
Hybrid GPU / CPU Navier-Stokes lattice

Boltzmann method for urban wind flow

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2021

By

Marta Camps Santasmasas

School of Mechanical, Aerospace and Civil Engineering

Contents

Contents 3

List of Tables 7

List of Figures 11

Abstract 17

Declaration 19

Copyright 21

Acknowledgements 23

1 Introduction 25

1.1 Thesis outline . 29

2 Computational fluid dynamics applied to urban wind flow. 33

2.1 Applications of wind flow modelling 34

2.2 Computational fluid dynamics models applied to urban wind flow 36

2.3 Grid-based methods . 39

2.3.1 Eulerian Navier-Stokes models 39

2.3.2 Semi-Lagrangian Navier-Stokes models 41

2.3.3 Lattice Boltzmann methods 42

2.4 Summary of findings . 48

3 Theory 51

3.1 Eulerian Navier Stokes method 51

3.1.1 Equations solved and discretisation 51

3.1.2 Initial and boundary conditions 53

3.2 Lattice Boltzmann method . 53

3.2.1 Lattice Boltzmann model 53

3

3.2.2 Equilibrium distribution function 54

3.2.3 Lattice units . 56

3.2.4 Algorithm . 57

3.2.5 Initial and Boundary conditions 58

3.2.6 Macroscopic conservation equations 67

3.3 Turbulence modelling . 71

3.3.1 Direct numerical simulation 73

3.3.2 Large eddy simulation (LES) 74

3.3.3 Inlet boundary condition: Synthetic eddy method 79

4 Navier-Stokes lattice Boltzmann model 85

4.1 Theoretical framework . 86

4.1.1 Modelling . 86

4.1.2 Coupling Navier-Stokes to lattice Boltzmann methods . . . 91

4.1.3 Architecture of the NSLB method 96

4.2 Computational framework . 97

4.2.1 Implementation . 97

4.2.2 Execution . 103

4.3 Validation and examples . 104

4.3.1 Paper I - Two-way coupled Navier-Stokes / lattice Boltz-

mann solver to reduce the resources used by CFD simula-

tions of flow around bluff objects 104

4.3.2 Paper II - Synthetic eddy method applied to the lattice

Boltzmann model . 120

5 Contributions to the field 141

5.1 Expand the use of lattice Boltzmann method in CWE 141

5.2 Develop and test the NSLB method 142

6 Conclusions and future work 143

6.1 Conclusions . 143

6.2 Future work . 145

References 149

Appendices 159

A Paper III - LUMA: A many-core, Fluid–Structure Interaction

solver based on the Lattice-Boltzmann Method 161

4

B Paper IV - GPU-Accelerated Solver for Coupled Approaches

to Navier-Stokes GASCANS 171

5

List of Tables

2.1 Most common discrete velocity sets for three dimensional problems. 44

4.1 Characteristics of previous Navier-Stokes lattice Boltzmann hybrid

methods. 93

7

List of Figures

1.1 (a) Design approach used by traditional CWE; (b) Design approach

for interactive CWE. 26

1.2 Physical time modelled vs. the computation time required to

model it. 27

2.1 Applications of computational wind modelling classified by the

time needed to obtain meaningful results depending on the avail-

able computational resources. 34

2.2 Main characteristics of CFD models that can be applied to model

wind around objects either in engineering, computer animation or

both. Sources: Lattice Boltzmann [1], Position Based Fluids [2],

Smoothed Particles Hydrodynamics [3], Vortex particles [4], Semi-

lagrangian Navier-Stokes [5], Eulerian Navier-Stokes [6]. 37

3.1 Discretised particle velocities in a 3DQ19 cell. The numbers cor-

respond to the columns in eq. 3.10 and the vectors are coloured

by the plane they rest on. 55

3.2 Scheme of the pull streaming algorithm for one plane of a 3DQ19

cell. 58

3.3 Streaming in a boundary cell without applying boundary condi-

tions. After streaming the cell is missing the particle distribution

functions from outside the domain (thick dashed arrows).The black

thick grid line indicates the boundary. 60

3.4 Streaming in a boundary cell with periodic boundary conditions.

The thick dashed arrows indicate the particle distributions where

the boundary condition is applied and the thick solid lines indicate

the boundaries. 60

9

3.5 Streaming in a boundary cell with extrapolated boundary condi-

tions. The thick dashed arrows indicate the particle distributions

where the boundary condition is applied (right) and where they

come from (left). The thick solid lines indicate the boundary and

the grey areas are dummy cells marked as extrapolated boundary. 62

3.6 Streaming in a corner/edge boundary cell with regularised bound-

ary conditions. In this example the cell pertains to the lower

boundary (thick continuous line), the other boundaries are thick

dashed lines. The coloured thick dashed arrows indicate the parti-

cle distributions part of ρ0 and ρ− streamed using periodic bound-

ary conditions. The thick dashed grey arrows are the particle dis-

tributions part of ρ+. 65

3.7 Streaming in a boundary cell with half-way bounce back boundary

condition. The thick dashed arrows indicate the particle distribu-

tions where the boundary condition is applied (right) and where

they come from (left). The thick solid lines indicate the bound-

ary and the greyed areas are dummy cells marked as bounce-back

boundary. 67

3.8 Turbulent flow at the surface of the river Mersey, Manchester. . . 72

3.9 Sketch of the side view of the inlet plane (dash-dot line) showing

the initial positioning of the SEM eddies. Figure reproduced from

Skillen et al. [7]. 80

4.1 SSM for the multiscale NSLB method. (a) Laminar flow case;

(b) turbulent flow case. The arrows indicate information transfer

between the NS and LB submodels 87

4.2 Examples of domain partition.The LB subdomains are blue and

the NS subdomains are orange. All the blue boundaries in c) are

LB to NS boundaries. The black prisms represent geometry the

flow goes around, like buildings. 89

4.3 Scheme of the coupling methodologies for multi-domain multiscale

methods. 90

4.4 Solver interfaces and overlap region in Neumann [8] (a) and Tong

and He [9] (b). 95

4.5 Solver interfaces and overlap region in [10]. 95

10

4.6 Submodel execution loop (SEL) of the NSLB method for the lam-

inar case (a) and turbulent case (b). S refers to solver, B refers

to boundary, finit refers to solver initialisation. Oi and Of are the

observation operators; the subscript i denotes intermediate obser-

vations and the subscript f denotes final observations. dtNS is the

time step of the NS submodel and dtLB is the time step of the LB

submodel. 97

4.7 Summary of the coding strategies for multiscale methods: a) mono-

lithic, b) coupling framework, c) coupling library. C is the resulting

multiscale method, A and B are the two coupled submodles in their

original form, A’ B’ are modified to plug into the framework (F)

and Aa and Ba are the adaptors to connect A and B respectively

to the coupling library (L). 98

4.8 Class structure of the preCICE adapters for both GASCANS and

OpenFOAM. GASCANS stores the coupled data in the InOutRepo

objects and OpenFOAM stores it in the Interface objects. N is

the number of coupled interfaces. The arrows show the flow of the

coupled data. 100

4.9 2D sketch of the receiving and sending meshes for a NS to LB

boundary (left) and a LB to NS boundary (right). The cells be-

longing to the boundary of the LB sub-domain are coloured in blue,

while the cells belonging to the boundary of the NS sub-domain

are orange. 101

4.10 Lattice density on a 2D slice through the lattice Boltzmann sub-

domain of a NSLB simulation of a wall mounted cube in a channel

flow, Re = 150. Oscillations in density caused by the mass flow

correction in the Navier-Stokes sub-domain. The NS to LB (blue)

and LB to NS (black) boundaries are marked in the figure. . . . 103

11

Nomenclature

Recurring abbreviations and symbols are summarised here.

Abbreviations

BEM Boundary element method

BGK Bhatnagar-Gross-Krook

CFD Computational fluid dynamics

CPU Central processing unit

CWE Computational wind engineering

DNS Direct numerical simulation

FLIP Fluid implicit particles

FSI Fluid-structure interaction

GASCANS GPU-Accelerated solver for coupled approaches to Navier-Stokes

GPU Graphics processing unit

LB Lattice Boltzmann

LB-LES Lattice Boltzmann large eddy simulation

13

LES Large eddy simulation

LHS Left hand side

LUMA Lattice Boltzmann at the University of Manchester

MMSF Multiscale modelling and simulation framework

MRT Multi relaxation time

NS Navier-Stokes

NSLB Navier-Stokes lattice Boltzmann

PIC Particle in cell

PISO Pressure implicit splitting operator

RANS Reynolds-averaged Navier-Stokes

RHS Right hand side

SEL Scale separtaion loop

SEM Synthetic eddy method

SPH Smoothed particle hydrodynamics

SSM Scale separation map

Dimensionless Quantities

Re Reynolds number

Greek Symbols

14

ρ̄ LES filtered density

∆t Time step

δt Time step in physical or dimensionless units

δx Cell size in physical or dimensionless units

∆ LES filter lenght

ε Turbulent kinetic energy dissipation rate

ν Kinematic viscosity

νt Smagorinsky eddy viscosity/subgrid scale viscosity

Ω Boltzmann colision operator

ρ Density

σi Turbulent length scale in the direction i

σij Cauchy stress tensor

τ Relaxation time

τ dij Deviatoric stress tensor

τij Subgrid scale Reynolds stress

ξi Fluid particle velocity

Roman Symbols

cα Discretised particle velocity in the direction α

15

U Time averaged macorscopic velocity

u Instantaneous macroscopic velocity

u′ Fluctuating macroscopic velocity

u LES filtered velocity

fα LES filtered particle distribution function

p LES filtered pressure

Cs Smagorinsky model constant

cs Lattice speed of sound

f Particle distribution function

f ∗α Post-streaming discretised particle distribution function in the direction α

f eq Equilibrium particle distribution function

f eqα Discretised equilibrium particle distribution function in the direction α

fα Discretised particle distribution function in the direction α

Fi Body force component in the i direction

p Instantaneous pressure

Rij Reynolds stress tensor

16

Abstract

Hybrid GPU / CPU Navier-Stokes lattice Boltzmann
method for urban wind flow

Marta Camps Santasmasas
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2021

The wind flow through an urban built environment has a significant impact on

the safety and comfort of pedestrians and inhabitants. Simulation of urban wind

flow presents a formidable challenge to computational engineering field due to

the complex geometry of the built environment and the multiscale nature of the

flow. Numerical analysis via computational fluid dynamics (CFD) based on the

Navier-Stokes equations is now commonplace in the industry, usually run on high

performance computer clusters of CPU nodes. However, resolution of all the

turbulent scales of motion in the entire domain is likely to remain beyond the

reach of such hardware for the foreseable future; thus, so called Direct Numerical

Simulation is not practical for industrial applications. Moreover, the region of

interest usually represents a small percentage of the total volume of the domain.

The objective of this thesis is to achieve a time-dependent simulation that resolves

large to medium turbulence scales in the region of interest at a significantly re-

duced computational cost compared to turbulent scale resolving Navier-Stokes

methods. To do so, we couple a lattice Boltzmann (LB) solver running on graph-

ics processing units (GPUs) with a Navier-Stokes (NS) solver running on CPUs.

The LB solver incorporates the mean turbulent flow information from the Navier-

Stokes model into its resolved velocity via a synthetic eddy method (SEM) im-

plemented at the inlet of the LB domain. The resulting coupled Navier-Stokes

lattice Boltzmann (NSLB) solver combines the accuracy and computing speed

of the GPU implementation of the LB model with the stability, low memory

consumption and mesh flexibility of the NS solver. Moreover, the NSLB model

exploits the widespread availability of CPU and GPU hardware on desktop, and

17

workstation computers.

Validation results of the two-way coupled NSLB solver for laminar flow demon-

strate that the coupled solver is able to reproduce the results of the full domain

single solver (either LB or NS) independently of the position of the interface

between the solvers. For the application to urban wind flow, we embedded our

lattice Boltzmann large eddy simulation (LB-LES) solver within a pre-calculated

Reynolds averaged Navier-Stokes (RANS) simulation of flow around a single

building at ReH = 47893. The LB-LES model accurately predicts the mean

and fluctuating velocity around the building, increasing the flow data available

and its accuracy with respect to the underlying RANS simulation. The RANS

LB-LES coupling allows fully resolved LES results to be achieved in practical time

scales with a single desktop based GPU, which shows potential to run industry

applications on consumer devices.

The original contributions of this work include the development of the coupling

framework, adaptation of the SEM to LB and refinement of the embedded bound-

ary conditions. The resulting solver fully realises the objective of a coupled

Navier-Stokes method with a GPU accelerated lattice Boltzmann method in order

to accurately simulate high Reynolds number flow at affordable computational

cost.

18

Declaration

No portion of the work referred to in the thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

19

Copyright

i. The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)

and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, De-

signs and Patents Act 1988 (as amended) and regulations issued under it

or, where appropriate, in accordance with licensing agreements which the

University has from time to time. This page must form part of any such

copies made.

iii. The ownership of certain Copyright, patents, designs, trademarks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproduc-

tions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available

in the University IP Policy (see http://documents.manchester.ac.uk/

DocuInfo.aspx?DocID=24420), in any relevant Thesis restriction declara-

tions deposited in the University Library, The University Library’s regula-

tions (see http://www.library.manchester.ac.uk/about/regulations)

and in The University’s policy on Presentation of Theses.

21

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations

Acknowledgements

I would like first to thank Alistair Revell for his guidance and support through

my PhD. His approachable, sincere nature and his ingenuity made our meetings

productive and enjoyable. Also I would like to thank Ben Parslew for all his help

in developing and structuring my PhD even when the topics of my PhD were far

from his research topics. I would also like to thank Ben for his valuable advice

on presentations, especially how to make them appealing for the audience.

To my colleagues at the University of Manchester, thank you for being there and

keeping me company during the long days at the office. I would especially like

to thank Sam for all our mutual help and joyful sharing of our little findings and

new colourful plots; and Alex and J, for all their support and encouragement.

Finally, thank you Sijiang for all your help and hard work.

And I’m not forgetting the MACE PGR society, I’m grateful for all the enter-

taining coffee mornings and hiking trips; George Begg would be a much sadder

place without you.

To Zach, thank you for your support and encouragement and for living with me

during all the lockdown trying to make the minimum amount of noise possible

while I spend hours and hours in front of the computer writing this thesis. Also

to Robert ”Bobby” Camps, the cat, for keeping me company with his soft fur

and purrs during all these years.

Finally, I would like to thank my family and friends in Spain for their support

and good conversations, even when we are so far apart.

23

Close your eyes and turn your

face into the wind.

Feel it sweep along your skin in an

invisible ocean of exultation.

Suddenly, you know you are alive.

Vera Nazarian, The Perpetual

Calendar of Inspiration

Chapter 1

Introduction

We live immersed in air. Its behaviour affects every aspect of our lives, from

walking along a street, to flying a drone, driving a car or the dispersal of airborne

contaminants and the evolution of forest fires. One of the environments in which

we feel most the effects of wind and in which we can affect more the local wind

climate is in urban environments. Buildings and new urban constructions are

affected by the local wind climate and, in return modify the wind climate of the

region they are in.

Wind Engineering studies the effects of wind in the local environment and assesses

the potential benefits, dangers and discomforts that can be caused by the wind. A

subgroup inside wind engineering is computational wind engineering (CWE) [11],

which uses computational fluid dynamics (CFD) to approximate the equations

that describe the behaviour of the wind, namely the Navier-Stokes equations.

The first ingredient needed for a CFD simulation in urban wind is a 3D digital

model of the interest buildings. Then, the engineer decides the volume of air

around the city they want to model which they generally proceed to divide up

into cells. The CFD solver is then employed to approximate the wind velocity

and pressure in each cell using a discretised form of the Navier-Stokes equations.

Finally, the last step is to post-process the results from the model and extract

useful information (Fig. 1.1).

The CFD procedure itself is reasonably well established, but its accuracy is heav-

ily dependent on the quality and quantity of information available on the simu-

lated region: wind profiles at the boundaries, quality of the geometry data and

wind climate amongst others. Note that the wind characteristics at the bound-

25

aries of the computational domain depend on the wind climate of the region and

all the surrounding geometry not included in the CFD domain. Thus, obtaining

an accurate representation of the wind at the boundaries of the domain is only

feasible in simple cases, and generally, they need to be estimated. The misrep-

resentation of the flow introduced by this estimation is often high, and as such

a much larger region must generally be modelled than is needed, in order to

overcome these limitations [12]. A better representation of the wind flow at the

boundaries would allow to move the boundaries closer to the region of interest,

thus reducing the size of the domain and its computational cost. Moreover, wind

is a turbulent physics process, which is characterised by a range of temporal and

spatial scales. The majority of these scales must be represented in the computa-

tional grid to accurately model the wind behaviour. Indeed, these characteristics

of the wind plus the size of the domain which greatly impacts on the cost of CFD

simulations for the urban environment.

(a) Iterative design. (b) Interactive design.

Figure 1.1: (a) Design approach used by traditional CWE; (b) Design approach
for interactive CWE.

The traditional computational cycle used in CWE can be considered to be an it-

erative design process (Fig. 1.1a). Iterative design is a linear process in which the

simulation results are evaluated once the simulation step is finished and results

are available for the complete amount of time simulated. Once the simulation is

completed, the results can be post-processed and the design or simulation param-

eters adjusted if needed before preparing and running the new simulation with

the new parameters. An alternative to iterative design is interactive design (Fig.

1.1b). Interactive simulation allows the user to modify the inputs of the model

and to examine the obtained results while the simulation is running. Interactive

26

CWE would enable an engineer to iteratively change the design of a building

while the simulation continues to run until the desired surrounding wind field is

obtained. This approach increases the knowledge and control the engineer has

over the effect of the building on the local wind and reduces the time needed to

obtain a satisfactory design.

Moreover, CWE could benefit from computational times that allow for faster than

real-time simulations (Fig. 1.2). Real time or faster than real time urban wind

modelling could be used by emergency response teams to predict the spread of an

airborne contaminant. It could also allow a drone to evaluate and avoid regions in

which high levels of turbulence could damage the aircraft. Real-time and faster

than real time multi-scale resolving CWE is still out of reach for our current

modelling tools and computational resources. However, the CWE industry will

benefit from any advances in reducing the computational time and resources spent

by multi-scale resolving wind CFD.

Figure 1.2: Physical time modelled vs. the computation time required to model
it.

The existing computational models that can be applied to real-time wind mod-

elling are widely used in the computer animation industry due to their low re-

source consumption and stability. They are varied in their approaches to discretise

the domain, in the set of equations solved and how they are discretised. Some

examples include Smoothed Particle Hydrodynamics (SPH), which discretises the

Lagrangian Navier-Stokes equations and divides the domain in moving particles,

semi-Lagrangian methods based on Stable Fluids [5], which discretises the Eule-

rian Navier-Stokes equations and divides the domain into cells, and fluid implicit

particles (FLIP) [13] which discretises the Navier-Stokes equations and combines

particles to model convection with a grid to model viscosity and time derivatives.

The CFD models traditionally used in CWE discretise the Eulerian Navier-Stokes

27

equations and divide the domain in cells [12]. The Eulerian Navier-Stokes solvers

are more accurate and able to model a wider range of flows and scales than the

semi-Lagrangian Navier-Stokes models; however, their algorithm is more complex

and consumes more computational resources. In recent years a relatively new ap-

proach is emerging as an alternative for this sector, the lattice Boltzmann (LB)

method. The LB method views the fluids from a mesoscale perspective instead of

the macroscale perspective of the Navier-Stokes equations but is able to recover

the behaviour of the flow as the Navier-Stokes equations for low Mach number

weakly compressible flows [1]. The main advantages of the LB method lie in the

simplicity and locality of its algorithm, which render it significantly more effi-

cient when implemented in massive parallel architectures as graphics processing

units (GPUs), and the low numerical dissipation of its convection scheme, which

maintains turbulence at relatively coarse cell sizes. However, it is conditionally

stable and requires a constant cell size to maintain computational efficiency.

Each of the presented CFD methods can be implemented on its own or two or

more models can be coupled together. The objective of the coupling is usually

to model a multi-physics process, modelling each process with a different model

(e. g. Keyes et al. [14]). Another reason is to reduce the computational cost of

the simulation by combining the strengths of each of the component models and

compensating for their weaknesses. A family of coupled models used in CWE

is the RANS-LES models [15]; where the regions of the domain that need flow

detail are solved using a turbulence resolving model, usually large eddy simulation

(LES), while the rest of the domain is solved by a less computationally expensive

mean flow resolving method, usually Reynolds averaged Navier-Stokes equations

(RANS). The most common RANS-LES solvers implement the Eulerian Navier-

Stokes equations with different turbulence models on CPU architectures. On

the other hand, Navier-Stokes based solvers can be coupled to lattice Boltzmann

solvers to also save computational resources (e. g. Neumann [8] and Tong and

He [9]).

The lattice Boltzmann method is able to resolve turbulent flow to the same ac-

curacy as the Eulerian Navier-Stokes models used in CWE [16]; moreover it is

efficient in GPU, which reduces its computational cost and allows it to run in

consumer grade computers. However, the size of the domain is limited due to the

limited memory resources contained in GPU cards. On the other hand RANS

solvers are less computationally expensive than Navier-Stokes LES solvers and

can run large domains with relatively low CPU requirements. The motivation for

28

this work results from the combination of these with the general observation that

domains generally modelled in CWE are much larger than the area of interest,

combining RANS grid flexibility and low computational CPU cost with LB-LES

speed and accuracy around the region of interest might be a promising way to

reduce the cost of urban wind simulations, while still resolving the details of the

flow in the region of interest. Thus, the objectives of this thesis are twofold:

• Expand the use of the GPU-accelerated lattice Boltzmann method in CWE.

• Develop a coupled Navier-Stokes lattice Boltzmann (NSLB) solver to reduce

the computational resources needed by its two components, while achieving

the desired accuracy in the interest region.

The work in this thesis presents a NSLB solver that can be coupled one way,

the information travels from the Navier-Stokes domain to the lattice Boltzmann

domain, and two-way, the information travels from the Navier-Stokes domain to

the lattice Boltzmann domain and from the lattice Boltzmann domain to the

Navier-Stokes domain. The two-way coupling is tested for laminar flow around a

wall mounted cube and the one-way coupling is tested for turbulent flow around a

rectangular building. The results for both test cases are promising, demonstrating

that the NSLB is able to accurately predict the wind flow in the area of interest.

Moreover, the NSLB simulations presented in this thesis run in a single node

workstation, which shows potential to run CWE cases on consumer devices.

1.1 Thesis outline

This thesis is structured in journal format according to the University of Manch-

ester regulations. The outputs of this work are presented as journal papers, which

are appended at the end of the thesis. The main body of the thesis presents back-

ground information and a detailed explanation of the NSLB model. The chapters

of this thesis are:

Chapter 1 contains the background, motivation and objectives of the research

presented with an overview of the main findings.

Chapter 2 reviews the families of CFD methods that can be applied to wind

29

engineering placing more emphasis on the lattice Boltzmann and Eulerian Navier-

Stokes methods. It also provides a review of the different methods proposed

until now to couple two or more solvers with particlar focus on coupling lattice

Boltzmann with Navier-Stokes methods.

Chapter 3 describes in more detail the Eulerian Navier-Stokes method and the

lattice Boltzmann method that form the NSLB solver developed in this thesis. It

also describes the approach taken to simulate turbulent flow.

Chapter 4 describes the NSLB solver in more detail including the coupling algo-

rithm, the communication between its components and how it is implemented.

Chapter 5 discusses the contributions to the field from the research in this thesis

and how they are expressed in each of the appended papers.

Chapter 6 summarises the main findings of the present research, including the

findings in the appended papers, and points at future work and future develop-

ments for the NSLB solver.

Appendices presents the main results and software derived from the research

presented in this thesis in the form of 4 papers. Each paper and the contributions

from each author are:

1. M. Camps Santasmasas, A. J. Revell, B. Parslew. Two-way cou-

pled Navier-Stokes / lattice Boltzmann solver to reduce the re-

sources used by CFD simulations of flow around bluff objects. In

preparation .

This work presents and tests the two-way coupled NSLB solver developed

in this thesis for a low Reynolds number flow around a wall mounted cube.

M. Camps Santasmasas developed the NSLB algorithm, wrote the paper

and performed the simulations under the supervision and guidance from A.

J. Revell and B. Parslew.

2. M. Camps Santasmasas, X. Zhang, A. J. Revell. Synthetic eddy

method applied to lattice Boltzmann model for wind around a

rectangular prism building. In preparation

30

This work applies the large eddy simulation lattice Boltzmann solver used

as the LB component of NSLB model described in this thesis to turbulent

flow around a rectangular building. The LES-LB solver is one-way coupled

to an underlying pre-calculated RANS simulation. This paper illustrates

a possible configuration of the one-way coupled NSLB model described in

this thesis applied to a CWE setting.

M. Camps Santasmasas wrote the paper and performed the LES-LB sim-

ulations; X. Zhang conducted the Navier-Stokes based RANS and DDES

simulations; A. Revell provided extensive guidance on simulation setup and

writing and structure of the paper.

3. A. R. G. Harwood, J. O’Connor, J. Sanchez Muñoz, M. Camps

Santasmasas, A. J. Revell. LUMA: A many-core, Fluid-Structure

Interaction solver based on the Lattice-Boltzmann method. Soft-

ware X 7 (2018) 88-94 .

This work describes and publishes the LUMA lattice Boltzmann code.

LUMA is the original CPU based lattice Boltzmann code predecessor of

the LB-LES code developed during this thesis. It was the first experience

with a general purpose lattice Boltzmann code and it promted the devel-

opment of its GPU version, GASCANS. GASCANS is the LB-LES code

developed during this thesis.

The main contributions of M. Camps Santasmasas to both the LUMA code

and the corresponding paper are developing and testing the LES turbulence

model and converting the input and output data between dimensionless and

lattice units.

4. M. Camps Santasmasas, A. R. G. Harwood, I. Hinder, S. Fan,

B. Owen, J. O’Connor, A. J. Revell. GPU-Accelerated Solver for

Coupled Approaches to Navier-Stokes (GASCANS). In prepara-

tion

This work describes and publishes the GASCANS lattice Boltzmann code.

GASCANS is the lattice Boltzmann solver used as the LB component of

the NSLB solver described in this thesis. It is then the LB-LES code used

to perform the LB simulations in paper 1 and 2.

31

M. Camps Santasmasas led the creation of the paper and its structure and

drafted the abstract, introduction, conclusions, boundary conditions, turbu-

lence sections and contributed to the architecture and BGK Lattice Boltz-

mann Method sections. She also performed the simulations and drafted

the validation test cases for turbulent channel flow, SEM channel flow and

NSLB method. Regarding the development of the GASCANS code, M.

Camps Santasmasas is responsible for the turbulence modelling and cou-

pling with other solvers. She is also involved in testing, bug fixing and other

code development.

32

The world’s an exciting place

when you know CFD.

John Shadid

Chapter 2

Computational fluid dynamics

applied to urban wind flow.

Researchers, engineers and computer graphics programmers use Computational

fluid dynamics (CFD) to model a wide range of flows and applications. From

rapid turnaround low accuracy applications such as video games, to high preci-

sion computations of flow around vehicles and buildings. However, the size of

the simulated region and accuracy of the CFD results are constrained by the

available computational resources and time. Figure 2.1 shows some examples of

applications and the time the user needs to get results. On one hand, high accu-

racy CFD simulations require the use of supercomputers and/or having to wait

a long time to get results. On the other hand, interactive applications require

instant results, which limits the amount of interactive cases that can be modelled

accurately using currently available computational resources.

This chapter starts by reviewing current applications of urban wind CFD and the

new cases that could be studied with interactive / real time wind modelling of

acceptable accuracy. It then reviews the currently available CFD models appli-

cable to model wind around bluff bodies and urban wind flow and the different

ways to combine two or more models in a hybrid scheme to further increase com-

putational efficiency. Finally, we present a summary and conclusions on what can

be improved.

33

Figure 2.1: Applications of computational wind modelling classified by the time
needed to obtain meaningful results depending on the available computational
resources.

2.1 Applications of wind flow modelling

Buildings and new urban developments affect the wind climate of the region they

are in, and in turn, are affected by the local wind climate. Strong winds can

damage buildings [17]. On the other hand, the buildings affect the microclimate

in their vicinity [11] and can create areas of locally strong winds that can result

in a discomfort or danger to pedestrians. One example of such a case is the

Bridgewater Place building in Leeds; the adverse wind conditions created by its

presence causes discomfort to pedestrians and are the cause of various injuries

and one death [18]. Pedestrian wind comfort studies like the one by Murphy [19]

are usually a requirement prior to the construction of a building. The suitability

of the building is assessed by comparing the probability of the wind speed to

be above certain values with an established comfort criteria [20]. These studies

are usually conducted using CFD and/or wind tunnel analysis after the building’s

design is finished. If the building is assessed as unsafe, its design has to be changed

and/or wind protection structures have to be installed. This is a slow process that

could be sped up if the engineers possessed a tool that allowed them to analyse

the effects of the building on its surroundings at the same time as they design

it. The computational model needed for this application needs to be stable, since

it has to be robust against the unpredictable user input; it also needs to run at

interactive time so the user sees the effects on the wind of the changes they made.

34

Regarding its accuracy, the great majority of the wind comfort criteria [20] are

based on the Beaufort scale [20], which has a precision of order 1 m/s.

However, there are still windy locations in the already built areas that can pose

a threat to pedestrians. For example, Blocken et al. [21] propose an automatic

system to paliate too windy conditions in the passages under high rise buildings.

The system consists of installing a set of automatic doors that open and close

depending on the measured wind speed at both sides of the passage. The idea

of real time pedestrian wind comfort could be extended to many more urban

areas with the aid of real time CFD. Combining the data from precomputed

CFD simulations, a real time CFD model and local wind measurements the users

of the application could know in real time what are the potential dangerous or

uncomfortable areas as they walk around. Moreover, this application could be

extended to an even more local scale and be used to predict uncomfortable wind

conditions inside a building or in the garden. The characteristics of the real

time CFD model are very similar to those for the building design application.

The main difference is that the current application requires real time or faster

than real time computation speed, since the user needs a prediction of the wind

characteristics in order to avoid unfavourable areas.

Another possible application at the local urban area scale is to build a wind

awareness system for drones. There is a great variety of applications for drones,

from filming and aerial photography to shipping goods [22]. Drones are greatly

affected by the local wind conditions they are flying into, thus being able to use

real-time CFD to model the wind conditions around a drone will improve the

survival rate of the drones and lower the risk of the flights. The requirements

for the real time CFD model for this application differ from the previous one in

that drones are really sensitive to turbulence, so the application needs to predict

and display volumes of unsafe flight depending on wind speed and turbulence

intensity.

Chemical, biological, radiological or nuclear contaminants released by accidents or

intentional attacks in a urban area can have disastrous consequences. Predicting

the path of the contaminants and knowing their source is a crucial task that

allows to minimize the damage caused. However, the interaction between the

wind and the structures in urban areas complicates modelling the dispersion and

behaviour of the contaminants. Computational Fluid Dynamics is one of the most

accurate methods to model contaminant dispersion in urban areas [23] [24] but it

35

is not usually used by the emergency response teams in the field due to its difficult

configuration and consumption of time and resources. A real time CFD model for

this application has to be able to model contaminant transport and it also should

include algorithms to find probable sources of the contaminant by measuring

contaminant concentration at different points in the affected region [25].

There are other applications of real time CFD that are not strictly modelling the

wind around urban areas. Real time CFD could be used in sport applications to,

for example, predict the wake of the other vehicles in a race, to predict the wind

in sailing regattas, or to find favourable currents and avoid dangerous areas while

doing paragliding or hang gliding among others. It could also be applied to video

games as a part of a more realistic weather simulation and it could even lead to

new types of games that use the wind simulation as their main mechanic.

Finally, interactive time computational fluid dynamics can be used for educational

purposes, for example to demonstrate fluid dynamics concepts and flow behaviour

in an interactive and easy to understand way.

2.2 Computational fluid dynamics models

applied to urban wind flow

Fig. 2.2 analyses the reviewed CFD methods by the following criteria:

• Application: the method is more commonly used for engineering, computer

graphics applications or both.

• Equations modelled: which fluid motion equations do the methods discretise

and solve.

• Discretisation: discretisation of the domain in either a grid of cells, a group

of particles or both cells and particles.

• Convection: how the convection and acceleration of the flow are modelled.

• Viscosity: how diffusion due to viscosity is represented.

• Incompressibility: how is the incompresibility enforced, if it is enforced.

36

Figure 2.2: Main characteristics of CFD models that can be applied to model
wind around objects either in engineering, computer animation or both. Sources:
Lattice Boltzmann [1], Position Based Fluids [2], Smoothed Particles Hydro-
dynamics [3], Vortex particles [4], Semi-lagrangian Navier-Stokes [5], Eulerian
Navier-Stokes [6].

The remaining of this section explains with more detail the different models with

more attention put in the once more commonly applicable to urban wind flow

modelling. We chose to classify the CFD models using the discretisation type, so

then the CFD methods are classified as: Grid-based methods, particle methods

and particle-grid methods.

Grid-based methods divide the simulation domain in a grid of cells and com-

pute the fluid’s discretised equations in each cell before advancing in time. Their

main advantages are that all the mesh points have a fixed position so finding

neighbours and enforcing incompressibility is relatively easy; the disadvantages

are that you have to store the data in each cell for the whole fixed grid so they

require large memory allocation, you have to mesh around obstacles which means

that you have to either wrap your mesh around the object (mesh becomes compli-

cated), or submerge the object in the mesh (the cells inside the object might still

use a significant amount of memory and the flow close to the object (boundary

layer) might become inaccurate). Also, discretising the fluid in cells causes the

movement of the fluid to be described by a diffusion term, a temporal deriva-

tive at each cell plus a convection term that describes the fluid coming from the

37

neighbouring cells. The convection term is non-linear and thus complicated to

model. Grid methods can be divided in 3 main groups: Eulerian Navier-Stokes

methods like the ones used in the engineering CFD software StarCCM+ [26] and

OpenFOAM [27], semi-Lagrangian Navier-Stokes (see Stable Fluids [5]), which

are widely used to model smoke in computer graphics, and lattice-Boltzmann

methods (e g. LUMA [28] and Palabos [29]).

Particle methods discretise the fluid as a set of particles that move through the

domain following a set of equations in Lagrangian form. The particles carry all the

fluid’s information and their position, velocity and acceleration is updated at each

time step. One of the advantages of particle methods is that they reduce memory

usage, since there is no need to store a fixed grid. Another one is that there

is no convection term, which is an important source of numerical dissipation in

grid methods. However, particle methods are intrinsically compressible and need

extra work to enforce incompressiblity. Another disadvantage is that locating

the neighbouring particles needed for some calculations, for example gradients,

is not straighforward. Some examples of particle methods are Smoothed particle

hydrodynamics (SPH) (e g. Müller et al. [3]), vortex particles (e g. Seller et

al. [4]) and position based fluids [2].

Particle-grid methods combine some of the best features of grid and particle

methods. They use particles to carry the fluid’s velocity across the grid to model

convection. The particles’ velocity is then interpolated to an Eulerian grid in

which the interaction between particles is computed and their velocity and pres-

sure updated. In the same way as particle methods, particle-grid methods do

not model convection in the Eulerian grid, thus reducing the numerical dissipa-

tion. Moreover, the lack of interaction between the particles makes them easier

to manage than the particles of particle methods. However, the interpolation

steps betwen the grid and the particles are not uniquely defined. This alias is-

sue is called ringing instability and might be important depending on the spatial

and temporal discretisation of the studied case. Moreover, particle-grid methods

needs to store a set of particles and a fixed grid, which leads to particle-grid meth-

ods being computationally expensive. Amongst the most relevant particle-grid

methods are the fluid-implicit-particle (FLIP) [13] [30] and the particle-in-cell

(PIC) [31].

The next section reviews different types of grid-based CFD methods, focusing

on the ones with more potential for accurate and computationally fast urban

38

wind flow, namely Navier-Stokes and lattice Boltzmann methods. This literature

review does not include an in-depth review of the grid-based methods used for

animation, because, even if they are computationally efficient, they are generally

not accurate enough for our application. A useful overview of grid-based CFD

methods for computer graphics can be found here [32].

2.3 Grid-based methods

Grid-based methods are widely used in computational wind engineering. Some

examples of their applications are: assess possible wind damage to buildings [17],

calculate pedestrian wind comfort indices [20] and model contaminant dispersion

[24]. This thesis focuses on the following types of grid-based methods:

• Eulerian Navier-Stokes : widely used in computational wind engineering.

• Semi-Lagrangian Navier-Stokes : widely used in computer graphics to model

smoke. They can also be applied to computational wind engineering. They

offer stability and, in general, a lower computational cost than Eulerian

Navier-Stokes models in exchange for a loss in accuracy.

• Lattice Boltzmann methods : used for urban wind modelling in recent years

(e g. [33] [34]). Their accuracy is comparable to the accuracy of the Eulerian

Navier-Stokes methods and their algorithm is efficient when implemented

in Graphic processing units (GPUs). The main appeal of GPU is their

computational speed and low energy consumption.

2.3.1 Eulerian Navier-Stokes models

Eulerian Navier-Stokes grid models are commonly used in engineering [35] and

are implemented in many engineering CFD software like Star CCM+ [26] and

OpenFOAM [27]. Eulerian Navier-Stokes methods for CWE discretise and nu-

merically solve the Eulerian form of the incompressible Navier-Stokes (eq. 2.1)

and continuity equations (eq. 2.2).

39

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

(2.1)

∂ui
∂xi

= 0 i, j = 1− 3 (2.2)

where ui is the instantaneous velocity of the fluid, p is its pressure and ν its

kinematic viscosity. The spatial terms of eq. 2.1 and eq. 2.2 can be discretised

using different methods. The most commonly used discretisation technique is

finite volumes (for example in Van Hooff et al. [36], Liu et al. [37] and Lien et

al. [24]), but there are studies using other techniques such as finite differences [38]

and finite elements [25]. However, the Eulerian Navier-Stokes and continuity

equations present two numerical challenges:

• The convection term uj
∂ui
∂xj

in eq. 2.1 is non-linear.

• The pressure p is present in the momentum equation 2.1 but not in the

continuity equation 2.2. If both equations are discretised and build into a

linear system of equations, part of the diagonal of the coefficient matrix will

be 0, which results in a singular (unresolvable) system. Thus, a separate

equation for pressure is needed.

A range of methods have been developed to handle these challenges in a variety of

ways. For example, the non-linearity of the convection term, the pressure equa-

tion and the values of velocity and pressure are solved iteratively until convergence

is reached 1. The first developed iterative algorithm is the Semi-Implicit Method

for Pressure Linked Equations (SIMPLE). Other algorithms based on SIMPLE

are the Pressure-Implicit with Splitting of Operators (PISO) and PIMPLE, a hy-

brid of PISO and SIMPLE. We refer the reader to Versteeg and Malalasekera [39]

for detailed information on each of the algorithms.

The main strength of Eulerian Navier-Stokes methods is that they solve all

the terms of the Eulerian Navier-Stokes equations until convergence is reached

and the Navier-Stokes equations provide a clear physical interpretation for each

macro scale process. Moreover, the most common time integration schemes are

1the difference between the values of pressure and velocity obtained in consecutive iterations
is below a set tolerance

40

unconditionally stable, however this depends on the discretisation schemes used

on each term of the Navier Stokes equations.

The main weakness of Eulerian Navier-Stokes methods is the complexity and

iterative nature of their algorithm. In general, this iterative nature leads to

significant computational cost and although Eulerian Navier-Stokes equations can

be implemented in GPUs, their implementation is more complex than the one for

lattice Boltzmann methods and, to some extend, semi-Lagrangian methods.

2.3.2 Semi-Lagrangian Navier-Stokes models

Semi-Lagrangian Navier-Stokes methods are widely used to model smoke in fluid

animation and computer graphics [32]. In the wind engineering field, Zuo and

Chen [40] use a semi-Lagrangian Navier-Stokes method to model airflow in build-

ings in real-time. Semi-Lagrangian Navier-Stokes methods are based on the Sta-

ble Fluids solver developed by Stam [5]. Semi-Lagrangian Navier-Stokes methods

also model the Eulerian form of the Navier-Stokes equations (eq. 2.1) and the con-

tinuity equation (eq. 2.2). However, they differ from the Eulerian Navier-Stokes

models in their treatment of the numerical challenges.

The convection term in eq. 2.1 is discretised and solved using the method of

characteristics [5]. This approach calculates the velocity convected by the flow

by back tracing where this velocity was at the previous time step along the

fluid’s streamlines. The streamlines are usually calculated using an implicit Euler

integration scheme, which is unconditionally stable but only accurate to first order

and still implicit, so it needs to be solved iteratively. Huang et al. [32] presents

a review of different convection schemes which aim to increase the accuracy of

the convection term discretisation while maintaining the computational efficiency

and stability of Stam’s original scheme.

The pressure equation is derived using the Helmholtz-Hodge decomposition [5].

Then the terms of the momentum equation with the projection operator are

discretised and solved sequentially. The obtained velocity field is then used in the

pressure equation, and the obtained pressure field is used to correct the velocity

field so that it is divergency free. This process is carried out once each time step,

the values of the velocity and pressure fields are not checked for convergence. To

further increase computational efficiency, many semi-Lagrangian methods (e g.

41

example Cohen et al. [41], Molemaker et al. [42] and Selle et al. [43]) disregarded

the viscosity term ν ∂
2ui
∂x2j

of eq. 2.1. The dissipative effect of the viscosity is

accounted for indirectly via artificial numerical diffusion, the majority of which

comes from the low order discretisation of the convection term. However, without

a physical viscosity, the model is unable to accurately impose no slip boundary

conditions. Another way to increase computational efficiency is to lower the

number of iterations used to solve the pressure equation [42], which controls the

computational resources assigned to each of the terms of the NS equation.

The main strength of semi-Lagrangian Navier-Stokes models is that the most

common methods are unconditionally stable, however this depends on the dis-

cretisation schemes used on each term of the Navier Stokes equations. This is a

sought after characteristic in interactive simulations since they can not be allowed

to diverge while the user is running the program. Moreover, the semi-Lagrangian

algorithm is simpler and less computationally expensive than the Eulerian Navier-

Stokes algorithm because the pressure and momentum equations are not solved

iteratively, the convection term is solved using the method of characteristics and

the viscosity term is often omitted.

The main weakness of semi-Lagrangian methods is their loss of accuracy due

to numerical diffusion. The inviscid assumption commonly employed by these

models is restrictive, and in general leads to significant approximations for all

but very high Reynolds number flows without boundary layers, shear layers of

mixing layers. Modern semi-Lagrangian schemes reduce numerical diffusion by

improving of the advection scheme and the pressure projection (e. g. Selle et

al. [43], Molemaker et al. [42] and [44]).

2.3.3 Lattice Boltzmann methods

Original applications of the lattice Boltzmann methods were generally restricted

to laminar flow with complex geometries (for example Chu and Tai [45], Fattahi

et al. [46]). Nowadays, especially due to the advent of new computing hardware

and GPU, LB methods are regularly applied to turbulent flows around bluff bod-

ies (see Koda and Lien [16], Feng et al. [33], Lenz et al. [34]). There are also

commercially available CFD software that use LB for turbulent flow: Dassault

Systemes XFlow [47] which is aimed at turbulent external aerodynamics, Altair

UltraFluidX [48] which works on GPU and is aimed at turbulent external aero-

42

dynamics, Simscale [49] which runs urban wind and other external aerodynamic

cases using cloud resources and GPU lattice Boltzmann.

The lattice Boltzmann methods are based on the Boltzmann equations (eq. 2.3),

which describe the behaviour of a fluid at a mesoscopic scale. Instead of modelling

the macroscopic quantities of the gas (density, velocity, pressure...), they model

the statistical distribution of the particles that form it. The particle distribution

function f represents the probability of a particle to be moving with a velocity

ξi in a location x at a time t. The density ρ and macroscopic velocity ui of the

fluid are obtained from the 0th and 1st moments of the Boltzmann equations as

shown in eq. 2.4 and eq. 2.5. It can be shown that the moments of the lattice

Boltzmann equations reproduce the Navier-Stokes and continuity equation for

low Mach number flows (see section 3.2.6 for more details).

∂f

∂t
+ ξi

∂f

∂xi
= Ω(f) (2.3)

ρ(x, t) =

∫
f(x, ξ, t)d3ξ (2.4)

u(x, t)ρ(x, t) =

∫
ξf(x, ξ, t)d3ξ (2.5)

The Boltzmann equation is an advection equation in Eulerian form. The first

term in the LHS of eq. 2.3 models the time evolution of the distribution function

f , the second models convection and the RHS term Ω(f) is the collision operator

and models the collisions between the particles of the fluid. The collision operator

Ω(f) must ensure that collision conserves mass, momentum and energy and that it

evolves the distribution functions f towards the equilibrium distribution functions

f eq.

The Boltzmann equations (eq. 2.3) have no analytical solution, thus the domain

has to be discretised and solved numerically. The particle distribution function

f(x; ξ; t) depends on 7 variables: xi, ξi and t. Discretising and solving eq. 2.3

for all the variables is computationally expensive and would require large scale

supercomputers. However, we only need the moments of the Boltzmann equation

to be correct to reproduce the Navier-Stokes equations, thus much of the under-

lying physics is not relevant to the values of the macroscopic variables ui and ρ.

The particle velocity ξi can then be discretised into a small number of velocities

43

without affecting the validity of the macroscopic quantities.

The velocity discretisation of the Boltzmann equation (eq. 2.3) is done using

Hermite polynomials and the Hermite-Gauss quadrature, see Krüger [1]. The

resulting velocity-discretised Boltzmann equation and corresponding macroscopic

density and velocity are:

∂fα
∂t

+ cαi
∂fα
∂xi

= Ω(fα) (2.6)

ρ =
∑

α

fα (2.7)

uiρ =
∑

α

fαcαi (2.8)

where α takes values from 0 to the number of segments used to discretise the par-

ticle velocity ξi and cαi is the discretised particle velocity. The resulting number

of discretised particle velocities to exactly conserve the macroscopic quantities (i

e. the first 3 moments) of eq. 2.3 is 27. However, some of them can be simplified

and the number of discretised velocities reduced to 19, 15 or 13, which is the min-

imum number of velocities needed to reproduce the Navier-Stokes equations [1].

The higher velocity spaces are more stable but also more memory consuming. The

most widely used velocity set for 3D fluid simulations is the D3Q19 (Table 2.1),

since it strikes a good balance between stability and computational resources.

However, some lattice Boltzmann models use other velocity sets to work: for

example the cummulant [50] needs D3Q27 .

Name Velocities cα Number Weights

D3Q27

(0, 0, 0) 1 8/27
(±1, 0, 0), (0,±1, 0), (0, 0,±1) 6 2/27

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 12 1/54
(±1,±1,±1) 8 1/216

D3Q19

(0, 0, 0) 1 1/3
(±1, 0, 0), (0,±1, 0), (0, 0,±1) 6 1/18

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 12 1/36

Table 2.1: Most common discrete velocity sets for three dimensional problems.

Eq. 2.6 remains continuous in time and space and as for the Navier-Stokes equa-

tions, there is no analytical solution. Thus, it needs to be discretised and nu-

merically solved. The velocity discretised Boltzmann equation can be discre-

44

tised in space using finite differences [51], finite volumes [52] or even spectral

difference [53] methods following similar procedures as in the Eulerian and semi-

Lagrangian Navier-Stokes models. For example [51] uses second order central-

difference and upwind schemes to discretise the convection term and a second-

order Runge-Kutta scheme for time discretisation; their collision operator is local,

so it does not need to be discretised. This discretisation yields as many equations

and unknowns fα as discrete particle velocity in the set; unlike with the Navier-

Stokes methods, this equations can be directly solved with linear equation solvers

without having to deal with the continuity equation and the pressure coupling.

Finite volume/differences/elements discretisation allows the use of non-uniform

mesh and mesh refinement, thus potentially lowering the computational cost of

the simulation; however, solving linear systems of equations is computationally

expensive and the approximation of the spatial derivatives may include more than

only nearest neighbours, which complicates GPU implementation.

An alternative to finite volume/differences/elements discretisation and the most

commonly used time and space discretisation of the velocity discrete Boltzmann

equations is to use the method of characteristics [1]; which converts the LHS of

2.6 into a total derivative with respect to the trajectory of the flow in space φ

dfα
dφ

= Ωα(x(φ), t(φ)) (2.9)

integrating both sides along the trajectory φ, from φ = 0 to φ = ∆t, and using

t(φ = 0) = t0 and xi(φ = 0) = xi0 as initial conditions yields

fα(x0 + cα∆t, t0 + ∆t)− fα(x0, t0) =

∫ ∆t

0

Ωα(x0 + cαφ, t0 + φ)dφ (2.10)

and numerically solving the RHS of eq. 2.10 yields the lattice Boltzmann equa-

tions (eq. 2.11):

45

fα(x0 + ∆x, t0 + ∆t)− fα(x0, t0) = ∆tΩα (2.11)

ρ =
∑

α

fα (2.12)

ρui =
∑

α

fαcαi (2.13)

where ∆t is the size of the time step and ∆x = cα∆t is the cell size. The

magnitude of the discrete velocities cα is chosen so that the particles in a cell

are displaced to the neighbouring cell (i.e. cαi = ∆x/∆t). Note that unlike

semi-Lagrangian Navier-Stokes models, the particle distribution functions fα in

one cell move exactly to the neighbouring cell in the direction of the discretised

particle velocity ciα in one time step. Thus, the method of characteristics in

LB is exact, requiring no interpolation and introducing no artificial numerical

diffusion.

Eq. 2.11 is solved in two steps: the streaming step solves the convection term by

copying the distribution functions from one cell to its nearest neighbour in the

direction of each discretised particle velocity α; then the collision step applies

the collision operator to the post-streaming f ∗α to obtain the fα for the next time

step. The method of characteristics plus explicit Euler discretisation yields a sim-

ple equation that does not require to solve a system of equations or to be solved

iteratively in any way. It is also local (i e. a function of neighbouring cells only),

which makes it suitable to be implemented in massive parallel architectures (like

GPU) without major modifications. However, the assumption that the discrete

velocities will move the particles one cell in one time step makes it difficult to

implement mesh refinement and unstructured meshes, even prism meshes. More-

over, the explicit Euler integration scheme is conditionaly stable, valid only for

certain combinations of ∆t, ∆x. Unlike semi-Lagrangian Navier-Stokes models,

eq. 2.11 solves one variable for each discretised particle velocity in cell, thus an

implicit Euler scheme for lattice Boltzmann is around 6 times more computation-

ally expensive than the same scheme for semi-Lagrangian Navier-Stokes models.

Horstmann et al. [54] presents an hybrid segregated finite volume - streaming col-

lision discretisation with the objective to use mesh refinement in the finite volume

region and take advantage of the computational efficiency of the stream-collide

algorithm elsewhere.

46

The collision operator Ωα must ensure that particles conserves mass, momen-

tum and energy during particle-particle interactions and that it evolves the par-

ticle distribution functions fa towards the equilibrium distribution functions f eqα

(see Krüger [1] for more details). The simplest collision operator that complies

with both conditions is the Bhatnagaar Gross and Krook (BGK) [55] (eq. 2.14)

Ωα = −fα − f
eq
α

τ
(2.14)

where the relaxation time τ controls the rate at which the particle distribution

functions relax towards equilibrium and is related to the viscosity of the fluid ν

via

ν =
1

3

(
τ − 1

2

)
δx2

δt
(2.15)

where δx is the cell size in dimensionless/physical units and δt is the time step

in dimensionless/physical units (see section 3.2.3). As shown in eq. 2.15, lattice

Boltzmann with BGK collision becomes unstable for values of τ below 1
2
, which

would make the flow viscosity negative. Moreover, uiδt/δx needs to be maintained

below the lattice speed of sound (section 3.2.6). High Reynolds number flows are

characterised by low fluid viscosity and high velocity, thus an accurate and sta-

ble BGK lattice Boltzmann simulation for high Reynolds flow would require a

usually prohibitively small cell size δx to comply with the quadratic dependence

between the fluid viscosity ν and the cell size δx combined with the restriction on

uiδt/δx. τ is present only in the collision term, so modifying the collision term

is a way to search for more stable and accurate lattice Boltzmann formulation.

The advanced collision operators have more degrees of freedom than BGK, so

the extra freedom can be used to improve stability and accuracy. Some exam-

ples of advanced collision operators are the multi relaxation time (MRT) [1], the

cumulant [50] and the central moments based [56], also referred to as cascaded.

See [57] for a more detailed explanation of the different collision models.

The main strength of the stream - collide BGK lattice Boltzmann model lies

on its simplicity. The interactions between nodes during streaming are linear

47

(one cell only affects its nearest neighbours), and all the heavy computations

included in the collision step are local. This simplicity and locality makes the

lattice Boltzmann method very efficient when implemented in massively parallel

architectures like GPUs. Moreover, the streaming step models advection without

numerical diffusion. Other factors that reduce the computational cost of the LB

method is that it does not involve solving a Poisson equation for pressure and

that it incorporates the effects of viscosity without solving a linear system of

equations.

The main weakness of the stream - collide BGK lattice Boltzmann is that is

only conditionally stable. The explicit time integration and spurious terms in

the discretisation restrict the stable combinations of temporal and spatial dis-

cretisation steps. Moreover, the assumption that the discrete particle velocities

reach from one cell to exactly the boundary of its neighbours combined with that

the viscosity depends also on the time and space discretisation makes mesh re-

finement cumbersome to apply. Another disadvantage is that the LB method is

memory intensive, since it has to store the values of all the discretised particle

distribution functions plus velocity and density at each cell.

2.4 Summary of findings

The CFD methods reviewed in this thesis are classified in 3 groups: grid-based

methods, particle methods and particle-grid methods. From them, grid-based

methods are the most used in wind engineering and in general for modelling single

phase single component fluids. We sub-divide grid-based methods in three groups:

Eulerian Navier-Stokes, semi-Lagrangian Navier-Stokes and lattice Boltzmann

methods.

Eulerian Navier-Stokes methods are widely used in wind engineering. They nu-

merically solve the Eulerian form of the Navier-Stokes and continuity equations

using iterative algorithms and system of linear equations solvers. They are the

most accurate of the grid methods; however, their algorithms are complex and

computationally expensive. In order to increase stability and reduce computer

time the computer animation industry developed the semi-Lagrangian Navier-

Stokes methods [5]. semi-Lagrangian Navier-Stokes methods also model the Eu-

lerian form of the Navier-Stokes and continuity equations but their algorithm is

48

aimed at reducing its complexity and number of iterations. They are the most

stable of the grid methods and their algorithms are simpler than the Eulerian

Navier-Stokes methods algorithms; however, they are the less accurate. Finally,

Lattice Boltzmann methods are being used more and more in wind engineering.

They numerically solve the velocity discretised Boltzmann equations. Lattice

Boltzmann results can match the accuracy of Eulerian Navier-Stokes [16] while

the most commonly employed version fo the lattice Boltzmann algorithm is sim-

ple, local and efficient for GPU acceleration. However, the relationship between

the fluid viscosity and the spatial and temporal discretisation and their explicit

time integration scheme contributes to their instability; implementing mesh re-

finement is complicated and they are memory intensive.

Reducing the computational resources used by CFD methods will potentially

provide more accurate and useful information and expand the use of CFD in

applications like emergency response teams, teaching and computer graphics. The

low memory consumption of Eulerian Navier-Stokes methods could be combined

with the computational speed provided by lattice Boltzmann methods to further

this goal. The next chapter provides more details about the NS, LB methods and

turbulence modelling used in the current work; followed by a study on coupling

methods.

49

It’s still magic, even if you know

how it’s done.

Terry Pratchett, A hat full of sky

Chapter 3

Theory

3.1 Eulerian Navier Stokes method

The most commonly employed equations to model fluid flow are the incompress-

ible Eulerian Navier-Stokes equations. The main body forces that are considered

when modelling wind flow are the pressure of the wind, the gravity, Coriolis force

and buoyancy due to the differences in temperature. In this thesis, we decided

to neglect the effect of Coriolis and buoyancy forces for simplicity. Finally, the

effect of gravity is irrelevant in the absence of thermal effects, since one of the

main effect of gravity is to counterbalance the buoyancy force.

This section describes the Eulerian Navier-Stokes solver which when coupled with

the lattice Boltzmann solver described in section 3.2, form the hybrid segregated

Navier-Stokes lattice Boltzmann solver (see chapter 4).

3.1.1 Equations solved and discretisation

The Eulerian Navier-Stokes model used in the present work solves the incompress-

ible Navier-Stokes equations with no body forces together with the continuity

equation:

51

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂σij
∂xj

(3.1)

∂ui
∂xi

= 0 i, j = 1− 3 (3.2)

where ui is the velocity of the fluid, where σij is the Cauchy stress tensor. The

Cauchy stress tensor can be divided in the normal stresses, which are the isotropic

part of σij and the deviatoric stress tensor, which is the anisotropic part of σij.

Then the second term of the RHS of eq. 3.1 can be expressed as:

∂σij
∂xj

= − ∂p

∂xi
+
∂τ dij
∂xj

(3.3)

where the normal stresses are the flow pressure p. For an incompressible flow the

deviatoric stress tensor only contains the shear stress and can be expressed as:

τ dij = ν

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.4)

where the constant ν is the viscosity of the fluid.

The spatial terms in Eq. 3.1 and Eq. 3.2 are discretised with a finite volume

method, which divides the domain in 3-dimensional cells or control volumes and

solves the integral form Eq. 3.1 and eq. 3.2 over the control volume. The simu-

lation is advanced in time using an implicit Euler scheme. A detailed description

of the finite volume discretisation and time stepping can be found in Ferziger and

Milovan [6]. This method can be applied to unstructured meshes, which poses

an advantage over the constant cell size structured meshes of the common form

of the lattice Boltzmann method (section 3.2).

The non-linearility in the convection term uj
∂ui
∂xj

is approximated by freezing uj

to the value from the previous time step and solving only for ui. The pres-

sure equation is obtained using the Helmholtz-Hodge decomposition and the

pressure-velocity coupling is solved using the pressure implicit splitting (PISO)

algorithm [39]. PISO algorithm needs a priory unknown number of iterations at

52

each time step to obtain accurate pressure and velocity values, which makes it

more computationally expensive and computer time consuming than the stream-

collide lattice Boltzmann algorithm described in section 3.2.

3.1.2 Initial and boundary conditions

This work implements Dirichlet boundary conditions for velocity and zero gradi-

ent Neumann boundary conditions for pressure to impose a 0 velocity on walls

(no slip boundary condition), or a set velocity at inlet faces.

The intended outlet boundary conditions are zero gradient Neumann boundary

conditions for both pressure and velocity, since they are the most similar to the

extrapolated lattice Boltzmann boundary condition (see section 3.2.5). However,

the Navier-Stokes solver used (i.e pisoFoam [27]) corrects mass flow imbalances by

adjusting the pressure at a Dirichlet pressure boundary. If no boundary has fixed

pressure, the mass flow cannot be corrected and the simulation stops. This mass

correction can destabilize the Navier-Stokes lattice Boltzmann coupled solver and

has to be taken into account (see chapter 4 for more details).

Finally, periodic boundary conditions are used in boundaries where the flow

presents a repeating pattern. See [6] for a detailed explanation of boundary

conditions in a finite volume discretisation.

3.2 Lattice Boltzmann method

The lattice Boltzmann method is one of the two solvers coupled in this work

which form the hybrid segregated Navier-Stokes lattice Boltzmann solver. This

section describes in more detail the numerical features implemented for the lattice

Boltzmann solver used and its relationship to the Navier-Stokes equations.

3.2.1 Lattice Boltzmann model

This thesis implements a D3Q19 BGK collision standard lattice Boltzmann:

53

fα(x0 + ∆x, t0 + ∆t)− fα(x0, t0) = ∆t
f eqα (x0, t0)− fα(x0, t0)

τ
α = 0 : 18

(3.5)

ρ(x0, t0) =
∑

α

fα(x0, t0) (3.6)

p(x0, t0) = c2
sρ(x0, t0) (3.7)

ρ(x0, t0)ui(x0, t0) =
∑

α

fα(x0, t0)cαi i = 1 : 3 (3.8)

ν =
1

3

(
τ − 1

2

)
∆x2

∆t
(3.9)

where ∆t is the time step, ∆x is the spacial step in x, y and z, τ is the relaxation

time at which the discretised particle distribution functions fα relax to their

equilibrium values f eqα , ν is the viscosity of the fluid, ρ is the density field, ui

is the macroscopic velocity field, p is the pressure field, cs = ∆x√
3∆t

is the lattice

speed of sound and cαi are the discretised particle velocities:

c =

1 −1 0 0 0 0 1 −1 1 −1 0 0 0 0 1 −1 −1 1 0

0 0 1 −1 0 0 1 −1 −1 1 1 −1 1 −1 0 0 0 0 0

0 0 0 0 −1 1 0 0 0 0 −1 1 1 −1 −1 1 −1 1 0

 ∆x

∆t

(3.10)

The order of the discretised particle velocities is not universal and must be defined

specifically for each solver. Eq. 3.10 and Fig. 3.1 show the order used in this

work, including its software implementation (annex B).

3.2.2 Equilibrium distribution function

The collisions between fluid particles tend to homogenise the particle velocities

ξi around the macroscopic velocity ui. So, in the absence of external forcing the

particle distribution functions will reach an equilibrium state f eq. The derivation

of the equilibrium distribution assumes that the particle velocities ξi in the equi-

librium state are isotropic around the macroscopic velocity ui, the components

54

x

y

z

01

2

3

4

5

6

7 8

9

12

10

13

11

14

15

16

17

18

Figure 3.1: Discretised particle velocities in a 3DQ19 cell. The numbers corre-
spond to the columns in eq. 3.10 and the vectors are coloured by the plane they
rest on.

of the fluctuating velocity vi = ξi − ui are independent variables and the col-

lisions between particles conserve mass, momentum and energy. Equation 3.11

presents the resulting form of the equilibrium distribution, also referred to as

Maxwell-Boltzmann distribution.

f eq(ρ, |v|, T) = ρ

(
1

2πRT

)3/2

e−|v|
2/(2RT) (3.11)

where R is the specific gas constant and T is the gas temperature. The fluctuating

velocity vi = ξi−ui is the particle velocity relative to the macroscopic velocity ui

so that the mean of the particle velocity ξi is ui and the mean of the relative or

fluctuating velocity vi is 0. Discretising the particle velocity from vi to cαi, using

3DQ19 velocity model and assuming isothermal fluid [1] yields the discretised

equilibrium particle distribution function used in this work:

f eqα = wαρ

(
1 +

1

c2
s

(cαiui) +
1

2c4
s

(cαiui)(cαiui)−
1

2c2
s

(uiui)

)
(3.12)

55

where cs = 1√
3

∆x
∆t

is the speed of sound and the weights wα are:

wα =

1/18 α = 0 : 5

1/36 α = 6 : 17

1/3 α = 18

(3.13)

3.2.3 Lattice units

In lattice Boltzmann it is useful to consider that the macroscopic quantities ρ,

ui and ν are in lattice units. The reference length in lattice units is 1 cell length

and the reference time is 1 time step. For example, a velocity value in lattice

units indicates how many cells are covered in a time step. The time step ∆t

and spatial step ∆x in eq. 3.5 and eq. 3.10 are always 1 in lattice units. This

assumption simplifies the lattice Boltzmann equations by avoiding to carry the

relationship between the cell size and the time step size during streaming and

collision. Results in lattice units can be converted to dimensionless units by

applying the definition of lattice units:

td = tδt (3.14)

xd = xδx (3.15)

where td and xd are a certain temporal and length value in dimensionless units,

t and x are the same value in lattice units, δt is a time step in dimensionless

units and δx is the cell size in dimensionless units. The macroscopic variables in

dimensionless units can then be obtained by dimensional analysis:

udi = ui
δx

δt
(3.16)

νd = ν
δx2

δt
(3.17)

Finally, physical units can be obtained by using the reference scales, so that:

56

tp = tdT upi = udi
L

T
(3.18)

xp = xdL νp = νd
L2

T
(3.19)

where the index p denotes physical units and T and L are a length in metres

and a time in seconds representative of the modelled case. Since T and L are

representative of the modelled case they are also used to define the Reynolds

number:

Re =
L2

Tνp
=

1

νd
(3.20)

where νp is the kinematic viscosity of the fluid in m2s−1.

For the remaining of this thesis all the lattice Boltzmann equations are presented

in lattice units, i e. ∆x = 1 cell length, ∆t = 1 time step.

3.2.4 Algorithm

The form of the lattice Boltzmann equation in eq. 3.5 is solved in two steps:

stream and collide. The stream step (LHS of eq. 3.5) models the advection of

the fluid particles from the previous cell to the current one in the direction of the

discretized particle velocities cαi. There are two variations of streaming: pull and

push, both presenting the same accuracy. Push streaming advects the particle

distribution functions from the current cell to the neighbouring cells; while pull

streaming advects the particle distribution functions from the neighbouring cells

to the current cell. The code used in this thesis uses pull streaming due to its

increased efficiency for GPU implementation [58].

Fig. 3.2 and eq. 3.21 illustrate pull streaming for a 2DQ9 velocity discreti-

sation, which is equivalent to a two-dimensional plane of the 3DQ19 velocity

discretisation in Fig. 3.1. All the simulations and case studies in this thesis are

three-dimensional and use a D3Q19 velocity discretisation, however, for the re-

57

mainder of this chapter all the explanatory figures only show one plane of the

3DQ19 cells to aid the clarity of the representation.

Figure 3.2: Scheme of the pull streaming algorithm for one plane of a 3DQ19
cell.

f ∗α(x, t+ ∆t) = fα(x + ∆tcα̃, t) (3.21)

where f ∗α is the post-streaming particle distribution function in the α direction,

∆t is the size of the time step (equal to 1 in lattice units), and α̃ denotes the

velocity vector on the opposite direction of α.

Once the pull step is completed, the collide step models the collisions between

the particles in the cell by solving the right hand side of equation 3.5.

Algorithm 1 shows a LBM time step using a pull streaming algorithm. This

algorithm only loops through the grid cells once every time step: it executes

streaming then collision for one cell before moving to the next cell. It is important

to note that fα(x, t + ∆t) and fα(x, t) need to be stored in different arrays, so

that f ∗α(x, t+ ∆t) does not overwrite the values in fα(x, t) during streaming.

3.2.5 Initial and Boundary conditions

Initial and boundary conditions are usually imposed on the macroscopic quan-

tities, velocity and pressure. Unlike Navier-Stokes based CFD methods, Lattice

Boltzmann solves the particle distribution functions fα, which are related to the

58

Algorithm 1 Algorithm for a time step a pull streaming BGK collision lattice
Boltzmann method.

1: for all cells, l do
2:

3: Step 1: Streaming
4: for all particle velocities, α do
5: f ∗α(xl, t+ ∆t) = fα(xl + ∆tcα̃, t);
6: end for
7:

8: Step 2: Macroscopic quantities
9: Initialise macroscopic density and velocity to 0

10: for all particle velocities,α do
11: density: ρ(xl, t+ ∆t) += f ∗α(xl, t+ ∆t);
12: for i = 0; i < 3; i+ + do
13: ui(xl, t+ ∆t) += cαif

∗
α(xl, t+ ∆t)

14: end for
15: velocity: ui(xl, t+ ∆t) /= ρ(xl, t+ ∆t)
16: end for
17:

18: Step 3: Collision
19: for all particle velocities, α do
20: fα(xl, t+∆t) = f ∗α(xl, t+∆t)− 1

τ
(f ∗α(xl, t+∆t)−f eqα (u(xl, t+∆t), ρ(xl, t+

∆t))
21: end for
22:

23: end for

macroscopic quantities via eq. 3.5. Velocity and pressure can be calculated

given all the fα. However, if only the macroscopic quantities are known, the

system is underdetermined and additional closure equations are needed. Initiali-

sation procedures for lattice Boltzmann particle distributions from a set velocity

and pressure are an open topic of research (see for example Mei et al. [59] and

Chikatamar et al. [60])).

For a boundary cell, the particle distribution functions leaving the domain are

known because they have been streamed from its neighbouring cells and the

particle distribution functions entering the domain are unknown because their

particle distribution functions should be streamed from outside the domain (Fig.

3.3). Boundary conditions in lattice Boltzmann use a combination of the known

particle distribution functions and the macroscopic quantities to deduce the values

of the unknown particle distribution functions.

59

Figure 3.3: Streaming in a boundary cell without applying boundary conditions.
After streaming the cell is missing the particle distribution functions from out-
side the domain (thick dashed arrows).The black thick grid line indicates the
boundary.

Periodic

Periodic boundary conditions are used to model flows with repeating patterns.

In the LBM this is achieved by streaming the particle distribution functions that

would exit the domain into the incoming particle distribution functions for the

opposite boundary (Fig. 3.4).

Figure 3.4: Streaming in a boundary cell with periodic boundary conditions.
The thick dashed arrows indicate the particle distributions where the boundary
condition is applied and the thick solid lines indicate the boundaries.

The periodic boundary condition can be implemented into the streaming step by

wrapping the cell indices around the number of cells as shown in algorithm 2.

60

Algorithm 2 Lattice Boltzmann periodic boundary condition implemented as
part of the pull streaming step. d is the coordinate (x, y or z), ids[d] is the
cell that provides fα, id[d] is the current cell, c[d, α] are the discretised particle
velocities (eq. 3.10) and N [d] is the number of cells.

1: for all cells, l do
2: Step 1: Streaming
3: for all particle velocities, α do
4: Step 1.1: Get the indices of the cells to pull from
5: for all dimensions, d do
6: ids[d] = id[d]− c[d, α];
7: if ids[d] == −1 then
8: ids[d] = 0
9: else if ids[d] == N [d] then

10: ids[d] = N [d]− 1
11: end if
12: end for
13: Step 1.2: Pull stream as normal
14: f ∗α(id, t+ ∆t) = fα(ids, t)
15: end for
16: Step 2: Macroscopic quantities
17: Step 3: Collision
18: end for

Extrapolated

Extrapolated boundary conditions allow the flow to go through the boundary,

and their effect on the macroscopic quantities is close to a zero gradient boundary

condition.

Extrapolated boundary conditions set the missing particle distribution functions

to the values of the particle distribution functions on the neighbour cell in the

stream direction (Fig. 3.5).

Forced equilibrium

The forced equilibrium condition is used at boundaries to impose a macroscopic

velocity ui0 and density ρ0. Forced equilibrium boundary condition sets the popu-

lation distribution functions of each boundary cell fα(x, t+∆t) to the equilibrium

values that yield the imposed ui0 and density ρ0 (eq. 3.22). If density information

is not available, it is common to set ρ0 = 1.

61

Figure 3.5: Streaming in a boundary cell with extrapolated boundary conditions.
The thick dashed arrows indicate the particle distributions where the boundary
condition is applied (right) and where they come from (left). The thick solid lines
indicate the boundary and the grey areas are dummy cells marked as extrapolated
boundary.

fα(x, t+ ∆t) = f eqα (ρ0(x, t),u0(x, t)) (3.22)

Forced equilibrium is stable and the simplest way of imposing a Dirichlet bound-

ary condition in lattice Boltzmann. However, it is the less accurate since it

only takes into account the equilibrium components of u0 and ρ0, thus the non-

equilibrium information is lost. The effect of viscosity is also lost (see section

3.2.6) so it is not able to impose no slip boundary conditions. Besides, the

boundary cells do not receive information from its neighbouring cells and thus

the mass of the system is not conserved.

Regularised

Regularised boundary conditions by Latt et al. [61] combine macroscopic infor-

mation with the particle distribution functions streamed from inside the domain

to imposed a macroscopic velocity ui0 and density ρ0. Unlike forced equilibrium,

regularised boundaries allow for either the velocity normal to the boundary un

or the density ρ0 to be determined from the known velocity components and /or

known density and the known particle distribution functions. Once the missing

component (either un or ρ0) is calculated, all the particle distributions in the

regularised boundary are reconstructed using the non-equilibrium distribution

62

functions. Since regularised boundary conditions use non-equilibrium informa-

tion they are more accurate than forced equilibrium and able to model no-slip

boundaries. However, regularised boundary conditions are less stable than forced

equilibrium boundaries.

The first step to implement the regularised boundary condition is to calculate the

missing macroscopic component on the boundary cells from the known distribu-

tion functions and remaining macroscopic variables. Density ρ can be divided in

the following three components: ρ0, which is in the same plane as the boundary,

ρ+, which is aligned with the boundary’s normal vector pointing inside the do-

main and ρ− which is aligned with the boundary’s normal vector pointing outside

the domain:

ρ = ρ0 + ρ+ + ρ− (3.23)

where ρ0 is the sum of the particle distribution functions in directions planar to

the boundary

ρ0 =
∑

α|cαn=0

fα, (3.24)

ρ+ is the sum of the particle distribution functions streaming from outside the

domain and n is the direction normal to the boundary

ρ+ =
∑

α|cαn=1

fα, (3.25)

and ρ− is the sum of the particle distribution functions streaming from inside the

domain

63

ρ− =
∑

α|cαn=−1

fα, (3.26)

Substituting eq. 3.23 into the macroscopic velocity equation (eq. 3.8) yields:

ρun = ρ+ − ρ− (3.27)

The particle distributions streaming from outside the domain are unknown, but

can be eliminated by substituting eq. 3.23 into eq. 3.27. Then, the unknown

macroscopic variable (density ρ or normal velocity un) can be obtained by:

ρ =
ρ0 + 2ρ−
1− un

(3.28)

Fig 3.6 shows the streaming and regularised boundary condition applied to a

corner of a 2D domain. In 3D, corners and edges present special cases; some of

the particle distribution functions that form ρ0 and ρ− (dashed coloured arrows in

Fig 3.6) are unknown, so 3.28 can not be directly used to obtain the macroscopic

density ρ. To solve this issue, the code used in this work first decides to which

boundary the cell is part of (bottom boundary in Fig. 3.6), then streams all

particle distribution functions implementing periodic boundaries (see algorithm

2), and then applies regularised boundary conditions.

The next step is to use the previously calculated macroscopic quantities ui and

ρ to obtain intermediate values for the distribution functions fα streaming from

outside of the domain. The particle distribution functions fα can be approximated

using the Chapman Enskog expansion

fα = f (0)
α + εf (1)

α +O(ε2) (3.29)

64

Figure 3.6: Streaming in a corner/edge boundary cell with regularised bound-
ary conditions. In this example the cell pertains to the lower boundary (thick
continuous line), the other boundaries are thick dashed lines. The coloured thick
dashed arrows indicate the particle distributions part of ρ0 and ρ− streamed us-
ing periodic boundary conditions. The thick dashed grey arrows are the particle
distributions part of ρ+.

where ε << 1 is the smallness parameter (Knudsen number), f
(0)
α = f eqα and

f
(1)
α ≈ fneqα . The non-equilibrium distribution function fneqα is:

fneqα = fα − f eqα (3.30)

fα for the particle distribution functions streamed from outside the domain is

unknown, but it can be calculated via the non-equilibrium bounceback assump-

tion [62]:

fneqα = fneqα̃ (3.31)

where α̃ denotes the particle velocity direction opposite α. Thus the intermediate

values of the unknown fα can be calculated by substituting eq. 3.31 into eq. 3.30

and then into eq. 3.29 as

fα = f eqα + fα̃ − f eqα̃ (3.32)

65

Finally, all the particle distribution functions are recalculated as

fα = f eqα +
wα
2c4
s

QαijΠ
(1)
ij (3.33)

where

Qαij = cαicαj − c2
sδij (3.34)

and the first order components of the stress tensor Π
(1)
ij are:

Π
(1)
ij =

∑

α

cαicαjf
(1)
α i, j = 0 : 2 (3.35)

Half-way bounce back

Half-way bounce back boundary conditions are used at solid walls to impose

no slip condition. Half-way bounce back modifies the streaming step so that

the particle distributions bouncing away from the solid wall are set to the pre-

streaming particle distribution functions directed towards the wall; each particle

distribution is assigned to the one in the opposite direction (Fig. 3.7).

The bounce back boundary condition sets the solid wall (i.e the point where the

macroscopic velocity is zero) at the mid plane between the boundary cells and

the dummy bounce back cells (thick line in Fig. 3.7). This position halves the

distance between the centre of the boundary cell and the wall, thus also halving

y+ in turbulent simulations and potentially increasing their accuracy. Moreover,

the half-way bounce back boundary condition conserves mass and it is easy to

implement in solid surfaces that conform with the mesh. Curved surfaces and flat

surfaces not aligned with the mesh are represented by a ”staircase” pattern of

step size equal to the cell size, degrading the accuracy of the boundary condition.

Bounce-back can be modified to treat curved walls [63], though the modifications

66

Figure 3.7: Streaming in a boundary cell with half-way bounce back boundary
condition. The thick dashed arrows indicate the particle distributions where the
boundary condition is applied (right) and where they come from (left). The thick
solid lines indicate the boundary and the greyed areas are dummy cells marked
as bounce-back boundary.

increase the complexity of the algorithm. Another disadvantage of bounce back

is that, when used with BGK collision, the location of the no-slip boundary

depends on the lattice Boltzmann viscosity, which depends on the discretisation

(eq. 3.17). This can lead to different flow behaviour for flows with the same

Reynolds number, which is not physical.

Initial conditions

All initial conditions used in the present work are forced equilibrium; in which

the macroscopic velocity and density are set and the particle distributions are

initialised to the equilibrium particle distributions.

3.2.6 Macroscopic conservation equations

This section shows how the Boltzmann and lattice Boltzmann equations relate to

the continuity and Navier-Stokes equations (see section 3.1); with emphasis on

the conditions for the stability restrictions in the values of lattice velocity, and

thus in the values of the time and spatial discretisation.

The Boltzmann equation is:

67

∂f

∂t
+ ξi

∂f

∂xi
= Ω(f) (3.36)

where ξi is the particle velocity. The first three moments of the particle distribu-

tion function f are:

∫
fd3ξ = ρ (3.37)

∫
ξifd

3ξ = ρui (3.38)
∫
ξiξjfd

3ξ = Πij = uiujρ− σij (3.39)

where Πij is the momentum flux density tensor and σij is the viscous stress

tensor.

The first step to obtain the continuity equation is to integrate the Boltzmann

equation (eq. 3.36) over velocity space:

∂

∂t

∫
fd3

ξ +
∂

∂xi

∫
ξifd

3ξ =

∫
Ω(f)d3ξ (3.40)

The first and second terms of eq. 3.40 can be resolved using the moments in eq.

3.37 and eq. 3.38; the integral of the collision operator is zero, since the collision

operator conserves mass. The resulting equation is the continuity equation for

compressible fluids

∂ρ

∂t
+
∂(ρui)

∂xi
= 0 (3.41)

We obtain the momentum conservation equations by calculating the first

moment of the Boltzmann equation:

68

∂

∂t

∫
ξifd

3ξ +
∂

∂xj

∫
ξiξjfd

3ξ =

∫
ξiΩ(f)d3ξ (3.42)

Following the same procedure used for the continuity equation, the first and

second terms of equation 3.42 can be solved using the first order and the second

order moments of the particle distribution function f (eq. 3.38 and 3.39). The

RHS term is 0, since the collision operator conserves momentum. Thus, the

resulting equation is the Cauchy momentum equation:

∂(ρui)

∂t
+
∂(uiuj)

∂xj
− ∂σij
∂xj

= 0 (3.43)

where

σij = −
∫
vivjfd

3ξ (3.44)

= pδij − (1− δij)
∫
vivjfd

3ξ (3.45)

with the fluctuating particle velocity vi = ξi − ui; where ui is the mean velocity

of the particles (i e. the macroscopic velocity of the fluid).

Unlike the continuity equation (eq. 3.41), the form we obtained of the Cauchy

momentum equation is not closed, since it lacks an explicit equation for f . The

simplest method to approximate f is to assume that the particles in the fluid are

always at equilibrium and thus f = f eq. The equilibrium distribution function

does not depend on the fluctuating particle velocity vi, so it can be taken out of

the integral:

σij = pδij − f eq(1− δij)
∫
vivjd

3ξ (3.46)

69

The integral in the last term of equation 3.46 is vivj (i.e. the time-averaged

value of vivj). One of the assumptions used to build the equilibrium distribution

function is that, in equilibrium, the components of the fluctuating velocity vi are

independent variables [1]. Then it follows that: vivj = v̄iv̄j. Remember also that

the time-averaged value of any of the components of vi is zero by definition. So

if we approximate f ≈ f eq we recover the Euler equations:

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xj
(3.47)

Note that the Euler equations are inviscid, which suggests that the effect of

viscosity is related to the non-equilibrium part of the distribution function fneq =

f − f eq.

The non-equilibrium particle distribution functions can be approximated using

the the Chapman-Enskog expansion. Its main idea is to express f as a perturba-

tion expansion around f eq as:

fα = f (0) + εf (1) + ε2f (2) + ... (3.48)

were f (0) = f eq and the smallness parameter εn indicates terms of order Knn,

where Kn is the Knudsen number 1. Each order in Kn forms a semi-independent

equation by itself, so that the higher order terms might be seen as corrections

to the lower order terms. Applying a Taylor expansion to the lattice Boltzmann

equation and expanding its derivatives using the Chapman-Enskog expansion [1]

we obtain:

∂(ρui)

∂t
+
∂(uiuj)

∂xj
= −∂(ρc2

s)

∂xi
+

∂

∂xj

(
ρc2

s

(
τ − ∆t

2

)(
∂ui
∂xj

+
∂uj
∂xi

)
−O(u3)

)

(3.49)

1The Knudsen number is defined as the ratio of the molecular mean free path length of the
fluid and a physical length scale.

70

Eq. 3.49 is the Navier-Stokes equations with the fluid viscosity η = ρc2
s

(
τ − ∆t

2

)
,

pressure p = ρc2
s and an extra O(u3) term, which is the error due to the lack

of a O(u3) term in the discretised equilibrium function f eqα . This error is only

negligible if u2 � c2
s, which means that the lattice Boltzmann equation only

reproduces the Navier-Stokes equations for velocities much lower than the speed

of sound cs. It can also be interpreted that the macroscopic momentum equation

from the lattice Boltzmann equation represents the compressible Navier-Stokes

equations for weakly compressible flows. Another observation from the previous

equation is that τ
∆t
≤ 1

2
yields a negative viscosity η, and thus the solved flow

becomes unstable. This condition comes from the explicit Euler time integration

scheme.

3.3 Turbulence modelling

Most flows occurring in nature are turbulent and local urban wind is no exception.

To have an idea of what a turbulent flow looks like we only need to look at the

clouds, at a smoke plume or at a river surface (fig. 3.8). Tennekes and Lumley [64]

describe turbulence as 2 :

• irregular: we need statistical tools to describe turbulent flows;

• diffusive: turbulent velocity fluctuation will spread with time to cover more

space;

• characteristic of high Reynodls numbers: where the lack of mathematical

tools to give general solutions to the Navier-Stokes equations hinders the

study of turbulence;

• rotational: characterised by high levels of vorticity fluctuations;

• three-dimensional: since the vorticity fluctuations can only be maintained

by three dimensional flows [65];

• dissipative: viscosity dissipates turbulence into heat, thus turbulence decays

without a source of energy.

2See [64] for a detailed description of turbulence

71

• multi scale in time and space: Large scale turbulent structures, also referred

to as eddies, dissipate kinetic energy by forming smaller eddies, until the

smallest eddies are dissipated into heat by viscosity.

.

Figure 3.8: Turbulent flow at the surface of the river Mersey, Manchester.

The statistical tools used to describe turbulent flows in the present work are the

mean velocity Ui, the fluctuating velocity u′i, the Reynolds stress tensor < u′iu
′
j >

and the turbulent length scale σi.

The mean and fluctuating component of the velocity are obtained from the in-

stantaneous velocity using the Reynolds decomposition. It states that the in-

stantaneous velocity of a turbulent flow ui can be decomposed in a time averaged

mean componentUi and a fluctuating component u′i

Ui =< ui(x) >=
∑

t

ui(x, t) (3.50)

u′i(x, t) = ui(x, t)− Ui(x) (3.51)

with < u′i(x) >=
∑

t u
′
i(x, t) = 0.

72

The Reynolds stress tensor Rij calculates the correlation between the three com-

ponents of the fluctuating velocity

Rij(x) =< u′iu
′
j >=

∑

t

u′i(x, t)u
′
j(x, t) (3.52)

The turbulent length scale σi represents the size of the turbulent eddies. It can

be calculated using the Reynolds stress tensor as

σi =
R

3/2
ii

ε
(3.53)

where ε is the turbulent kinetic energy dissipation rate.

3.3.1 Direct numerical simulation

The most direct approach to compute turbulent flow is using the Navier-Stokes

equations (section 3.1) or the lattice Boltzmann equations (section 3.2) to solve

for all the spatial and temporal scales of the instantaneous velocity of the fluid

ui. The resulting flow field is equivalent to the flow field obtained in a wind

tunnel experiment or observed in nature. Thus the name of this approach is

direct numerical simulation (DNS).

Turbulence acts in a range of lengths and time scales and, to obtain an accu-

rate representation of the unsteady flow, all of them need to be captured in the

temporal and spacial discretisation. A model that represents all time and length

scales is computationally expensive. For example, in the case of the spatial dis-

cretisation, the size of the domain must be a few times the size of the largest

turbulent structure, with cell sizes of the scale related to viscous dissipation, the

Kolmogorov scale. The description of the flow obtained from DNS is very detailed

and thus, post-processing and extracting the information needed for engineering

applications is resource intensive. Another issue of DNS is that the initial and

boundary conditions are difficult to generate, since they have to contain the same

73

amount of information as the modelled flow.

The arguments in the paragraph above motivated the development of methods

that resolve only the large scales of motion and approximate the rest with a

turbulence model. This chapter describes the large eddy simulation (LES) tur-

bulence model, which resolves the turbulent velocity field above a certain scale

and models the effect of the velocities at lower scales. Another family of turbu-

lence models are the Reynolds averaged Navier-Stokes equations (RANS), which

only solve for the time averaged velocity and model the effect of the turbulence

on the main flow. For a more extensive review of the turbulence models available

in the literature, the reader is referred to Pope [65].

3.3.2 Large eddy simulation (LES)

The largest length scales present in a turbulent flow, i e. those which scale with

the size of the geometry or shear flow that generates them, provide the majority of

the transport of the conserved quantities. The effect of the small length scales on

the transport of the conserved quantities is less significant [6], thus it is adequate

to resolve the large length scales and incorporate the small scales only through

their effect on the large scales.

The first step towards the LES form of the fluid flow equations is to generate

a velocity field ūi, for Eulerian Navier-Stokes, or a particle distribution function

f̄α, for lattice Boltzmann, that only contains the large scales of turbulence. The

LES solved quantity is obtained by spatially filtering the instantaneous velocity

or particle distribution function for lengths scales larger than a filter width ∆. In

one dimension:

w̄i(x) =

∫
G(x, x′)wi(x

′)dx′ (3.54)

where the over bar indicates spatially filtering operation, wi is the instantaneous

velocity ui for the Eulerian Navier-Stokes equations and the instantaneous particle

distribution function fα for the lattice Boltzmann equations. The filter kernel

G(x, x′) can be for example a box filter (i.e. a local average) or a cut-off filter

74

(i.e. use the Fourier transform to eliminate all wavelengths below the filter width

∆).

Navier-Stokes implementation

The incompressible Eulerian Navier-Stokes equations and the continuity equation

for the filtered velocity ūi and filtered pressure p̄ are:

∂ūi
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p̄

∂xi
+

∂

∂xi

[
ν

(
∂ūi
∂xj

+
∂ūj
∂xi

)]
(3.55)

∂ūi
∂xi

= 0 (3.56)

The correlation uiuj is not easily computed. We define the subgrid scale Reynolds

stress tensor τij as the missing term needed to compute uiuj:

uiuj = ūiūj + τij (3.57)

The subgrid scale Reynolds stress τij accounts for the contribution of the unre-

solved small scales to the resolved large scales. For an extensive explanation and

review of LES turbulence models the reader is referred to Sagaut [66]. Sagaut [66]

describes two modelling approaches to approximate τij: structural modelling and

functional modelling. Structural models approximate the form of the tensor τij.

For functional models, τij represents the effect of the subgrid scales on the filtered

velocity ūi and thus provide only an energy balance, not the form of τij itself.

The simplest sub grid scale model is the Smagorinsky model [67], which is a

functional model. It assumes that the effects of the subgrid scale term on the

flow are increased transport and dissipation of momentum. The viscosity of the

fluid ν causes these same effects, so it is reasonable to assume that the subgrid

scale term could take the same form as the viscosity term. For an incompressible

flow:

75

τij −
δij
3
τkk = νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(3.58)

where νt is the sub grid scale eddy viscosity and
δij
3
τkk is the isotropic part of the

Reynolds stress, which can be modelled as part of the solved pressure p̄ [66]. The

original Smagorinsky model defines the sub grid eddy viscosity as

νt = Cs∆
2|S̄| (3.59)

where Cs is a parameter of the model, ∆ is the length of the filter and |S̄| =√
2S̄ijS̄ij. The strain rate of the filtered velocity S̄ij is:

S̄ij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(3.60)

It is worth to note that the parameter Cs might depend on different factors,

both physical and numerical, and might take different values in different flows.

Standard values of Cs are between 0.01 and 0.0144 and the standard value for

plane channel flows is Cs = 0.01 [66]. To reduce the variability of the Cs value,

Germano et al. [68] developed a dynamic Smagorinsky model in which the value of

Cs changed to adapt to the flow’s characteristics. However, this thesis implements

the original Smagorinsky model due to its simplicity.

Lattice Boltzmann implementation

The lattice Boltzmann implementation of the LES Smagorinsky model follows the

steps described by Hou et al. [69] and Koda and Lien [16]. The lattice Boltzmann

equations for the filtered particle distribution function f̄α are:

76

f̄α(x0 + ∆x, t0 + ∆t)− f̄α(x0, t0) = ∆tΩ̄α(x0, t0) α = 0 : 18 (3.61)

where Ω̄α is the filtered collision operator. Hou et al. [69] assumes that the filtered

collision operator Ω̄α relaxes the filtered particle distribution functions f̄α to a

filtered equilibrium distribution f̄ eqα of the same form as the original unfiltered

equilibrium distribution f eqα but function of the filtered macoscopic density ρ̄

and velocity ūi. It also assumes that the influence of the filtering process on

the collision operator only introduces an eddy viscosity νt, which modifies the

relaxation time. Thus Ω̄α for a BGK collision operator becomes:

Ω̄α =
f eqα (ρ̄, ū)− f̄α

τ̄
(3.62)

ρ̄ =
∑

α

f̄α (3.63)

ρui =
∑

α

f̄αcαi i = 1 : 3 (3.64)

τ̄ = 3(ν + νt) +
1

2
(3.65)

where τ̄ is the modified relaxation time, cαi is the discretised particle velocity, ν

is the viscosity of the fluid and

νt = Cs∆
2|S̄| (3.66)

is the Smagorinsky eddy viscosity; ∆2 is the filter width, which is usually equal

to the cell size. The value of the Smagorinsky constant Cs is typically between

0.01 and 0.04 (see for example Hou et al. [69] Wang et al. [70] and Yu et al. [71]).

|S̄| =
√

2S̄ijS̄ij is the intensity of the strain rate of the filtered velocity

S̄ij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(3.67)

77

The velocity gradients in S̄ij can be discretised using finite differences [70] [72].

However, the discretisation incorporates non-local operations to the lattice Boltz-

mann collision algorithm, thus reducing its computational efficiency on GPU im-

plementations [58]. How et al. [69] proposes the following method to calculate

S̄ij involving only local operations. The first order components of the filtered

velocity stress tensor Π̄
(1)
ij can be approximated as

Π̄
(1)
ij =

∑

α

cαicαj f̄
neq
α (3.68)

where f̄neqα = f̄α − f̄ eqα is the non-equilibrium distribution function. Then the

second variance Q of the tensor Π̄
(1)
ij is

Q = Π̄
(1)
ij Π̄

(1)
ij (3.69)

The first order components of the filtered velocity stress tensor are related to the

filtered velocity strain rate tensor via [69] [1].

Π̄
(1)
ij = −2ρ̄τ̄

3
S̄ij (3.70)

Combining eq. 3.70, eq. 3.69, eq. 3.66 and eq. 3.65 we obtain

Q1/2 = (τ + 3Cs∆
2|S̄|) 2ρ̄

3
√

2
|S̄| (3.71)

where τ = 3ν + 1
2

is the original relaxation time. Eq. 3.71 is a second order

equation for |S̄|. Solving it and substituting in eq. 3.65 we obtain:

78

τ̄ =
1

2ρ̄

(√
ρ̄2τ 2 + 18

√
2ρ̄Cs∆2Q1/2 − τ ρ̄

)
+ τ (3.72)

All the operations in 3.72 are local, so the implementation of the LES Smagorinsky

using eq. 3.72 does not significantly increase the computational cost of the lattice

Boltzmann method in GPU.

3.3.3 Inlet boundary condition: Synthetic eddy method

The fluid velocity at the inlet of a turbulent flow simulation needs to contain all

the scales of motion for the simulation to accurately represent turbulent flow. Un-

resolved scales decrease the accuracy of the simulation and increase the distance

needed by the flow to develop from the inlet conditions to realistic turbulent flow.

Tabor and Baba-Ahmadi [73] review different inlet boundary conditions for LES

simulations. They divide the inlet boundary conditions in two groups:

• Synthesised turbulence methods : add artificially generated fluctuating ve-

locity to the mean velocity using mean flow data.

• Precursor simulation: the inlet velocity is generated from a precursor peri-

odic DNS or LES.

One of the reviewed synthesised turbulence methods is the synthetic eddy method

(SEM). SEM uses the mean flow statistics to generate synthetic eddies that are

convected across the inlet. The inlet velocity field is obtained by superposing

the eddies velocity to the mean velocity. SEM presents reduced computational

cost compared to methods that require a precursor LES or DNS simulation and

reduced development lengths compared to simpler synthesised turbulent methods

[73]. The present work uses the SEM by Jarrin et al. [74] improved by Skillen et

al. [7]. The improved SEM model presents the following advantages:

• Shorter development length than previous SEM models [7].

• Decreased computational cost, since it generates less eddies.

79

Additionally, our research group has access to a C++ implementation of the code;

which made it easy to adapt to lattice Boltzmann and introduce in the lattice

Boltzmann code used in this thesis.

Navier-Stokes implementation

The synthetic eddy method proposed by Jarrin et al. [74] and improved by Skillen

et al. [7] generates an artificial fluctuating velocity field u′i across the inlet face

using as input the time averaged inlet velocity Ui, the Reynolds stresses Rij, and

turbulent length scale σi.

The first step is to generate a fixed number of synthetic eddies centred at random

positions on the inlet plane. The eddies are then moved by a random distance

perpendicular to the inlet face in the range of the eddy size (Fig. 3.9). This way,

all the eddies start at random positions both across and along the inlet while all

of them intersect the inlet and thus contribute to the fluctuating velocity.

Figure 3.9: Sketch of the side view of the inlet plane (dash-dot line) showing the
initial positioning of the SEM eddies. Figure reproduced from Skillen et al. [7].

The next step is to calculate the preliminary fluctuating velocity field u∗i (x, t) by

adding the contribution of each eddy normalised by the running average of the

eddy concentration (eq. 3.73).

80

u∗i (x, t) =

∑N
e=1 εif(x− xe, σe)√〈∑N
e=1 g

2(x− xe, σe)
〉AV G (3.73)

where εi is an integer representing the sign of the eddy and is assigned a ±1 value

at random, x is the current inlet cell, xe is the position of the centre of the current

eddy, σe is the length scale of the current eddy, N is the number of eddies and

f is a weight function based on the distance from the centre of the current eddy.

Skillen et al. [7] use a truncated Gaussian function with extents defined by the

length scale of the current eddy σe. Skillen et al. [7] contains more information

on the weight function g and the implementation of the running average of the

eddy concentration (〈〉AV G).

The next step is to correct the preliminary fluctuating velocity u∗i so that it has

zero mean and the second order statistics dictated by the prescribed Reynolds

stresses Rij. To do so, the fluctuating velocity u∗i is multiplied by the Cholesky

decomposition of the Reynolds stress tensor Lij

L =

√
R11 0 0

R21/L11

√
R22 − L2

21 0

R31/L11 (R32 − L21L31)/L22

√
R33 − L2

31 − L2
32

 (3.74)

and the instantaneous velocity ui is obtained via:

ui(x, t) = Liju
∗
j(x, t) + Ui (3.75)

where Ui is the prescribed mean velocity.

At each time step, the eddies are advected through the inlet by the bulk velocity

of the prescribed mean flow. When an eddy no longer intersects the inlet, it is

regenerated to a new random starting position, which is recomputed until the

eddy lands in a region with low eddy density.

81

Lattice Boltzmann implementation

The instantaneous inlet velocity for lattice Boltzmann simulations is generated

using Skillen et al. [7] SEM following the same formulation as the Navier-Stokes

implementation. The obtained instantaneous velocity is then converted to lattice

Boltzmann units and applied to the inlet via a regularised boundary condition

(see. section 3.2.5). However, this direct implementation had two main short-

comings:

• One time step of the lattice Boltzmann simulation run in the GPU takes

less time than 1 time step of the SEM simulation in the CPU; which makes

the SEM a bottleneck.

• The lattice Boltzmann method implemented in this work allows only for

meshes with constant size cubic cells; thus the calculation of the contribu-

tion of each eddy to the preliminary fluctuating velocity (eq. 3.73) can be

optimised to work only with constant regular grids.

The lattice Boltzmann code used in this work, GASCANS (see apendix B), ad-

dresses the short-commings above using the SEM Courant number and an opti-

mised eddy overlap function.

The SEM courant number CoSEM is an input set by the user used to calculate

the time step for the SEM δtSEM .

δtSEM = CoSEM ∗
δx

Ub
(3.76)

where δx is the inlet cell size and Ub is the bulk velocity perpendicular to the

inlet. δtSEM is then corrected so that δtSEM = r ∗ δtLBM , where r is an integer

value. If δtSEM < δtLB the SEM time step is set to the lattice Boltzmann time

step. The SEM instantaneous velocity is only updated at δtSEM , thus saving

computational cost and reducing the time spend in calculating SEM.

The algorithm to calculate the preliminary velocity field (eq. 3.73) is the most

computationally expensive part of the SEM implementation, since it involves a

nested search loop. For each cell in the inlet, the code goes through all the eddies

82

to add up the contribution of the eddies whose centre is less than σe away from

the current cell. The order of this algorithm is of Ncells ∗Neddies. For example, if

the inlet has 200×360 cells and SEM generates 1800 eddies, one time step of this

algorithm involves 129.6 million steps. This algorithm does not need any a priori

knowledge of the inlet grid structure and it will work with any kind of structured

or unstructured mesh. However, our lattice Boltzmann implementation works

only with constant size cubic cells, which allows for a more optimised algorithm.

The position and size of the eddies are now trivial to convert to cell indices

indexe, since indexe = xe/δx, where δx is the cell size. The outer loop now

goes through all the eddies and adds the contribution of each eddy to the cells it

occupies. The order of the new algorithm is approximately Neddies ∗ 4σ2
e . Using

the same mesh as in the previous example and assuming a mean σe = 20 cells,

one time step of the new algorithm involves 5.76 million steps, which is two orders

of magnitude lower than the original algorithm.

Algorithm 3 shows the Skillen et al. [7] SEM method implemented in lattice

Boltzmann, including the SEM courant number and mesh optimisations.

The SEM Courant number and the optimisation of the preliminary velocity field

algorithm reduce the computational cost of SEM to a lower value than the lattice

Boltzmann loop. Thus SEM is no longer a bottle neck in the lattice Boltzmann

simulation.

83

Algorithm 3 Algorithm for a time step of the SEM boundary condition imple-
mented in the lattice Boltzmann method used in this thesis.

1: Step 0: Update SEM mean flow if needed
2:

3: State 1: Check if SEM velocity needs updating
4: if δtSEM%δtLBM ! = 0 then
5: Exit.
6: end if
7:

8: Step 2: Advect the eddies
9: for all eddies, i do

10: xe[i]+ = UbδtSEM
11: if time > residence time[i] then
12: Regenerate eddy i
13: end if
14: end for
15:

16: Step 3: Update instantaneous velocity
17: for all eddies,e do
18: Get the mesh indices of the eddy bounding box i0, in, j0, jn, k0, kn
19: for i=i0; i < in; i++ do
20: for j=j0; j < jn; j++ do
21: for k=k0; k < kn; k++ do
22: if eddy e is in cell, because eddies are not prisms then
23: Add eddy to running average (eq. 3.73 denominator)
24: Add eddy contribution to u∗[cell] (eq. 3.73 numerator)
25: end if
26: end for
27: end for
28: end for
29: end for
30: for all cells, c do
31: Update u∗[c]
32: Calculate instantaneous velocity u[c] (eq. 3.76)
33: end for
34:

35: Step 4: Correct inlet mass flow
36:

37: Step 5: Advance time
38: time += δtSEM

84

All models are wrong, but some

are usefull.

George E. P. Box

Chapter 4

Navier-Stokes lattice Boltzmann

model

Urban wind flow is a multi-scale phenomena, covering from time scales of millisec-

onds and meters for the smallest resolved turbulent scales to hours and kilometres

for the changes in mean velocity at a city wide scale. The time scale can be ex-

tended to years if the averaged velocity and gusts are needed for climate studies

as for example pedestrian wind comfort [19]. In that case, the results are also

affected by the climatic weather conditions of the region, with an scale of thou-

sands of kilometers. Modelling urban wind flow using a single model that is able

to resolve all the scales is computationally taxing and often unrealisable.

The Multiscale Modelling and Simulation Framework (MMSF) [75] divides a

multi scale simulation in multiple submodels connected via smart conduits. Each

submodel focuses in a sub-set of scales of the multi-scale phenomena and works

autonomously, not aware of the scales of the submodels it is connected to. This

separation has two main advantages: (1) a submodel can be substituted by a

better version of the code or algorithm if needed without interfearing with the

others, (2) each submodel can work in a different hardware architecture (e g. GPU

and CPU) and be optimised for it without interfearing with the other submod-

els. The smart conduits are scale aware and transfer and map the data between

submodels.

The description of a multiscale model using the MMSF is divided in 2 parts:

• Theoretical framework : describes the

85

– modelling: division of the multiscale phenomena in submodels and

which scales each submodel focuses in

– architecture: execution loop of each submodel and the coupling tem-

plates, i e. at which points of the execution loop each submodel trans-

fers and receives information to which other submodel.

• Computational framework : describes the

– implementation of each submodel and of the smart conduits using

either a monolithic approach, a coupling framework or a coupling li-

brary.

– execution of the multiscale model and the hardware architecture it

uses.

This chapter presents the description of the multiscale urban wind model devel-

oped in this thesis and divided following the MMSF. The NSLB method presented

in this thesis couples two submodels, a NS submodel for the large scales and a

LB submodel for the small scales.

4.1 Theoretical framework

The first step is to identify the relevant scales and processes (submodels) involved

in the phenomena we want to study and display them in a scale separation map

(SSM).

The second step is to express the time loop of each submodel using a submodel

execution loop (SEL). SEL is a generic, abstract execution temporal loop that

includes the temporal loop of each submodel and the comunication between sub-

models at specific steps of the temporal loop.

4.1.1 Modelling

We consider two cases:

86

(a) Laminar flow (b) Turbulent flow

Figure 4.1: SSM for the multiscale NSLB method. (a) Laminar flow case; (b)
turbulent flow case. The arrows indicate information transfer between the NS
and LB submodels

• Laminar / low Reynolds number flow: in which both the NS and LB sub-

models run without turbulence modelling.

• Turbulent flow: in which the NS submodel implements a RANS turbulence

model to resolve the mean flow and model turbulence and the LB sub-

model implements an LES Smagorinsky turbulence model to resolve large

to medium turbulent scales.

Fig. 4.1 presents the scale separation map for each case. For laminar flow (Fig.

4.1a), both the NS and the LB submodels are able to solve the same minimum

scale. However, the NS submodel is able to resolve larger scales than the LB

submodel; due to its low memory consumption and mesh refinement capabilities.

Both submodels are able to solve the same maximum time scale. However, the LB

submodel requires smaller time steps, and thus resolves smaller time scales, due

to restrictions in the maximum stable LB units macroscopic velocity (see section

3.2). Simulating turbulent flow with turbulence modelling (Fig. 4.1b) increases

the difference in the temporal and spatial scales each submodel resolves. In

this case the LB-LES submodel resolves smaller time and spatial scales than the

RANS submodel; but there is still overlap, a range of scales are solved by both

submodels.

The NS and LB submodels for both the laminar and turbulent case present a

multi-domain interaction coupled through boundary conditions. The computa-

87

tional domain of each submodel is divided in different sized cells and applied

in different sections of the simulated domain. The LB subdomains include the

regions where more detailed flow results are needed, while the NS subdomains

model the rest of the domain. This is especially noticeable for the turbulent case,

while in the laminar case the difference in scales is less.

Fig. 4.2 shows some examples of the positioning of the NS and LB subdomains.

The NS and LB submodels are coupled at their internal boundaries (see bound-

aries marked as NS to LB or LB to NS in Fig. 4.2). The NS to LB boundaries are

boundaries of the LB subdomain that are completely inside the NS subdomain. In

these boundaries the information is transferred from the NS submodel to the LB

submodel. The LB to NS boundaries are boundaries of the NS subdomain that

are completely inside the LB subdomain. In these boundaries the information

travels from the NS submodel to the LB submodel. The NS and LB subdomains

can be partially overlapped (Fig. 4.2 (a) and (b)) or completely overlapped (Fig.

4.2 (c)). In Fig. 4.2 (c) the information only travels from the NS submodel to

the LB submodels.

The submodels in a multi-domain multiscale method can be coupled one-way or

two-way. The MMSF refers to one-way coupled submodels as loosely coupled,

and two-way coupled submodels as tightly coupled.

In one-way coupled methods the information only travels in one direction, for

example submodel A informs the boundary conditions of submodel B. An example

of a one-way multi-domain method is the lattice Boltzman - Navier-Stokes method

in [76] or the nested weather forecast method in [77].

In two-way coupled methods the information travels in two directions, for ex-

ample submodel A transfers information to the boundaries of submodel B and

submodel B transfers information to the boundaries of submodel A. Two-way

coupled methods can be further classified into two groups depending on whether

the exchanged information comes from the previous time step (explicit coupling)

or from the current time step (implicit coupling).

Two-way coupled models can be further divided by their coupling algorithm on

implicit and explicit:

• Implicit coupled methods (Fig. ??) are generally required to iteratively

88

LB to NS

NS to LB

x
y

z

(a)

(b)

NS to LB NS to LB

(c)

Figure 4.2: Examples of domain partition.The LB subdomains are blue and the NS
subdomains are orange. All the blue boundaries in c) are LB to NS boundaries.
The black prisms represent geometry the flow goes around, like buildings.

89

Figure 4.3: Scheme of the coupling methodologies for multi-domain multiscale
methods.

solve for the current time step until the solution of both submodels agrees

at their common interface. Implicit coupling is more accurate than explicit

coupling, since the exchange takes place at the current time step, however,

it is more computationally expensive, since the solution has to be iterated

and usually requires extra stabilization steps [78].

• Explicit coupled methods exchange information from each submodel at the

previous time step, such that no iterations are needed. Explicit coupling

is more computationally efficient than implicit coupling, since there are no

iterations, but less temporally accurate, since the results are not checked

for consistency.

90

4.1.2 Coupling Navier-Stokes to lattice Boltzmann

methods

Table 4.1 summarises the previous research studies coupling NS based solvers

with LB solvers. The commonly-stated objective of these studies is to reduce the

computational resources needed to obtain accurate results by using LB and NS

in the regions of the domain they are more suited to. For example Neumann [8]

and Tong and He [9] use lattice Boltzmann around the complex geometry porous

region. Mivehchi et al. [76] apply lattice Boltzmann to solve the water flow next to

the hull of a ship, where small cell size and time steps is needed to resolve the flow

and Boundary Element method (BEM) to solve potential flow elsewhere, where

sufficiently accurate results can be obtained using a much coarser resolution and

time step.

91

Mivehchi et al. [76] Neumann [8] Tong and He [9] Velivelli and Bry-

den [79]

Atanasov et al. [10]

Application Naval hydrodynamics Transient laminar flow Transient flow and

heat transfer, porous

medium

Transient laminar back-

ward facing step

Porous media flow and

others, steady state

Components Potential flow solved us-

ing BEM for all the do-

main + MRT-LB-LES

Fine LB embedded in a

coarse NS

Finite volume NS with

incompressible LB

Finite differences

vorticity-stream func-

tion to BGK LB

Eulerian NS and BGK

LB.

Dimensions 3D 2D 2D-3D 2D 3D

Objective Reduce computational resources Show efficiency of An-

derson accelerated cou-

pling.

Coupling one-way from BEM to

LB

two-way explicit two-way implicit

Data cou-

pled

Forcing term from BEM

added to LB

Velocity, presure, fluid

stresses from NS to

LB fα using moments

conservation.LB veloc-

ity and pressure to NS.

There is an overlap re-

gion

Velocity, pressure and

their spatial and tem-

poral gradients from NS

to LB fα using recon-

struction operators. LB

pressure and velocity +

mass flow correction to

NS. Overlap region

Velocity from NS to LB

fα using forced equilib-

rium. LB velocity to

NS. There is a overlap

region.

Velocity, presure, fluid

stresses from NS to

LB fα using moments

conservation.LB veloc-

ity and pressure to NS.

No overlap region.

Architecture CPU/GPU CPU

92

Table 4.1: Characteristics of previous Navier-Stokes lattice Boltzmann hybrid methods.

93

All studies in Table 4.1 use multi-domain two-way coupling except Mivehchi et

al. [76], which uses one-way coupling (from BEM to LB). All the two-way coupling

studies are restricted to laminar flow and the coupling is achieved by exchanging

pressure and velocity data at the interfaces between the NS and the LB regions.

All the studies use essentially the same method to calculate the lattice Boltzmann

macroscopic velocity from the distribution functions fα before interpolating them

to the NS interface, where they are used to inform the appropriate boundary con-

ditions for the NS method. Moreover, Tong and He [9] add volumetric flow rate

correction to the interpolated LB data at the NS interface. When it comes to the

NS to LB coupling, the reviewed studies differ in the method of approximating

the particle distribution functions at the LB interface from NS data. Velivelli

and Bryden [79] calculate the particle distribution functions as the equilibrium

distribution functions using the NS velocity. This is the simplest and more com-

putationally efficient method to obtain fα; however, all the non-equilibrium in-

formation in the NS pressure and velocity is lost, thus reducing the accuracy of

the method. Neumann [8] and Atanasov et al. [10] solve a moment conservation

minimisation problem to complement the equilibrium particle distributions with

their non-equilibrium part. The minimisation problem is solved analytically using

Lagrange multipliers and reduced to a matrix vector product calculated locally

at each cell [10]. Tong and He [9] derive generalised Recontruction Operators to

obtain fα from NS pressure and velocity for any lattice Boltzmann formulation.

This Reconstruction Operators also add additional information to the equilibrium

distribution functions, but need to transfer more information than the method

used by Neumann [8] and Atanasov et al. [10].

A fundamental issue to resolve in multi-domain coupling is the location and treat-

ment of the interface between the coupled solvers. In Neumann [8] and Tong and

He [9] the two interfaces are separated by more than one cell, creating an overlap

region solved by the two solvers (Fig. 4.4); information is exchanged only at

the boundaries. On the other hand, Atanasov et al. [10] presents matching LB

to NS and NS to LB interfaces, with a one cell thick overlap region (Fig. 4.5).

The discrepancy in the position of the interfaces might be related to the coupling

scheme used, since Atanasov et al. [10] is the only paper using implicit coupling,

the remaining papers use explicit coupling. Moreover, Tong and He [9] suggest

that the size of the overlap region has to be enough to let the influence of the

boundary condition at the NS to LB interface propagate across the LB domain

before feeding the LB data to the NS submodel at the LB to NS boundary. This

region is not needed in an implicit method, since the coupling is iterated until

94

(a) (b)

Figure 4.4: Solver interfaces and overlap region in Neumann [8] (a) and Tong and
He [9] (b).

the solutions from both submodels match at the interfaces.

Figure 4.5: Solver interfaces and overlap region in [10].

Of the papers reviewed here, Mivehchi et al. [76] is the only to use a heterogeneous

architecture, thus benefiting from the speed up achieved by implementing the

lattice Boltzmann solver in GPU and the potential flow solver in CPU. An added

advantage of using heterogeneous architecture is that the two methods do not

compete for the same hardware resources, making load balancing easier.

Finally, all the papers that present two-way coupling simulated laminar flow.

Only Mivehchi et al. [76] models turbulent flow, but it is one-way coupled.

95

4.1.3 Architecture of the NSLB method

The second of the theoretical framework is to describe the execution loop of the

NS and LB submodels and and its coupling templates. The SEL divides the time

loop execution of each submodel in the following generalised operations:

• S : refers to solver and it includes all the core operations in one time step

of the the submodel.

• B: refers to boundary and it includes the application of boundary conditions.

In some cases, as is for the LB submodel, the BC are integrated into the

core solver, however it is useful to separate them in the conceptual SEL.

• finit: initialisation of the submodel; including mesh generation, initialising

solved variables and the termination condition for the time loop if needed.

The SEL also defines two observation operators Oi and Of , where i denotes inter-

mediate and f denotes final. Observation operators compute desired quantities

from the variables of the submodel. These computed quantities are then handed

to a smart conduit, which will transform them as needed and send them to the

coupled submodel. The coupled submodel will receive the quantities in either the

S, F, or finit operator.

Using the previous work on coupled NS and LB solvers presented in the previous

section as a guide and the SSM and modelling framework, we developed the SELs

for the laminar case (Fig. 4.6a) and for the turbulent case (Fig. 4.6b).

In the laminar flow case (Fig. 4.6a), the NS submodel is two-way coupled with the

LB submodel. Both submodels simulate the same amount of physical time and are

coupled at the end of each NS time step. The LB time step is smaller than the NS

time step, thus the LB submodel subcycles through a number of time steps until

it synchronises with the NS time step; at this point the LB submodel sends data

to the NS submodel boundary and the NS submodel sends data to reinitialise the

LB submodel boundary before starting the next LB subcycle. The observation

operators compute the macroscopic instantaneous velocity, which is imposed at

the coupled submodel’s boundaries using a Dirichlet boundary condition.

In the turbulent flow case (Fig. 4.6b), the RANS sumbodel is one-way coupled

96

(a) Laminar flow (b) Turbulent flow

Figure 4.6: Submodel execution loop (SEL) of the NSLB method for the laminar
case (a) and turbulent case (b). S refers to solver, B refers to boundary, finit refers
to solver initialisation. Oi and Of are the observation operators; the subscript i
denotes intermediate observations and the subscript f denotes final observations.
dtNS is the time step of the NS submodel and dtLB is the time step of the LB
submodel.

with the LB-LES submodel. The results of the RANS submodel are used to

initialise the boundary data of the LB-LES submodel. The time and spatial scale

differences are bridged using a SEM method applied to the LB-LES boundary.

The SEM method used is described in section 3.3.3 of this thesis. The observation

operator computes the RANS velocity, Reynolds stresses and turbulent kinetic

energy dissipation rate. The LB-LES submodel, then uses this data as mean flow

data for the SEM boundary condition. In this case, SEM acts as a bridge from

the RANS scales to the LB-LES scales.

4.2 Computational framework

4.2.1 Implementation

The information is transferred and adapted between submodels using scale aware

smart conduits, which can be coded using three different approaches: monolithic,

using a coupling framework or using a coupling library (Fig. 4.7):

• Monolithic methods (Fig. 4.7 a)) do not reuse any of the submodels code,

they are a completely new piece of software. They are efficient in the sense

97

Figure 4.7: Summary of the coding strategies for multiscale methods: a) mono-
lithic, b) coupling framework, c) coupling library. C is the resulting multiscale
method, A and B are the two coupled submodles in their original form, A’ B’
are modified to plug into the framework (F) and Aa and Ba are the adaptors to
connect A and B respectively to the coupling library (L).

that the code is tailored and optimised to the multiscale method, however,

they are rigid, since to couple one submodel to another means rewriting the

code and programming basic features present in all methods like writing

results, parallel running etc.

• Coupling frameworks (Fig. 4.7 b)) (for example Cactus [80] and Open-

Palm [81]) aim to palliate the rigidity of monolithic methods. They offer

a set of basic software components (like MPI, data input/writing, grid cre-

ation...) that are general enough to accept different solvers to be plugged

in. Using a coupling framework allows the user to change the coupled sub-

models without having to rewrite/duplicate code, however, the original sub-

models have to be modified to be compatible with the coupling framework

structure.

• Coupling libraries (Fig. 4.7 c)) (see for example preCICE [78], OASIS 3-

MCT [82] and MxUI [83]) communicate information between the submodels

of a multiscale method. The only modification needed to the original sub-

models is to add an adaptor code, which transmits the needed information

from each solver to the coupling library. The coupling library facilitates

98

the exchange of information including data communication protocols and

interpolation of the exchanged data to each solver’s grid amongst others,

which depend on the library used. Coupling libraries couple two submod-

els with minimal modifications to their original code. However, their code

is less tailored to each submodel, which may result in a loss of efficiency

compared to the coupled framework and the monolithic approaches.

The enumeration above names a handful coupling frameworks and coupling li-

braries. The reader is referred to the review by Groen et al. [84] for an in depth

view and comparison of coupling libraries and frameworks.

The smart conduits in the NSLB method are coded using the coupling library

preCICE [78]. The NS and LB submodels that form the NSLB method are exist-

ing software that is used both as part of the NSLB method and as independent

solvers. Thus, we needed to code the coupling minimising the modifications to

the original code of the submodels in order to maintain their usability and perfor-

mance as independent solvers. preCICE is a coupling library, which only needs

an adapter code to be incorporated to the submodels; this adapter code is de-

coupled from the core of both the NS and LB solvers, thus making it easier to

maintain. We chose preCICE because it is open source and offers clear docu-

mentation, tutorials and user support. Moreover, it controls the SEL of each

submodel, synchronising it with the coupled submodels and sending / receiving

information when needed. preCICE also offers one-way and two-way implicit and

explicit coupling, providing different mapping and interpolation methods.

Implementation of the NSLB method

The software used to for the NS and RANS submodels is the pisoFoam solver

from the open source CFD package OpenFOAM v4.x [27]. We chose OpenFOAM

because it is open source, robust, stable and widely used in the research commu-

nity. Moreover, preCICE provides and mantains an adapter code to connect to

OpenFOAM. The software used to program the LB and LB-LES submodels is

GASCANS (see Appendix B). GASCANS is a multi-GPU LB code programmed

to accept boundary conditions from external sources at run time and extract

data from the domain at run time; which makes it an ideal choice for the NSLB

method. OpenFOAM is programmed in C++ and GASCANS is programmed in

C++ and CUDA.

99

Fig. 4.8 shows the code structure of the NSLB method emphasising the con-

nection with preCICE and the classes that enable the exchange of information

between the NS and the LB codes.

Figure 4.8: Class structure of the preCICE adapters for both GASCANS and
OpenFOAM. GASCANS stores the coupled data in the InOutRepo objects and
OpenFOAM stores it in the Interface objects. N is the number of coupled inter-
faces. The arrows show the flow of the coupled data.

The OpenFOAM preCICE adapter is a modified version of the adapter developed

by Chourdakis [85] 1. The main advantages of Chourdakis’ adapter are that it

does not modify the original OpenFOAM code, can be coupled to a range of

OpenFOAM solvers and can be activated and deactivated using only configuration

files. Moreover it is compatible with parallel OpenFOAM simulations.

Chourdakis’ preCICE adapter can only exchange information stored in Open-

FOAM patches, which are the boundaries of the domain. However, the NS to

LB boundaries are not boundaries in the NS sub-domain (Fig. 4.9 and Fig. 4.2)

Thus, we modified Chourdakis adapter 2 to exchange data at cellSets ; a cellSet

is group of cells set by the user anywhere in the OpenFOAM domain. We also

added a volumetric flow rate correction at the receiving OpenFOAM boundaries

as described by Tong and He [9] (see section 4.2.1).

The preCICE adapter for GASCANS is based on the OpenFOAM preCICE

adapter developed by Chourdakis [85]; see Appendix B for an in depth description

of the GASCANS adapter.

1Code available in https://github.com/precice/openfoam-adapter/tree/FF
2Modified preCIE adapter code available in https://github.com/martacamps/openfoam-

adapter/tree/FF

100

Information transfer

The information to transfer is extracted from the sending sub-domain and copied

to the sending mesh. Then preCICE interpolates the information on the sending

mesh to the receiving mesh, which is extracted from the receiving sub-domain.

The sending and receiving meshes are represented by their cell’s 3D coordinates

and data that needs to be comunicated to/from the other sub-domain. Fig. 4.9

illustrates an example of the sending and receiving meshes for NS to LB boundary

and a LB to NS boundary. The receiving mesh is formed by the boundary cells of

the receiving solver. The sending mesh is formed by the cells in the sending sub-

domain that overlap with the receiving sub-domain’s boundary. A pair of sending

and receiving meshes is created for each coupled boundary in the domain.

Figure 4.9: 2D sketch of the receiving and sending meshes for a NS to LB bound-
ary (left) and a LB to NS boundary (right). The cells belonging to the boundary
of the LB sub-domain are coloured in blue, while the cells belonging to the bound-
ary of the NS sub-domain are orange.

The NS and LB meshes are non-conformal, thus the data sent needs to be in-

terpolated to the receiving mesh. preCICE offers different interpolation methods

with different complexity and accuracy (see preCICE wiki [86]). From them, we

chose the nearest neighbour interpolation since it is the simplest and does not re-

quire mesh connectivity data. The difference between the NS and LB sub-domain

meshes in regions with high velocity gradients is not anticipated to be big enough

to require a higher order interpolation method.

101

Boundary conditions

The LB to NS boundaries are part of the Navier-Stokes sub-domain and im-

plement a Dirichlet boundary condition for velocity and a zero gradient boundary

condition for pressure. The velocity data comes from the LB sub-domain and is

interpolated to the LB to NS boundary by preCICE. The LB sub-domain solves

the macroscopic velocity in lattice units uli and converts it to the dimensionless/-

physical units udi used by the NS solver via Eq. 4.1 before transferring it to

preCICE; see section 3.2.3 for more information about lattice units.

udi = uli
δx

δt
(4.1)

where δx is the cell size and δt is the time step of the lattice Boltzmann sub-

domain in the Navier-Stokes units.

The LB to NS boundary can correct the interpolated velocity so that it matches

a prescribed volumetric flow rate as described by Tong and He [9]. First, the NS

solver calculates the volumetric flow rate from the interpolated velocity at the LB

to NS boundary; then it divides the calculated flow rate by the prescribed one.

Finally, it multiplies the velocity at each cell of the boundary by the ratio between

the two flow rates. This correction is often needed in 1D two-way coupled NSLB

simulations (Fig. ?? a)). Some Navier-Stokes solvers, for example OpenFOAM

[27], modify the velocity at the fixed pressure outlet boundaries to compensate

for the mass imbalance due to numerical errors. In the case of the NSLB method,

one of the sources of mass imbalance comes from the interpolation of the lattice

Boltzmann velocity to the LB to NS boundary. The outlet velocity correction

applied by OpenFOAM also affects the velocity that will be interpolated to the

lattice Boltzmann sub-domain, which in turn affects the LB velocity that will

be interpolated to the NS sub-domain. The change in the velocity interpolated

to the LB to NS boundary will affect the mass correction at the Navier-Stokes

sub-domain outlet. If left uncorrected this feedback loop reduces the quality of

the results and might destabilize the coupling. Fig. 4.10 shows an example of

this effect.

The NS to LB boundaries of the LB sub-domain implement a forced equi-

102

Figure 4.10: Lattice density on a 2D slice through the lattice Boltzmann sub-
domain of a NSLB simulation of a wall mounted cube in a channel flow, Re = 150.
Oscillations in density caused by the mass flow correction in the Navier-Stokes
sub-domain. The NS to LB (blue) and LB to NS (black) boundaries are marked
in the figure.

librium boundary condition (see section 3.2.5). The density at the NS to LB

boundaries cells is set to 1, while their macroscopic velocity is set to the velocity

interpolated form the Navier-Stokes sub-domain. The LB solver then converts

the dimensionless/physical velocity udi from the NS sub-domain to lattice velocity

units uli using Eq. 4.1.

The forced equilibrium boundary condition is the simplest of the lattice Boltz-

mann Dirichlet boundary conditions. It is also the least accurate and the most

stable (see section 3.2.5). The laminar test case in section 4.3.1 shows that the

accuracy at the LB to NS boundary is lower than at the LB to NS boundary,

which might be due in part to the lattice Boltzmann forced equilibrium boundary

condition. The accuracy might be increased by using a more accurate boundary

condition as for example reconstructor operators [9], non equilibrium minimisa-

tion [10] or regularised boundary (section 3.2.5). At present, the results obtained

with forced equilibrium are deemed sufficient for the scope of this thesis.

4.2.2 Execution

The LB submodel GASCANS is designed for small clusters and consumer level

workstations, it runs in single node multi-GPU. On the other hand, both preCICE

and the NS submodel pisoFoam are able to run in multi-node clusters. Then the

NSLB method can run using multi-node clusters for the NS submodel, but the

103

LB submodel has to be run in a single node.

4.3 Validation and examples

Validation of the NSLB method is presented in the two following papers:

• Paper I, section 4.3.1 applies the NSLB method for laminar flow to a ReH =

150 flow over a wall mounted cube in a channel flow. The results of the

NSLB method are validated against DNS data by Hwang and Yang [87].

The paper also studies the computational resources used by the NS, LB and

NSLB methods for the test case and the effect of the overlap region’s size

and position.

• Paper II, section 4.3.2 applies the NSLB method for turbulent flow. A LB-

LES sub-domain is embedded inside a pre-calculated RANS sub-ddomain

modelling flow around a rectangular building at ReH = 47893. The RANS

results are used to set the boundary values of the LB-LES sub-domain. The

paper compares the RANS and LB-LES results and computation time with

the experimental data by Meng and Hibi [88] and DDES.

4.3.1 Paper I - Two-way coupled Navier-Stokes / lattice

Boltzmann solver to reduce the resources used by

CFD simulations of flow around bluff objects

The following journal paper applies the NSLB method described in chapter 4 to

a ReH = 150 flow around a wall mounted cube. The paper requires some revision

and the addition of a turbulent test case before submission to the Journal of

Comptational Physics, which is the journal we intend to submit this paper for.

104

Two-way coupled Navier-Stokes / lattice Boltzmann solver to reduce
the resources used by CFD simulations of flow around bluff objects.

Marta Camps Santasmasasa, Alistair Revella, Ben Parslewa

aSchool of Mechanical, Aerospace and Civil Engineering, University of Manchester, UK

Abstract

The use of accurate CFD for external aerodynamics for industrial applications is limited by the
availability of computational resources and time. This work was motivated by urban wind flow sim-
ulations, but it is expected to have impact in simulations where computational domains include an
interest region where more flow detail is needed. One way to reduce the computational demand of
the simulation is to combine two different solvers in order to exploit the advantages of each one in
different regions of the domain. In this lines, we present a Navier-Stokes solver two-way coupled with
a lattice Boltzmann solver for three-dimensional unsteady flow around bluff objects. The simulation
domain is divided into a sub-domain modelled using Navier-Stokes equations computed using CPU and
a sub-domain modelled using lattice Boltzmann equations computed using graphics processing units
(GPUs). Both domains are coupled at their overlapping boundaries. We tested the Navier-Stokes
lattice Boltzmann (NSLB) solver on flow around a wall mounted cube at Re 150. The NSLB results
agree with the results obtained by the individual solvers with a difference below 1%. Moreover, the
NSLB simulation requires less computational time than the equivalent NS simulation and less GPU
memory than the single LB simulation; allowing to run simulations that would spend too many GPU
resources if run with single LB, at a faster pace than the single NS solver. The accuracy and stability
of the NSLB solver is affected by the complexity of the flow at the coupled boundaries and the size of
the region where the NS and LB sub-domains overlap.

Keywords: Lattice boltzmann method, GPU, code optimisation, computational resources, coupled
methods.

1. Introduction

Computational fluid dynamics (CFD) is a well established tool to predict the behaviour of fluid flow
in various engineering fields. However, the amount of information provided and accuracy of the results
is restricted by the computational time and resources available for each project. CFD simulations are
often performed on super-computer clusters using from hundreds to thousands of CPU cores. On the
other hand, graphic processing units (GPUs) are being increasingly used in CFD due to their ability to
perform massive parallel computations at a low cost. Moreover, GPUs are usually part of workstations
and personal computers.

CFD methods based in the incompressible Navier-Stokes equations (NS) and CFD methods based
in the lattice Boltzmann equations (LB) are able to predict flow behaviour and are well established
in the literature. Both methods present strengths and weaknesses that make each method more
suitable to different applications and domain configurations. The main strength of the LB methods
lies in the simplicity and locality of their algorithm; which enables an efficient implementation in
massivelly parallel architectures like GPU. Besides, LB mesh configuration is straightforward, since
all the cells are the same size and the introduction of geometry only requires marking the cells part
of the geometry as solid cells. This simple implementation of geometry makes LB a popular method
to model flow through complex geometries (f e. porous media [1]). However, the basic LB method
is memory intensive which, combined with the limited memory in GPU cards, limits the size of the

Preprint submitted to Journal of Computational Physics March 30, 2021

domain/resolution that it is practically attainable with a single computer. The main strength of the NS
methods lies in their flexibility, low memory consumption and stability. NS methods work efficiently
with mesh refinement, thus reducing the number of cells in regions with low flow complexity and saving
computational resources. However, the complexity and iterative nature of the NS algorithms generally
leads to an increase in computational cost and a more difficultû GPU implementation.

Mivechi et al. [2], Neumann [3], Tong and He [4] and Velivelli and Bryden [5] couple a LB method
with a NS method to reduce the computational resources of the CFD simulation. All of them implement
segregated coupling algorithms, i e. the NS method and LB method are run in two separated sub-
domains coupled at their boundaries. Neumann [3], Tong and He [4] and Velivelli and Bryden [5] are
two-way coupled, i. e. the information travels from the NS sub-domain to the LB sub-domain and
vice versa. Mivechi et al. [2] is the only reviewed paper that implements the LB sub-domain in GPU
and the NS sub-domain in CPU but the two solvers are only coupled one-way, from NS to LB. The
reviewed papers demonstrate the advantages of coupling a NS method to a LB method. However, the
two-way coupled solvers do not take advantage of the GPU implementation of the lattice Boltzmann
model. Moreover, the reduction on computational resources by using the coupled methods or the effect
of the size and position of the region of the domain solved by both the NS and the LB solver is not
thoroughly investigated.

We present a LB flow solver implemented on GPU coupled with a NS solver implemented on
CPU. The GPU accelerated LB solver models the region of interest at high resolution; since the LB
region is limited, the NSLB method overcomes the mesh and memory related drawbacks of using
GPU accelerated LB for the whole domain. The CPU NS solver models the remainder of the domain,
thus taking advantage of the mesh flexibility and lower memory consumption of the NS method. The
coupling is done by exchanging the velocity field values at the interface boundaries. The NSLB model is
able to reproduce the results of a single NS and LB model while reducing the resources used. However,
the accuracy of the NSLB method is affected by the size and position of the region where the NS
sub-domain overlaps with the LB sub-domain.

2. Navier-Stokes model

The NS sub-domain solves the three-dimensional incompressible Navier-Stokes equations plus the
continuity equation,

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2j

(1)

∂ui
∂xi

= 0 i, j = 1− 3 (2)

where ui is the velocity of the fluid, p is its pressure and ν its kinematic viscosity. Eq. 1 is
discretised employing a finite volume method configured to use linear interpolation schemes and an
implicit Euler scheme for time integration. The pressure-velocity coupling is solved using the PISO
algorithm [6].

The software used is the pisoFoam solver from the open source CFD package OpenFOAM [7].
However, this software can be substituted for any other NS solver that is able to provide the velocity
field at a boundary during run time.

2.1. Advantages and disadvantages

The main strength of finite volume NS models is that the most common algorithms are uncondi-
tionally stable and the cell size and time step do not need to be constant. Thus allowing to increase
the resolution in the regions of interest and where the flow is more complex and decrease it elsewhere.
Moreover, the NS solver only stores four quantities at each cell: ux, uy, uz and p.

2

The main weakness of the NS solver is the complexity of its numerical algorithm. It requires
non-local operations and iterative procedures such as discretisation of velocity gradients and pressure-
velocity coupling, which decrease the efficiency of a GPU implementation. Moreover, the basic model
requires the mesh to be adapted to the contour of the geometry, which increase the complexity of the
meshing algorithms and the implementation of wall boundary conditions.

3. Lattice Boltzmann method

The LB sub-domain solves the three-dimensional lattice Boltzmann equations with a 3DQ19 lattice
model and a BGK collision operator. The lattice Boltzmann equations solve for the particle distribution
fα, which models the probability of a group of fluid particles to move at a velocity cα at a certain
point of space and time. The particle velocity space is discretised in a number of velocities cα defined
by the lattice model. 3DQ19 contains the following particle velocities:

cα =

0, α = 0,
(±1, 0, 0), (0,±1, 0), (0, 0,±1) α = 1 to 6,
(±1,±1, 0), (±1,±0,±1), (0,±1,±1) α = 7 to 18.

(3)

The time evolution of a particle distribution fα is

fα(x + cαdt, t+ dt) = fα(x, t)− 1

τ
(fα(x, t)− feqα (x, t)) (4)

feqα (x, t) = wαρ

(
1 +

uiciα
c2s

+
(uiciα)2

2c4s
− uiui

2c2s

)
(5)

i = 1→ 3 α = 0→ 18

where fα(x, t) is the particle distribution for the microscale velocity cα at position x and time t, τ
is the relaxation time and feqα (x, t) is the equilibrium particle distribution for the particle velocity cα
at position x and time t. ui and ρ are respectively the macroscopic velocity and density at position
x and time t; cs = 1/

√
3 is the lattice sound speed and w0 = 1/3, wα = 1/18 for α = 1 → 6 and

wα = 1/36 for α = 7→ 18. The macroscopic density ρ and velocity ui are obtained from the moments
of fα as

ρ =
18∑

α=0

fα (6)

ui =
ciαfα
ρ

α = 0→ 18 ; i = 1→ 3 (7)

A weakly compressible form of the Navier-Stokes equations can be obtained via a Chapmann-
Enzkog expansion of equation 4 [8]; which relates the relaxation time τ to the kinematic viscosity ν
as

ν = c2s

(
τ − ∆t

2

)
(8)

The LB spacial domain is usually discretised in a uniform grid of cell size 1 lattice space unit.
Similarly, time is discretised in time steps of 1 lattice time unit. This way, the fluid particles in a cell
travelling at the discretised particle velocities cα reach their neighbour cell at the next time step, thus
simplifying the LB algorithm. Quantities in lattice units can be converted to physical units using the
cell size and time step in physical units, thus:

3

uphysi = ulbmi
δx

δt
(9)

νphys = νlbm
δx2

δt
(10)

where phys denotes physical units, lbm denotes LB units, δx is the cell size in physical units and
δt is time step size in physical units.

The LB algorithm contains two steps: streaming and collision. Streaming models convection and it
consists in copying each particle distribution fα from one cell to its neighbouring cell in the direction
of cα. Collision models the collisions of the fluid particles in a cell and it consists in applying eq. 4,
eq. 6 and eq. 7.

The LB software used to solve the LB sub-domain is GASCANS, a GPU-accelerated LB code
developed at the University of Manchester [9].

3.1. Advantages and disadvantages

The main strength of the LB method lies on its simplicity. The interactions between cells during
streaming are linear (one cell only affects its nearest neighbours), and all the heavy computations
included in the collision step are local. This simplicity and locality increases the efficiency of GPU
acceleration. Moreover, the streaming step models advection without numerical diffusion.

The main weakness of the LB method is that it is only conditionally stable. The explicit time
integration and its weakly compressible nature restricts the stable combinations of temporal and spatial
discretisation. Moreover, the assumption that the discrete particle velocities reach from one cell to
exactly the boundary of its neighbours combined with that the viscosity (eq. 8) depends also on the
time and space discretisation makes mesh refinement cumbersome to apply. Another disadvantage is
that the LB method is memory intensive, since the 3DQ19 BGK model has to store 23 quantities for
each cell: 19 fα, ux, uy, uz and ρ.

4. Navier-Stokes lattice Boltzmann (NSLB) model

The NSLB solver couples a sub-domain solved using a NS based solver with a sub-domain solved
by a LB based solver. The main objective of the NSLB solver is to combine the simple algorithm,
accuracy and efficiency on GPU of the LB method with the grid refinement, stability and low memory
consumption of the NS method. The current section describes the NSLB method configuration and
algorithm applied to the flow around the wall mounted cube test case described in section 5.1.

The total domain simulated is divided into a LB sub-domain and a NS sub-domain. Both sub-
domains exchange information at their boundaries: the LB to NS boundary is the inlet of the NS
sub-domain and receives data from the LB sub-domain; the NS to LB boundary is the outlet of the
LB sub-domain and receives data from the NS sub-domain.

The LB to NS boundary implements a Dirichlet boundary condition for velocity and a Neumann
boundary condition for pressure. The NSLB method interpolates the macroscopic velocity (eq. 7) in
the LB sub-domain to the LB to NS boundary of the NS sub-domain and converts its values from
lattice units to physical units (eq. 9). It also corrects the interpolated velocity to match a prescribed
volumetric flow rate as described by Tong and He [4]. This correction is needed to compensate the
mass imbalance at the LB to NS boundary due to interpolation precision and numerical errors. If left
uncorrected, some NS solvers will correct the mass imbalance by modifying the velocity at the NS
sub-domain outlet, which will in turn modify the velocity transmitted to the LB sub-domain and thus
affect the velocity at the LB to NS boundary and so on. Thus reducing the accuracy of the results
and potentially destabilising the coupling.

The NS to LB boundary on the LB sub-domain implements a forced equilibrium boundary condi-
tion, which fixes the density and velocity field and calculates the corresponding particle distribution

4

functions fα with the equilibrium distribution function (eq. 5). At the NS to LB boundary, the LB
density is fixed to 1 and the LB macroscopic velocity is fixed to the NS velocity in LB units (eq. 7)
interpolated from the NS sub-domain. The forced equilibrium boundary condition assumes that the
LB flow is in equilibrium, so the non-equilibrium information carried by the NS velocity is lost. The
forced equilibrium boundary condition is the simplest and most stable of the LB boundary conditions;
but it is also the less accurate.

The overlap region is the volume between the LB to NS boundary and NS to LB boundary and it
is solved by both the NS and LB solver. The overlapping region acts as a buffer to prevent the data
transferred from one solver to overwrite the data transferred by the other solver. The optimum size
of the overlap region depends on the characteristics of the flow (see section 5.2.3) and the coupling
algorithm. Atanasov et al. [10] present an implicit coupling algorithm without an overlap region.
However, implicit coupling requires both the NS and LB sub-domain simulations to be iterated until
agreement is achieved at the coupled boundary, thus increasing the computational time.

The NSLB model advances in time using a parallel-explicit coupling scheme [11] (see Fig. 1).
Both solvers exchange the data at their coupled boundaries once at the end of the coupling time
step without checking if the information send by one solver is coherent with the results present in
the receiving sub-domain. This coupling algorithm is computationally efficient, since the sub-domains
are only solved once for each time step. However, the simulation might become unstable if the two
sub-domains transmit contradictory information in close proximity.

Both the NS solver and the LB solver, are executed simultaneously with synchronisation barriers
that halt their execution when reaching the end of the coupling time step until both solvers are ready
to exchange data. The BGK LBM presents a lower range of stable Courant–Friedrichs–Lewy (CFL)
numbers, thus the time step needed to obtain accurate results for the LB solver is usually smaller than
the one needed by the NS solver. Thus the LB model will need to perform more than one time step for
each NS in order for them to exchange information at the same simulation time. This process is called
subcycling and it is illustrated in Fig. 1. Note that if the time step size of a solver is fixed, it needs to
be a multiple of the coupling time step in order to allow the solvers to reach the same physical time
to exchange information.

Figure 1: Scheme of a time step of the NSLB model.

The coupling algorithm is implemented using preCICE libraries [11] and the OpenFOAM preCICE
adapter by Chourdakis [12]. We modified Chourdakis’ adapter to transfer and receive pressure and

5

velocity data from both the domain boundary and internal cells. preCICE controls the time stepping
of both solvers and the data exchange between them. It also interpolates the data received from
one solver to the mesh of the other. Our NSLB solver uses the nearest neighbour interpolation from
preCICE.

5. Test case: Flow around a wall mounted cube

5.1. Case description

This test case models laminar flow around a wall mounted cube in a channel (see Fig. 2) and is
based on the numerical study by Hwang and Yang [13]. We chose this test case due to its bounded
top boundary and its periodic spanwise boundaries, which allows us to use smaller grids and thus test
more configurations with a relatively low computational cost.

Figure 2: Sketch of the test case. The opaque forms denote geometry while the transparent ones are boundaries. Not
to scale. Distances are in dimensionless units.

The Reynolds number of the flow is ReH = 150 based on the height of the cube H and the bulk
inlet velocity Ub. The cube sides measure 1H, the cube is centred in the z direction and placed at 3H
from the inlet. The inlet boundary condition is a laminar parabolic velocity profile; the outlet is fixed
pressure, zero velocity gradient boundary; the spanwise boundaries are periodic; the top, bottom and
cube walls are no-slip boundary conditions.

The base simulation domain is divided in two sub-domains that completely cover the vertical and
spanwise directions (Fig. 2). The LB sub-domain starts at x = 0, ends at x = 7H and is solved by
the LB software GASCANS; the NS sub-domain starts at x = 5H, ends at x = 10H as is solved by
the pisoFoam NS solver of the OpenFOAM suite. The size of the overlap region is then 2H in the
streamwise x direction and covers all the domain in the vertical and spanwise directions. This default
size and position of the overlap region is arbitrary. We present a study of the effect on the results of
various sizes and locations of the overlap region in section 5.2.3.

The boundary conditions for the LB sub-domain are forced equilibrium for the LB inlet and NS to
LB boundary. For the LB inlet boundary the LB velocity is fixed to a fully develop laminar profile and
for the NS to LB boundary the velocity is fixed to the velocity interpolated from the NS sub-domain.
The density for both boundaries is set to 1 and the particle distribution functions are set to equilibrium
(eq. 5). The spanwise boundaries are periodic; and the top, bottom and cube boundaries are set to
no-slip using a half-way bounce-back boundary condition [8].

The boundary condition for the LB to NS boundary of the NS sub-domain is fixed velocity and
zero pressure gradient, where the velocity is interpolated from the LB sub-domain. Moreover, the
interpolated LB velocity is corrected to ensure that the NS sub-domain mass flow is the same as the
LB sub-domain mass flow. The NS outlet boundary is set to fixed pressure and zero gradient velocity,
the top and bottom walls are set to no-slip, and the spanwise boundaries are periodic.

6

The LB sub-domain is discretised in a a constant cubic mesh with cell size dxLB , while the NS
sub-domain is discretised in a structured mesh refined towards the bottom wall and the cube walls (see
Fig. 3. The cell size for the NS sub-domain dxNS refers to the height of the cells next to the bottom
boundary. The NS time step yields a CFL number less than 1 and LB time step yields a CFL number
less than 0.1, which are the recommended values for both solvers. The LB sub-domain runs 16 time
steps for each NS time step. The information is coupled at the end of every NS time step (see Fig. 1).

Figure 3: Example of a mesh for the current NSLB test case. The blue mesh (left) is the LB sub-domain, while the red
mesh (right) is the NS sub-domain.

5.2. Results and discussion

5.2.1. Validation

The first step is to validate the results of the NS and LB models separately against the direct NS
(DNS) simulation by Hwang and Yang [13]. The mesh used for both models covers the whole domain
in Fig. 2 and the two solvers run separately. The mesh used for the NS simulation is refined towards
the bottom wall and the cube, with a bottom cell height equal to 0.006H. The LB mesh is an uniform
mesh with cubic cells of side equal to H/80 = 0.0125H, which is the finest LB mesh we could afford
to run with the available hardware. Hwang and Yang [13] do not present velocity results to validate
the NS and LB solvers with. We then use their results for the wall shear stress at the bottom wall
along a streamwise line centred in the spanwise direction (Fig. ??). Both the LB and the NS results
match the Hwang and Yang [13] data to an adequate degree. The LB solver slightly over estimates the
minimum shear and under estimates the maximum shear. This results are to be expected since the
shear stress is very sensitive to the size of the first cell and we only used a first order derivative scheme
to calculate the velocity shear at the wall. In this case the LB solver is at a clear disadvantage; due
to its requirement to use a constant cell size, decreasing the cell size for the wall adjacent cells comes
with a prohibitive computational cost.

The main intended application of the NSLB solver is to predict the velocity and pressure near
the ground, so we chose a line along the streamwise direction at heigh y = 0.04H and centred in the
spanwise direction to test mesh convergence for both the single NS and the single LB solvers. Fig.
5b shows the root mean squared (rms) difference between each solver simulation and the maximum
resolution used, dy = 0.003H for the NS solver and dy = 1/80H for the LB solver. The consecutive
points left of the maximum resolution one are the result of doubling the size of all the cells in all

7

Figure 4: Normalised skin friction at the lower wall and centreline z = 0 in front of the cube (left) and in a close up in
front of the cube (right) for LB simulation (blue crosses), NS simulation (red crosses) and Hwang and Yang [13] (black
line). Cf0 is the shear stress at the inlet.

directions for both the NS and the LB simulations. Both solvers present mesh convergence. It can
also be derived that the order of the NS solver is 2.029 and the order of the LB solver is 1.17.

For the NS simulations, the rms of the velocity difference between a first cell height dy = 0.003H
and a first cell height dy = 0.006H is less than 10−3, so we consider the results from dy = 0.006 to
be mesh converged. We use dy = 0.006 for the NSLB base case and for the overlap region tests and
we use dy = 0.003 as a reference case for the accuracy and performance analysis (Fig. 5b and Fig.
7). For the LB simulations, the rms of the velocity difference between a cell size dy = 1/80H and
dy = 1/40H is also below 10−3, so we consider the results from dy = 1/40H to be mesh converged.
We use dy = 1/40H for the NSLB base case and for the overlap region tests and we use dy = 1/80H
as a reference case for the accuracy and performance analysis.

The results obtained using a cubic uniform mesh with cell size dx = 1/40H for the LB solver
and a structured mesh (see red mesh in Fig. 3) with first cell height dy = 0.006H for the NS solver
are equivalent along the studied line (see Fig. 5a) with only discrepancies near the outlet due to the
different outlet boundary conditions used in the LB and NS solvers. Note that for the NSLB simulations
the outlet of the LB sub-domain (NS to LB boundary), is set to a forced equilibrium boundary
condition, not to the zero gradient boundary condition shown in Fig. 5a. Thus the discrepancy in
boundary conditions is not present in the NSLB test cases. Moreover, the interest region used to
calculate the accuracy of the NSLB solver ends at x = 7H which is not significantly affected by the
different outlet boundary conditions in the single solver test cases.

The second step is to run the NSLB solver with the arbitrarly defined size and position of the
overlap region. We decided to start the NS sub-domain at x = 6 to observe the effect of situating the
LB to NS boundary in the centre of the recirculation zone downstream the cube. We deemed sufficient
for the overlap region to be 2H long in the streamwise direction to minimise the effect of the NS to LB
inteface on the LB to NS interface. We calculated the rms difference between the streamwise velocity
along the line y = 0.04 in the LB sub-domain and the reference single LB domain (dy = 1/80H).
This rms has been calculated from x = 0.05 to x = 5, which is half of the overlap region and shown
as a cyan dot in Fig. 5b. The rms for the remainder of the studied line is shown as a magenta dot
in Fig. ?? and has been calculated between x = 5.025 and x = 9.95 as the rms difference between
the streamwise velocity in the NS sub-domain and the streamwise velocity for the reference single NS

8

0 2 4 6 8 10
x/H

0.4

0.3

0.2

0.1

0.0

0.1

Ux
/U

b

(a)

0.1 0.05 0.025 0.0125
Height y of first cell in the LB simulation

10 3

10 2

RM
S

0.048 0.024 0.012 0.006
Height y of the first cell in NS simulation

(b)

Figure 5: Mesh convergence plots for velocity for both LB and NS base simulations. (a) Streamwise velocity in the
x direction at y = 0.04H and z = 0 at the mesh converged grid resolution for the LB (blue) and the NS (red). (b)
root mean squared difference between the results at the sampled line with each mesh resolution and the results at the
sampled line with the finest resolution for each solver.The cyan and magenta dots correspond to the rms of the LB
sub-domain (cyan) and the NS sub-domain (magenta) for the base NSLB simulation compared to their respective single
solver simulation at the finest resolution. The finest resolution is dy = 0.0125H for LB and dy = 0.003H for NS

domain with dy = 0.003. Both values are close to their respective single LB and single NS simulations,
with a difference of 11% for the LB subdomain and a difference of −7% for the NS subdomain. Both
values are still below 10−3, so we consider the NSLB mesh converged.

Fig. 6 shows velocity streamlines and velocity magnitude and pressure around the cube for both
the NS and LB subdomains compared to the single LB simulation at dx = 1/40H. The streamlines
are continuous along the whole domain for both the NS and the LB zones. However, there is a small
discrepancy between the NS and LB stream lines at the NS to LB boundary. The NS and LB sub-
domains present the same velocity magnitude results in the overlap region, and both match the single
LB velocity values across the whole domain. The maximum discrepancy between the NS sub-domain
and the LB sub-domain can be observed in the pressure at the NS to LB boundary: the LB results show
the constant pressure boundary condition, while the single LB and the NS sub-domain results show
a varying pressure. The pressure results elsewhere are consistent for all the solvers. The boundary
condition in the NS to LB boundary of the LB sub-domain is forced equilibrium. This boundary
condition assumes that the particle distribution functions in the cells of the NS to LB boundary are
in the equilibrium state corresponding to the interpolated NS velocity and a constant density; thus
the non-equilibrium information carried by the NS velocity is lost. This loss of information and the
constant LB density could explain the discrepancies in the streamlines in Fig. 6; the velocity at the
NS to LB boundary matches because the LB macroscopic velocity is set to the NS velocity.

5.2.2. Computer resources

Comparing the computational resources used for NS, LB, and NSLB methods requires a bit of
thought. The NS and LB methods solve different equations with completely different algorithms,
meshing strategies and cell size and time step restrictions. Thus NS and LB need different time steps
and resolution to obtain comparable accuracy (see Fig. 5b). A raw comparison of the time it takes
each solver to calculate a time step or the number of cells solved per second is not possible. Moreover,
the NS and LB solvers run in completely different architectures, so comparing the CPU hours or GPU
hours for both of them is also not possible. Instead, we compare the performance of the the single LB,
single NS and NSLB methods by plotting the time taken to simulate 1 second of physical time .vs. the
rms between the results and the base case for each solver (Fig 7). For the NSLB simulations we use

9

(a) (b)

Figure 6: Streamlines on the horizontal plane y=0.04 (top-left) and the central vertical plane z = 0 (top-right) for NSLB
laminar base simulation, LB streamlines (blue), NS streamlines (red). The left edge of the NS sub-domain (red vertical
line) is the LB to NS boundary, and the right edge of the LB sub-domain (blue vertical line) is the NS to LB boundary.
Velocity magnitude and pressure lines at x = 3.5, 5, 6, 7 in each plane compared with the results of a single LB model
(bottom)

the average between the rms for the NS subdomain and the rms for the LB subdomain.
This performance has been evaluated using a single node computer with Intel Xeo E5-2660 CPU

card and 8 Nvidia GeForce GTX 180 Ti GPUs. The NS sub-domain is decomposed by splitting the
domain in equal parts in the y and z directions and run in parallel using MPI. Fig. 7a shows the
computer time needed to solve one second of physical time for the single NS simulation with different
number of CPU, the single LB simulation with different number of CPU and the NSLB simulation
with the combination of CPU and GPU that resulted in a lower computational time. The time taken
by both methods increases as the rms decreases; however, the single LB computer time is smaller than
the NS computer time. For the largest rms simulations (rms order 10−2 for single NS and 10−3 for
single LB), the single LB simulation witH 8GPU is approximately 2 times faster than the single NS
simulation with 16CPU; for the intermediate rms (rms of order 10−3 for both single LB and NS) the
single NS simulation with 16CPU is approximately 26 times faster than the single NS simulation with
16CPU; and for the smallest rms (rms of order 10−4 for both single NS and single LB) the single LB
simulation wiht 8GPU is approximately 55 times faster than the single NS simulation with 16CPU. The
NSLB simulation (rms of order 10−4), run with 1GPU and 16 CPUs, is approximately 2 times faster
than the single NS simulation with 16CPUs but still 25 times slower than the single LB simulation
with 8GPU and 5 times slower than the single LB simulation with 1GPU.

Fig. 7b shows the CPU and GPU memory occupied by the variables stored in the meshes of each
simulation. The memory is counted as 8 Bytes for each solved variable stored in the computational
meshes. The NS solver stores the three components of velocity and pressure on each cell in CPU
memory. The LB solver stores the three macroscopic velocity components and density in CPU memory
and the three macroscopic velocity components, pressure and two copies of the 19 particle distribution
functions in GPU memory. As expected, the memory occupied by both solvers increases as the rms
decreases. However, the memory required by the single LB simulation is significantly larger than the
memory required by the single NS simulation with a rms of the same order of magnitude. The NSLB

10

10 3 10 2

rms between each case and dx = 1/80 for LB and dy = 0.003 for NS

100

101

102

103

104

Co
m

pu
tin

g
tim

e
[s

]

Time to complete 1s of simulation

NS 1 CPU
NS 4 CPU
NS 8 CPU

NS 16 CPU
LB 1 GPU

LB 2 GPU
LB 4 GPU

LB 8 GPU
NSLB 16CPU 1GPU

(a)

10 3 10 2

rms between each case and dx = 1/80 for LB and dy = 0.003 for NS

107

108

109

M
em

or
y

[B
yt

es
]

Memory occupied by the solved variables

NS CPU memory
LB GPU memory

LB CPU memory
NSLB GPU memory

NSLB CPU memory

(b)

Figure 7: Time and memory consumption by single LB and single NS simulations with different resolutions (different
rms respect reference simulations) and by the NSLB method. (a) Time spend to run one physical second of simulation.
The crosses mark the rms of the performed simulations. (b) CPU and GPU memory.

GPU memory occupancy is 1.4 times lower than the memory occupied by the single LB simulation
with a rms of 10−4, the CPU memory is 1.1 times lower.

The NSLB method runs the NS sub-domain and the LB sub-domain concurrently and sets synchro-
nisation barriers at the points where information needs to be send to and received from the coupled
solver. Table 1 shows the ratio of the total running time used for each sub-domain to execute its
core solver, receive and send data. The receiving time includes the time the solver is stopped waiting
at the synchronisation barrier. Table 1 shows that the time both sub-domains spend sending data
is negligible. However, the LB sub-domain spends 94% of its running time waiting to receive and
receiving data from the NS sub-domain and only 19% of the time running its core solver; while the
NS sub-domain spends 94% of its time running its core solver and only 0.87% of its time waiting to
receive and receiving data from the LB sub-domain. The effect of increasing the number of CPUs used
by the NS sub-domain and the number of GPUs used by the LB sub-domain is estimated to be low.
Fig. 7a shows that the gain in computer time at 16CPU is already reduced respect 8CPU. Moreover,
since the LB sub-domain spends 78.9% of its time waiting for NS sub-domain to transfer the results,
using more GPUs will not decrease the overall time of the simulation.

NS sub-domain LB sub-domain
Core solver 0.94 0.19

Receive data 0.0087 0.789
Send data 3.8× 10−5 9.6× 10−4

Table 1: Time spend for the NS sub-domain and the LB sub-domain on the core solver, data receiving and data sending
for the NSLB method simulation run with 1GPU and 16CPU. The times are normalised to the total running time of the
simulation.

For the current test case and configuration, the NS sub-domain is a bottleneck in the simulation,
thus reducing the potential performance gain of the NSLB method. The NS sub-domain bottle neck
can also be viewed as an opportunity for the LB sub-domain to execute a much larger domain or
to run at a higher resolution while minimising the impact on the overall running time of the NSLB

11

method. It is then anticipated that the performance benefits of the NSLB method will increase with
the difference in the resolved flow scales by the NS and LB sub-domains.

Finally, note other factors like the number of cells in each sub-domain and the characteristics of
the mesh refinement in the NS sub-domain could also affect the speed of the simulation.

5.2.3. Overlap region

Finally, we present a study of the influence of the size and position of the overlap region over the
accuracy of the results. To do so, we ran the NSLB simulation with a range of overlap regions starting
at xs = 1.75, 2.6, 3.0, 3.5, 4.4, 5.25, 6.15 with the following sizes ow = 0.05, 0.15, 0.375, 0.8, 1.55, 2.3 in
the streamwise direction. The start of the overlap region is the position of the LB to NS boundary
and the size of the overlap region is the distance between the LB to NS boundary and the NS to LB
boundary (Fig. 2).

Fig. 8 shows the variation in the velocity error of the NSLB method respect the velocity for the
single LB simulation in the interest region for the different positions and sides of the overlap region. Fig.
8 presents a higher density of points in regions where the rms difference presents a higher gradient. The
interest region is defined as a box next to the bottom wall of size 5H × 1.5H × 4H in the streamwise,
vertial and spanwise direction respectively, starting at 2H in the x direction and centred in z. The
error is calculated as the root mean square of the difference between the sub-domain result and the
single LB simulation result, and shown respect the bulk velocity Ub. The LB sub-domain results are
compared in the first half of the overlap region and the NS sub-domain results are compared in the
second half of the overlap region.

The base test case has an overlap region starting at x = 5 and ending at x = 7; which situates it in
the lowest error region in Fig. 8 with an error below 1% of the bulk velocity. The error in the velocity
diminishes as the size of the overlap region increases for all starting points except xs = 2.6; all starting
points except xs = 2.6 and xs = 5.25 present an error below 10% for sizes ow ≥ 0.8. Regarding the
minimum size of the overlap region, all the tested starting positions except xs = 1.75 and xs = 6.15
produce unstable results for an overlap region size ow = 0.05. The unstable cases present oscillations in
the velocity and pressure results that amplify as time advances. Another special case is xs = 3.5. This
case is unstable at ow = 0.05 but presents a lower error at ow = 0.15 than its neighbouring overlap
region starting points. Finally, note that the combination xs = 2.6, ow = 1.55, 2.3 show a higher error
than the error for smaller sizes, which contradicts the trend of the other tested starting positions.

We selected two of the most interesting overlap sizes and positions to study in more detail:

• Test A: xs = 3.5, ow = 0.15; smallest overlap region with an error below 10 %. Its error value is
8% respect the bulk velocity.

• Test B: xs = 2.6, ow = 2.3; largest overlap region with an error above 1%. Its error value is 1.2%
respect the bulk velocity.

Test A and Test B are in the same colour band in Fig. 8 but Test B is near the lower error band and
test A is near the higher error band. The results for both cases (Fig. 9) are significantly different. The
streamlines for Test A (Fig. 9a) are continuous and match through the overlap region; however the
difference in the pressure and velocity magnitude between the NS sub-domain results and the single
LB simulation are significant; the shape of the wake also presents differences with the base NSLB
simulation (Fig. 6). The streamlines for Test B (Fig. 9b) are also continuous through the overlap
region but there are some discrepancies between the NS sub-domain and LB sub-domain streamlines
in front of the cube near its front face. The streamlines on the wake are also slightly different but the
differences are not significant. The velocity magnitude results for the NS sub-domain, the LB sub-
domain and the single LB simulation match and the pressure results presents only a slight variation
in x = 2.6.

The size and position of the overlap region affects the accuracy of the results. The LB to NS
boundary in test B cuts through the horseshoe vortex in front of the cube and its NS to LB boundary
cuts through the centre of the recirculation in the wake of the cube. The fact that the two boundaries

12

Figure 8: 2D plot of the root mean squared difference between the NSLB and single LB streamwise velocity in the
interest region referred to the inlet bulk velocity. The interest region is shown at the bottom for reference; its size in
the spanwise direction is 4 centred on the cube. The computed simulations are shown as grey dots. Light green colour
corresponds to an error above 100% or an unstable simulation.

cut through complex flow patterns might explain why the error for this test case is higher than the error
for its surrounding tests. However, Test B presents an error just slightly over 1% and the differences
between the NSLB results and the single LB results are not significant. Test B results suggest that,
even if stable at that position, an overlap region with a width of ow = 0.15 is too short to properly
reproduce the results of the single LB simulation.

6. Conclusions and outlook

We presented a LB solver two-way coupled with a NS solver able to accurately model three-
dimensional laminar flow around a bluff object. The NSLB solver couples a sub-domain solved by the
NS solver OpenFOAM [7] run using multi-CPU with a sub-domain solved by the GPU-accelerated LB
solver GASCANS [9].

We have tested the coupling of the two solvers by reproducing the results of Huang and Yang [13]
for laminar flow around a wall mounted cube in a channel at ReH = 150. The root mean squared
error on the streamwise velocity and pressure in the interest region compared to the single LB results
is below 1% of the bulk velocity for overlap region sizes above 0.8H.

The computational efficiency of the NSLB model was tested by running the Huang and Yang [13]
test case with mesh converged resolution using single NS, single LB and NSLB with 16 cores of an Intel
Xeo E5-2660 CPU and 1 Nvidia GTX 1080 Ti GPU. With the presented computational resources and
case configuration, the NSLB model is approximately 2 times faster than single NS while consuming 1.4
times less GPU memory than the single LB simulation. Thus, the NSLB model presents potential to
run simulations not available for the single LB solver due to the limited memory available in the GPU
card and too time consuming to run with single NS solver due to the limited CPU resources. However,

13

(a) Test A (b) Test B

Figure 9: Streamlines on the vertical plane z = 0 (top) for the NSLB simulation, LB sub-domain (blue) and NS sub-
domain (red). Velocity magnitude and pressure for the NS sub-domain (red crosses), the LB sub-domain (blue crosses)
and the single LB simulation (blue lines) at 4 positions in x. (a) overlap region starting at x = 3.5, ending at x = 3.65;
sampled lines positions x = 3.5, 5, 6, 7. (b) overlap region starting at x = 2.6, ending at x = 4.9; sampled lines positions
x = 2.6, 3.5, 5, 6.

the NS sub-domain constitutes a bottleneck in our NSLB solver configuration; then we anticipate that
the performance benefits of the NSLB method could increase if the LB sub-domains resolves smaller
scales, and thus more cells, than the NS sub-domain.

The size and position of the overlap region significantly affects the accuracy of the NSLB solver.
An increase in the size of the overlap region decreases the error. The complexity of the flow at the
coupled boundaries also affects the accuracy of the results, more complex flow through this boundary
results in less accuracy. Finally the lowest error position in the vicinity of the cube is in the middle
of it but the overlap region has to be over 0.15 long to produce accurate results. The main source of
inaccuracy in the coupling is the NS to LB boundary in the LB sub-domain and it might be due to
the NS non-equilibrium part of the NS velocity, which is lost due to the forced equilibrium boundary
condition imposed in the NS to LB boundary.

Future work will entail modelling turbulent flows with the two-way coupled NSLB solver. Both,
with an overlap region that covers the vertical and spanwise sides of the domain and with the LB
sub-domain embedded in the NS sub-domain.

Acknowledgements This work has been supported primarily by the Samsug GRO programme with
collaboration from The University of Manchester.
Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or
publica- tion of this article.

14

References

[1] E. Fattahi, C. Waluga, B. Wohlmuth, U. Rüde, M. Manhart, R. Helmig, Lattice Boltzmann methods in
porous media simulations: From laminar to turbulent flow, Computers and Fluids 140 (2016) 247–259.
doi:10.1016/j.compfluid.2016.10.007.

[2] A. Mivehchi, J. Harris, S. Grilli, J. Dahl, C. O’Reilly, K. Kuznetsov, C. Janssen, A hybrid solver based on effi-
cient BEM-potential and LBM-NS models: Recent BEM developments and applications to naval hydrodynamics,
Proceedings of the International Offshore and Polar Engineering Conference (2017) 713–720.

[3] P. Neumann, On transient hybrid Lattice Boltzmann–Navier-Stokes flow simulations, Journal of Computational
Science 17 (2016) 482–490.
URL http://dx.doi.org/10.1016/j.jocs.2016.02.003

[4] Z. X. Tong, Y. L. He, A unified coupling scheme between lattice Boltzmann method and finite volume method for
unsteady fluid flow and heat transfer, International Journal of Heat and Mass Transfer 80 (2015) 812–824.
URL http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.09.067

[5] A. C. Velivelli, K. M. Bryden, Domain decomposition based coupling between the lattice Boltzmann method and
traditional CFD methods - Part II: Numerical solution to the backward facing step flow, Advances in Engineering
Software 82 (2015) 65–74. doi:10.1016/j.advengsoft.2014.11.006.
URL http://dx.doi.org/10.1016/j.advengsoft.2014.11.006

[6] H. K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics, 2nd Edition, Pearson Prentice
Hall, 2007.

[7] The OpenFOAM Foundation, Openfoam.
URL https://openfoam.org/version/4-0/

[8] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, E. M. Viggen, The Lattice Boltzmann Method
Principles and Practice, Springer, 2017. doi:10.1007/978-3-319-44649-3.

[9] M. Camps Santasmasas, A. R. G. Harwood, S. Fan, B. Owen, J. O’Connor, A. Revell, GPU-Accelerated Solver for
Coupled Approaches to Navier-Stokes (GASCANS), Computer Physics Communications In preparation.

[10] A. Atanasov, B. Uekermann, P. Neumann, Anderson Accelerated Coupling of Lattice Boltzmann and Navier–Stokes
Solvers for Parallel Applications, Computation 4 (4) (2016) 38–57. doi:10.3390/computation4040038.

[11] H. J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev, B. Uekermann, preCICE – A fully
parallel library for multi-physics surface coupling, Computers and Fluids 141 (2016) 250–258.
URL http://dx.doi.org/10.1016/j.compfluid.2016.04.003

[12] G. Chourdakis, A general OpenFOAM adapter for the coupling library preCICE (December) (2017).

[13] J. Y. Hwang, K. S. Yang, Numerical study of vortical structures around a wall-mounted cubic obstacle in channel
flow, Physics of Fluids 16 (2004) 2382–2394.

15

4.3.2 Paper II - Synthetic eddy method applied to the

lattice Boltzmann model

The following journal paper presents a lattice Boltzmann model embedded in a

pre-calculated RANS simulation. The free stream turbulence from the RANS

results is introduced into the lattice Boltzmann simulation via a synthetic eddy

method at the lattice Boltzmann inlet. The paper requires some revision before

submission to the Journal of Wind Engineering and Industrial Aerodynamics,

which is the journal we intend to submit this paper for.

—————————

120

Synthetic eddy method applied to lattice Boltzmann for wind around a
rectangular prism building.

Marta Camps Santasmasasa, Xutong Zhanga, Alistair Revella

aSchool of Mechanical, Aerospace and Civil Engineering, University of Manchester, UK

Abstract

Modelling urban wind flow resolving turbulence is computationally expensive and often requires
computational resources that are out of reach for engineering applications. One of the main issues is
that the computational domain required is significantly larger than the region of interest. We present
a lattice Boltzmann large eddy simulation (LB-LES) solver that can be embedded in a pre-calculated
RANS simulation. The LB-LES domain uses the mean RANS velocity as boundary condition for the
top and the side boundaries; and incorporates the RANS turbulence using a synthetic eddy method
at the lattice Boltzmann inlet. We tested the SEM implementation in a Reτ = 395 channel flow
and we used the embedded LB-LES domain to model an atmospheric boundary layer flow around a
rectangular building at ReH = 47893, where H is the height of the building. The SEM boundary
incorporates the mean turbulence from the RANS data into the LB-LES resolved velocity, enabling
the LB-LES model to capture the physics of the flow correctly and show good agreement with the
experimental results. Moreover, we ran the embedded LB-LES domain using a single Nvidia V100
graphics card and 8CPUs. These results show the potential of the SEM LB-LES solver to run high
accuracy turbulent wind engineering flows with consumer level computational resources.

Keywords: Hybrid RANS/LES, Embedded LES, Turbulence, Industrial CFD, lattice Boltzmann,
GPU.

1. Introduction

The most used Computational fluid dynamics (CFD) models in wind engineering solve the Reynolds
averaged Navier-Stokes (RANS) equations (see f e. Toparlar et al. [1]). RANS models provide mean
flow data at a low computational cost. However, RANS models do not provide information on the time
dependent fluctuating velocity which is relevant for contaminant dispersion and building structural
analysis studies. On the other hand, lattice Boltzmann solvers are used to model turbulent urban
wind flow (see f e. Merlier et al. [2] and Lenz et al. [3] and Jacob and Sagaut [4]). An important
advantage of lattice Boltzmann methods over Navier-Stokes methods is lattice Boltzman simple and
local algorithm, which is efficient when implemented in massive parallel architectures like graphic
processing units (GPUs). GPU cards are common in most personal computers and are not used by
traditional RANS models. However, the high memory consumption of the lattice Boltzamann method
combined with the restricted memory available in GPU cards limits the accuracy / domain size that is
practical to model with lattice Boltzann using a single node. For example Onodera et al. [5] modelled
a 10km × 10km area of metropolitan Tokyo at 1m resolution using lattice Boltzmann, which required
4032 GPUs.

The main challenge on the domain size for urban wind flows is that the interest region usually
lacks defined boundaries apart from the ground and the modelled urban geometry. In order to run the
simulation, artificial boundaries have to be created and the wind profile there estimated using profiles
that are not representative of the wind in that region and usually only contain mean flow data. To
paliate the inaccuracies caused by the boundary conditions, the boundaries are placed as far from the
interest region as possible, thus increasing the computational cost of the simulation.

Preprint submitted to Journal of Wind Engineering and Industrial Aerodynamics March 3, 2021

One way to obtain more accurate boundary conditions is to embed a turbulence resolving large eddy
simulation (LES) model covering the interest region inside a less computationally expensive mean flow
resolving Reynolds-averaged Navier-Stokes (RANS) model. The boundaries of the underlying RANS
simulation are set to the estimated wind profiles, while the boundaries of the LES are set to the results
of the underlying simulation as shown in Fig. 4. Mathey and Cokljat [6] embed a LES domain inside
a pre-calculated RANS simulation to obtain more accurate results in a region of high flow complexity
around the Ahmed body simplified car geometry; the LES nested region uses the results of the RANS
simulation as boundary conditions. Embedded LES techniques follow the same principle with the
difference that the RANS and embedded LES domains are run concurrently (see f e. [7]). Jadidi and
Bazdidi-Tehrani [8] and Wijesooriya et al. [9] use embeded LES to model wind flow around an isolated
building. Mathey and Cokljat [6] report pressure coefficient Cp in the LES nested region closer to the
experimental data than the ones obtained by the RANS simulation; Jadidi and Bazdidi-Tehrani [8]
report a similar distribution of time-averaged pollutant concentration for both the embedded LES and
LES. Wijesooriya et al. [9] embedded LES results comparable with full LES results using a maximum
of 54% of the computational resources of the full LES. Similarly, Jadidi and Bazdidi-Tehrani [8] report
that the CPU time to complete the embedded LES is about 49 % lower than that of the full LES.

LES models require the instantaneous wind velocity to be prescribed at their inlet, while RANS
models only provide mean flow data. Mathey and Cokljat [6], Jadidi and Bazdidi-Tehrani [8] and
Wijesooriya et al. [9] use the vortex method by Sergent [10] to generate the instantaneous velocity at
the LES inlet from RANS mean flow. Vortex methods are only one of the synthetic turbulence methods
that can be applied at the LES inlet [11]. Both, Poletto et al. [12] divergence free synthetic eddy
method (DFSEM) and Skillen et al. [11] improved synthetic eddy method inlet boundary conditions
yield improved results over the vortex method in channel flows. Besides, Millar et al. [13] implements
DFSEM as inlet boundary condition in an urban wind flow setting, reporting good agreement with
experimental data.

A common characteristic of the reviewed embedded LES models is the use of Navier-Stokes based
solvers run on CPU architectures for both the RANS and LES domains. We present a lattice Boltzmann
LES (LB-LES) simulation embedded in a pre-computed RANS domain. The instantaneous velocity
at the lattice Boltzmann LES inlet is obtained using Skillen et al. [11] synthetic eddy method (SEM).
We first test the implementation of SEM into LB-LES in a Reτ = 395 channel flow; then we model
the wind tunnel test case by Meng and Hibi [14], which is one of the validation benchmark cases in the
Guidebook for CFD Predictions of Urban Wind Environment by the Architectural Institute of Japan.
Meng and Hibi [14] provide wind tunnel experimental data of wind flow around a rectangular building
at ReH = 47893, where H is the height of the building. All the LB-LES in the present paper are
run in single node using a single GPU to demonstrate the potential of running engineering relevant
turbulent flows with a consumer grade computer.

The results from the tests show that the lattice Botlzmann implementation of SEM is able to obtain
results comparable to the ones obtained by Skillen et al [11]. The embedded LES domain with SEM
inlet boundary condition is able to capture the physics of the flow correctly and yields the closest
results to the experimental data amongst all the tested methods.

2. LES lattice Boltzmann: LES LB-BGK

The LES lattice Boltzmann method implemented in this paper uses a 3DQ19 velocity discretisation
with BGK collision operator and implements the Hou et al. [15] LES Smagorinsky turbulence model.

The lattice Boltzmann equations solve for the particle distribution functions fα; which model the
probability of a group of fluid particles to have a certain velocity at a certain position and time. The
particle velocity space is discretised in a number of velocities cα and corresponding weights wα defined
by the lattice model. The lattice Boltzmann method in this paper implements a 3DQ19 lattice model,
which contains the following particle velocities their weights:

2

~cα =

0, α = 0,
(±1, 0, 0), (0,±1, 0), (0, 0,±1) α = 1 to 6,
(±1,±1, 0), (±1,±0,±1), (0,±1,±1) α = 7 to 18.

(1)

~wα =

1/3, α = 0,
1/18 α = 1 to 6,
1/36 α = 7 to 18.

(2)

(3)

The lattice Boltmzann LES model solves for the filtered particle distribution functions f̄α. f̄α only
represents motion at scales larger than the filter width ∆. The lattice Boltzmann equations for the
filtered particle distribution functions are:

f̄α(x0 + ∆x, t0 + ∆t)− f̄α(x0, t0) = ∆tΩ̄(x0, t0) α = 0 : 18 (4)

(5)

where ∆t is the time step and ∆x is the spacial step in x, y and z in lattice units. Lattice units
measure space in cells and time in time steps; thus, for example, a velocity in lattice units of ux = 0.1
cells/timeSteps indicates that the fluid covers 0.1 cells in one time step. ∆x and ∆t in lattice units
are usually set to 1 to simplify the LB algorithm and will be omitted from the following LB equations.
Note that this form of the lattice Boltzmann equations assumes that the cell size is the same in all
directions and that all the cells are the same size. Ω̄(x0, t0) is the filtered collision operator, which for
a BGK collision model is:

Ω̄α =
feq(ρ̄, ūi)− f̄α

τ̄
(6)

where ρ̄ and ū are the filtered macroscopic pressure and velocity respectively and are obtained from
the filtered particle distribution functions f̄α as

ρ̄ =
∑

α

f̄α (7)

ρui =
∑

α

f̄αcαi i = 0 : 2 (8)

(9)

and feq is the equilibrium particle distribution function for a 3DQ19 velocity model with the filtered
velocity and density.

feqα = wαρ

(
1 +

uiciα
c2s

+
(uiciα)2

2c4s
− uiui

2c2s

)
(10)

cs = 1√
3

is the lattice speed of sound.

Hou et al. [15] LES turbulence model introduces the modified relaxation time τ̄ to the BGK
collision operator

τ̄ = τ + 3νt (11)

3

where τ = 3ν δt
δx2 + 1/2 is the BGK relaxation time; ν is the viscosity of the fluid in physical units,

δx is the cell size in physical units and δt is the time step in physical units. νt is the Smagorinsky
eddy viscosity and it is defined as:

νt = Cs∆
2|S̄| (12)

(13)

We set the LES filter width ∆ = 1 and the Smagorinsky constant Cs = 0.01. |S̄| =
√

2S̄ijS̄ij is
the intensity of the strain rate of the filtered velocity

S̄ij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(14)

How et al. [15] LES implementation calculates τ̄ involving only local operations. The modified
relaxation time is:

τ̄ =
1

2ρ̄

(√
ρ̄2τ2 + 18

√
2ρ̄Cs∆2Q1/2 − τ

)
+ τ (15)

where Q is the second variance of the filtered velocity stress tensor and can be approximated by
[15]:

Q = Π̄
(1)
ij Π̄

(1)
ij (16)

Π̄
(1)
ij =

∑

α

cαi
cαj f̄

neq
α (17)

where f̄neqα = f̄α − f̄eqα is the non-equilibrium distribution function.
All the operations in eq. 15 are local, thus the implementation of the LES Smagorinsky using eq.

15 does not significantly increase the computational cost of the lattice Boltzmann method in GPU.
Finally, note that eq 15 depends on the filtered density ρ̄; which we set to ρ̄ = ρ0 = 1.

Note that we implemented an LES Smagorinsky model without special near wall treatment.

2.1. Lattice Boltzmann vs traditional CFD models

Navier-Stokes equations discretised using finite volumes and solved using algorithms derived from
SIMPLE [16] and linear equation solvers are commonly used in engineering urban wind simulations
[1].

The main strength of the presented form of lattice Boltzmann method over the widely used Navier-
Stokes models is the simplicity of the lattice Boltzmann algorithm, which is explicit and only requires
information from the current cell and its nearest neighbours. This simplicity and locality make the
lattice Boltzmann method very efficient when implemented in massively parallel architectures like
graphic processing units (GPUs). Another strength is that it models convection by transferring the
particle distribution functions from one cell to the neighbouring cell. Since the position of the particles
is not interpolated, the presented lattice Boltzmann method presents low numerical diffusion.

The main weakness of the presented form of the lattice Boltzmann method is that it assumes that
all the cells are of size δx in all directions, which makes mesh refinement cumbersome to implement.
Another disadvantage is that it is memory intensive, since it has to store the values of all the discretised
particle distribution functions plus velocity and density at each cell. Finally, its algorithm is only
conditionally stable and the cell size and time step are linked to the viscosity of the fluid, which limits
the combination of δt and δx that produce accurate results.

4

3. Synthetic eddy method (SEM)

We use the synthetic eddy model by Skillen et. al [11] to generate instantaneous velocity data at
the lattice Boltzmann inlet using mean flow statistics at each cell of the inlet. Concretely, SEM needs
time averaged velocity Ui(x, t), Reynolds stresses Rij(x, t) and a turbulent length scale

σi(x, t) =
R

3/2
ii (x, t)

ε(x, t)
(18)

where ε(x, t) is the mean turbulent kinetic energy dissipation rate at each cell of the inlet. σi(x, t)
determines the radius of the synthetic eddies in the position x in each direction. Two of the SEM
configuration parameters are the minimum eddy size σmini and the maximum eddy size σmaxi , which
limit the size of the synthetic eddies generated by the SEM. Fig. 1 shows an example of the eddy size
in a Reτ = 395 channel and the effect of the maximum and minimum synthetic eddy size.

Skillen et al. [11] SEM first generates a fixed number of three dimensional synthetic eddies centred
at random positions of the inlet plane. At each time step, the eddies are advected through the inlet
by the bulk velocity of the prescribed mean flow. When an eddy no longer intersects the inlet, it is
regenerated to a new random starting position, which is recomputed until the eddy lands in a region
with low eddy density.

The instantaneous inlet velocity field ui(x, t) is generated in three steps:

1. Calculate the preliminary fluctuating velocity field u∗i (x, t) by adding the contribution of each
synthetic eddy normalised by the running average of the eddy concentration (eq. 19)

u∗i (x, t) =

∑N
e=1 εif(x− xe, σe)√〈∑N
e=1 f

2(x− xe, σe)
〉AVG (19)

where εi is an integer representing the sign of the eddy and is assigned a ±1 value at random, x
is the current inlet cell, xe is the position of the centre of the current eddy, σe is the length scale
of the current eddy, N is the number of eddies and f is a weight function based on the distance
from the centre of the current eddy. Skillen, et al. [11] use a truncated Gaussian function with
extents defined by the length scale of the current eddy σe. Skillen, et al. [11] contains more
information on the weight function f and the implementation of the running average of the eddy
concentration (〈〉AVG).

2. Correct the preliminary fluctuating velocity u∗i by multiplying it by the Cholesky decomposition
of the inlet Reynolds stress tensor Lij (eq. 20). This correction sets the mean value of u∗i to zero
and its second order statistics to the inlet Reynolds stresses.

L =

√
R11 0 0

R21/L11

√
R22 − L2

21 0

R31/L11 (R32 − L21L31)/L22

√
R33 − L2

31 − L2
32

 (20)

3. Add the corrected preliminary fluctuating velocity to the inlet mean velocity (eq. 21)

ui(x, t) = Lij(x, t)u
∗
j (x, t) + Ui(x, t) (21)

5

3.1. SEM for lattice Boltzmann

The instantaneous inlet velocity at the LES lattice Boltzmann inlet is generated using the synthetic
eddy method by Skillen et al. [11] as described above. The resulting velocity is then translated to
lattice units and the particle distribution functions, or filtered particle distribution functions for the
LES model, are obtained using the regularised velocity boundary condition by Latt et al. [17].

The main difference between the Navier-Stokes and lattice Boltzmann implementation of Skillen et
al. SEM is the mesh. The constant cell size in lattice Boltzmann allowed us to optimise the calculation
of the preliminary velocity field (eq. 19). This calculation is the most computationally expensive part
of the SEM algorithm because it involves a nested search loop: the algorithm has to search for all the
cells and then for all the eddies to determine which eddies contributes to each cell. Our optimisation
reduces the number of operations in this step around 2 orders of magnitude, thus significantly reducing
the computing time of the SEM boundary condition.

Another consequence of the constant cell size in the lattice Boltzmann mesh is that it does not
allow for refinement next to the walls. The minimum synthetic eddy size is usually set to the cell size
δx, thus the minimum eddy occupies 2 cells in each direction. In coarse meshes, the minimum eddy
size σmini might be larger than the smallest value of σi(x, t), thus not representing the smallest eddies
next to the wall. Moreover, two cells in each direction might not be enough to correctly represent a
synthetic eddy. In this paper we chose σmini = 4δx because it was the value that yield more accurate
results at coarse resolutions. However, the effect of σmini in the generated velocity needs to be studied
further.

Finally, the present implementation of SEM runs in the CPU part of the lattice Boltzmann code
and incorporates further code optimisations implemented by Fan et al. [18] including single node
parallelisation using OpenMP.

4. Test case: turbulent channel flow

The aim of this section is to validate the implementation of Skillen et al. [11] SEM model in the
lattice Boltzmann solver both with and without the LES Smagorinsky turbulence model. The chosen
test case is the channel flow with a Reτ = 395 modelled by Kozuka et al. [19] using Navier-Stokes
DNS. This case is the case ch395_4th_D of the Direct Numerical Simulation Data Base for Turbulent
Channel with Heat Transfer from the Laboratory of Thermo-fluid dynamics from the Tokyo University
of Science 1.

We first test the accuracy of the SEM implementation in lattice Boltzmann compared with Skillen’s
SEM Navier-Stokes implementation for both using the DNS mean flow to generate the inlet instanta-
neous velocity and using the mean flow data from a RANS EBRSM precursor simulation. Then, we
test the effect of mesh resolution on the lattice Boltzmann results.

4.1. Case description

The test case is a Retau = 395 channel flow of dimensions 10H in x, 2H in y and 3.16H in z,
where H is half the channel height. x is the streamwise direction, y is the vertical direction and z
is the spanwise direction. The top and bottom walls implement a no-slip boundary condition via
the half-way bounce back method. The outlet implements zero gradient for velocity and pressure via
a extrapolated boundary condition, i e. the particle distribution functions entering the domain are
copied from the cells parallel upstream of the outlet cells. For the lattice Boltzmann DNS (simulations
with no turbulence modelling), the 10% of the domain next to the outlet implements a sponge layer
in order to stabilise the simulation. The sponge layer increases the viscosity of the fluid in a cubic
manner until the viscosity doubles at the outlet cells. The introduction of the LES Smagorinsky model
stabilises the simulation enough to not need the sponge layer. All the simulations have constant size
cubic cells.

1https://www.rs.tus.ac.jp/t2lab/db/

6

0.0 0.2 0.4 0.6 0.8 1.0
y/H

0.0

0.2

0.4

0.6

0.8

1.0

x

x

(a)

0.0 0.2 0.4 0.6 0.8 1.0
y/H

0.0

0.2

0.4

0.6

0.8

1.0

y

y

DNS Kozuka et al.
RANS EBRSM

min = 0.04
max = 0.5

dx = 0.01

(b)

0.0 0.2 0.4 0.6 0.8 1.0
y/H

0.0

0.2

0.4

0.6

0.8

1.0

z

z

(c)

Figure 1: Size of the SEM eddies σi calculated with the DNS data from Kozuka et al. (black) and the RANS EBRSM
data from Mole (orange) together with the minimum (cyan dashed) and maximum (blue dots) eddy size in the lattice
Boltzmann simulation. The position of the first cell is indicated with a dashed dot green line. (a) Streamwise component
σx; (b) Vertical component σy ; (c) Spanwise component σz .

The inlet boundary implements the SEM model described in section 3 with a maximum synthetic
eddy size σmaxi = H/2 and a minimum synthetic eddy size σmini = 4δx, where δx is the cell size.
We used two different sources for the mean velocity and Reynolds stress data input for SEM: the
Navier-Stokes results for a periodic Reτ = 395 channel flow by Kozuka et al. [19] and the Reynolds
averaged Navier-Stokes (RANS) results for a periodic Reτ = 395 channel flow. The RANS simulation
implements an elliptic blending Reynolds stress model (EBRSM) turbulence model. Fig. 1 shows
the effect of the limiters on the synthetic eddy size on the input data. The maximum effect of the
minimum synthetic eddy size is in the vertical direction y, in which approximately the first 10 cells
contain eddies larger than the ones specified by the inlet mean flow data. The cut on the maximum
eddy size only affects the size of the synthetic eddies in the stream wise direction x, which limits the
eddy size to its maximum value at y = 0.2H for the DNS input data and y = 0.04H for the RANS
EBRSM input.

Table 1 shows the main characteristics of the channel flow simulations. The Smagorinsky constant
for the LB LES is Cs = 0.01, which is commonly used for channel flow [20].

All the lattice Boltzmann simulations ran for 100 convective time units (H/Ub = 100) before
averaging the results during a further 100 convective time units.

4.2. Results and discussion

Fig. 2 shows the shear Reynolds stress and wall friction coefficient of the lattice Boltzmann solver
compared to the periodic Navier-Stokes DNS data by Kozuka et al. [19] and the Navier-Stokes LES

7

Name cell size/H time step [Ub/H] Turbulence model Inlet data
Kozuka et al. 0.00028 (min) - DNS Periodic
Skillen et al. 0.0025 (min) - LES Precursor DNS

LB DNS 0.01 0.0001 None Kozuka et al. DNS
LB LES 0.01 0.0001 LES Kozuka et al. DNS

LB RANS inlet 0.01 0.0001 None Mole RANS EBRSM
dx=1/50 LB LES 0.02 0.0004 LES Kozuka et al. DNS
dx=1/25 LB LES 0.04 0.0016 LES Kozuka et al. DNS
dx=1/10 LB LES 0.1 0.01312 LES Kozuka et al. DNS

Table 1: Numerical parameters for the different lattice Boltzmann channel flow simulations. The cell size and time step
values are adimensionalised using the half channel height H and the mean inlet bulk velocity Ub.

data obtained by Skillen et al. [11] using the original Navier-Stokes version of the SEM inlet described
in this paper. The shear Reynolds stress (Fig. 2 a)) for all the tested cases is comparable to Skillen et
al. [11] results. The main differences are that the maximum shear stress is displaced for the simulation
with no turbulence model and RANS inlet and that the LES over predicts the maximum shear stress.

The skin friction plots in Fig. 2 b show the the distance needed by each simulation to recover the
Navier-Stokes DNS results. We calculate the wall friction coefficient as the wall shear stress in the
first cell next to the wall divided by the wall shear stress from Kozuka et al. DNS data. The wall
shear stress is approximated using 1st order finite differences. First of all, note that the drop in the
lattice Boltzmann DNS from x/h ≈ 9 is due to the sponge layer outlet and thus it is disregarded for
the analysis of the results. The results for the lattice Boltzmann simulation with no turbulence model
and Kozuka et al. DNS inlet data are comparable to the ones obtained by Skillen et al., with the
differece that the lattice Boltzmann SEM simulation recover within 1% of the periodic DNS value at
x/H ≈ 5 and Skillen’s Navier-Stokes SEM recovers at x/H ≈ 3. The lattice Boltzmann simulation
with no turbulence model and RANS EBRSM data as the SEM flow statistics stabilises at x/H ≈ 3.5
to a value within 5% of Kozuka et al. DNS value. The lattice Boltzmann LES underpredicts the wall
shear coefficient, maintaining a value within 10% of the periodic DNS results.

0.0 0.2 0.4 0.6 0.8 1.0
y/

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(u
v

+
)

Shear Reynolds stress at x = 5
Kozuka et al. DNS
A.Skillen et al. LES x = 5
LB DNS x=5
LB LES x=5
LB RANS inlet x=5

(a)

0 2 4 6 8 10
x/H

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Cf
/C

f D
N

S

Cf along the channel
A.Skillen et al. LES
LB DNS
LB LES
LB RANS inlet
Kozuka et al. DNS
+ 1 %
- 1 %
+ 5 %
- 5 %

(b)

Figure 2: Shear Reynolds stress in wall units (a) and skin friction coefficient (b) for the channel flow at Reτ = 395.
Periodic Navier-Stokes DNS results by Kozuka et al. [19] (dash black line), SEM inlet Navier-Stokes LES results by
Skillen et al. [11] (dash-dot red line), DNS SEM inlet lattice-Boltzmann without turbulence model results (blue line),
DNS SEM inlet lattice-Boltzmann LES results (orange line), RANS EBRSM SEM inlet lattice-Boltzmann without
turbulence model results (green line).

The differences between the lattice Boltzmann simulations using DNS data EBRSM RANS data
at the SEM inlet are to be expected since the inlet Reynolds stresses and dissipation rate are different

8

for EBRSM RANS and DNS (Fig. 1 and eq. 18). The basic Smagorinsky LES model over estimates
the eddy viscosity near the walls [21], which explains the under prediction of the wall shear stress in
the LES.

The second study for the lattice Boltzmann simulation is to test the sensibility of the results to
increasing cell size δx. Fig. 3 shows the mean streamwise velocity and Reynolds stresses at x/H = 8
with an increasingly coarse mesh. The lattice Boltzmann solver without turbulence modelling is
unstable for meshes with H ≥ δ/50. The simulations become stable by activating the LES Smagorinsky
model with a Smagorinsky constant Csm = 0.01. The velocity and Reynolds stresses in Fig.3 are
adimensionalised using the bulk velocity and the reference height H instead of using wall units as in the
previous figures. The reason for not adimensionalising using the friction velocity uτ is that each coarser
resolution calculates a less accurate approximation of the shear stress in uτ regardless of the accuracy of
the results; thus the results at different resolutions will be adimensionalised following different criteria
and would not be comparable. As expected, increasing the cell size reduces the accuracy of the results
especially close to the wall and the mean velocity profiles are closer to the laminar profile. However,
the shear Reynolds stress (Fig. 3b)) is present even at the coarser resolutions.

10 3 10 2 10 1 100

y/H

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

U
/U

b

Mean streamwise velocity at x = 8
Kozuka et al.
laminar profile
dx=1/100 LES
dx=1/50 LES
dx=1/25 LES
dx=1/10 LES

(a)

0.0 0.2 0.4 0.6 0.8 1.0
y/H

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

(u
v)

/U
2 b

Mean shear Reynolds stress at x = 8
Kozuka et al.
dx=1/100 LES
dx=1/50 LES
dx=1/25 LES
dx=1/10 LES

(b)

Figure 3: (a) Non-dimensional streamwise mean velocity and (b) shear Reynolds stress at x = 8 of the Reτ = 395
channel flow with SEM inlet and LES Smagorinsky turbulence model with different mesh cell sizes dx: dx = 1/100
(blue), dx = 1/50 (orange), dx = 1/25 (green) and dx = 1/10 (red). Compared with the periodic Navier-Stokes DNS
results by Kozuka et al. (cite) (dash line) and the corresponding laminar profile (dotted line).

The BGK lattice Boltzmann model described in this paper discretises the convection term of the
Boltzmann equation without numerical diffusion, unlike the common discretisation schemes used to
discretise convection in the Navier-Stokes equations. This makes the lattice Boltzmann simulation
unstable even at a coarse grids, where the numerical diffusion would act as a stabiliser in a finite volume
Navier-Stokes model. This stabilising effect is provided in lattice Boltzmann by the Smagorinsky LES
model (see eq. 15), which allows for lattice Boltzmann simulations to maintain turbulent flows at
coarse resolutions. However, the coarse resolution and the extra turbulent viscosity near the walls,
make the results at coarse resolution near the wall significantly inaccurate.

5. Test case: Isolated building

The aim of this section is to test our lattice Boltzmann LES model in an urban wind setting.
The chosen test case is the single rectangular building in a wind tunnel by Meng and Hibi [14] at
ReH = 478000, where H is the height of the building and the reference velocity is the inlet velocity at
height H.

The LB-LES method presented in this paper models the flow around the building and is embedded
inside a pre-calculated Reynolds averaged Navier-Stokes (RANS) simulation (Fig. 4), thus transform-

9

ing our LB-LES model in a simple RANS-LES model. This section presents the results and execution
time of our LB-LES method with and without SEM at the inlet. This results are then compared
with the experimental data by Meng and Hibi [14], the underlying RANS simulation and the results
obtained using an industry standard unified RANS-LES model, a delayed detached eddy simulation
with a k − ω SST turbulence model (DDES k − ω SST).

One of the advantages of embedding an LB-LES domain on top of a pre-calculated RANS simulation
is that this method can be used to obtain more flow details in any region of a previously calculated
RANS domain after the RANS simulation is completed. However, the resolution of the underlying
RANS mesh will likely affect the accuracy of the LB-LES results.

5.1. Case description

The simulation of this test case has been run in two stages. First we performed the background
unsteady RANS simulation. Then used its results to set up the boundary conditions of a lattice
Boltzmann LES embedded in the RANS domain around the building. Fig. 4 shows the position of
both domains. The RANS domain covers all the volume inside the orange prism, including the volume
covered by the LB-LES domain (blue in Fig. 4).

Figure 4: Sketch of the domain for the isolated building test case. The orange region is the underlying RANS simulation;
the LB-LES domain is delimited by the blue region. All the values are in meters.

5.1.1. RANS simulation

The size of the RANS domain is the same as the wind tunnel size in Meng and Hibi [14]. The
floor and building surfaces implement a no-slip boundary condition with wall modelling, the top and
sides in the spanwise direction implement symmetry boundary conditions and the outlet has a fixed
pressure and zero gradient boundary condition. The inlet mean velocity and turbulent kinetic energy
profiles are set to the inlet profiles used at the inlet of the wind tunnel by Meng and Hibi [14], the
rest of the inlet turbulent quantities are deduced using that production of turbulent kinetic energy is
in equilibrium with dissipation.

10

The RANS domain is divided in grid blocks of different cell size with added refinement around the
building and the floor (Fig. 5a). The mesh is formed by 3.3 million cells. The smallest block cells
measure 0.002m and are further refined next to the walls. This mesh was deemed sufficient for the
current test case after checking that the change in the mean velocity and Reynolds stress with a finer
mesh were not significant.

(a) (b)

Figure 5: Detail of (a) mesh for the RANS simulation and (b) mesh for DDES simulation around the building. Vertical
plane at y = 0 (top) and horizontal plane at z = 0.08 (bottom).

We ran the unsteady RANS simulation with different turbulence models including Spalart-Allmaras,
realizable k−ε and k−ω SST and compared their results with the mean velocity and turbulent kinetic
energy (TKE) profiles reported by Meng and Hibi [14]. The k − ω SST model was the closest to the
experimental results so we decided to use its results as boundary conditions for the LB-LES domain.

5.1.2. k − ω SST DDES

We also performed a simulation covering the whole domain using a k − ω SST delayed detached
eddy simulation (k−ω SST DDES) model. The objective of this simulation is to compare the RANS +
LB-LES results to the results of an existing hybrid RANS-LES model. The k− ω SST DDES domain
is the same size as the RANS domain but with a higher resolution around the floor and builing and on
the wake of the building (Fig. 5b). The smallest block cells measure 0.001m and are further refined
next to the walls.

The k − ω SST DDES was run for 14 convective flow through before averaging and then time
averaged for an additional 266 convective flow through.

5.1.3. LB-LES

The lattice Boltzmann LES (LB-LES) domain encases the volume surrounding the building (blue
in Fig. 4). The objective was to minimise the distance between the cube and the edges of the LB-LES
region to reduce the computational resources needed to run the LB-LES region. Its size is 3.5H in x,
2.5H in y and 2H in z. x is the streamwise direction, y is the spanwise direction and z is the vertical
direction; H is the height of the building. This domain is divided into constant size cubic cells of

11

size dx = H/100 and time is divided in equal time steps of size dt = 0.00001 seconds. The floor and
building surfaces implement a no-slip boundary condition via half-way bounce back. The velocity at
the sides and top of the domain is fixed to the RANS velocity; the top implements a forced equilibrium
boundary condition [22] and the sides implement a regularised velocity boundary condition [17]. The
outlet is not coupled to the RANS results, instead it implements an extrapolated boundary conditions,
i e. the particle distribution functions entering the domain are copied from the cells parallel upstream
of the outlet cells. The inlet boundary also implements a regularised velocity boundary condition using
data from the RANS results. We ran two simulations with different inlet data:

• LB-LES U inlet: The inlet velocity is fixed to the RANS velocity. In this case, the free stream
turbulence in the RANS simulation is neglected at the LB-LES. Thus the LB-LES contains only
the turbulence generated by the building.

• LB-LES SEM inlet: The inlet velocity is calculated and updated at each LB-LES time step using
the synthetic eddy method (SEM) described in section 3.

The SEM needs mean velocity, Reynolds stresses and turbulent dissipation rate ε to generate the
instantaneous velocity. In LB-LES case B the mean velocity is set to the RANS velocity, the Reynolds
stresses are approximated from the RANS velocity and turbulent kinetic energy using the Boussinesq
eddy viscosity assumption and the turbulent dissipation rate ε is calculated using ε = TKE ∗0.09. The
maximum synthetic eddy size is set to σmax = H/8 and the minimum eddy size is set to σmin = 4dx,
where dx is the cell size. The synthetic eddy size calculated from the approximated RANS Reynolds
stresses and ε presents only a small portion of the inlet of the domain with eddy sizes between 4dx and
H/8; which yields a constant synthetic eddy size of H/8 across the inlet except in the region close to
the ground. We chose to limit the eddy size to H/8 because it is a standard measure in channel flow
and it reduces averaging time.

The RANS velocity is interpolated from the RANS mesh to the LB-LES mesh using lineal inter-
polation.

Both LB-LES domains were run for 561 convective flow through before averaging, and then time
averaged for an additional 1685 convective flow through.

5.1.4. Computational resources

The Navier-Stokes solver used in this paper for the DDES and RANS simulations is the open source
CFD software OpenFOAM [23]. We ran the DDES and RANS simulation using 288 and 120 Ivy Bridge
CPU cores respectively across multiple nodes of the ARCHER supercomputer. Each core is assigned
approximatelly 29000 cells in both simulations so that the RANS and DDES simulation time can be
compared in a situation in which each CPU core has approximately the same computational load.

The lattice Boltzmann solver used in this paper for the LB-LES is the open source CUDA software
GASCANS [24]. The computational resources available to us to run GASCANS were 8 Intel Skyline
CPU cores and one Nvidia V100 GPU in a single node of the Computational Shared Facility (CSF)
at the University of Manchester.

Table 2 summarises the characteristics of the 4 simulations.

RANS DDES LB-LES A LB-LES B
Domain size [H] 10.5× 6.875× 5.625 10.5× 6.875× 5.625 3.5× 2.5× 2 3.5× 2.5× 2

Cells[millions] 3.3 8.3 17.5 17.5
Time step[s] 10−4 10−5 10−5 10−5

Resources 120 CPUs 288 CPUs 1 CPU, 1 GPU 8 CPUs, 1 GPU

Table 2: Numerical parameters and computational resources for the isolated building simulations.

12

5.2. Results and discussion

Fig. 6 displays a snapshot of the streamwise solved velocity for the RANS simulation (left) and
the DDES (right). The DDES results show turbulence in the wake of the cube that dissipate as the
mesh coarsens downstream.

Figure 6: Streamwise velocity ux contours for the unsteady k−ω SST RANS simulation (left) and the k−ω SST DDES
(right) at the vertical plane at y = 0 (top) and horizontal plane at z = 0.08 (bottom). The black rectangles mark the
boundaries of the LB-LES.

The LB-LES resolved streamwise velocity ūx for both the LB-LES U inlet and LB-LES SEM inlet
is shown in Fig. 7; LB-LES U inlet at the left and LB-LES SEM inlet at the right.

In the LB-LES U inlet plot (Fig. 7 left), the velocity at the LB-LES domain inlet matches the
RANS velocity. There are some discrepancies between the LB-LES and the RANS velocity at the top
boundaries and there exists an instability not generated by the RANS data or the building at the side
boundaries of the LB-LES domain; however, this instability does not seem to interact with the wake
of the building. We can also observe spurious reflections from the sides of the LB-LES domain, which
are particularly visible in front and on top of the building. Finally, note that the fact that the wake
position in the LB-LES U inlet results is synchronised with the wake position in the RANS results
is coincidence; since the RANS results are fixed to the state shown in Fig. 7 for the duration of the
LB-LES.

The LB-LES SEM inlet results (Fig. 7 right) show the instantaneous velocity generated by the inlet
SEM, while the mean velocity at the LB-LES domain inlet matches the RANS velocity (see section
3). The LB-LES resolved streamwise velocity at the top and sides of the domain is fixed to the RANS
velocity, however the turbulent eddies are present in close proximity to the top boundary without any
observable dissipation effect. At the vicinity of the LB-LES inlet the eddy size is roughly H/8, except
just intermediately above the floor where they are smaller. Fig. 7 shows the eddies propagate across
the domain and become smaller in the region past the building. The instability on the side wall and the
spurious reflections near the inlet corners can still be observed but they are masked by the turbulent
eddies from the SEM inlet. Finally, there are differences in the shape and velocity profiles of the wake

13

in both cases. LB-LES SEM inlet presents a larger area with midrange velocities (shown in yellow)
and the shape of its wake is less defined.

Figure 7: Instantaneous streamwise velocity ux contours in the LB-LES domain overlayed on the RANS streamwise
velocity contours in the RANS simulation. LB-LES case A (left), LB-LES case B (right), vertical plane at y = 0 (top)
and horizontal plane at z = 0.08 (bottom). The black rectangles mark the boundaries of the LB-LES.

Meng and Hibi [14] provide experimental data at 8 locations x/H = -0.375, -0.25, -0.125, 0.0,
0.25, 0.375, 0.625, 1 upstream and downstream the building on the vertical plane y/H = 0 and the
horizontal plane z/H = 0.0625. Fig. 8 shows the mean streamwise velocity for all the computational
cases compared with Meng and Hibi’s measurements. As expected, all models present resonable
agreement with the measurements. The main discrepancies are found in the vicinity of the building
in the wake region. In the vertical plane all models except the LB-LES SEM inlet over estimate the
mean velocity value; in the horizontal plane the mean velocity is under estimated by all the models,
however LB-LES SEM inlet presents the closest agreement with the experimental data.

Fig. 9 show the root mean squared of the resolved streamwise velocity < ū′ > (Fig. 9(a) and
(b)), spanwise velocity < v̄′ > (Fig. 9(c) and (d)) and vertical velocity < w̄′ > (Fig. 9(e) and (f))
compared with Meng and Hibi’s experimental root mean squared of the velocity components. LB-LES
SEM inlet is able to capture the physics of the flow correctly, showing the closest agreement with the
experimental data. However, it understimates the streamwise fluctuating velocity on the horizontal
plane near the ground in the building’s vicinity and the wake region. A noticeable difference between
the LB-LES SEM inlet results and the DDES and LB-LES U inlet results upstream and above the
building is that both DDES and LB-LES U inlet show a nearly no fluctuating velocity away from the
building, while LB-LES SEM inlet shows turbulence levels according to the experimental data.

The introduction of SEM in the LB-LES SEM inlet simulation has a significant effect on the
simulation results, both for the instantaneous velocity and its statistics, and it alters the shape and
characteristics of the building’s turbulent wake, even increasing the accuracy of the mean velocity near
the cube (Fig. 8), which is where the other models were less accurate. The main effect of the SEM inlet
can be seen in the fluctuating velocity plots (Fig. 9). The LB-LES SEM inlet simulation accurately
reproduces the free stream turbulence levels present on the wind tunnel experiment using the RANS

14

0.05 0.00 0.05 0.10 0.15 0.20
x[m]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

z[
m

]

U Vertical plane y = 0

Meng and Hibi RANS DDES LB LB SEM

(a)

0.05 0.00 0.05 0.10 0.15 0.20
x[m]

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

y[
m

]

U Horizontal plane z= 0.01

(b)

Figure 8: Mean streamwise velocity U on the vertical plane (left) and the horizontal plane (right). Meng and Hibi (cite)
experimental data (dots), k − ω SST RANS (dashed blue line), k − ω SST DDES (dotted cyan line), LB-LES U inlet
(dash-dot green line) and LB-LES SEM inlet (dash-dot orange line).

mean flow data at the LB-LES SEM inlet simulation. The resolved velocity of the LB-LES U inlet and
the k − ω SST DDES lacks the free stream turbulence data incorporated into the LB-LES SEM inlet
by SEM, which affects not only the upstream results and the results above the building but also the
wake. The turbulent kinetic energy results with SST might improve since they incorporate the effect
of the subgrid scale turbulence.

The boundary condition on the top of both LB-LES domains is forced equilibrium, while the
boundary condition on the sides and inlet is regularised velocity. The artificial instabilities near the
side walls might be caused by the interaction between the boundary conditions on the sides and outlet
of the LB-LES domains; since the inlet boundary does not present the instabilities. The top boundary
does not present instabilities either. Moreover, the instantaneous velocity at the top boundary is also
set to the RANS velocity and a adaptation region in which the RANS velocity becomes turbulent
would be expected. However, this region is negligible probably due to the inviscid nature of the forced
equilibrium boundary condition (i e. the lattice Boltzmann equations assuming that all the particles
are in equilibrium are equivalent to the inviscid Navier-Stokes equations [22]).

Finally, the SEM minimum and maximum synthetic eddy size σmin and σmax have been chosen in
a somewhat arbitrary manner and their effect of the results and computational resources needs further
study.

5.2.1. Computational resources

We measured the time taken by each model to simulate a convective time unit, defined as the
physical time taken by the flow moving at the reference velocity to cover the width of the building.
The reference velocity is the mean velocity at the inlet of the wind tunnel at z = H, Uref = 4.491m/s.
The width of the building is h = 0.08m. Thus a convective time unit tc = h/Uref = 0.0178s. Fig. 10
shows the computer time taken by each simulation. Note that k−ω SST DDES and RANS model the
whole experimental domain while the lattice Boltzmann simulations model only the region around the
building. k− ω SST DDES is the slowest simulation, taking 4 times more than the RANS simulation.
The application of the SEM inlet in the LB-LES SEM simulation increases its computational time 3.5
times over the computational time of the same solver and domain run using the RANS velocity as
inlet. However, it is still 3 times faster that the k − ω SST DDES domain.

The LB-LES SEM inlet test case is the most accurate and its computational time is lower than the
DDES. Besides, the added computational resources of the RANS and the LB-LES SEM simulation
are less than the k − ω SST DDES computational resources. The difference between the run time for
LB-LES SEM inlet and LB-LES U inlet is the execution of the SEM boundary condition; which is

15

0.05 0.00 0.05 0.10 0.15 0.20
x[m]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

z[
m

]

< u′ > Vertical plane y = 0

Meng and Hibi DDES LB LB SEM

(a)

0.05 0.00 0.05 0.10 0.15 0.20
x[m]

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

y[
m

]

< u′ > Horizontal plane z= 0.01

(b)

0.05 0.00 0.05 0.10 0.15 0.20
x[m]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

z[
m

]

< v′ > Vertical plane y = 0

(c)

0.05 0.00 0.05 0.10 0.15 0.20
x[m]

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

y[
m

]

< v′ > Horizontal plane z= 0.01

(d)

0.05 0.00 0.05 0.10 0.15 0.20
x[m]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

z[
m

]

< w′ > Vertical plane y = 0

(e)

0.05 0.00 0.05 0.10 0.15 0.20
x[m]

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

y[
m

]

< w′ > Horizontal plane z= 0.01

(f)

Figure 9: Resolved root mean squared of the velocity components < ū′ >, < v̄′ >, < w̄′ > on the vertical plane (left)
and the horizontal plane (right). Meng and Hibi (cite) experimental data (dots), k − ω SST DDES (dotted cyan line),
LB-LES U inlet (dash-dot green line) and LB-LES SEM inlet (dash-dot orange line)..

16

RANS DDES LB-LES-U LB-LES-SEM
Simulation name

0

100

200

300

400

500

600

700

Co
m

pu
te

r t
im

e
[s

]

178.0

712.0

54.6

195.8

Figure 10: Computational time needed to run a convective flow through for the RANS simulation, the k−ω SST DDES
the LB-LES U inlet simulation and the LB-LES SEM inlet simulation.

still computationally expensive and executed on CPU even if the LB-LES method is run on GPU. We
predict that the computational time of the LB-LES SEM simulation might be reduced by optimising
the SEM algorithm further and including it in the LB-LES algorithm executed in GPU.

6. Conclusions

This paper presents a BGK lattice Boltzmann LES solver (LB-LES) able to use RANS data as
boundary conditions. The RANS turbulence information is input to the inlet of the LB-LES solver
domain via Skillen et al. [11] synthetic eddy method. The SEM implementation is first tested in a
Reτ = 395 channel flow and compared with the results from Skillen et al.. The second test case is
the wind tunnel experiment by Meng and Hibi [14], which models wind around a rectangular building
at ReH = 47893. For this case, the LB-LES solver domain is thigh around the building and uses the
results from a pre-calculated RANS simulation as boundary conditions for its top, sides and SEM inlet.
We then compared the LB-LES results and computational time with the underlying RANS simulation
and a k − ω SST DDES.

The main conclusion from the test cases results is that the SEM inlet incorporates the mean
turbulence from the RANS data into the LB-LES resolved velocity, enabling the LB-LES model to
capture the physics of the flow correctly and show good agreement with the experimental results.
Regarding the computational resources, the LB-LES SEM simulation had a 3 times shorter running
time than the k − ω SST DDES even if we ran all the LB-LES using a maximum of 8CPU cores and
a single Nvidia V100 GPU card. This reduction in computational resources show the potential to run
SEM LB-LES for industry relevant cases using consumer level computational resources.

The BGK lattice Boltzmann solver using Skillen et al. [11] SEM is able to reproduce Skillen et
al. Navier-Stokes results within acceptable accuracy. Activating the Smagorinsky LES turbulence
model introduces excessive turbulent viscosity near the channel wall, which decreases the accuracy of
the results. This effect increases with the cell size and could be addressed by using wall modelling.
As expected, the innacuracy of the mean turbulence data provided by a RANS model also has a
detrimental effect in the accuracy of the SEM lattice Boltzmann results.

17

The LB-LES solver is able to reproduce turbulent flow at coarse mesh resolutions due to the low
numerical dissipation of the BGK lattice Boltzmann discretisation combined with the stabilizing effect
of the Smagorinsky LES turbulent viscosity.

The effect of the SEM parameters σmin and σmax and the best combination of boundary conditions
for the top and sides boundaries of the LB-LES model is still unclear and needs further investigation.
Moreover, the computational cost of the SEM implementation might be further reduced by implement-
ing the SEM model as part of the GPU side of the LB-LES solver.

Acknowledgements The authors would like to acknowledge the assistance given by Research IT and
the use of the Computational Shared Facility at The University of Manchester and the use of the
ARCHER UK National Supercomputing Service. The authors would also like to thank Andrew Mole
for providing the RANS EBRSM mean flow data used in the channel flow test case.
Declaration of conflicting interests
The authorS declared no potential conflicts of interest with respect to the research, authorship and/or
publica- tion of this article.

References

[1] Y. Toparlar, B. Blocken, B. Maiheu, G. J. van Heijst, A review on the CFD analysis of urban microclimate,
Renewable and Sustainable Energy Reviews 80 (September 2016) (2017) 1613–1640.
URL http://dx.doi.org/10.1016/j.rser.2017.05.248

[2] L. Merlier, J. Jacob, P. Sagaut, Lattice-Boltzmann Large-Eddy Simulation of pollutant dispersion in
street canyons including tree planting effects, Atmospheric Environment 195 (September) (2018) 89–103.
doi:10.1016/j.atmosenv.2018.09.040.
URL https://doi.org/10.1016/j.atmosenv.2018.09.040

[3] S. Lenz, M. Schönherr, M. Geier, M. Krafczyk, A. Pasquali, A. Christen, M. Giometto, Towards real-time simulation
of turbulent air flow over a resolved urban canopy using the cumulant lattice Boltzmann method on a GPGPU,
Journal of Wind Engineering and Industrial Aerodynamics 189 (October 2018) (2019) 151–162.

[4] J. Jacob, P. Sagaut, Wind comfort assessment by means of large eddy simulation with lattice Boltzmann method
in full scale city area, Building and Environment 139 (March) (2018) 110–124. doi:10.1016/j.buildenv.2018.05.015.
URL https://doi.org/10.1016/j.buildenv.2018.05.015

[5] N. Onodera, T. Aoki, T. Shimokawabe, H. Kobayashi, Large-scales LES Wind Simulation using Lattice Boltzmann
Method for a 10km x 10km Area in Metropolitan Tokyo, e-Science Journal, Global Scientific Information and
Computing Center 9 02–08. arXiv:arXiv:1011.1669v3, doi:10.1017/CBO9781107415324.004.

[6] F. Mathey, D. Cokljat, Zonal Multi-Domain RANS/LES Simulation of Airflow Over the Ahmed Body, Engineering
Turbulence Modelling and Experiments 6 (2005) 647–656doi:10.1016/B978-008044544-1/50062-5.

[7] J. Frohlich, D. von Terzi, Hybrid LES/RANS methods for the simulation of turbulent flows, Progress in Aerospace
Sciences 44 (5) (2008) 349–377. doi:10.1016/j.paerosci.2008.05.001.
URL http://linkinghub.elsevier.com/retrieve/pii/S0376042108000390

[8] M. Jadidi, F. Bazdidi-Tehrani, M. Kiamansouri, Embedded large eddy simulation approach for pollutant dispersion
around a model building in atmospheric boundary layer, Environmental Fluid Mechanics 16 (3) (2016) 575–601.
doi:10.1007/s10652-016-9444-5.

[9] K. Wijesooriya, D. Mohotti, K. Chauhan, D. Dias-da Costa, Numerical investigation of scale resolved turbulence
models (LES, ELES and DDES) in the assessment of wind effects on supertall structures, Journal of Building
Engineering 25 (June) (2019) 100842. doi:10.1016/j.jobe.2019.100842.
URL https://doi.org/10.1016/j.jobe.2019.100842

[10] E. Sergent, Vers une méthodologie de couplage entre la Simulation des Grandes Echelles et les modèles statistiques
(2002).

[11] A. Skillen, A. Revell, T. Craft, Accuracy and efficiency improvements in synthetic eddy methods., International
Journal of Heat and Fluid Flow 62 (2016) 386–394.
URL http://dx.doi.org/10.1016/j.ijheatfluidflow.2016.09.008

18

[12] R. Poletto, T. Craft, A. Revell, A new divergence free synthetic eddy method for the reproduction of inlet flow
conditions for les, Flow, Turbulence and Combustion 91 (3) (2013) 519–539. doi:10.1007/s10494-013-9488-2.

[13] J. Millar, R. Wayland, J. Holgate, Hybrid RANS-LES Simulation of a Tall Building in a Complex Urban Area,
in: Progress in Hybrid RANS-LES Modelling: Papers Contributed to the 7th Symposium on Hybrid RANS-LES
Methods, 17-19 September, 2018, Berlin, Germany, 2018, pp. 379–388.

[14] Y. Meng, K. Hibi, Turbulent measurments of the flow field around a high-rise building (1998).

[15] S. Hou, J. Sterling, S. Chen, G. D. Doolen, A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows,
Pattern formation and lattice gas automata 6 (1996) 151–166. arXiv:9401004.
URL http://books.google.com/books?hl=en&lr=&id=TIdy6-ItW7YC&oi=fnd&pg=PA151&dq=A+Lattice+Boltzmann+Subgrid+Model+for+High+Reynolds+Number+Flows&ots=zqrEqXjMNL&sig= 76MYxU-XPd2n1iKsPD5rIJQ7-Q

[16] H. K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics, Vol. M.

[17] J. Latt, B. Chopard, O. Malaspinas, M. Deville, A. Michler, Straight velocity boundaries in the lattice
Boltzmann method, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 77 (5) (2008) 1–16.
doi:10.1103/PhysRevE.77.056703.

[18] S. Fan, M. Camps Santasmasas, X. Guo, C. Yang, A. Revell, In preparation (2021).

[19] K. Kozuka, Y. Seki, H. Kawamura, Direct numerical simulation of turbulent heat transfer with a high spatial
resolution, Proc. of the 7rd International Symposium on Engineering Turbulence Modelling and Mesurements -
ETMM7 1 (September 2016) (2008) 163–168.

[20] P. Sagaut, Large Eddy Simulation for Incompressible Flows – An Introduction, 3rd Edition, Springer, 2005.
doi:10.1108/aeat.2001.12773eae.001.

[21] M. Weickert, G. Teike, O. Schmidt, M. Sommerfeld, Investigation of the LES WALE turbulence model within
the lattice Boltzmann framework, Computers and Mathematics with Applications 59 (7) (2010) 2200–2214.
doi:10.1016/j.camwa.2009.08.060.
URL http://dx.doi.org/10.1016/j.camwa.2009.08.060

[22] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, E. M. Viggen, The Lattice Boltzmann Method
Principles and Practice, Springer, 2017. doi:10.1007/978-3-319-44649-3.

[23] The OpenFOAM Foundation, Openfoam.
URL https://openfoam.org/version/4-0/

[24] M. Camps Santasmasas, A. R. G. Harwood, I. Hinder, S. Fan, F. Owen, J. O’Connor, A. J. Revell, In preparation
(2021).

19

—————————-

140

Nothing in life is to be feared, it is

only to be understood. Now is the

time to understand more, so that

we may fear less

Marie Curie

Chapter 5

Contributions to the field

This chapter outlines the major contributions of this thesis and their relevance

to its two main objectives:

• Expand the use of the lattice Boltzmann method for computational wind

engineering (CWE) and urban wind flow (Papers II, III and IV).

• Develop a coupled Navier-Stokes lattice Boltzmann model (NSLB) to reduce

the computational resources needed by both its component solvers; while

achieving the desired accuracy in the interest region. (Papers I and IV).

5.1 Expand the use of lattice Boltzmann

method in CWE

GASCANS, described in Paper IV section B, is the LB GPU code used and de-

veloped during this thesis with the objective to be used in CWE simulations. The

author’s main contributions to GASCANS and its main scientific contributions

to CWE are:

• Adapting and implementing SEM to a LB method. GASCANS can generate

instantaneous inlet velocity from mean flow data using a synthetic eddy

method. This is a way to introduce the free stream turbulence into the

LES simulation, thus improving its accuracy. Moreover, the mean flow

data can be provided by an external solver and updated during run time .

141

• Couple GASCANS with external solvers. GASCANS is able to use data

received from external solvers as boundary conditions. It can also send its

velocity results in user-defined regions to an external solver. This exchange

can be at run time. This allows to embed a GASCANS domain inside a

less computationally expensive domain, thus reduce the size of the lattice

Boltzmann domain and its computational cost.

Paper II in section 4.3.2 applies GASCANS to a urban wind modelling set-

ting. Concretely, paper II models the wind around a rectangular building at

ReH = 47893, based on the wind tunnel experiment by Meng and Hibi [88]. The

top and side boundaries of the GASCANS simulation domain are set to the ve-

locity values of a pre-calculated RANS k-omega SST simulation that covers the

size of the wind tunnel experiment. The mean flow results from the RANS simu-

lation are interpolated to the GASCANS inlet, and the GASCANS inlet velocity

is generated from them using SEM. Transferring the results from a RANS sim-

ulation into an embedded LB-LES domain using SEM to bridge from the scales

resolved by RANS to the scales resolved by LB-LES is another of the scientific

contributions of this thesis.

5.2 Develop and test the NSLB method

The main contribution of the present thesis in this regard is the development

of a framework to couple NS solvers to LB solvers, with two-way coupling for

laminar flow (NS coupled to LB) and one-way coupling for turbulent flow (RANS

couppled to LB-LES). The NSLB method is applied to laminar flow (Paper I),

and turbulent flow (Paper II).

142

Finally, in conclusion, let me say

just this.

Peter Sellers

Chapter 6

Conclusions and future work

6.1 Conclusions

This PhD project has focussed on reducing the computational resources needed

for turbulence resolving CFD simulations of urban wind flow. Traditional Eu-

lerian Navier-Stokes solvers are efficient at modelling large regions due to their

relatively low memory consumption and mesh refinement. On the other hand,

BGK stream-collide lattice Boltzmann solvers resolve turbulent flows with an ac-

curacy comparable to Eulerian Navier-Stokes solvers and their algorithm is easy

to implement and efficient on GPUs; however, their high memory consumption

and constant cell size meshes limits the size of the domain and/or accuracy. This

thesis presents a coupled Navier-Stokes lattice Bolztman (NSLB) solver aimed

at low computational resources while maintaining high accuracy and resolving

turbulence in the interest region.

The coupled Navier-Stokes lattice Boltzmann (NSLB) method presented in this

thesis can be configured for one-way and two-way coupling. The LB submodel

is run on GPU and it can be executed as a DNS or with a LES Smagorinsky

turbulence model. Smagorinsky LES enables the LB solver to run high Reynolds

number flows with coarse meshes while reducing the loss of accuracy due to

the mesh coarsening. The presented lattice Boltzmann solver can be coupled

one-way to any model that provides velocity values at the boundaries of the

lattice Boltzmann domain and two-ways to any model that is also able to receive

velocity data from the lattice Boltzmann. The presented lattice Boltzmann solver

implements the synthetic eddy method (SEM) boundary condition by Skillen

143

et al. [7]. SEM generates an instantaneous velocity field from supplied mean

flow statistics, thus incorporating the mean turbulence information to the lattice

Boltzmann resolved velocity. Both the SEM and the Smagorinsky LES turbulence

models can be activated and deactivated as needed.

The NSLB model is tested in the following cases:

• Test case 1: Two-way coupled NSLB solver to solve the ReH = 150 flow

over a wall mounted cube in a channel by Hwang and Yang [87]. In this

case velocity at the outlet of the lattice Boltzmann domain is set to the

Navier-Stokes domain velocity and the velocity at the Navier-Stokes inlet

is set to the lattice Boltzmann velocity.

• Test case 2: The lattice Boltzmann LES model was embedded in a pre-

calculated RANS simulation of flow around a building at ReH = 47893

based on the wind tunnel measurements by Meng and Hibi [88]. The lattice

Boltzmann domain covered the region around the building. Its top and side

boundaries were set to the mean RANS velocity. Its inlet used SEM to

generate turbulence from the RANS mean flow.

The results from the test cases show that the NSLB method, both one-way and

two-way coupled, is able to recover and sometimes improve the accuracy of its

components in the interest region. Moreover, it only adds GPU cards as compu-

tational resources, which are not used by the coupled Navier-Stokes solver.

Regarding to two-way coupled NSLB method, the results from test case 1 show

that the NSLB method is able to reproduce the results of both the single lattice

Boltzmann and the single Navier-Stokes domain below 1 % difference. The main

advantage of two-way coupling over one-way coupling is that both models receive

feedback from the other, which allows to put the boundaries complex flow regions.

Regarding the computational resources, the NSLB method simulation uses less

memory than the single lattice Boltzmann simulation and less computing time

than the single Navier-Stokes simulation. The model is also robust to different

positions and size of the overlap region (i e. region solved by both the Navier-

Stokes and lattice Boltzmann domains), however there is a limit on the size of

the region which depends on the complexity of the flow in the overlap region;

smaller regions than the limit will destabilize the simulation.

144

Test case 2 is the most representative of urban wind flow. The LB-LES SEM re-

sults show good agreement with the experimental results, also adding fluctuating

velocity data not provided by the RANS simulation. Part of the success of the

embedded LB-LES domain is the instantaneous inlet velocity, which is generated

using a synthetic eddy method and incorporates the mean turbulence statistics

from the RANS results into the LB-LES resolved velocity. Regarding the com-

putational resources used by the simulations, the embedded lattice Boltzmann

model uses less computational resources than the DDES case and completes the

simulation in less time.

6.2 Future work

The NSLB solver presented in this thesis can be expanded and improved in the

following areas:

• Extend its applicability to wind engineering studies by extending our lat-

tice Boltzmann solver GASCANS to model the following physical processes

often present and studied in wind engineering projects.

– Thermal modelling and buoyancy effects. The majority of ur-

ban wind modelling and wind engineering studies are concerned with

temperature variations and buoyancy effects both for urban wind and

internal ventilation [35].

– Passive scalar transport; needed to model contaminant dispersion

for both emergency toxic contaminant release and air pollution stud-

ies. This studies are an important part of wind engineering and need

accurate non-steady solvers to produce accurate results.

– Complex geometries. The NSLB model has only been tested with

isolated rectangular shaped builings. However, urban geometry in-

cludes different shaped buildings that are rarely studied in isolation

from the surrounding city. The NSLB model is programmed to accept

any geometry input by the user but its accuracy needs to be tested,

especially around curved geometries.

145

• Increase the accuracy of GASCANS to model turbulent flows. Concretely:

– Wall functions. The Smagorinsky LES models introduces extra tur-

bulent viscosity in the cells near the wall, which impairs the results

of the LB-LES models in that region. Moreover, this detrimental ef-

fect is increased when the resolution is coarsened. Wall functions are

special treatment for the cells around the walls aimed at correcting

the Smagorinsky LES results. The simplest wall functions are just

equations that correct the filter width of the Smagorinsky model (f e.

Van Driest model [72]). Another way to correct the Smagorinsky LES

results near the walls is to use RANS models near the wall and cou-

ple them to the LES results. This last technique is especially relevant

for GASCANS, since it takes advantage of GASCANS’s ability to ex-

change information with external solvers (the near-wall RANS solver

in this case).

– Parameter study. The NSLB solver applied to turbulent flows pre-

sented in this study contains configuration parameters whose effect in

the results needs to be studied further. These parameters include the

minimum and maximum synthetic eddy size for the synthetic eddy

method (SEM) boundary conditions, the boundary conditions for the

top and sides of the embedded LB-LES domain and the size of the

LB-LES embedded domain.

• Increase the computational efficiency of the lattice Boltzmann solver GAS-

CANS. Some suggestions are:

– SEM implementation. We expect to increase the computational

speed of the SEM boundary condition by implementing the current

SEM model in GPU and run it together with the main GPU lattice

Boltzmann code in GASCANS.

– Multi-node multi-GPU. The current version of GASCANS can

work with more than one GPU but always in a single node. Extending

the software to use multiple GPU cards in different nodes will poten-

tially increase its computational speed and would definetely increase

the maximum number of lattice Boltzmann cells per simulation.

146

– Link-wise artificial compressibility method (LWACM). The

LWACM by Asinari et al. [89] is a lattice Boltzmann method that

saves on computer memory by storing only the macroscopic variables

velocity and density; it computes the particle distribution functions at

each time step using the velocity and density. The savings in memory

would be advantageous to run larger number of cells per simulation.

• Develop further the NSLB model by:

– Implementing the SEM boundary condition for all boundaries and

inlet mean flow directions.

– Test and improve Two-way coupling for turbulent flow and for LB-

LES domains embedded in Navier-Stokes domains.

– Couple the lattice Boltzmann solver with a compressible Navier-

Stokes solver. The lattice Boltzmann equations implemented in GAS-

CANS are weakly compressible while the Navier-Stokes solver we cou-

pled them to (pisoFoam) is incompressible. pisoFoam uses constant

density, while the density in GASCANS changes due to compressibil-

ity effects. Coupling GASCANS to a compressible Navier-Stokes solver

migth improve the results and stability of the coupling.

– Implement and test more accurate boundary conditions for the NS to

LB boundary in the LB sub-domain

Finally, we only tested the NSLB solver for flow around blunt objects with an

application to wind engineering and urban wind modelling in mind. However,

other CFD applications that involve turbulent flows could also benefit from the

reduction in computational resources offered by the NSLB solver. Two of those

applications are automotive flows applied to vehicle design and cardiovascular

applications. We have already some experience working with this type of flows

(see. Revell et al. [90]) so they are ideal candidates to start expanding the NSLB

solver to other fields.

147

References

[1] Timm Krüger. The Lattice Boltzmann Method Principles and Practice. Num-

ber March 2015. 2017.

[2] Miles Macklin and Matthias Müller. Position based fluids. ACM Transac-

tions on Graphics, 32(4):1, 2013.

[3] Matthias Müller, David Charypar, and Markus Gross. Particle-Based Fluid

Simulation for Interactive Applications. Proceedings of the 2003 ACM

SIGGRAPH/Eurographics symposium on Computer animation, (5):154–159,

2003.

[4] Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. A vortex particle

method for smoke, water and explosions. ACM Transactions on Graphics,

24(3):910, 2005.

[5] Jos Stam. Stable Fluids. Proceedings of the 26th annual conference on

Computer graphics and interactive techniques, pages 121–128, 1999.

[6] Joel H. Ferziger and Milovan Perić. Computational Methods for Fluid Dy-

namics. 2002.

[7] A. Skillen, A. Revell, and T. Craft. Accuracy and efficiency improvements

in synthetic eddy methods. International Journal of Heat and Fluid Flow,

62:386–394, 2016.

[8] Philipp Neumann. On transient hybrid Lattice Boltzmann–Navier-Stokes

flow simulations. Journal of Computational Science, 17:482–490, 2016.

[9] Zi Xiang Tong and Ya Ling He. A unified coupling scheme between lattice

Boltzmann method and finite volume method for unsteady fluid flow and

149

heat transfer. International Journal of Heat and Mass Transfer, 80:812–824,

2015.

[10] A Atanasov, B Uekermann, and Philipp Neumann. Anderson Accelerated

Coupling of Lattice Boltzmann and Navier–Stokes Solvers for Parallel Ap-

plications. Computation, 4(4):38–57, 2016.

[11] Shuzo Murakami, Ryozo Ooka, Akashi Mochida, Shinji Yoshida, and Sangjin

Kim. CFD analysis of wind climate from human scale to urban scale. Journal

of Wind Engineering and Industrial Aerodynamics, 81(1-3):57–81, 1999.

[12] Yoshihide Tominaga, Akashi Mochida, Ryuichiro Yoshie, Hiroto Kataoka,

Tsuyoshi Nozu, Masaru Yoshikawa, and Taichi Shirasawa. AIJ guidelines

for practical applications of CFD to pedestrian wind environment around

buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96(10-

11):1749–1761, 2008.

[13] J. U. Brackbill, D. B. Kothe, and H. M. Ruppel. Flip: A low-dissipation,

particle-in-cell method for fluid flow. Computer Physics Communications,

48(1):25–38, 1988.

[14] David E. Keyes, Lois C. McInnes, Carol Woodward, William Gropp, Eric

Myra, Michael Pernice, John Bell, Jed Brown, Alain Clo, Jeffrey Connors,

Emil Constantinescu, Don Estep, Kate Evans, Charbel Farhat, Ammar

Hakim, Glenn Hammond, Glen Hansen, Judith Hill, Tobin Isaac, Xiangmin

Jiao, Kirk Jordan, Dinesh Kaushik, Efthimios Kaxiras, Alice Koniges, Kih-

wan Lee, Aaron Lott, Qiming Lu, John Magerlein, Reed Maxwell, Michael

McCourt, Miriam Mehl, Roger Pawlowski, Amanda P. Randles, Daniel

Reynolds, Beatrice Rivière, Ulrich Rüde, Tim Scheibe, John Shadid, Bren-

dan Sheehan, Mark Shephard, Andrew Siegel, Barry Smith, Xianzhu Tang,

Cian Wilson, and Barbara Wohlmuth. Multiphysics simulations: Challenges

and opportunities. International Journal of High Performance Computing

Applications, 27(1):4–83, 2013.

[15] J Frohlich and D.a. von Terzi. Hybrid LES/RANS methods for the simulation

of turbulent flows. Progress in Aerospace Sciences, 44(5):349–377, jul 2008.

[16] Yusuke Koda and Fue Sang Lien. The lattice Boltzmann method imple-

mented on the GPU to simulate the turbulent flow over a square cylinder

150

confined in a channel. Flow, Turbulence and Combustion, 94(3):495–512,

2015.

[17] Yukio Tamura. WIND-INDUCED DAMAGE TO BUILDINGS AND DIS-

ASTER RISK REDUCTION. (November 2011):1–79, 2012.

[18] Bbc news. bridgewater place ’wind tunnel caused leeds injuries’. http:

//www.bbc.co.uk/news/uk-england-leeds-21633206. Accessed: 26-09-

2020.

[19] Robert Murphy. Pedestrian Wind Comfort Analysis Report. Plot 18 Pedes-

trian Wind Comfort Analysis Report.

[20] W. D. Janssen, B. Blocken, and T. van Hooff. Pedestrian wind comfort

around buildings: Comparison of wind comfort criteria based on whole-flow

field data for a complex case study. Building and Environment, 59:547–562,

2013.

[21] Bert Blocken, Staf Roels, and Jan Carmeliet. Modification of pedestrian wind

comfort in the Silvertop Tower passages by an automatic control system.

Journal of Wind Engineering and Industrial Aerodynamics, 92(10):849–873,

2004.

[22] Top 12 non military uses for drones’. https://airdronecraze.com/

drones-action-top-12-non-military-uses/. Accessed: 26-09-2020.

[23] Julie Pullen, Jay P. Boris, Theodore Young, Gopal Patnaik, and John Iselin.

A comparison of contaminant plume statistics from a Gaussian puff and ur-

ban CFD model for two large cities. Atmospheric Environment, 39(6):1049–

1068, 2005.

[24] F S Lien, E Yee, H Ji, a Keats, and K J Hsieh. Progress and challenges in the

development of physically-based numerical models for prediction of flow and

contaminant dispersion in the urban environment. International Journal of

Computational Fluid Dynamics, 20(5):323–337, 2006.

[25] Fotini Katopodes Chow, Branko Kosović, and Stevens Chan. Source inver-

sion for contaminant plume dispersionin urban environments using building-

151

http: //www.bbc.co.uk/news/uk-england-leeds-21633206
http: //www.bbc.co.uk/news/uk-england-leeds-21633206
https://airdronecraze.com/drones-action-top-12-non-military-uses/
https://airdronecraze.com/drones-action-top-12-non-military-uses/

resolving simulations. Journal of Applied Meteorology and Climatology,

47(6):1533–1572, 2008.

[26] Engineer innovation with cfd- focused multiphysics simulation.

https://www.plm.automation.siemens.com/global/en/products/

simcenter/STAR-CCM.html. Accessed: 27-09-2020.

[27] The OpenFOAM Foundation. Openfoam.

[28] Adrian R.G. Harwood, Joseph O’Connor, Jonathan Sanchez Muñoz, Marta

Camps Santasmasas, and Alistair J. Revell. LUMA: A many-core,

Fluid–Structure Interaction solver based on the Lattice-Boltzmann Method.

SoftwareX, 7:88–94, 2018.

[29] Jonas Latt, Orestis Malaspinas, Dimitrios Kontaxakis, Andrea Parmigiani,

Daniel Lagrava, Federico Brogi, Mohamed Ben Belgacem, Yann Thorim-

bert, Sébastien Leclaire, Sha Li, Francesco Marson, Jonathan Lemus, Chris-

tos Kotsalos, Raphaël Conradin, Christophe Coreixas, Rémy Petkantchin,

Franck Raynaud, Joël Beny, and Bastien Chopard. Palabos: Parallel Lattice

Boltzmann Solver. Computers and Mathematics with Applications, (xxxx),

2020.

[30] Florian Ferstl, Ryoichi Ando, Chris Wojtan, Rüdiger Westermann, and Nils

Thuerey. Narrow band FLIP for liquid simulations. Computer Graphics

Forum, 35(2):225–232, 2016.

[31] Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey

Stomakhin. The affine particle-in-cell method. ACM Transactions on Graph-

ics, 34(4):1–10, 2015.

[32] Zhanpeng Huang, Guanghong Gong, and Liang Han. Physically-based smoke

simulation for computer graphics: a survey. Multimedia Tools and Applica-

tions, 74(18):7569–7594, 2015.

[33] Yongliang Feng, Pierre Boivin, Jérôme Jacob, and Pierre Sagaut. Hybrid

recursive regularized lattice Boltzmann simulation of humid air with appli-

cation to meteorological flows. Physical Review E, 100(2):023304, 2019.

[34] Stephan Lenz, Martin Schönherr, Martin Geier, Manfred Krafczyk, Andrea

152

https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html
https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html

Pasquali, Andreas Christen, and Marco Giometto. Towards real-time simu-

lation of turbulent air flow over a resolved urban canopy using the cumulant

lattice Boltzmann method on a GPGPU. Journal of Wind Engineering and

Industrial Aerodynamics, 189(October 2018):151–162, 2019.

[35] Y. Toparlar, B. Blocken, B. Maiheu, and G. J.F. van Heijst. A review on

the CFD analysis of urban microclimate. Renewable and Sustainable Energy

Reviews, 80(September 2016):1613–1640, 2017.

[36] T. van Hooff, B. Blocken, and Y. Tominaga. On the accuracy of CFD simu-

lations of cross-ventilation flows for a generic isolated building: Comparison

of RANS, LES and experiments. Building and Environment, 114:148–165,

2017.

[37] Sumei Liu, Wuxuan Pan, Hao Zhang, Xionglei Cheng, Zhengwei Long, and

Qingyan Chen. CFD simulations of wind distribution in an urban community

with a full-scale geometrical model. Building and Environment, 117:11–23,

2017.

[38] Hee Chang Lim, T. G. Thomas, and Ian P. Castro. Flow around a cube in a

turbulent boundary layer: LES and experiment. Journal of Wind Engineer-

ing and Industrial Aerodynamics, 97(2):96–109, 2009.

[39] H. K. Versteeg and W. Malalasekera. An Introduction to Computational

Fluid Dynamics. Pearson Prentice Hall, second edition, 2007.

[40] W. Zuo and Q. Chen. Real-time or faster-than-real-time simulation of airflow

in buildings. Indoor Air, 19(1):33–44, 2009.

[41] Jonathan M. Cohen, Sarah Tariq, and Simon Green. Interactive fluid-particle

simulation using translating Eulerian grids. Symposium on Interactive 3D

Graphics, 1(212):15–22, 2010.

[42] J. Molemaker, J.M. Cohen, S. Patel, and J. Noh. Low viscosity flow simula-

tions for animation. Proceedings of the 2008 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pages 9–18, 2008.

[43] Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek

153

Rossignac. An unconditionally stable MacCormack method. Journal of

Scientific Computing, 35(2-3):350–371, 2008.

[44] Rahul Narain, Jonas Zehnder, and Bernhard Thomaszewski. A Second-Order

Advection-Reflection Solver. 2(2), 2019.

[45] Nelson S.-H Chu and Chiew-Lan Tai. MoXi: Real-Time Ink Dispersion in

Absorbent Paper.

[46] Ehsan Fattahi, Christian Waluga, Barbara Wohlmuth, Ulrich Rüde, Michael

Manhart, and Rainer Helmig. Lattice Boltzmann methods in porous me-

dia simulations: From laminar to turbulent flow. Computers and Fluids,

140:247–259, 2016.

[47] Dassault Systemes. Xflow.

[48] ultrafluidx overview. https://altairhyperworks.com/product/

ultrafluidx. Accessed: 27-09-2020.

[49] Simscale releases gpu-based solver using lattice boltz-

mann method. https://www.simscale.com/blog/2018/12/

lattice-boltzmann-method-solver/. Accessed: 27-09-2020.

[50] Martin Geier, Martin Schönherr, Andrea Pasquali, and Manfred Krafczyk.

The cumulant lattice Boltzmann equation in three dimensions: Theory and

validation. Computers and Mathematics with Applications, 70(4):507–547,

2015.

[51] D. Kandhai, W. Soll, S. Chen, A. Hoekstra, and P. Sloot. Finite-Difference

Lattice-BGK methods on nested grids. Computer Physics Communications,

129(1):100–109, 2000.

[52] An upwind discretization scheme for the finite volume lattice Boltzmann

method. Computers and Fluids, 35(8-9):814–819, 2006.

[53] Weidong Li. High order spectral difference lattice Boltzmann method for

incompressible hydrodynamics. Journal of Computational Physics, 345:618–

636, 2017.

154

https://altairhyperworks.com/product/ultrafluidx
https://altairhyperworks.com/product/ultrafluidx
https://www.simscale.com/blog/2018/12/lattice-boltzmann-method-solver/
https://www.simscale.com/blog/2018/12/lattice-boltzmann-method-solver/

[54] Jan Tobias Horstmann, Thomas Le Garrec, Daniel-Ciprian Mincu, and Em-

manuel Lévêque. Hybrid simulation combining two space–time discretiza-

tion of the discrete-velocity Boltzmann equation. Journal of Computational

Physics, 349:399–414, 2017.

[55] P. Bhatnagar; E. Gross; M.Krook;. A model for Collision Processes in Gases.

I. Small Amplitude Processes in Charged and Neutral One-Component Sys-

tems. Physical Review, 94(1), 1954.

[56] Alessandro De Rosis. Non-orthogonal central moments relaxing to a discrete

equilibrium: A D2Q9 lattice Boltzmann model. Epl, 116(4), 2016.

[57] Christophe Coreixas, Bastien Chopard, and Jonas Latt. Comprehensive com-

parison of collision models in the lattice Boltzmann framework: Theoretical

investigations. Physical Review E, 100(3):33305, 2019.

[58] Nicolas DelBosc. Real-time simulation of indoor air flow using the lattice

boltzman method on graphics processing unit. PhD thesis, 2015.

[59] Renwei Mei, Li-Shi Luo, Pierre Lallemand, and Dominique D’Humières.

Consistent initial conditions for lattice Boltzmann simulations. Computers

& Fluids, 35(8-9):855–862, 2006.

[60] S. S Chikatamarla, S Ansumali, and I. V Karlin. Grad’s approximation for

missing data in lattice Boltzmann simulations. Europhysics Letters (EPL),

74(2):215–221, 2006.

[61] Jonas Latt, Bastien Chopard, Orestis Malaspinas, Michel Deville, and An-

dreas Michler. Straight velocity boundaries in the lattice Boltzmann method.

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77(5):1–

16, 2008.

[62] On pressure and velocity boundary conditions for the lattice Boltzmann BGK

model. Physics of Fluids, 9(6):1591–1598, 1997.

[63] M’hamed Bouzidi, Mouaouia Firdaouss, and Pierre Lallemand. Momentum

transfer of a Boltzmann-lattice fluid with boundaries. Physics of Fluids,

13(11):3452–3459, 2001.

155

[64] H Tennekes and J L Lumley. A First Course In Turbulence. 1972.

[65] Stephen B. Pope. Turbulent Flows, volume 1. 2000.

[66] Pierre Sagaut. Large Eddy Simulation for Incompressible Flows – An Intro-

duction. Springer, third edition, 2005.

[67] J. Smagorinsky. General Circulation Experiments With the Primitive Equa-

tions. Monthly Weather Review, 91(3):99–164, 1963.

[68] Massimo Germano, Ugo Piomelli, Parviz Moin, and William H. Cabot. A

dynamic subgrid-scale eddy viscosity model. Physics of Fluids A, 3(7):1760–

1765, 1991.

[69] S. Hou, J. Sterling, S. Chen, and G. D. Doolen. A Lattice Boltzmann Subgrid

Model for High Reynolds Number Flows. Pattern formation and lattice gas

automata, 6:151–166, 1996.

[70] Xian Wang, Yanqin Shangguan, Naoyuki Onodera, Hiromichi Kobayashi,

and Takayuki Aoki. Direct numerical simulation and large eddy simulation

on a turbulent wall-bounded flow using lattice Boltzmann method and mul-

tiple GPUs. Mathematical Problems in Engineering, 2014, 2014.

[71] Huidan Yu, Sharath S. Girimaji, and Li Shi Luo. DNS and LES of decaying

isotropic turbulence with and without frame rotation using lattice Boltzmann

method. Journal of Computational Physics, 209(2):599–616, 2005.

[72] M. Weickert, G. Teike, O. Schmidt, and M. Sommerfeld. Investigation of

the LES WALE turbulence model within the lattice Boltzmann framework.

Computers and Mathematics with Applications, 2010.

[73] G.R. Tabor and M.H. Baba-Ahmadi. Inlet conditions for large eddy simula-

tion: A review. Computers & Fluids, 39(4):553–567, apr 2010.

[74] N. Jarrin, S. Benhamadouche, D. Laurence, and R. Prosser. A synthetic-

eddy-method for generating inflow conditions for large-eddy simulations. In-

ternational Journal of Heat and Fluid Flow, 27(4):585–593, 2006.

156

[75] B Chopard, Joris Borgdorff, and A G Hoekstra. A framework for multi-scale

modelling Subject Areas :. Phil.Trans.R.Soc.A, 2014.

[76] A. Mivehchi, J.C. Harris, S.T. Grilli, J.M. Dahl, C.M. O’Reilly,

K. Kuznetsov, and C.F. Janssen. A hybrid solver based on efficient BEM-

potential and LBM-NS models: Recent BEM developments and applications

to naval hydrodynamics. Proceedings of the International Offshore and Polar

Engineering Conference, pages 713–720, 2017.

[77] Charles Talbot, Elie Bou-Zeid, and Jim Smith. Nested Mesoscale Large-

Eddy Simulations with WRF: Performance in Real Test Cases. Journal of

Hydrometeorology, 13(5):1421–1441, 2012.

[78] Hans Joachim Bungartz, Florian Lindner, Bernhard Gatzhammer, Miriam

Mehl, Klaudius Scheufele, Alexander Shukaev, and Benjamin Uekermann.

preCICE – A fully parallel library for multi-physics surface coupling. Com-

puters and Fluids, 141:250–258, 2016.

[79] Aditya C. Velivelli and Kenneth M. Bryden. Domain decomposition based

coupling between the lattice Boltzmann method and traditional CFD meth-

ods - Part II: Numerical solution to the backward facing step flow. Advances

in Engineering Software, 82:65–74, 2015.

[80] Tom Goodale, Gabrielle Allen, Gerd Lanfermann, Joan Massó, Thomas

Radke, Edward Seidel, and John Shalf. The Cactus framework and toolkit:

Design and applications. In Vector and Parallel Processing – VECPAR’2002,

5th International Conference, Lecture Notes in Computer Science, Berlin,

2003. Springer.

[81] Thierry Morel, Florent Duchaine, Anthony Thévenin, Andrea Piacentini,

Moritz Kirmse, and Eric Quémerais. Open-PALM coupler. 2019.

[82] Anthony Craig, Sophie Valcke, and Laure Coquart. Development and per-

formance of a new version of the OASIS coupler, OASIS3-MCT-3.0. Geosci-

entific Model Development, 10(9):3297–3308, 2017.

[83] Yu Hang Tang, Shuhei Kudo, Xin Bian, Zhen Li, and George Em Karni-

adakis. Multiscale Universal Interface: A concurrent framework for coupling

heterogeneous solvers. Journal of Computational Physics, 297:13–31, 2015.

157

[84] Derek Groen, Jaroslaw Knap, Philipp Neumann, Diana Suleimenova,

Lourens Veen, and Kenneth Leiter. Mastering the scales: A survey on

the benefits of multiscale computing software. Philosophical Transactions

of the Royal Society A: Mathematical, Physical and Engineering Sciences,

377, 2019.

[85] Gerasimos Chourdakis. A general OpenFOAM adapter for the coupling

library preCICE. (December), 2017.

[86] precice github wiki. https://github.com/precice/precice/wiki. Ac-

cessed: 24-09-2020.

[87] Jong Yeon Hwang and Kyung Soo Yang. Numerical study of vortical struc-

tures around a wall-mounted cubic obstacle in channel flow. Physics of

Fluids, 16(7):2382–2394, 2004.

[88] Yan Meng and Kazuki Hibi. Turbulent measurments of the flow field around

a high-rise building, 1998.

[89] Pietro Asinari, Taku Ohwada, Eliodoro Chiavazzo, and Antonio Fabio Di

Rienzo. Link-wise Artificial Compressibility Method. (November 2011),

2011.

[90] A Revell, I Afgan, A Ali, M Camps Santasmasas, T Craft, A de Rossis,

Laurence-D Holgate, J, B Iyamabo, and A et al. Mole. Coupled Hybrid

RANS-LES Research at TheUniversity of Manchester. ERCOFTAC Bul-

letin, European Research Community on Flow, TurbulenceAnd Combustion,

2020, Progress in RANS-based Scale-Resolving Flow Simulation Methods,

(120):pp.67, 2020.

158

https://github.com/precice/precice/wiki

Appendices

159

Sometimes it pays to stay in bed

on Monday, rather than spending

the rest of the week debugging

Monday’s code.

Dan Salomon

Appendix A

Paper III - LUMA: A many-core,

Fluid–Structure Interaction

solver based on the

Lattice-Boltzmann Method

LUMA is the original CPU based lattice Boltzmann code developed by our group

at the University of Manchester, in which GASCANS is based on. GASCANS

is the lattice Boltzmann software used for all the lattice Boltzmann simulations

presented in this thesis.

The following journal paper is published in SoftwareX.

The full paper is accessible online at: https://doi.org/10.1016/j.softx.2018.02.004

—————————

161

SoftwareX 7 (2018) 88–94

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

LUMA: A many-core, Fluid–Structure Interaction solver based on the
Lattice-Boltzmann Method
Adrian R.G. Harwood *, Joseph O’Connor, Jonathan Sanchez Muñoz,
Marta Camps Santasmasas, Alistair J. Revell
School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Sackville Street, M1 3BB, United Kingdom

a r t i c l e i n f o

Article history:
Received 11 January 2018
Received in revised form 13 February 2018
Accepted 21 February 2018

Keywords:
Lattice-Boltzmann Method
Finite-Element Method
Flow simulation
Fluid–structure interaction

a b s t r a c t

The Lattice-Boltzmann Method at the University of Manchester (LUMA) project was commissioned to
build a collaborative research environment in which researchers of all abilities can study fluid–structure
interaction (FSI) problems in engineering applications from aerodynamics to medicine. It is built on the
principles of accessibility, simplicity and flexibility. The LUMA software at the core of the project is a
capable FSI solverwith turbulencemodelling andmany-core scalability aswell as awealth of input/output
and pre- and post-processing facilities. The software has been validated and severalmajor releases bench-
marked on supercomputing facilities internationally. The software architecture is modular and arranged
logically using a minimal amount of object-orientation to maintain a simple and accessible software.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.7.3
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-18-00007
Legal Code License Apache License 2.0
Code versioning system used Git
Software code languages, tools, and services used C++, MATLAB, Python, MPI, OpenMP
Compilation requirements, operating environments & dependencies Windows/Linux/Mac OS, C/C++ Compiler, MPI, HDF5, LAPACK, VTK
Link to developer documentation/manual https://github.com/aharwood2/LUMA/wiki
Support email for questions adrian.harwood@manchester.ac.uk

1. Motivation and significance

Computational Fluid Dynamics (CFD) is the science of simu-
lating the physical behaviour of fluids using computers. It is an
essential tool for design, analysis and validation. A suitable set of
discretised transport equations governing the physics of the fluid
are solved at discrete time-steps to produce a time-varying spatial
field of physical quantities such as velocity, density and pressure.
Similarly, the structural mechanics of deformable bodies can be
modelled using Newton’s laws of motion and solved over time,
according to the level of detail required.

Fluid–Structure Interaction (FSI) is the coupled analysis of CFD
with structural mechanics. Existing software implementations of
these solvers vary in complexity, accuracy and speed depending
on the modelling strategies chosen. Fluid dynamics solvers are
generally based on either Eulerian approaches such as the Fi-
nite Volume Method (FVM) [1–4], or Lagrangian methods such as

* Corresponding author.
E-mail address: adrian.harwood@manchester.ac.uk (A.R.G. Harwood).

Smoothed Particle Hydrodynamics [5]. The Finite Element Method
(FEM) is used widely in engineering for structural modelling [6,7].
The development of LUMA continues to be motivated by the wide
range of FSI problems for which simulation is essential. In partic-
ular, the modelling of flexible filaments are an area of significant
importance in the fields of aerodynamic drag reduction [8], flow
control [9] and sensing [10].

In research environments, modelling and simulation software
should be a capable platform for the development of new fea-
tures, while also retaining simplicity in order to facilitate mod-
ification and debugging. This accelerates the uptake of the soft-
ware by students with a range of programming experience and
reduces barriers for meaningful contribution in, what can be, short
project time frames. Full-featured, open-source engineering soft-
ware [3,11] makes thorough use of object-orientated features for
maximumcode reuse and flexibility. However, this software can be
difficult to customise for the novice user and can be an obstacle to
research. LUMA has been developed for willing contributors with
less experience of object-oriented programming (OOP) languages
by using a logical, but simplified set of OOP features in class design.

https://doi.org/10.1016/j.softx.2018.02.004
2352-7110/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A.R.G. Harwood et al. / SoftwareX 7 (2018) 88–94 89

Table 1
Table of features available since LUMA v1.7.

Features since LUMA v1.7

Git Version Control Doxygen Documentation
Complete Wiki with Validation Cases

LBM Pull Kernel Immersed Boundary Method [22]
Embedded Grid Refinement [13] MPI Many-Core Parallelisation
Load-Balancing Decomposition Body Force Calculation [23]

Bounce-Back No-Slip BCs Interpolated Bounce-Back BCs [24]
Forced Equilibrium Velocity BCs Regularised Velocity BCs
Regularised Pressure BCs Symmetry BCs (Specular Reflection)
Periodic BCs

Body Forcing Smagorinksy Turbulence Model
SRT/BGK Collision Model KBC Collision Model
Time-Averaging Facility Restart Facility

Point Cloud Reader HDF to VTU Post-Processor
HDF5 Output Library of Point Cloud Input Files

Inheritance is kept to a single level with functions not related
to physics abstracted away into manager classes. Methods and
fields are intuitively named and coding standards are imposed to
promote clarity over elegance.

2. Software description

Lattice-Boltzmann at The University of Manchester (LUMA) is
an initiative which aims to develop novel, physical modelling for
complex engineering simulation, underpinned by a flexible, but
developer-friendly, many-core accelerated software framework.
Development is collaborative , inclusive and centred on a simple
version control process with a regular developer release schedule
and continuous validation. At the heart of the initiative are appli-
cations in aerodynamics, bio-fluids and flow control.

2.1. Flow solver

The choice of flow solver is crucial for achieving desired levels
of accuracy while managing complexity. The Lattice-Boltzmann
Method (LBM) [12] is an alternative to traditionalmethods for sim-
ulating flow physics and is characterised by its simplicity. Rather
than solving the Navier–Stokes as in the majority of CFD software,
LBM represents fluidmotion at a smaller scale using the Boltzmann
equation(

∂

∂t
+ e⃗ · ∇

)
f = Ω (1)

where f is the probability density distribution associated with a
group of particles, Ω a local particle collision operator, and e⃗ a
particle velocity. This equation may be discretised in space and
time with spatial discretisation based on a uniform lattice of nodal
locations which we refer to as a grid. If the velocity space is
similarly discretised, such that groups of particles are only allowed
to travel along a set of links between spatial nodes, then fi ∈ f
where fi is the probability of finding a particle at a given nodal
location with velocity e⃗i. The discrete, lattice-Boltzmann equation
then reduces to

f (x⃗ + e⃗iδt, t + δt) = Ωi(x⃗, t). (2)

The solution of Eq. (2) proceeds as a two-step process: (1) compu-
tation of the particle distributions under the collision operation Ω

followed by (2) the convection of these particles to their immedi-
ate neighbours along adjoining lattice links. These two steps are
referred to as the ‘collision’ and ‘streaming’ operations, respec-
tively, in the remainder of this paper.

Variation in the local grid resolution is essential for compu-
tational efficiency; fine-grain calculations are only performed in

areas of interest. In LUMA, refinement is implemented by embed-
ding grids of higher resolution within other grids. LUMA offers
both manual and automatic methods for defining the location of
these grids and supports nesting to allow the construction of a
grid hierarchy. A spatial and temporal refinement of factor two
is applied across each transition. Time stepping proceeds on each
grid at its local temporal scale with synchronisation every two
cycles between grid pairs. The algorithm of Rohde et al. [13] is
used to communicate populations between adjacent grids due to
its simplicity and efficiency.

2.2. Structural solver

The structural solver is based on the Finite Element Method
(FEM) and has been specifically designed for high aspect ratio
structures undergoing large deformations (e.g. flaps, filaments,
cilia) [14]. Co-rotational Euler–Bernoulli beam elements are used
to represent the structure while geometric non-linearity due to
large deformations is incorporated via a non-linear FEM formu-
lation with Newton–Raphson sub-iterations. Second-order time
stepping is achieved via the implicit Newmark time integration
scheme. Although flexible objects are modelled exclusively using
these types of elements at present, the design of the structural
solver does allow other elements to be added to LUMA as required.
Developers must define and implement suitable mappings for the
communication of displacements/forces between the fluid and the
elements chosen.

2.3. Fluid–structure coupling

The immersed boundary method (IBM) is used to enforce the
no-slip condition on deformable bodies within LUMA [15,16]. The
benefit of this approach is that it allows the fluid and structure to be
handled separately on their own independent grids – negating the
need for regular re-meshing procedures – while also facilitating
large structural deformations, which are otherwise challenging
with body-fitted grids. Structures are represented as a collection
of surface markers with a sphere of influence. Bi-directional force
information is passed between markers and fluid points within
this sphere each fluid time step. For efficiency purposes, LUMA is
only capable of handling cases where the fluid mesh resolution
is finer than the structural mesh. This is achieved via a mapping
routine between the IBM forces and the FEM structure. To ensure
stability across awide range of input conditions, a strongly coupled
sub-iterative scheme is used for the FSI coupling [17]. During the
sub-iteration procedure, a fixed relaxation factor is used to update
the structural velocities [18] and convergence is achieved when
the difference between consecutive iterations reaches a tolerance
value.

2.4. Software functionalities

LUMA is written in C/C++ and designed for an x64machine run-
ning Linux, MacOS or Windows. The software may be compiled to
run in serial or parallel depending on requirements and target plat-
form capabilities. Parallel computing capabilities are implemented
through decomposition of the problem into load-balanced blocks
with added halo cells (ghost cells). Inter-block communication
between halo cells uses the Message Passing Interface (MPI) [19]
andmulti-threading is implemented for each block using OpenMP.

Input/Output (I/O) facilities include surface mesh construction
and point cloud reading and pre-processing tools. Point clouds can
be generated from depth-sensing cameras or from CAD geometry,
the latter using our STL to point cloud conversion tool. Parallel,
binary data I/O is implemented using Hierarchical Data Format
5 (HDF5) [20] and allows the reading of initial conditions for

90 A.R.G. Harwood et al. / SoftwareX 7 (2018) 88–94

(a) LUMA architecture showing segregation of classes by function and the system of abstraction which allows
modelling to be visible but supporting framework to be hidden from a novice developer. Flow of data is indicated
by the solid arrows. There is a single layer of inheritance between the Body class and its derived children. GridObj
instances can own one another to allow the construction of a hierarchy.

(b) Illustration of how multiple Body instances and multiple GridObj instances can be used to build complex
problems. The grid instances are labelled based on their level in the hierarchy as well as their branch (region of
refinement)

Fig. 1. The architecture of the LUMA software (top) and a visual representation of a typical problem using multiple bodies and grids and how these map onto objects in the
software environment (bottom). (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

restarting a simulation as well as the writing of datasets for later
analysis. Although HDF5 files may be read directly into scientific
visualisation applications such as Matlab, and TecPlot, a comple-
mentary post-processor, custom-built using the Visualization Tool
Kit (VTK) API [21], produces time-slice datasets aimed at enabling
the more advanced features of the Paraview visualisation tool. The
integration of these features makes LUMA a powerful, capable,
integrated package for engineering flow simulation.

The key features of LUMA are listed in Table 1 with many of
these capabilities demonstrated in the test cases contained within
the online documentation.

2.5. Software architecture

As the principal ethos of the LUMA project is simplicity and ac-
cessibility, the software architecture reflects this throughout. The
class hierarchy is minimalistic and shallow. Object orientated de-
sign is used to package capabilities rather than to over-generalise
objects in the hierarchy. The resulting software is then represented
completely by the small number of classes depicted in Fig. 1(a).
The colour-coding of the diagram indicates how capabilities are
packaged by these classes.

There is a clear segregation between the fluid solver compo-
nents (green) and structural solver components (yellow) and the
softwaremanagement framework supporting them. This structure
allows engineers to edit just a single class in which all related
models are stored without the need for detailed knowledge of
anything else. The fundamental flow physics objects of the sim-
ulation are instances of the GridObj class. Objects of this class
may be organised hierarchically to provide an intuitive structure
representative of the physical domain space. These objects contain
all data and methods required to perform LBM on their respective
grids. Specifically, they contain 1D arrays of physical parameters
at each node in the grid such as density and velocity, as well as
methods for executing the different parts of the fluids algorithm
on that grid. Data is stored as a structure of arrays to facilitate
efficient indexing during loops. A snippet from the class header is
provided for reference in the Appendix (Listing 1). Note that mul-
tiple GridObj and Body instances are permitted which facilitates
simulationswhich require embedded grid refinement andmultiple
bodies as illustrated in the example in Fig. 1(b).

For run-time efficiency, most parameters such as decomposi-
tion dimensions, feature switches and fundamental physical def-
initions which characterise a particular problem or deployment

A.R.G. Harwood et al. / SoftwareX 7 (2018) 88–94 91

(a) Q-criterion illustration of vorticity in the fully-developed flow. Stream-wise velocity projected onto the floor of the channel.

(b) Stream-wise Reynolds stress uu/Ub
2
at different stream-wise locations at the lateral location z/H = 0 compared with experimental data.

Fig. 2. Results from using LUMA to simulate the experimental case of Meinders and Hanjalić [25].

are defined as pre-processor macros in the special header file
definitions.h. The LUMA core must, hence, be recompiled if
these compile-time options are changed. However, this process
is handled automatically by the supplied makefiles to maintain
ease of use. Body details are specified in the tab-separated geom-
etry.config file, which allows for an arbitrary number of bodies
in the same flow as well as dynamic body removal without the
need to recompile. Output files are written for each grid in the
simulation with snap shots appended within the same file. Typical
data-flow during execution of LUMA is illustrated by the arrows in
Fig. 1(a).

The MpiManager, ObjectManager and GridManager are
classes of singleton design and act as self-contained elements with
a clear remit. Each class manages many-core decomposition and
communication, object processing and FSI facilitation, and flow

solver with grid refinement respectively. Finally, the GridUtils
and GridUnits classes are organisational classes of static utility
methods including frequently-used vector and matrix operations,
logging capabilities and unit conversions.

As the software is designed to run in parallel on multiple pro-
cessors, structural objects are owned by a single processor in the
available cluster which is responsible for performing the structural
update. This allowsmultiple objects to be included efficiently with
all structural calculations able to take place concurrently. Synchro-
nisation is then enforced by the ObjectManager before the LBM
continues.

Performance tests are performed regularly as part of the soft-
ware development process. Strong andweakparallel efficiency test
results are available in the online documentation.

92 A.R.G. Harwood et al. / SoftwareX 7 (2018) 88–94

3. Illustrative examples

The following example cases demonstrate the key capabilities
of LUMA: turbulent flow simulation and fluid–structure interac-
tion. They may be reproduced by users following the details pro-
vided in the ‘Validation’ section of the online documentation.

3.1. Wall-mounted cubes in a turbulent channel

This test case is based in the wind tunnel experiment by Mein-
ders and Hanjalić [25] and models the flow around one of the
central cubes in a 25 × 10 array of cubes inside a channel. The
flow Reynolds number Re = 3850 is based on the height of the
cube H and the bulk velocity at the inlet of the channel Ub. Fig. 2(b)
shows the stream-wise Reynolds stress uu/Ub

2
over five vertical

lines at different positions relative to the front face of the cube.
This example uses the Smagorinsky turbulence model [26] with
csmag = 0.3, the bounce-back rigid-wall boundary condition and
the point cloud reader and geometry input file are used to place the
cube. The post-processing is achieved using the post-processing
tools supplied with LUMA and data visualised using Matlab and
Paraview.

3.2. Dynamics of a flexible filament at low Reynolds number

The configuration for this 2D FSI case consists of a rigid cylinder
with an attached flexible plate embedded slightly off-centrewithin
a channel flow [27]. A parabolic velocity profile is specified at
the inlet which is ramped up over the first two seconds. No-slip
conditions are used at the channel walls, and the outlet boundary
condition may be any of the velocity or pressure boundary condi-
tions available in LUMA. At the intermediate Reynolds number case
(Re = 100), the plate exhibits steady periodic flapping. Fig. 3(b)
shows good agreement between LUMA and the benchmark tip
displacement histories at this Reynolds number.

4. Impact

The current version of the LUMA software is the culmination
of a long-term project to provide an accessible training and de-
velopment platform for lattice-Boltzmann researchers. It has been
deployed and benchmarked on the UK National Supercomputer
ARCHER and continues to be used on this and other HPC facilities
by The University of Manchester and our UK, EU and Chinese
collaborators.

LUMA is currently serving as a test bed for contributing new
features for the development of a new long-term software flagship
project funded by the UK Engineering and Physical Sciences Re-
search Council for the UK Consortium on Mesoscale Engineering
Sciences (UKCOMES), an organisation involving over 10 research
institutions across the UK.

The accessibility of the LUMA source files as well as their
extensive commenting, auto-generating documentation and suite
of support tools and scripts, form a capable, coherent platform
for training as well as supporting publication-standard numerical
studies. The complete LUMA package has enabled researchers at
The University of Manchester to use the software and contribute
to its development immediately with little formal support.

LUMA is suitable for the simulation of complex fluid–structure
interaction and turbulent flow problems. These are some of the
most challenging applications ofmodelling simulation in engineer-
ingwhich require capable software to underpin their investigation.
The extended capability of LUMA such as embedded grid refine-
ment and the independent parallelisation of fluid and structural
solvers across a many-core architecture are critical enabling tech-
nologies for the pursuit of applications of flow control and bio-
inspired engineering solutions.

(a) Illustration of the vortex street behind the cylinder–filament combination.
Colours represent vorticity.

(b) Comparison of tip displacement histories against benchmark data.

Fig. 3. Results fromusing LUMA to simulate the benchmark by Turek andHron [27].
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Prior to the creation of LUMA, the number of open-source
solvers with this level of capability were limited, typically lacking
appropriate modelling, and difficult for a novice user to modify.
The LUMA initiative and the accompanying software platform has
made a significant difference to internal work flows and encour-
aged a more collaborative atmosphere for researchers at all lev-
els. The support framework for LUMA is currently under further
development to allow coupling to other CFD solvers. In this way,
the LBM core can be coupled to traditional FVM/FEM solvers. This
novel, hybrid approach to computation allows for more efficient
load balancing and power efficient, accelerated calculations.

Finally, a fork of the LUMA LBM core has been used for ‘interac-
tive’,mobile CFD simulations [28,29]. This is an emerging usemode
of simulation and in [29], a GPU-accelerated LUMA core is used to
conduct the simulations, which will be included in a future release
of LUMA. The interactive fork of LUMAbenefits fromall the support
structure of the trunk code with no modification which illustrates
the modularity of the original software.

5. Conclusions

This article has introduced LUMA, a 3D many-core fluid–
structure interaction solver with embedded grid refinement. The
modular architecture, thorough commenting and clear coding
standards have produced an accessible yet capable solver fit for
future applications of modelling and simulation in engineering.
The software is in use already by UK and international researchers
and is the central tool for a number of UK EPSRC-funded projects.
Development on the software is active with new features in the
pipeline. Future plans include the merging of the GPU-accelerated
fork of the LBM core to facilitate deployment on heterogeneous
systems. The software is also being adapted to allow coupling with
other solvers to enable the use of hybrid methodologies in CFD
analysis.

A.R.G. Harwood et al. / SoftwareX 7 (2018) 88–94 93

Acknowledgements

This work was supported by Engineering and Physical Science Research Council Impact Accelerator Account (Grant No. EP/K503782/1)
and the UK Consortium on Mesoscale Engineering Sciences (Grant No. EP/L00030X/1).

Appendix. Code sample

The fundamental class of the software is the GridObj class which is declared as follows.

1 c la s s GridObj
2 {
3
4 / / Cstor & Dstor etc . . . / /
5
6 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Member Data ∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
7
8 public :
9

10 / / Ce l l typing
11 IVector<eType> LatTyp ; / / / < Flattened 3D array of s i t e labe l s
12
13 / / Grid Sca lars
14 double dh ; / / / < Dimensionless l a t t i c e spacing
15 in t region_number ; / / / < Region number
16 in t level ; / / / < Level in embedded grid hierarchy
17 double dt ; / / / < Dimensionless time step s ize
18 double dm ; / / / < Dimensionless mass reference
19 in t t ; / / / < Number of completed i t e r a t i ons
20 double nu ; / / / < Kinematic v i s cos i t y (in l a t t i c e units)
21 double omega ; / / / < Relaxation frequency
22 double gravity ; / / / < Gravity force
23 double uref ; / / / < Reference ve loc i ty
24
25 / / Local grid s izes
26 in t N_lim ; / / / < Local s ize of grid in X−direct ion
27 in t M_lim ; / / / < Local s ize of grid in Y−direct ion
28 in t K_lim ; / / / < Local s ize of grid in Z−direct ion
29
30 private :
31
32 / / / 1D array of sub−grid pointers (s ize = L_NUM_REGIONS)
33 std : :vector<GridObj∗> subGrid ;
34
35 / / 3D or 4D arrays of nodal propert ies
36 IVector<double> f ; / / / < Dis t r ibut ion functions
37 IVector<double> feq ; / / / < Equilibrium dis t r ibut ion functions
38 IVector<double> fNew ; / / / < Copy of d i s t r ibut ion functions
39 IVector<double> u ; / / / < Macroscopic ve loc i ty components
40 IVector<double> u_n ; / / / < Veloci ty at s t a r t of time step (IBM)
41 IVector<double> force_xyz ; / / / < Macroscopic body force components
42 IVector<double> force_i ; / / / < Mesoscopic body force components
43 IVector<double> rho ; / / / < Macroscopic density
44
45
46 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Member Methods ∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
47
48 public :
49
50 / / I n i t i a l i s a t i o n functions
51 void LBM_initGrid () ; / / Grid i n i t i a l i s e r
52 void LBM_initSubGrid(GridObj& pGrid) ; / / I n i t i a l i s e sub−grid
53 void LBM_initGridToGridMappings(GridObj& pGrid) ; / / I n i t i a l i s e mappings
54 void LBM_initBoundLab () ; / / I n i t i a l i s e labe l s for walls
55 void LBM_initRefinedLab(GridObj& pGrid) ; / / I n i t i a l i s e labe l s on ref ined
56 void LBM_initVelocity () ; / / I n i t i a l i s e the ve loc i ty f i e l d
57 void LBM_initRho () ; / / I n i t i a l i s e the density f i e l d
58 void LBM_addSubGrid(in t RegionNumber) ; / / Construct a sub−grid
59
60 / / IO methods
61 void io_restart(eIOFlag IO_flag) ; / / Reads / writes re s t a r t data
62 void io_probeOutput () ; / / Write values at probes
63 in t io_hdf5(double tval) ; / / HDF5 writer
64
65 / / Master method to perform an LBM i te ra t i on using the private methods below
66 void LBM_multi(in t subcycle = 0) ;
67
68
69 private :
70
71 / / LBM implementation
72 void _LBM_stream(in t i , in t j , i n t k , i n t id , eType type_local , in t subcycle) ; / / Streaming step
73
74

94 A.R.G. Harwood et al. / SoftwareX 7 (2018) 88–94

75 void _LBM_coalesce(in t i , i n t j , i n t k , i n t id , i n t v) ; / / Get data from sub−grid
76
77 void _LBM_explode(in t src_x , i n t src_y , i n t src_z , i n t id , i n t v ,) ; / / Give data to sub−grid
78
79 void _LBM_collide(in t id) ; / / Co l l i s i on step
80 void _LBM_macro(in t i , i n t j , i n t k , i n t id , eType type_local) ; / / Update ve loc i ty and density
81
82 void _LBM_forceGrid(in t id) ; / / Apply body forces
83 void _LBM_resetForces () ; / / Reset body forces to i n i t i a l
84 double _LBM_equilibrium(in t id , i n t v) ; / / Compute feq value
85
86 / / Extra models
87 void _LBM_kbcCollide(in t id) ; / / KBC version of co l l i s i on
88 double _LBM_smag(in t id , double omega) ; / / Apply Smagorinsky model
89
90 / / Boundary conditions
91 bool _LBM_applyBFL(in t id , i n t src_id , i n t v , i n t i , i n t j , in t k , in t src_x , in t src_y , i n t src_z) ; / / Apply BFL BC
92
93
94 bool _LBM_applySpecReflect(in t i , i n t j , i n t k , i n t id , i n t v) ; / / Apply Specular Re f lec t BC
95
96 void _LBM_regularised(in t i , i n t j , i n t k , i n t id , eType type , in t subcycle) ; / / Apply Regularised BC
97
98
99 } ;

Listing 1: Fundamental design of the GridObj class with constructors/destructors and some short utility methods removed for brevity.

References

[1] Zaghi S. OFF, Open source Finite volume Fluid dynamics code: A free, high-
order solver based on parallel, modular, object-oriented Fortran API. Comput
Phys Comm 2014;185(7):2151–94.

[2] Mortensen M, Valen-Sendstad K. Oasis: A high-level/high-performance open
source Navier-Stokes solver. Comput Phys Comm2015;188(Suppl. C):177–88.

[3] OpenFOAM: The open source CFD toolbox. http://www.openfoam.com. [Ac-
cessed 7 December 2017].

[4] Fluids - CFD Simulation Software | ANSYS. http://www.ansys.com/en-gb/
products/fluids. [Accessed 7 December 2017].

[5] Gomez-Gesteira M, Rogers B, Crespo A, Dalrymple R, Narayanaswamy M,
Dominguez J. SPHysics - development of a free-surface fluid solver - Part 1:
Theory and formulations. Comput Geosci 2012;48(Suppl. C):289–99.

[6] Abaqus Unified FEA. https://www.3ds.com/products-services/simulia/produc
ts/abaqus/. [Accessed 7 December 2017].

[7] Structure FEA Analysis | ANSYS. http://www.ansys.com/en-gb/products/struc
tures. [Accessed 7 December 2017].

[8] Favier J, Li C, Kamps L, Revell A, O’Connor J, Brücker C. The PELskin project –
part I: Fluid-structure interaction for a row of flexible flaps: A reference study
in oscillating channel flow. Meccanica 2017;52(8):1767–80.

[9] Wu J, Qiu YL, Shu C, Zhao N. Flow control of a circular cylinder by using an
attached flexible filament. Phys Fluids 2014;26(10):103601.

[10] O’Connor J, Revell A, Mandal P, Day P. Application of a lattice Boltzmann-
immersed boundary method for fluid-filament dynamics and flow sensing. J
Biomech 2016;49(11):2143–51.

[11] Palabos –CFD, Complex, Physics. http://www.palabos.org. [Accessed 7 Decem-
ber 2017].

[12] Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annu Rev Fluid
Mech 1998;30(1):329–64.

[13] RohdeM, Kandhai D, Derksen JJ, van den Akker HEA. A generic, mass conserva-
tive local grid refinement technique for lattice-Boltzmann schemes. Internat J
Numer Methods Fluids 2006;51:439–68.

[14] Rosis AD, Falcucci G, Ubertini S, Ubertini F. A coupled lattice Boltzmann-finite
element approach for two-dimensional fluidstructure interaction. Comput &
Fluids 2013;86(Suppl. C):558–68. http://dx.doi.org/10.1016/j.compfluid.2013.
08.004.

[15] Favier J, Revell A, Pinelli A. A lattice Boltzmann-immersed boundary method
to simulate the fluid interaction with moving and slender flexible objects.

J Comput Phys 2014;261(Suppl. C):145–61. http://dx.doi.org/10.1016/j.jcp.
2013.12.052.

[16] Li Z, Favier J, D’Ortona U, Poncet S. An immersed boundary-lattice Boltz-
mann method for single- and multi-component fluid flows. J Comput Phys
2016;304(Suppl. C):424–40. http://dx.doi.org/10.1016/j.jcp.2015.10.026.

[17] Küttler U, Wall WA. Fixed-point fluid-structure interaction solvers with dy-
namic relaxation. ComputMech 2008;43(1):61–72. http://dx.doi.org/10.1007/
s00466-008-0255-5.

[18] Tian F-B, Dai H, Luo H, Doyle JF, Rousseau B. Fluidstructure interaction involv-
ing large deformations: 3D simulations and applications to biological systems.
J Comput Phys 2014;258(Suppl. C):451–69. http://dx.doi.org/10.1016/j.jcp.
2013.10.047.

[19] Message passing forum,MPI: AMessage-Passing Interface standard, Tech. rep.,
University of Tennessee, 1994, Knoxville, TN, USA.

[20] HDF5 –The HDF Group. https://www.hdfgroup.org/solutions/hdf5/. [Accessed
7 December 2017].

[21] Schroeder W, Martin K, Lorensen B. The visualization toolkit. 4th ed. Kitware;
2006.

[22] Peskin CS. The immersed boundary method. Acta Numer 2002;11:479517.
[23] Ladd AJC. Numerical simulations of particulate suspensions via a discretized

Boltzmann equation. Part 2. Numerical results. J FluidMech 1994;271:311339.
[24] Bouzidi M, Firdaouss M, Lallemand P. Momentum transfer of a Boltzmann-

lattice fluid with boundaries. Phys Fluids 2001;13(11):3452–9. http://dx.doi.
org/10.1063/1.1399290.

[25] Meinders E, Hanjalić K. Vortex structure and heat transfer in turbulent flow
over awall-mountedmatrix of cubes. Int J Heat Fluid Flow1999;20(3):255–67.

[26] Yu H, Girimaji SS, Luo L-S. DNS and LES of decaying isotropic turbulence with
and without frame rotation using lattice Boltzmann method. J Comput Phys
2005;209(2):599–616.

[27] Turek S, Hron J. Proposal for numerical benchmarking of fluid-structure
interaction between an elastic object and laminar incompressible flow.
In: Bungartz H-J, Schäfer M, editors. Fluid-structure interaction: modelling,
simulation, optimisation. Berlin, Heidelberg: Springer; 2006. p. 371–85.

[28] Harwood ARG, Revell AJ. Parallelisation of an interactive lattice-Boltzmann
method on an Android-powered mobile device. Adv Eng Softw 2017;104(1):
38–50.

[29] Harwood ARG, Revell AJ. Interactive flow simulation using Tegra-powered
mobile devices. Adv Eng Softw 2018;115(Suppl. C):363–73.

—————————-

169

First solve the problem. Then

write the code.

John Johnson

Appendix B

Paper IV - GPU-Accelerated

Solver for Coupled Approaches

to Navier-Stokes GASCANS

The following paper presents the GASCANS lattice Boltzmann solver, which

is the software used for all the lattice Boltzmann simulation presented in this

thesis.

The GASCANS paper still requires review and more information in different

sections including performance, coupling with other solvers and further details

on the validation cases. However, the presented version serves as an overview of

the structure and capacity of GASCANS.

When ready, we aim to submit the paper to the Computer Physics Communica-

tions journal. On the other hand, we are studying merging this paper with the

NSLB paper (Paper I 4.3.1) in order to focus the current paper on the GASCANS

capacity to be coupled to other codes and avoid repeated information.

—————————

171

GPU-Accelerated Solver for Coupled Approaches to
Navier-Stokes (GASCANS)

Marta Camps Santasmasasa,∗, Adrian R. G. Harwoodb, Ian Hinderb, Sijiang
Fanc, Benjamin Owena, Joseph O’Connora, Alistair J. Revella

aSchool of Engineering, The University of Manchester, Oxford Road, M13 9PL, United
Kingdom

bResearch IT, The University of Manchester, Oxford Road, M13 9PL, United Kingdom
cAddress

Abstract

We present GASCANS , an open source fluid simulation software that im-
plements the lattice Boltzmann method (LBM) on multiple graphic processing
units (GPUs) using CUDA and C++. GASCANS is aimed at turbulent flow
and fluid structure interaction. The main novel features in GASCANS are that
can exchange information with another computational fluid dynamics (CFD)
code at run time, coupling both solvers. GASCANS also implements a syn-
thetic eddy method to generate instantaneous inlet velocities for turbulent flow
simulations. GASCANS also allows the introduction of any solid object shape
via its point cloud reader. Curved boundaries and moving objects are resolved
via an immersed boundary method (IBM) boundary condition. We discuss the
general design principles of the code and its features before proceeding to vali-
dation test cases.

Keywords: Lattice-Boltzmann Method; GPGPU Computing; Hybrid
RANS-LES; Fluid-Structure Interaction

PROGRAM SUMMARY
Program Title: GASCANS: GPU-Accelerated Solver for Coupled Approaches to Navier-
Stokes
CPC Library link to program files: (to be added by Technical Editor)
Developer’s repository link: (add link to GASCANS Github when we release it.)
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions: BSD 3-clause
Programming language: C++ and CUDA
Supplementary material: (Link to the wiki when available)
Nature of problem(approx. 50-250 words): Multi-GPU-accelerated simulation of in-
compressible turbulent flow around obstacles and moving objects. GASCANS can
work stand alone or be coupled with other fluid solvers at run time.

∗Corresponding author.
E-mail address: marta.campssantasmasas@manchester.ac.uk

Preprint submitted to Computer Physics Communications March 22, 2021

Solution method(approx. 50-250 words): BGK lattice Boltzmann method with Smagorin-
sky large eddy simulation turbulence model and synthetic eddy method (SEM) inlet
to provide instantaneous inlet velocity for turbulent flow simulations. GASCANS can
be coupled with another solver using the preCICE [1] library. Objects are read into
the simulations using a point cloud reader and moving objects are implemented using
an immersed boundary method.
Additional comments including restrictions and unusual features (approx. 50-250 words):
GASCANS can be run in both Windows and Linux, with the exception of coupling
which only runs on Linux. The immersed boundary method boundary condition is
not yet implemented for multi-GPU. Finished simulations can be restarted using the
results written on the restart file as initial conditions for the new simulation.

References

[1] H. J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev, B.
Uekermann, preCICE - A fully parallel library for multi-physics surface coupling,
Computers and Fluids 141 (2016) 250-258.

1. Introduction

Turbulent flows are present in a large range of engineering applications, from
cardiovascular modelling to wind engineering, and often interact with moving
objects. Computational fluid dynamics is a widely used tool to model fluid flows
in engineering applications, however, the accuracy and quality of the information
obtained from the results is closely tied to the computational resources and time
available to the engineer.

Traditionally, CFD simulations for turbulent flow discretise and solve the
Navier-Stokes equations using multi-CPU devices and supercomputers if avail-
able. However, in the recent years, lattice Boltzmann methods have been applied
to turbulent flows (f e. [1] [2]). One of the reasons for that change is tied to
the advent of more powerful and less energy consuming graphics processing unit
(GPU) hardware, however, GPU code requires to be massively parallel and local
for it to be efficient. The lattice Boltzmann method complies both characteris-
tics. Mawson and Revell [3] review the optimization strategies and performance
of a GPU LBM implementation.

There exist a number of available GPU accelerated LB software able to simu-
late turbulent flows around complex geometries. For example XFlow [4], Ultra-
fluidX [5], TCLB [6] and WaLBerla [7] are able to read and incorporate geometry
to the simulation from .stl files, or surface mesh files for WaLBerla. Regarding
ease of use and case configuration, both XFlow and UltrafluidX present a graph-
ical user interface (GUI) and do not require to be re-compiled for each different
simulated case. However, both XFlow and UltrafluidX are not open source and
require a commercial license. TCLB and WaLBerla are open source; TCLB can
be configured using .xml files, while WaLBerla is presented as a collection of

2

C++ libraries and thus needs to be codded to each studied case. There are also
open source LB codes aimed at implementing and testing different LB methods
and presenting novel programming techniques. For example, Sailfish [8] uses
Python code generation, which allows the user to code and test new LB meth-
ods without interacting with the underlying GPU architecture; and STLBM [9],
a library programmed in C++17 that executes in both GPU and CPU using the
same base code. It also incorporates different LB schemes and data structures,
Latt et al. [9] present a comprehensive study of the performance of different LB
schemes and data structures using STLBM.

The most used velocity and collision schemes are D3Q19 BGK [10] and
D3Q27 cumulant [11], with TCLB, STLBM, WaLBerla and Sailfish implement-
ing both schemes amongst other schemes; and UltrafluidX implementing D3Q27
cummulant only. Regarding turbulence modelling, UltrafluidX and XFlow im-
plement large eddy simulation (LES) Smagorinsky models with wall functions,
while Sailfish uses LES Smagorinsky without wall functions. One way to reduce
the number of cells and thus the computational resources of the simulation is
to refine the mesh towards the surface of the geometry, where more flow detail
is needed. WaLBerla, XFlow and UltraFluidX offer octree mesh refinement.
WaLBerla and Sailfish divide the mesh in blocks that can be distributed follow-
ing the geometry, thus avoiding to set LB cells in regions of the mesh occupied
by the geometry.

The capabilities to solve multi-scale and multi-physics problems with the
reviewed software are limited. TCLB can be coupled with a series of predefined
discrete element method (DEM) solvers in order to incorporate rigid moving
objects into the simulation; WaLBerla includes a DEM solver for the same
purpose. However, to the extend of our knowledge, there is no open source
GPU LB software able to transfer and receive velocity data to/from another
solver at run time.

This paper presents GASCANS , a GPU accelerated open-source lattice
Boltzmann solver aimed at turbulent flow with complex geometries and moving
objects. GASCANS is able to extract and incorporate boundary conditions
velocity during run-time and thus be coupled with other solvers to further take
advantage of the heterogeneous CPU-GPU architecture of consumer computers;
also to reduce the size of the domain simulated by LB and thus reducing the cost
of the complete simulation. It also incorporates an LES Smagorinsky turbulence
model and allows the inlet velocity to be generated from mean flow data using
a synthetic eddy method (SEM). From the software point of view, GASCANS
is formed by a core library and an application. The application part can be
changed to meet the user’s needs and the library case can be expanded to
include new methods and models using the provided IFeature template.

GASCANS fills an niche in the market of open-source GPU accelerated
lattice Boltzmann solvers, providing ready to use and adaptable turbulent flow
and moving objects modelling aimed at engineers with limited or no access to
large computer systems.

3

2. Software Design

GASCANS consists of two parts – the library and the application. The
former encapsulates the mathematical algorithms, their host and device imple-
mentation and defines a public-facing interface called Interface and a set of
definition classes within SimData. The utility of this solution means that GAS-
CANS can be used by a wide variety of front-end applications. The application
part of GASCANS is a console application that leverages the public-facing part
of the library to run a simulation. However, the application using the GASCANS
library could be a custom graphical user interface. In [12], the GASCANS li-
brary was leveraged from an application class built within a game engine.

Software on GPU devices follows a predictable pattern based on GPU-
programming APIs. Namely:

1. Allocate memory on the host

2. Initialise the data on the host

3. Allocate memory on the device

4. Copy data from host to device

5. Compute on the device and update device memory

6. Copy data back from device to host

7. Post-process host data and repeat

GASCANS provides the base class IFeature, which provides methods for the
GPU-programming steps in the previous list. These methods ensure that any
class that inherits from IFeature will be compatible with the GASCANS stru-
ture and multi-GPU implementation. Thus IFeature acts as a template to add
new models and add-ons to GASCANS base code.

GASCANS is designed for single-node, multi-GPU use. This implementa-
tion allows the use of multi-GPU APIs within the CUDA framework while not
requiring the additional complexity of MPI to managed multi-node communi-
cation, which makes GASCANS especially appealing to engineers with limited
or no access to large computing clusters. Users of GASCANS may configure
the library to suit their system, running either a single GPU or multiple GPUs.
Furthermore, the library interface can be leveraged by users who wish to use
the provided application component or just as easily by those wishing to build
their own.

2.1. Architecture

Figure 1 illustrates the class hierarchy and aggregation. The core LB classes
encapsulates the main LBM behaviours, including the LES turbulence model
and the immersed boundary method, along with the state of the domain grid
– the grid of cells covering the entire domain – and the Interface class, which
governs the high-level steps described above and exposed public methods for
invoking the initialisation, calculation and back-copy steps. When using multi-
GPU configurations, the Grid defines and maintains the one-to-many relation-
ship between the domain grid and the problem blocks – a sub-section of the

4

Figure 1: Illustration of the two-part architecture of GASCANS and the relationships between
components. An open arrow indicates inheritance, a solid arrow indicates aggregation and a
dashed arrow indicates a primary communication relationship. The isolated boxes represent
definitions and utilities accessible by the core LB solver.

domain grid plus a set of halo cells associated with a given device. The overall
state of the multi-GPU configuration is maintained by the ClusterInfo class.
The user input and configuration is defined by the Parameters class, which han-
dles the configuration files, and the SimData class, which is an aggregation of
structures that allow an application to define a simulation completely depending
on the features required.

The classes that allow GASCANS to be coupled with an external solver are
InOutData and InOutRepo in the Library part, and Adapter and PreciceInterface

in the Application part. The InOutRepo and InOutData classes acts as a link
between the data stored in the grid and the external world. Each instance of
InOutRepo stores and handles data at set coordinates within the simulation do-
main and it is marked as data extracted from GASCANS that needs to be send
to an external solver, or data from an external solver that needs to be intro-
duced into GASCANS grid. InOutData aggregates all the InOutRepo needed for
a simulation (for example each InOutRepo stores data at a boundary). Adapter
and PreciceInterface form the interface with the coupling library preCICE
[13]; which controls the coupling algorithm and exchange of information with
the coupled solver(s).

All other classes within figure 1 simply provide definitions and utilities.

5

2.2. Multi-GPU Decomposition

Decomposition and definition of the CUDA kernel launch parameters is de-
fined in a different way for 2D and 3D problems to maximise memory access
efficiency. Data is stored in memory using the X, Y, Z order. Therefore, to en-
sure data is moved in a contiguous block for maximum efficiency, the domain is
decomposed in a 1D sense. For 2D problems, the domain cells are grouped into
1D problem blocks in the Y-direction. For 3D problems, the data is grouped
into 2D problem blocks in the Z-direction. The number of problem blocks is
controlled by the user and may or may not match the number of devices. This
allows some flexibility in deploying the simulation on a multi-GPU cluster. For
example, if a user requests 4 blocks and 4 devices but only 3 devices are avail-
able then GASCANS will decompose the domain into 4 problem blocks but
distribute them over 3 devices, with the last device computing two blocks.

Each problem block is defined to be of a uniform size with the final block
accumulating any additional cells if the domain is not exactly divisible. When
calculating the local block size, if the user requests more than one block, halos
of a width defined in the library definitions source will be added to either end
of the blocks. This halo region represents an overlap of cells between adjacent
blocks and is used to exchange information between adjacent blocks during syn-
chronisation. Note that the frequency with which synchronisation is performed
is directly proportional to the thickness of the halo region. Narrow halos have a
reduced memory footprint but require more frequent communication of smaller
amounts of data. The communication of data between GPUs uses the device-
to-device memory copy API. If supported by the hardware, this allows direct
communication of information between device memories without using the host
as a relay. The variation in performance of the LBM algorithm with halo thick-
ness has been reported in [14].

The kernel launch parameters are defined once the decomposition and block
distribution is known. The CUDA framework defines the launch parameters hi-
erarchically. Threads are grouped into 32-thread warps which are arranged over
a 3D thread block which are arranged over a 3D grid. To maximise alignment
between the threads and memory, it is prudent to maximise these dimensions
in the X-direction. The distribution of threads is performed by an iterative
algorithm which uses the user-specified number of warps per block as well as
the number of cells in each problem block to define an optimal 3D arrangement
which satisfies all the constraints. In 2D the grid and thread block dimensions
are equal to 1. The algorithm used is described in Listing 1. Note that if the
number of cells in the X-direction of the problem block nX is less than the
number of threads desired (32×WARPS PER BLOCK) then the thread block
dimensions [X,Y,Z] are simply equal to [nX, 1, 1]. Otherwise, the algorithm is
used to determine the optimal Y and Z dimensions.

Listing 1: Algorithm used to define the kernel launch parameters

1

2 /*

3 Occupancy is here defined as the number of threads that have a

6

4 corresponding cell to compute

5 */

6 var occupancy = 0;

7

8 /*

9 Temporary variables to store thread block dimensions (B) and grid

10 dimensions (G)

11 */

12 var tmpBx, tmpBy, tmpGx, tmpGy, tmpBz, tmpGz;

13

14 // Iterate on block y-dimensions and z-dimensions

15 tmpBy = 0;

16 do

17 {

18 // Try next integer value of bY

19 tmpBy += 1;

20

21 // Reset bZ

22 tmpBz = 0;

23

24 do

25 {

26 // Try next integer value of bZ

27 tmpBz += 1;

28

29 /*

30 Compute number of threads in X direction in block

31 */

32 tmpBx = 32 * G_WARPS_PER_BLOCK / ()tmpBy * tmpBz);

33

34 /*

35 If not a integer value then not a complete number of warps so

36 continue

37 */

38 if (Abs(tmpBx - Ceiling(tmpBx)) > 0)

39 continue;

40 else

41 {

42 tmpBx = Ceiling(tmpBx);

43 tmpGx = Ceiling(nX / tmpBx);

44 tmpGy = Ceiling(nY / tmpBy);

45 tmpGz = Ceiling(nZ / tmpBz);

46

47 /*

48 Store config if better occupancy and X is still the largest

49 dimension

50 */

51 var tmpOcc = (nX * nY * nZ) /

52 (tmpBx * tmpBy * tmpBz * tmpGx * tmpGy * tmpGz)

53 if (tmpOcc > occupancy &&

54 tmpBy < tmpBx && tmpBz < tmpBx)

55 {

56 occupancy = tmpOcc;

57 bX = tmpBx;

58 bY = tmpBy;

59 bZ = tmpBz;

60 gX = tmpGx;

7

61 gY = tmpGy;

62 gZ = tmpGz;

63 }

64 }

65 } while (

66 tmpBz <= nZ &&

67 tmpBz < maxThreadsPermittedZ &&

68 tmpBz < tmpBx);

69 } while (

70 tmpBy <= nY &&

71 tmpBy <= maxThreadsPermittedY &&

72 tmpBy < tmpBx);

2.3. Point Cloud Reader

GASCANS is capable of accepting geometry prescribed as a cloud of point
in 3D Cartesian space. This is particularly useful for coupling to 3D object
scanners for which a point cloud is the standard output format. The point
cloud data file compatible with GASCANS comprises a list of comma-separated
positional information (x,y,z). The user specifies in the geometry configuration
file the name of the point cloud data file along with the desired position and
scale of the object. At runtime, GASCANS reads in the cloud of points and
performs a spatial shift and scale transformation on the coordinates, computing
its bounding box within the problem domain.

Objects that use the bounce-back boundary condition require lattice cells to
be labelled as part of the object. GASCANS is then able to apply the boundary
condition between adjacently labelled fluid-solid cells. When building a bounce-
back object, GASCANS will sub-sample the relevant point cloud data using a
voxel grid filter. The logic to determine whether a cell contains a point, and
should thus be labelled as a solid cell. The behaviour applied to point cloud
processing is describe in Listing 2 and illustrated in 2. Note that it is necessary
to shrink the calculated length of the object for the purposes of labelling: if the
object length was exactly divisible by the cell spacing then the resulting object
is one cell larger than it should be.

Listing 2: Logic for deciding whether a point is within a particular cell

1 /*

2 Assumed definitions:

3 all_points = the collection of points in the cloud

4 point.x, point.y, point.z = the point position in original units of the file

5 length = the desired length in dimensionless units

6 sx, sy, sz = the spatial position of the start or centre of the bounding box

of the object

7 dx = the cell spacing (assume same spacing in all dimensions)

8 delta = a small number defined as 10^-7

9 */

10

11 /*

12 Correct the length of the object to ensure it is not an exact number of cells

13 */

14 var length_mod = length - delta * dx;

8

15

16 /*

17 Compute the scaling factor (assumed here scaling with respect to X but could

be any dimension)

18 */

19 var scale = length_mod / (maxX(all_points) - minX(all_points));

20

21 /*

22 Loop through the points

23 */

24 foreach (point in all_points)

25 {

26 /*

27 Calculate the shift required to star the object at the correct location

28 */

29 var shiftX = sx - scale * minX(all_points);

30

31 /*

32 Calculate the new point

33 */

34 var localX = (point.x * scale) + shiftX;

35

36 // Repeat for other dimensions...

37

38 /*

39 Compute the position to the nearest cell and round down to the lower

40 edge of that cell

41 i, j, k = the cell indices in the grid

42 */

43 var i, j, k;

44 i = floor(localX / dx);

45 j = floor(localY / dx);

46 k = floor(localZ / dx);

47

48 /*

49 If the rounded point rests on the lower edge up to but not including the

upper edge of the cell then the cell can be labelled as solid

50 */

51 cell.type[i,j,k] = CellType.Solid;

52 }

2.4. Transfer data from/to external sources

GASCANS is able to read velocity data generated at the application level
(Fig. 1) and incorporate it as a velocity boundary condition during run time. It
is also able to extract velocity data from user specified coordinates within the
domain and use it at the application level and/or transfer it to other applica-
tions.

GASCANS uses the InOutData and InOutRepo classes to incorporate and
extract data to/from the GASCANS mesh. GASCANS is agnostic to where the
data in InOutData comes from. Thus InOutData can be used to incorporate
data from a different range of sources, for example coupled simulations or files,
without modifying the GASCANS source code.

9

scale

shift

�lter

Figure 2: Illustration of the point cloud process. The bounding box of the scaled cloud is
shown in yellow. The domain and grid of cells is shown in red. The cells labelled by the
process as solid are coloured in green.

InOutData contains a vector of InOutRepo; one InOutRepo for each mesh
section to extract data from or insert data to. Listing 3 shows the structure of
an InOutRepo object. The coordinates_ vector stores the world coordinates
of the data to be incorporated or extracted to/from GASCANS. vectorData_
and scalarData store the values of the variables to be transferred together with
the name of each variable.

Listing 3: Excerpt from the InOutRepo class

1 // Data to send into and out

2 // of the underlying LBM simulation

3 template <typename T>

4 class InOutRepo

5 {

6 public:

7 //...//

8

9 // InOutRepo data needs to be written to LBM mesh

10 bool bReadyToWriteToLBM = false;

11

12 // LBM mesh data needs to be written to InOutRepo

13 bool bReadyToReadFromLBM = false;

14

15 //... Methods to fill in and access the data

16 // stored in InOutRepo ... //

17

18 private:

19 // CPU storage

20 std::vector<T> coordinates_;

21 std::map<std::string, std::vector<T>> vectorData_;

22 std::map<std::string, std::vector<T>> scalarData_;

23 int numDataPoints_ = -1;

24

25 // GPU storage.

26 // There is one pointer for each GPU (decive)

27 std::map<std::string,std::vector<T*>> d_vectorData_;

10

28 std::map<std::string,std::vector<T*>> d_scalarData_;

29 std::vector<T*> d_coordinates_;

30

31 // ... //

32

33 // Offset between world coordiantes

34 // and GASCANS coordinates

35 T x0_ = 0;

36 T y0_ = 0;

37 T z0_ = 0;

38 }

The information stored in InOutData can be updated at run time from an-
other solver connected to GASCANS via preCICE [13]. preCICE is an external
open source coupling library written mainly in C++ 1. The main functions of
preCICE when used to couple GASCANS with another code are to control the
time loop of the coupling solvers, transfer the data that needs to be exchanged
to the receiving solver and interpolate the data from the sending solver mesh
to the receiving solver mesh. Fig. 3 shows an scheme of how GASCANS runs
coupled to another solver via preCICE.

Figure 3: Algorithm of the two-way coupling of GASCANS with another solver.

GASCANS is connected to preCICE at Application level via the preCICE adapter

component, which is based on the OpenFOAM preCICE adapter developed by
Chourdakis [?]. It contains two main classes:

1More information and tutorials about preCICE in https://www.precice.org/

11

• Adapter class: Information to configure the coupling on GASCANS side,
which mainly is:

– Pointer to the precice::SolverInterface object, which links to
preCICE.

– InOutData object that stores the data ready to be sent to preCICE
or received from preCICE. It contains an InOutDataRepo for each
mesh section coupled to preCICE.

– One PreciceInterface object for each coupled mesh section.

• PreciceInterface class: Links the data contained in InOutRepo with the
coupled interface in preCICE. Including:

– Pointer to the precice::SolverInterface object, which is the link
to preCICE.

– Mesh information for the coupled cells: name of the coupled mesh,
meshID, and name of the file that contains the world coordinates 2

of the cells in the coupled mesh.

– Names of the variables to read from preCICE into the InOutRepo

object corresponding to the interface. This is the data that flows
from preCICE to GASCANS.

– Names of the variables to write to preCICE from the InOutRepo cor-
responding to the interface. This is the data that flows from GAS-
CANS to preCICE.

Algorithm 1 shows the GASCANS algorithm while coupled with another
solver and Algorithm 2 shows the details of how the data is incorporated /
extracted to / from the LB main loop.

2.5. Features

GASCANS allows the creation of new features in a modular fashion, new
feature classes need simply implement the common IFeature interface. This
interface provides the methods in Listing 4. The TimeAveragedQuantities

and ArtificialTau classes are considered features and hence implement this
interface. TimeAveragedQuantities calculates the averaged lattice Boltzmann
velocity at run time (section 3.6) and ArtificialTau implements an sponge
layer at the outlet of the domain (section 3.7).

Listing 4: Methods provided by the common feature interface

1 /// <summary>

2 /// Called when the number of problem blocks is known

3 /// </summary>

4 /// <param name="blocks">number of problem blocks</param>

2coordinate system shared by pisoFoam and GASCANS

12

Algorithm 1 Algorithm for GASCANS coupled with another solver empha-
sizing the coupling steps.

1: Step 1: Initialisation
2: for all interfaces, i do
3: Write the world coordinates of the GASCANS mesh in a file.
4: end for
5: Instantiate and initialise an Adapter object using precice-config.xml and

preciceConfig.yml.
6: for all interfaces,i do
7: Add a PreciceInterface object with the information read from preciceCon-

fig.
8: Add an InOutRepo to the InOutData object.
9: end for

10: Initialise the precice::SolverInterface object.
11: Exchange initial data if needed.
12: Add the offset between world coordinates and GASCANS coordinates to all

the InOutRepos in InOutData

13:

14: Step 2: Simulation
15: while preCICE is coupling do
16: runTimeStep(InOutData)
17: for all interface.writeData, writeData do
18: Transfer writeData from InOutData.InOutRepo[writeData] to pre-

CICE.
19: Mark InOutData.InOutRepo[writeData] as ready to write to LBM.
20: end for
21: Advance preCICE (It sends the write data and receives the read data)
22: for all interface.readData, readData do
23: Transfer readData from preCICE to InOutData.InOutRepo[readData].
24: Mark InOutData.InOutRepo[readData] as ready to read from LBM.
25: end for
26: end while
27:

28: Step 3: Finalise
29: Clean up and destroy the preCICE and GASCANS objects.

5 virtual void setSize(int blocks) = 0;

6

7 /// <summary>

8 /// Called when the number of cells for the domain is known

9 /// </summary>

10 /// <param name="nX">number of cells in X</param>

11 /// <param name="nY">number of cells in Y</param>

12 /// <param name="nZ">number of cells in Z</param>

13 virtual void initialise(int nX, int nY, int nZ) = 0;

14

13

Algorithm 2 Algorithm for the runTimeStep(InOutData)

1: for all InOutRepo in InOutData, repo do
2: if repo.isSEM then
3: Update SEM velocity
4: end if
5: if repo.bReadyToWriteToLBM then
6: Copy vectorData_[velocity] to d_vectorData_[velocity]

7: Introduce d_vectorData_[velocity] to GASCANS mesh
8: end if
9: end for

10: GASCANS time step (stream and collide)
11: for all InOutRepo in InOutData, repo do
12: if repo.bReadyToReadFromLBM then
13: Extract velocity from GASCANS mesh to d_vectorData_[velocity]

14: Copy d_vectorData_[velocity] to vectorData_[velocity]

15: end if
16: end for

15 /// <summary>

16 /// Called to allocate any host pointers

17 /// </summary>

18 /// <param name="nSize">total number of cells in the domain</param>

19 virtual void allocateOnHost(int nSize) = 0;

20

21 /// <summary>

22 /// Called to allocate any device pointers

23 /// </summary>

24 /// <param name="block">the problem block of interest</param>

25 /// <param name="pitch">[output] the require pitch of the padded memory based

on data type</param>

26 /// <param name="width">the width of the memory allocation</param>

27 /// <param name="height">the height of the memory allocation</param>

28 virtual void allocateOnDevice(int block, size_t& pitch, size_t width, size_t

height) = 0;

29

30 /// <summary>

31 /// Called to initialise device memory from host memory

32 /// </summary>

33 /// <param name="block">the problem block of interest</param>

34 /// <param name="deviceOffset">offset into the device pointer memory to start

the copy</param>

35 /// <param name="hostOffset">offset into the host pointer memory to start the

copy</param>

36 /// <param name="pitchElems">pitch in terms of number of elements used in

combination with the offset to find correct starting byte</param>

37 /// <param name="pitchBytes">pitch in terms of the bytes to calculate correct

stride</param>

38 /// <param name="width">width of 2D data</param>

39 /// <param name="height">height of 2D data</param>

40 /// <param name="stream">stream through which to pass the data</param>

41 virtual void initialiseDeviceFromHost(int block, int deviceOffset,

14

42 int hostOffset, int pitchElems, size_t pitchBytes, size_t width,

43 size_t height, cudaStream_t& stream) = 0;

44

45 /// <summary>

46 /// Called to copy data from device memory back to host memory

47 /// </summary>

48 /// <param name="block">the problem block of interest</param>

49 /// <param name="deviceOffset">offset into the device pointer memory to start

the copy</param>

50 /// <param name="hostOffset">offset into the host pointer memory to start the

copy</param>

51 /// <param name="pitchElems">pitch in terms of number of elements used in

combination with the offset to find correct starting byte</param>

52 /// <param name="pitchBytes">pitch in terms of the bytes to calculate correct

stride</param>

53 /// <param name="width">width of 2D data</param>

54 /// <param name="height">height of 2D data</param>

55 /// <param name="stream">stream through which to pass the data</param>

56 virtual void backCopy(int block, int deviceOffset, int hostOffset,

57 int pitchElems, size_t pitchBytes, size_t width, size_t height,

58 cudaStream_t& stream) = 0;

3. Lattice Boltzmann method and models implemented in GASCANS

This section describes the models implemented in GASCANS and thus the
physical phenomena GASCANS is able to model.

3.1. BGK Lattice Boltzmann Method

GASCANS implements a 3DQ19 BGK lattice Boltzmann method (LBM) as
its core solver.

The lattice Boltzmann method solves for the particle distribution functions
fα, which represent the probability of a group of fluid particles at a position x
and time t to move at a velocity ci. The particle velocity space is discretised; the
number of discretised particle velocities depend on the lattice model. GASCANS
implements a 3DQ19 lattice model; its discretised particle velocities are:

ci =

0, i = 0,
(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1 to 6,
(±1,±1, 0), (±1,±0,±1), (0,±1,±1) i = 7 to 18.

(1)

Given distribution functions fi at a time t, the LBM equation,

fi(x + ci, t+ ∆t) = fi(x, t)−∆t/τ
[
fi(x, t)− f (eq)

i (x, t)
]

+ ∆tFi(x, t) . (2)

15

is used to compute their values at a time t + ∆t. τ is the BGK relaxation

timescale and the BGK equilibrium distribution f
(eq)
i is

f
(eq)
i = ρωi

[
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u2

2c2s

]
(3)

where ω0 = 1/3, ωi = 1/18 for i = 1 to 6 and ωi = 1/36 for i = 7 to 18 are
the weight coefficients of the 3DQ19 lattice and cs = 1/

√
3 is the lattice sound

speed. Given a force density F acting on the fluid, the force contribution Fi in
Eq. 2 is defined by

Fi =

(
1− ∆t

2τ

)
ωi

[
ci − u

c2s
+

ci · u
c4s

ci

]
· F . (4)

The macroscopic fluid density and velocities are given by

ρ =
∑

i

fi (5)

ρu =
∑

i

cifi + ∆t/2F . (6)

All the presented equations that form the lattice Boltzmann units are in
lattice units. Lattice units measure the space in number of cells and the time
in number of time steps; thus the macroscopic velocity u represents how many
cells cells the fluid covers in one time step. It is also convenient to set ∆t = 1
time step, which allows for each of the discretised particle velocities i to reach
the neighbouring cell in one time step.

It can be shown [15] that the lattice Boltzmann equation reproduces the
Navier-Stokes equations for low Mach number flows with the following pressure
p and kinematic viscosity ν:

p = c2sρ
δx2

δt2
(7)

ν =
1

3

(
τ − ∆t

2

)
δx2

δt
(8)

where δx is the lattice boltzmann cell size in the Navier-Stokes units (i
e. meters or dimensionless) and δt is the lattice Boltzmann time step in the
Navier-Stokes units (i e. seconds or dimensionless).

The algorithm in GASCANS proceeds as follows. The first step is to stream
the distribution functions at time t from appropriate neighbouring lattice sites
to compute the “streamed” distribution function f∗i ,

f∗i (x, t+ ∆t) = fi(x− ci∆t, t) , (9)

16

and no other information from time t is used. All further quantities in this
section are considered to be evaluated at position x and time t + ∆t, so these
labels are omitted for brevity.

The macroscopic density ρ and velocity u are then computed from the
streamed distribution functions as

ρ =
∑

i

f∗i , (10)

ρu =
∑

i

cif
∗
i + ∆t/2F (11)

Finally, the LBM collision step, Eq. 2, is performed in order to compute the
new distribution functions fi at time t+ ∆t,

fi = f∗i −∆t/τ
[
f∗i − f (eq)

i

]
+ ∆tFi . (12)

In summary, the algorithm is

1. Stream fi from neighbouring lattice sites according to Eq. 9;

2. Compute the macroscopic density and velocity (Eq. 10-11);

3. Collide the distribution functions as in Eq. 12.

3.2. Boundary Conditions

GASCANS provides two boundary conditions to fix the velocity and density
at the specified boundary:

• Regularised velocity [16] sets the macroscopic velocity to the user input
calculates the corresponding pressure and deduces and corrects the particle
distribution functions at the cells.

• Forced equilibrium sets the macroscopic velocity to the user input and
macroscopic density to one and sets the corresponding particle distribution
functions to their equilibrium values (eq. 3)

GASCANS provides three boundary conditions to define walls through which
the flow cannot penetrate:

• Regularised velocity [16] with the macroscopic velocity set to zero.

• Half-way bounce-back [15] which sets a no slip boundary condition (i
e. velocity equal zero at the wall). The wall is situated halfway between
the centre of the bounce back boundary cell and the centre of the first cell
of the domain.

• Symmetry [15] sets the boundary as a slip wall, the velocity next to the
wall is symmetric to the velocity at the wall, hence the fluid can not go
through the wall.

17

For open boundaries (i e. boundaries that allow the flow to go through them)
GASCANS provides:

• Periodic is the default boundary condition and streams the particles that
would exit the domain into the incoming particles for the opposite bound-
ary.

• Extrapolated set the missing particle distribution functions to the values
of the particle distribution functions on the neighbour cell in the stream
direction. Its effect approximately a zero gradient for pressure and veloc-
ity.

3.3. Body Forcing

The flow may be accelerated in the direction of the X-axis through specifica-
tion of a body force value. This value may model a pressure gradient across the
domain or a global force terms such as gravity. The forcing is included in the
LBM using the approach of Guo et al. [17]. Assuming a force in lattice units
of fx, this is implemented as a two-step correction: during the streaming step,
the momentum in the X-direction is augmented by the additional momentum
due to the force 1

2ρfx; then, as part of the collision step, the force contribution
along the v-th lattice link fv is added to the population. Mathematically these
steps are represented as:

ρux 7→ ρux +
1

2
ρfx (13a)

fv =
wv
c2s

(
1− ω

2

)
ρfx

[
cx,v

(
1 +

~ci,v~ui
c2s

)]
(13b)

where i represents the Cartesian direction, w is the link weighting, ω is the
relaxation frequency, cs is the lattice sound speed, ~u is the macroscopic velocity,
and ~c is the lattice link directions.

3.4. Immersed Boundary Method

GASCANS has the capability to simulate the flow of a fluid around an
immersed solid body. The fluid and body velocities must be matched at the
boundary between them. The traditional approach to this problem is to mod-
ify the fluid grid to conform to the shape of the immersed body, which may
be arbitrary, and to exchange force information across the boundary. This is
complicated to implement, and when the body deforms or moves, the fluid grid
needs to be recomputed and fluid data interpolated to the new cell locations,
leading to a significant cost in performance. In contrast, Peskin [18] introduced
the Immersed Boundary Method (IBM), in which the fluid is evolved throughout
the entire domain on a simple regular grid, and the presence of the solid body
is represented via a forcing term in the fluid evolution equations equal to the
force between the body and the fluid such that their velocities are equal at the
boundary of the body. The IBM method in GASCANS follows that in Ref. [19],

18

though the order of the steps from Algorithm 1 has been modified for GPU ef-
ficiency reasons. We give a brief presentation of the algorithm implemented in
GASCANS here, but refer the reader to Refs. [18] and [19] for derivations and
detailed discussions. In the present version of GASCANS , the solid body is
limited to being rigid, and the extension to flexible bodies is planned for the
future.

Given the shape of an immersed body, marker nodes are laid out along the
boundary. The node positions are independent of the fluid lattice, and instead
conform to the geometry of the body. The spacing of the marker nodes is chosen
to be roughly commensurate with the fluid lattice spacing.

In order to compute the IBM force on the fluid from the boundary of the
body, the fluid density ρ and velocity u must be interpolated from the fluid
lattice to the position of each marker node, and the computed force then spread
back onto the fluid lattice as a force density.

The interpolation and spreading operators make use of the following discrete
Dirac delta kernel[20]:

δ̃(x) = (∆x)−d
d∏

i=1

δ̃(xi) where (14)

δ̃(r) =

1/3(1 +
√
−3r2 + 1 |r| ≤ 0.5

1/6(5− 3|r| −
√
−3(1− |r|)2 + 1 0.5 ≤ |r| ≤ 1.5

0 otherwise

(15)

A field φ is interpolated from the fluid lattice with points xj via

I[φ(x)]s =
∑

j∈Ds

φ(xj)δ̃(xj − xs)(∆x)d (16)

Conversely, a field Φ is spread from a marker node into the fluid lattice via

S[Φ(x)]j =
∑

s∈Dj

Φ(xj)δ̃(xs − xj)εs∆s1 . . .∆sd (17)

where ∆s1 . . .∆sd represents the volume associated with the point, and the
computation is required only over the support of δ̃. The factor εs ensures that
I and S are reciprocal[21], and is computed by solving the linear system

Aε = 1 (18)

where the N ×N matrix A is defined via

Anm = ∆s
∑

Ω

δ̃(x−Xn)δ̃(x−Xm) (19)

and represents the degree of coupling between different marker node positions
in the stencil of δ̃, where N is the number of marker nodes.

19

We now describe how the LBM scheme described in Sec. 3.1 is modified to
implement the IBM. The evaluation of the macroscopic velocity u in Eq. 11
(step 2 of the algorithm given at the end of Sec. 3.1) requires F(x, t + ∆t) to
be computed. This proceeds as follows. The velocity is split into predicted and
force correction terms,

ρu = ρu∗ + ∆t/2F (20)

with

ρu∗ =
∑

i

cif
∗
i (21)

which can be immediately computed from the known fi. This predicted velocity
is the velocity that the fluid would have if the boundary force at time t + ∆t
was zero.

ρ and u∗ are then interpolated from the fluid grid to the marker node,

ρs = I[ρ]s (22)

u∗s = I[u∗]s (23)

where the subscript s labels a marker node.
The essence of the IBM is to compute the boundary force F such that the

fluid velocity u is equal to the boundary velocity uB (no-slip condition) at the
positions of the marker nodes. Rearranging Eq. 20 and setting u = uB, we find

Fs = 2/∆tρs [uB − u∗s] , (24)

where again the subscript s indicates that the quantity is evaluated at the po-
sition of a marker node.

The force Fs on the marker node is then translated into a distributed force
density field F via the spreading operator,

F = S[FS] , (25)

where F will have support only in the neighbourhood of the boundary.
The velocity field u can now be computed as the sum of the predicted velocity

and the contribution due to the calculated body force F using Eq. 20.
In the method described above, the interpolation, force-correction and spread-

ing operations are associated with a specific marker node. Hence, it makes sense
to parallelise the algorithm over marker nodes, with one GPU thread processing
each node. This allows the computation to scale to larger numbers of GPU cores
as the number of marker nodes increases, as it does with increased resolution,
since we aim to have similar marker and lattice spacings.

We have developed an IBM CUDA module for GASCANS which interacts
with the rest of GASCANS primarily via a single function call, doIBM. All IBM-
related setup, including specification of the bodies, memory allocation, etc, is
handled within this module. doIBM interpolates the fluid velocity and density

20

arrays onto the marker nodes, solves for εs using the standard CUSOLVER library,
computes the IBM force on each node, then spreads this force back into the
fluid force density array. Hence, IBM is very loosely coupled with the rest of
GASCANS, enhancing maintainability, and allowing for the possibility of reuse
of this module.

The main LBM update step is implemented in GASCANS in a single kernel.
This kernel is parallelised over the fluid cells and for each cell, performs the
following operations in sequence:

1. Load required data from global memory into a local cache;

2. Stream populations fi from neighbouring cells into the current cell;

3. Compute macroscopic density ρ and velocity u from the streamed fi and
any applied forces (e.g. gravity);

4. LBM collision to modify fi according to the collision prescription, includ-
ing any applied forces

The computation of the IBM force needs to be performed between steps 3 and
4. This introduces a complication, because the LBM algorithm is parallelised
over fluid cells, whereas the IBM algorithm is parallelised over marker nodes.
This required the introduction of a separate IBM kernel, and splitting the LBM
kernel into two when run with IBM to allow the IBM algorithm to be run at
the correct point. This impacts performance, as the cache needs to be reloaded
during the second LBM kernel, hence the original unsplit kernel implementation
is used when GASCANS is run without IBM.

In CUDA, it is efficient (see Ref. [22], 9.2.1 Coalesced Access to Global Mem-
ory) for adjacent threads to access adjacent global memory locations simultane-
ously. This implies that a structure of arrays memory layout is beneficial, and
this is what has been chosen for the IBM body data in GASCANS .

In this initial version, the IBM implementation is limited to running on a
single GPU. Extension to multiple GPUs is planned for the future.

3.5. Turbulence Modelling

Turbulent flows act in a large range of time and space scales; to accurately
model turbulence using the basic lattice Bolztmann equation (eq. 2) requires a
domain as big as the bigger scales with cell size as small as the viscous dissi-
pation scale. This makes modelling turbulent flow computationally expensive.
Large eddy simulation (LES) turbulence models solve for the medium to large
turbulent scales and model the small scales.

3.5.1. Large Eddy Simulation (LES) Smagorinsky

GASCANS implements the LES Smagorinsky turbulence model as described
in [23]. Koda and Lien [23] model the effect of the turbulent scales smaller than
the grid size by adding an extra term to the relaxation time τtot:

τtot =
1

2ρ

(√
ρ2τ2 +

√
218ρCs∆2Q1/2 − τρ

)
+ τ (26)

21

where τ is the original relaxation time in eq. 2, ρ is the macroscopic density,
Cs is the Smagorinsky constant, usually set as Cs = 0.01, and ∆ = 1 is the cell
size.

3.5.2. Synthetic Eddy Method (SEM)

Large eddy simulations requires time dependent instantaneous values of ve-
locity at the inlet in order to work properly. However, it is common to only have
mean flow data. The Synthetic eddy method generates instantaneous velocity
values from the following mean flow data: mean velocity Ui, Reynolds stresses
uiuj and turbulence dissipation rate ε.

GASCANS implements the SEM model developed by Skillen et al. [24],
which is executed by the CPU part of GASCANS .

The main novelty added in GASCANS is that the model is optimised to the
constant grid size used in lattice Boltzmann simulations and also able to run
in parallel using OpenMP. Moreover, the user can set a SEM Courant number,
which will determine how often the instantaneous velocities are updated. The
constant grid size optimisation together with the OpenMP parallelisation offer
around 40 times speed up compared to implementing the base SEM model
directly in GASCANS . The SEM Courant number feature can be activated if
the computational time needs to be further reduced.

3.6. Time Averaging

The large range of scales of motion overlapped in turbulent flow make it
difficult to analyse the flow using only the instantaneous velocity values ui. One
of the most common analysis is to represent the instantaneous velocity ui as the
sum of a mean component Ui = ui and a fluctuating component u′i = ui − ui
with u′i = 0. Some characteristics of turbulent flows can be described using the

time averaged velocity Ui and the time averaged Reynolds stresses u′iu
′
j .

GASCANS implements time averaging for each component of the velocity
Ui and the time averaging of the products of the components uiuj

Ui =
∑

t

ui(t) (27)

uiuj =
∑

t

ui(t)uj(t) i, j = 0 : 2 (28)

The time averaged Reynolds stresses can be calculated as:

u′iu
′
j = uiuj − UiUj (29)

3.7. Sponge Layer

The majority of lattice Boltzmann boundary conditions reflect pressure waves
due to the weakly compressible nature of the lattice Boltzmann method. These
pressure waves can destabilize the simulation, especially in the vicinity of outlet

22

boundaries (or Neuman boundaries) in turbulent flows. Sponge layers are a
common tool to stabilize the simulation near outlets.

GASCANS implements a viscosity sponge layer for the yz wall at x = N ,
where N is the number of cells in the x direction. Within the sponge layer the
viscosity of the fluid is increased as it approaches the outlet via:

νtotal = ν

[
1 +m

(
i− i0
N − i0

)a]
(30)

where νtotal is the viscosity applied within the sponge layer, ν is the viscosity
of the fluid in lattice Boltzmann units, m is a multiplier, i is the current cell
x index, i0 is the x cell index where the sponge layer starts and a determines
the order of the polynomial. For example m = 1 and a = 3 double the viscosity
at the outlet going from νtotal = ν at the beginning of the sponge layer to
νtotal = 2ν at the outlet boundary following a cubic function.

4. Validation

4.1. Turbulent Channel Flow

This test case validates the implementation of the LES Smagorinsky model
in GASCANS . The case is based in the numerical case by [23] and models a
periodic turbulent channel flow with Reτ = 180 and dimensions 12H×2H×4H
in x, y and z respectively, meshed using cubic cells of size δx = 1/31 and time
step δt = 0.001. H is half the height of the channel. The top and bottom walls
are set to no slip using bounce back boundary conditions and the boundaries
in the streamwise and spanwise directions are periodic. This case uses the
Smagorinsky LES turbulence model (section 3.5.1) with a Smagorinsky constant
Csa = 0.01 and using the solved density ρ to calculate the total relaxation time
(section 3.5.1).

Fig. 4 shows the GASCANS results compared to the Navier-Stokes DNS
results by Kim et al. [25] and the lattice Boltzmann LES results by [23]. GAS-
CANS results show good agreement with the results in the literature for the
streamwise mean velocity in wall units U+ = U/Uτ and the fluctuating veloci-
ties in wall units u+, v+ and w+. The peak location of u+ is displaced for both
Y.Koda [23] and GASCANS ; GASCANS presents an overprediction of u+, v+

and w+ which is consistent with the overprediction of the mean velocity U+.
The bulk velocity Reynolds Reb number for the GASCANS channel flow is 5%
below the Reb for a Reτ = 180 channel flow, which can explain the overpredic-
tion of the mean and fluctuating velocities. Fig. 4 also shows the maximum
U and minimum u+, v+, w+ values displaced from the centre of the channel,
which is also an indication of the mismatch in the Re numbers.

4.2. Turbulent channel flow with synthetic eddy method inlet

This test case is a 3D turbulent channel flow with Reτ = 395 and dimensions
10H × 2H × 3.16H in x (streamwise), y (vertical) and z (spanwise) directions

23

10 1 100 101 102

y+

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

U+

NS DNS
YKoda LB LES
U+ LB LES

(a)

0 20 40 60 80 100 120 140 160
y+

0.0

0.5

1.0

1.5

2.0

2.5

3.0

u+
,v

+,
w+

NS DNS u+
NS DNS v+
NS DNS w+
YKoda u+
YKoda v+

YKoda w+
u+ LB LES
v+ LB LES
w+ LB LES

(b)

Figure 4: Mean streamwise velocity in wall units (left) and fluctuating velocity components
(right): GASCANS results (continuous), NS DNS (cite paper), (dashed) and Y.Koda LB
LES [23] (dash dot). Mean streamwise velocity U+ (black), fluctuating velocity u+ (blue),
v+ (red), w+ (green).

respectively, meshed using cubic cells of size δx = 0.01 and time step δt =
0.0001. H is half the channel height. The top and bottom walls are set to
no slip using bounce back boundary conditions and the boundaries in the z
direction are periodic. The outlet is set as an extrapolated boundary and a
viscosity sponge layer is added from x = 9 onwards to stabilize the result at the
outlet. The flow enters the domain through the inlet, which sets a regularised
velocity boundary condition. The inlet velocity is generated using the synthetic
eddy method (see section 3.5 and [24]) with the mean flow data from the Kozuka
et al. [26] DNS simulation. The SEM is configured with a maximum eddy size
σmax = 0.5 and a minimum eddy size σmin = 4δx. No turbulence model is used
for this test case.

Fig. 5 shows the vertical profile of the shear Reynolds stress at x = 5 and the
wall friction coefficient along the streamwise direction obtained by GASCANS
with no turbulence modelling compared with the ones obtained by Skillen et al.
[24]; which models a channel flow of similar characteristics but slightly higher
resolution using a LES turbulence model. Both the shear Reynolds stress (Fig.
5 (a)) and the wall friction coefficient (Fig. 5 (b)) agree with the results from
Skillen et al. [24] and with the DNS data from Kozuka et al. [26]. The main
differences are in the friction coefficient (Fig. 5 (b)). GASCANS presents a
more extreme minimum and maximum values but both results are within 1% of
the DNS data from x = 5 onwards. The decrease in the friction coefficient near
GASCANS outlet is due to the effect of the sponge layer and does not affect
the accuracy of the SEM.

4.3. Ahmed Body

This section validates the ability of GASCANS to use geometries imported
from point cloud files. The chosen test case is 3D laminar flow around the
Ahmed body; its position in the simulation domain and shape are shown in Fig.
6.

24

0.0 0.2 0.4 0.6 0.8 1.0
y/

0.0

0.2

0.4

0.6

0.8

1.0

(u
v

+
)

DNS
A.Skillen x = 5
GASCANS x=5

(a)

0 2 4 6 8 10
x/H

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Cf
/C

f D
N

S

A.Skillen
Present work
DNS
+ 1 %
- 1 %

(b)

Figure 5: Reynolds shear stress in wall units at x = 5 (left), where δ is half the channel height;
and wall friction coefficient non-dimensionalised with the DNS wall friction coefficient from
[26] (right). GASCANS results (continuous blue), Navier-Stokes periodic DNS by Kozuka et
al. [26] (dashed black) and Skillen et al. [24] SEM Navier-Stokes LES (dot dashed red).

Figure 6: Configuration of the Ahmed body: (a)side view, (b)rear view.[27]

This case models a laminar flow with ReH = 310, where H is the height of
the Ahmed body. The domain size is 26.88H × 6.72H × 6.72H and it is meshed
with a constant cell size δx = H/27 and time step δt = 0.0002.

As shown in Figure 7, despite of side view or top view, the GASCANS results
are quite close to the results on Evstafyeva et al. [27]. The flow after Ahmed
body consists of two recirculating regions which lies horizontally on the top.
And we can see that the flow is steady and symmetric.

4.4. Flow around a rigid cylinder and filament

We have used our implementation of the immersed boundary method to sim-
ulate the 2D flow of a fluid around a rigid cylinder and filament, corresponding
to case CFD1 in [28]. The steady-state drag and lift on the bodies are plotted
in Fig. 8 as a function of lattice cell spacing, and compared with the reference
result from [28] plotted as a dashed line. We see that the GASCANS results
converge to a value similar to the published reference results.

4.5. 2D moving plate

We have simulated the flow of a fluid around an impulsively started 2-
dimensional infinitesimally thin finite flat plate. At time t = 0, the fluid and

25

Figure 7: The side view and top view of the flow after Ahmed body via 2D slice with stream-
lines. (The top two are from Evstafyeva et al. [27], while bottom two results are simulated
by GASCANS)

0 1/4 1/2 3/4 1
100 x

0

5

10

15

20

25

F x
/N

0 1/4 1/2 3/4 1
100 x

0.0

0.5

1.0

1.5

2.0

F y
/N

Figure 8: Drag (Fx) and lift (Fy) forces on a rigid cylinder and filament (CFD1 in [28])
computed by GASCANS for different lattice spacings ∆x. The reference result from [28] is
shown as a dashed line.

plate are at rest, and the plate of height h is instantaneously accelerated to a
velocity U0. The velocity is prescribed, rather than being determined by the
force exerted by the fluid on the plate. The Reynolds number Re = U0h/ν is
chosen as 1000, where ν is the kinematic viscosity of the fluid. The fluid domain
dimensions are 12h×9h, the lattice spacing is ∆x = 12h/720, and the time step
is ∆t = 5×10−4h/U0. This case has been studied in Ref. [29]. In our treatment,

26

extrapolation boundary conditions are applied at all boundaries, and there are
60 IBM markers across the plate.

4.0 4.5 5.0 5.5 6.0
x/h

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

y/
h

0

10

20

30

(a) Vorticity at tU0/h = 2. The plate, repre-
sented by the IBM markers at x = 4h, is moving
to the left;

0 1 2 3 4 5
t U0/h

0.0

0.5

1.0

1.5

2.0

2.5

s/
h

(b) Non-dimensional separation bubble length
s/h behind the plate as a function of non-
dimensional time tU0/h from GASCANS (solid
line) compared with results from the literature
(pluses)

Figure 9: Simulation of an impulsively started moving plate with GASCANS

Fig. 9a shows the absolute value of the vorticity around the moving plate,
and the two vortices formed behind the plate. The result agrees visually with
that reported in Fig. 2.(a) of Ref. [30], in which the same configuration was
studied.

Fig. 9b shows the non-dimensional length s/h of the reversed-flow region
behind the plate as a function of the non-dimensional time tU0/h. The solid
line corresponds to the present results, and the pluses are the values obtained
in Ref. [29]; we see good agreement.

4.6. Coupling with OpenFOAM

This test is based on the numerical study by Hwang and Yang [31] and used
to validate the two-way coupling facilities implemented in GASCANS . The case
models laminar flow (Re = 150) around a wall mounted cube in a channel. The
cube has size 1 and is placed at 3 units from the inlet in the streamwise direction
and centred in the spanwise direction. The original domain is split in two sub-
domains (see Fig. 10), one solved using GASCANS and one solved using the
pisoFoam solver of the Navier-Stokes CFD OpenFoam [32]. The GASCANS
sub-domain models the flow from the inlet until 7 in the streamwise direction
x; the OpenFOAM sub-domain models the flow from x = 5 to x = 10.

The GASCANS sub-domain measures 7×2×8 units in x, y and z respectively
and is meshed using cubic cells of size δxLB = 0.025 and a time step δtLB =
0.0003125. The top and bottom boundaries are set to no-slip using bounce-back

27

Figure 10: Sketch of the coupled case domain. LB denotes the GASCANS sub-domain, NS
the OpenFoam sub-domain, LB to NS is the boundary where the data is interpolated from
GASCANS to OF and the OF left boundary, NS to LB is the boundary where the data is
interpolated from OF to GASCANS and the GASCANS right boundary.

boundary conditions, the inlet (LB inlet in Fig. 10) implements a regularised
boundary condition (cite regularised paper) that sets the inlet velocity to a
laminar parabolic profile, the sides in the z direction are set to periodic and the
right boundary (NS to LB in Fig. 10) implements a forced equilibrium boundary
condition that sets the velocity to the values interpolated from the OpenFOAM
sub-domain and the the density to 1.

The OpenFOAM sub-domain starts at x = 5 and measures 5×2×8 units in
x, y and z respectively. It is meshed using NS a structured mesh refined towards
the bottom and the cube walls with a minimum cell height of δxNS = 0.006 and
a time step δtNS = 0.005. The top and bottom boundaries are set to no-slip,
the inlet (LB to NS in Fig. 10) is set to the velocity interpolated from the
GASCANS subdomain and the pressure gradient is set to 0, the sides in the z
direction are set to periodic, the outlet (NS outlet in Fig. 10) velocity gradient
is set to zero and the outlet pressure is set to 0. The OpenFOAM inlet requires
the volumetric flow rate at the inlet to be corrected to ṁ = A ∗ Ub, where A
is the area of the inlet and Ub is the bulk velocity of the parabolic velocity
profile. If the flow is not corrected, OpenFOAM tries to adjust it by modifying
the pressure at the outlet, which generates instabilities at the coupling and
invalidates the results.

The two sub-domains are coupled using a two-way explicit algorithm in which
both sub-domains are run simultaneously. The results of the Navier-Stokes sub-
domain are interpolated to the NS to LB boundary in the LB sub-domain; the
results of the lattice Boltzmann subdomain are interpolated to the LB to NS
boundary in the Navier-Stokes sub-domain (see Fig. 10). The information is
exchanged when both solvers reach the coupling time window.

This section only presents the main results of this test case. A more in depth
study of the accuracy, performance and effect of the overlap region can be found
in [33].

Fig. 11 shows the results of running the test case until a steady state is

28

reached. The streamlines are continuous in both the OpenFoam and GAS-
CANS sub-domains, except for a small discrepancy at the GASCANS right
boundary that can also be observed in the pressure values. This discrepancy is
mainly due to the forced equilibrium boundary condition applied to GASCANS
’ right boundary since it sets the GASCANS density to a constant value and it
disregards the off-equilibrium information in the OpenFOAM velocity.

Figure 11: Streamlines on the horizontal plane y=0.04 (top-left) and the central vertical
plane z = 0 (top-right) for the coupled GASCANS to OpenFOAM simulation, LB streamlines
(blue), NS streamlines (red). Bottom plots: pressure at 4 lines in each plane compared with
the results of a single LB model.

5. Performance

The Lattice Boltzmann Method is very well matched to the performance
characteristics of GPUs, due to the high degree of local computation in a single
cell relative to data transfers from neighbouring cells. In this section, we briefly
report the results of performance benchmarks we have run on GASCANS . We
run the benchmarks on a single node of the GPU cluster Bede [34]. The node
has 4 Nvidia Tesla V100 GPUs with 32 GB of GPU memory and NVLink 2.0,
as well as 2x POWER9 CPUs running at 2.7GHz (32 cores total and 4 hardware
threads per core).

The benchmark setup consists of a 3D cubical grid consisting of 384 ×
384 × 384NGPUs cells running the core LBM solver in single precision for 1000
timesteps, where NGPUs is the number of GPUs over which the problem is run.
This constitutes a weak scaling test, as the problem size per GPU is independent
of the number of GPUs. The algorithm is not data-dependent, hence a zero-
velocity flow is sufficient to measure performance. We use periodic boundary
conditions on all faces of the grid.

The benchmark results are presented in Table 1 and Fig. 12 in terms of the
speed of the code in million lattice updates per second (MLUPS).

We see that the single-GPU performance is 2030 MLUPS, and for larger
problems that require more GPU memory, the code can be scaled to 4 GPUs
with 87% of ideal performance.

29

nGPUs Speed [MLUPS] Scaling efficiency

1 2030 100
2 3746 92
3 5310 87
4 7048 87

Table 1: Weak scaling performance of GASCANS . The evolution speed in million lattice
updates per second (MLUPS) is given for a fixed problem size per GPU against the number
of GPUs, as well as the resulting fraction of ideal scaling performance obtained.

0 1 2 3 4 5
Number of GPUs

0

2000

4000

6000

8000

10000

Sp
ee

d
[M

LU
PS

]

Measured speed
Ideal

Figure 12: Weak scaling performance of GASCANS . The evolution speed in million lattice
updates per second (MLUPS) is plotted for a fixed problem size per GPU against the number
of GPUs, as well as the line representing ideal weak scaling.

Table 2 shows GASCANS performance compared with other GPU LB solvers
with LB schemes similar to GASCANS ; executed using one Nvidia V100 GPU.
To the extend of our knowledge and as shown in Table 2, there is no agreed upon
test case to evaluate the performance of a GPU LB code, which could explain in
part the performance differences between the codes. GPU perfomance is very
sensitive to inhomogeneities in the treatment of each cell (i e. branch divergence)
[35], the floating point precision [36], the LB scheme, the data structure and the
storage and treatment of the particle distribution functions during streaming
[9].

Oliveira et al. [36] present the test case and LBM scheme closest to GAS-
CANS but performs at 1.95 times GASCANS speed. This speed difference is
probably due to the treatment of the boundary conditions. Oliveira et al. [36]
uses a 32 bits bitmap to store: type of cell, the normal direction of the boundary
cell, the boundary condition to apply and the index of an array with its macro-
scopic values. GASCANS needs to determine if a cell is next to the boundary
and which is its normal at run time, thus increasing the computing time.

30

Reference Speed [MLUPS] Test case LBM scheme

Oliveira et al. [36] 3959.8 (s) Periodic domain D3Q19 BGK
STLBM [9] 1422.6 (d) 3D lid driven cavity D3Q19 BGK

UltrafluidX [5] 800 (s) Empty wind tunnel D3Q27 cumulant
GASCANS 2030 (s) Periodic domain D3Q19 BGK

Table 2: Comparison of GASCANS performance with recent works using Nvidia V100
GPU(s). This table includes the MLUPS in (s) single precision or (d) double precision for
each code , the test case used to evaluate the performance and the LB scheme and collision
model.

6. Conclusions

This paper presented the multi-GPU lattice Boltzmann code GASCANS .
GASCANS offers fast and easy to configure simulations for turbulent flow and
moving objects. Moreover, GASCANS is able to assimilate velocity data from
external sources at run time and implements an interface with the coupling li-
brary preCICE [13]. GASCANS combined with preCICE can run coupled sim-
ulations with other solvers, in which each of the participating solvers exchange
their boundary data during run-time.

GASCANS fills an niche in the market of open-source GPU accelerated
lattice Boltzmann solvers, providing ready to use and adaptable turbulent flow
and moving objects modelling aimed at engineers with limited or no access to
large computer systems. GASCANS performance is comparable with other LB
GPU codes with similar LBM schemes, but has room for improvement. One
suggestion to improve GASCANS performance would be to implement a more
efficient treatment of the boundary cells.

Regarding, turbulent flows, the synthetic eddy method inlet together with
the GASCANS core BGK lattice Boltzmann and its Smagorinsky LES turbu-
lence model yield results of an accuracy comparable to the ones obtained using
classic Navier-Stokes methods. Moreover, the point cloud reader allows to eas-
ily introduce any geometry into the domain and obtain accurate results, as
demonstrated with the Ahmed body test case (section 4.3).

We validated the inmmersed boundary method (IBM) boundary condition
with flow around a rigid cylinder and filament from [28] and the 2D moving
plate from [29]. In both cases GASCANS shows good agreement with the base
results. The implementation of IBM allows GASCANS to model curved surfaces
and moving object and it is an important step towards modelling fluid structure
interaction.

Finally, future developments projected for GASCANS include testing IBM
for 3 dimensional flows and implementing coupling with a solid solve for FSI
simulations; also introducing momentum exchange to obtain forces on point
cloud objects. Finally, further optimisation and integration of the code features
including implementing IBM for multi-GPU.

31

References

[1] Y. Feng, P. Boivin, J. Jacob, P. Sagaut, Hybrid recursive regu-
larized lattice Boltzmann simulation of humid air with application
to meteorological flows, Physical Review E 100 (2) (2019) 023304.
doi:10.1103/PhysRevE.100.023304.
URL https://link.aps.org/doi/10.1103/PhysRevE.100.023304

[2] S. Lenz, M. Schönherr, M. Geier, M. Krafczyk, A. Pasquali, A. Chris-
ten, M. Giometto, Towards real-time simulation of turbulent air flow over
a resolved urban canopy using the cumulant lattice Boltzmann method
on a GPGPU, Journal of Wind Engineering and Industrial Aerodynamics
189 (October 2018) (2019) 151–162.

[3] M. J. Mawson, A. J. Revell, Memory transfer optimization for a lattice
Boltzmann solver on Kepler architecture nVidia GPUs, Computer Physics
Communications 185 (10) (2014) 2566–2574.
URL http://dx.doi.org/10.1016/j.cpc.2014.06.003

[4] Dassault Systemes, Xflow.
URL https://www.3ds.com/products-services/simulia/products/

xflow/

[5] C. A. Niedermeier, C. F. Janssen, T. Indinger, Massively-parallel multi-
GPU simulations for fast and accurate automotive aerodynamics, Proceed-
ings of the 6th European Conference on Computational Mechanics: Solids,
Structures and Coupled Problems, ECCM 2018 and 7th European Confer-
ence on Computational Fluid Dynamics, ECFD 2018 (June) (2020) 2005–
2012.

[6] Laniewski-Wo l lk, J. Rokicki, Adjoint Lattice Boltzmann for topology op-
timization on multi-GPU architecture, Computers and Mathematics with
Applications 71 (3) (2016) 833–848.

[7] M. Bauer, S. Eibl, C. Godenschwager, N. Kohl, M. Kuron, C. Rettinger,
F. Schornbaum, C. Schwarzmeier, D. Thönnes, H. Köstler, U. Rüde, WAL-
BERLA: A block-structured high-performance framework for multiphysics
simulations, Computers and Mathematics with Applications 81 (2021) 478–
501.

[8] M. Januszewski, M. Kostur, Sailfish: A flexible multi-GPU implementa-
tion of the lattice Boltzmann method, Computer Physics Communications
185 (9) (2014) 2350–2368.
URL http://dx.doi.org/10.1016/j.cpc.2014.04.018

[9] J. Latt, C. Coreixas, J. Beny, Cross-platform programming model for many-
core lattice Boltzmann simulations (2020).
URL http://arxiv.org/abs/2010.11751

32

[10] P. Bhatnagar; E. Gross; M.Krook;, A model for Collision Processes
in Gases. I. Small Amplitude Processes in Charged and Neutral One-
Component Systems, Physical Review 94 (1) (1954).

[11] M. Geier, M. Schönherr, A. Pasquali, M. Krafczyk, The cumulant lattice
Boltzmann equation in three dimensions: Theory and validation, Comput-
ers and Mathematics with Applications 70 (4) (2015) 507–547.
URL http://dx.doi.org/10.1016/j.camwa.2015.05.001

[12] A. R. G. Harwood, A. J. Revell, Interactive flow simulation using Tegra-
powered mobile devices, Advances in Engineering Software 115 (Supple-
ment C) (2018) 363 – 373.

[13] H. J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele,
A. Shukaev, B. Uekermann, preCICE – A fully parallel library for multi-
physics surface coupling, Computers and Fluids 141 (2016) 250–258.
URL http://dx.doi.org/10.1016/j.compfluid.2016.04.003

[14] A. R. G. Harwood, P. Wenisch, A. J. Revell, A Real-Time Modelling and
Simulation Platform for Virtual Engineering Design and Analysis, in: Pro-
ceedings of 6th European Conference on Computational Mechanics (ECCM
6) and 7th European Conference on Computational Fluid Dynamics (ECFD
7), 11-15 June 2018, Glasgow, UK, ECCOMAS, 2018.

[15] T. Krüger, The Lattice Boltzmann Method Principles and Practice, no.
March 2015, 2017.

[16] J. Latt, B. Chopard, O. Malaspinas, M. Deville, A. Michler, Straight ve-
locity boundaries in the lattice Boltzmann method, Physical Review E -
Statistical, Nonlinear, and Soft Matter Physics 77 (5) (2008) 1–16.

[17] Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the
lattice Boltzmann method, Physical Review E 65 (2002) 046308.

[18] C. S. Peskin, Flow patterns around heart valves: A numerical
method, Journal of Computational Physics 10 (2) (1972) 252 – 271.
doi:https://doi.org/10.1016/0021-9991(72)90065-4.
URL http://www.sciencedirect.com/science/article/pii/

0021999172900654

[19] Z. Li, J. Favier, U. D’Ortona, S. Poncet, An immersed boundary-
lattice boltzmann method for single- and multi-component fluid
flows, Journal of Computational Physics 304 (2016) 424 – 440.
doi:https://doi.org/10.1016/j.jcp.2015.10.026.
URL http://www.sciencedirect.com/science/article/pii/

S0021999115006907

[20] A. M. Roma, C. S. Peskin, M. J. Berger, An adaptive version of the
immersed boundary method, Journal of Computational Physics 153 (2)

33

(1999) 509 – 534. doi:https://doi.org/10.1006/jcph.1999.6293.
URL http://www.sciencedirect.com/science/article/pii/

S0021999199962939

[21] A. Pinelli, I. Naqavi, U. Piomelli, J. Favier, Immersed-boundary
methods for general finite-difference and finite-volume navier–stokes
solvers, Journal of Computational Physics 229 (24) (2010) 9073 – 9091.
doi:https://doi.org/10.1016/j.jcp.2010.08.021.
URL http://www.sciencedirect.com/science/article/pii/

S0021999110004687

[22] NVIDIA, CUDA C++ Best Practices Guide.
URL https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

[23] Y. Koda, F. S. Lien, The lattice Boltzmann method implemented on the
GPU to simulate the turbulent flow over a square cylinder confined in a
channel, Flow, Turbulence and Combustion 94 (3) (2015) 495–512.

[24] A. Skillen, A. Revell, T. Craft, Accuracy and efficiency improvements in
synthetic eddy methods., International Journal of Heat and Fluid Flow 62
(2016) 386–394.

[25] J. Kim, P. Moin, R. Moser, Turbulence statistics in fully developed channel
flow at low reynolds number, Journal of Fluid Mechanics 177 (1987) 133–
166.

[26] K. Kozuka, Y. Seki, H. Kawamura, Direct numerical simulation of turbu-
lent heat transfer with a high spatial resolution, Proc. of the 7rd Interna-
tional Symposium on Engineering Turbulence Modelling and Mesurements
-ETMM7 1 (September 2016) (2008) 163–168.

[27] O. Evstafyeva, A. S. Morgans, L. Dalla Longa, Simulation and feedback
control of the ahmed body flow exhibiting symmetry breaking behaviour,
Journal of Fluid Mechanics 817 (2017) –.

[28] S. Turek, J. Hron, Proposal for numerical benchmarking of fluid-structure
interaction between an elastic object and laminar incompressible flow, in:
H.-J. Bungartz, M. Schäfer (Eds.), Fluid-Structure Interaction, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 371–385.

[29] P. Koumoutsakos, D. Shiels, Simulations of the viscous flow normal to an
impulsively started and uniformly accelerated flat plate, Journal of Fluid
Mechanics 328 (1996) 177–227. doi:10.1017/S0022112096008695.

[30] J. Favier, A. Revell, A. Pinelli, A lattice boltzmann–immersed bound-
ary method to simulate the fluid interaction with moving and slender
flexible objects, Journal of Computational Physics 261 (2014) 145 – 161.
doi:https://doi.org/10.1016/j.jcp.2013.12.052.
URL http://www.sciencedirect.com/science/article/pii/

S0021999113008607

34

[31] J. Y. Hwang, K. S. Yang, Numerical study of vortical structures around a
wall-mounted cubic obstacle in channel flow, Physics of Fluids 16 (7) (2004)
2382–2394.

[32] The OpenFOAM Foundation, Openfoam.
URL https://openfoam.org/version/4-0/

[33] M. Camps Santasmasas, A. Revell, B. Parslew, Two-way coupled Navier-
Stokes / lattice Boltzmann solver to reduce the resources used by CFD
simulations of flow around bluff objects., In preparation.

[34] The Bede supercomputer, Durham University, operated by N8 CIR,
https://n8cir.org.uk/supporting-research/facilities/bede/, ac-
cessed: 11-03-2021.

[35] N. DelBosc, Real-time simulation of indoor air flow using the lattice boltz-
man method on graphics processing unit, Ph.D. thesis (2015).

[36] W. B. J. de Oliveira, A. Lugarini, A. Franco, Performance Analysis of
the Lattice Boltzmann Method, XL CILAMCE iBERO-LATIN AMERI-
CAN CONGRESS ON COMPUTATIONAL METHODS IN ENGINEER-
ING (November) (2019).

35

—————————-

207

	Contents
	List of Tables
	List of Figures
	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Thesis outline

	Computational fluid dynamics applied to urban wind flow.
	Applications of wind flow modelling
	Computational fluid dynamics models applied to urban wind flow
	Grid-based methods
	Eulerian Navier-Stokes models
	Semi-Lagrangian Navier-Stokes models
	Lattice Boltzmann methods

	Summary of findings

	Theory
	Eulerian Navier Stokes method
	Equations solved and discretisation
	Initial and boundary conditions

	Lattice Boltzmann method
	Lattice Boltzmann model
	Equilibrium distribution function
	Lattice units
	Algorithm
	Initial and Boundary conditions
	Macroscopic conservation equations

	Turbulence modelling
	Direct numerical simulation
	Large eddy simulation (LES)
	Inlet boundary condition: Synthetic eddy method

	Navier-Stokes lattice Boltzmann model
	Theoretical framework
	Modelling
	Coupling Navier-Stokes to lattice Boltzmann methods
	Architecture of the NSLB method

	Computational framework
	Implementation
	Execution

	Validation and examples
	Paper I - Two-way coupled Navier-Stokes / lattice Boltzmann solver to reduce the resources used by CFD simulations of flow around bluff objects
	Paper II - Synthetic eddy method applied to the lattice Boltzmann model

	Contributions to the field
	Expand the use of lattice Boltzmann method in CWE
	Develop and test the NSLB method

	Conclusions and future work
	Conclusions
	Future work

	References
	Appendices
	Paper III - LUMA: A many-core, Fluid–Structure Interaction solver based on the Lattice-Boltzmann Method
	Paper IV - GPU-Accelerated Solver for Coupled Approaches to Navier-Stokes GASCANS

