
HETEROGENEOUS SYSTEM DESIGN
AND OPTIMISATION FOR

EMBEDDED VISION SYSTEMS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2020

By

Chao Jiang

School of Electrical and Electronic Engineering

Contents

List of Figures 7

List of Tables 9

List of Abbreviations 13

1 Introduction 27

1.1 Challenges of heterogeneous systems 28

1.1.1 Design . 29

1.1.2 Programming . 29

1.2 Objectives of the research . 30

1.3 Research outcomes . 30

1.4 Original contributions of the research 31

1.5 Dissertation Overview . 31

2 The Interface Technologies 33

2.1 Peripheral Interface . 33

2.1.1 PCIe . 34

2.1.2 RapidIO . 36

2.1.3 Gigabit Ethernet . 37

2.1.4 USB . 38

2.1.5 The Simple Serial Protocols 40

2.1.6 Custom memory interface 41

2.1.7 Communication in the SoC FPGA 42

2.1.8 Summary . 43

2.2 System Interface . 44

3

4 Contents

2.2.1 AMBA . 44

2.2.2 WISHBONE . 45

2.2.3 AVMM interface . 45

2.2.4 Summary . 46

3 The Platform 47

3.1 ARMflash overview . 47

3.1.1 ARM SoC . 48

3.1.2 FPGA . 49

3.1.3 Applications . 50

3.2 Two sides of the bridge . 51

3.2.1 GPMC . 51

3.2.2 AVM . 58

3.3 Previous work . 60

3.4 Summary . 62

4 The Design of GPMC-to-FPGA Bridge 63

4.1 Issues with the two interfaces . 63

4.2 The Lightweight Bridge . 65

4.2.1 Composition of the memory-mapped sub-bridge 65

4.2.2 Translation of the write transaction 67

4.2.3 Translation of the read transaction 68

4.3 The High-Performance Bridge . 70

4.3.1 The Stream buffer and its customisation 72

4.3.2 SRAM interface read slave controller 75

4.3.3 AVM read controller . 77

4.3.4 SRAM interface slave write controller 78

4.3.5 AVM write controller . 81

4.3.6 Transmuxer and operation mode 83

4.3.7 Control/status registers . 84

4.4 Summary . 86

Contents 5

5 Benchmark for the GPMC-to-FPGA bridge 89

5.1 Test Environment . 89

5.1.1 FPGA . 89

5.1.2 Software . 91

5.2 Tests and Results . 94

5.3 Discussion . 99

5.3.1 Hardware limitations . 99

5.3.2 Bandwidth . 100

6 Support of the OpenCL framework on the ARMflash platform 103

6.1 Requirements for implementation 104

6.1.1 The memory model in OpenCL 105

6.1.2 Reference Implementations in the AOCL 106

6.1.3 Design requirements . 107

6.2 Design . 109

6.2.1 FPGA partition . 109

6.2.2 Software . 111

6.3 Results . 114

6.3.1 FPGA partition . 114

6.3.2 Applications . 115

6.4 Discussion . 116

6.4.1 Advantages . 117

6.4.2 Platform limitation . 117

6.4.3 Interface limitation . 118

7 Background for Program Optimisation 121

7.1 Program analysis and optimisation 121

7.1.1 Polyhedral analysis . 121

7.1.2 DAG-based analysis . 124

7.1.3 Tile size generation . 124

7.2 The Halide Language . 126

6 Contents

7.2.1 Algorithm . 126

7.2.2 Schedule . 127

7.2.3 Portability . 128

7.2.4 The Halide auto-scheduler 129

8 An Alternative Auto-Optimiser 131

8.1 The Auto-optimiser . 131

8.1.1 Source transformation . 132

8.1.2 Partition . 138

8.1.3 Intra-partition analysis . 139

8.1.4 Intra-partition optimisation 142

8.2 Experiment . 146

8.3 Discussion . 146

9 Conclusion and Future Work 149

9.1 Conclusion . 149

9.2 Future Work . 150

9.2.1 The GPMC-to-FPGA bridge 151

9.2.2 AOCL support for custom embedded systems 151

9.2.3 Automatic optimisation for Halide programs 151

References 153

Word count: 30,162

List of Figures

2.1 Communication model for USB [25]. 39

2.2 Bridges available on a Intel SoC FPGA [29]. 42

3.1 The ARMflash platform. 48

3.2 AM3358 L3 Topology [28]. 49

3.3 ARMflash as part of a smart camera system. 51

3.4 Waveform for NAND read operation. 52

3.5 Waveform for accessing NOR flash. 54

3.6 The address phase waveforms of the GPMC NOR protocol configured

in (a) AD-multiplexing (b) AAD-multiplexing mode. 55

3.7 The relationship between GPMC data access and write-enable. . . . 56

3.8 The behaviour of the GPMC wait signal. 57

3.9 Waveform for burst AVM write [37]. 58

3.10 Waveform for burst AVM read [37]. 59

3.11 AVM and generated AVMM interconnect. 60

3.12 EVS-MUX with two bridge modules attached used as part of a smart

camera system. 61

3.13 Use of the address bus of the memory interface in the EVS-MUX. . 62

4.1 Memory mapping of an FPGA module into SoC’s L3. 66

4.2 Transaction translation in the lightweight bridge. 69

4.3 Composition of the high-performance bridge. 71

4.4 Finite-state machine for the SRAM interface read slave controller. . 75

4.5 Finite-state machine for AVM read controller. 77

4.6 Finite-state machine for SRAM interface write slave controller. . . . 79

7

8 List of Figures

4.7 Finite-state machine for AVM write controller. 82

4.8 Reconfigurable mapping. 84

5.1 FPGA benchmark environment for the GPMC-to-FPGA bridge and

EVS-MUX. 90

5.2 Flow diagram for the test programs. 92

5.3 The relationship between test buffer size and throughput in Con-

fig 24 (f = 125 MHz, DW = 32 bit, BS = 64 bytes). 96

5.4 Throughput (practical and theoretical limit) comparison between the

GPMC-to-FPGA bridge in Config 24 (f = 125 MHz, DW = 32 bit,

BS = 64 bytes). 97

5.5 Resource usage (normalised to the usage of the EVS-MUX) com-

parison between the GPMC-to-FPGA bridge and the EVS-MUX in

Config 24 (f = 125 MHz, DW = 32 bit, BS = 64 bytes). 98

5.6 FPGA floor plan for Configuration 22 (DW = 32 bits, BS = 32 bytes).100

6.1 Programming flow in Intel FPGA OpenCL framework [41]. 104

6.2 OpenCL memory model [42]. 105

6.3 Host-kernel communication in the PCI-E based platform. 106

6.4 Host-kernel communication in the SoC FPGA platform. 107

6.5 FPGA design for AOCL support on ARMflash. 110

6.6 Memory allocation by the simple memory allocator. 112

7.1 An example for loop (a) and its iteration domain (b). 123

8.1 Functionisation of blur in List 8.1a. 134

8.2 Memory access pattern in untiled (a) and tile (b) stencil computation.144

8.3 Execution time comparison for the auto-optimiser of this work (blue

bars) and Halide’s built-in auto-scheduler (red bars). 147

List of Tables

2.1 Resource usage of Avalon-MM Hard IP for PCI Express for Cyclone

V, in terms of the number of adaptive logic modules (ALM), the

number of bits of memory and the number of combinatory logic. [11] 35

2.2 Triple speed Ethernet IP resource usage on Cyclone V GX in terms

of logic elements (LE), logic registers (LR) and memory blocks [20]. 38

2.3 Comparison between interfacing options for SoC with an external

FPGA. 43

3.1 Comparison between interfacing options available in AM3358 for

connecting an external FPGA. 50

4.1 High-performance bridge register map. 85

4.2 Bit map for the Control/Status register (Word Offset = 0x 0). . . . 86

5.1 Comparison of maximum transaction size and equivalent GPMC

burst length between different methods. 94

5.2 Maximum throughput for different FPGA configurations. 95

5.3 FPGA fitter resource usage of GPMC-to-FPGA bridge in Config 24

(f = 125 MHz, DW = 32 bit, BS = 64 bytes). 98

5.4 fMAX measurement of the clock domains in the GPMC-to-FPGA

bridge for Config 24 (f = 125 MHz, DW = 32 bit, BS = 64 bytes). . 99

6.1 Resource usage for the infrastructure partition. 114

9

10

List of Algorithms

1 Pseudo code for refactoring step. 135

2 Refactor matching functions to the pattern function. 136

3 Remove a trivially schedulable function. 137

4 Intra-partition computation reorder and split. 141

11

12

List of Abbreviations

1-D, 2-D, n-D One- or two-dimensional or n dimensional

ALM Adaptive logic module

ALUT Adaptive loop-up table

AOCL Intel FPGA OpenCL

API Application programming interface

AST Abstract syntax tree

AVM Avalon memory-mapped master

AVMM Avalon memory-mapped

DAG Directed acyclic graph

CPU Central processing unit

CSF Control signal FIFO

DSL Domain specific language

DMA Direct memory access

DSP Digital signal processor/processing

EDMA Enhanced direct memory access

FIFO First-in-first-out

FPGA Field programmable gate array

FPS Frame per second

Gb Gigabit

GB Gigabyte

13

14 List of Abbreviations

GPMC General purpose memory controller

GPU Graphics processing unit

GT Gigatransfers

HDL Hardware description language

HPS Hard processor system

I2C Inter-integrated circuit

IP Intellectual property

JIT Just-in-time

KB Kilobyte

LE Logic element

LR Logic register

L1, L2, L3, L4 Level 1, level 2, level 3, level 4

MB Megabyte

MM Memory-mapped

MMD Memory-mapped device

OCRAM . . . On-chip random-access memory

OSI Open System Interconnect

PC Personal Computer

PCB Printed circuit board

PCIe Peripheral component interconnect express

PHY External physical layer

RDF Read data FIFO

SIMD Single instruction multiple data

SoC System on a chip

SPI Serial peripheral interface

List of Abbreviations 15

SRAM Static random-access memory

TLP Transaction layer packet

USB Universal serial bus

UDP User Datagram Protocol

UART Universal asynchronous receiver-transmitter

WDF Write data FIFO

16

Abstract

Heterogeneous computing is becoming a common approach to speed up processing,
especially for embedded systems which require minimum power consumption.
Dedicated processors like graphics processing units (GPU), digital signal processors
(DSP) and field programmable gate arrays (FPGA) are often used besides the
traditional central processing units (CPU) in order to meet real time processing
needs whilst staying within a restricted power usage. When using such systems,
the communication between the various processors and the management of tasks
across them are important challenges that need to be tackled.

This work studied the possible interfacing options between a traditional CPU and
an FPGA device such that a high transfer rate could be obtained. A memory-based
custom bridge with configurable transaction translation was designed to interface
a CPU and an FPGA. The bridge makes use of a flash memory controller that is
widely available in embedded systems, enabling the addition of a re-configurable
hardware accelerator without dedicated interfaces like the Peripheral Component
Interconnect Express (PCIe). The bridge consists of two sub-interfaces to handle
all communication scenarios; one of them allows access to non-prefetchable memory,
and the other provides prefetching to improve bandwidth for sequential access via
stream buffers, achieving up to 148.45 MB/s, an improvement of about 20% when
compared to existing designs.

The developed bridge was incorporated into the Intel FPGA OpenCL framework
to enable OpenCL-based FPGA acceleration for embedded systems. This includes
the development of an FPGA design with the developed bridge as the part of the
fixed elements, and software required for the configuration of the fixed elements and
the communication between the CPU and the FPGA, including direct memory access
(DMA) between the two. It demonstrates the possibility to have OpenCL in low-cost
embedded platforms, lowering the entry point for FPGA accelerated computing.

The work also looks to provide an automatic optimiser to generate CPU schedules
for Halide which is a domain specific language that separates the algorithm and the
schedule of a conventional program. The optimiser avoids the loss of optimisation
opportunities from the way a function is expressed and presents a new way of
analysing the pipeline to generate schedules for optimal performance, and improves
the performance up to 50% when compared to Halide’s built-in auto-scheduler.

Declaration
No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other
institute of learning.

Copyright

i. The author of this thesis (including any appendices and/or schedules to this
thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he
has given The University of Manchester certain rights to use such Copyright,
including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or
electronic copy, may be made only in accordance with the Copyright, Designs
and Patents Act 1988 (as amended) and regulations issued under it or, where
appropriate, in accordance with licensing agreements which the University
has from time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trademark and other
intellectual property (the “Intellectual Property”) and any reproductions of
copyright works in the thesis, for example graphs and tables (“Reproductions”),
which may be described in this thesis, may not be owned by the author and
may be owned by third parties. Such Intellectual Property and Reproductions
cannot and must not be made available for use without the prior written
permission of the owner(s) of the relevant Intellectual Property and/or
Reproductions.

iv. Further information on the conditions under which disclosure, publication
and commercialisation of this thesis, the Copyright and any Intellectual
Property and/or Reproductions described in it may take place is available
in the University IP Policy (see http://documents.manchester.ac.uk/
DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations
deposited in the University Library, The University Library’s regulations
(see http://www.manchester.ac.uk/library/aboutus/regulations) and
in The University’s policy on presentation of Theses.

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgements

I would like to thank everyone at the University of Manchester who supported me
throughout the course of this PhD, especially my supervisor.

List of Publications

T.B. Garcia-Nathan, A. Kachatkou, C. Jiang, D. Omar, J. Marchal, H.
Chagani, N. Tartoni and R.G. van Silfhout, Compact and portable X-ray
imager system using Medipix3RX,Journal of Instrumentation,October 2017

H. Chagani, T.B. Garcia-Nathan, C. Jiang, A. Kachatkou, J. Marchal, D.
Omar, N. Tartoni, R.G. van Silfhout and S. Williams,Performance of the
Lancelot Beam Po- sition Monitor at the Diamond Light Source, Journal of
Instrumentation,December 2017

1
Introduction

Heterogeneous systems are commonly used in different computing scenarios, ranging

from high-performance computer systems used in various scientific research to

embedded systems such as the smart phone. The heterogeneity of the systems

can be generally classified into three categories:

• Machine level

• Board level

• Chip level

At machine level, different types of computers could be interconnected to

form a system or a computing network; heterogeneous cloud computation with

OpenStack Compute [1] allows machines with different architectures, operating

systems, and other specifications to provide high-performance computing as well

as power efficiency.

At board level, one of the examples is the personal computer (PC); when

external peripheral processors, such as the graphics processing units (GPU) and

the digital signal processors (DSP), are attached to the motherboard, the machine

becomes a heterogeneous system which allows faster computation in applications

utilising the dedicated processors.

27

28 1.1. Challenges of heterogeneous systems

At chip level, the heterogeneous system on a chip (SoC) found in, for example,

the smart phones and the smart cameras could have various types of processing

cores, such as a general-purpose central processing unit (CPU) and a GPU, fused

in a single chip. Such designs provide not only performance and power benefits

similarly as the previous systems, but are also extremely compact.

1.1 Challenges of heterogeneous systems

Due to the involvement of different kinds of computing machines or units, the

design and the use of heterogeneous systems could face difficulties in the fol-

lowing aspects [2]:

1. Algorithm design

2. Code-type profiling

3. Analytical benchmarking

4. Partitioning and mapping

5. Machine selection

6. Scheduling

7. Synchronisation

8. Interconnect requirement

9. Programming environment

10. Performance evaluation

In general, a heterogeneous system must be designed so that the interconnection

between the heterogeneous components can efficiently communicate with each

other in order to meet the bandwidth requirements. The input program to the

system would need to be written to utilise the different processors efficiently, and

the program’s executor needs to have sufficient knowledge about the program

and the system so that it can divide the tasks to run on the most suitable

processor. This research focuses on the design of the heterogeneous system and the

programs’ execution on individual processors, and the following sections provide

background for the work.

1. Introduction 29

1.1.1 Design

Processor selection and interconnection are two key topics in designing a heteroge-

neous system. When designing a low-cost system, board level heterogeneity is the

most cost effective among the categories mentioned previously and the size of the

system could also be relatively small. The LancelotRX smart camera system [3],

for example, uses such an approach to integrate a field programmable gate array

(FPGA) device and an ARM SoC on the same printed circuit board (PCB) board

called the ARMflash. Additionally, as a second example, the RedCape is designed

as a stackable expansion board for the open-source single-board computer, the

Beaglebone, upgrading a CPU-only board with an FPGA. The inter-processor

interface often requires a high bandwidth to remove any potential bottlenecks; for

example, in image processing applications, for real-time video processing found in a

smart camera system, the bandwidth required would be around 187 MB/s1 when

24bit high definition video (1080p) is streamed at 30 frames per second (FPS). Such

a bandwidth can usually only be met with dedicated hardware interfaces, such as

Peripheral Component Interconnect Express (PCIe) and USB 3.0, which may have

limited availability in low-cost SoCs, and thus, alternative solutions need to be

developed. In the ARMflash platform inside the LancelotRX, a custom memory

interface is used to link the two processors. However, limited performance of the

interface module on the FPGA side still leaves the inter-processor interface the

bottleneck of the whole system. Hence, it becomes necessary to improve the memory

interface bridge on the ARMflash platform.

1.1.2 Programming

On the other hand, programming of the different processors in a heterogeneous

system is challenging. The use of meta-programming is one of the methods to tackle

this issue; code for different processors is written in similar syntax, so it could be

more easily maintained. For image processing applications, Halide [4] is one of

the meta-programming languages which can be compiled into binaries for different
1In this thesis, KB, MB, and GB denotes 103, 106, and 109 bytes respectively.

30 1.2. Objectives of the research

processor architectures or back-ends, for example, ARM, x86, CUDA and OpenGL.

Besides providing a unified language for programming a heterogeneous system,

Halide also decouples algorithms’ definitions and schedules so that the algorithms

computation can be more easily optimised. The schedules of an algorithm are the

order of evaluation of the algorithm on a particular processor. These schedules

can be easily applied as parametric function calls in a program, although it is still

challenging to choose the right schedule with its parameters. Halide provides a built-

in auto-scheduler for tackling the issue, but it is realised the schedules generated

by it are still far from optimal sometimes. Hence, it becomes necessary to improve

the heuristics for schedule generation.

1.2 Objectives of the research

The research aims to create a low-cost heterogeneous embedded system with

supporting software packages. The research is mainly focused on the ARMflash

platform in order to meet the high bandwidth requirements of smart camera systems

for relevant applications for which the platform is used. Finally, the supporting

software should ease the difficulty of using such a system.

1.3 Research outcomes

The research has achieved the following:

Designed a new memory-interface-based inter-processor bridge for the

ARMflash platform The new interface bridge, consisting of a lightweight sub-

bridge and a high-performance sub-bridge, fully utilises the hardware capability

available. Through benchmarking and comparing with the original design, the new

design shows considerable performance improvement.

1. Introduction 31

Implemented OpenCL for the FPGA on the ARMFlash platform By

having OpenCL enabled for the platform, it allows the use of the low-cost embedded

system as a hardware-accelerated computing device. It also improves code reusability

and maintenances by converting existing hardware-description-language-based

(HDL-based) processing code to OpenCL programs.

Provided a better automatic scheduling heuristic for Halide for schedule

generation The alternative auto-optimiser has shown improvement in most test

cases when comparing to Halide’s built-in auto-scheduler, although it is still limited

in generating the best schedule.

1.4 Original contributions of the research

The incorporation of the stream buffer, which is one of the techniques to realise

hardware prefetching, into the high-performance sub-bridge of the GPMC-to-FPGA

bridge separates the design from the other commonly found solutions for similar

embedded systems. Although stream buffer has been widely used in cache design,

it has not been part of a custom FPGA interface.

The board support packages for the ARMflash system could also provide a

ready-to-use extension to Beaglebone board with similar configurations. It lowers

the entry point for OpenCL acceleration on FPGA, and due to the board level

heterogeneity, it is more flexible for board designer to choose the configuration

for their targeted application.

The alternative auto-optimizer for Halide on the other hand improves the

heuristic for CPU scheduling, which could be served as a basis for scheduling

on other processors.

1.5 Dissertation Overview

The rest of this thesis is structured as the following:

32 1.5. Dissertation Overview

• Chapter 2 gives the overview of options for interfacing a CPU and an FPGA

and a comparison of several options.

• Chapter 3 describes the target platform (ARMflash) and resource available.

• Chapter 4 outlines the design of the GPMC-to-FPGA bridge.

• Chapter 5 evaluates the designed bridge with a benchmark system.

• Chapter 6 proposes one use case of the designed bridge: the integration with

Intel OpenCL framework for FPGA.

• Chapter 7 discusses existing work on programming optimisation.

• Chapter 8 presents an auto-optimiser for the Halide programming language.

• Chapter 9 concludes the work and suggest future improvement and directions.

2
The Interface Technologies

When designing a heterogeneous system with commodity ARM application SoC and

FPGA devices, two interfaces are particularly important: the peripheral interface

between the SoC and FPGA, and the system interface in the FPGA design. The

former handles the communication between the SoC and the FPGA, allowing the

two devices interacting with each other, while the latter links up various system-

level components in the FPGA design. This Chapter overviews the two types of

interface, considering the performance and complexity for potential choices.

2.1 Peripheral Interface

The peripheral interface provides a solution for connecting external devices to a

SoC. In the case of an ARM SoC and an FPGA, this interface often becomes the

bottleneck when there is a large data flow between the two devices. Hence, it is

important to choose a suitable technology to meet the requirements of the most

demanding application. The following sections give an overview of potential options

for the interface with particular emphasis on bandwidth, supporting circuitry, FPGA

resource usage and driver software complexity.

33

34 2.1. Peripheral Interface

2.1.1 PCIe

PCIe is a high-performance peripheral interconnect protocol widely used in PC for

connecting various devices, such as the GPU, Ethernet controller and non-volatile

memory device, to the main system. It is also one of the more commonly used

options for interfacing an FPGA with a PC system. Research has been published

with efforts to improve bus mastering in PCIe for the FPGA in particular to ensure

the best performance [5, 6], and various FPGA vendors provide complete solutions

to enable the FPGA to function as a PCIe device [7, 8].

Common PCIe interconnects consist of the root complex, the switch and

endpoints. The root complex links the processor and memory subsystem to the

PCIe network and sends out packets on behalf of the processor. The PCIe switch

works similarly as a network switch commonly found in a local Ethernet network; it

connects multiple devices and routes the packets to their destinations. An endpoint,

which represents the peripheral device in the PCIe network, generates or receives

a transaction packet. All the PCIe devices are connected to the network via the

PCIe link; which can consist of up to 32 lanes. Each lane is constituted of one

differential pair of signals, of which one is used for sending data and the other for

receiving. Whereas version 1.0 of the protocol can deliver 2.5 GT/s per lane, the

most recent version 4.0 features 16.0 GT/s of bandwidth [9]. This rate multiplies by

the number of lanes used in the link to give a throughput that is rarely achievable

via other protocols. However, the calculation of the effective data rate needs to

take account of the encoding scheme; for example, the version 1.0 uses 8b/10b

encoding that results in a throughput of 250 MB/s per lane. Besides, more overhead

is introduced when wrapping the user data in a packet; a typical memory write of

256 bytes using 32-bit addressing has a total packet size of 278 bytes, as a result

the effective transfer rate of user data reduces to 230 MB/s [10].

At the device level, the PCIe is divided into three layers; the transaction

layer which converts application requests into transaction layer packets (TLP),

the data link layer which handles the flow controls via a request-acknowledge

mechanism, and the physical layer which consists of the digital and analogue

2. The Interface Technologies 35

Data Rate or ALMs Memory Logic
Interface Width (M10K) Registers

Avalon-MM Bridge
Gen1 ×4 1250 27 1700

Avalon-MM InterfaceCompleter Only
64 600 11 900
128 1350 22 2300

Avalon-MMCompleter Only Single DWord
64 160 0 230

Table 2.1: Resource usage of Avalon-MM Hard IP for PCI Express for Cyclone V, in
terms of the number of adaptive logic modules (ALM), the number of bits of memory
and the number of combinatory logic. [11]

circuitry for passing the electrical signals over the serial link. When deploying PCIe

in the FPGA, the design and integration could be simplified with vendor provided

intellectual property (IP), which implements all the above layers and an application

interface. Such IP could provide a performance close to the theoretical limit; it

is possible to have 222 MB/s and 225 MB/s respectively when performing read

and write transaction using a direct memory access (DMA) engine for a single

lane configuration using version 1.0 [8]. Hence, the throughput requirement for a

simple video streaming application could be met with the minimum setup. Also,

as shown in Table 2.1, the inclusion of the PCIe controller only consumes limited

logic for the performance it can deliver; due to most of the IP using logic with fixed

configuration blocks in hardware, the usage is mainly for the translation between

the application interface and the transaction layer. As a result, the rest of an FPGA

design could be more flexible in terms of routing and resource usage.

When adding a PCIe device to an embedded system, the primary concerns are

the availability of a PCIe controller in the SoC and the required software and driver

to interact with a custom-built device. A recent high-end SoC is more likely to

be equipped with such a controller due to its popularity, leaving the software the

only issue on the SoC side. Besides, the availability of a PCIe controller on the

FPGA is often restricted to mid to high-end devices.

36 2.1. Peripheral Interface

2.1.2 RapidIO

RapidIO is another high-performance packet-based interconnect protocol designed

to link up various devices in a system. Initially being one of the best interconnect

options for embedded systems [12], the protocol has evolved to become a general

way to link up devices at the chip and board level and is commonly used in high-

performance computer designs where bandwidth and latency is crucial [13].

A RapidIO network is constructed from connected devices called the endpoints

and the switches. The physical connection between the device and the network is

defined as the link, and the version 1 of RapidIO offers 1.25 GT/s across each lane

present in the link which could consist of up to four lanes [12]. Communication is

carried out on a point-to-point basis that is similar to a local Ethernet network,

and the transaction packet is sized 268 bytes of which 256 bytes make up the user

payload [10]. Considering that the serial communication uses 8b/10b encoding, the

resultant minimum throughput is about 119 MB/s. Similar to the PCIe interface,

newer versions of RapidIO also offer improvements in bandwidth.

At the device level, RapidIO is structured similarly to the PCIe; the controller

is divided into three layers of abstraction, the logic layer, the data link layer and

the physical layer. The logic layer converts application requests and responses into

standardised RapidIO packets. The data link layers handle the acknowledgement-

based communication with the target device in the network. Lastly, the physical

layer realises the transaction in the forms of electrical signals over the links.

Many mid-range and high-end FPGA devices are RapidIO ready when they are

equipped with the essential transceivers, and vendors also offer complete solutions

with all layers mentioned above and an application interface to allow RapidIO to

be integrated with user logic. However, the RapidIO solutions are usually resource

hungry; for example, the instantiation of such IP would require more than 10000

adaptive logic modules (ALM) and 10000 dedicated registers on Intel Cyclone V

FPGA which is about 10% of the total available logic for the highest density device

in the Cyclone V series [14]. Hence, the implementation of the RapidIO interface

would practically only make sense for the high-density devices which are usually

2. The Interface Technologies 37

no economical choice for embedded system. Also, commercial SoCs for embedded

systems usually do not contain a RapidIO controller, and thus the incorporation

of RapidIO requires external physical layer (PHY) chips that are usually attached

to the PCIe port of the SoC [14]. Such an approach generally complicates the

system and adds more cost.

2.1.3 Gigabit Ethernet

Ethernet is the most widely used interconnect technology to link up multiple

computing systems, especially with the introduction of Gigabit Ethernet which

by definition provides 1 Gb/s bandwidth. For video streaming applications, this

bandwidth is often sufficient, and many camera devices uses Ethernet as the

external interface [15].

According to the Open System Interconnect (OSI) model, the Ethernet defined

by IEEE 802.3 covers the functions in layer 1 and layer 2 of the model; the physical

layer and the data link layer. The third layer, the network layer, handles the routing

of the packet in the network, and layer 4, the transport layer is responsible for

host-to-host communication [16]. As each layer adds its header to the data packet

coming from a higher layer in the hierarchy, the overhead increases. For a typical

User Datagram Protocol (UDP) packet with priority tagging at the link level, there is

66-byte packet overhead; when the data payload is 256 bytes, it results in an effective

bandwidth of about 99 MB/s. This means that the communication efficiency of

Ethernet is less than that of PCIe or RapidIO, also considering there is no multi-lane

configuration for a single Ethernet connection. Moreover, as only the first and second

layers are implemented in hardware, the actual bandwidth in the application could

be reduced further as the software adds significant delays to the data path. In the

worst case, the real bandwidth could be only 30% of the theoretical 125 MB/s [10].

Due to its wide availability, Ethernet, especially the Gigabit Ethernet variant

has been used extensively to enable communication with an FPGA [17–19]. The IP

for the Ethernet media access controller is also available from several vendors [20].

Table 2.2 summaries the resource usage of such IP in the Intel Cyclone V FPGA.

38 2.1. Peripheral Interface

FIFO Memory
IP Core Settings Depth LE LR (M10K)

(bits)

10/100/1000 Mbps MII/GMII Full- 2048×32 3644 5340 27
Ethernet MAC and half-duplex
10/100 Mbps MII Full- and 2048×32 1539 2295 21
Small MAC half-duplex
1000 Mbps RGMII 2048×32 1265 2060 20
Small MAC Full-duplex only

Table 2.2: Triple speed Ethernet IP resource usage on Cyclone V GX in terms of logic
elements (LE), logic registers (LR) and memory blocks [20].

Notably, as the IP only covers up to layer 2 in the OSI model, user logic has to

implement the protocols used in the other layers [21, 22]. This could pose a design

challenges on the FPGA side, whereas on the ARM side, a complete software stack

is often implemented in the operating system. Moreover, because Ethernet is widely

used and often an essential part of a computer system, the software development

could be eased by various verified libraries.

Externally, PHY chips are required to transmit the packets over electrical links,

and considerable space on and off the PCB has to be allocated to them and related

passives for both ends of an Ethernet connection. Moreover, because the Ethernet

usually concerns a chassis level connection that is made by an electrical cable to

link up components residing in separated chassis using two RJ45 type plugs and

sockets, an onboard connection would result in non-standard setup and create

other hardware design challenges.

2.1.4 USB

The Universal Serial Bus (USB) is commonly used for connecting peripheral devices

to a PC. From the initial support of the link speeds of 1.5 Mb/s and 12 Mb/s, the

bus has been developed to support up to 20 Gb/s in the double lane configuration

of USB 3.2 Gen 2. Its usage as an interface between the FPGA and SoC has

proven to be viable in many cases [23, 24].

2. The Interface Technologies 39

LFPS

8b/10b
encode/
decode

LFPS

8b/10b
encode/
decode

Scramble/
descramble

Spread
Clock CDR

Elasticity
Buffer/Skips

LFPS

8b/10b
encode/
decode

Spread
Clock CDR

Scramble/
descramble

Elasticity
Buffer/Skips

Spread
Clock CDR

Scramble/
descramble

Elasticity
Buffer/Skips

Link Cmds

Link Control/Mgmt
Pkt

Delims Link Cmds

Link Control/Mgmt
Pkt

Delims Link Cmds

Link Control/Mgmt
Pkt

Delims

Transaction
Packets

Data
Packets

Link Management Packets

Notifications Transactions

Transaction
Packets

Data
Packets

Link Management Packets

Notifications Transactions

USB System Software

Device Driver/Application Function
Pipe Bundle (per Function Interface)

Default Control Pipe Device

Host Hub Device
C

hi
p

to
 C

hi
p

P
oi

nt
 to

 P
oi

nt
E

nd
 to

 E
nd

P
H

Y
S

IC
A

L
LIN

K
P

R
O

TO
C

O
L

D
evice or H

ost

Figure 2.1: Communication model for USB [25].

Unlike previously mentioned interconnects, there can be only one host or master

controller within a USB network at a time, and all communication is initiated by

the host controller. As shown in Figure 2.1, the communication protocol is divided

into four layers. While the application and system software work with USB pipe

at the topmost layer, the packet management is handled by the protocol layer.

USB packets can have the following types:

• Link Management Packet

• Transaction Packet

• Data Packets

• Isochronous Timestamp Packets

Apart from the Data Packet which is constructed from the user data and a 16-byte

header, all other types of packets provide control and status information between

the host and the device. A transaction has to be initiated by a Transaction Packet

before any data goes onto the bus.

Since the USB bus must be driven by a PHY, it is necessary to include an

external chip to enable the FPGA to access the USB. Such a chip often provides a

40 2.1. Peripheral Interface

first-in-first-out (FIFO) interface which can be connected to regular I/O ports on

an FPGA, and user logic is required to implement the control logic and interface

it with the application. As a result, the throughput is very much limited by the

FIFO interface of the chip assuming ideal implementation of FPGA logic, but such

restrictions does not pose any bottleneck for applications like video streaming. For

example, the FTDI FT601, a USB 3.0 to FIFO interface bridge chip, is measured

to provide a maximum data rate of 363 MB/s [24], which is more than enough

bandwidth for full HD video streaming according to the calculation in Chapter 1.

Most embedded SoCs are equipped with a version of USB host controllers,

however, only the newer ones will be equipped with a USB 3 which can provide the

sufficient bandwidth mentioned before. Generally, if a USB 2, which offers about

ten times less throughput compared to USB 3, is used, it is necessary to reduce

the frame size and frame rate to produce a satisfactory stream [26].

2.1.5 The Simple Serial Protocols

Besides the protocols mentioned above, it is possible to use a simple serial protocol,

such as the Inter-integrated circuit (I2C), communication protocol of the Universal

asynchronous receiver-transmitter (UART) and Serial peripheral interface (SPI), to

interface an FPGA device. While these protocols are commonly used in embedded

systems to connect external sensors, memory and other devices, the throughput

offered is significantly less than that from the previous three protocols. The

maximum throughput of I2C is rated at 5 Mb/s [27]. On the other hand, there is no

restraint in the maximum interface clock frequency for UART and SPI theoretically,

but their transfer rate is restricted by where the controllers are placed in the system.

Protocol-wise, in UART communication, every byte is wrapped with a start bit,

a stop bit and an optional parity before sent over an asynchronous bus, and for

SPI communication, at every configured edge of the SPI clock, a data bit could be

transmitted from the master to the slave as well as from the slave to the master.

Hence, potentially both protocols could yield a very high bandwidth when the

controller uses a high frequency clock. However, in most implementations of the

2. The Interface Technologies 41

controller, the controller’s clock is divided down from that of the interconnect to

which the controller is attached. Practically, the controllers are usually parts of the

slow peripheral domains which results in their limited throughput. For example, in

the AM3358 SoC, both the SPI and UART controllers are in the domain whose

clock frequency is 48 MHz, resulting in a maximum UART rate of 3.69 Mbps and

an SPI rate of 48 Mbps when acting as a master device [28]. Therefore, when

video streams are delivered through these interfaces, significant reduction in frame

size is needed for a reasonable frame rate.

2.1.6 Custom memory interface

A custom memory interface is often built from simple interfaces consisting of a

parallel data/address bus and some control signals; for example, the flash memory

interface and the static random-access memory (SRAM) interface. Unlike the

previous options, due to the lack of standardization, it is left to the designer to

establish the communication with appropriate timing settings. Due to its parallel

nature, such a memory interface can be established as a low-cost and low-complex

solution since it often only needs direct electrical links between devices. Similar

to all other parallel interfaces, the throughput of such an interface is determined

by the width of the data bus and the frequency of the clock that synchronises the

data transfer. As an example, for 16-bit data bus clocked at 100 MHz, it is possible

to achieve 200 MB/s maximum in theory, which is comparable to all previous

interface options. Often dedicated parallel memory bus interfaces are available on

microprocessors. For example, a flash memory controller features on many ARM

SoC, and accessing the attached memory devices by memory instructions, and

thus requiring a minimal or no software driver. The main challenge of a parallel

bus solution lies the in the design of the FPGA bridge module, which translates

between the memory interface and the FPGA system interface signals. The quality

of this translation affects the performance of the solution, and is subjected to

the hardware and corresponding designs.

42 2.1. Peripheral Interface

2.1.7 Communication in the SoC FPGA

While the above interfacing options could be used to link up a processor with an

external FPGA, FPGA devices exist with an integrated hard processor system

(HPS); such an FPGA device has a portion of its logic hard-coded to create a

typical SoC. The HPS communicates with the rest of the configurable logic via

dedicated bridges. For the Intel SoC FPGA devices, four types of bridges are

available to meet different communication requirements. As shown in Figure 2.2,

both the HPS-to-FPGA and FPGA-to-HPS bridge are connected to the HPS’s

system interconnect via a 64-bit data port and runs at a maximum frequency of 400

MHz, while the lightweight HPS-to-FPGA bridge connects to the 32-bit data port

of L4 interconnect which runs at 100 MHz maximum. The bandwidth offered by the

former eliminates the potential bottleneck at the interface between a conventional

SoC and FPGA, whereas the latter ensures side-effect-free transactions.

Moreover, in a SoC FPGA system, an SDRAM controller is shared between

Figure 2.2: Bridges available on a Intel SoC FPGA [29].

2. The Interface Technologies 43

the HPS and the reconfigurable fabric. The controller can be accessed via a 64-bit

data bus using a CPU, and a data bus of width up to 256 bits using the FPGA

fabric. The shared memory can be used to exchange information without actually

moving the data, thus providing an efficient way of communication.

2.1.8 Summary

The SoC FPGA is an excellent choice to provide a direct solution to the problem of

introducing an FPGA device to embedded systems but generally suffers from limited

FPGA resources and the lack of advanced components in the HPS. For example,

a GPU; which is commonly found in a commercial SoC; is not present in a SoC

FPGA device, and the maximum density of the reconfigurable logic is about one

third compared to regular models. When considering interfacing an external FPGA

device with an ARM SoC, the following technologies are viable if high bandwidth

is demanded: the PCIe, RapidIO, Gigabit Ethernet, USB 3 and possibly a custom

interface via a memory controller. As Table 2.3 compares them qualitatively based

on the discussion presented previously in the chapter, it could be seen although the

use of a custom interface is heavily dependent on the available memory controller

and its interface, the solution is feasible with a good implementation. Through

the following chapters, the thesis will prove the use of a custom interface via flash

Supporting FPGA Max SoC
Technology Circuitry Resource Throughput Driver

Usage Effort

PCIe None if linked
directly

Minimum Medium High

RapidIO External PHY Maximum Fastest High
Ethernet External PHY Medium Slowest Low
USB 3 External

bridging chip
Minimum Medium Low

Custom Memory None Minimum Medium None
Interface

Table 2.3: Comparison between interfacing options for SoC with an external FPGA.

44 2.2. System Interface

memory controller although may not be the fastest, but is one of the most efficient

way for interfacing because of its ease to use and the bandwidth provided.

2.2 System Interface

For complicated FPGA designs, components are often connected at system level

via memory-mapped protocols, so each component can be accessed via its assigned

address. For such purpose popular memory-mapped protocols often provide an open

specification. Examples are the ARM Advanced Microcontroller Bus Architecture

(AMBA) and WISHBONE, and vendor specific interfaces such as the Intel Avalon

memory-mapped (AVMM) protocol. This section summarises these system interfaces

in terms of their capability, complexity and configurability.

2.2.1 AMBA

The ARM AMBA specification includes several on-chip interconnect protocols for

connecting various system components in an embedded SoC, some of which are

also implementable in FPGA system designs. Each protocol offers different benefits

to cover a wide range of applications. Some protocols which are relevant to a

system interface in an FPGA are the following:

Coherent Hub Interface (CHI) is the latest protocol from ARM to provide

the best performance with coherency support. It uses a layered model;

similar to PCIe and RapidIO; to offer more flexible topologies. It also

includes a mechanism of Quality of Service to better access the interaction of

components. [30]

Advanced eXtensible Interface (AXI) is one of the more widely used buses

in embedded application SoCs. It is a multi-channel generic interface with

burst transaction. Major FPGA vendors such as Intel and Xilinx offer IPs

with the AXI interfaces to create a system-level connection. [31, 32]

2. The Interface Technologies 45

AXI Coherency Extension (ACE) is the AXI protocol with additional co-

herency support. It offers a way for connecting coherent processors with

memory controllers before the development of the CHI. [31]

Advanced High-Performance Bus (AHB) is one of the main system-level in-

terfaces used in micro-controllers. Unlike the AXI interface, the AHB is a

shared interface with burst transaction support. The main advantages of the

bus over the AXI are its lower power consumption and latency. [31]

Advanced Peripheral Bus (APB) offers a way for connecting peripheral com-

ponents with low or no demand in bandwidth. It is a non-burst interface with

very low complexity and power consumption. [33]

While there is no implementation for the CHI at current stage, it is possible

to meet any performance demands with AXI and AHB. In terms of configuration,

the AHB can have a data bus up to 1024 bits and a maximum burst size of 16

words, while the AXI allows more words in a burst transaction with the same

data bus configuration. [31]

2.2.2 WISHBONE

The WISHBONE [34] is an interconnect specification from OpenCores, aiming to

provide a standardised data exchange protocol for custom systems. It focuses

on simplicity and low resource usage, with a reasonable performance. Similar

to AHB, it supports the connection of multiple masters and slaves to a shared

bus. Transaction wise, it supports burst and pipelined transaction for improved

throughput. However, it only supports a configuration of data bus up to 64 bits,

which is rarely sufficient in system with a large amount of data flow.

2.2.3 AVMM interface

The AVMM interface [35] is proprietary protocol from Intel featuring an interface

built around a shared bus with configurations for both pipelined and burst trans-

actions. Its data bus width is configurable up to 1024 bits with a burst size of up

46 2.2. System Interface

to 1024 words. The AVMM interface also uses a slave-side arbitration scheme to

allow multiple masters to perform transactions at the same time.

2.2.4 Summary

In constructing a high-performance system featuring an FPGA, it is obvious that

the AXI, AHB or AVMM interfaces are better options compared to the rest. Within

the setting of embedded vision systems that put limits on the complexity and power

budget whilst working with restraints set by both hardware and software availability,

the work focuses on the Avalon memory-mapped protocol, because the target device

is from Intel and most existing IPs are only compatible with the AVMM interface.

3
The Platform

From the comparison made in Chapter 2, it could be seen that a custom memory

interface would be an efficient way to interface an ARM SoC and FPGA, potentially

providing both simplicity and performance. One of the aims of the research is to

implement such an interface on an in-house platform, named the ARMflash. This

chapter will firstly give an overview of this particular platform, including available

options for SoC-FPGA interfacing. Secondly, the details of the protocols on both

sides of a custom interface are highlighted, and the work on the bridge is discussed.

3.1 ARMflash overview

The ARMflash is a platform developed in-house, modelling the popular BeagleBone

series. As shown in Figure 3.1, at its core, the ARMflash has a Texas Instrument’s

AM3358 SoC, and an Intel Cyclone V FPGA (5CGXFC7C6U19C6N). Both proces-

sors have dedicated 512 MB DDR3 SDRAM attached, providing storage for large

data sets in computation. In terms of connectivity, the platform exposes most of

the FPGA I/O via AMP and ERNI connectors, coupled with the communication

and debug interfaces from the SoC; such as the Gigabit Ethernet, USB, serial ports.

The platform provides both SDMMC and NAND flash as persistent storage options.

47

48 3.1. ARMflash overview

1 2

3 4
5

6

7

8

9

10

11

12
13

1. Cyclone V FPGA
2. AM3358 SoC
3. DDR3 SDRAM (FPGA)
4. DDR3 SDRAM (SoC)

5. LCD extension connector
6. Debugging connector
7. Gigabit Ethernet
8. USB OTG port

12. Flex connector
13. NAND flash

9. USB serial port
10. 50-pin ERNI connector
11. External JTAG connector

(a) Top

1

2 3

1. Micro SD card
2. 80-pin AMP connector
3. 60-pin AMP connector

(b) Bottom

Figure 3.1: The ARMflash platform.

3.1.1 ARM SoC

The main processors in the AM3358 SoC consist of a Cortex A8 ARM processor,

a PowerVR SGX530 GPU, and two Programmable Real-time Units (PRUs). The

Cortex A8 CPU is a dual issue super scalar processor, which means it can execute

two instructions simultaneously most of the time. It is also equipped with an

Advanced Single instruction multiple data (SIMD) Extension (NEON), which

can handle a combined maximum data width of 128 bits. The processor performs

computation with a 13-stage integer pipeline and a 10-stage NEON pipeline. It is

configured with 32× 210 bytes (32.8 KB) 4-way set associative level 1 (L1) cache

and 256× 220 bytes (268.4 KB) 8-way set associative level 2 (L2) cache for efficient

data fetching from memory. On the other hand, the PowerVR SGX530 is a 3D

hardware accelerator supporting OpenGL ES 2.0, it has a computation capability

of 1.6 Giga FLOPS (floating-point operation per second) when running at 200 MHz.

Lastly, there are two PRU subsystems providing substantial DSP capability due

to their support of the multiply-accumulation instruction.

Supporting the processors, the AM3358 SoC has an enhanced DMA engine

to enable offloading the CPU from large memory transactions. It also consists of

many peripheral modules including Gigabit Ethernet MAC, USB 2, general-purpose

memory controller (GPMC) and various serial interfaces such as the UART and SPI.

3. The Platform 49

Figure 3.2: AM3358 L3 Topology [28].

Memory-mapped system components of the SoC form the level 3 (L3) and level

4 (L4) memory systems, although components are accessed like a memory device,

L3 and L4 are not physical memories but referred as an interconnect. As shown

in Figure 3.2, the L3 interconnect in the AM3358 runs at two different speeds;

the fast domain operates at 200 MHz whereas the slow domain runs at 100 MHz

maximum. All processors that are connected to the fast domain with a substantial

bus width, and notably the more demanding ones; for example, the CPU and GPU;

have a connection data width of 128 bits to ensure their performance. On the

other hand, all peripheral components are connected to the slow domain and

some slower ones are attached to the more distanced level 4 (L4) interconnect.

As discussed in Chapter 2, the components that could be utilised to interface

an external FPGA device are the Ethernet, USB, and the GPMC; the serial

interfaces at L4 are excluded since they are clearly inferior in terms of performance

in large data transfer. As shown in Table 3.1, the GPMC has great potential for

being a part of a high-performance bridging solution between the SoC and the

FPGA, which also resonates with previous discussions.

3.1.2 FPGA

The Cyclone V GX chip is equipped with hard-logic 3.125 Gbps transceivers and

external memory controller for adding additional DDR memory devices, together

with PLL, DSP, multipliers and memory blocks. The FPGA is configured using the

JTAG interface, both externally and via the ARM SoC. The latter is implemented

50 3.1. ARMflash overview

USB 2.0 Gigabit
Ethernet

Memory
Controller
(GPMC)

Bandwidth 480 Mbps 1000 Mbps 1600 Mbps
Additional
Hardware

USB FIFO chip Ethernet PHY None

Access Method Packet based,
USB protocol

Packet based,
Ethernet protocol

Memory
instructions

Table 3.1: Comparison between interfacing options available in AM3358 for connecting
an external FPGA.

using general-purpose I/O lines of the SoC, and these lines are multiplexed with the

external JTAG interface to give flexibility in configuring the FPGA. The FPGA’s

I/O is exposed via two major connectors, a 50-pin ERNI connector and 80-pin AMP

connector, which allows daughter boards to be attached for extended functionalities

and connection to a range of image sensors.

3.1.3 Applications

The ARMflash is a powerful embedded system, and has been part of both commercial

product and research prototypes, particularly in image processing applications.

For example, the FMB Oxford’s BPM Nano unit uses the platform as its core to

perform calculations for X-ray beams, and the Lancelot smart camera system is

built around the platform with the Medipix image sensor from CERN. As shown in

Figure 3.3, when building such smart camera systems with the platform, the image

sensor usually feeds the digitised output data directly to the FPGA via the expansion

connectors, and stream processing is performed before storing the data in the memory.

The other processors in the SoC could then retrieve the data and carry out further

processing before sending the result via the Ethernet. Due to this heterogeneous

platform, the system designed is compact while also sophisticated and powerful.

3. The Platform 51

Figure 3.3: ARMflash as part of a smart camera system.

3.2 Two sides of the bridge

Having overviewed the platform, this section looks at the relevant components and

protocols in detail in preparation for developing a bridge solution between the ARM

SoC and the FPGA via custom memory interface using the GPMC in the AM3358

and the protocols it supports, with the AVMM protocol for the FPGA.

3.2.1 GPMC

Within the SoC, the GPMC is connected to the L3 slow interconnect, which

operates at 100MHz, via a 32-bit data port and has direct connections to the

DMA engine and the interrupt controller. Externally, the GPMC exposes a simple

memory interface consisting of address and data buses with various control signals.

It is capable of interfacing to non-volatile memory; such as the NAND and NOR

flash; and volatile memory like the SRAM. It can address up to 256 × 220 bytes

(268.4 MB) per individual chip-select (3 available) and perform burst access of up

to 32 bytes with a parallel data bus up to 16 bits wide.

52 3.2. Two sides of the bridge

cle

ce

re

ale

r/b

we

data C0 Address C1 D0 D1 D1 D1

data sampled by device

data output from device

Figure 3.4: Waveform for NAND read operation.

Memory protocols

The memory access protocols the GPMC supports can be generally categorised into

the following two; the NAND protocol and the NOR protocol.

NAND protocol The GPMC follows the protocol to access a NAND flash. The

NAND flash is a page-oriented storage device; which means to access a memory

location, the entire page which the location belongs to needs to be fetched. As

shown in Figure 3.4, a typical read operation for NAND memory involves multiple

cycles. Firstly, a command cycle is issued at the beginning to initiate the operation,

and it is followed by address cycles which select the internal page and a second

command cycle that sets the sub-command and starts the execution of the operation.

Lastly, when the data is ready, all data in the selected page could be read out in

sequence. Each transaction cycle, which is defined by the assertion of the chip-

enable signal, can communicate data of only one word whose size is determined by

the interface data bus width. Hence, to exchange multiple bytes of data, multiple

transactions are required. However, after the initial data, a shorter access time

can also be used to obtain data more quickly. The write or program operation is

carried out similarly to the read, with the exception that the data cycles happen

immediately after the address cycles, and the second command cycle is issued

after the data cycle to start the write process.

3. The Platform 53

NOR protocol Different from the above NAND protocol, the NOR protocol

delivers the address and data in the same cycle as shown in Figure 3.5. It supports

both the NOR flash and SRAM-like devices; the two only differs by the ability to

perform burst read or page read. Although the required electrical links increases

due to the inclusion of the address bus, the cycle efficiency; which is defined by

the ratio between the time used to deliver data and the total operating time in a

transaction; increases significantly. Moreover, when accessing 16-bit devices, the

ability to access multiple words in the same transaction further boost this efficiency.

The protocol offers two schemes for address configuration for the memory device; the

AD-multiplexing scheme and the AAD-multiplexing scheme; to reduce the number

of electrical links for connection. Both schemes multiplex the address bits into the

data bus, dividing a transaction cycle into two phases; an address phase when a

segment of the address is delivered on the data bus, and a data phase in which data

access is carried out. In the AD-multiplexing scheme, only the 16 least significant

bits (LSB) are transmitted over the data bus, and the rest of the bits would still

require to be sent over the address bus which is now 16 lines narrower. On the

other hand, the address bus is entirely assimilated into the data bus in the AAD

scheme; the address is divided into two segments, the 16 LSB and the remaining

bits, and sent out in big-endian order; the most significant part is transmitted first.

When considering using the above protocols to communicate with an FPGA,

the NOR protocol outperforms the NAND protocol in the following aspects:

1. Unlike the entirely asynchronous NAND protocol, the support of synchronous

transactions in the NOR protocol fits better into FPGA design practice.

2. The NOR protocol provides better support for random access which is essential

for accessing modules registers and memory mapped I/O in the FPGA system.

3. Due to its high cycle efficiency, the NOR protocol offers a higher overall

throughput compared to the NAND protocol, which can also be confirmed by

NOR flash’s higher data rate [36].

54 3.2. Two sides of the bridge

A/D

oe

we

A

cs

clk

Address0

D0 D1 D2 D3

Address1

D0 D1 D2 D3

write cycle read cycle

data sampled by device

data output from device

Optional Signal

Figure 3.5: Waveform for accessing NOR flash.

When the GPMC is configured for NAND devices access, the enabling of the pre-

fetch and post-write engine offers significant reduction in the data delay experienced

by the SoC. However, due to the inefficiency of the protocol itself, the NAND

protocol is stilled considered to be inferior. Also, when using the NOR protocol, it

is possible to implement similar functionalities in the FPGA if required.

Signals and configurations

Due to the NOR protocol’s superiority mentioned earlier, it is chosen to be used

for interfacing the FPGA on the ARMflash platform. After studying the GPMC’s

configuration and behaviour for the NOR protocol, it is found that there are

challenges to interface the GPMC to an FPGA, despite being a straight-forward

protocol. Since the GPMC is originally intended for the flash memory devices, it

requires a bespoke IP at the FPGA side to handle all issues arisen from using it

as a general-purpose communication controller. The following sections summarise

the essential configurations of the GPMC for use with an FPGA and also concerns

which cause design difficulties.

Data Bus Width Although the GPMC supports both 8-bit and 16-bit devices

in the NOR protocol, it only supports burst access for the 16-bit devices [28].

3. The Platform 55

Considering that the FPGA modules would often have 32-bit registers, to access

such registers, the GPMC needs to be able to access at least four bytes in one

transaction for efficient communication; otherwise, the access to a single register

would require multiple transactions which results in significantly longer access time.

Such access which demands more than one GPMC word (16-bit) makes burst transfer

essential. Besides, when configured to support 16-bit device, the GPMC can also

enable address-data multiplexing to spare some address lines and thus reduce PCB

area usage. Strictly speaking, due to the intention of supporting both read and

write, the device which the FPGA will emulate is the SRAM device as NOR flash

devices does not support burst write although they share a similar waveform.

A/D

A

oe

adv

clk

Address MSB

Address LSB

Address Phase Data Phase

(a) AD-multiplexing mode

A/D

A

oe

adv

clk

Address MSB Address LSB

Address Phase Data Phase

(b) AAD-multiplexing mode

Figure 3.6: The address phase waveforms of the GPMC NOR protocol configured in (a)
AD-multiplexing (b) AAD-multiplexing mode.

56 3.2. Two sides of the bridge

Addressing mode As mentioned before, both the AD-multiplexing and AAD-

multiplexing schemes provide a solution to reduce board area usage for routing

the address signals. However, it is achieved at the cost of the reduction in cycle

efficiency. As shown in Figure 3.6a and 3.6b, the use of AD-multiplexing scheme

would require at least one clock cycle for the address phase, and at least three

clock cycles are needed for the AAD-multiplexing scheme due to the toggling of

the control signal. However, as the sampling of the address bus has to take one

clock cycle, it is possible to align this sampling to the same cycle used by the

address phase in the AD-multiplexing scheme, making the scheme produce no

extra overhead. Hence, the GPMC is configured to use such scheme to provide the

maximal addressable space when communicating with the FPGA.

Behaviour of the enable signals The GPMC uses the write-enable and output-

enable signals to control the direction of the data in the NOR protocol. As for

conventional flash memory devices, the transaction length is limited by its page

size, and thus, the duration of these signals’ assertion does not have to correspond

to the length of data. For example, in synchronous mode, assuming data is sampled

or captured at each rising edge, a controller does not require to assert the control

signals for four clock cycles to access four words of data. As a result, there is no

way to ensure that the control signals and the data have the same duration in a

clk

we

data D0 Dlast

1st data sampled last data sampled

extra we sampled

Figure 3.7: The relationship between GPMC data access and write-enable.

3. The Platform 57

transaction. As shown in Figure 3.7, it is possible for the GPMC to assert the

control signals before the start of the access and also after all data has been accessed.

It is possible to end the transaction immediately after the last data so that due to

the gated clock the last assertion of the control signal would not be observed, but

it requires the device not to register any of them which is not a good practice for

FPGA designs. This behaviour creates difficulty when these GPMC signals control

the sampling and output of data especially at the end of the cycle. When using

the write-enable to sample the incoming data, the expectation that the signals are

de-asserted at the edge the last data is captured cannot be met. As the transaction

length is dynamically controlled by request to the controller, it is also not the best

practice to assume when data is valid in the cycle. Therefore, it requires the bridge

on the FPGA side to correct the alignment between the control signals and the data.

Behaviour of the wait-request The GPMC includes a wait signal which can

be used by the device to dynamically delay the sampling and output of data by the

controller. The use of the signal could potentially increase the throughput and allow

better flow control; it allows the device to return the data faster when condition

allows by defining a short access time, and it could stall the GPMC when the device

could not cope with either the read or write. The wait signal can be interpreted

as a valid signal asserted only during valid output for a read transaction, but for

clk

we

wait

data D0 D1 D2 D3

D2 could be sampled at either edge

data sampled by device

data output from GPMC

Figure 3.8: The behaviour of the GPMC wait signal.

58 3.2. Two sides of the bridge

write transactions, the effect of the wait can only be seen one data cycle later. As

shown in Figure 3.8, due to the data output delay of approximately one clock cycle

when configuring to use the fastest clock [28], the wait has to be asserted at least

two cycles earlier by the device before it can no longer accept more data. Although

such behaviour could be handled trivially by conventional memory devices, when

designing a bridge between the FPGA and the GPMC, additional synchronisation

is necessary for translating the behaviour of the FPGA into the correct wait signal

for the GPMC. Moreover, it is observed the wait signal also controls the end of a

write transaction, at the edge when the last data is sampled by the device, GPMC

samples the wait to ensure that the device correctly acknowledges the last data

so that it can finish the transaction.

3.2.2 AVM

On the FPGA side, the designed bridge interacts with the rest of the system via

AVMM interface. In order for the bridge to send out transactions to the FPGA

interconnect, it is required to behave as an Avalon Memory-mapped Master (AVM).

Figures 3.9 and 3.10 show typical waveforms for burst transactions of read and write

from such a master. For a burst read transaction, the timing could be divided into

two phases; the command phase and the data phase, and the read data could be

asynchronously returned by the slave; the time between the read command and

the first data is variable, and multiple read command could be queued before

Figure 3.9: Waveform for burst AVM write [37].

3. The Platform 59

Figure 3.10: Waveform for burst AVM read [37].

the completion of the previous ones. Hence, the throughput of the connection

could be significantly improved as a result of the pipelined transfer. Besides, the

AVM also supports none-burst pipelined transaction and simple fixed-wait-time

transaction, and they are generally less capable in term of performance, but the

equipping master can be implemented in much simpler logic due to the reduction

in electrical links and control logic.

Interface-wise, the command and data buses use separated links for read and

write transactions, but it is possible to merge the parameter bus which generally

consists of the address, burst-count and byte-enable. As a result of the merging,

a unified master with less logic could be designed to handle both read and write

serially. Although in this case the concurrency between read and write is sacrificed,

the actual loss in performance is considered negligible due to the short read command

phase and the separation of data channels. Besides, the system interconnect

is usually generated automatically by software tools, and the AVM is connected

accordingly to the generated logic depending on its capability as shown in 3.11.

As the interconnect master logic is generated for each master connected to the

interconnect, the merging could result in the reduction of logic and the number of

switches. Similar to the memory interface of the GPMC, the AVMM interconnect

uses word-based addressing internally; although the master and slave could be

configured to use byte address, transactions are converted via truncation. As a

result, unaligned access which the address is not divisible by the length needs to be

60 3.3. Previous work

rsp
mux

master translator agent router limiter

cmd
demux

Avalon Memory-Mapped Interconnect

Optional Component

Command Path

Response Path

Master Switches Slaves

only for master
supports pipelined
read

Figure 3.11: AVM and generated AVMM interconnect.

handled by manipulating the byte enable, and this is not performed by the generated

interconnect; the user-designed controller has to handle the alignment when required.

3.3 Previous work

An existing solution for interfacing the GPMC and the FPGA is available for the

ARMflash, and this solution will be referred as the EVS-MUX. The EVS-MUX

consists of three FPGA modules that form a bridge linking the ARM SoC and

the FPGA, providing means of communication for different scenarios. As shown

in Figure 3.12, the first of these modules is the MUX Module which interfaces

directly with the GPMC, and it acts as a multiplexer to route the memory signals to

different bridge modules. Out of the 26 lines of the address bus, the most significant

two bits are used as the select signals for the multiplexing, allowing a maximum

of 4 bridge modules to be attached. The MUX module could also issue a software

reset to the FPGA system by writing to a reserved address from the CPU side.

Two further FPGA modules are available to provide two different types of bridge:

a PIO Module and a DMA Module. The PIO Module allows fixed sized (2, 4 or

8 bytes) transaction between the Arm SoC and the FPGA. On the other hand,

the DMA Module is a simple engine performing direct memory access, however,

with the limitation of having no access of the ARM SoC’s memory space due to

3. The Platform 61

High-performance interface

Data port

Lightweight interface
Control/status port

MUX
Module

PIO
Module

DMA
Module

DDR Memory

Camera Module

Frame Store

Memory Interface

Camera InterfaceEVS-MUX

Figure 3.12: EVS-MUX with two bridge modules attached used as part of a smart
camera system.

the fact that the GPMC is a slave device which cannot issue transactions to other

components in the SoC. It operates according to the pre-configured transaction

parameters in a way similar to a conventional DMA engine in the SoC: data has to

be constantly read or written using either the CPU instructions or a conventional

DMA engine which has access to the ARM SoCs memory. Both modules are

designed around FIFO memory and state machines in similar ways, with the

major difference being that the PIO Module only issues non-burst or single cycle

transactions to the FPGA interconnect fabric.

Besides the use of 2 bits of the address as the selector signals, another 3 bits,

as shown in Figure 3.13 are used to encode the GPMC transaction length. Hence,

the bridge modules would know the amount of data expected in a single GPMC

transaction and handle the translation accordingly. As a result, the actual address

bits that can be used by the FPGA system becomes 19, which corresponds to an

address space of 512× 210 bytes (524.3 KB). However, this limitation only applies

to the PIO Module since the DMA Module does not use the memory interface

62 3.4. Summary

Memory interface

MUX Module output

PIO bridge output

19 bits

19 bits

19 bits

3 bits

3 bits

2 bits

mux select mode encode address

Figure 3.13: Use of the address bus of the memory interface in the EVS-MUX.

address lines to determine the transaction address, and its address space is only

limited by the address register’s width which is designed to be 32 bits, giving a

space of 4× 230 bytes or 4.3 GB. Performance wise, the EVS-MUX solution can

transmit 256 bytes of data in 22 GPMC clock cycles, and the FPGA module is

designed to operate around 125 MHz maximum, supporting a data bus with a

width up to 64 bits to the interconnect fabric.

3.4 Summary

This chapter overviews the ARMflash platform, and the characteristics of the two

interfaces on either side of the SoC-FPGA bridge. It also describes the non-

optimal existing bridging solution.

4
The Design of GPMC-to-FPGA Bridge

This chapter shows the FPGA design of a new bridge which enables efficient SoC-

FPGA communication and high-bandwidth data transfer. As mentioned before,

the communication must allow the control of the modules in the FPGA system,

access I/O, and more importantly meet the bandwidth pressure from the required

applications. While it is possible to achieve 200 MB/s in theory with the GPMC by

assessing 2 bytes at every cycle of the 100 MHz clock, the effective rate is critically

dependent on the implementation of the bridge module. To efficiently tackle the

problem, the GPMC-to-FPGA bridge is designed to divide the problems and tackle

them separately. The design contains two sub-bridges, each of which handles different

communication requirements: the lightweight bridge would translate all register and

I/O communication, while the high-performance bridge offers maximum bandwidth

for data transfers. The chapter starts by stating the challenges of the design, and

then explains each of the two sub-bridges, including their composition and operation.

4.1 Issues with the two interfaces

As stated in the previous chapter, the FPGA system is best to be emulated as an

SRAM device via the compatible NOR protocol when interacting with the GPMC.

Naturally the SRAM interface differs from the AVMM interface used internally by

63

64 4.1. Issues with the two interfaces

the FPGA system, and together with the limitations of the GPMC, the causes of

challenges when designing a bridge could be summarised as the following:

Word alignment differences: Like standard computer systems, an FPGA sys-

tem usually uses a word size of at least 4 bytes, which means the AVMM is

likely to be configured to have a data bus width of at least 32 bits while the

SRAM interface is fixed at 16 bits. This difference would result in different

alignment requirement for the two interfaces. For example, a single word

transaction at address 0x 02 is aligned for a GPMC transaction, but it will

not be an aligned AVM transaction when the AVMM interface is configured

to be 32 bits since the word size is 4 bytes by which the address 0x 02 is not

divisible. Although it is possible for the software to eliminate the issue, it is

best for the bridge to correct it in hardware, allowing the system to stay in

known condition even with potentially buggy software.

Gated clock: Since the SRAM interface is clock driven by the GPMC and the

clock only toggles during a transaction, it is not possible to use the GPMC

clock as an FPGA system clock which is required to run continuously. As a

result, the bridge has to contain two clock domains; one for the gated interface

clock and the other for the FPGA system; and handle the synchronisation

across them.

Lack of transaction length in the SRAM interface: A transaction is defined

by a base address of the destination and a length. While the address bus in

the SRAM interface is used to convey the address value, there does not exist

a way to indicate the length of the transaction directly from the interface. As

a result, the bridge needs to use an agreed fixed length or obtain the value by

examining the control signals which themselves have issues with the duration

of assertion as raised in the previous chapter.

The GPMC-to-FPGA bridge is designed to tackle these challenges and each

sub-bridge takes different approaches in handling these issues to achieve their

respective design goals.

4. The Design of GPMC-to-FPGA Bridge 65

4.2 The Lightweight Bridge

The lightweight bridge is designed to handle all communication whose bandwidth is

not a concern; this includes the access to module or device registers and memory-

mapped I/O in the FPGA from the SoC. Such access is considered non-cacheable

and non-bufferable since the content at target locations is volatile; which means

the values are likely to be changed by hardware or operations external to the

current program context. Hence, it is necessary to read these locations only at the

time needed to ensure timeliness, and similarly new values needs to be written as

soon as possible so the changes could be reflected by the hardware or operations.

The lightweight bridge addresses such requirements and translates the GPMC

transactions into non-burst pipelined AVM transactions. The bridge is restricted

to perform only one-to-one translation; each GPMC transaction would yield one

and only one AVM transaction, and the next translation would only happen once

the previous transaction has been completed on both sides.

4.2.1 Composition of the memory-mapped sub-bridge

The bridge implements an emulated SRAM device for interfacing with the GPMC

and an AVM for issuing the translated GPMC transactions to the rest of the FPGA

system. The translation carried out involves clock domain crossing and alignment

correction, and the address of the incoming GPMC transaction is kept constant. In

this way, the FPGA address space is directly mapped into the configured GPMC

chip-select space in the L3 address space of the SoC, allowing direct access from

programs via CPU’s memory store and load instructions, and eliminating the

necessity of a driver. As shown in Figure 4.1, the access to address 0 inside the

FPGA module is equivalent to access address 0x 10 00 in the bridge’s address space

or GPMC chip-select’s address space, and again this is equivalent to access 0x 20 00

in the L3 space. The size of the mapped address space is preserved and an offset

is added to the base address when the mapping is constructed.

The main components in the lightweight bridge are the three first-in-first-out

(FIFO) blocks, served as means of synchronisation when crossing clock domains.

66 4.2. The Lightweight Bridge

0x0000 0x0000 0x0000

0x1000

0x2000

0x4000

0x2FFF

0x1000

0x2000

0x1000

0x3000

L3 Address Space Bridge Address Space Module Address Space

.

.

.

Figure 4.1: Memory mapping of an FPGA module into SoC’s L3.

Compared to simple register chains, the use of a FIFO eliminates the dependency

on the ratio between the two clock frequencies. While the two data FIFOs—the

Write Data FIFO (WDF) and the Read Data FIFO (RDF)—bridge the data buses

of the two sides, the Control Signal FIFO (CSF) synchronises essential signals

from the SRAM interface clock domain to the AVM clock domain to allow the

correct operations on the data FIFO and trigger the start of the resultant AVM

transactions. Since the SRAM interface is half-duplex; only one-way communication

is possible across the interface; the bridge’s AVM could be implemented as a unified

read/write master which handles both read and write transactions in sequence, and

uses the same parameter buses for both read and write operations as discussed

in the previous chapter to reduce resource usage. Moreover, further resource

optimisation could be achieved by configuring the AVM to use the same data width

as that of most slave components in the FPGA interconnect and thus eliminating

the necessity of insertion of width adapters. Also, the support of pipelined read

operations allows it to be connected to all kinds of slave components when designing

an FPGA system using the EDA tools.

4. The Design of GPMC-to-FPGA Bridge 67

4.2.2 Translation of the write transaction

Firstly, as stated in the previous chapter, since the SRAM interface does not show

the transaction length directly, the write-enable signal of the interface has to be

sampled to understand the timing for the last data. Because the signal could be

asserted more cycles than the number of valid data words, it needs to either be

delayed accordingly when the signal is early, or have the extra time accommodated

by delaying the data signals instead. The latter method is, however, undesirable

since it increases the overhead cycles in a transaction towards the end due to the

previously mentioned clocking gating effect. Hence, the implementation in this

work only aligns the write-enable signal to the first data when sampling the GPMC

signals, and delegate the data length correction to the AVM clock domain. The

write-enable signal is synchronised with the CSF to be used in the AVM domain

for indicating the start of the read of the WDF. As the data bus is not adjusted

for the write-enable signal, extra data would be written into the WDF, and these

excess data would be cleared at the end of the translation.

On the AVM side, the translation of the write data and the corresponding

byte-enable is pipelined as the process starts when the required control signal, the

delayed synchronised WDF write request, arrives and consumes the data in the

FIFO as they become available. Due to the potential data bus width difference,

multiplexers are used to set the incoming GPMC word to the correct location in the

AVM word with the corresponding byte-enable, and output address is truncated

to the closest AVM word address. A counter is used as the select signal to the

multiplexers. The translation process on AVM side starts by initialising the counter

to the unalignment offset (δ), that is δ ≡ addr mod alignment1, and finishes when

the counter value is equal to the AVM word size. Hence, the output transaction is

aligned for the AVMM interface, and the termination also truncates the GPMC

transaction if its length is more than the fixed output.

When a memory accessing instruction is executed, a transaction is issued from

the CPU to the GPMC, and the GPMC toggles the interface signals accordingly.
1Address (addr) and alignment uses a byte as the basic unit

68 4.2. The Lightweight Bridge

As a result, any naturally unaligned access2 in the program is corrected firstly by

the CPU. Such correction involves splitting the access required by the program

into multiple requests of one byte to the GPMC; for example, when accessing four

bytes from address 0x 03, four requests will be sent to the GPMC, and thus the

GPMC performs four single byte transactions at the address, and since GPMC

is two-byte aligned, its byte-enable will toggle correspondingly to indicate the

selection of byte in each transaction.

As part of the design specification for one-to-one translation, the bridge is

required to hold the GPMC write transaction by delaying the acknowledgement

using the wait signal in the SRAM interface; as shown in the previous chapter;

until the AVM completes its transaction. However, it is not ideal to implement

such an approach since there is no direct indication of the transaction length and

the workaround requires delaying the data bus signals. Instead, the problem is

approached by allowing the current GPMC transaction to finish, and stall the

start of the data phase in the next transaction. As discussed before, the WDF

contains redundant data due to the extra sampling of the write-enable and would

require explicit clearance in each transaction. The bridge adjusts the timing of

the clearance so that the WDF is not empty until AVM has completed the write

transaction as shown in Figure 4.2. In this way, the empty status from WDF could

not only be used to stall the GPMC transaction but also allow the bridge to meet

the serialisation requirement arisen from merging the AVM parameter buses.

4.2.3 Translation of the read transaction

As shown in Figure 4.2, the read translation is started by clearing the RDF in

the SRAM interface domain and producing the start signal in the AVM domain.

When the bridge’s AVM is completing a read transaction by writing slaved returned

data into the RDF, the SRAM interface logic retrieves the data whenever it is

available and sends it over the data bus.
2The rule of natural alignment is defined as the following: when accessing N bytes of memory,

the base memory address must be evenly divisible by N, that is addr mod N = 0. Any accesses
that do not meet the requirement are unaligned accesses

4. The Design of GPMC-to-FPGA Bridge 69

type?

readwrite

slave ack

write ctl signals to CSF

derive RDF_clear

write data to WDF read data from WDF

detect start

output AVMm read cmd

write data to RDF

output AVM write cmd

clear RDF

clear WDF

control signal FIFO

[CSF]

read data FIFO

[RDF]
read data from RDF

write data FIFO

[WDF]

wait slave to return data

Write completes

Read terminated by master

Cycle starts

<< precondition >>

WDF is empty
<< precondition >>

WDF is empty

GPMC clock domain AVM clock domain

Figure 4.2: Transaction translation in the lightweight bridge.

As the GPMC NOR protocol specifies, the output of the device is controlled

by the output-enable signal. However, as the signal behaves the same as the write-

enable signal with undesirable assertion and de-assertion timing, the bridge does not

use it to control the timing of output. Instead, the wait signal derived from the empty

status of RDF is used to indicate the validity of the data bus dynamically. Moreover,

this wait signal for read is only asserted once at the beginning; once it is de-asserted,

it stays inactive until the end of the transaction. Such behaviour ensures that when

the GPMC reads more data than expected, it could still finish the transaction

despite the RDF being empty. Nevertheless, similar to how a conventional SRAM

device is interfaced, the GPMC still has to be configured with a static timing for

output-enable so that the signal is always asserted before the first data appears.

The RDF is a mixed width FIFO, and the width of read and write port is

70 4.3. The High-Performance Bridge

configured to be the SRAM interface and AVM data bus width. When translating

AVM-unaligned transactions, the AVM data is shifted before writing into the

RDF, so the least significant byte is correctly aligned to the address in the GPMC

transaction. When the GPMC transaction length exceeds the AVM word size, any

data after exceeds the AVM alignment corrected length will be undefined. Such

an approach is taken because the GPMC transaction length is entirely determined

by software when the access is naturally aligned.

4.3 The High-Performance Bridge

As a complement to the lightweight sub-bridge, the high-performance sub-bridge is

prioritised on achieving high bandwidth when translating the transactions across

the interfaces. In the case of the lightweight bridge, the one-to-one translation

makes the bandwidth suffer from the significant wait time when the SRAM interface

side is kept idle before the AVM finishes the transaction. In order to remove this

overhead, the high-performance bridge implements read prefetch and pipelined write

mechanisms with stream buffers between the two sides. The buffering decouples the

read and write timing between the sides and allows the GPMC and AVM to perform

transactions independently as long as the correct data is in the buffer. Hence, a

constant data flow can be achieved to obtain the maximum bandwidth possible.

In order to maximise the mapping into the SoC’s L3 space, the high-performance

bridge is implemented to use a different chip-select from the lightweight counterpart.

In this way, dedicated timing could be set in the GPMC, allowing the potentially

less cycle overhead to be configured independent of the lightweight bridge. Since

most signals in the SRAM interface is shared, the chip-select signal is used to

differentiate the destination.

As shown in Figure 4.3, the high-performance bridge contains separated channels

for translating read and write transactions. Each channel consists of an SRAM

interface slave controller, a transmuxer, an AVM controller and a stream buffer, and

the channels are de-multiplexed and multiplexed at either end before connecting to

the SRAM and AVMM interfaces respectively. Within the channel, components

4. The Design of GPMC-to-FPGA Bridge 71

W
rit

e
St

re
am

 b
uf

fe
r

AV
M

 w
rit

e
re

qu
es

t

G
PM

C
w

rit
e

re
qu

es
t

W
SB

 w
rit

e

CS
R

re
ad

 re
qu

es
t

RS
B

w
rit

e

CS
R

Re
ad

 S
tr

ea
m

 b
uf

fe
r

W
SB

 re
ad

RS
B

re
ad

AV
M

 re
ad

 re
qu

es
t

ct
l b

us

da
ta

 b
us

AV
M

M
 In

tf.
G

PM
C

w
rit

e
re

qu
es

t q
ue

ue

W
rit

e
re

qu
es

t
m

ux

G
PM

C
w

rit
e

re
qu

es
t

Re
ad

 tr
an

sm
ux

er

W
rit

e
sl

av
e

co
nt

ro
lle

r

Re
ad

 s
la

ve
 c

on
tr

ol
le

r

SR
AM

 In
tf.

 s
la

ve
 c

on
tr

ol
le

r

Re
ad

 re
qu

es
t s

yn
ch

ro
ni

ze
r G

PM
C

re
ad

 re
qu

es
tRe

ad
 re

qu
es

t
m

ux

W
rit

e
tr

an
sm

ux
er

AV
M

 c
tl

bu
s

m
ux

AV
M

 re
ad

 tr
an

sa
ct

io
n

AV
M

 re
ad

 c
on

tr
ol

le
r

AV
M

 w
rit

e
tr

an
sa

ct
io

n

AV
M

 w
rit

e
Co

nt
ro

lle
r

AV
M

 c
on

tr
ol

le
r

G
PM

C
re

ad
 re

qu
es

t

AV
M

M
 In

tf.

CS
R

w
rit

e
re

qu
es

t

SR
AM

 In
tf.

da
ta

 b
us

ct
l b

us

In
te

rf
ac

e

M
od

ul
e

Sl
av

e/
O

ut
pu

t

M
as

te
r/

In
pu

t

F
ig

ur
e

4.
3:

C
om

po
sit

io
n

of
th

e
hi

gh
-p

er
fo

rm
an

ce
br

id
ge

.

72 4.3. The High-Performance Bridge

exchange information about transactions using the transaction request interface.

It offers control signals for acknowledgement-based communication between the

controllers, and parameter buses for describing the transaction in terms of address

and length. The address and length use a byte as the basic unit so that the controllers

can carry out the interface dependent alignment corrections accordingly. The

transmuxer between the controllers carries out clock synchronisation through either

register-based synchronisers or a FIFO-based queue for the read and write channels

respectively. It also enables the extension of address space and an alternative slave

mode for the program to interact with the FPGA address other than the memory-

mapped approach. Besides providing clock synchronisation similarly to the data

FIFO in the lightweight bridge, the stream buffer realises read prefetching and

pipelined write. Its implementation also differs from conventional FIFO for providing

the ability to access any valid location in the buffer. Such a feature is important in

order to minimise the transaction cycle overhead in the SRAM interface.

4.3.1 The Stream buffer and its customisation

A stream buffer is commonly used when implementing hardware prefetching [38]. It

works like a FIFO queue; the prefetcher automatically and continuously performs

transactions and pushes data into the queue at the tail end for as long as space

allows, while the consumer retrieves the data from the head, allowing new data to

be pushed in again. As the prefetcher performs sequential access; that is the address

of the next transaction is equal to the sum of address and length of the previous; the

buffer will contain values from a contiguous section of the entire memory. The most

straight-forward implementation of a stream buffer is to use a FIFO buffer. In a

design of a conventional FIFO, two pointers are kept which corresponds to the next

read and write location to create a circular buffer. A write request to the FIFO sets

the data at the location and advances the write pointer while a read request returns

or acknowledges the data at the location and advances the pointer as well. The write

pointer never overtakes the read pointer by one round, and the modification of the

4. The Design of GPMC-to-FPGA Bridge 73

read pointer effectively discards the data at the location it was previously pointing,

allowing the write pointer to point at the place so that new data can be written.

In the case where the GPMC is interfaced, such implementation of a conventional

FIFO is ineffective due to lack of length information in the SRAM interface,

which then raises the issues for sampling the control signals and registering the

output to the SRAM interface. As mentioned previously, the output-enable of the

SRAM interface will only be de-asserted at least one cycle after the last data, thus

when it is used to control the read operations to the stream buffer, extra data

will be read. Similarly, the registering of the output which effectively delays the

data by one clock cycle and also results in reading extra data because the GPMC

will not de-assert the control signals or terminate the clock if sufficient data is

not received. Such a behaviour is undesirable as it breaks the sequentiality of

transactions, and thus optimal performance from buffering is only obtainable from

successive transaction with a constant gap. Alternatively, a secondary buffer can

be installed to hold these extra data discarded from the stream buffer and return

them to the GPMC accordingly, but significant amount of memory and logic has

to be used for its creation. In order to solve this problem, the stream buffer used

in the high-performance bridge is implemented with three pointers and a circular

buffer. Similar to a conventional FIFO, two of the pointers are used for indicating

the next read and write locations, and these pointers are referred as the access

pointers. The third pointer is defined as the read storage pointer. The read storage

pointer points at a location behind the read access pointer, indicating the valid

data has been read but kept for reuse, and the write pointer is restricted so that

it never exceeds the read storage pointer so write operations will not overwrite

these locations. Also, unlike the access pointers which are modified by read and

write request to the buffer, the storage pointer can only be changed via a dedicated

pointer interface consisting of an offset and a set signal. When the set signal is

asserted, the storage pointer will be incremented by the value of the offset at this

point, and it also rewinds the read access pointer to the new value of the storage

74 4.3. The High-Performance Bridge

pointer. In this way, it is possible to request any amount of valid data without

worrying about discarding the already read data.

The stream buffer also offers width adaptation similar to a conventional FIFO

implementation, and the data ports on either side can be configured to have

different width combinations which meet the power-of-two ratio requirement. On

the side with the smaller data width, the pointer interface addresses the offset using

the smaller word size. Internally, the read and write access pointers will also use

different address units accordingly, but the storage pointer is only addressed using

the larger word size. When setting the storage pointer on the side with a smaller

word size or data width, the unalignment offset from the value of the offset bus is

ignored. However, the rewinding of the read access pointer takes account of the

unalignment offset, and allows the readout of the selected smaller word.

Due to the introduction of the read mechanism, the empty status exposed

externally has also been modified. While the buffer maintains an internal empty

flag which is derived from the read storage pointer and write pointer for indicating

the true emptiness of the buffer, the external empty flag is derived from the read

access pointer and the write pointer. Hence, the controller logic could interpret the

timing when all data in the buffer has been read, and it can choose to adjust the

read storage pointer as needed. Also, in terms of operations, the behaviour of a

conventional FIFO can also be obtained by asserting the pointer set signal at the

same time as the read request signal while keeping the pointer offset constant at 1.

For write operations to the stream buffer, the default behaviour is the same

as the conventional FIFO, but it is possible to create a patterned write using the

pointer interface. When the pointer-set signal on the write side is asserted, the

write pointer will be incremented by an additional value from the offset bus in

addition to the regular increment of 1 from write request. For example, when the

pointer-set is asserted with offset equal to 2, it creates a two-word gap between the

previously written data and the next. This feature on the write side is introduced

mainly for alignment correction and its operation will be discussed in detail in

later sections of the thesis.

4. The Design of GPMC-to-FPGA Bridge 75

4.3.2 SRAM interface read slave controller

The SRAM interface read slave controller interfaces the GPMC and is responsible

for handling the GPMC read transactions. The controller maintains a record of

the stream buffer’s base address corresponding to the GPMC address space, and

coupled with used word status, this address is used to determine if the next GPMC

transaction can be fulfilled directly from the stream buffer. Hence, as shown by

the state machine diagram in Figure 4.4, once a GPMC read request is interpreted

from the SRAM interface signals, the controller performs checks on the incoming

address against the internal record. When the buffer contains valid data, the buffer’s

pointer is adjusted and data is returned to the GPMC immediately, eliminating

the necessity of waiting for as long as data is available. Otherwise, a request is

posted for the AVM controller via the transaction request interface.

To interact with the slave controller, the GPMC’s read timing is configured so

that it stops the clock immediately after receiving the last data. Together with the

slave controller ensuring that the interpretation of read request and address checking

Request

Idle

Adjust ptr & read

Wait for buffer

GPMC requests

N

N

Receives ack

Buffer is not empty

Read
completes

Buffer is empty

Y

Y

buffer is
empty?

data in buffer?

GPMC requests &
data is not in buffer

GPMC requests &
data is not in buffer

Figure 4.4: Finite-state machine for the SRAM interface read slave controller.

76 4.3. The High-Performance Bridge

takes only a minimum number of cycles, the transaction overhead is minimised.

Moreover, due to the timing of when the clock signal stops, the controller will not

correctly register the de-assertion of the output-enable signal, and as a result, it

remains in the read or wait state when GPMC completes a transaction. Hence, the

state machine is designed so that these states also acknowledge the GPMC request

signal similar to the idle state. In this way, especially for sequential reading, the

idle state is skipped to further reduce the overhead cycle.

The controller’s record of the buffer’s base address is always set to the current

GPMC transaction address excluding the unalignment offset. The validity of the

approach is confirmed with following ways for manipulating the buffer pointers:

1. When the controller posts a request to the AVM, the buffer will be explicitly

cleared by the AVM and hence the current transaction address will correspond

to the first data in the buffer. The statement is true even when pointer is

adjusted to compensate for the unalignment offset, as such adjustment does

not affect the buffer’s read storage pointer as mentioned before.

2. In the following transaction, as buffer content is preserved by the storage

pointer, it is possible to get the correct data by setting the storage pointer to

the difference between the current address and the previous when the data is

determined to be in the buffer via the checking. Doing so will also discard

any data before the new storage pointer and hence making the first data in

the buffer corresponds to the current transaction address again.

3. The determination of whether data is in the buffer only happens at the

start, before the modification of the storage pointer, so the correct relation is

obtained.

In conclusion, coupled with the stream buffer, the read slave controller responds

to a GPMC read transaction in the shortest time possible, ensuring maximum

performance for sequential reading. Also, as a side effect, a similar performance

could be achieved from interleaved reading as long as the gap is small enough so

the valid data could be obtained from the stream buffer directly.

4. The Design of GPMC-to-FPGA Bridge 77

4.3.3 AVM read controller

On the other end of the read channel, the AVM read controller is responsible for

realising any incoming transaction requests and performing prefetching transactions

to fill the stream buffer. As shown by the state machine diagram in Figure 4.5, the

prefetching does not start automatically, and it is only triggered by an incoming

transaction request. Since it is possible to set the request length to a value greater

than the maximum burst size of the AVM, a single transaction may not fully fulfil

Wait for bus

Slave acknowledges

handing a req?

Wait for slave ack

prefetch
disabled?

N

N

Burst completes

Y

Y

Y Y

N

Idle

GPMC requests

bus busy? Y

buffer ready?

Start Request

Bursting

Load Request

Hold

Start Prefetch

N
N

request pending?

Figure 4.5: Finite-state machine for AVM read controller.

78 4.3. The High-Performance Bridge

the request. In this case, the remaining ones will be automatically completed by

the prefetching process. The prefetcher always uses the address and length of the

previous transaction to compute the necessary parameter for the next one, creating

a continuous flow of transactions for as long as the buffer is available. It is only

stoppable by actions such as flushing the streaming buffer.

Realisation-wise, a transaction due to a request and a prefetch is the same,

they share the same logic for driving the AVMM interface. The main difference

between them is that a requested transaction could be any length set by the request

while the prefetching transaction is fixed to be a full burst transaction. However,

additional actions are required before the start of a requested transaction. As stated

earlier, the SRAM interface slave controller requires the buffer to be cleared when

it posts a request, and it is also necessary to acknowledge such a request via the

request interface. Hence, two start states are created so actions could be taken

accordingly. Also, while prefetching is in progress, the new request from the SRAM

interface slave controller is only handled at the end of a transaction after the hold

state, due to the inability to stop an AVM read transaction from the master once it

is acknowledged by the slave. Such behaviour increases the wait when the GPMC

is performing random access and is considered as the trade-off for the boost in

sequential access. The controller locks the AVM interface exclusively when it is

preparing or realising a transaction’s command phase, which corresponds to the

states of load request, start request, start prefetch and wait for slave ack. Hence, the

integrity of the communication is protected by enforcing the required serialisation

for sharing the parameter bus in the interface as stated in chapter 3. Finally,

considering the stream buffer pointer manipulation, the AVM read controller uses

the method stated earlier to operate the buffer as a conventional FIFO.

4.3.4 SRAM interface slave write controller

While the slave read controller is only responsible for the GPMC read transaction,

the SRAM interface slave write controller handles the GPMC write transactions.

The slave write controller posts a request for every incoming GPMC transaction.

4. The Design of GPMC-to-FPGA Bridge 79

Wait bufferIdle

Finish / Adjust ptr

Start / Adjust ptr

Buffering

Buffer available

Y N

buffer available?

GPMC Requests

GPMC requests
& buffer available

Figure 4.6: Finite-state machine for SRAM interface write slave controller.

The request’s address will be the same as the interface address. To solve the issue

with the control signals and the lack of length, the signals in the data bus are

shifted so that it is aligned to the de-assertion of the control signal and a counter is

used to determine the current transaction’s length which is needed for generating a

request. Hence, the slave write controller only posts the request when the entire

GPMC transaction is buffered, but it will be immediately available for the next

GPMC write transaction. Consequently, the latency for pipelined writing is one

GPMC transaction. Also, the buffering only starts when there is space in the stream

buffer to hold the maximum possible length of data, otherwise, the GPMC will

be put into hold via the assertion of the wait signal in the SRAM interface. Such

an approach is to remove the necessity of potential adjustment for the corrected

wait-data relationship stated in the previous chapter during a transaction.

Unlike the lightweight bridge where natural alignment is guaranteed from the

involvement of the CPU, GPMC transactions coming to the high-performance bridge

could be originated from a direct memory access (DMA) engine. Such an engine

80 4.3. The High-Performance Bridge

is a controller capable of performing memory transactions between two locations

without the CPU, and due to its simplicity, features like the alignment correction

are likely unsupported. As a result, it is necessary for the bridge to support the

alignment corrections, including that for naturally unaligned transactions, to ensure

the correctness of the translation. Such alignment correction for the AVMM interface

generally involves the following:

1. Correct word address needs to be obtained from unaligned byte address.

2. The data needs to be placed in the correct byte locations in a word.

3. The corresponding byte-enable needs to be placed in the right byte location.

4. The byte-enable needs to follow the rule of natural alignment.

As shown by the states of Figure 4.6, the slave write controller helps the process

by ensuring the data for a transaction is AVM aligned via adjusting the buffer pointer

before and after data has been written into the stream buffer. The adjustment before

writing data is to eliminate the unalignment from word size differences between the

two interfaces. It uses the unalignment offset from the incoming address to ensure

the GPMC words are written to the correct location, so when AVM reads a whole

word of different size from the buffer, no further adjustment is needed. When all

the data has been buffered, it is not guaranteed that the buffer pointer is placed in

an AVM aligned location, and such behaviour will cause issues when AVM retrieves

the data for the next transaction as the application of the first adjustment is based

on the assumption that the pointer starts at an aligned position. Hence, additional

padding is inserted at the end of a transaction into the buffer so the pointer ends

in a AVM aligned location, ready for the next transaction. In addition, the slave

write controller does not perform the construction of byte-enable, as doing so would

require the result to be synchronised across the clock domains and increase the

overhead cycle for a GPMC transaction. Instead, the needed information is passed

to the AVM via the request interface by the use of byte address and byte length,

so that AVM can construct the byte-enable locally when needed.

4. The Design of GPMC-to-FPGA Bridge 81

4.3.5 AVM write controller

While pipelining is achieved with the introduction of the stream buffer and the queue

in the transmuxer, the AVM write controller focuses on the alignment corrections.

To repeat, the AVM can only send out word-aligned transactions as the interconnect

ignores the value of unalignment offset in an address. While it is possible to use

regular burst transaction for the word-aligned data in a request, the unaligned data

needs to be handled by single word transaction with the correct byte-enable. In

addition, the rule of natural alignment applies to the validity of the byte-enable and

it can be summarised as the following in terms of the binary value of the byte-enable:

1. All ones in the byte-enable must be consecutive.

2. The total number of ones must be power of 2.

3. The bit position of the least significant one must be divisible by the total

number of ones.

For example, counting the least significant bit as the bit 0, if bit 2 in the byte-enable

is 1, then the only valid values for byte-enable are 11002 and 01002. In order to meet

the above rule, an unaligned request may be split into multiple transactions. While

it is also possible to meet the requirement by creating a single byte transaction

similar to what the ARM CPU does on the ARMflash, such an approach reduces the

performance for the number of transactions it creates; as the data width of the AVM

grows wider, the number of bytes in a word increases and thus the required number

of transactions might also increase. Hence, while the loss of performance due to

unalignment is unavoidable, the loss is minimised by performing the correction

with the minimum number of transactions.

As shown by the state machine in Figure 4.7, a request is realised in three stages,

pre-alignment, bursting and post-alignment. The pre-alignment and post-alignment

stages handle the word unaligned portion in a transaction by creating one or more

single word transactions, while the bursting stage sends out the bulk of data via

regular burst transactions. The values of byte-enable in the alignment stages

are determined as the following:

82 4.3. The High-Performance Bridge

Y

Receives req

Y

N

Data is ready word length is 0?

Burst completes

N

Pre-alignment

Wait buffer

Load

Start burst

Idle

Bursting Post-alignment
words left?

Figure 4.7: Finite-state machine for AVM write controller.

1. The maximum byte length from address is computed by finding the least

significant one in a byte address.

2. The maximum byte length from request is determined from the request length

by finding the most significant one.

3. The number bytes for the next transaction is the smaller of the two values

calculated above, and a corresponding number of ones is allocated to the

byte-enable, starting from bit 0.

4. The intermediate byte-enable from 3 is shifted left according to the unalign-

ment offset of the address to obtain the final value.

5. The number of bytes is added to the initial byte address and deducted from

the length, and the process repeats.

The termination of the algorithm is set differently according to when it is used.

In the pre-alignment stage, the algorithm stops when the byte address is word-

aligned, so it is safe to progress and start executing the burst transaction when word

length is non-zero. On the other hand, in the post-alignment stage, the termination

condition is that the byte length is equal to 0, and thus a request is fully fulfilled.

Similar to the AVM read controller, the write controller operates the stream

buffer as the conventional FIFO. While read request is sent to the buffer during

4. The Design of GPMC-to-FPGA Bridge 83

regular burst transaction to retrieve new data, the buffer stays inactive in both

of the alignment stages. However, the request is asserted for one cycle to eject

the data word which has been fulfilled in the stages when the alignment finishes.

Moreover, a burst transaction will only be executed when all data concerned is

available in the buffer, this enables that interface activity due to write transaction

is packed to minimise the locking of slave device, so the access from other master

in the system will only be blocked for a minimum duration.

4.3.6 Transmuxer and operation mode

The transmuxer in a channel bridges the controllers on the two sides by synchronising

the request interface signals across clock domains. For the read transmuxer, while

the unidirectional signals are synchronised via register chains, the synchroniser for

the parameter bus is implemented using the MUX-recirculation scheme, ensuring

the operational independence to the change of ratio between the frequency of the two

clocks [39]. In contrast, as part of the implementation for write pipelining, a FIFO is

used to synchronise the write requests from the SRAM interface write slave controller.

When considering the convenient programming model for the lightweight bridge

with memory mapping, the mapping size is limited. While the SoC’s L3 interconnect

only allocates a maximum of 256 × 220 bytes (268.4 MB) for the one chip-select

and 512 × 220 bytes (536.8 MB) for all chip-select the GPMC has, an FPGA

system usually demands more especially when its dedicated DDR3 memory is used.

In order to solve the issue, a configurable mapping is implemented. As shown in

Figure 4.8, the configurable mapping makes the bridge’s address space differ from the

FPGA address by an offset which can be configured via the bridge’s control/status

registers (CSR). In this way, the access to the FPGA is no longer limited by the

addressable space of the bridge, and an arbitrary location in the FPGA space can

be accessed by adjusting the mapping accordingly. In term of implementation, as

the internal request interface is characterised by address and length, it is possible

for the transmuxer to perform the addition of an offset onto the original request

84 4.3. The High-Performance Bridge

0x0000 0x0000 0x0000

0x1000

0x2000

0x4000

0x2FFF

0x1000

0x2000

0x6000

0x7000

0x8000

0x9000

0x3000

L3 Address Space Bridge Address Space FPGA Address Space

Figure 4.8: Reconfigurable mapping.

before sends it out to the AVM. Because the AVM controllers is designed to handle

arbitrary requests, the access to the more extensive FPGA space can be realised.

As an alternative, the high-performance bridge also offers a slave mode. In

this mode, the request to the AVM is coming from the CSR instead of the SRAM

interface slave controllers. The CSR would allow the address and length of a request

to be filled, and the request is posted via the transmuxer to the AVM controllers.

Such an approach removes the limitation on mapping space since the entire bridge

works like a DMA engine. In the implementation of the mode, in addition to the

multiplexing of the request source in the transmuxer, the mode also requires to

disable all address related logic in SRAM interface slave controller including the

verification of data’s availability in the buffer and the resulting point adjustment,

as the first data in the buffer will always be the one to be returned. However, the

adjustment for accessing the sub-AVM-word is still required due to the addressing

unit of the stream buffer’s read storage pointer.

4.3.7 Control/status registers

Due to the configuration requirement for operating the bridge, as well as coherency

keeping, the high-performance bridge implements a set of CSR which can be accessed

via the Avalon memory-mapped slave (AVS) interface. The AVS controller is

4. The Design of GPMC-to-FPGA Bridge 85

designed to only support the simple fixed-wait transaction to minimise the FPGA

source usage. Due to that the AVS is an internal interface in the FPGA, it makes

the lightweight bridge a dependency for the high-performance bridge unless other

methods of accessing the interface are provided. Such a dependency is justifiable as

the high-performance bridge is unsuitable for accessing device registers and memory-

mapped I/O due to the side effect of prefetching. Moreover, if the registers are

to be accessed directly using the SRAM interface within the mapped chip-select

region, space has to be reserved in the SoC’s L3, resulting in undesirable reduction

in the mapping size for the FPGA space.

As shown in Table 4.1 and 4.2, the control/status register uses bit fields for

mode selection and action triggers, while the base address and size is shared by both

operation modes. In the mapping mode, the 32-bit base address and size register

configures the mapping while in the slave mode, they are parameters describing the

transaction request to the AVM. Moreover, a FLUSHBUFFER field is included to

provide simple coherency keeping for transactions across the bridge. Although the

bridge prefetches data, there is no logic to ensure the validity of the buffer in the

long run as other masters in the FPGA system might modify the corresponding

location. Due to the separation of the read and write channel within the bridge,

even when the prefetched locations are modified by the out-going write transactions

from the bridge, the prefetcher has no knowledge of this happening. As a result,

the old data remains in the buffer and will be used for readout by the GPMC. The

inclusion of the FLUSHBUFFER field offers a way for the programmer to exert

coherency manually, reducing any potential bugs due to the write-after-read scenario.

Word Offset Direction Name

0x 0 R/W Control/Status
0x 1 R/W Base Address
0x 2 R/W Size
0x 3 R/W Reserved

Table 4.1: High-performance bridge register map.

86 4.4. Summary

Bit Field Direction Description

0 FLUSHBUFFER R/W Set to flush prefetched data, and the bit
is automatically cleared when flushing
completes

1–7 Reserved
8 SLAVEENABLE R/W Set to enable the slave mode and clear

to disable it
9 SLAVEREAD R/W Set to start reading in slave mode, and

the bit is automatically cleared upon
completion. Ignored if slave mode is
disabled

10 SLAVEWRITE R/W Set to start writing in slave mode, and
the bit is automatically cleared upon
completion. Ignored if slave mode is
disabled

11–31 Reserved

Table 4.2: Bit map for the Control/Status register (Word Offset = 0x 0).

4.4 Summary

This chapter details the design of the GPMC to FPGA bridge, which consists of

two sub-bridges; the lightweight bridge and the high-performance bridge. The

bridge is capable of handling the access requirements for different kinds of devices;

the lightweight bridge handles memory-mapped I/O and registers without any

side effects, while the burst bridge performs high-bandwidth communication to

memory devices. The bridge handles unaligned accesses and ensures deterministic

behaviour for possible invalid accesses. While the lightweight sub-bridge’s address

space is limited to 256 × 106 bytes maximum, the high-performance sub-bridge

offers ways to enable the extension of address space via a configurable memory

map and the alternative slave mode, allowing flexibility for the CPU programs

interacting with the FPGA. When comparing the existing EVS-MUX solution,

the new design features the following:

• The cycle overhead has been reduced to minimum.

• The lightweight sub-bridge offers a much larger address space compared to

the similar PIO Module.

4. The Design of GPMC-to-FPGA Bridge 87

• Pipelined write and read prefetching is introduced in the high-performance

sub-bridge to maximise performance for sequential access.

• The software interface is much simpler due to fact that it more closely resembles

a memory device when configured in mapping mode.

88

5
Benchmark for the GPMC-to-FPGA

bridge

In order to understand the performance and limitation of the design of the GPMC-

to-FPGA bridge in Chapter 4, it is placed in a test environment and verified on

the ARMflash platform. The results obtained are compared to the performance

of the EVS-MUX solution in the same test environment. This chapter firstly

describes the test environment and the objectives of the benchmark, followed by

the results, and finally discusses the design and implementation of the GPMC-to-

FPGA bridge, and the general usage of a memory interface for communicating

with an external FPGA device.

5.1 Test Environment

The test environment consists of two parts: an FPGA system in which the

component-under-test would be placed, and Linux kernel modules and user space

programs which issue transactions to the FPGA for verification.

5.1.1 FPGA

The FPGA benchmark system consists of two domains for testing the two types of

sub-bridges presented in the GPMC-to-FPGA bridge and the similar modules in

89

90 5.1. Test Environment

OCRAM 16K

DUT

AVMM Interconnect

OCRAM 32K

AVMM Interconnect

SDRAM Controller DD3 SDRAM

Slow Domain

Fast Domain

Figure 5.1: FPGA benchmark environment for the GPMC-to-FPGA bridge and EVS-
MUX.

the EVS-MUX. As shown in Figure 5.1, one of the domains is the slow domain,

which contains a single on-chip random-access memory (OCRAM) component, while

the other domain (fast domain) has an OCRAM coupled with an external DDR3

memory via the SDRAM controller. These memory devices will act as the storage

medium for data transferred from the ARM SoC in order to verify the correctness

of the bridges’ translation of transactions in the following ways:

1. Debugging tools, such as the In-System Memory Content Editor from the

Quartus software, could be used to manually check the content of the OCRAM

against the data sent from the ARM SoC.

2. The ARM SoC can read the memory locations it previously wrote to and the

consistency between the data read and written can be verified programmati-

cally.

The test system has the following controlled parameters:

• Operating frequencies of the domains (f)

• Data width of interconnection in the domains (DW)

• Maximum burst length of the interconnection in the domains (BS)

5. Benchmark for the GPMC-to-FPGA bridge 91

While both DW and BS are parameters of the FPGA interconnect, they are also

used to parameterise the GPMC-to-FPGA bridge’s ports to the interconnect. By

choosing combinations of these parameters, it is possible to evaluate the overall

performance of the ARMflash system, and providing guidelines for the deployed

FPGA design’s performance in terms of inter-processor communication.

5.1.2 Software

The test software is the code which runs on the ARM CPU in the SoC to

programmatically verify the transactions through the bridges. It consists of Linux

kernel modules and user space programs. This section shows the algorithm used

and the different ways to access the memory on the FPGA side from the SoC. The

choice of the types of the code for different testing purposes is also discussed. In

general, user space programs are best for verification purposes while the Linux

kernel modules allow better benchmarks of the throughput.

Algorithm

Both the kernel modules and the user space programs follow the same algorithm

shown in Figure 5.2. Firstly, it prepares the read and write buffers and writes

the data to the target memory on the FPGA side, followed by reading the same

length from the location they previously wrote, and lastly the two buffers are

verified against each other to check for consistency. The whole process of read

and write is timed to measure the throughput of the link between the SoC and

memory devices on the FPGA. A third timing (overall time), which includes the

time for read, write and preparing the buffers, is measured for comparing with

performance of DMA-based memory-to-memory copy measured using the Linux

kernel’s DMA Engine test module. The overall time also gives a closer estimation

of the expected performance in real applications.

92 5.1. Test Environment

Prepare the write
buffer with data

Prepare the read buffer

Write

Read

Verify the read buffer
against the write buffer

Write time

Read time

Overall time

Figure 5.2: Flow diagram for the test programs.

Memory access method

CPU programs are usually written in high-level languages. In the case of the C

programming language, memory access is achieved with assignment statements

involving a pointer of some data type, and in most cases each statement would be

realised into a transaction issued from the memory controller. The data length

of the memory access or the transaction length is determined by the size of the

data type. In a system with a 32-bit CPU, such as the AM3358 in the ARMflash,

the largest data type offered by the C language is 64 bits or 8 bytes (long long

or double type). However, the GPMC is capable of burst transaction containing

data up to 32 bytes, which is 4 times the maximum size offered by the C language.

As a result, the GPMC could not be utilised to its full potential using the C or

other similar high-level programming languages directly.

Even when using low-level assembly language, a similar issue persists. For

example, when using the Arm or THUMB assembly on the AM3358 processor,

due to the CPU only has 32-bit registers and the way load multiple (LDM) and

store multiple (STM) instructions operates, the GPMC can only issue up to 8-byte

5. Benchmark for the GPMC-to-FPGA bridge 93

� �
.globl asm_read128
.type asm_read128, % function

asm_read128 :
.fnstart
vld1.64 {d0,d1},[r1]
vstmia.64 r0, {d0,d1}
bx lr
.fnend

.globl asm_write128

.type asm_write128, % function
asm_write128 :

.fnstart
vldmia.64 r0, {d0,d1}
vst1.64 {d0,d1},[r1]
bx lr
.fnend� �

Listing 5.1: NEON assembly fucntions for accessing 128-bit data

transactions. However, the use of NEON instruction (List 5.1) could increase

the maximum length of the transaction to 16 bytes as the vector engine could

store and load 128-bit data simultaneously. While this length is still only half

of the GPMC’s maximum burst length, it is the largest transaction obtainable

when a CPU is used directly.

In order to fully utilise the GPMC, it is essential to use direct memory access

engines (DMA) to carry out data transfers between the Arm SoC side and the FPGA

side; on the ARMflash, it is the EDMA engine which is connected to the SoC’s L3

interconnect via 128-bit data ports and capable of issuing burst transaction longer

than 32 bytes to memory controllers. In order to operate the DMA engine, Linux

kernel module has to be used as there is no API to operate these engines in user space.

By comparing the various ways of memory access and the resultant GPMC

transactions as shown in Table 5.1, it can be seen that a kernel module operating

the DMA engine for memory access is best for measuring the throughput, although

user space programs could still be used for accuracy tests in which performance is

94 5.2. Tests and Results

Method Max Size (byte) GPMC Burst (word)

C 8 4
Arm/Thumb assembly 8 4
NEON assembly 16 8
DMA engine >16 16

Table 5.1: Comparison of maximum transaction size and equivalent GPMC burst length
between different methods.

not essential. It should also be noted that throughput measurement is run with

the DDR3 memory since its size is not as limited as the OCRAM.

5.2 Tests and Results

The tests are carried out with the previously discussed test environment, in a Linux

system with kernel version 4.4.100. By varying the parameters in the hardware

system and the software, the following objectives could be studied:

1. The saturation of the interface between the GPMC and the FPGA for different

FPGA configurations

2. The read and write throughput of the interface

It should be noted that all throughput tests are carried out over the high-performance

bridge because the lightweight bridge is not designed to be used in bandwidth

demanding applications.

Table 5.2 shows the maximum throughput for different combinations of the

FPGA test systems. While the GPMC is configured to operate at its maximum

frequency of 100 MHz, the FPGA is configured at 3 different frequencies (75, 100

and 125 MHz) and the transaction length of the FPGA’s interconnect is varied

via BS and DW to study the impacts on throughput. Across all configurations, it

could be seen that the maximum read and write bandwidth overall is 148.45 MB/s

and 130.2 MB/s respectively. In terms of the write bandwidth, the values stay at

the maximum for most of the configurations because of the pipeline mechanism.

Since the write time measurements only consider the time taken for data to be

5. Benchmark for the GPMC-to-FPGA bridge 95

Config f DW BS Read Write
(MHz) (bit) (byte) (KB/s) (KB/s)

1

75

16
16 49.09 113.9

2 32 73.64 119.7
3 64 97.47 118.5
4

32
16 59.29 129.3

5 32 98.18 130.1
6 64 143.16 130.2
7

64
16 56.57 130.1

8 32 87.41 130.1
9 64 148.45 130.2
10

100

16
16 59.32 130.1

11 32 92.85 130.1
12 64 122.71 130.1
13

32
16 71.56 130.1

14 32 118.63 130.1
15 64 148.45 130.1
16

64
16 50.71 130.1

17 32 148.45 130.2
18 64 148.45 130.2
19

125

16
16 69.54 130.1

20 32 106.36 130.2
21 64 147.25 130.2
22

32
16 72.56 130.1

23 32 137.51 130.1
24 64 148.45 130.1
25

64
16 64.05 130.1

26 32 148.44 130.2
27 64 148.45 130.2

Table 5.2: Maximum throughput for different FPGA configurations.

96 5.2. Tests and Results

transmitted from the SoC to the bridge’s buffer, it means that the bridge’s buffer

often has the space to hold new incoming data apart from a few configurations

in which the buffer overflows due to the slowness of FPGA interconnect. On the

other hand, the read bandwidth fluctuates more, and is affected by the effective

rate difference between the FPGA interconnect and the SRAM interface. When

the f, BS and DW combination produces a higher effective rate on the FPGA

side than that of the GPMC (fixed at 100 MHz with a maximum burst length of

32 bytes), the resultant bandwidth is at the maximum.

Typical for bandwidth benchmarking, the size of the buffer used in the test

also affects the result; Figure 5.3 shows the bandwidth determined against the read

and write buffers’ size, ranging from 16 × 210 bytes (16.4 KB) to 8 × 220 bytes

(8.4 MB), in Config 24 which is one of the configurations that produce the maximum

throughput. Consistent across all types of throughput is that when the buffer size

increases, the percentage of overhead such as buffer preparation reduces, and thus

allowing the throughput to stabilise at the maximum values.

25 27 29 211 213

Buffer Size (×210 bytes)

80

100

120

140

Th
ro

ug
hp

ut
 (M

B/
s)

Read
Write
Average with overhead

Figure 5.3: The relationship between test buffer size and throughput in Con-
fig 24 (f = 125 MHz, DW = 32 bit, BS = 64 bytes).

5. Benchmark for the GPMC-to-FPGA bridge 97

Using one of the configurations which maximises the throughput of the SRAM

interface, the performance is compared between the GPMC-to-FPGA bridge and

EVS-MUX. With regard to the performance, two kinds of throughput are analysed:

the theoretical throughput which is derived from the timing setup for the GPMC,

and the practical throughput measured using the test programs. As shown in

Figure 5.4, the new design offers a faster read and write speed in terms of theoretical

throughput; 148 MB/s and 130 MB/s respectively. This compares to the rate of

123 MB/s for both read and write in the EVS-MUX case. On the other hand, when

testing with mapping mode of the GPMC-to-FPGA bridge, only 88% and 93% of

the theoretical value is obtained. Although these percentages are lower compared

to the others, the rates are still faster than the EVS-MUX for both read and write.

In terms of the resource usage of the FPGA design, the number of ALMs,

adaptive look-up tables (ALU), logic registers and memory bits are considered, as

shown in Table 5.3. When comparing these values to those of solutions in Chapter 2

0 20 40 60 80 100 120 140 160
Throughput MB/s

G2F bridge Read (Mapping)

G2F bridge Write (Mapping)

G2F bridge Read (SLAVE)

G2F bridge Write (SLAVE)

EVS-MUX Read

EVS-MUX Write

Theoretical Practical

Figure 5.4: Throughput (practical and theoretical limit) comparison between the
GPMC-to-FPGA bridge in Config 24 (f = 125 MHz, DW = 32 bit, BS = 64 bytes).

98 5.2. Tests and Results

Component ALM ALUT Register Memory (bit)

GPMC-to-FPGA bridge 684.8 1105 1087 4888
Lightweight sub-bridge 88.4 160 222 528
High-performance sub-bridge 550.3 902 700 4360

Table 5.3: FPGA fitter resource usage of GPMC-to-FPGA bridge in Config 24
(f = 125 MHz, DW = 32 bit, BS = 64 bytes).

(Table 2.1 and Table 2.2), it is shown that the design of the GPMC-to-FPGA bridge

is more memory oriented; memory is used for cross-clock-domain synchronisation

and buffering; and the use of the bridge does not offer any significant advantages

on saving FPGA resources, especially when comparing to the PCIe solution. In

contrast, the PCIe solution does require dedicated the hard-core transceivers, which

means the GPMC-to-FPGA bridge could be used on a wider range of FPGA

devices, especially those of lower end. When comparing the new design to the

EVS-MUX (Figure 5.5), a reduction of about 5% in ALM and 20% in register

0.0 0.2 0.4 0.6 0.8 1.0

ALM

ALUT

Register

Memory

G2F bridge
EVS-MUX

Figure 5.5: Resource usage (normalised to the usage of the EVS-MUX) comparison
between the GPMC-to-FPGA bridge and the EVS-MUX in Config 24 (f = 125 MHz,
DW = 32 bit, BS = 64 bytes).

5. Benchmark for the GPMC-to-FPGA bridge 99

utilisation could be observed, and a significant optimisation on memory usage

results only 10% of that of the EVS-MUX.

5.3 Discussion

5.3.1 Hardware limitations

While the FPGA test system is capable of running at clock frequencies of up to

125 MHz as verified on the hardware, the general quality of the design is estimated

with the maximum achievable frequency (fMAX). As the design contains only memory

components and the GPMC-to-FPGA bridge, the fMAX of the test system could be

used to infer that of the bridge. As shown in Table 5.4, the frequency of the slow

domain is about 30 MHz higher than that of the fast domain. However, it is argued

that these values of the test system are not representative for the GPMC-to-FPGA

bridge. As illustrated in Figure 5.6, the GPMC connections are located on the

bottom right of the FPGA die whereas those to the DDR3 are on the top right. As

a result, the data paths between the two almost stretch across the entire the device

vertically and this significantly constraints the timing and causes the decrease in

the fMAX of the fast domain. A similar issue does not exist for the slow domain

as the OCRAM could be flexibly place as close to the lightweight sub-bridge as

possible. Taking this into consideration, when designing FPGA systems involving

the GPMC-to-FPGA bridge and the DDR3, it is essential to include pipeline bridge

in order to reduce the length of the critical path to achieve the best timing, and

this would be proved in Chapter 6 and it will be shown that the actual fMAX of

the fast domain could be more than 200 MHz.

Component fMAX (MHz)

Slow domain 167.59
Fast domain 132.38

Table 5.4: fMAX measurement of the clock domains in the GPMC-to-FPGA bridge for
Config 24 (f = 125 MHz, DW = 32 bit, BS = 64 bytes).

100 5.3. Discussion

Connection to GPMC

Connection to DDR3
SDRAM controller

OCRAM (Slow domain)

OCRAM (Fast domain)

(a) Floor plan (b) Routing heat map

Figure 5.6: FPGA floor plan for Configuration 22 (DW = 32 bits, BS = 32 bytes).

5.3.2 Bandwidth

In order to understand how the GPMC-to-FPGA bridge performs in the ARMflash

platform, the transfer rates are compared with some other rates available for

the platform as the following:

Memory-to-memory copy

One comparison is between the GPMC-to-FPGA bridge and DMA-based DDR-to-

DDR memory copy in the ARM SoC. It is measured that the overall time for the

memory-to-memory copy test performed with the Linux kernel’s dmatest module

is 254 MB/s using buffer of 8× 220 bytes (8.4 MB). Although the value is about

1.7 times of the maximum rate offered by the GPMC-to-FPGA bridge, it is due

to the structure of the SoC: the GPMC only has a 32-bit data port the SoC’s L3

interconnect whereas the external memory interface (EMIF) to which the DDR3 is

attached offers a 128-bit data port. Hence, in using such heterogeneous systems,

it is necessary to be aware of such hardware limitations which can be different

depending on which SoC is selected.

5. Benchmark for the GPMC-to-FPGA bridge 101

Theoretical values

When comparing the difference between practical and theoretical transfer rates

for the two working modes of the bridge, the mapping mode has a more notable

difference. This means that the mapping mode has more overhead in data transfer

despite being an easy-to-use option. Since prefetching in the mapping mode is

only triggered by a transaction whose data is not available in the buffer, time (in

terms of GPMC clock cycles) has to be spent to transfer data into the buffer to

complete this particular transaction, and these clock cycles decrease the overall

efficiency. On the other hand, in the slave mode, or when using the EVS-MUX,

data starts to fill the buffer when the corresponding register is written, and when

the actual DMA process—which is timed by the test program—is taking place, data

has already been available and no more cycles are needed for waiting, resulting

the close to theoretical rate to be achieved practically.

LOGI Bone

The GPMC-to-FPGA bridge is not the first to attempt to link the FPGA with

an ARM processor. Notably, the LOGI Bone cape [40] for the BeagleBone is

a product connecting the same AM3358 SoC with a Xilinx Spartan 6 FPGA

(XC6SLX9-2TQG144C). The LOGI Bone uses the same GPMC protocol as the

bridge, but on the FPGA side, it uses the WISHBONE interconnect which is

discussed to be an inferior option in Chapter 2. This is very much reflected by the

rate the LOGI Bone could offer; 76 MB/s in theory and 69 MB/s measured. It

should be noted that the LOGI Bone only configures the GPMC to work at 50

MHz which is half of that in the GPMC-to-FPGA bridge presented in this work.

Hence, the GPMC-to-FPGA bridge is more suitable for applications which demand

high bandwidth between the FPGA and the SoC. Moreover, the mapping mode of

the bridge eliminates the necessity of kernel driver for direct access, which would

be required for specific applications; for example, the implementation of OpenCL

framework for FPGA which would be presented later in Chapter 6.

102

6
Support of the OpenCL framework on the

ARMflash platform

Since general-purpose processors often fail to meet the demands of high-performance

computing, heterogeneous systems have been designed to take advantage of the

computation power and energy efficiency of dedicated processors at the cost of

design and programming complexity. In order to ease the difficulty of designing and

using such systems, the OpenCL framework, which consists of a hardware model and

a programming language based on C, is used. Hardware wise, the systems usually

contain a CPU for task management and various compute devices or elements,

each with their own memory devices. On the other hand, the OpenCL C language,

which universally defines the computation across various devices, contains the added

parallel directives, enabling the support for parallel computing which is essential

for high-performance computing and heterogeneous systems.

The OpenCL framework has no restriction on the type of the computing device,

and an FPGA can be integrated through the Intel FPGA OpenCL (AOCL)

framework. As shown in Figure 6.1, the AOCL framework provides an offline

compiler which transforms the OpenCL kernels, coupled with supporting FPGA

design units, into gate-level designs for the FPGA. Together with an implemented

driver, it enables the use of FPGA as a hardware accelerator. This chapter

103

104 6.1. Requirements for implementation

Figure 6.1: Programming flow in Intel FPGA OpenCL framework [41].

shows, with the previously developed bridge as part of the supporting units, an

implementation of the AOCL framework on the ARMflash embedded system.

The chapter starts with the description of the memory model for OpenCL and

the reference implementations in the AOCL, from which the requirements and

issues for the implementation on ARMflash are raised. Secondly, it shows the

implementation on the platform in terms of hardware and software, followed by

a discussion of the quality of such an implementation.

6.1 Requirements for implementation

The OpenCL specification outlines the hardware and software requirements for

a platform to be compatible. From the analysis of the ARMflash platform, it is

realised that workarounds are necessary to ensure the platform’s conformability to

the specification, especially in the area of memory structure. This section firstly

6. Support of the OpenCL framework on the ARMflash platform 105

introduces OpenCL’s memory model, followed with the reference implementations

in the AOCL. Together with the specifications of the ARMflash, it lays out the

main areas of focus for implementation.

6.1.1 The memory model in OpenCL

Memory devices are essential in all computing environments, the OpenCL’s hardware

model also defines various memory components as shown in Figure 6.2. The

memory can be classified into two categories: the host memory which is only

used by the host processor or the processor which distributes tasks to the various

computing devices in the heterogeneous system, and the device memory which is

used by the various computing devices. The device memory can be further broken

down into the following types depending on their allocability by the host and

the accessibility by the devices:

Host Host memory

Local memory

Work-item

…

Work-item 1…N

Private memory…

Work-group

…Devices

Work-group 1…N

…

Global/constant memory

Figure 6.2: OpenCL memory model [42].

106 6.1. Requirements for implementation

1. Global memory

2. Constant memory

3. Local memory

4. Private memory

The contents of the global memory and the constant memory are memory objects

which are allocated by the host; the host could provide an already allocated memory

pointer or instruct the OpenCL runtime to allocate physical memory which the host

has no direct access, creating mutable (global memory) or immutable (constant

memory) data region across all devices. The OpenCL also allows the extension of

the global memory into the host memory via virtual memory; in this case, a memory

device is shared between the computing devices and the host, and the host could

access the devices’ computation result via remapping the physical memory into the

space accessible by the CPU through the mmap system call. On the other hand,

the local memory and the private memory are only accessible by the devices and

differentiated by the scope of usage; local memory is shared by all computing tasks

on a device whereas the private memory is only used by a single instance of the task.

6.1.2 Reference Implementations in the AOCL

In the AOCL, Intel provides two reference implementations:

DDR3 Memory DDR3 Memory

CPU PCI-E
controller

FPGA

PCI-E controller
OpenCL
KernelCSR

DATA

OpenCL
Kernel

CSR DATA

highly parallel link

32-bit link

Stream
input

Figure 6.3: Host-kernel communication in the PCI-E based platform.

6. Support of the OpenCL framework on the ARMflash platform 107

DDR3 Memory

HPS

FPGA

OpenCL Kernel

H2F bridge

H2F lightweight bridge

L3 connection

FPGA2SDRAM bridge

CSR

DATA

highly parallel link

32-bit link

Figure 6.4: Host-kernel communication in the SoC FPGA platform.

1. PCIe accelerator cards

2. SoC FPGA platforms

In the first case, as shown in Figure 6.3, an FPGA device is placed on a PCIe

peripheral card, and has a PCIe controller instantiated to realize its communication

with the host. The host and the FPGA have their own dedicated memory

devices, and these devices are only synchronized by the OpenCL runtime at the

synchronization point during the execution via an DMA controller, which resides

on the FPGA but can be fully controlled from the host.

The second case, as shown in Figure 6.4, is that of an FPGA with HPS (SoC

FPGA) which can have a memory device shared between the host and the FPGA,

which is an implementation of the extension of the global memory into the host

memory. Such a system allows the two sides to exchange data without actual

data flow because the mmap system call only manipulates the page tables of the

operating system.

6.1.3 Design requirements

The implementation of the AOCL framework on the ARMflash requires the de-

velopment of a custom board support package (BSP) which consists of the sup-

108 6.1. Requirements for implementation

porting FPGA units for OpenCL compilation and operation and driver software

for OpenCL runtime.

Hardware

In the AOCL framework, the FPGA design is divided into two parts, a kernel

partition and a fixed partition. While the AOCL compiler generates logic to

form the computing logic for the kernel partition according to the OpenCL kernel;

which describes the sequence and operation of execution; it is necessary for the

other partition to provide infrastructure for the computing logic created. Such

infrastructure typically includes components for enabling the exchange of data with

the host and the access to local storage when the computation involves a large

amount of data. Commonly used components in the fixed partition include, but

not limited to, the SDRAM controller and the clock sources which are invariant

to the change in the kernel partition. The placement and routing within the fixed

partition is preserved and reused across different kernels. Generally, the partition is

required to use minimum resources for providing the required functionalities, and

also complete time constraints need to be applied and met. In this way, maximum

flexibility is offered to the AOCL compiler for generating the kernel logic.

Software

On the software side, the AOCL framework defines a memory-mapped device (MMD)

layer between the OpenCL API and a custom device driver which realises the

communication between the infrastructure partition and the host in software. While

the OpenCL side of the MMD layer is provided, the BSP is required to implement

the communication and thus, the driver side functions of the MMD layer, according

to the infrastructure logic. It is clear that ARMflash is not similar to either of

the reference platforms from Intel in the following ways:

• Via the GPMC, the FPGA is connected as a slave device, which means that

all functions implemented on the FPGA are slave as well, making an DMA

controller on the FPGA impossible.

6. Support of the OpenCL framework on the ARMflash platform 109

• There are no shared memory devices between the host and the FPGA.

It is essential to solve one of these differences so that the ARMflash conforms with

the OpenCL hardware model. Besides, unlike conventional FPGA applications, the

AOCL also requires a programmatic way to configure the FPGA during the execution

of the host program. Similar to the previous issue, being a custom platform, the

configure over protocol (CvP) used by the PCIe cards or the integrated configuration

bridges (FPGA manager) in the SoC FPGA are not available.

Summary

To summarise, the implementation of OpenCL on the ARMflash is mainly focused

on the following areas:

1. A fixed infrastructure partition for the FPGA

2. Communication driver for OpenCL between the host and the FPGA

3. A method of configuring the FPGA

and the following section will describe each of these areas.

6.2 Design

The adoption of the AOCL framework on the ARMflash focuses on two aspects stated

earlier, the FPGA infrastructure partition on the hardware side, and the software

side which includes the unfinished MMD layer and a method of configuration. In

this section, the details of both sides will be discussed.

6.2.1 FPGA partition

As specified before, it is required that the FPGA infrastructure partition provides

a hardware communication link between the kernel system and the host, and also

providing supporting components for the kernel. Such a partition for the ARMflash

is designed as shown in Figure 6.5. Generally, the communication between the

kernel and the host can be categorised as follows:

110 6.2. Design

G2F Bridge

OCL Kernel CLk Gen

OCRAM, ID & Others

Mem Bank Divider

OCL Kernel Interface

ddr pip bridge

host pip bridge

SDRAM Phy Stat

SDRAM Controller

ddr cc bridge

kernel clock

kernel cra

G2F HP Bridge

G2F Bridge CSR

G2F LW Bridge

OpenCL
Kernel

Fixed Board Partition Generated Kernel Partition

Figure 6.5: FPGA design for AOCL support on ARMflash.

Data communication which happens when the host transfers data to the device

for computation, and when the device returns the resulting data after finishing

its task.

Control communication is needed when the host configures the kernel to prepare

for the computation tasks, such as passing required arguments or pointers to

the data buffers.

While the first type communication demands significant bandwidth from the link

between the two, the second type relies less on high throughput. Hence, the first

type of communication is established by connecting the device’s local SDRAM

controller to the GPMC-to-FPGA high-performance sub-bridge, which is designed

for providing high throughput. On the other hand, the control of the kernel, together

with the communication to the rest of the components, typically only consists of

short length transactions, is realised via the lightweight sub-bridge. The kernel’s

access to the device’s DDR is done via a highly parallel AVMM interface whose

data width is configured to be 256 bits, ensuring the best throughput between

the processing element and the memory locally. The interconnect of the FPGA

6. Support of the OpenCL framework on the ARMflash platform 111

system is generally divided into three clock domains, the lightweight domain, the

host-to-DDR high-performance domain, and the kernel clock domain. The crossing

of the domain for any path is performed via the Avalon Clock-Crossing bridges

which synchronise the two ends to the corresponding clocks. Avalon pipeline bridges

are inserted at appropriate junctions as well in order to improve the system’s fMAX,

by breaking the critical path due to routing and placement constraints into multiple

segments. This last step potentially improves the system’s performance by allowing

it to be driven by a faster clock.

6.2.2 Software

Since the ARMflash does not conform to the standard hardware model of OpenCL,

a software solution is developed to allow the platform to mimic the behaviours of the

SoC FPGA. Together with the software implementation of the JTAG programming

protocol, they are the main tasks in the software development for the integration

of AOCL into the ARMflash.

Memory allocation

In the ARMflash, since the FPGA is attached to the GPMC as a slave device, any

transactions between the SoC and the FPGA can only be initiated from the SoC

side or the host in OpenCL terminology, and the FPGA can only passively react

to what is instructed from the host. Such configuration results in incompatibility

with the AOCL framework which demands the FPGA’s ability to be a transaction

initiator when there is no shared memory between the two. Although the FPGA

SDRAM is accessible by the host, the particular external memory address space

in the SoC, which is by default used for storage, cannot be used directly for

computation; it is possible for the host to use memory instructions to access them,

but they cannot be used like the DDR memory attached to the CPU. As a result,

the SDRAM could not be used as a shared memory directly like the memory in

the SoC FPGA platform where the HPS’s DDR is both accessible by the host and

FPGA device. In order to resolve the host’s inability on allocating I/O memory,

112 6.2. Design

1. user requset size

5. address computation

Allocator

2. scan descriptor

3. Found! allocate new region

4. New descriptor inserted, push the old back
6. returned pointer

original

new allocation

modifion

Figure 6.6: Memory allocation by the simple memory allocator.

thus resembling the OpenCL’s global memory model, a simple memory allocator is

implemented in the device driver to enable the host to allocate the GPMC chip-

select addresses which correspond to the FPGA SDRAM addresses. As a result, the

ARMflash mimics the SoC FPGA system closely by providing a similar memory

configuration, enabling its integration with the AOCL framework.

The simple memory allocator is created in the driver’s implementation for the

mmap system call. The mmap function re-maps the L3 memory addresses, which

corresponds to the SDRAM of the FPGA, into program-accessible virtual addresses.

In the process, the success of re-mapping is determined by the memory allocator

which manages the memory space in a way similar to the conventional SDRAM

of the CPU. It maintains a sorted list of descriptors characterising the already

allocated memory locations and uses it to determine if a further allocation is possible

by calculating the size of the gaps between the already allocated regions. The

descriptor contains an offset from the configured GPMC chip-select base address

for the high-performance sub-bridge and a size field which can maximally be the

chip-select size. The allocator always performs allocation from the beginning of the

6. Support of the OpenCL framework on the ARMflash platform 113

allocable region (offset = 0), finding the first space into which the user required

size could be fit. As the whole of the GPMC chip-select region is mapped into

virtual address space beforehand, the address returned to the user for program

access is the mapping base in addition to the offset found previously. On the other

hand, the offset coupled with the FPGA mapping base is passed to the OpenCL

kernel, so that it can accesses the same location as the CPU. Figure 6.6 shows

the flow diagram of the allocation.

FPGA configuration

As mentioned earlier, the AOCL framework requires configuration of the FPGA

during host program execution. While for the reference platform, CvP or the

HPS’s built-in FPGA manager are used, the ARMflash does not have the essential

hardware to follow a similar approach. Instead, the traditional JTAG interface is

used, and for providing an embedded solution, the FPGA’s JTAG pins are directly

connected to the SoC on ARMflash. Compared to other configuration methods

allowed for the Cyclone V, this approach could be considered the most resource

efficient and flexible due to the requirement of a parallel bus for the passive parallel

configuration protocol, and the pre-programming of a flash memory for the active

protocols. The Jrunner software, which allows the use of general I/O pins for

realising JTAG-base FPGA configuration is adapted for the platform.

The FPGA configuration process starts by saving the FPGA’s current state

to the host including register settings. This is required because a configuration

wipes the entire FPGA device and all settings in the registers will be lost in the

process. Considering that the reset values might not be the settings required, such

a procedure is essential for restoring the FPGA’s operation after configuration.

Secondly, a reset is issued to stop all I/O activity of the FPGA in order to remove

the potential unknown signal behaviour during the configuration process. While the

configuration process stops the FPGA, it is the responsibility of the calling program

to keep devices which interacts with the FPGA from responding to the FPGA’s

signals, especially interrupts and other hardware triggers, ensuring a stable system

114 6.3. Results

overall. Since the realisation of the configuration and the state of the FPGA is

entirely handled by the external Jrunner software, the configuration process in the

MMD only waits for its completion and it checks the execution return value to ensure

the Jrunner code terminates without errors. When an error is returned from Jrunner,

it is not handled by the programming process but returned to the calling program

because it is likely a system-level failure. A timer is also installed to ensure that

the Jrunner software only runs within a fixed time frame, because it is possible for

the configuration process to be blocked due to I/O errors. Finally, when the FPGA

is configured, the reset signal will be de-asserted, and the saved values are written

back to the FPGA registers, readying the device for OpenCL kernel execution.

6.3 Results

The results of the implementation of the AOCL is observed from two viewpoints,

namely the resource usage by means of the floor plan of the fixed FPGA partition

and the acceleration of computing applications.

6.3.1 FPGA partition

Table 6.1 shows that the resource usage of the fixed partition leaves more than 90%

of the total available resources, in a regularly shaped partition, free for the kernel,

thus allowing the offline compiler more flexibility in constructing the processing

pipeline, which potentially improves the performance of the kernel.

ALM Registers DSP Memory
(M10K)

Count 5974 9595 0 40
Percentage 10.58 4.25 0 5.83

Table 6.1: Resource usage for the infrastructure partition.

6. Support of the OpenCL framework on the ARMflash platform 115

6.3.2 Applications

In order to demonstrate the use of OpenCL in real applications, the research uses

two examples, vector addition and error diffusion computation. Both examples are

implemented in two versions, one uses CPU-only computation and the other has

OpenCL acceleration enabled, and their performance is compared.

Vector addition

Vector addition performs an addition of two vectors each consisting of 106 elements.

The CPU-only C program is compiled with NEON instructions enabled, which allows

the CPU to take advantage of the available vector engine and performs four additions

simultaneously. The program is timed to measure the speed of the computation.

On the other hand, the two-line OpenCL kernel (List 6.1) is compiled by the AOCL

offline compiler and executed by a host program. The host program performs the

time measurement which includes both the time of the calls to OpenCL APIs which

set up the device and the running time of the OpenCL kernel. The computation

results of the two programs are verified against each other to ensure correctness and

their time measurements are compared. The time comparison shows the calculation

time reduced from 16.567 ms to 8.564 ms with the introduction of FPGA acceleration.

// ACL kernel for adding two input vectors
__kernel void vector_add (__global const float *x,

__global const float *y,
__global float * restrict z)

{
// get index of the work item
int index = get_global_id (0);

// add the vector elements
z[index] = x[index] + y[index];

}

Listing 6.1: OpenCL Kernel for vector addition

116 6.4. Discussion

Error diffusion

Error diffusion calculation is often the last stage operation of a multi-function colour

printer. It is implemented using a variant of the Floyd Steinberg error diffusion

algorithm (Equation 6.1) which takes a CMYK image and produces an equivalent

image with every pixel half-toned [43].

C(x, y) = I(x, y) + 1
2E(x− 1, y) + 1

4E(x− 1, y − 1)

+ 1
8E(x, y − 1) + 1

16E(x + 1, y − 1)

+ 1
32E(x + 2, y − 1) + 1

32E(x + 3, y − 1)

(6.1a)

E(x, y) = C(x, y)−O(x, y) (6.1b)

O(x, y) =
255 C > Threshold

0 C ≤ Threshold
(6.1c)

where I(x, y) is the current input pixel

O(x, y) is the output pixel

The program for CPU-only computation is implemented with a loop which

iterates over all pixels in the image and performs the required calculation, whereas

the OpenCL kernel implements a single work-item and takes advantage of the

sliding windows design pattern, and the automatic loop pipelining offered by

the AOCL compiler. The time measurement and comparison are done similarly

as that of the vector addition example previously. Taking an input image size of

2880 × 1440 pixels, the OpenCL program improved the execution time to 0.03 s

from 1.0 s by the CPU-only program.

6.4 Discussion

From the two test applications, it can be seen that hardware acceleration provided

by the FPGA improves the platform’s capability in computation. However, it is

expected that the bottleneck would still be the interface between the two sides due

6. Support of the OpenCL framework on the ARMflash platform 117

to hardware limitation on the GPMC. With this in mind, the following sections

discuss on the general usability and quality of the use of AOCL framework with

the ARMflash in the current implementation.

6.4.1 Advantages

The advantages of implementing OpenCL, in terms of the AOCL, on the ARMflash

offers the following programming and computation advantages:

1. The kernel code is reusable across different types of heterogeneous cores. The

OpenCL kernel can be easily ported from other already developed applications.

Although this task is trivial for simple computation such as the vector additions

performed here, its significance will increase when developing more complicated

applications.

2. The conversion of HDL-based code into OpenCL kernel allows the codebase

to be more easily maintained since the algorithms will generally be more

expressive and shorter.

3. The performance boost resulting from the use of FPGA is significant. From the

two applications, it can be seen that the hardware acceleration has improved

the performance by at least two times.

6.4.2 Platform limitation

With the current implementation, the input and output buffers are limited by the

GPMC chip-select size of maximally 256× 220 bytes (268.4 MB) when the mapping

mode of the high-performance bridge is used. Although the FPGA mapping is

adjustable via control registers at the driver level, it is generally impractical to

do so while running a program due to the effect of double-side mapping. In the

design of the bridge, the mapping between the FPGA and the bridge’s address

space is controlled via the register. When a user program calls the mmap system call,

another mapping is performed between the bridge’s address and the user program’s

virtual space, and thus the two mappings link up, and a user program can access

118 6.4. Discussion

the FPGA. However, with the AOCL framework, the mapping between the user

program and the bridge’s address space is controlled internally by the libraries that

are provided by the framework, the inflexibility for mapping adjustment one side

naturally means that the other side has to be fixed as well in order to obtain a

correct relation. Hence, the configurable FPGA mapping provides no benefit in this

case. Moreover, the performance of the simple memory allocator is questionable

because complicated memory manipulation is likely to cause fragmentation and

hence resulting in much less usable space.

Alternatively, it is possible to utilise the EDMA engine of the L3 in the SoC to

transfer data between the two SDRAM, Hence, making the SDRAM on the SoC

side global memory instead. Possible interfacing candidates in the SoC for such an

approach would be the PRU or the USB which are exposed externally. Especially

for the PRU, it is possible to use a simple serial protocol such as the UART to

transfer the DMA parameters, which potentially limits the FPGA resource used for

the extra controller. In such a scenario, the bridge would be best used in the FIFO

mode, since its parameterisation is similar to what is used to set up transactions

for the DMA engine. It is also possible for the FPGA to configure the parameters

for the bridge internally, although the benefit for this approach might be trivial.

6.4.3 Interface limitation

Due to the unexposed GPMC byte-enable lines, it is not possible to access single

bytes as explained earlier. This inflexibility does require the programmer to take

extra care when communicating across devices. However, the inconvenience would

be trivial because most programs use data whose size is at least 4 bytes. Performance

wise, single byte access is generally costlier compared to transactions of other lengths

due to the overhead per cycle for the GPMC as well as the AVM. Looking at

the coherency and the prefetching effect, the program needs to be careful when

accessing consecutive buffers, especially at the boundary between the two. Because

a buffer boundary is set dynamically by the host program, the prefetcher is not

aware of it, and should the second buffer’s data arrive sometime later than that of

6. Support of the OpenCL framework on the ARMflash platform 119

the first, the prefetched content needs to be explicitly flushed in order to obtain

the correct values. Moreover, write-after-read on an address will not affect the

prefetched content due to implementation limitation in the bridge.

120

7
Background for Program Optimisation

As high-level programming languages simplify a programming task, the challenges

shift to the optimisation of the high-level code. Many attempts have been made for

such purposes, from providing static analysis, transformation, to auto optimisation

and generation for a particular program. This chapter firstly overviews the existing

work on the analysis and optimisation of a program, followed by a detailed description

of the Halide programming language, which is a domain specific language for

image processing.

7.1 Program analysis and optimisation

Program optimisation, especially program loop optimisation has received significant

interest especially in the area of numerical computation. Here optimisation is

considered to extend over both time and space domains. In other words, the topic of

optimisation is involved with reducing the execution time of a particular algorithm

as much as possible making the best use of the available computation resources.

7.1.1 Polyhedral analysis

The polyhedral model is one of the popular tools for analysing and optimising

computations in a program [44]. This model uses the mathematical representation

121

122 7.1. Program analysis and optimisation

of a polytope, which is defined as the convex hull of a finite number of points in

n-dimensional space to represent the boundary of the iterative space of loop nests

and also the order of execution of the statements inside [45]. Because the storage

structure commonly found in a computer program is of low dimension (similarly the

number of loops operating on the structure), the model focuses on a low-dimensional

polytope or polyhedron. Using the model, the analysis and optimisation techniques

from the polyhedral framework is commonly performed in the following way:

1. Source code of a program is analysed and the represented using the polyhedral

model.

2. In its polyhedral representation, the code is optimised by the application of

schedules, which is defined by linear algebraic operations on the polyhedron.

3. The transformed polyhedron is fed into code generator to provide the func-

tionally equivalent but execution-wise optimised code which can be used by a

conventional compiler.

The use of the framework is well represented by PLUTO [46, 47], one of the

polyhedral-model-based automatic parallelisers and optimisers which provide source-

to-source code transformation. PLUTO achieves coarse-grained parallelism and

data locality simultaneously while vectorisation is also enabled by splitting the

innermost loop level to allow data simultaneously processed by SIMD engines

which are commonly found in a modern CPU. In the LLVM compiler framework,

Polly [48] has been developed for automatic loop and locality optimisation. In

the case of algebraic computation, Polly is capable of producing code rivalling the

expert tuned code in popular Basic Linear Algebra Subprograms (BLAS) libraries.

The polyhedral model has also been used in tasks such as image processing and

computation in embedded systems [49, 50] due to its excellence in expressing a

program and the fine-grain control over the application of schedule. For example,

Poly Mage [49], a domain specific language (DSL) for image processing, uses the

polyhedral model to form the optimal overlapped tile and the transformation of

the original processing pipeline.

7. Background for Program Optimisation 123

Figure 7.1: An example for loop (a) and its iteration domain (b).

In the polyhedral model, a typical static loop nest would be represented by a

set of inequalities as shown in Figure 7.1. The inequalities are typically formulated

from the control structure of the loop nest, creating a polyhedron for representing

the iterative domain. Each instance, or the time of execution of the statements

inside the loop, is represented by an integer point in the iterative domain. Bounded

by the domain, it is possible to use the array indexes to carry out a dependency

analysis between statements. Two statements are in dependency when they access

the same memory location; which could be identified by obtaining the same value

when evaluating the iterator-based array indexes; and one of them writes to the

location. Such analysis is used to preserve a program’s semantics when it is

transformed by schedules. The scheduling of the program in the polyhedral model

includes the initial assignment of a timestamp, which coarsely corresponds to the

values of the corresponding iterators, to each instance of the statements. The

code transformation or schedules can be expressed as algebraic operations in the

iterative domain, resulting in a new timestamp, and thus a new execution order.

It is possible to express almost all kinds of optimisation by manipulating the time

stamps of the points in the iterative domain due to the level of granularity of the

representation. On the reconstruction of the source from the polyhedron, each

point in the polyhedron obtained in the previous stage is scanned to create the

corresponding loop nests. One such tool, the Chunky Loop Generator (CLooG) [51],

is developed from an optimised algorithm based on the recursive method, and it

is used in PLUTO for generating the optimised source code.

Although the initial focus of the polyhedral model is on the analysis and

optimisation of affine loop nests, especially perfect loop nests in which all the

124 7.1. Program analysis and optimisation

statements are located in the innermost loop nest. It has been extended to

support more dynamic program structures; for example, a while loop whose

terminating condition is usually dependent on the execution result and cannot

be statically analysed at compile time, to support more general use cases. Under

such circumstances, a method of over-approximation for the bounding polytope

is used while the dependencies between statement are formulated based on the

conservative policy which enforces dependency for statements whose relation is not

determinable so that at least the correctness of the output is ensured [52].

7.1.2 DAG-based analysis

Besides the use of polytopes, directed acyclic graph (DAG) is also a popular

approach to visualise a program’s execution, and thus providing the foundation for

analysis and optimisation. One such example is the use of computational DAG;

where each data element and set of operations are presented by a graph node with

a directional arc between relating ones in order to indicate the flow of data and

order of execution, and to produce a convex partition of the execution to achieve

locality optimisation [53]. On the other hand, function DAG is widely used to

represent the stages of computation in a processing pipeline which commonly found

in image processing applications [4, 49, 54].

7.1.3 Tile size generation

Automatic optimisation of a program has been attempted in various ways, and most

of them only target a subset of a program or a specific program structure such as the

storage layout in the parallel computing environment [55] and locality optimisation

in stencil computations [56]. Here the work on cache optimisation is discussed.

In order to optimise the execution of a loop, one of the primary methods is

through the efficient use of the CPU’s cache. Since the DDR memory is usually slow

to access compared to CPU’s performance in arithmetic operation, the processor is

often starved of input data if the data is retrieved directly from the DDR memory.

The introduction of a relatively small but very fast bank of on-chip memory called

7. Background for Program Optimisation 125

cache effectively bridges performance gaps, allowing an overall improvement on

execution time. In the use of cache, when a location is first referred by the

computation, it is fetched into the cache with its neighbourhood, so when the

fetched data are required later in the computation, they are much faster to access.

Such direct accesses to the cache is referred as a cache hit, while on the other side,

a cache miss occurs when data has to be retrieved from the DDR memory. The

efficient usage of the cache or the maximisation of cache hit in the execution of a

program is essential for the performance. Such a goal is usually only achievable

with a change to the execution order of the original loop nest.

Tiling of a loop nest effectively breaks the data in the main memory into smaller

segments which can be fitted into the cache entirely, thus improving the efficiency

of operating on the specific segment. It is possible to create rectangular tiles which

focus on the maximum usage of the whole cache by analysing the relationship

between the characteristics of the target cache and the data structure, achieving a

performance boost [57]. The analytical algorithm is further improved by including

the consideration of padding the cache to counter the conflict misses due to a specific

data structure size [58, 59]. Due to the complexity of cache operation and program

execution, an analytic model usually restricts itself only to specific aspects, and

therefore not fully represents a practical solution. An empirical method [60, 61] has

been developed for tuning the tile size, but it is overall less efficient due to the large

search space even with pruning considered [62]. An emulation process can also be

used for finding out the optimal tile size [63]. The assumption of that a target array

will occupy N − 1 ways of an N -way set-associative cache, leaving one remaining

way for potential data from other sources, has been proven to provide an edge over

the previous methods. This is because the emulation method can include previously

unconsidered features (for example, set associativity and vector engine) which are

commonly found in modern processors as parts of the analysis. While the most

studies for the cache is for the CPU, analysis has also been carried out for the usage

of OCRAM in high-level synthesis [64]. Using polyhedral analysis, it is possible to

automatically generate design parameters for the OCRAM which is used as a cache

126 7.2. The Halide Language

for the custom hardware system. On the other hand, the use of a cache and the

selection of its size has been studied for systems with one or more GPUs [65].

7.2 The Halide Language

Halide, an image processing DSL, is a computer language which allows the separation

of algorithm and schedules, enabling the production of high-performance code

across multiple platforms with less effort. It consists of two sub-languages, the

Algorithm and the Schedule. The Halide Algorithm expresses computations in

further abstraction on top of the conventional C/C++ language and provides a

more expressive and shorter way to write image processing programs. For example,

in terms of length, a Halide program for Laplacian filtering is more than three

times shorter compared to the one written by an expert in C++ [66]. On the

other hand, the Halide Schedule changes the computation and storage order for

a program using predefined semantics, providing a parametric way for tuning

the program’s performance.

7.2.1 Algorithm

The Halide algorithm defines the relationship between functions and variables in a

computation. It is written in a way which resemble the mathematical representation

of the computation. For example, a vector addition in Halide is written as f (x) = a

(x)+ b (x), unlike a conventional programming language such as C/C++, which

write out the calculation as a for loop (see List 7.1). While internally a for loop is

still constructed in terms of code generation, it is hidden from the user, and such

an approach makes the Halide program more expressive. While the Halide function

often represents an evaluation across a domain, it is limited to express common

control constructs found in conventional languages such as the if statement. Despite

for (int x = 0; x < N; x++)
f[x] = a[x] + b[x]

Listing 7.1: Vector add computation in C/C++

7. Background for Program Optimisation 127

having a version of branching, Halide’s select is more like the C’s ternary operator,

“?:”, which evaluates both branches and selects the output for the given condition.

7.2.2 Schedule

Halide allows the optimisation of a program’s execution via the Schedule which

changes the instruction and storage order while preserving the correctness of the

algorithm. Common optimisation techniques are applied via parametric function

calls, eliminating the necessity of manual manipulation of basic programming

language constructs, and thus providing a systematic approach for achieving the

best performance at the cost of flexibility. Unlike the statement-based scheduling in

the polyhedral model, Halide applies the schedules on a per-function basis, although

such an approach reduces the overall complexity, the programmer also loses the

ability for precise adjustment. The following lists some schedules which are generally

applicable to most of the processing pipelines:

reorder() and unroll() re-arranges the order of loop level in a nested loop or

flattens it into a series of statements. The reorder() is commonly used to

match the storage layout with execution order; a row-major array could be

more effectively scanned when traversing each element in a row before going

to the next row. On the other hand, the unroll() flatten the loop into a

series of repeated statements, trading the size of the output executable binary

with the loop overhead.

split() and fusion() offers ways to alter the iterative space of the computation

of a function. With the provision of a factor, a loop level could be divided into

segments by the split(), creating further optimisation opportunities as each

of them could be manipulated; the tile() below is effectively a reorder()

after the split(). On the other hand, fusion() merges multiple loop level

which effectively reduces the dimension of the loop nests.

tile() creates two-dimensional rectangular tiles for computing the output of a

function. As discussed above, tiling, especially rectangular tiling has been

128 7.2. The Halide Language

widely used for locality optimisation, and the Halide’s tile() applies such

technique to the computation of a function by calling the method with the

split factor for each dimension, without explicit modifications to loop nest

structures.

vectorize() transforms the code in such a way so the SIMD streaming vector

engine, such as the Streaming SIMD Extensions (SSE) in the x86 CPUs or

NEON in the ARM, could be used to process multiple data simultaneously.

parallel() and serial() enable the access to thread-based parallelism. By

default, Halide executed computation in serial; this execution order can

also be explicitly enabled via serial(). parallel() enable the creation of

threads, so that the computation could be done utilising multiple processor

cores, trading space with time. The Halide parallel() and serial() affects

the execution of an entire dimension of a loop nests which means a set of

iterations of the original loops will be performed in a thread and all threads

runs simultaneously.

Besides, Halide also offers the compute_at() and store_at() for inter-function

optimisation such as inlining. The combination of these schedules offers tools to

handle most cases of optimising an image processing pipeline, while internally Halide

also seeks to apply sliding window techniques for stencil computation when possible.

7.2.3 Portability

Featuring the LLVM at its core, the Halide compiler supports code generation for

a wide range of platforms and back-ends, including CPU architectures like x86

and ARM, but also GPU back-ends such as OpenCL and OpenGL. Internally,

the compiler converts the input program into the LLVM universal intermediate

representation (IR), which is a target independent representation of a program,

followed by the binary generation for different targets. It also supports just-in-time

(JIT) compilation which compiles the source code into in-memory bit code and

7. Background for Program Optimisation 129

executed directly without saving onto a disk. The portability of Halide allows it to

be used for programming high-performance heterogeneous systems.

Although the automatic generation of OpenCL kernel has been studied in

various ways [67, 68], Halide provides a more accessible alternative for general

OpenCL programming. The generation of OpenCL binaries in Halide is usually

in the form of JIT compilation in which Halide dynamically compile the kernels

into in-memory binaries and dispatch them to an OpenCL device. Halide also hides

the OpenCL APIs, for example, the allocation of OpenCL memory objects and

the data communication between the device and the host is carried out internally,

and thus providing another level of abstraction.

7.2.4 The Halide auto-scheduler

Halide includes a built-in auto-scheduler [69] which can automatically generate

schedules given boundary estimation for essential functions in a pipeline. It uses

the following steps for tile generation:

1. Function pre-processing: The step estimates the arithmetic cost for every

function and computes the concrete bound using Halide’s code generator’s

boundary analysis. It also calculates every function’s reuse distance which is

defined as the intersection between bounds in the same dimension.

2. Function group and tiling: The functions are grouped in reverse order

using the effectiveness of tiling as a metric. When an upstream function

can be computed in the tiles of a downstream function without incurring

cache misses, it is said it has the opportunity to be merged into the same

group as the downstream function. The opportunity is further evaluated with

arithmetic cost computed in previous step to decide the actual merging.

3. Function inlining: Upstream functions in a group could inlined at some

compute level of the downstream function. The auto-scheduler re-evaluate

the arithmetic on the would-be inline resultant function to decide for the level

of inline for each function in a group.

130 7.2. The Halide Language

4. Schedule generation: Function’s loop order is re-arranged for best locality

before schedules defined by previous analysis are generated.

The auto-scheduler performs top-down analysis of the Halide pipeline and generates

a schedule for all functions defined. The heuristic uses tiling as the basis for a

schedule which can yield better performance for certain applications. However, it is

arguable that the strategy works across diversified image processing applications.

For example, tiling could even reduce the cache reusability in a stencil computation

which progressively scans image lines. Moreover, the auto scheduler requires

estimated function boundaries for generating the tile size, which could mean that

the schedules are less efficient when the actual sizes differ from the one set at

the time of schedule generation.

8
An Alternative Auto-Optimiser

The Halide framework provides a convenient way to represent an image processing

pipeline and schedule it for optimal performance by separating an image processing

algorithm’s definition and schedules. The abstraction of computation schedules

into parametric functions provides a friendly interface for both human and machine

optimisers to improve the execution of the programs. However, program optimisation

is still a challenging task due to the number of combinations of schedules and

their effects on the target machine. Halide has provided an auto-scheduler to

ease the challenge by automatically generating schedules based on estimated input

size and machine specifications such as the cache size and the number of CPU

cores. However, it is found that the auto-scheduler (although often result in faster

computation when compared to the unscheduled counterpart) produces schedules

that are still far from optimal. Hence, this chapter introduces an auto-optimiser

with alternative heuristics for schedule generation and provides a comparison with

Halide’s built-in auto-scheduler.

8.1 The Auto-optimiser

The auto-optimiser transforms and analyses the input Halide program to produce

the best schedules it founds based on target machine’s specifications. Similar to the

131

132 8.1. The Auto-optimiser

built-in auto-scheduler, the auto-optimiser described here generates CPU schedules

only, but requires more detailed specifications:

• Total size, line size, and associativity for all levels of the cache

• Number of CPU cores used

• Data width of the vector engine

These specifications are used to determine the parameters to Halide’s schedule

functions. The source transformation in the first processing stage rewrites the

input program to rebalance the complexity of all functions. The pipeline formed

by the resulting functions is partitioned into smaller pieces which may be further

divided down through intra-partition analysis. Finally, schedules are generated

in the intra-partition optimisation stage.

8.1.1 Source transformation

One of the key differences between the auto-optimiser and the built-in auto-scheduler

is the transformation on the input program before partitioning. Such a process

formalises the program to ensure the same performance would be attained for the

same algorithm written in different ways.

The Necessity to re-write the input program

A Halide program—being a piece of code—is subject to the programmer in the way

it is written; the same algorithm could be presented in many forms. For example,

without changing the final result, the image blurring algorithm shown in List 8.1a

could be written as List 8.1b or List 8.1c in some cases. In Halide’s context, one of

the key differences between the three forms is the number of the functions declared:

List 8.1a declares two functions, List 8.1b has only one and List 8.1c consists of

6 functions. Such a difference significantly affects the optimisation possibilities

for the whole program since Halide schedules are applied at function level, as a

result, the fewer the number of functions, the more restricted the schedules would

be. Looking at the three ways of writing the blurring algorithm from another angle,

since they represent the same algorithm, it would be possible to transform one

8. An Alternative Auto-Optimiser 133

blur_x(x,y)=(in(x,y)+in(x+1,y)+in(x+2,y))/3;
blur(x,y)=(blur_x(x,y)+blur_x(x,y+1)+blur_x(x,y+2))/3;

(a) Typical

blur(x,y)=((in(x,y)+in(x+1,y)+in(x+2,y))/3
+(in(x,y+1)+in(x+1,y+1)+in(x+2,y+1))/3
+(in(x,y+2)+in(x+1,y+2)+in(x+2,y+2))/3) /3;

(b) Single function

blur0(x,y)=in(x,y)+in(x+1,y);
blur1(x,y)=blur0(x,y)+in(x+2,y);
blur2(x,y)=blur1(x,y)/3;
blur3(x,y)=blur2(x,y)+blur2(x,y+1);
blur4(x,y)=blur3(x,y)+blur2(x,y+2);
blur(x,y)=blur4(x,y)/3;

(c) Many function
Listing 8.1: 3× 3 blurring algorithm where in(x,y) is the input image.

into another via Halide schedules; for example, List 8.1b could be obtained by

inline all functions other than the last one in List 8.1a and List 8.1c, which means

schedules are implicitly applied in 8.1b. As such schedules may not be optimal,

it would be best to avoid processing programs written in such a way by rewriting

the functions. The rewriting or source transformation is performed in two steps,

functionisation and refactoring.

Functionisation

The Functionisation step decomposes every function in the input program into short

functions consisting of only one binary operations. As shown in Figure 8.1, this

step scans the abstract syntax tree (AST) of a function’s value expression which is

the expression on the right-hand side of the equal sign in a function’s definition.

Secondly, it creates new functions for every binary operator node and replaces the

original node with the new functions’ call node. This step does not process the

argument expressions in a function call since these expressions are evaluated on

demand. Creating a function for an expression implies that the values may be

scheduled to be saved into memory, causing performance loss from memory read to

134 8.1. The Auto-optimiser

div

add

add

blur(x, y) blur_x(x, y+1)

3

blur_x(x, y+2)

blur_fz_1

div

blur_fz_1(x, y) 3blur

blur

blur_fz_0

add

blur(x, y) blur_x(x, y+1)

blur_fz_0

add

blur_fz_0(x, y) blur_x(x, y+2)

blur_fz_1

functionise

Figure 8.1: Functionisation of blur in List 8.1a.

a potential trivial calculation. After this step, the input program is transformed

into a form similar to List 8.1c for the blurring algorithm.

Refactoring

The functionisation step re-writes the original program into one with many short

functions, similar to List 8.1c for the case of the blurring algorithm. Although

such a format provides the maximum possibilities for scheduling, the large number

of functions makes later analysis complicated; the program is likely bloated with

trivially schedulable functions with the following attributes:

• Computation cost is not affected by Halide schedules. Functions such as those

with a value expression consisting of an operation on a constant. For example,

f(x) = 3g(x); falls into this category.

• It possesses a pattern that only differs in at most one dimension to the function

calling it. For example, in List 8.1c, calls in blur3 and blur4 both have

variation in blur2’s y dimension only.

8. An Alternative Auto-Optimiser 135

Algorithm 1
Pseudo code for refactoring step.

for f ← C0, C 6= ∅ do
if ¬refactor(f, C \ f) then

remove(f)
end if

end for

The refactoring step aims to refactor or remove the functions with the aforementioned

attributes to reduce the problem size of analysis and schedule generation. As

mentioned before, removing a function is equivalent to scheduling the function

inline; when a function is fully inlined or embeds all of its computation into other

functions, it is effectively removed. The step avoids using the Halide’s schedule

mechanism which calls the compute_inline() method of a function object, instead,

it alters the source or the definition of the functions directly because calling the

schedule methods does not alter the function until the code generation phase, and

as a result, does not reduce the number of functions or simplify the task of analysis.

The refactoring step first filters out a set of candidate functions which have only

one caller, the other function which calls this one. These functions are selected

because having a single caller would mean that the functions are only used once and

therefore likely trivial to schedule. Having them ordered by breadth-first traversal

of the entire pipeline, they are analysed and processed one by one, as shown in

Algorithm 1 to check if they meet one of the removing requirements:

• The function could be entirely refactored into calls to another function by

pattern matching.

• The function has inequality in at most one call dimension in all calls in its

caller after it is inlined.

Refactor As shown by function refactor in Algorithm 2, the process uses the

first of the candidate function, the pattern function (fpattern), to create a matching

pattern. Other functions are considered matched when they have the identical

136 8.1. The Auto-optimiser

Algorithm 2
Refactor matching functions to the pattern function.

inline(f): Inline f into its caller

function refactor_index(F , fpattern)
ri← −1
ki← 0
for all f ∈ F do

E ← {callees of fcaller}
ri← ri + |E| − |(E \ {f}) ∪ {fpattern}|
D ← {callees of f}
C ← {callees of fpattern}
ki← ki− |D| − |(D \ fpattern) ∪ C|

end for
ki← ki/|F |
return ki + ri

end function

function refactor(fpattern, C)
r ← false
F ← {f | f ∈ C, f matches fpattern}
if refactor_index(F, fpattern) ≥ 0 then

for all f ∈ F do
Refactor f into calls to fpattern

inline(f)
end for
C ← C \ F
r ← true

end if
return r

end function

binary operation and functions calls, and also the call argument at the same position

is offset by a constant. For example, let

fpattern = g(x, y, z) + g(x + 1, y, z)

f1(x, y, z) = g(x, y + 1, z) + g(x + 1, y + 1, z)

f2(x, y, z) = g(x + 1, y + 1, z) + g(x + 1, y + 1, z)

here f1 matches with the pattern function with an offset of (0, 1, 0). On the other

hand, f2 fails the matching due to an inconsistent offset in the first call argument.

When there are other candidate functions that match with the pattern, a refactor

8. An Alternative Auto-Optimiser 137

index is computed as shown in function refactor_index. The index represents

the change in dependency size when the matching functions are refactored. When

the index is greater or equal to zero, it means refactoring reduces the number of

functions, and thus reduces the complexity of subsequent analysis and schedule

generation. After the pattern function and its relatives have been refactored, it

would have multiple callers, and thus no longer possess any attributes of a trivially

schedulable function and will not be processed further in the transformation stage.

On the other hand, the pattern function would be checked again for removal in

the next step when there is no matched function.

Remove As shown in Algorithm 3, the input function is checked against the

second removing requirement mentioned previously. It finds out the pairs of

functions that only have a variation in at most one call dimension of the dependent

Algorithm 3
Remove a trivially schedulable function.

inline(f): Inline f into its caller

try_inline(f): Inline f into a copy of its caller, and return the resultant function

procedure remove(f , C)
g ← try_inline(f)
for i← 0, argument_size(g) do

S = ∅
for all call ∈ calls made by g do

a← argument_list(call)
S ← S ∪ {ai}

end for
if |S| = 1 then

same_dims← same_dims + 1
end if

end for
if argument_size(g)− same_dims ≤ 1 then

inline(f)
end if
C = C \ {f}

end procedure

138 8.1. The Auto-optimiser

functions. Such a requirement allows functions with shifting windows, such as

blur in List 8.1a, to be reconstructed.

8.1.2 Partition

Following formalising the original input program, the resulting functions are grouped

according to the computation flow of the pipeline. Since functions inside a pipeline

features the producer-consumer relation between each other, these two functions are

placed in the same partition when a function is found to be the only consumer. Such

an approach could be considered an extension to the remove step in the previous

stage since similar functions are grouped together. However, the function is not

removed at source level so that later optimisation stages could use Halide’s schedule

to implement the final inline decision.

Generally, such grouping splits the data path of the pipeline into segments

and thus reduces the problem size, allowing the local analysis of the producer-

consumer relationship within the group. Importantly, the grouping strategy for the

junction node (the function whose result is required by multiple other functions)

needs to be considered separately from the regular nodes which only possess a

unidirectional relationship, since the data path splits at the junction node. For

the function at which the data paths merge, a new group is created, including

the function itself and all ungrouped dependencies, since it needs all upstream

functions to be computed before itself.

Decision for the junction function

Due to path diversion, the partition to which a junction function should belong is

decided by a cost function as shown in Equation 8.1, where P is the computation

cost of a Halide function, S is the number of memory stores a function performs,

L is the number of memory load, and A is the number of arithmetic operations.

Here α, β and γ are the platform dependent constants that represent the cost

ratio between different kinds of operations. The cost for including the junction

function into either the upstream or the downstream partition is computed and the

8. An Alternative Auto-Optimiser 139

junction function is merged into the partition with the lower cost. The numbers of

operations are obtained via static analysis, they are counted differently for when

including the junction function in the upstream partition and when including in

the downstream partition. When the junction function is included in the upstream

partition, it becomes the partition’s last function which will have its value stored in

memory. As a result, the number of memory operations increases. On the other

hand, when including the junction function into the downstream partitions, the cost

is calculated as if it is inlined, and thus the result is that the number of arithmetic

operations increases. Hence, the cost equation expresses computation cost in term

of memory accesses and arithmetic operations, and the balance between the two

types of operations can be achieved by adjusting α, β, and γ accordingly. For

example, when decreasing the value of γ, arithmetic operations would have a less

proportion in the cost, and thus the decision for grouping junction functions would

favour redundant computation over memory access.

P = αS + βL + γA (8.1)

where S = number of write operations to the memory

L = number of read operations from the memory

A = number of weighted arithmetic operations

α, β and γ are coefficients to the corresponding number

8.1.3 Intra-partition analysis

The intra-partition analysis would carry out the following:

1. Determine the compute order of a partition.

2. Split the partitions when the loop orders of the member functions are not

consistent.

3. Determine the compute level for all partition members.

140 8.1. The Auto-optimiser

The sequence of evaluation is determined by the dependencies between the function,

and the functions in a partition is analysed in the same order. The analysis concerns

the further split of a partition to ensure that loop orders of the member functions are

consistent since the functions are intended to be evaluated in the same loop nests.

Lastly, the compute level of a function is the level of loop at which the function

is evaluated, and it is determined by finding and comparing the opportunities of

inlining the function into its downstream counterparts.

Loop order analysis

Nested for loops are constructed to evaluate Halide functions. The order of nesting

is particularly important for improving the performance of the computation. Each

level of nesting or a loop level consists of a variable and an extent over which the

variable would iterate. For variables, they usually correspond to one of the storage

dimensions of the function, but this may not be the case when the dependent

function and the result function have different storage dimensionality. In this case,

the function with higher dimension uses values other than those of the storage

variables to calculate the extra dimension. One of the attributes of such a loop

level is that its extent is likely to be a known value which when it is small, the

loop level can be unrolled to reduce overhead.

The extent represents the range in which the iterator would vary. Since Halide

functions are generally not bounded, most of the storage variables could have an

extent of infinity. As a result, loop levels with known extents are ordered before those

that have an infinite extent. When the extent is sufficiently small, the loop could be

ordered innermost for unrolling which reduces loop overhead as mentioned previously.

One of the other performance-affecting points in computation is cache reusability.

Since for an n-D function, the storage is only continuous in the first dimension, thus

only the particular loop level associated with the dimension is considered when

evaluating reusability, and it is done by checking the interval each variable involved.

For example, when evaluating f = g (x-1, y)+ g (x,y)+ g (x+1), the level with

variable x accesses 3 memory locations in one iteration, and these locations are

8. An Alternative Auto-Optimiser 141

continuous, and thus, it results in cache reuse for consecutive iterations. In another

example where one evaluates f = g (x, y-1)+ g (x, y)+ g (x, y+1), the same

number of locations are accessed, but these locations are non-continuous in memory

because y is not associated with the first storage dimension, and thus distinct cache

lines must be loaded, results in no cache reuse in the same iteration.

Hence, with the above consideration, loops of a function will be ordered

as the following:

1. The unrolled loop

2. Loops with known bounds

3. The loop iterates over the first storage dimension which exhibits cache reuse.

4. Any other loops, preferably ordered in order of corresponding storage dimen-

sion.

Algorithm 4 Intra-partition computation reorder and split.
sp ← get_compute_order(m0)
for i← 1, n do

si ← get_compute_order(mi)
(split, reverse, order)← compare_order(sp, si)
if split ∧ ¬reverse then

if ¬try_reorder(mi, order) then
split(mi−1, mi)

end if
continue

end if
if split ∧ reverse then

for j ← i− 1, j ≥ 0 do
if ¬try_reorder(mj, order) then

split(mi−1, mi)
end if

end for
end if
if |sp| 6= |si| then

sp ← si

end if
end for

142 8.1. The Auto-optimiser

Mismatch in storage dimensions and split When a compute dimension

involves no storage variable, there is a potential change in storage dimension

between the comparing functions. For example, when evaluating f (x, y)= g (x,

y, 0)+ g (x, y, 1), f needs to be evaluated in three loops one of which iterates

from 0 to 1. In this case, the dimension without variable is set to the variable with

the same interval index in the other function. However, in order to preserve the

rule of loop order when the two functions are in the same partition, the function

with higher storage dimension needs to be reordered to compute that loop first. It

is possible that the reordering would not be successful due to violation of the rule

again, and in this case, the two functions would be put into separated partitions

as shown in Algorithm 4, together with other members; members precede the first

partition would be placed in the same partition as the first, and members after

the second one would be in the same one as the second one.

Inline decision

As previously mentioned, all members apart from the last one in a partition are

assumed to be inlined. However, this is unlikely to be the idea schedule. Hence,

using the same Equation 8.1, the cost for each inline scenario is computed and

compared, and the inline solution with the lowest cost is applied to the partition.

8.1.4 Intra-partition optimisation

After partitions are finalized, Halide schedules such as compute_at, unroll and

reorder are generated first, since other schedules would depend on the change in loop

level those bring. In the next step, each function which is not inlined is analysed for:

1. tile()

2. parallel()

3. vectorize()

It is essential to apply the resultant schedules in the above order since both tile()

and parallel() would generate new variables which affect subsequent schedules.

8. An Alternative Auto-Optimiser 143

C(x, y) += A(x, r) * B(r, y)

Listing 8.1: Matrix multiplication in Halide

Tiling

Split and reorder to tile While the Halide’s tile schedule provides an easy

way to apply two-dimensional tiling, it is possible that the computation dimension

is higher than the storage dimension, resulting in insufficient tiling. As shown in

Listing 8.1, matrix multiplication involves matrices which are generally 2D structures

in a program; however, three distinct variables are used in its computation. In

this case, the direct use of Halide’s tile is ineffective because it fails to realise

3D tiling which is a known better schedule for matrix multiplication. Hence,

the equivalent split and reorder is used to generate schedules for tiling. In

this way—although limited by the rectangular shape—it becomes more flexible

dimension-wise. The auto-optimiser uses the Tile Size Selection [63] algorithm

to obtain the split size for each compute dimension. The algorithm emulates the

cache access pattern of the dominating array references and finds the list of size

tuples which minimises any cross-interferences. It computes the size tuples for

all cache levels and uses the cost function

cost = min(1
I

+ 1
J

) (8.2)

where I and J are the size tuples previously found for the last level of cache. After

splitting, the new loop levels are reordered so that the new inner loop levels are

grouped together in their pre-split ordering, followed by all outer levels in the

same ordering. For example, if the original loop order is (x, y), and each loop level

is divided into two, the result is (xi, xo, yi, xo), in which the subcript i indicates

the newly created inner loop and o the outer loop. The final reordering would

change the order to (xi, yi, xo, yo).

144 8.1. The Auto-optimiser

(0,0)

(0,1)

(w,0)

(w,1)

Memory

Image

(0,0) (w,0) (0,1)

(0,0)

(0,1)

(w,0)

(w,1)

Memory

Image

(0,0) (w,0) (0,1)

(1,t+1)

(0,t+1)(0,t)

(1,t)

(0,t) (0,t+1)

(a) untiled stencil computation(a) untiled stencil computation (b) tiled stentil computation

Figure 8.2: Memory access pattern in untiled (a) and tile (b) stencil computation.

When to tile While tiling generally improves a program’s performance, but it

is not always the case, especially when the flow of data is broken by the creation

of a rectangular tile. Considering the situation shown in Figure 8.2, When no

tiling is applied, the stencil computation generally goes through each column of the

image before going to the next row. Since an image is stored in a one-dimensional

structure in memory, the last element of the first row and the first element in the

second are next to each other in memory and the computation incurs no additional

cache misses. However, when the computation is tiled, addition misses may occur

due to the wrapping within the tile and the computation of the next tile. Hence,

the tiling strategy is chosen based on the size of the group; if a group contains

more than one member, it is observed that its computation follows closely to what

is represented in Figure 8.2 (a) and thus tiling is avoided. Otherwise, it is tiled

using the method described previously.

Parallel

The parallel schedule function converts one of the loop levels of a function for

parallel execution. Since such conversion introduces additional synchronization

overhead and potential redundancy due to inter-depended iterations, it is only

applied to a function’s outermost loop level. The schedule function parallel may

also have a parameter for task size, which allows a set of consecutive iterations

to be executed by the same parallel worker. This reduces the redundancy caused

by dependencies in previous iterations. For example, in the blurring algorithm

8. An Alternative Auto-Optimiser 145

in List 8.1a, since the outermost loop with variable y requires the value from

previous two iterations, hence, if task size is set to 1, it causes 2 times more

computation compared to the non-parallel for loop, and when task size is increased,

the redundancy reduces to 2
task size

. Hence, the optimiser chooses a work size which

result in good balance between parallel and redundancy by increment task size

s from 1 to until

(s + 1)/(s + 1 + r)− s/(s + r) < 0.025 (8.3)

where r in the redundancy obtained by

r = |I| − 1 (8.4)

where I is the variable’s interval in a single iteration.

In an ideal case, the task size should be as large as possible to minimise

redundancy. However, since the dimension of the function is usually unknown until

realisation, it would not be possible to implement this in the optimisation. Instead,

when the improvement is less than 2.5%, the value of task size is chosen.

Vectorisation

The SIMD extension of the CPU allows the same operation to be simultaneously

executed on multiple data sets, speeding up the computation. The process of

vectorisation involves the reconstruction of the innermost loop level, which is

segmented into smaller segments whose size corresponds to the target platform’s

vector width. vectorize is applied provided memory access in the innermost

loop is continuous or evenly spaced, otherwise the stream engine is not likely to

be used anyway and forcing it may have a reversed effect. Vectorisation factor

or the number of elements to be computed simultaneously is determined by the

processor’s vector size and the function’s element size.

146 8.2. Experiment

8.2 Experiment

The auto-optimiser is set up to generate schedules for the following applications:

Blur A simple image blur algorithm the 3× 3 kernel.

Unsharp It smooths the image with Gaussian blur to obtain the high-

frequency components, which is then used to scale the original

image pixel values.

Harris The Harris corner detection algorithm [70].

NLMeans Fast non-local means algorithm for image de-noising [71].

MaxFilter The algorithm computes the maximum intensity pixel in a circular

region around the target pixel.

Interpolate Pixel value interpolation with image pyramid.

LocalLaplacian It computes the local Laplacian filter for local contrast enhance-

ment [72].

Bilateral Bilateral grid computation [73].

HistEQ Histogram equalisation.

ConvLayer The typical convolution layer computation for neural network [74].

MatMul Matrix multiplication.

The test machine consists of an Intel i7 7700K CPU running at 4.2 GHz,

with 16 GB DDR4 memory at 2400 MHz. Each application is scheduled by

the auto-optimiser presented in this work and Halide’s built-in auto-scheduler,

and each instance of schedules are compiled with Halide’s JIT compiler to obtain

the average execution times for comparison. The results of the experiments are

shown in Figure 8.3.

8.3 Discussion

From Figure 8.3, the auto-optimiser generally performs better with a reduction of

up to 50% in execution time. It can be seen that the auto-optimiser generally works

better in applications that involves a large proportion of stencil computation; Blur

8. An Alternative Auto-Optimiser 147

0 10 20 30 40 50 60
Time (ms)

Blur

Unsharp

Harris

NLMeans

MaxFilter

Interpolate

LocalLaplacian

Bilateral

HistEQ

ConvLayer

MatMul
Built-in auto-scheduler
this auto-optimiser

Figure 8.3: Execution time comparison for the auto-optimiser of this work (blue bars)
and Halide’s built-in auto-scheduler (red bars).

and Bilateral are good examples of this. While in other applications, it provides

at least the same performance as the Halide’s built-in generator.

By observing the schedules created by the auto-optimiser, tile is hardly

generated except for matrix multiplication, although when tiles are generated,

their size selection is more appropriate when compared to the auto-scheduler.

One of the reasons for the limited use of tile is because their generation is

restricted to single function partitions. Such a heuristic may be too conservative

in choosing the schedule.

Although the result shows improvement in terms of execution time, it should be

noted that only a subset of the available Halide schedule functions is considered;

schedules such as specialize may further improve the performance by modifying

the branching in a computation.

148

9
Conclusion and Future Work

This chapter summarises the work presented in this thesis and indicates possible

directions for further improvement on the work and future research in the area.

9.1 Conclusion

Heterogeneous systems present various advantages when used as embedded systems,

and the incorporation of an FPGA into a single-board computer with a conventional

SoC not only provides added hardware capability, but also computation acceleration.

This thesis shows the design of key communication components in the ARMflash,

which is an embedded platform fused with a SoC and an FPGA. The implementation

of OpenCL for the platform further enhances its capability for the acceleration

of computational tasks and provide an easier way to use the FPGA effectively.

Also, domain specific language such as Halide could be used to program such a

heterogeneous environment efficiently. The main achievements are summarised

by the following:

A custom memory interface between an FPGA and a processor

The presented GPMC-to-FPGA bridge provides an optimal solution for connecting

an FPGA device to a commercial SoC via the external flash memory interface. It

features two bespoke sub-bridges each of which handles different communication

149

150 9.2. Future Work

scenarios; while the lightweight sub-bridge provides access to device registers,

memory-mapped I/O and memory alike, the high-performance sub-bridge could

provide a substantial throughput even suitable for demanding image streaming

applications. It is shown that the sub-bridge performs well and provides a bandwidth

of about 1 Gb/s with software overhead, significantly out-perform other interface

options available on the ARMflash platform. The use of the flash memory interface

also simplifies the program on the processor side for accessing the FPGA.

The implementation of the Intel FPGA OpenCL framework on the
ARMflash platform enabling FPGA-based hardware acceleration

With the GPMC-to-FPGA bridge, support for the AOCL framework provides a

significant performance boosts to perform computation on the ARMflash platform,

which is of particular interest in the creation of high-performance smart cameras.

Programming of such devices is simplified by the use of OpenCL. It is shown that

such an addition provides a performance improvement of at least four times.

An alternative automatic optimiser for Halide

Halide, an image processing domain specific language, provides further abstraction in

expressing image processing pipelines and allows separation between the algorithm

and schedule for efficient optimisation. The developed optimiser utilises the Halide

framework to automatically produce schedules for Halide pipelines, identifying

issues that were undetectable by the internal auto scheduler and also providing

an improvement on the output schedule.

9.2 Future Work

The presented research covers a diverse range of topics, and potential further

research is discussed briefly below:

9. Conclusion and Future Work 151

9.2.1 The GPMC-to-FPGA bridge

Because the implementation currently requires explicit control for ensuring memory

coherency, it would be beneficial to automate such operation especially for the case

where memory on the FPGA side is accessed. This change will further simplify

how the FPGA is accessed and it eliminates potential bugs due to issues with

coherency that are usually hard to identify. The support of byte-wise access,

although limited by the hardware on the ARMflash platform, would provide a

complete bridge solution between the two sides.

9.2.2 AOCL support for custom embedded systems

As the work in the thesis proves that the incorporation of the AOCL does not

require sophisticated protocols such as the PCIe or special hardware; with simple

interfaces such as the external memory interfaces discussed, it is possible to achieve

substantial performance improvements on a platform that is not specialised for

computation. Such custom embedded systems provide many opportunities for

exploring the use of FPGAs, especially with the OpenCL framework, for performing

large computation tasks.

9.2.3 Automatic optimisation for Halide programs

Although the presented auto-optimisation tool has shown improvements compared

to the one packaged with Halide, it is far from perfect; it only supports a subset of

the Halide semantics, and its usability across the wide range of image processing

pipelines is still awaiting further verification. Moreover, the use of a fixed cost

model itself might be insufficient for all programming scenarios across the vast

range of platforms. A machine learning based approach could be an alternative

method for schedule generation [75, 76], and the API exposed by Halide should

allow straightforward integration.

152

References

[1] Steve Crago et al. “Heterogeneous Cloud Computing”. In: 2011 IEEE International
Conference on Cluster Computing. IEEE, 2011, pp. 378–385.

[2] A. A. Khokhar et al. “Heterogeneous Computing: Challenges and Opportunities”.
In: Computer 26.6 (June 1993), pp. 18–27.

[3] T. B. Garcia-Nathan et al. “Compact and Portable X-Ray Imager System Using
Medipix3RX”. In: Journal of Instrumentation 12.10 (Oct. 2017),
pp. C10011–C10011. url:
https://doi.org/10.1088%2F1748-0221%2F12%2F10%2Fc10011 (visited on
08/18/2019).

[4] Jonathan Ragan-Kelley et al. “Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image Processing Pipelines”. In: Acm
Sigplan Notices 48.6 (June 2013), pp. 519–530. url:
http://dl.acm.org/citation.cfm?id=2462176.

[5] Ray Bittner. “Speedy Bus Mastering PCI Express”. In: 22nd International
Conference on Field Programmable Logic and Applications (FPL). 2012 22nd
International Conference on Field Programmable Logic and Applications (FPL).
Oslo, Norway: IEEE, Aug. 2012, pp. 523–526. url:
http://ieeexplore.ieee.org/document/6339270/ (visited on 09/05/2018).

[6] Ray Bittner. “Bus Mastering PCI Express in an FPGA”. In: Proceeding of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays -
FPGA ’09. Proceeding of the ACM/SIGDA International Symposium. Monterey,
California, USA: ACM Press, 2009, p. 273. url:
http://portal.acm.org/citation.cfm?doid=1508128.1508176 (visited on
09/05/2018).

[7] Lattice Semiconductor. Implementing PCI Express Bridging Solutions in an Fpga.
Sept. 2010.

[8] Altera Corporation. AN 456: PCI Express High Performance Reference Design.
Altera, Apr. 2017.

[9] PCI-SIG. PCI Express Base Specification Revision 4.0 Version 0.3. Feb. 19, 2014.
url: http://composter.com.ua/documents/PCI_Express_Base_
Specification_Revision_4.0.Ver.0.3.pdf (visited on 09/12/2018).

[10] RapidIO Trade Association. “RapidIO, PCI Express and Gigabit Ethernet
Comparison”. May 3, 2005.

[11] Altera Corporation. Cyclone V Avalon-MM Interface for PCIe Solutions User
Guide. May 21, 2017, p. 173.

[12] Samuel H. Fuller and Alan Gatherer. RapidIO: The Embedded System Interconnect.
Chichester, England ; Hoboken, NJ: Wiley, 2005. 360 pp.

153

https://doi.org/10.1088%2F1748-0221%2F12%2F10%2Fc10011
http://dl.acm.org/citation.cfm?id=2462176
http://ieeexplore.ieee.org/document/6339270/
http://portal.acm.org/citation.cfm?doid=1508128.1508176
http://composter.com.ua/documents/PCI_Express_Base_Specification_Revision_4.0.Ver.0.3.pdf
http://composter.com.ua/documents/PCI_Express_Base_Specification_Revision_4.0.Ver.0.3.pdf

154 References

[13] Simaolhoda Baymani, Konstantinos Alexopoulos, and Sébastien Valat. “RapidIO
as a Multi-Purpose Interconnect”. In: Journal of Physics: Conference Series 898
(Oct. 2017), p. 082007. url: http://stacks.iop.org/1742-
6596/898/i=8/a=082007?key=crossref.ef6aa238a3bd2596483be5a314ad338a
(visited on 09/05/2018).

[14] Intel Corporation. RapidIO Intel FPGA IP User Guide. Aug. 9, 2018, p. 200.
[15] AIA. GigE Visionő Specification Version 2.0. Nov. 21, 2011.
[16] ISO ICE. “7498-1. Information Technology - Open Systems Interconnection - Basic

Reference Model: The Basic Model”. In: International Organization for
Standardization, Geneva (June 15, 1994).

[17] Nazmin Arif Mohd Noh, Azilah Saparon, and Habibah Hashim. “Real Time FPGA
Communication System Using Ethernet for Robotics”. In: Procedia Computer
Science 76 (2015), pp. 406–410. url:
http://linkinghub.elsevier.com/retrieve/pii/S1877050915038211 (visited
on 09/05/2018).

[18] Jian Wang, Hong Wang, and Zhi-jia Yang. “An FPGA Based Slave
Communication Controller for Industrial Ethernet”. In: 2008 9th International
Conference on Solid-State and Integrated-Circuit Technology. 2008 9th
International Conference on Solid-State and Integrated-Circuit Technology
(ICSICT). Beijing, China: IEEE, Oct. 2008, pp. 2062–2065. url:
http://ieeexplore.ieee.org/document/4734979/ (visited on 09/05/2018).

[19] Nima Moghaddami Khalilzad et al. “FPGA Implementation of Real-Time Ethernet
Communication Using RMII Interface”. In: 2011 IEEE 3rd International
Conference on Communication Software and Networks. 2011 IEEE 3rd
International Conference on Communication Software and Networks (ICCSN).
Xi’an, China: IEEE, May 2011, pp. 35–39. url:
http://ieeexplore.ieee.org/document/6013943/ (visited on 09/05/2018).

[20] Intel Corporation. Triple-Speed Ethernet Intel FPGA IP User Guide. Aug. 1, 2018,
p. 187.

[21] Sandhya Senapathi and Rich Hernandez. “TCP Offload Engines”. In: Network
AND Communications magazine (Mar. 2004). url:
https://www.dell.com/downloads/global/power/1q04-her.pdf (visited on
09/13/2018).

[22] Z. Wu and H. Chen. “Design and Implementation of TCP/IP Offload Engine
System over Gigabit Ethernet”. In: Proceedings of 15th International Conference on
Computer Communications and Networks. Proceedings of 15th International
Conference on Computer Communications and Networks. Oct. 2006, pp. 245–250.

[23] Fatemeh Arbab Jolfaei et al. “High Speed USB 2.0 Interface for FPGA Based
Embedded Systems”. In: 2009 Fourth International Conference on Embedded and
Multimedia Computing. 2009 Fourth International Conference on Embedded and
Multimedia Computing (EM-Com 2009). Jeju, Korea (South): IEEE, Dec. 2009,
pp. 1–6. url: http://ieeexplore.ieee.org/document/5403002/ (visited on
09/05/2018).

http://stacks.iop.org/1742-6596/898/i=8/a=082007?key=crossref.ef6aa238a3bd2596483be5a314ad338a
http://stacks.iop.org/1742-6596/898/i=8/a=082007?key=crossref.ef6aa238a3bd2596483be5a314ad338a
http://linkinghub.elsevier.com/retrieve/pii/S1877050915038211
http://ieeexplore.ieee.org/document/4734979/
http://ieeexplore.ieee.org/document/6013943/
https://www.dell.com/downloads/global/power/1q04-her.pdf
http://ieeexplore.ieee.org/document/5403002/

References 155

[24] NUMATO LAB. USB 3.0 A Cost Effective High Bandwidth Solution for FPGA
Host Interface Introduction. Numato Systems Pvt. Ltd., June 2018. url:
https://numato.com/kb/usb-3-0-a-cost-effective-high-bandwidth-
solution-for-fpga-host-interface/.

[25] Hewlett-Packard Company et al. Universal Serial Bus 3.0 Specification. Nov. 12,
2008, p. 482.

[26] AIA. USB3 Vision Version 1.0. Jan. 2013.
[27] NXP Semiconductors. UM10204 I2C-Bus Specification and User Manual. User

manual. Apr. 4, 2014, p. 64.
[28] Texas Instruments. AM335x Sitara Processors Technical Reference Manual. June

2014.
[29] Altera Corporation. Cyclone V Hard Processor System Technical Reference Manual.

July 17, 2018.
[30] ARM. AMBA 5 CHI ArchitectureSpecification. 2018, p. 390.
[31] ARM. AMBA AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite

ACE and ACE-Lite. ARM IHI 0022D. Oct. 28, 2011, p. 306.
[32] Xilinx. “AXI Reference Guide”. In: 13 (2011), p. 82.
[33] ARM. AMBA 3 APB Protocol Specification. 2003, p. 34.
[34] OpenCores. WISHBONE, Revision B.4 Specification. 2010. url:

https://cdn.opencores.org/downloads/wbspec_b4.pdf (visited on
01/16/2019).

[35] Intel Corporation. Avalonő Interface Specifications. May 8, 2017, p. 59.
[36] Micron Technology, Inc. NAND Flash 101: An Introduction to NAND Flash and

How to Design It into Your Next Product. July 2004, pp. 1–27.
[37] Altera Corporation. Avalon Interface Specifications 2015. MNL-AVABUSREF.

Mar. 4, 2015, p. 58.
[38] Yan Solihin. Fundamentals of Parallel Multicore Architecture. Chapman &

Hall/CRC Computational Science Series. OCLC: ocn884540034. Boca Raton, FL:
CRC Press, Taylor & Francis Group, 2016. 468 pp.

[39] Tejas DaveAmit Jain and Divyanshu Jain. “Synchronizer Techniques for
Multi-Clock Domain SoCs & FPGAs”. In: EDN Network (Sept. 30, 2014), p. 8.

[40] ValentFx. LOGI Bone User Manual - ValentFx Wiki. url:
http://valentfx.com/wiki/index.php?title=LOGI_Bone_User_Manual#FPGA_
side_communication (visited on 02/11/2019).

[41] Intel Corporation. Intelő FPGA SDK for OpenCL Pro Edition Programming Guide.
Aug. 3, 2018, p. 193.

[42] Khronos OpenCL Working Group. The OpenCL Specification v2.0. Stanford, CA:
IEEE, July 21, 2015, pp. 1–314. url:
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf (visited
on 01/16/2020).

[43] Timothy M Hunter et al. FPGA Acceleration of Multifunction Printer Image
Processing Using OpenCL. White paper, p. 11.

https://numato.com/kb/usb-3-0-a-cost-effective-high-bandwidth-solution-for-fpga-host-interface/
https://numato.com/kb/usb-3-0-a-cost-effective-high-bandwidth-solution-for-fpga-host-interface/
https://cdn.opencores.org/downloads/wbspec_b4.pdf
http://valentfx.com/wiki/index.php?title=LOGI_Bone_User_Manual#FPGA_side_communication
http://valentfx.com/wiki/index.php?title=LOGI_Bone_User_Manual#FPGA_side_communication
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf

156 References

[44] Cédric Bastoul. “Improving Data Locality in Static Control Programs”. Phd thesis.
2004.

[45] Michael Joswig. Polyhedral and Algebraic Methods in Computational Geometry. 1st
ed. Universitext. New York: Springer, 2013.

[46] Uday Bondhugula et al. “Automatic Transformations for
Communication-Minimized Parallelization and Locality Optimization in the
Polyhedral Model”. In: International Conference on Compiler Construction
(ETAPS CC). Apr. 2008.

[47] Uday Bondhugula et al. “A Practical Automatic Polyhedral Parallelizer and
Locality Optimizer”. In: Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’08. New York, NY,
USA: ACM, 2008, pp. 101–113. url:
http://doi.acm.org/10.1145/1375581.1375595 (visited on 09/25/2018).

[48] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. “Polly Performing
Polyhedral Optimizations on a Low-Level Intermediate Representation”. In:
Parallel Processing Letters 22.04 (Dec. 1, 2012), p. 1250010. url:
https://www.worldscientific.com/doi/10.1142/S0129626412500107 (visited
on 09/26/2018).

[49] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. “PolyMage:
Automatic Optimization for Image Processing Pipelines”. In: Proceedings of the
Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems - ASPLOS ’15. The Twentieth International
Conference. Istanbul, Turkey: ACM Press, 2015, pp. 429–443. url:
http://dl.acm.org/citation.cfm?doid=2694344.2694364 (visited on
09/05/2018).

[50] Yuan Xinyu and Li Ying. “Polyhedral Model Based Data Locality Optimization for
Embedded Applications”. In: 2010 IEEE/ACM Int’l Conference on Green
Computing and Communications & Int’l Conference on Cyber, Physical and Social
Computing. Int’l Conference on Cyber, Physical and Social Computing (CPSCom).
Hangzhou, China: IEEE, Dec. 2010, pp. 926–930. url:
http://ieeexplore.ieee.org/document/5724944/ (visited on 09/05/2018).

[51] C. Bastoul. “Code Generation in the Polyhedral Model Is Easier than You Think”.
In: Proceedings. 13th International Conference on Parallel Architecture and
Compilation Techniques, 2004. PACT 2004. Proceedings. 13th International
Conference on Parallel Architecture and Compilation Techniques, 2004. PACT
2004. Oct. 2004, pp. 7–16.

[52] Mohamed-Walid Benabderrahmane et al. “The Polyhedral Model Is More Widely
Applicable Than You Think”. In: Compiler Construction. Ed. by Rajiv Gupta.
Red. by David Hutchison et al. Vol. 6011. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 283–303. url:
http://link.springer.com/10.1007/978-3-642-11970-5_16 (visited on
09/05/2018).

[53] Naznin Fauzia et al. “Beyond Reuse Distance Analysis: Dynamic Analysis for
Characterization of Data Locality Potential”. In: (Dec. 21, 2013). arXiv: 1401.5024
[cs]. url: http://arxiv.org/abs/1401.5024 (visited on 09/05/2018).

http://doi.acm.org/10.1145/1375581.1375595
https://www.worldscientific.com/doi/10.1142/S0129626412500107
http://dl.acm.org/citation.cfm?doid=2694344.2694364
http://ieeexplore.ieee.org/document/5724944/
http://link.springer.com/10.1007/978-3-642-11970-5_16
https://arxiv.org/abs/1401.5024
https://arxiv.org/abs/1401.5024
http://arxiv.org/abs/1401.5024

References 157

[54] James Hegarty et al. “Darkroom: Compiling High-Level Image Processing Code
into Hardware Pipelines”. In: ACM Transactions on Graphics 33.4 (July 27, 2014),
pp. 1–11. url: http://dl.acm.org/citation.cfm?doid=2601097.2601174
(visited on 09/05/2018).

[55] Julien Jaeger and Denis Barthou. “Automatic Efficient Data Layout for
Multithreaded Stencil Codes on CPU Sand GPUs”. In: 2012 19th International
Conference on High Performance Computing. 2012 19th International Conference
on High Performance Computing (HiPC). Pune, India: IEEE, Dec. 2012, pp. 1–10.
url: http://ieeexplore.ieee.org/document/6507504/ (visited on
09/05/2018).

[56] Muthu Baskaran et al. “Effective Automatic Parallelization of Stencil
Computations”. In: Acm Sigplan Notices 42.6 (June 2007), pp. 235–244. url:
http://portal.acm.org/citation.cfm?doid=1250734.1250761.

[57] Stephanie Coleman and Kathryn S. McKinley. “Tile Size Selection Using Cache
Organization and Data Layout”. In: ACM SIGPLAN Notices. Vol. 30. ACM, 1995,
pp. 279–290.

[58] Gabriel Rivera and Chau-Wen Tseng. “A Comparison of Compiler Tiling
Algorithms”. In: Compiler Construction. Ed. by Stefan Jähnichen. Red. by
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen. Vol. 1575. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 168–182. url:
http://link.springer.com/10.1007/978-3-540-49051-7_12 (visited on
09/05/2018).

[59] Chung-hsing Hsu and Ulrich Kremer. “A Quantitative Analysis of Tile Size
Selection Algorithms”. In: The Journal of Supercomputing 27.3 (Mar. 2004),
pp. 279–294. url:
http://link.springer.com/10.1023/B:SUPE.0000011388.54204.8e (visited
on 09/05/2018).

[60] Jianxin Xiong et al. “SPL: A Language and Compiler for DSP Algorithms”. In:
Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language
Design and Implementation. PLDI ’01. New York, NY, USA: ACM, 2001,
pp. 298–308. url: http://doi.acm.org/10.1145/378795.378860 (visited on
09/26/2018).

[61] Tomofumi Yuki et al. “Automatic Creation of Tile Size Selection Models”. In:
Proceedings of the 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization. CGO ’10. New York, NY, USA: ACM, 2010,
pp. 190–199. url: http://doi.acm.org/10.1145/1772954.1772982 (visited on
09/26/2018).

[62] Jun Shirako et al. “Analytical Bounds for Optimal Tile Size Selection”. In:
Compiler Construction. Ed. by Michael OBoyle. Red. by David Hutchison et al.
Vol. 7210. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 101–121. url:
http://link.springer.com/10.1007/978-3-642-28652-0_6 (visited on
09/05/2018).

http://dl.acm.org/citation.cfm?doid=2601097.2601174
http://ieeexplore.ieee.org/document/6507504/
http://portal.acm.org/citation.cfm?doid=1250734.1250761
http://link.springer.com/10.1007/978-3-540-49051-7_12
http://link.springer.com/10.1023/B:SUPE.0000011388.54204.8e
http://doi.acm.org/10.1145/378795.378860
http://doi.acm.org/10.1145/1772954.1772982
http://link.springer.com/10.1007/978-3-642-28652-0_6

158 References

[63] Sanyam Mehta, Gautham Beeraka, and Pen-Chung Yew. “Tile Size Selection
Revisited”. In: ACM Transactions on Architecture and Code Optimization 10.4
(Dec. 1, 2013), pp. 1–27. url:
http://dl.acm.org/citation.cfm?doid=2555289.2555292 (visited on
09/05/2018).

[64] Simon Lever and Dr Endric Schubert. “High-Level-Synthesis for FPGA
Implementation of Network Protocols”. Feb. 25, 2015.

[65] Linnan Wang et al. “BLASX: A High Performance Level-3 BLAS Library for
Heterogeneous Multi-GPU Computing”. In: (Oct. 16, 2015). arXiv: 1510.05041
[cs]. url: http://arxiv.org/abs/1510.05041 (visited on 09/05/2018).

[66] Jonathan Ragan-Kelley et al. “Decoupling Algorithms from Schedules for Easy
Optimization of Image Processing Pipelines.” In: ACM Transactions on Graphics
31.4 (2012), pp. 32–12. url: http://doi.acm.org/10.1145/2185520.2185528.

[67] Philippe Tillet, Karl Rupp, and Siegfried Selberherr. “An Automatic OpenCL
Compute Kernel Generator for Basic Linear Algebra Operations”. In: Proceedings
of the 2012 Symposium on High Performance Computing. HPC ’12. San Diego, CA,
USA: Society for Computer Simulation International, 2012, 4:1–4:2. url:
http://dl.acm.org/citation.cfm?id=2338816.2338820 (visited on
09/23/2018).

[68] kieran hervold. Auto-Generation of OpenCL Kernels from Python Code:
Hervold/Py2opencl. June 25, 2018. url:
https://github.com/hervold/py2opencl (visited on 09/23/2018).

[69] Ravi Teja Mullapudi et al. “Automatically Scheduling Halide Image Processing
Pipelines”. In: ACM Transactions on Graphics 35.4 (July 11, 2016), pp. 1–11. url:
http://dl.acm.org/citation.cfm?doid=2897824.2925952 (visited on
09/05/2018).

[70] Chris Harris and Mike Stephens. “A Combined Corner and Edge Detector”. In: In
Proc. of Fourth Alvey Vision Conference. 1988, pp. 147–151.

[71] Jerome Darbon et al. “Fast Nonlocal Filtering Applied to Electron
Cryomicroscopy”. In: 2008 5th IEEE International Symposium on Biomedical
Imaging: From Nano to Macro, Proceedings, ISBI. May 1, 2008, pp. 1331–1334.

[72] Sylvain Paris, Samuel W. Hasinoff, and Jan Kautz. “Local Laplacian Filters:
Edge-Aware Image Processing with a Laplacian Pyramid”. In: ACM Trans. Graph.
30 (July 1, 2011), p. 68.

[73] Jiawen Chen, Sylvain Paris, and Frédo Durand. “Real-Time Edge-Aware Image
Processing with the Bilateral Grid”. In: ACM SIGGRAPH 2007 Papers.
SIGGRAPH ’07. San Diego, California: ACM, 2007. url:
http://doi.acm.org/10.1145/1275808.1276506 (visited on 08/18/2019).

[74] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume 1.
NIPS’12. Lake Tahoe, Nevada: Curran Associates Inc., 2012, pp. 1097–1105. url:
http://dl.acm.org/citation.cfm?id=2999134.2999257 (visited on
08/18/2019).

http://dl.acm.org/citation.cfm?doid=2555289.2555292
https://arxiv.org/abs/1510.05041
https://arxiv.org/abs/1510.05041
http://arxiv.org/abs/1510.05041
http://doi.acm.org/10.1145/2185520.2185528
http://dl.acm.org/citation.cfm?id=2338816.2338820
https://github.com/hervold/py2opencl
http://dl.acm.org/citation.cfm?doid=2897824.2925952
http://doi.acm.org/10.1145/1275808.1276506
http://dl.acm.org/citation.cfm?id=2999134.2999257

References 159

[75] Amir H. Ashouri et al. “A Survey on Compiler Autotuning Using Machine
Learning”. In: ACM Computing Surveys 51.5 (Sept. 18, 2018), pp. 1–42. arXiv:
1801.04405. url: http://arxiv.org/abs/1801.04405 (visited on 09/26/2018).

[76] Zheng Wang and Michael O’Boyle. “Machine Learning in Compiler Optimisation”.
In: (May 9, 2018). arXiv: 1805.03441 [cs]. url:
http://arxiv.org/abs/1805.03441 (visited on 09/26/2018).

https://arxiv.org/abs/1801.04405
http://arxiv.org/abs/1801.04405
https://arxiv.org/abs/1805.03441
http://arxiv.org/abs/1805.03441

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Challenges of heterogeneous systems
	Design
	Programming

	Objectives of the research
	Research outcomes
	Original contributions of the research
	Dissertation Overview

	The Interface Technologies
	Peripheral Interface
	PCIe
	RapidIO
	Gigabit Ethernet
	USB
	The Simple Serial Protocols
	Custom memory interface
	Communication in the SoC FPGA
	Summary

	System Interface
	AMBA
	WISHBONE
	AVMM interface
	Summary

	The Platform
	ARMflash overview
	ARM SoC
	FPGA
	Applications

	Two sides of the bridge
	GPMC
	AVM

	Previous work
	Summary

	The Design of GPMC-to-FPGA Bridge
	Issues with the two interfaces
	The Lightweight Bridge
	Composition of the memory-mapped sub-bridge
	Translation of the write transaction
	Translation of the read transaction

	The High-Performance Bridge
	The Stream buffer and its customisation
	SRAM interface read slave controller
	AVM read controller
	SRAM interface slave write controller
	AVM write controller
	Transmuxer and operation mode
	Control/status registers

	Summary

	Benchmark for the GPMC-to-FPGA bridge
	Test Environment
	FPGA
	Software

	Tests and Results
	Discussion
	Hardware limitations
	Bandwidth

	Support of the OpenCL framework on the ARMflash platform
	Requirements for implementation
	The memory model in OpenCL
	Reference Implementations in the AOCL
	Design requirements

	Design
	FPGA partition
	Software

	Results
	FPGA partition
	Applications

	Discussion
	Advantages
	Platform limitation
	Interface limitation

	Background for Program Optimisation
	Program analysis and optimisation
	Polyhedral analysis
	DAG-based analysis
	Tile size generation

	The Halide Language
	Algorithm
	Schedule
	Portability
	The Halide auto-scheduler

	An Alternative Auto-Optimiser
	The Auto-optimiser
	Source transformation
	Partition
	Intra-partition analysis
	Intra-partition optimisation

	Experiment
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work
	The GPMC-to-FPGA bridge
	AOCL support for custom embedded systems
	Automatic optimisation for Halide programs

	References

