X§ =2 + pt + 0B, +&;. By Theorem 4.8 of (Dupuis & Ishii, [1993), X€ is
a continuous process. Since v € C**(Cy), applying It6 formula to the semi-martingale X¢ yields

v(e) = E, /OO e P [H(X{)dt + Vo(X5) - Nidns]

> Ez/ e [H(X;)dt + (1 —3e) [(N§)* - Kf + (N;)™ - K] dn]
0

> (1-30E, / e [H(XOdt + [(NOF - KF + (N9~ - K7 di]
0
= (1—=3e)J(x;£) (4.14)

where N¢(z) € r.(z) on S,

K} = (LK, ,LyKY), Kf = (LiKy, -+ ,LyKy), and K. = 11222{\{{[)14[(?,@[(;}. (4.15)

The first inequality of (4.14)) holds since ||[Vv® — V||, < Kuine for 6 € [0,5(¢)] and (4.10)). The second
inequality of (4.14]) holds since H(z) > 0.
O

Now we are ready to establish the main theorem when z € Cy.

Theorem 10 (Existence and uniqueness of optimal control). Take x € Cy and assume A1- A4. Then
there exists a unique optimal control & to problem (Regulator|), which is a solution to the Skorokhod
problem (@ with data (x + pt + 0By, Cn,r,x) such that X} € Cx under control £*.

Proof. Step 1: Optimality. The existence of the optimal control to problem follows
from Theorem 4.5 and Corollary 4.11 in (Menaldi & Taksar, [1989). According to Corollary 4.11 of
Menaldi & Taksar| (1989), if (N, n%) is a sequence of e,—optimal policies for  and limg_,o € — 0,
then one can extract a subsequence €, such that

= ( / N (w)dne (w) “=5°€ (W) dt x dP — a.e. (4.16)

where £*, defined in ([4.16), is optimal, i.e., £* € argmingey, J(z;€). By the analysis in Theorem [J]
there exits a sequence of e,—optimal policy and ¢, — 0 when k& — oco. Therefore, the optimal control
exists, which is the limit of &, (w) defined in (4.16)).

Step 2: Skorokhod condition. We next show that the limiting control £* in is a solution to
the Skorokhod problem with data (z + ut + 0By, Cy,7,z) such that X; € Cy. Let us first check
Property (b) of the Skorokhod problem (Definition [§)). Denote

A={w| X w)eC., forall 0 <t <ooandall K >0},
then by definition (4.13), P(A) = 1. Also define

B={w|X{* — X, ae. Lebon [0,00)},
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then by (4.16), P(B) = 1. For all w € AN B, since Cy is closed,
X(w) € Cy Leb a.e. on [0,00).
Now we check property (c) in Definition , i.e., the optimal policy acts only on OCy, and its reflection
direction is in r(x).
Take the smooth function ¢¢ in (4.8) and the smooth version of value function v¢ in (4.9)). Let
He¢(z) = ¢ * H(x). From the HJB Equation (3.4)),
pv—Lv < H, B(Vv)<1inR"Y, (4.17)
and
pve — Lo < HS, B(Vo) < 1in RY. (4.18)
To see this, take £ € RY. By (4.17),
pu(z) — Lot(z) = / ¢ (y)lp(x —y) — Lo(z —y)ldy < / ¢ (y)H(z —y)dy = H (),
B(0,¢) B(0,¢)
where B(0,¢) = {x € RN : ||z|| < ¢}. Forany i = 1,2,--- , N and € RY, by (4.17) we have
o) = oa ([ slte- y)dy) - [ swote -y
B(O,E) B(O,€)

< / O (y)LiK; dy = LiK; .
B(0,¢)

Similarly —L; K;" < 0,:v(z) holds for all i = 1,2,--- , N and £ € RY. Hence 3(Vv¢) <1 in RY.
Letting 7' > 0 and applying the Itd formula (Meyer, (1976, Theorem 21) to e **v¢(z) and the semi-
martingale {X,}:>¢ under any admissible control (¢4, £57)N, yields

E, [e "0 (X7)] = ve(x) + Ez/ e " (LvS — pv°) (X)dt
. 0
+ E / €_ptVU€<Xt) . dét

+ E/ e (X)) = v (Xim) = Vo (X)) (& - €0)),

0 o<t<r

with the last term coming from the jumps of X;. By (4.18)),

Eg [T (X7)] + B, / o (X1)dt — By / ' eV (X) - dE,
° ‘ (4.19)
e / D e (= (X)) + 0 (X ) + Vo (Xy) - (€ — &) > ().

0 o<t<r

Moreover, H¢, v are bounded uniformly on Cy for € < 1 because v, Vv, D*v are bounded on B(0, R),
with Cxy € B(0, R — 1), thus

v = v, Vot —= Vv, H¢— H uniformly in Cy.
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Meanwhile, for Vz € Cy,
v(@) = E, / e [H(XD)dt+ (N2 - KF + (N9 - K] dig] (4.20)
0

where X} =z + ut + 0B, + & with & := fot NZdn: the optimal control, and K and K are defined in
(4.15)). In particular,

]Ez/ e tdn; < oo, (4.21)
0
which leads to
T
Em/ e " [(N})"-Kf + (N;)” - Kz ] dn; < .
0
By the bounded convergence theorem and (4.19)),

T T
E. [e " o(X})] + Em/ e P"H(X7)dt — Em/ e ""Vu(X7) - Nidn;
. ° ° (4.22)
#E, [37 e (X (X)) NG ) 2 ol
0

0<t<T

The last term on the left-hand side is nonpositive because of convexity of v, hence
E, [e " v(X})] + Ey /0 ' e PH(X?)dt — E, /0 : e P'Vu(X7) - Nidn > v(z).
Letting 7' — oo, by the boundedness of X}, 3(Vv) <1, |[Nj| =1, and (4.21)),
E, /0 T e H (X dt — B, /0 e tu(X?) - Nidn > ().

Along with , we have

0>E, /OOO e " ([Vo(X7) + KE] - (N)Ydy + [-Vo(X]) + Kz ] - (N7) " dny) .
Given 3(Vv) < 1, we have —K;" < v,(z) < K;,Vxr € RN and i = 1,2,--- , N. Hence

02 By [ e ([Tu0X0) + KE] - (N i + [-VolX;) + K] - (N7) ) 0.

This implies dn = 0 when S(Vou(X7;)) < 1 a.e. in t. Also, when dn; # 0, N;(z) € r(z) for z € S a.e.
for ¢ € [0, 00), where the reflection cone r(z) is defined in (4.6)).

By Assumption A4, for any £ € dCy and y(z) € r(z), y(x) is not parallel to dCy at . Hence,
property (a) holds, i.e., the optimal control is continuous.

Step 3: Uniqueness. It remains to show the uniqueness of the optimal control. This is done by
a contradiction argument. Suppose that there are two optimal controls {€*};>¢ and {€**};>0 such that
& # & almost surely. Let {X7}i>0 and {X;*}i>0 be the corresponding trajectories. Let &; = Sitei”

2
and X, = X J;Xt . Then by Assumption A3,

o)~ Jmgy) = TEEITIEED) g

> Em/ e—f’t[ ( t)+2 ( t)—H<—”; t)}dwo.
0

Therefore v(z) > J(z;€), which contradicts the optimality of {&} }+>0 and {&;*}+>0. Hence the uniqueness
of the optimal control. O
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Optimal policy for ¢ Cy. When z ¢ Cy, the optimal policy is to jump immediately to some point
% € Cy and then follows the optimal policy in Cy. We will need the following assumption so that the
reflection field of the Skorokhod problem is extendable to the RY plane (Dupuis & Ishii, [1991). Note
that when N =2, A5 follows directly from Assumptions A1-A3.

A5. There is a map 7 : RN — Cy satisfying 7(z) = z for all z € Cy and 7(z) — z € r(7(z)).

This assumption was also adopted in (Dupuis & Ishii, 1991, Assumption 3.1).

Theorem 11. Given A1-A83, and A5. For any x ¢ Cy, there exists an optimal policy 7 such that
m(z) € ICy at time 0 and
v(x) = v(r(z)) + l(z — 7(x)),

with l(y) = Y, l;(y;), where

Proof. Notice that I(y) is convex and

Li(y:) = max {ky;} = max{—L;K"y;, L; K; y;} for y; € R.

—L;K;F<k<L;K;

Here we define two linear approximations which correspond to the lower and the upper bounds of the
value function v(z), respectively.

For z ¢ Cy, define

u(z) = o))+ Vo(r(z)) - (x - w()),
ug(z) = v(r(x)) + l(z — 7 (z)). (4.24)
Then us(z) > v(x) by the sub-optimality of the policy, and ui(z) < v(z) by convexity. Thus,
u(z) < v(z) < ug(z). (4.25)

We now show u;(z) = ua(x). By Assumption A5, u; and uy in (4.24) can be rewritten as

u(x) = o(r(z) + Vo(r(z)) - d7(2))|z - ()],
us(x) = v(n(z)) + P(n(z)) - d(n(z))|lz — 7(z)],

where d(m(z)) € r(w(z)) and P(z) = (P, -, Py)(x), with
P(z) = L;K;'1(0v(z) < 0) + L;K; 1(dyiv(z) > 0).

Therefore uy () = us(x). O

4.2 Pareto-optimal policies

Pareto-optimal policies for (N-player|) may be constructed from the optimal control for problem
(Regulator| as described below.

Theorem 12. The optimal control for the requlator’s problem (Regulatomn) yields a Pareto-optimal
policy for the game (N-player|).
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Proof. To see this, take the payoff function J* in (N-player|), v(z) the value function in (Regulator]),

and the optimal control £* := (£*,... &N*), if exists, to problem (Regulator]), then for any £ :=
(€',...,&Y) €Uy and L;, with L; > 0,30 L; = 1,

Z LiJi(z:€) > v(z), (4.26)

where value v(z) is reached when player 4 takes the control £&* (i = 1,2,..., N).
If there is another & := (¢V,... &Y') € Uy and k € {1,..., N} such that

TH(a; €, EY) < T (s €M, 6N,
then given L; > 0 for all 4, there must exists j € {1,..., N} such that
Tz €Y, ) > P (€, €.
Hence the control £* is a Pareto-optimal policy by definition. ]

Combining Theorems and [12] yields the following result which summarizes the structure of the
set of Pareto optima:

Theorem 13 (Pareto-optimal policies). Under Assumptions A1-A5, for any set of weights L =
(Ly,-+-,Ly) with L; > 0 and sz\il L; = 1, the unique solution &, € Uy to the regulator’s problem

(Regulator|) yields a Pareto-optimal policy for the game (N-player).

The analytical structure of the continuation region and the Pareto-optimal policy suggest the
following description: X; evolves according to the uncontrolled diffusion process inside the interior of
Cy and when it hits boundary at a point belonging to dG; or 0G;, y, then bank 7 will adjust its rate to
push it back instantaneously inside Cy. In particular the optimal policies lead to continuous controls

.

4.3 Pareto-optimal policies for interbank lending

Let us now translate these results in the setting of the interbank lending model described in Section [1.1}

Theorem (13| implies that Pareto optima for the interbank lending market may be described in terms
of the policy of a regulator facing the optimization problem with an aggregate payoff
function (3.2)) representing a weighted average of payoffs of individual banks.

Under a Pareto-optimal policy, the interbank rates may be described as a ‘regulated diffusion’ in
a bounded region Cy defined by . The boundedness of Cy implies that the payoff structure (|1.2))
leads to endogenous bounds on the interbank rates: the regulator only intervenes when the rates reach
these bounds, represented by the boundary of the continuation region Cy.

The Pareto-optimal policy leads X; to remain confined in the bounded region Cy, which implies in
particular that the spread X’ remains bounded. In the context of the LIBOR mechanism, this can be
seen as the impact of ‘trimmed’ averaging, which is the origin of the terms K", K, as explained in
Section [1.1} as banks internalize the risk of being ‘outliers’ in the benchmark fixing, they confine their
rates to a bounded region.

The process X, diffuses in the interior of Cy, following the random shocks banks are subjected to,
and is pushed into the interior when it reaches the boundary. More precisely, the boundary OCy is
composed of 2N ‘faces’ corresponding to the saturation of the constraints in (4.4). Edges correspond to
intersections of two or more faces. When X, reaches a point € dCy, action is taken by all banks ¢ such
that x ¢ G; UG n: if £ ¢ G; then X* is reduced i.e. dé~ > 0 and if £ ¢ G,y then X' is increased
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i.e. d€»T > 0. When X, reaches the interior of such a face, only bank i adjusts its rate in order to push
back X; to the interior. Similarly, if X; reaches an edge, two or more banks need to simultaneously
adjust their rates. The rate at which such simultaneous adjustments occur is given by the intersection
local time (Rosen, 1987) of (X*, ..., X) on the boundary. Therefore Pareto-optimal policy rarely leads
to more than one bank’s rate to be adjusted; a simultaneous rate adjustment by several banks is most
likely not associated with a Pareto-optimal policy and is thus a signature of a non-optimal behavior by
banks.

We also note that, our admissible controls allow for discontinuous adjustments of rates, and Pareto-
optimal policies correspond to instantaneously pushing the process to the interior. As discussed in
Theorem [I1], Pareto-optimal policies may involve an initial push at ¢ = 0 to bring the initial condition
into Cy, which we may interpret as the entry of a new bank into the interbank market.

The set of all such Pareto optima is parameterized by the set of allocations L = (Ly, ..., Ly) with
L; > 0 and Zf\il L; = 1. These allocations lead to different outcomes across banks. A natural choice
is to take L; proportional to the loan volume of bank ; then represents an aggregate wealth
maximization problem and this policy leads to the same pro-rata cost across banks. As is clear from
, choosing a higher weight L; leads to a tighter control on the rates of bank i.

5 Explicit solution for two players

We now study in more detail the structure of the optimal strategies for the case of N = 2. Our analytical
results illustrate the difference between Nash equilibria and Pareto optima and demonstrate the impact
of regulatory intervention in this game.

5.1 Pareto-optimum for N = 2

For the special case of N = 2, we can derive explicitly its Pareto-optimal solution. For ease of exposition,
we shall assume the following conditions in the case of N = 2.

B1. ay = ay and Ly = Ly. In other words, the regulator allocates equal weights to the banks.

B2. hl(x!, 2?) = R (2!, 2%) = h(z' — 2?), h € C3(R) is symmetric, and there exist 0 < ¢ < C such that
c < h” < C,and h" is non-decreasing and bounded away from 0.

B3. ul =2 =0, Ki = K{ = K, >0and K} = K; = K, > 0.

Note that Assumption B2 is more general than Assumptions A1-A3. As a result, we will see in
Proposition [I6]that the non-action region may not necessarily be bounded and the Pareto-optimal policy
for the game may not be unique with fixed weights L; = Ls.

Under Assumption B3, the rates X! and X? are assumed to be

X! =0'-dB,+d¢)t —de)T, with o =2, i =1,2. (5.1)
The value function v(z!, 2?) of (Regulator) becomes
1
v(zt, 2?) = inf J(x', 2% €4,€%) = inf = [JN(at, 22 €4 €%) + TP (2t 2P €L 6P 5.2
@t = b a6 = b S [T ) + Pt e 5:2)
o0 K K K K
_ . —pt 1 y2 N1+ Bl — N2 ,04 2 —
g (617161;;6“2 E(ZE]‘,ZB2) |:/0' € (h (Xt Xt)dt + 2 dét + 2 dé-t + 2 dét + 2 dgt )} 5

subject to (5.1]).
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Lemma 14. Assume K, < K; and B1-B3. Then for any (§'*,€*) € arginf (g1 g2, J (2!, 22, €1, €?),
(& T ) =1(0,0) for anyt >0 a.s..

Proof. The statement is proved by contradiction. Assume there exists an optimal policy (£'*,£€%*) €
arginf g g2y, J(x', 2%, (€',€?)) and to > 0 such that

51* +

Since £Y7* is a non-decreasing process, we have Stl T > 0 for all ¢t > t,. Now construct the following
admissible policy (51,52) such that, Vt > 0,

=2,— * *,—

gt = tl 7+ + 51%2 9

_1’+

& =66 =4

Then - K, —
J($l,$2,§1*,£2*) - (1‘ z 761 22) xl ,z2) |:/ e t——= dgl* +:|
0
which contradicts the optimality of the control process (€ 1*,52*). O

We now show that solving the control problem ([5.1)-(5.2) is equivalent to the following control
problem (5.4)-(5.5) when K; > K,

o K. K
u(y) = inf J(y,n) = inf E, {/ e (h (V) dt + =2dn; + —ant_)} : (5.4)
neUs nel 0 2 2
where dY, = (o' —0?)-dB,—dn +dn;, with Yo_ =vy. (5.5)
Lemma 15 (Equivalence). Assume B1-B3 and Ky > K, then
(Z) ’U(l’l, x2) = u(xl - x2);

(i) IF (€, € argint e gnesy T (a7, (€1,€9), then (€,€7) = (0,0) ¥t a.s., and
£ ¢ arg infper, J(x]L —22.m);

(1i1) If n* € arginf,cy, J(x —x%,m), then ((0,0),n) € arg inf g1 g2y, J(zt, 2%, (€1,€7)).

Proof. By Lemma. ot ftl “7) =(0,0) for any t > 0 a.s.. Therefore, we can consider a smaller class
of admissible control set where (¢7F,¢7) = (0,0) Vt > 0 and €2 € U;. Note that with (67, &) =
(0,0), we have

X=X} =(0"=0") B, =T+ + (a' —a?), (5.6)
and
o0 K. K.
J(xh, 22, €1, €2) = a2 [ / et <h (X} — X2)dt + 22 de>t + {dev—)} . (5.7)
0

Clearly problem (/5.6))-(5.7) is equivalent to the one-dimensional control problem ((5.4))-(5.5) with y =

x' — 22, Hence the claim. m
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Proposition 16 (Pareto-optimal solution when N = 2). Assume B1-B3.
(i) If K1 = Ky = K, then the following control yields one Pareto-optimal policy to game (5.1)-(5.2)):

R A (0 max{O max{x - )+(01—02)‘Bu+§i*’—01}})7

<u<t

(5.8)
e (g2t ) = (0 max {O max {—(z' —2°) + (6° —0') - B, + &~ —01}}) )

0<u<t

where ¢y is the unique solution to

% tanh (@x) = M, (5.9)

and

pi(z) =E VOOO e Ph(z+7B) dt} , (5.10)

with o = \/2?21 Zle o7;. The associated Pareto-optimal value is

. 2p(c1) cosh((xl,ZQ) @)

‘F 2 0 < 1_ .2 < ,

R R I S
’ v(z? + ¢p,2?) + (2! —2? — o), vl — 2% > ¢, '
v(—zt, —2?), !t — 2% <.
(ii) If K1 > Ky then the following control yields a Pareto-optimal policy to game (5.1)-(5.2)),
= (0,0), and & = (&1, &) with (5.12)
7 = max {0 max { vt —2?) + (6 — ') - B, + & — El}} , (5.13)
2+ _ 2 12 %2,—

p = max{() Orggict{x —z°)+ (6 —0°) B, + &, —01}}, (5.14)

where ¢y is the unique solution to
o V2 [(x) — B2
7 tanh [ Y222 = 171()—27 (5.15)
V2p o P ()
and the associated Pareto-optimal value is

E2p”(51)cosh(( 2)ﬁ)

’U(ﬂ?l .2?2) _ 2pcosh c1r +p1(l’ * )’ 0 = 7 = (5 16)
’ B (x +c, T )+ o (x _302)—51)a at —2? > 7, '
v(—zt, —2?), ! — 2% <.

Remark 17. Note that under B1-B3, the Pareto-optimal policy is no longer unique with fixed L, =

Ly = % For instance, when K1 = Ky = K, the following control yields another Pareto-optimal policy

with the same value function defined in (5.11)):
C=(ETTETT) = (0,0) and & = (7T, &7), with

ff* _max{(] max{ T —x2)+(02—01)'Bu"‘fz*’Jr_Cl}}7 (5.17)

0<u<t

0<u<t

f*’Jr—max{O max {(z' — z%) + (¢! — 0?) -Bu+§3*’_—cl}}.
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Remark 18. Under the Pareto-optimal policy, the controlled dynamics X!* and X?* are such that
P(|| X} — XZ|| < ¢1,Vt > 0) = 1. This suggests that there should be a mechanism, such as ‘trimming’,
to maintain the dispersion of rates within a certain range. In addition, this solution form indicates that
it is socially optimal for the more efficient bank (i.e., the one with the lower cost of adjustment) to take
the lead in lending rate adjustment. The other banks then become ‘free riders’.

Proof. First let us prove the case when K; > K;. By Lemma it is sufficient to focus on the
single-agent problem ([5.4)-(5.5) with y = 2! — 2%. Following the standard analysis (Benes et al., [1980;
Karatzas, 1983)), the HJB equation for the one-dimensional control problem follows (5.4)-(/5.5)) is

o2 K K
max {pu(z) — h(x) — %u"(m), u'(z) — 72, —u'(z) — 72} =0. (5.18)
There is a C? solution (Benes et al., [1980; Karatzas, 1983) given by
52p" (¢1) cosh 22 ~
T ~§/za>+p1(9€), 0< z<ga,
U(I) _ 2pcosh<617) (5 19)
U(ED-F%(QJ-E&), 13251, ’
u(—zx), x <0,

where ¢; is the unique positive solution to and p;(z) is defined as in (5.10). The corresponding
control of the regulator is a bang-bang type such that (5.13)-(5.14) hold. Furthermore, it is easy to see
that v(z!, 2?) := u(z! — 2?), with u(z) defined in (5.19)), is indeed the value function of problem ([5.2).

Next when K; = K,, 4% and £~ controls Y, in the same direction with the same cost. The same

holds for €% or ¢, hence the Pareto-optimal policy (5.8)) and (5.17)).

]

5.2 Benefits of regulation: Pareto optimum vs Nash equilibrium

We now use the above analytical results to compare the Pareto-optimal strategies with Nash equilibrium
strategies, whose definition we recall:

Definition 19 (Nash equilibrium). n = (nl,...,nN) € Uy is a Nash equilibrium strategy of the
stochastic game (N-Player), if for any i = 1,..., N, Xo_ =z, and any (n7%, &) € Uy, the following
inequality holds,

T (zim) < T (25 (07, €))
v'(z) := J' (x;n) is called the Nash equilibrium value for player i associated with 7.

Proposition 20 (Pareto optimum vs Nash equilibrium solutions for N = 2 players). Assume B1-B3
and Kl = K2 =K.

(i) The following controls give a Nash equilibrium policy to game ((5.1)-(5.2]):

1,+ 1,—\ 1.2 1 2 X 2,—
(" my ) = (&maX{O,ggggt{(x 2°) + (o' —a°)- B, +1, Cz}}>,
(5.20)
27"’_ 27_ I _ 1 _ 2 2 _ 1 . ].7— _
(" my ™) = (&maX{O,Orgggt{ (' —a%)+ (6" —0') By +n, 62}}),

where co > 0 is the unique positive solution to

R <\/%x> _ p’l(pﬂ?(;)f{ (5.21)

Ner;

g
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with p1 defined in (5.10). The value functions v' and v? corresponding to the Nash equilibrium
(n*,n?) defined in are

vH(? — e, 7?), ! <22 — ey,
~2 1 h @ 1_..2
Ul(xl’l,Z) _ 0Py (e2) cos ( 5 2(1: T )> +p1(a:1 _ xz)7 2% —cy < 2! < 22 + o, (5.22)
2pc0sh(027p)
K(z' — 2% — ¢3) + vY(2? + 2, 22), ! > 22 + o,
and
vz(xl,xl—c(g), ) 2% < ' — ey,
2/ 1 9y _ 52pY (c2) cosh g(aﬁfxl) 9 1 1 9 1

vi(x,zt) =4 — 2pcont (22 +pi(a® —at), ' —c <a* <zl 4o, (5.23)

K(2? — 2! — o) + v* (2!, 2! + ¢2), 22 >t + o

(il) ¢o > ¢1, where ¢y is the unique positive solution to (5.9)) and cy is the unique positive solution to
(5.21]).

That is, a Pareto-optimal policy yields a tighter threshold for spreads, hence reduces volatility of
interbank rates compared to the Nash equilibrium (see Figure |1f).

—Cy . <«—Nash Equilibrium

' - - Pareto Optimality

Figure 1: Comparison: Nash and Pareto (K; = Ks).

Proof. Similar to the derivation in (Guo & Xu, [2019), we have the following quasi-variational inequalities
for the Nash equilibrium of game (5.1) with J' and J? and K; = Ky = K,

(

max {pvi(xl, 2?) — h(x! — 2?) — %2 <8ilvi(x1, 2?) + 9%0' (2!, xQ)),
Dpivt(xl, 2?) — K, =00 (2, 2?%) — K} =0,
on {(z',2%): —K < 9,v (2", 2?) < K},
Opvi(xt, x?) =0, on {(z%2?) : 00’ (xt, 2?) = K or v (2t 2?) = — K},

for i # j and 1 < 4,5 < 2. Moreover, one can show that (5.22)-(5.23) are the solution to ((5.24)).
Applying a verification theorem (Guo & Xul, 2019, Theorem 3), some further calculations can verify

that (5.22))-(5.23) are the game values associated with the Nash equilibrium policy ((5.20)).
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~ / _ K
Now we provide the proof for Claim (ii). Define g(z) = -7 tanh <—V52p$>, gi(x) = % and
g2(x) = plllfffz;)K, where p; is defined in (5.10). Then g(0) = 0, ¢'(x) > 0 for any x € RT, and
1

limyoog(z) = \/%. Thanks to Assumption (B2),

c > _ C
0<—<pf(x)= E/ e PR (x + o By)dt < —
P 0 P
The function pf(x) is negative at x = 0 and increases monotonically to oo on R*. Hence there exists an

unique positive zero co. Moreover, for any x > ¢, gj(z) = 1— f}l,’g)) g1(x) > 1. This is because p}’(z) <0
1

for > 0. We conclude that there exists a unique point ¢y < ¢; < 0o such that g(c;) = g1(c1).
Now by similar analysis, ¢, is the unique solution to g(x) = ga(x) such that 0 < ¢; < co. Notice

that, ¢g1(z) — ga(x) = % > 0 because pj(x) > 0. Hence ¢ > ¢;. O
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A Verification theorem

Theorem 21. Let u € W2®(RN) be a convex solution to the HJB equation (3.4) and 0 < d2u(z) < C

loc

(in the weak sense). Under Assumptions A1-A3, u is equal to the value function v of (Regulaton):

v(z) = min J(z;£) = u(z).

In addition, if there exists € € U such that
e X! =x+0B,+& €Cy for everyt >0, P-a.s.;

o & =&+ [ Nydn: with & = m(x) —x and nf = [} Lix:cocy Noexxydn: for every t >0, P-a.s.;
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o £* is continuous if £ = 0;
where Cy = {z | f(Vu(x)) < 1}, and v and r are defined in (4.5)-(4.6) such that Assumption A5 holds,

then &€* is an optimal control.

Proof. By the Sobolev embedding (Brezis, 2010, Ch. 9, Cor. 9.15), u € C}(RY) since u € WQOO(RN)

loc

In addition, u is convex and 0 < d2u(z) < C, then apply the Ito6-Tanaka-Meyer formula (Carlen &
Protter, |1992) to the function e ”'u(X;) of the semi-martingale X; = & + ut + o B; + &;,

e Tu(X,) —ux) = /0 e “'Vu(X,)dB; + /0 e (Lu(Xy) — au(X,))dt
4 / T (R QuulXi)dst™ = 3 Ducu(X el
+ ) e <Au (X)) — Zaﬂu XQAX) (A1)

0<t<T =1

with the notation A¢; := ¢ — ¢,—. Since u is a convex solution to the HJB equation (3.4), we have
P-a.s. forall 0 <t < T,

pu(X;) — Lu(Xy) — H((X,)) <0, (A.2)
axiu(xt)dgj— < LiK;7de)™, —LiKdey™ < yu(X,)de), (A.3)
Zaﬂu JAX! > 0. (A.4)

Taking expectation on both sides of -, we have for any admissible policy &,
T . .
e TEu(X,)] + IE/ e " (H(Xt)dt + K;FdeyT + Ki_dﬁf’_> > u(z). (A.5)
0

Since 0 < Q%u(z) < C, there exists constant K = K(C) > 0 such that |u(z)| < K(1 + ||z||*). Hence
B[u(X)] < 9K (1+ o] + oI Br I + [€r]?).

Now we show that E[||€7(|?] = o(e”?). If this does not hold, then standard arguments (e.g. (Widder],
1941}, P 39)) can show that there exists i € {1,2,--- , N} such that E[ [~ e~PH(dErT 4de) )] = oo, which
violates the condition in the definition of admissible control set Uy. Hence by letting 7" — co we have

E / T (H(Xt)dt +KFET 4 Ki‘dgf’_) > u(z). (A.6)
0

Under Assumption A1-A3, Theorem 5| holds and hence u(z) = v(z) for all z € RY.
To achieve the equality in (A.6]), it suffices to achieve the equalities in conditions (A.2))-(A.4]), which
requires the following properties from the optimal control process &*:

e X; =x+0B;+& €Cy hence pu(X?) — Lu(X}) — H(X;) =0 for every t > 0, P-a.s.;

e The only possible jump is at time 0 when & ¢ Cy. Under Assumption A5 and the convexity of u,
we can show that u(z) = u(n(x)) + l(x — w(zx)) with I(y) = >, l;(v;), where

lz(yz) - { _Lz’K;—yia if i < O. (A7)

The proof is the same as the one for Theorem And hence the equality in (A.4) holds.
e By the definition of £*, d§; # 0 only when X7 ¢ Cy. Hence the equality in ((A.3) holds.
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