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Abstract

The research in this thesis mainly focuses on the power system management and optimi-

sation by distributed methods. The traditional power system management and optimisa-

tion approaches are based on centralised fashions. However, it is difficult or impossible

to establish a single centralised control centre in modern distributed power systems. As

the amount of data in the power system continues to increase, centralised algorithms are

limited by insufficient computing power. To solve the problems mentioned above, we

will look into the distributed optimisation problem in power system.

Firstly, to deal with the initialisation error and local physical constraints, a distributed

demand side management strategy is studied by maximising the total welfare from

demand side to supply side. To achieve the objectives of demand side management,

controllable power units generate their optimal power reference based on the proposed

distributed algorithm by coordinating information with the neighbours. Thus, it is a

completely distributed algorithm, and the analysis denotes that the proposed algorithm

can solve the optimal economic dispatch problem in an initialisation-free approach and

adapt to the plug-and-play operation.

Secondly, a uncertain power market environment is considered in this thesis. To max-

imise the benefit of a battery energy storage system in power markets, a novel reinforce-

ment learning based optimal bidding strategy is investigated. The objective is to extend

the battery life and maximise the benefit for battery energy storage system owners. Us-

ing this strategy, the battery energy storage system can make different decisions based

on various environmental states. Meanwhile, the proposed bidding strategy overcomes

the discrete limits by the function approximation approach.

Finally, from the above researches, it is noticed that the data volume and customer pri-

vacy may influence the reliability of the power systems. To avoid the computing burden

18



and consider the data privacy. A novel Markovian switching based distributed deep

belief networks for short term load forecasting is introduced. The proposed algorithm

trains the short-term load forecasting model with local datasets and update the model

parameters by communicating with connected neighbours, which does not need to trans-

fer any information about the load data. In addition, it can simultaneously achieve fast

training speed and superior robustness to cyberattacks due to the Markovian switching

structure and the unsupervised training process of the deep belief networks.
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Chapter 1

Introduction

1.1 Background of Modern Power Systems

With the increasing depletion of traditional energy sources (such as coal, oil, natural

gas.), the world is facing an energy crisis and global warming issues. The power system

relies on these traditional energy sources, and the massive use of energy has attracted

great attention from the scientific and industrial researchers. The UK has put forward a

UK Future Energy Scenarios and clearly pointed out that the power system is a key area

of energy-saving [1]. Especially with the development of smart grid, high requirements

have been placed on the power system in terms of energy, emissions, and the envi-

ronment. Under the pressure of global warming, renewable energy plays an important

role in the power system, and strengthening the integration of renewable energy and the

power system becomes the main challenge. Obviously, its purpose is to reduce conven-

tional energy consumption and greenhouse gas emissions. Therefore, the rational use of

various resources of the power system to achieve the best operation of the power system

is of practical significance for energy conservation, including conventional energy and

27
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renewable energy.

Based on the vigorous development of modern communication technology, distributed

control protocol becomes possible. Along with the revolution of renewable energy, the

power system would be further developed in an intelligent, data-based and distributed

way. The development of modern power systems has brought new challenges to dis-

tributed and scalable architectures for traditional System Operater (SO), in terms of the

management and control of modern smart grids. The smart grid will integrate more and

more new power elements in the future, such as Plug-in Electric Vehicles (PEV), dis-

tributed energy storage systems, distributed generators. Distributed algorithms can pro-

vide a potential solution to meet these challenges [2–5]. Designing distributed control

algorithms and frameworks in the concept of power systems, power units are consid-

ered in a given environment, and modelled as intelligent agents. They can communicate

with their adjacent neighbours and have the ability of local computing and data pro-

cessing. According to different tasks, the distributed algorithms can be applied to any

level of partitioning. For example, an individual agent could be a Distributed Energy

Resources (DER) in resources allocation problem, a Battery Energy Storage Systems

(BESS) company in power market bidding tasks, or even a large region of the network

in a short-term load forecasting mission.

The optimisation and control methods of traditional power systems are mostly cen-

tralised and model-based. However, these traditional methods are gradually unable to

meet the requirements of power system development, for example, the dynamic optimi-

sation of grid operations, distributed energy resources and generation, distributed De-

mand Side Management (DSM), uncertain market environment, lack of bidding rivals’

information and massive power data processing.

In order to meet the above requirements, the power systems need to introduce advanced
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optimisation and management methods, which can solve the problem locally. At the

same time, the information from the neighbours of power units should be utilised to op-

timise and integrate the whole power system. In addition, the large amount of historical

power data and neighbourhood data should be collected to achieve accurate regulation

and management of power system.

1.2 Motivation

The high penetration of renewable energy resources might cause a more complicated

design of power applications in power systems [6–8]. It is difficult to manage and

predict the power output for power markets due to the intermittent nature of renewable

energy sources. In addition, improper operation and management could bring about an

increase in peak demand that could threat the stability of the power systems.

In this project, the management and operation problems in power systems are consid-

ered. With the development of smart grid and the attention paid to renewable energy

resources, the management and operation methods with distributed and data-driven are

in good graces. As a result, the thesis is divided into three major parts:

Firstly, this thesis proposes a distributed initialisation-free optimisation strategy to han-

dle the optimal demand management under the uncertain renewable generation. To deal

with the physical constraints and the initialisation problem, we combine the Proportional-

Integral (PI) consensus dynamics [9] and the projection algorithm [10], which can solve

the constraints problem by local power units. This strategy considers the costs of de-

mand units, BESS and Distributed Generator (DG). Different from the existing results,

the emission costs and the battery degradation costs are also considered in our DSM

model. In addition, the proposed algorithm can handle DSM problem with any initial
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errors so that it can adapt the plug-and-play operation. In order to achieve the control

objectives of DSM, each power unit generates an optimal power reference through the

proposed algorithm by coordinating information with its neighbours. At the meantime,

each power unit will meet the power reference through a local controller. The effective-

ness of the proposed distributed algorithm is validated through simulation studies in an

IEEE 14-bus system and a complex power grid with 40 generators, 15 BESS and 200

loads.

Then, this thesis proposes a novel Markovian based bidding model that decides the

optimised bidding strategy of the BESS in day-ahead energy and regulation markets,

considering the charging/discharging losses and the ageing cost of the BESS. Addition-

ally, the Function Approximation based Reinforcement Learning (FARL) algorithm is

applied to the proposed model to solve the multiple rival bidding problem. The function

approximation approach is introduced in this thesis to address the redundancy caused by

massive data, and therefore prevent the dimension curse. Based on the proposed model,

the BESS could obtain a more accurate and profitable bidding strategy.

Finally, a novel STLF method is proposed, which can be trained under a distributed

framework. To protect the data security and deal with the mass dataset, we introduce the

Markovian switching consensus algorithm to decentralise the DBN and the load dataset.

It can solve the STLF model by local computing agents (CA) and update the model pa-

rameters by communicating with connected neighbours, which does not need to transfer

any information about the load data. Different from the existing results, the proposed

DDBN model will pre-train their local model by unsupervised training to obtain better

initialisation of the model coefficients. Such a pre-trained initialisation process gen-

erates more suitable local models, which consequently yields fast convergence to the

global model with less consensus steps. In the meantime, the DDBN model will also

amend their local parameters based on the information from their connected neighbours
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to avoid the over-fitting problem.

1.3 Novel contribution to knowledge

The research investigates the power system optimisation and management by distributed

methods. The novel contributions to monitor in the thesis are summarised as follows:

• A distributed initialisation-free optimisation strategy is proposed to handle the

optimal demand management under the uncertain renewable generation:

1. The power outputs of all units including controllable loads, BESS and DG

are optimised according to their welfare functions while maintaining the

supply-demand balance in various conditions, i.e., different prices, commu-

nication failures and time-varying active power mismatches.

2. The proposed strategy is distributed based on a distributed average estima-

tor. Thus, the proposed strategy is scalable and could be applied to large-

scale systems. Additionally, it only requires the exchange of one information

variable that does not contain the information of the welfare function. The

customer privacy could be protected during the information transmission

process.

3. The practical implementation of a distributed algorithm would have initial

mismatches. To this end, the proposed algorithm is initialisation-free, which

has the advantage of solving the initial errors. Meanwhile, this feature en-

ables the plug-and-play functions in DSM since it does not require any ini-

tialisation process.

• A novel model that decides the optimal bidding strategy of the BESS in day-ahead
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energy and regulation markets has been proposed:

1. The BESS bidding problem is modelled as a Markov Decision Process (MDP)

framework for learning the optimised bidding policy to increase the welfare

of BESS in energy and regulation markets. The model is delicately designed,

especially on the losses during the power transfer and the ageing cost of the

BESS.

2. Since RL involves discrete-state transition, a function approximation ap-

proach is introduced to transfer the uncertain and continuous bidding en-

vironment into a set of discrete states, such that the memory and computa-

tional complexities can be reduced. This makes the state transition tractable,

and avoids the curse of dimensionality.

3. The proposed bidding strategy of BESS owners considers both energy mar-

ket and regulation arbitrage, which shows flexibility to the uncertain bidding

environments, such as prior knowledge of other rivals and any dynamics of

the system operator. As an individually profit maximisation bidding strat-

egy, it can help the BESS owner to obtain its bidding strategy for individual

market participants.

• A novel Distributed Deep Belief Networks (DDBN) with Markovian switching

consensus algorithm for Short Term Load Forecasting (STLF) has been proposed.

The major contributions are summarised as follows:

1. The proposed DDBN algorithm updates each local model parameters by

self-training and limited information exchange with neighbours during STLF.

As a result, implementing the proposed algorithm can reduce training time

due to the parallel computations with local data collection. Further, the over-

fitting problem in the local model can be significantly reduced by mutual

correction.
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2. A Markovian-based switching topology is designed to deal with uncertain

cyberattacks during neighbour communication. With the help of the stochas-

tic mechanism, it is much more flexible as well as robust, compared with the

fixed communication network. Whilst its stability and the convergence to the

optimal value are not compromised and strictly guaranteed by a delicately

designed controller gain.

1.4 Thesis Outline

The organisation of each chapter is described in detail at the beginning of each chap-

ter. To understand the whole thesis structure, a general overview is summarised in this

section.

Chapter 1 Introduction. Brief overviews of the modern power system have been in-

troduced. Meanwhile, the motivations and contributions of this thesis are discussed.

Chapter 2 Literature Review. The results are reviewed in this chapter, including the

distributed optimisation algorithms for demand side management, reinforcement learn-

ing methods for BESS optimal bidding in power market and distributed Deep Learning

(DL) for STLF.

Chapter 3 Preliminaries. Some notations and related preliminaries are introduced

in this chapter, such as graph theory, Reinforcement Learning (RL) and Deep Belief

Networks (DBN). The strict mathematical description of novel concept and associated

analysis of this new concept are given as well.

Chapter 4 Demand-side Management. This chapter studies the demand side man-

agement problem for smart grid to maximise the total welfare, while respecting each
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power unit’s constraints. An objective function is formulated to establish the total wel-

fare of smart grid. Then, a distributed cooperative scheme of demand side management

is proposed to solve the economic dispatch problem in an initialisation-free manner.

Moreover, the stability of the designed algorithm is analysed and the effectiveness is

evaluated on a simulation example.

Chapter 5 Battery Energy Storage Systems Optimal Bidding. In this chapter, a

bidding model for BESS owner is presented to maximise the benefit and a function

approximation reinforcement learning algorithm is designed for BESS optimal bidding

environment. The objective function for BESS owner is formulated to maximise the

daily bidding revenue in an integrated energy and regulation market. Without any ri-

vals’ information, the proposed algorithm can train its network parameters and optimise

the bidding strategy under an uncertainty environment. Moreover, the function approx-

imation approach is used in this chapter to handle the discrete limits of reinforcement

learning algorithms.

Chapter 6 Short-term Load Forecasting. By considering the data privacy, a novel

fully distributed deep learning algorithm for STLF is proposed to achieve accurate short

term load forecasting on power load. This new algorithm is designed based on DBN

and Markovian switching consensus algorithm, the convergence analysis and the illus-

trative case studies are given respectively. For STLF problem, the studied model is fully

data-driven and Markovian switched, which could adapted to further time-varying load

and environments. In other words, this proposed algorithm is more robust for STLF

problems.

Chapter 7 Conclusions. This chapter summarises the key research finds from this

thesis and provides the suggestions for future research. The possible extensions and

interesting topics are also provided for further studies.
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1.5 Summary

This chapter firstly presents the background of a modern power system and the essential

elements of smart grids. The motivation of this thesis has been outlined. Furthermore,

the contributions are also summarised. Finally, the structure of each chapter has been

introduced.



Chapter 2

Literature Review

This chapter includes four sections. In Section 2.1, a literature review of typical demand

side management for power systems and the corresponding key issues are discussed.

Then, Section 2.2 provides a review of existing results on power market and BESS.

Finally, a review of STLFs and DDBN is given in Section 2.3. The summary of this

chapter is provided in Section 2.4.

2.1 Demand Side Management and Economic Dispatch

Due to the increasing energy demand, economic consideration and the emission con-

cerns, the power grid is facing the challenges and opportunities of transforming the

traditional power grid into a smart grid. With the integration of renewable energy re-

source, battery energy storage systems, and controllable loads, the power grid becomes

distributed and complex [11]. The operation situation of the power grid may change

frequently, and therefore the reasonable energy management strategy of the power grid

36
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is an important aspect in the smart grid research which is designed to meet the demand

requirements at different time intervals and to realise the efficient operation of the smart

grid [12]. Due to increasing power demand, economic consideration and emission con-

cern, the smart grid is facing the challenges and opportunities of integrating renewable

energy [11]. The percentage of energy derived from renewable sources has risen from

6.7% in 2009 to 29.4% in the UK, 2017 [13]. Because of the intermittency and unpre-

dictability of renewable energy, the future smart grid inevitably integrates more dynamic

elements. Meanwhile, the smart grid must be able to maintain the balance between the

supply and demand [14, 15].

DSM refers to all those strategies aiming at varying controllable load profiles to optimise

the entire power system from the supply side to the demand side, optimising power

allocation to obtain efficient and eco-friendly usage of electricity [16]. DSM can be

implemented by additional equipment to reduce and shift consumption, such as BESS

and smart control of Electric Vehicle (EV). Unbalanced conditions resulting from the

uncertain load changes and the renewable power generation affect the power quality,

and may even damage customer equipment [17]. Therefore, it is crucial for DSM to

have an effective and optimal strategy [18].

Typically, DSM focuses on centralised algorithms. For example, the authors in [19]

proposed a hierarchical control structure to maximise the economic benefits through a

central controller, whereas it does not consider the inequality constraints, such as the

maximum and the minimum power generation of DG and the limitations of the charg-

ing/discharging power in BESS. To keep the power units working in a feasible mode,

the authors in [20] divided an inequality constraint into five intervals, which greatly in-

creases the complexity of the algorithm. The penalty function is applied to eliminate the

inequality constraints in [21], whereas the studied algorithm may still exceed the con-

straint area in some cases. In [22], a centralised second-order economic power dispatch
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system is utilised to minimise the consumption costs among the supply and demand

profiles. The authors in [23] solved an optimal power and heat scheduling problem,

which minimises the operation cost of the smart grid with the uncertain power market

prices. In [24], a centralised optimisation strategy is applied in a Photovoltaic (PV) solar

farm, which optimises the investment cost, operation and maintenance cost, fuel cost,

emission cost and network losses cost. However, this centralised computation process is

very complex, and it is time-consuming to calculate the optimal results. The centralised

algorithms require a powerful control centre and a large data server centre to collect the

global information and process the massive data [25], which are not conducive to the

development and the upgrade of smart grids. Besides, the complexity of the centralised

demand management system grows exponentially with the increasing number of power

units [26].

Because the conventional centralised algorithm puts all the computing equipment in one

place, the calculation burden of the control centre is higher, and the scalability of the

centralized algorithm is poor due to geographical restrictions. In the distributed algo-

rithms, each unit have independent computing centres and only process locally collected

data, which will greatly reduce the computational burden and enable the algorithm to

quickly respond to power changes, and therefore most distributed algorithms are plug-

and-play [21, 27]. As a result, the flexible distributed control strategies are studied in

a significant number of papers, e.g., [28–38]. In [28], the authors worked on a social

maximal welfare problem in a smart grid in a distributed manner. Hug et al. [29] inves-

tigated a consensus based distributed power management algorithm to solve the demand

of a smart grid. In [30], the authors introduce a cooperative distributed demand man-

agement system based on Karush-Kuhn-Tucker (KKT) conditions. Deng et al. in [31]

presented a distributed demand response problem and define sub-problems by decom-

posing the main optimisation problem and solving each sub-problem locally. In [32], a
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three-layer strategy was used to control a power grid, which includes supervision, opti-

misation and execution process. Meanwhile, the authors in [34] employed a cooperative

control strategy of multiple BESS to maintain the active power balance and minimise

the total active power loss associated with BESS’s charging/discharging inefficiency.

In [36], the authors proposed an optimal distributed solution for economic dispatch to

minimise the operation cost. However, most of them are sharing the information of the

output power or the incremental cost, which violate privacy principles. Furthermore, the

optimal solutions of the algorithms in [32,34,35,39] can be only obtained when certain

initial conditions, i.e., the sum of initial power allocations should equal to the system

active power mismatch, are satisfied. In other words, the network resource constraint

can be ensured only if it satisfies the initial conditions. Hence, it is not compatible with

the plug-and-play function.

2.2 Battery Energy Storage System in Power Markets

Battery Energy Storage System (BESS) gets the opportunity to play an important role

in the future smart grid. With the rapid development of battery technology, the BESS

can bring more benefits for the owners and the cost of BESS construction is gradually

reduced [6, 40, 41]. There will be more companies focusing on the development and

construction of the BESS. As the BESS capacity increases, the BESS will participate

in different markets and benefit from multiple services [42, 43]. Additionally, the fre-

quency regulation market demands rapid response and offers high returns [44, 45], so

that the BESS owners will put more attention on the regulation market with their BESS,

which will lead to competition in the future smart grid. Therefore, how to allocate the

capacity of BESS and make bidding decisions has become an important issue.

One major application for the BESS is frequency regulation services in the AGC market.
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BESS has the characteristics of easy storage, high reliability and fast response, which

is more suitable than pumped-storage plant and heat storage plant for the frequency

regulation market. Moreover, the AGC market offers 3 times mileages for Regulation

D: resources (RegD) service, which will bring high revenue for the BESS owners. As

a result, more BESS owners are expected to compete in the AGC market and some

researchers have been paying more attention to the AGC market [46–51]. In [46], a

control strategy for the BESS in frequency regulation was provided, considering the

ageing cost while keeping the State of Charge (SoC) of the BESS. In [48], a coordinated

control strategy of BESS was proposed to ensure the wind power plants’ commitment

to frequency ancillary services, focusing on reducing the BESS’s size and extending the

lifetime of the BESS. However, mentioned literature only consider the application of the

BESS in one market. With the emergence of large-capacity BESS, some articles study

the operation strategies of the BESS in multiple markets, so as to maximise the overall

profit of the BESS by controlling the placement proportion of the BESS in different

markets. For example, He, et al. [50] integrated the energy storage system and solar

power plant and proposed an optimal strategy for Concentrating Solar Power (CSP)

plant, which considered the energy, reserve and regulation market. He also proposed a

Performance-Based Regulation (PBR) based optimal bidding model in [51]. It not only

addressed the optimal strategy for the BESS in different markets but also considered the

battery life.

Another problem missed by these literature is that the bidding strategies only solve the

allocation problem of the single BESS, in which their bidding rivals are neglected. With

the entry of the rivals, the bidding market of the BESS presents some challenges [52].

During the process of bidding, the bidder does not know the rivals’ bidding price and

bidding quantity, which is hard to solve by traditional optimisation algorithms. Fur-

thermore, since bidding is a highly random and uncertain process, the bidders cannot

know the specific revenue model during bidding. They only know the offer results from
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the SO in the smart grid. Considering incomplete information of stochastic demand

from the market and unknown bids from rivals, some individual based approaches have

been widely applied for bidding strategies in electric market, where the individual agent

learns to maximise its own profit [53–55]. For example, Kebriaei, et al. [56] combined

state estimation and fuzzy Q-learning to learn the optimal decision of the generators. Li,

et al. [57] applied the model-free reinforcement learning algorithm to solve the optimal

carbon capture in the wholesale market bidding problem. Nanduri, et al. [58] formulated

a stochastic game model for the energy market and proposed a reinforcement learning

based solution methodology. Lakic, et al. [59] simulated the market as a stochastic en-

vironment and proposed a novel agent based SA-Q-learning for demand-side system

reserve provision. However, there is very little understanding of the potential benefits

of BESS in the wider power system or micro-grids [60].

2.3 Short Term Load Forecasting

Electricity load forecasting is not only an essential basis for power scheduling of the

power grid but also an indispensable part of the energy management system [61]. For

different applications in the power systems, electricity load forecasting is mainly di-

vided into very short-term, short-term, medium-term and long-term predictions. Each

type of load forecasting applies different algorithms to meet the specific goals of the

applications. STLF helps utilities and energy suppliers cope with an increasingly com-

plex electricity market, such as the integration of renewable energies, and development

of electricity markets with sophisticated pricing strategies [62]. Additionally, electric

load usually presents a non-linear and non-stationary change in time series [63], which

challenges and degrades the accuracy of forecast. Therefore, the importance of STLF

and the complexity of power load have motivated numerous research works in this field
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in recent years.

The earlier methods are mainly based on statistical algorithms, such as AutoRegressive

Moving Average (ARMA), Kalman filtering and quantile regression [63]. Then, the ar-

tificial intelligence algorithms have been widely applied because they can well address

some non-linear and non-stationary characteristics in electrical load [64]. Ahmad et

al. used an improved Artificial Neural Network (ANN) to accelerate the training speed

and improve forecast accuracy [65]. Zhang et al. designed an ensemble model of Ex-

treme Learning Machine (ELM) and apply it in STLF of Australian National Electricity

Market [66]. Barman et al. proposed a STLF model utilising Support Vector Machine

(SVM) with Grasshopper Optimisation Algorithm (GOA) [67]. With the development

of artificial intelligence and the increase of load complexity, several deep learning meth-

ods have been applied to the field of STLF in recent years. Kong et al. applied the Long

Short Term Memory (LSTM) Recurrent Neural Network (RNN) in STLF, especially for

individual residential households [68]. Shi et al. proposed a novel approach of Pooling

Deep Recurrent Neural Network (PDRNN), which improved the forecasting accuracy

by adding more hidden layers [69]. Khan et al. analysed the electricity load by a Deep

Convolution Neural Network (DCNN) and compare the forecasting results with ELM,

RNN and auto regressive methods [70]. Among these deep learning algorithms, DBN

had been gradually applied into STLF in recent years due to its high efficiency in seek-

ing optimal parameters [71–73]. Dedinec et at. incorporated DBN model into a feed

forward NN, and applied it to STLF [72]. Fu introduced and properly designed a DBN

model to forecast the cooling load data, which mitigated the impact of uncertainties on

forecasting accuracy [73].

The aforementioned methods use centralised algorithms to build STLF models. How-

ever, with the integration of renewable energies and the rapid development of smart
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meters, these centralised algorithms face the following three issues. Firstly, for large-

scale power systems, it is difficult to collect all load variation with a single centralised

computing centre [74]. Secondly, a large number of electricity meters will bring a huge

amount of load data. Processing all load data and training with a single computing

centre will increase the load and the losses of the computing centre [75]. Finally, cen-

tralised collection and processing of load data raise security issues [27]. For instance,

once a single point failure occurs, it will cause incalculable damage to the power sys-

tems. It became more challenging to deal with such massive high-dimensional load data

in terms of the timely requirements in STLF, and therefore many scholars have studied

distributed frameworks to accelerate STLF process. Li et al. separated the STLF model

into 24 ELM to forecast the load of the next 24 hours [76]. Wang et al. employed the

cloud computing technology on the ELM algorithm [77]. The proposed method not

only improves the accuracy of STLF, but also overcomes the challenge of insufficient

computing resources of a single machine under the massive high-dimensional data due

to the intellectualisation of smart grid. Liu et al. separated the STLF into several local

forecasting models and propose a distribute STLF model based on local weather infor-

mation, which can enhance the accuracy of system-level load forecasting model [74].

As for STLF, load data security is an essential issue for decision maker in electric market

and directly related to economic benefits [78]. The distributed structure will inevitably

lead to data security considerations and the research on cyberattacks in power systems

has been going on for a while. Cui et al. detected the cyberattacks on load forecasting

by a supervised machine learning method, and estimate the influence of cyberattacks on

the STLF parameters [79]. Gu et al. applied time forward kriging method on load fore-

cast to overcome the challenge of communication failure [80]. For a multi-agent based

distributed structure, the security margin of the system network was determined by the

fixed communication protocol [81]. For example, the actual load cannot be collected
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timely and accurately due to communication failures, which will reduce the forecast ac-

curacy of STLF, further compromising power systems reliability. Therefore, it became

a very pragmatic issue to design a distributed algorithm, which can improve the security

of distributed STLF and meanwhile maintain its model accuracy comparable to that of

centralised models. This motivates our current work.

2.4 Summary

In this chapter, the literature review surrounding distributed optimisation is given firstly,

and then the reinforcement learning based bidding strategy about energy and regulation

market is briefly introduced. In addition, the background of distributed deep belief

networks based short-term load forecasting is also presented. Through comparison with

the traditional control and optimisation algorithms, the advantages of these distributed

methods are illustrated as well.



Chapter 3

Preliminaries

In this chapter, we recall some preliminaries related to this thesis, including graph the-

ory, convex analysis and the projection, reinforcement learning and restricted Boltz-

mann machine.

3.1 Graph Theory

Following [82], an undirected graph G = (V , E) can be used to describe the communi-

cation topology among the power units, where V = {ν1, · · · , νN} is the vertex set and

E ∈ V × V is the edge set. The adjacency matrix A = [aij] ∈ RN×N of G(V , E) is

an N × N matrix, such that aij = 1 if (νj, νi) ∈ E and aij = 0 otherwise. Define the

degree matrix D = diag{
∑N

j=1 a1j,
∑N

j=1 a2j, · · · ,
∑N

j=1 aNj}. A graph is connected

if and only if every pair of vertices can be connected by a path, namely, a sequence

of edges. In this thesis, we assume that the graph is connected and undirected. The
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Laplacian matrix related to G(V , E ,A) is defined as L = D −A, i.e.,

L =

 lij = −aij, i 6= j

lii =
∑

i 6=j aij.
(3.1)

When G(V , E) is a connected undirected graph, 0 is an eigenvalue of Laplacian L with

the eigenvector 1N and all the other eigenvalues are positive. Then,

L1N = 0N , 1TNL = 0TN . (3.2)

3.2 Convex Analysis and Projection

From [83], a set Ω ⊆ Rn is convex if θx1 + (1 − θ)x2 ∈ Ω for any x1, x2 ∈ Ω and

0 6 θ 6 1. For a closed convex Ω, the projection map PΩ : Rn → Ω is defined as

PΩ(x) = arg min
y∈Ω
‖x− y‖. (3.3)

Then the following inequalities hold, ∃x ∈ Rn, y ∈ Ω

(x− PΩ(x))T (PΩ(x)− y) > 0,

‖x− PΩ(x)‖2
2 + ‖PΩ(x)− y‖2

2 6 ‖x− y‖2
2,

(3.4)

For x ∈ Ω, the normal cone to Ω is

NΩ(x)
∆
= {v ∈ Rn|vT (y − x) 6 0, for all y ∈ Ω}. (3.5)

A function f : Rn → R is convex if f(θx1 + (1 − θ)x2) 6 θf(x1) + (1 − θ)f(x2) for

any x1, x2 ∈ Ω and 0 6 θ 6 1.
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Figure 3.1: The framework of reinforcement learning.

3.3 Reinforcement Learning

In this section, we recall some necessary concepts related to the reinforcement learning

algorithm. The basic reinforcement learning elements are agent, environment, actions,

reward and states, which are shown in Fig. 3.1.

The reinforcement learning problems can be viewed as MDP, which is the stochastically

changing system. It is composed of state S, action A, transition probability function P ,

reward function, R and discount factor γ. Therefore, MDP is defined as a five-element

tuple in this thesis:

M = {S,A,P ,R, γ} (3.6)

At each time slot t, the intelligent agent has its observation of the environment, namely

state st. Then, the agent will choose its action followed by a policy function π(st) :

S → A, which denotes a distribution over actions for each state. In the reinforcement

learning, there is a transition function P(st, at, st+1) : S×A×S → [0, 1]. It maps state

st to st+1 by action at, which means the dynamics of the environment. The transition

function is unknown and has part of stochastic factors. Thus, the agent needs to learn
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it through different {st, at, st+1} sets during the training process. Specific to each state

transition between adjacent time slots, the environment will provide a reward signal

rt ∈ R to the agent. Then the trajectory {s0, a0, s1, a1, · · · , sT , aT} can be derived with

the discounted trajectory return
∑T

t=0 γ
tR(st, at). For any policy π, the value function

of state s can be defined as the expected total discounted reward:

V π(s) = E

[
T∑
t=0

γtR(st, at)|st = s

]
,∀s ∈ S (3.7)

Then the corresponding state-action value function Qπ is defined as:

Qπ(s, a) = E

[
T∑
t=0

γtR(st, at)|st = s, at = a

]
,∀s ∈ S,∀a ∈ A (3.8)

According to the Bellman equation [84], the value function Qπ can be represented in a

recursive format:

Qπ(st, at) = E [R(st, at, st+1) + γQπ(st+1, π(st+1))] (3.9)

whereR(st, at, st+1) is the observed reward after taking action at at state st and resulting

in state st+1. The equation (3.9) indicates that the Q function can be improved by

using current value of the Qπ estimation. To reduce computational complexity, TD

learning is one of the most famous update methods instead of Monte-Carlo and Dynamic

Programming. It only requires current state st, current action at, reward R(st, at, st+1)

and next state st+1:

Qπ(st, st) = Qπ(st, at) + αδt (3.10)

δt = rt + γmax
at+1

Qπ(st+1, at+1)−Qπ(st, at) (3.11)

where 0 ≤ α ≤ 1 is the learning rate. δt is the TD error at the time slot t, which implies

the correction between the estimation and target value of Q function. When time goes

to infinity, Qπ(s, a) will converge to its optimal value Q∗(s, a) for all state-action pairs.



CHAPTER 3. PRELIMINARIES 49

Here, the optimal value function Q∗(s, a) = supπQ
π(s, a) is defined for all state action

pairs (s, a) ∈ S × A. With the optimal Q∗ function, the optimal policy π∗ can be

obtained by greedy algorithm:

π∗(a|s) = 1, if Qπ(s, a) = max
a′

Q∗(s, a′) (3.12)

where a′ is any possible action associate with state s.

3.4 Restricted Boltzmann Machine

The Restricted Boltzmann Machine (RBM) is the underlying architecture of a DBN. It

combines the traditional neural networks with the energy model and the probabilistic

model. For the STLF, the inputs are different features related to the load data. To

get more accurate results, many previous works have been conducted on the feature

selection and parameter initialisation, such as deleting the unusual features or tuning

the parameter weights. However, STLF dataset is usually vast and complex, and tuning

the initial parameters using the entire dataset requires significant computation resources

within a short time. In the proposed DDBN model, the RBM is applied to handle the

parameter initialisation problem, which is an unsupervised learning process and trained

by minimising the energy function, and thus it can keep all features in the model.

An RBM aims to learn a probability distribution over the input sets. It has one hidden

layer and one visible layer, shown as the Fig. 3.2. The original probability of distribution

through an energy function is described as:

P (v) =
1

Z
exp[−F(v)], (3.13)

Z =
∑

exp[−F(v)], (3.14)
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Figure 3.2: The framework of RBM.

where Z is the normalising factor, F(·) represents the energy function and v denotes

the visible layer of the RBM. A lower energy value means that the network has more

probability P (v). Since the RBM has the hidden layer parameters h, the probability

function can be rewritten as:

P (v,h) =
1

Z
exp[−F(v,h)]. (3.15)

In RBM, the energy function is formulated as a second-order polynomial, which is

described as:

F(v,h) = −
nv∑
i=1

bivi −
nh∑
j=1

cjhj −
nv∑
i=1

nh∑
j=1

vihjWij, (3.16)

where ai, bj are the biases andWij is the weight between the hidden layer and the visible

layer, vi, hj are the binary states of unit i and unit j (values 0 or 1), nv and nh are the

number of visible and hidden units.
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3.5 Summary

In this chapter, we have recalled some basic concepts and preliminaries related to the

thesis including graph theory, convex analysis, projection, RBM and reinforcement

learning.



Chapter 4

Demand Side Management Using a

Distributed Initialisation-free

Optimisation in a Smart Grid

Due to the integration of the renewable generation and the distributed load that in-

herently uncertain and unpredictable, developing an efficient distributed management

structure of such a complex system remains a challenging issue. Most of the existing

works on the demand side management concentrate on the centralised methods or need a

proper initialisation process; This chapter proposed a demand side management strategy

that can solve the optimisation problem in a distributed manner without initialisation.

The objective of the designed demand management system is to maximise the social

welfare of a smart grid by controlling the active power economically. The proposed op-

timisation strategy generates the optimal power references uses the neighbouring infor-

mation while considering the local feasible constraints by using a projection operation.

52
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Furthermore, the optimisation algorithm is initialisation-free, which avoids any initial-

isation process when plugging-in new customers or plugging-out power units, such as

demand loads, battery energy storage systems and distributed generators. Our strategy

only uses the neighbouring information, so that the proposed approach is scalable and

potentially applicable to large-scale smart grids. The effectiveness and scalability of the

proposed algorithm are established and verified through case studies.

4.1 Problem formulation

In this section, we formulate the welfare functions of the power units involved in a

smart grid, consisting of demand units, BESS, and DG. The objective of the proposed

model is to maximise the total welfare associated with the demand units, BESS and

DG, including operating costs [11, 15]. Also, we consider emission cost in our model.

Therefore, we have

max
Pi

{
m∑

i∈SD

WD,i(Pi) +
n∑

i∈SB

WB,i(Pi) +
k∑

i∈SG

WG,i(Pi)

}
, (4.1)

To ensure that all power units work in the normal mode, the formulated problem should

be subject to the power balance constraint and local power constraints that will be dis-

cussed later. Note that the power output of the battery can be positive or negative,

depending on discharging and charging states, respectively.

4.1.1 Controllable Power Units

1. Welfare on Controllable Demand Units
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The welfare function of the ith load is formulated as the level of consumer sat-

isfaction, which is related to the power consumption of applications. For the de-

mand customers, consuming more power will bring more satisfaction. Therefore,

similar to [15], the welfare function is defined as

WD,i(PD,i) :=

−αiP
2
D,i + βiPD,i, Pmin

i 6 PD,i 6 βi/2αi

β2
i /4αi, βi/2αi 6 PD,i 6 Pmax

i

i = 1, 2, · · · ,m

(4.2)

where the power utility satisfies Pmin
i ≤ PD,i ≤ Pmax

i . Here, the satisfaction

level of customer increases with the consumption of electrical power and will

eventually get saturated.

2. Welfare on BESS

To save electricity and balance the uncertain power generation, some BESS are

also installed in the smart grid. Referring to [85], we formulate the welfare func-

tion of BESS as

WB,i(PB,i) := pPB,i − fB,i(PB,i). (4.3)

It is noticed that the BESS can be counted as both demand side and supply side.

The power output of BESS can be positive or negative, depending on its dis-

charging or charging states, respectively. If the electricity price is cheap and no

dramatically power mismatch, then the BESS would be charged to storage power

energy, and vice versa. Because of the cost varies with the characteristics of

BESS, following the approximation in [85], both of the charging and discharging

process will increase the Depth of Discharge (DoD) cost of BESS. Hence, the cost

function can be uniformly expressed as

fB,i(PB,i) := κf + κc(1 + ι)|PB,i|.

i = 1, 2, · · · , n.
(4.4)
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Furthermore, the power output satisfies Pmin
B,i ≤ PB,i ≤ Pmax

i with the minimum

and maximum power output Pmin
i , Pmax

i . Here we assume that BESS are eco-

friendly [86], and therefore the emission cost of BESS is zero.

3. Welfare on Generators

The welfare function for the power generators is usually formulated by the income

minus the costs [11, 15]. The costs of DG mainly include the Operation and

Maintenance (O&M) costs [24,87] which can be expressed as a quadratic function

and a linear function of active power respectively. Generally, the O&M cost of

DG is expressed as:

fO&M
G,i (PG,i) := aiP

2
G,i + biPG,i + ci,

i = 1, 2, · · · , k,
(4.5)

where the power output satisfies Pmin
i ≤ PG,i ≤ Pmax

i with Pmin
i , Pmax

i ∈ R++.

For comparison purposes, the total emission cost of various pollutants is generally

expressed as [88–90]

fEG,i(PG,i) := αiP
2
G,i + βiPG,i + γi + ηi exp(ϕiPG,i),

i = 1, 2, · · · , k,
(4.6)

where fEG,i(Pi) is the total pollution emission cost for the ith power generator.

Therefore, the welfare function is expressed as

WG,i(PG,i) := pPG,i − fO&M
G,i (PG,i)− fEG,i(PG,i). (4.7)

Basically, the welfare for the generation unit represents the benefit of selling

power minus the cost of operation and emission. The first term in (4.7) means

the income by selling energy and the other terms denote the cost caused by main-

tenance and pollution.
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4.1.2 Uncontrollable Power Units

From [12,24], renewable generators and users’ loads are uncontrollable power units and

their power output and consumption are related to the light intensity, illumination time,

wind speed, and customers’ habits, etc. Therefore, these uncontrollable power units

generate power by different conditions. These uncontrollable power units are considered

as undispatchable in this chapter.

In the smart grid, transmission losses are inevitable, accounting for around 5-7% of

the total power load [91], which can be modelled by multiplying the load with this

percentage. Overall, to maintain system stability, the active power balance between the

supply and the demand side is described as∑
i∈SG

PG,i +
∑
i∈SR

PR,i =
∑
i∈SD

PD,i +
∑
i∈SB

PB,i. (4.8)

Since the renewable source is undispatchable and the load is related to the customers’

habits which are partial controllable, we rewrite the above constraint as

PD =
k∑

i∈SG

PG,i +
n∑

i∈SB

PB,i +
m∑

i∈SC

PC,i. (4.9)

where PD represents the power mismatch of the systems, PG,i is the power output of

generators. PC,i denotes the power output of controllable loads and SC is the set of

controllable loads. Here, PC,i are the negative numbers since the power is consumed.

Here, PB,i can be negative or positive.
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4.1.3 Problem Reformulation

In this chapter, our objective is to design a reliable demand side management sys-

tem that can maximise the social welfare while maintaining active power balance un-

der various conditions. To this end, an objective function is formulated by integrat-

ing the above welfare functions and subjecting to physical constraints. For notation

convenience, we denote the power vector as P = [P1, P2, · · · , Pm, Pm+1, Pm+2, · · · ,

Pm+n, Pm+n+1, Pm+n+2, · · · , Pm+n+k]
T ∈ RN , where m, n and k denote the numbers

of demand units, BESS and DG with N = m+ n+ k.

min
∑

Ci(Pi), i = 1, 2, · · · , N,

s.t.
∑
i

Pi = PD,

Pmin
i ≤ Pi ≤ Pmax

i ,

(4.10)

where Ci(Pi) , −
∑

i∈SWi(Pi), S = SD ∪ SB ∪ SG and Wi(Pi) denotes the welfare

of the ith unit. Notice that the cost function Ci(Pi) of each unit is strictly convex and

continuously differentiable.

Traditionally, the constrained optimisation problem can be solved using centralised

methods, but those algorithms require a powerful control centre to collect data from

the subsystems and distribute control instruction to the units after calculation. In the

following section, we design a distributed algorithm, where each subsystem is allocated

with a low-price processor, by which the collection and calculation can be performed

locally.
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4.2 Distributed Solution

In this section, a projection-based gradient decent algorithm is developed, by which the

inequality constraints can be tackled accordingly. We consider the Lagrangian function

for each unit with the affine equality constraint, written as

L =
N∑
i=1

Ci(Pi)− λ̄[
N∑
i=1

Pi − PD], (4.11)

where λ̄ is the Lagrangian multiplier which is used to ensure the equality constraints

are met during the optimisation process. The inequality constraints are not considered

in the Lagrangian function since the inequality constraint can be solved by local units

with projection algorithm.

The optimal solution can be obtained by using a well-known centralised saddle-point

dynamics as
∂L

∂Pi
= ∇Ci(Pi)− λ̄ = 0

∂L

∂λ̄
=

N∑
i=1

Pi − PD = 0.

(4.12)

Its equilibrium points (4.11) satisfy the KKT conditions (see, e.g., [83]). However, it

collects the global information about the Lagrangian multiplier (λ̄) of all the power

units. In the modern smart grid, most loads are distributed, so that it is desired to

design a distributed algorithm for DSM that solves the optimisation problem locally. To

facilitate our design, a local copy λ̄i of the global variable is used to estimate the global

(λ̄). As a result, the problem is solved when the local copy variables converge to the λ̄?.

According to the KKT conditions, the following lemma is proposed.

Lemma 4.2.1. The optimisation problem has an optimal solution P ? if and only if there

exists a vector of Lagrangian multiplier λ? , λ̄?1N ∈ RN such that

∇C(P ) = λ̄?1N , (4.13)
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whereC(P ) , [C1(P1), C2(P2), · · · , CN(PN)]T denotes cost function vector, and∇C(P )

represents its gradient.

4.2.1 Algorithm Design

Inspired by [9, 10], the objective of the distributed algorithm is developed in order to

achieve a consensus of the Lagrangian multiplier and reach the optimal power output.

Let Ωi , [Pmin
i , Pmax

i ] denote the feasible domain of the ith unit’s power output, which

is clearly a compact and convex set. The problem (4.10) can be solved by the following

distributed algorithm, ∀i = 1...N :

Ṗi = PΩi
[Pi −∇Ci(Pi) + φi]− Pi, (4.14a)

φ̇i =
N∑
j=1

aij(φj − φi)− ξi + (θiPD − Pi) + λi − φi, (4.14b)

λ̇i = −λi + φi, (4.14c)

ξ̇i =
N∑
j=1

aij(φi − φj),
N∑
i=1

ξi(0) = 0, (4.14d)

where Pi ∈ R is the power output of the ith power unit and φi, ξi ∈ R are two auxiliary

variables of the ith unit. The convergence analysis of (4.14) is detailed in section 4.2.2.

Note that the proposed algorithm can ensure the local feasible constraints during the

process with projection operations. Furthermore, the algorithm (4.14) does not require

any initialisation process which is proved in next section, and therefore, it can ensure

the network constraint asymptotically without concern whether it is satisfied at the ini-

tial points. Due to free of any control centre and initialisation process, the proposed

algorithm can work in a ”plug-and-play” manner for the power system with plugging-in

or plugging-off of power units.
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The algorithm (4.14) is distributed, in this sense that the ith unit only needs the local data

and the information which is shared with the neighbouring units. Therefore, (4.14) does

not require any centre to process the data or coordinate the units. Since the local data do

not need to be uploaded and downloaded from the centre, each unit can respond to local

data changes rapidly which can quickly adapt the local decisions. The algorithm can

be understood concerning singular perturbation, where the third dynamic is on a faster

scale than the second one. Hence, λi goes to φi, as t goes to infinity, and substituting

this to the algorithm yields a saddle-point seeking algorithm. We will show the detailed

proof in the next section. Different from the algorithm in [10], the proposed algorithm

does not require each unit to know the load information,
∑

i∈S Pi is not always equal

to PD. Furthermore, the algorithm (4.14) introduced the estimation ability θi ∈ [0, 1]

to detect the total mismatch, which can be selected according to [27] and
∑N

i θi = 1.

Therefore, this algorithm could be applied to a large grid.

Notably, the proposed algorithm does not require the initialisation process so that it

is more compatible with the operation of a smart grid. The initialisation for the net-

work resource constraint is quite restrictive for a sizeable dynamical grid because it

is related to the global coordination and has to be performed whenever the network

data/configuration changes. However, the communication network may change fre-

quently and rapidly in a smart grid, such as when plugging in an electric vehicle and

routine maintenance. Furthermore, it is not trivial to achieve the initialisation coordina-

tion with both the local feasibility and the network resource constraints.

In addition, the proposed algorithm has some limitation on the communication net-

works. The communication networks should be connected and no time delay. Also,

the proposed algorithm can asymptotically converge to its global optimal location, but

cannot converge in a fixed time.
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4.2.2 Convergence Analysis

The convergence analysis follows similar steps to [10]. To analysis the convergence of

our algorithm, the algorithm (4.14) is rewritten in a compact form as

Ṗ = PΩ(P −∇C(P ) + Φ)− P,

Φ̇ = −LΦ− Ξ + ΘPD − P + Λ− Φ,

Λ̇ = Φ− Λ,

Ξ̇ = LΦ,

(4.15)

where P = [P1, P2, · · · , PN ]T , Ω = Ω1 × Ω2 × · · · × ΩN , Λ = [λ1, λ2, · · · , λN ]T ,

Θ=[θ1, θ2, · · · , θN ]T , Φ = [φ1, φ2, · · · , φN ]T and Ξ = [ξ1, ξ2, · · · , ξN ]T . Firstly, we

consider the equilibrium point P̄ , Λ̄, Ξ̄ and Φ̄, which can be obtained by

0 = PΩ(P̄ −∇C(P̄ ) + Φ̄)− P̄ ,

0 = −LΦ̄− Ξ̄ + ΘPD − P̄ + Λ̄− Φ̄,

0 = Φ̄− Λ̄,

0 = LΦ̄.

(4.16)

Left multiplying the second equation in (4.16) by 1TN yields

1TNΞ = 1TN(ΘPD − P ). (4.17)

With the algorithm (4.14), Λ will converge to Φ as t→∞ and φi will achieve consensus

by the last equation. Furthermore, we have the first equation to make sure that ∆C(P )

converges to Φ, which is equal to λ? at t → ∞. Therefore, with the Lemma 4.2.1, the

equilibrium point satisfies

P̄ = P ?, Φ̄ = Φ?, Λ̄ = Λ?, Ξ̄ = Ξ?, (4.18)

where P ?,Λ?,Ξ? and Φ? are the optimal solution of the allocation problem in (4.10).
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We define the new variables for equilibrium point of (4.15),

P̂ = P − P ?, Λ̂ = Λ− Λ?, Φ̂ = Φ− Φ?,

Ξ̂ = Ξ− Ξ?, S = [r R]T Φ̂, U = [r R]T Ξ̂,
(4.19)

where [r R]T is an orthonormal matrix, here we let r ∈ RN , R ∈ RN×(N−1), then we

have
[r R]T [r R] = [r R][r R]T = IN ,

rTR = 0TN−1, R
TR = IN−1,

RRT = IN − rrT ,

(4.20)

and we divide the new variables as U = (u1, U2:N) and S = (s1, S2:N)

u̇1 = 0,

U̇2:N = RTLRS2:N ,

ṡ1 = −s1 + rT (Λ̂− P̂ ),

Ṡ2:N = −RTLRS2:N − U2:N − S2:N +RT (Λ̂− P̂ ),

˙̂
Λ = −Λ̂ + [r R]S,

˙̂
P = PΩ(P̂ + P ? −∇C(P̂ + P ?) +∇C(P ?) + [r R]S)

− (P̂ + P ?).

(4.21)

Let Q(P̂ , S) = ∇C(P̂ +P ?)− [r R]S −∇C(P ?) and define the Lyapunov function as

V =−Q(P̂ , S)T (PΩ(P̂ + P ? −Q(P̂ , S))− (P̂ + P ?))

− 1

2
‖PΩ(P̂ + P ? −Q(P̂ , S))− (P̂ + P ?)‖2

2

+
1

2
‖P̂‖2

2 +
1

2
‖Λ̂‖2

2 +
1

2
‖S‖2

2 +
1

2
UT

2:N(RTLR)−1U2:N .

(4.22)
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With (3.4) and if (P̂ (0) + P ?) ∈ Ω then the parameter (P̂ (t) + P ?) ∈ Ω. We have

V =
1

2
‖Q(P̂ , S)‖2

2

− 1

2
‖Q(P̂ , S) + PΩ(P̂ + P ? −Q(P̂ , S))− (P̂ + P ?)‖2

2

+
1

2
‖P̂‖2

2 +
1

2
‖Λ̂‖2

2 +
1

2
‖S‖2

2 +
1

2
UT

2:N(RTLR)−1U2:N

>
1

2
‖PΩ(P̂ + P ? −Q(P̂ , S))− (P̂ + P ?)‖2

2 +
1

2
‖P̂‖2

2

+
1

2
‖Λ̂‖2

2 +
1

2
‖S‖2

2 +
1

2
UT

2:N(RTLR)−1U2:N .

(4.23)

Therefore, V > 0 and V = 0 if and only if P̂ = 0. With the Theorem 3.2 in [92],

differentiating V yields

V̇ =− (PΩ(P̂ + P ? −Q(P̂ , S))− (P̂ + P ?))T∇P̂Q(P̂ , S)Ṗ

+ ‖PΩ(P̂ + P ? −Q(P̂ , S))− (P̂ + P ?)‖2
2

+Q(P̂ , S)T (PΩ(P̂ + P ? −Q(P̂ , S))− (P̂ + P ?))

+ P̂ T (PΩ(P̂ + P ? −Q(P̂ , S))− (P̂ + P ?))

+ Λ̂Λ̇ + ŜṠ + ST2:NU2:N .

(4.24)

From (3.4), we have (P̂ + P ? − Q(P̂ , S) − PΩ(P̂ + P ? − Q(P̂ , S)))T (PΩ(P̂ + P ? −

Q(P̂ , S))− P ?) > 0. Hence,

(PΩ(P̂ + P ? −Q(P̂ , S))− (P̂ + P ?))T (P̂ +Q(P̂ , S))

6− ‖PΩ(P̂ + P ? −Q(P̂ , S))− (P̂ + P ?)‖2
2 −Q(P̂ , S)T P̂ .

(4.25)

Since ∇P̂Q(P̂ , S) = ∇2C(P̂ + P ?) > 0, and therefore −(PΩ(P̂ + P ? − Q(P̂ , S)) −



CHAPTER 4. DSM IN A SMART GRID 64

(P̂ + P ?))T∇P̂Q(P̂ , S)Ṗ > 0. Consequently

V̇ 6−Q(P̂ , S)T P̂

+
˙̂
ΛT Λ̂ + ṡ1s1 + ṠT2:NS2:N + S2:NU2:N

=− P̂ T (∇C(P̂ + P ?)− [r R]S −∇C(P ?))

− Λ̂T Λ̂ + Λ̂T [r R]S − s2
1 + ST [r R]T (Λ̂− P̂ )

− ST2:NR
TLRS2:N − UT

2:NS2:N + ST2:NU2:N

6− P̂ T (∇C(P̂ + P ?)−∇C(P ?))− ST2:NR
TLRS2:N

6− P̂ T (∇C(P̂ + P ?)−∇C(P ?)).

(4.26)

Because the Hessian matrix of C(P ) is positive definite, we have

∇C(P̂ + P ?) = ∇C(P ?) +

∫ 1

0

∇2C(1− τ P̂ )T P̂ dτ. (4.27)

Therefore, V̇ 6 0. Based on the LaSalle invariance principle and the Lyapunov stability

theory. The system (4.15) converges to its equilibrium point if and only if V̇ = 0, and

therefore P̂ goes to 0, then P = P ?, which means the optimisation problem is solved.

The algorithm described in this chapter uses projection operations to map the variables

into their specified domains, and completes the optimisation of power dispatch in the

smart grid.

4.2.3 Algorithm Implementation

The proposed distributed algorithm adopts a distributed average consensus estimator

to measure the global mismatch information locally. The step-by-step algorithm for

all power units is shown in Algorithm 1. To illustrate more clearly, a flow chart for

solving distributed demand side management by proposed algorithm is shown in Fig.
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4.2. As in [21], the communication structure can be designed independently of the

power system in a cost-efficient way based on the location and the convenience of the

smart grid. For example, a communication topology is designed as Fig. 4.1. DG, BESS

and controllable loads are connected through a communication network as the power

units in a smart grid. To obtain the optimal power outputs, each power unit only interacts

with its neighbouring units to exchange the information through the communication

network at the top level, and then each power unit performs the proposed algorithm

accordingly.

Control 1

Power unit 1

Power Reference

Bottom control 1

Top control 1

Control 1

Power unit 2

Power Reference

Bottom control 2

Top control 2

Control 1

Power unit 5

Power Reference

Bottom control 5

Top control 5

Control 1

Power unit 3

Power Reference

Bottom control 3

Top control 3

Control 1

Power unit 4

Power Reference

Bottom control 4

Top control 4

Communication Line

Connect Line

Figure 4.1: Two-level structure of optimisation algorithm.
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Start

Input initial values for ith unit:
Pi(0) λi(0) φi(0) ξi(0)

Calculate the initial gradient∇Ci(Pi)

Communicate with its all neighbours
and get the information Φ

Update the parameters
Pi λi φi and ξi from 19(a)-19(d)

Calculate the gradient∇Ci(Pi)

Compare φi = φj?
Is the gradient constant?

End

No

Yes

Figure 4.2: Flowchart for ith power unit management.
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Algorithm 1 Distributed Optimal Demand Side Management
Input: Power mismatch θiPD for ith power unit.
Output: Optimal power reference for each power unit.

Initialisation:
For i=1,2,· · · ,N
Pi = Pi(0), λi = λi(0), φi = φi(0), ξi = ξi(0)
Consensus Algorithm:
For ith power unit:
Communicate and get the parameter φj from its neighbour j;
Calculate and updates its own parameters φi, ξi, λi and Pi according to 19(a)-19(d)
End if: Each power unit achieves the optimal values.

4.3 Case Study

In this section, four cases are employed to validate the effectiveness and applicability of

the proposed algorithm. At the beginning, two sub-cases in the first case study are used

to test the algorithm in a modified IEEE-14 bus system. First sub-case considers a con-

stant power mismatch as 20MW, and the results obtained using the proposed algorithm

are compared with the results based on previous work [39]. In the second sub-case,

the optimisation algorithm is studied under different time-of-use prices. Next, Case 2

is studied to test the proposed algorithm under communication failures, which assumes

that all communication links of the DG4 fail to exchange information with neighbours.

The plug-and-play adaptability of our algorithm has been tested in Case 3. Lastly, a

large-scale power system is adopted to test the scalability of the proposed algorithm in

Case 4. The parameters are chosen from [93]. Results of the four cases are discussed in

the following section.
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4.3.1 Case 1: Base Case

In this study, we test the algorithm on an IEEE 14-bus system which consists of 4 DG,

2 BESS and 10 loads in Fig. 4.3, whose coefficients are shown in Table 4.1.

Bus 12

Bus 13

Bus 14

Bus 11

Bus 10 Bus 9

Bus 7

Bus 4

Bus 8

DG

Bus 3
Bus 2

Bus 5

Bus 6

Bus 1 DG

DGDG

MG

BESS

BESS

L

L

L

L

L

L

L

L

L

L

Communication Line
Connect Line

Figure 4.3: Modified IEEE 14-bus system.
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Constant Demand and Price

As a baseline test, we first consider the situation with a constant power mismatch and

electricity price, where all the power units are connected. To reveal the effectiveness of

the proposed strategy, our algorithm is first compared with another algorithm in [39].

Here, the electrical price is set to 40 £/MWh, which is chosen from the UK electric

price report [94], and the BESSs are distributed among the communication network.

The electricity price and the supply-demand mismatch are assumed to be constant, and

the system parameters are set to be the same to make the comparison study more con-

vincible.
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Figure 4.4: The update of power outputs with the proposed algorithm.

As shown in Fig 4.4, the power outputs of each power unit can converge to its optimal

value with the proposed algorithm. Here, the negative/positive power value means the
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consumed/generated power. The BESS can be charged or discharged depending on the

electricity price and the power mismatch. Fig. 4.5 shows the power mismatch during

the optimisation process. It indicates that the power is not balanced at the beginning and

the power mismatch converges to zero within 5 s, which reflects that our algorithm is

capable of maintaining the power balance. Thus, the proposed strategy can address the

DSM problem from any initial error.

The proposed algorithm is designed in a fully distributed fashion, so that the local op-

erator can only receive the information from its neighbours. We can see that there are

some undershoot at the beginning. However, the proposed algorithm is based on the

project function, which can guarantee the operation is limited in its physical reachable

domain. Thus, the proposed algorithm will not influence the local constraints. In terms

of the power mismatch, the proposed algorithm would asymptotically control the local

power units to reach their optimal location after communicated with its neighbours.
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Figure 4.5: The power mismatch with the proposed algorithm.
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Figure 4.6: The update of power outputs with the algorithm in [36].

In order to show the advantage of initialisation-free feature, we firstly compare the pro-

posed algorithm with an existing work in [39]. In the comparison study, we assumed

both algorithms are initialised randomly and do not satisfy the initialisation conditions

in [39]. The results are shown in Fig. 4.6. The power outputs using these algorithms can

converge to stable values, but the results of the algorithm in [39] are not optimal since it

needs the sum of all initial power output is equal to the power mismatch during the ini-

tialisation process. Then, we further compare the results with a discrete-time algorithm

in [38]. To make the comparison more clearly, the ideal results are obtained through a

centralised solver in Matlab. It shows that the proposed algorithm can reach the optimal

active power outputs under initial errors compared with the algorithms in [38] and [39].

Remark 1. Note that the proposed distributed algorithm generates the optimal power

reference for each unit in a communication network. Its convergence speed will be
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related to the structure, namely the second smallest eigenvalue of the Laplacian matrix,

of the communication network. Meanwhile, by tuning the algorithm parameter, the

convergence speed can be adjusted according to different applications.

Different Prices

In the smart grid, the electricity price is changing over time, and different electricity

prices bring different economic influence to customers, BESS and DG. Therefore, in

the second sub-case, we test the algorithm with 24-hour Time-of-Use (ToU) prices

shown as Fig. 4.7, which comes from the UK annual report [94].
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Figure 4.7: Time-of-use prices.

The results are presented in Fig. 4.8. Note that the power outputs of each power unit are
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Figure 4.8: The update of power outputs with the proposed algorithm.

varying with ToU prices to maximise the social welfare. At low electricity prices peri-

ods, customers will consume more power and the battery will be charged to make sure it

has enough energy to sell at high prices. When the electricity price rises, the algorithm

will control the usage of these controllable loads, reduce their electricity consumption

to save the electricity bills, such as reducing the load of air-conditioner and changing

the EV charging time. At the same time, the battery will be discharged to increase the

income. Therefore, the proposed algorithm could maximise the social welfare accord-

ing to the different prices, which could be a potential solution for DSM in a future smart

grid.



CHAPTER 4. DSM IN A SMART GRID 74

4.3.2 Case 2: Adaptability of Single-point Failure

In the real power grid, the communication network may change by many causes. For

instance, a generator is disconnected from the smart grid for maintenance and overhaul.

In this case, it is assumed that there is a power generator DG4 which losses its all com-

munication links at 50 s, and the links are repaired so that the DG4 is reconnected at

150s. From (4.14), if the communication links are connected, then its neighbours have

the information about the communication variable φ. It is assumed that the neighbour

of DG4 knows the last information φ when the communication links breaks. To better

verify the effectiveness of the proposed algorithm under the communication failure, we

further assume that the total active power mismatch PD is increased from 20 MW to 40

MW at time t = 100 s.
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Figure 4.9: All communication links of DG4 are failed.

It can be seen in Fig. 4.9 that the rest of power units still work at their optimal power
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Figure 4.10: The power mismatch with failed communication network.

states to hold the power balance when the communication network of DG4 is failed. If

the power mismatch changes during the broken period, the DG4 will not response to the

power mismatch changing and cannot be optimised because it loses all communication

links. However, the rest of power units will converge to new optimal values according

to the current mismatch condition using the proposed algorithm. After the links are

repaired, the DG4 will be reconnected into the system so that all power units can share

and update their information to reach the new optimal values. As shown in Fig. 4.10,

the total power demand and total active power generation can be balanced after a very

short period. Therefore, the proposed algorithm can keep the active power balance even

if some communication links are failed.
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4.3.3 Case 3: Plug-and-play Adaptability

To verify that the algorithm can adapt to the changes in the topology, the plug-and-play

adaptability of our strategy is studied in this case.

Constant Power Mismatch

The plug-and-play adaptability of BESS under a constant power mismatch is studied in

this sub-case. For example, the BESS2 is disconnected at 50s for daily maintenance, and

then after 50s, the BESS is connected back to the smart grid. The total power mismatch

at the beginning is assumed as 20MW. The results show that the proposed algorithm can

handle the plug-in and plug-out operations.
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Figure 4.11: The update of power outputs during plug-and-play.

As shown in Figs. 4.11 - 4.12, the power outputs of all power units quickly converge to
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Figure 4.12: The power mismatch during plug-and-play.

their optimal values, and the total power mismatch converges to zero. When the BESS2

is plugged out from the system at 50s, the rest of power units will fast converge to the

new optimal values and keep the power balance at the same time. With plugging in a

new battery at 100s, all power units converge back to the optimal values which are same

as the previous optimal values.

Time-varying Power Mismatch

In fact, due to the intermittent of renewable energy sources and customer behaviours,

the smart grid may face problems with uncertain power mismatch. To this end, we test

the proposed strategy under a time-varying supply-demand condition. It is assumed

that there is a time-varying uncontrollable power mismatch given by Ptotal = 20 +

50 sin(0.3t) (MW). The communication network and the other parameters are same
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as Case 1. To reflect the effectiveness of the proposed algorithm, we assume that a

distributed generator is disconnected from the smart grid for daily maintenance at 50s

and connected back to the smart grid at 100s.
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Figure 4.13: The power mismatch with time-varying demand.

As shown in Fig. 4.13, the optimal power references change with the time-varying

power mismatch. However, the power outputs are allocated to their optimal value under

the time-varying power mismatch condition, and while the algorithm keeps the power

balance under the time-varying power mismatch. Besides, the proposed algorithm can

keep working when plugging in/out the DG4 at 50/100s, respectively. Therefore, the

plug-and-play adaptability is also guaranteed by our algorithm even under the time-

varying supply-demand condition.
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4.3.4 Case 4: Scalability

In this case, to verify the scalability of the proposed algorithm, the algorithm is applied

in a complex scale system, consisting of 40 DG, 15 BESS and 200 controllable loads,

which is introduced in [93]. Each power unit is connected to its adjacent 10 neighbours

in the communication network.
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Figure 4.14: The update of power outputs with the proposed algorithm.

As shown in Fig. 4.14, the studied algorithm can guarantee the allocated power outputs

to converge to their optimal values within 10s. Also, it shows that the fluctuation of our

strategy is much less than the algorithm in [11]. Therefore, the proposed optimisation

strategy can be applied in a large and complicated smart grid.
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4.4 Summary

In this chapter, a distributed algorithm for DSM has been proposed in the context of

smart grids. It maximises the social welfare of participants, i.e., customers, BESS and

DG, according to their different objectives while subjecting to the system active power

constraint and the local physical constraints. The proposed algorithm could solve DSM

in a distributed fashion to handle the problems caused by the centralised method, such as

communication interruptions, computing burdens, and single-point failures. Addition-

ally, without the requirement of certain initialisation processes, the proposed algorithm

can be executed in an initialisation-free manner that can deal with initial errors and en-

ables the plug-and-play functions in DSM. The effectiveness and the scalability of the

proposed algorithm are demonstrated by several case studies.
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Table 4.2: Comparison results.

Algorithm
(4.14)

Algorithm
in [39]

Algorithm
in [38]

Matlab
(fmincon)

DG1 30.6819 22.9948 26.7769 30.6820
DG2 55.3153 43.9412 50.2758 55.3155
DG3 39.3940 30.2443 35.2270 39.3941
DG4 43.8133 35.7782 39.4714 43.8134

BESS1 -22.1363 -24.7803 -24.2210 -22.1362
BESS2 -24.8522 -25.8211 -26.4163 -24.8522

L1 -11.0477 -10.8696 -15.3938 -11.0477
L2 -9.4004 -6.4048 -14.1400 -9.4006
L3 -6.3632 -1.6057 -10.8304 -6.3634
L4 -12.1895 -4.7591 -17.8732 -12.1898
L5 -7.2724 -1.9037 -11.4392 -7.2725
L6 -15.4540 -7.9295 -22.3970 -15.4542
L7 -10.2661 -7.0456 -15.6520 -10.2661
L8 -14.4426 -14.7112 -19.4805 -14.4425
L9 -4.2206 -7.6875 -8.6827 -4.2205
L10 -11.5595 -19.4404 -16.9449 -11.5593



Chapter 5

An Optimal Day-ahead Bidding

Strategy and Operation for Battery

Energy Storage System by

Reinforcement Learning

The BESS plays an essential role in the smart grid, and the ancillary market offers a

high revenue. It is important for BESS owners to maximise their profit by deciding

how to balance between the different offers and bidding with the rivals. Therefore,

this chapter first formulates the BESS bidding problem as a MDP to maximise the to-

tal profit from the AGC market and the energy market, considering the factors such as

charging/discharging losses and the lifetime of the BESS. In the proposed algorithm,

function approximation technology is introduced to handle the continuous massive bid-

ding scales and avoid the dimension curse. As a model-free approach, the proposed

algorithm can learn from the stochastic and dynamic environment of a power market, so

83
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as to help the BESS owners to decide their bidding and operational schedules profitably.

Several case studies illustrate the effectiveness and validity of the proposed algorithm.

5.1 Market Design

This section studies the bidding mechanism of battery energy storage system in different

power markets. In this chapter, we assume that the BESS can offer more than one

service in different markets. The BESS owner has to provide the day-ahead hourly bids

to the system operator, including bidding capacities and bidding prices. The system

operator determines the requirements of different services according to short-term load

forecasting, renewable energy prediction and reliability constraints. On the basis of

these, the Market Clearing Price (MCP) and offers of different markets are derived

related to the different quotations and capacity bids. During the bidding process, the

participants cannot know the bidding data of their rivals, but the MCP and offers from

the system operator are public.

With the development of battery technology, the capacity of BESS is increasing rapidly.

According to the importance of batteries in AGC market service, we assume that the

BESSs have the market power to influence AGC market [41]. Since the main services

and revenues of BESS come from the AGC market, according to [43], supplying suffi-

cient power and energy capacity for the AGC market has the highest priority among all

the services from the perspective of the system operator. In this chapter, based on the

prediction of energy market and AGC market, the winning bids of BESS are determined

considering the AGC market conditions.
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5.1.1 Automatic Generation Control (AGC) Market

In the AGC market, the operation of smart grid must be subjected to keep the supply

and demand balance. During the frequency control, the supply-demand balance of the

whole network is met by adjusting the output of frequency modulation units, such as

BESS, capacitive energy storage system, superconducting magnetic energy storage sys-

tem, thermal energy storage system and Flywheel energy storage system [95]. In the

frequency adjustment, there are various components involved, shown in Fig. 5.1.

Figure 5.1: Frequency adjustment components.

Therefore, the AGC market should take the whole grid demand as the benchmark,

and obtain the mismatched power by calculating the capacity demand caused by load

change, the renewable energy output power, and the planned output power.

∆Ptd = Pload − Penergy − Pplan (5.1)

where ∆Ptd is the power mismatch; Pload, Penergy and Pplan are the load demand, re-

newable power output and the planned power output, respectively.
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In power grid dispatching, Area Control Error (ACE) are usually sent to AGC with a

period of 2-4 seconds.

PACE = ∆Ptd + βf ·∆f (5.2)

where βf is the coefficient of frequency deviation, ∆f is the frequency deviation and

PACE is the ACE signal.

From 2017, the conditional neutrality controller has been applied to control the regula-

tion resources in PJM market [96]. It is a hybrid PID controller which includes a RegD

integral feedback loop to ensure the energy of RegD is neutral. If system conditions al-

low, RegA will be utilised to balance the neutrality of RegD. For example, if the RegA

resources are fully utilised to control ACE, then it will not be able to assist RegD. PJM

area control error (ACE) signal is fed to high-pass/low-pass filters and a PID regula-

tion controller to generate two regulation signals: a fast responding dynamic regulation

signal D (RegD) and a slow responding traditional regulation signal A (RegA) [96, 97].
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Figure 5.2: Real-time RegD and RegA data.

Frequency regulation mileage refers to the sum of the absolute changes in output power
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within a period of time, and it is usually measured in megawatts (MW). As shown in

Fig. 5.2, the RegA signal moves much slower than RegD signal. The mileage of RegD

is about 7.17 times that of RegA in PJM market in 2019 [98]. Therefore, RegD offers

more opportunity and higher performance compensation to exploit the potential of fast

response energy storage systems. The RegD signal changes every 2 to 4 seconds, and

the response time of BESS is usually on the time scale of seconds or milliseconds.

Nevertheless, PJM market requires the mean value of RegD signal to be zero, which is

suitable for energy limited power units like BESS.

5.1.2 Energy Market

In our model, the revenue of energy market is mainly from the planned output power.

Compared with traditional generating units, a BESS only supplies or consumes small

portion of electricity, the BESSs are supposed to be the price-takers, who will not affect

the energy price in the energy market. The BESS will submit the day-ahead bids to the

energy market system operator, and then the system operator will allocate the electric

energy according to different requirements. Since BESS has the characteristics of low

cost, good power quality and fast response, we assume that the battery will win the bids

in the energy market. Therefore, the revenue in the energy market can be described as:

Re,t = pet · be,t (5.3)

where pet is the electricity price in energy market, be,t is the energy bidding quantity of

the BESS and Re,t is the revenue of BESS in energy market at time slot t.
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5.1.3 Model of BESS

The BESS unit should provide AGC services frequently in long term running. There-

fore, two types of BESS costs are considered in this chapter, i.e., charging/discharging

loss cost and the BESS ageing cost.

Loss Cost of BESS

According to [99], charging efficiency and discharge efficiency are different, and the

charging/discharging efficiency can be formulated as ηc and ηd, respectively. We assume

that the energy price is pet . The charging/discharging losses then represented as

Cchaloss = pet · Pcharge(1− ηc) ·∆T (5.4)

Cdisloss = pet · Pdischa(
1

ηd
− 1) ·∆T (5.5)

where ∆T is the control period of regulation service and it is set as 4 seconds.

Ageing Cost of BESS

Ageing cost is an important expenditure when BESSs provide the power system service,

and the BESS may not meet the requirements of the system after excessive ageing.

Therefore, the ageing cost model needs to be considered when calculating the revenue of

the BESS. Based on [100,101], the maximum energy capacity of BESS will be reduced

by the increase of charging/discharging cycles. In addition, the smaller the depth of

discharge is, the more cycles there will be [102]. For a given depth of discharge of a

lead-acid battery, the number of cycles before failure can be seen in Fig. 3 below.

For different types of battery, N fail
d is a function of DoD(%), which can be calculated
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Figure 5.3: The relationship between DoD and cycle life of a BESS.

as

N fail
d = N fail

100 · d(−kP ) (5.6)

where N fail
d is the maximum number of charging/discharging cycles at d DoD, d is

the depth of discharge (DoD), and kP is a constant parameter for different types of

batteries ranging from 1.1 to 2.2 [103]. In the reinforcement learning algorithm, the

time interval between st and st+1 is one hour. Depth of Discharge (DoD) is the fraction

or percentage of the capacity which has been removed from the BESS, which can only

be calculated after a charging or discharging event. However, the time interval of the

regulation market publishing regulation signal is 2-4 seconds, which means that there

will be one charging or discharging event in each 2-4 seconds interval. The ageing cost

between st and st+1 should be the sum of every charging/discharging event’s ageing

cost. The DoD of BESS is changed in each half cycle, so that d will response to each

RegD signal in each time period (τ −∆T )→ τ . Meanwhile, the BESS can only accept

one charging mission or one discharging mission at a time. Thus, we can formulate the



CHAPTER 5. OPTIMAL BIDDING STRATEGY FOR BESS 90

ageing cost for one event, named half cycle, as Chalf
ag,τ , which can be calculated as:

Chalf
ag =

(dτ )
kP

2 ·N fail
100

· Cinv (5.7)

where Cinv is the average daily investment cost of the battery energy storage system,

which can be calculated by

Cinv = (1 + ξ) · (CP · Pmax + CE · Emax + CF ) (5.8)

where ξ is the component replacement cost. CE · Emax is the cost of the storage unit,

where Emax is the energy capacity of the BESS. CP ·Pmax is the costs of power conver-

sion system, Pmax is the power capacity of BESS. CP , CE and CF are the unit costs of

power conversion system, energy storage and facility infrastructure costs, respectively.

In the bidding market, the BESS company cannot predict the positive and negative

power command signals to be given by the system operator, so that the BESS owner

will provide one bid for charging and one bid for discharging at each time slot [50].

Therefore, we could get the equivalent one cycle ageing cost as:

Cag,τ =
|(dτ+1)kP − (dτ )

kP |
2 ·N fail

100

· Cinv (5.9)

dτ+1 = dτ +
P ·∆T
E

(5.10)

Combining (5.6)-(5.10), we can obtain the equivalent ageing cost for one hour as:

Cag =

3600/∆T∑
τ=1

|(dτ+1)kP − (dτ )
kP |

2 ·N fail
100

· Cinv (5.11)

where ∆T is the time step of frequency regulation signal, and there are 3600/∆T charg-

ing/discharging cycles within one hour.
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5.2 Model Formulation

The proposed model of BESS bidding in the pool based electricity market is described

in detail. The decision variables are the capacity bids in energy market be,t, the capacity

bids in AGC market bupc,t and bdownc,t and the price bids in AGC market bp,t of the BESS

for each hour in the next day.

5.2.1 Objective Function

The bidding model is to maximise the total profit of a BESS owner, which is described

as follows

max Profit =
∑
t∈T

(Profite
t + Profitreg

t − Costtotal
t ) (5.12)

where Profite
t and Profitreg

t are the hourly revenue from energy market and the regulation

market, respectively. Costtotal
t is the hourly cost, which includes operation and mainte-

nance cost, charging/discharging cost and the ageing cost. t is the hour index and Profitt

is the 24-hour total profit.

In the electricity market, there is a system operator between the supply companies and

the retailers. The suppliers are bidding in the power pools, and the system operator

makes the decision of market price and power generation offers. Since the BESSs are

the price-takers in the energy market, the total revenue of a BESS in energy market

Profite
t can be calculated by [104, 105].

Profite
t = pet · be,t · he (5.13)

Pe,t =


be,t ·

1

ηd
, if be,t > 0

be,t · ηc, if be,t < 0

(5.14)
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where be,t is the winning power offer of the BESS at time slot t, termed as the capacity

bidding quantity. he is the normally operation period in energy market, typically 1 hour

or 15 mins. Pe,t is the charged and discharged power in the BESS. Note that be,t can

be positive or negative, which is related to charging and discharging requirement. A

power supplier can only generate power if its offers are accepted. Otherwise, the extra

penalties should be paid. The subscript ”t” is the index of the hours in each day, since

the bidding strategy is day-ahead with hourly bids in the wholesale electricity market.

In (5.12), Profitreg
t is the revenue of the regulation markets, which can be described as

Profitreg
t = Profitcapt + Profitperft (5.15)

where Profitcapt is the revenue of the regulation capability, which can be described as

Profitcapt = (P up
cap,t + P down

cap,t ) · pcapt · hreg (5.16)

where bupc,t and bdownc,t are the capacity bids; pcapt is the Regulation Market Capacity Clear-

ing Price (RMCCP), which is influenced by the bidding prices. hreg is the normally

operation period in regulation market, and it is typically 1 hour and 15 mins. Differ-

ent energy storage systems provide different regulation capacity bids. Then the system

operator will make the decision and send the regulation signal to the frequency modu-

lation units. If the regulation bid of the BESS is accepted by the system operator, the

regulation capability compensation and the regulation performance based profit can be

formulated as

Profitperft = (P up
cap,t + P down

cap,t ) · pperft · sc ·∆T (5.17)

where pperft is the Regulation Market Performance Clearing Price (RMPCP). sc is the

performance score, which related to the accuracy, delay and precision [45]. ∆T is the

regulation period, typically from 2s - 4s. According to the report [45], the performance

revenue is not related to the bidding capacity of the BESS, but the real-time regula-

tion signal and the clearing price. Since each time slot, the regulation signal will only
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have one sign, we separate the regulation signal into regulation up signal P up
cap,τ and the

regulation down signal P down
cap,τ , where τ is the time index of regulation step.

The total cost is calculated in (5.18).

Costtotal
t = CO&M,t + Closs,t + Cag,t (5.18)

whereCO&M,t, Closs,t andCag,t are the operation and maintenance cost, charging/discharging

cost and the ageing cost, respectively. The operation and maintenance cost of BESS is

usually a variable cost proportional to the size of BESS, which can be calculated as

CO&M,t = Ca × Emax, where Ca is the annual maintenance cost of BESS [106].

The charging/discharging cost is the sum of the charging part and the discharging part.

In this model, the charging power Pcharge is equal to the regulation down signal P down
cap,τ

and

Pdischa = P up
cap,τ . Therefore, the charging/discharging cost for each hour is formulated

as

Closs,t =

3600/∆T∑
τ=1

pet · (P downcap,τ (1− ηc) + P upcap,τ (
1

ηd
− 1)) ·∆T (5.19)

The last part of total cost is the ageing cost, which can be calculated by (18).

5.2.2 Constraints

Power Constraints

In this part, the capacity limits of the BESS are considered and formulated in (5.20)-

(5.22) regarding market requirements, physical constraints and regulation constraints.
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The sum of the BESS bids must be kept within the maximum power of the BESS.

Pe,t + P up
c,t ≤ Pmax (5.20)

Pe,t − P down
c,t ≥ −Pmax (5.21)

where Pmax is the maximum output power of the BESS. It is related to the type of the

BESS.

Furthermore, the maximum regulation capacity has to be limited in a reasonable range,

described in (5.22).

0 ≤ P up
c,t , P

down
c,t ≤ ρreg · Pmax (5.22)

where ρreg is the maximum ratio of regulation capacity to the high sustained limit.

To meet the transmission constraints in power system, the BESS is required to hold

enough energy to response the system operator for dispatch or reserves [107]. Therefore,

we consider that the BESS must maintain the output power level for at least he for energy

market and hreg for regulation market [51].

Emax · soct ≥ (be,t · he + bupc,t · hreg)/ηd (5.23)

Emax · soct ≤ Emax + (be,t · he − bdownc,t · hreg)ηc (5.24)

Charging/Discharging Constraints

This part models the energy balance model of the BESS based on the physical con-

straints and the market requirement.

We assume that there is no energy loss during the charging/discharging process. The

SoC of the BESS can be calculated as:

soct = soct−1 + ∆soct (5.25)
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where ∆soct indicates the amount of energy change between time t− 1 and t, which is

usually expressed in percentage (%). According to the energy selling and buying, the

value of ∆soct can be positive and negative. For different types of BESS, the charging

efficiency are different. Therefore, the charging/ discharging rate of the BESS (∆soct)

is expressed as

∆soct = (∆Ee
t + ∆Ec

t )/Emax (5.26)

∆Ee
t = Pe,t · he (5.27)

∆Ec
t = (ηc · P down

cap,t −
1

ηd
· P up

cap,t) · hreg (5.28)

where ∆Ee
t ,∆E

c
t represent the amount of energy change in energy market and fre-

quency regulation market, respectively. Note that the energy loss formulated here will

not influence the reward calculation. soct is used to calculate the next state of the rein-

forcement learning algorithm, which is the actual state of BESS.

The BESS must keep its SoC within its energy capacity limits. According to [108], the

BESS performs its best working characteristics between 20% - 80%. To get the best

performance of the BESS, in this chapter, the capacity limits is set as

ρmin · Em ≤ soct · Emax ≤ ρmax · Em∀t ∈ T (5.29)

where ρmin and ρmin are the minimum and maximum efficiency operation rate. Em is

the rated energy capacity of the battery storage.

SoC Constraints

The initial and final SoC usually are set to be same during the optimization period, as

described below. t0 and t24 represent the begin and end of the day.

soct0 = soct24 (5.30)
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5.3 Algorithm Design

5.3.1 Function Approximation based Reinforcement Learning

Reinforcement learning is a valid approach to solve the decision problem for an un-

known and uncertain environment. In this chapter, we deploy reinforcement Q-learning

to achieve the optimal bidding results. In the traditional Q learning, it needs to generate

a complicated Q table, and the dimension of the Q table will fall into the dimension

curse with the increase of actions and states. Function approximation is a valid method

to solve the generalisation problem for the large dimension of state and action pairs in

the reinforcement learning method. Therefore, to avoid such dimension curse in BESS

bidding problem, we apply the function approximation method to approximate the Q

value. Here, the linear approximator analysed in this chapter is:

Q(st, at) =
n∑
j=1

φj(st, at)θj = φTt (st, at)θt (5.40)

where θt is the approximation parameter vector with n elements, and φt(st, at) is the

feature vector, which is given by

φt(st, at) = {φ1(st, at), φ2(st, at), · · · , φNf
(st, at)} (5.41)

where φj(st, at) are the basis functions, and Nf is the number of features.

According to the projected Bellman error J [109], the optimal updating law for the

parameters θπ can be obtained by evaluating the approximation performance.

Qπ(st, at) is simplified to Qθ in following equations. The mean-square project Bellman
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error objective function can be formed as

J(θ) = ‖Qθ − ΠTπQθ‖2
D (5.42)

= (Π(TπQθ −Qθ))
TD(Π(TπQθ −Qθ)) (5.43)

= (TπQθ −Qθ)
TΠTDΠ(TπQθ −Qθ) (5.44)

where Π is a projection matrix which projects any action values to the linear space of

approximate action values, and D is a diagonal matrix with N × N dimension, which

is use to reflect the state-action pair frequency under current policy π. We have

Π = Φ(ΦTDΦ)−1ΦTD (5.45)

Further, we transfer the objective function to statistical expectation forms as

J(θ) =(TπQθ −Qθ)
T (Φ(ΦTDΦ)−1ΦTD)TD

Φ(ΦTDΦ)−1ΦTD(TπQθ −Qθ) (5.46)

=(ΦTD(TπQθ −Qθ))
T (ΦTDΦ)−1ΦTD(TπQθ −Qθ) (5.47)

=E[δφ]TE[φφT ]−1E[δφ] (5.48)

where

E[δφ] =
∑
s,a

D(s,a),(s,a)φ(s, a)E[δt] (5.49)

=ΦTD(TπQθ −Qθ) (5.50)

and

E[φφT ] =
∑
s,a

D(s,a),(s,a)φ(s, a)φT (s, a) = ΦTDΦ (5.51)

Note that all statistical expectations are under current behaviour policy π. Also, δ is the

temporal difference error, which is defined as

δt = rt+1 + γφ̂Tt θt − φTt θt (5.52)
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In order to avoid the need for two independent samples, a modifiable parameterw ∈ Rn,

named quasi-stationary estimate, is introduced as follows

w ≈ E[φφT ]−1E[δφ] (5.53)

Then, the negative gradient of objective function can be calculated as

−1

2
∇Ji =E[(φ− γφ′)φ]TE[φφT ]−1E[δφ] (5.54)

=(E[φφT ]− γE[φ′φT ])E[φφT ]−1E[δφ] (5.55)

=E[δφ]− γE[φ′φT ]E[φφT ]−1E[δφ] (5.56)

≈E[δφ]− γE[φ′φT ]w (5.57)

Since the expectations in (5.54) are not know, it is generally using stochastic gradient-

descent approach. To get the quicker convergence speed of the reinforcement learning

algorithm, the correction term is applied to adjust the update law as follows

θt+1 = θt + αt(δtφt − γwTt φtφ̂t) (5.58)

wt+1 = wt + βt(δt − φTt wt)φt (5.59)

where φ̂t is the approximation of maxa′ Q
π(st+1, at+1), which can be estimated as

φ̂t ≈ arg max
φ(st+1,at+1)

φT (st+1, at+1)θt (5.60)

5.3.2 Problem Reformulation

Aiming at the stochastic environment of power market, the optimal bidding problem in

an stochastic environment is reformulated based on equation (3.6), which includes the

state space S, action space A, transition probability function P , reward functionR and

discount factor γ in detail.
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At each time slot t, the BESS owner has its observation of the bidding market, namely

state st. Considering the bidding quantity and bidding price of rivals are uncertain, the

state of the BESS owner is set as:

st = (v−1
t , aTt−1, SOCt, t)

T (5.42)

where st ∈ S presents the observable information and v−1
t is the clearing price of the

previous day at time slot t. at−1 is the last decided bidding actions, including bidding

quantities and bidding prices. In the wholesale electricity market, each BESS owner

only knows its own bidding quantity and price. The bidding data of the other bidders

must be estimated by the previous bidding history. In this chapter, the bidding quantities

and prices of other rivals are presumed to be influenced by the market clearance price

and the sold offer at time slot t − 1. Some similar state-choosing methods are studied

for electricity market in [105]. soct is the SoC of BESS at time slot t, which can be ac-

curately estimated by battery management systems. Here, our objective is to maximise

the BESS owner’s profit within its bidding period, which is 24 hours of a day; therefore,

time slot t is set as a part of state so that the decision maker can take different actions in

different hours of the day-ahead bidding strategy.

The action at ∈ A consists of decision variables made by BESS owner. Since bidding

environment are unpredictable, we only formulate the decision variables concerning the

bids of own BESS units:

at = (be,t, bp,t, b
up
c,t, b

down
c,t )T (5.43)

where (be,t, bp,t, b
up
c,t, b

down
c,t ) are the capacity bids in energy market, price bids, up and

down capacity bids in AGC market, respectively. Here, A is the discrete action set for

all st. At each time slot t, the BESS owner will provide a bidding action at from action

set A.

In the reinforcement learning, there is a transition functionP(st, at, st+1) : S×A×S →
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[0, 1]. It maps state st to st+1 by action at, which means the dynamics of the environ-

ment. In the electric bidding market, the transition function is unknown and depends

on some stochastic factors, such as real-time load mismatch and uncontrollable renew-

able power generation. Thus, our agent needs to learn it through different {st, at, st+1}

sets during the training process. After taking the action at, the state of BESS will auto-

matically transfer to next state st+1 = (v−1
t+1, a

T
t , soct+1, t + 1)T based on the transition

function P .

Specific to each state transition between adjacent time slots, the system operator will

provide an offer to the BESS owner, which indicates the reward signal rt ∈ R . The

algorithm can be trained by the reward information to select best policy to achieve max-

imum reward. In this chapter, the detailed reward definition is designed as follows:

rt = Profitt − CW
t (5.44)

where rt+1 is defined under the framework of the reinforcement learning. Generally, the

reward at t+ 1 time slot is the BESS owner profit in terms of the state st and the action

at at t time slot. CW
t is set as a penalty term, which is related to the local constraints,

including battery and generator constraints. For example, the SoC of a BESS should be

kept between 20% to 80% to obtain the efficiency operation [110]. If the action leads to

these inefficiency areas, the reward of this state action pair should be negative and get

corresponding penalty. In this chapter, the BESS owner can get the finite-time horizon

reward sequence as {st, at, rt, st+1, · · · , st+N−1, at+N−1, rt+N−1,

st+N}, which is an episode of bidding and operation. The parameter N is the trading

period, which is set as 24 in this chapter.

The objective of the reinforcement learning for the BESS owner i is to obtain the best
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24-hour reward given by

E(
24∑
t=1

γtrt|s0) (5.45)

where s0 is the initial state; r(t) is the reward based on state-action pair at time slot t;

γ is the discount factor which is applied to reduce the effect of future reward. In this

24-hour bidding environment, γ = 1.

According to (3.8), a Q function can be defined as follows:

Qπ(s, a) = E

[
24∑
t=1

γtr(t)|st = s

]
,∀s ∈ S,∀a ∈ A (5.46)

Following the updating rules (3.10), Qπ(s, a) will converge to the optimal Q value

Q∗(s, a). To ensure the proposed algorithm can find the optimal policy which cover-

ing maximum state values, we applied the E-greedy policy to keep the exploration be-

haviour, so that all exploratory actions have probability to be chosen during the training

period. The policy is settled by following equations:

ã = arg max
a
Qπ(s, a),∀s ∈ S,∀a ∈ A (5.47)

π(s, a) =

1− E + E/nA, if a = ã

E/nA, if a 6= ã
(5.48)

where ã is the greedy action which has the maximum Q value under current policy π,

nA is the number of possible actions in action setA, and 0 ≤ E ≤ 1 is the probability of

choosing any action in the action set A. Therefore, we have a (1− E + E/nA)× 100%

chance of taking the greedy action ã, and a (E(nA−1)/nA)×100% chance of exploring

new behaviours.

Since the states setting in the model is continuous and the dimension of the states is

large, this chapter applies the function approximation to solve the reinforcement learn-

ing problem. An off-policy model-free algorithm is implemented so as to find the BESS

bidding strategy, which helps the BESS to get a higher profit during the trading period.
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5.3.3 Algorithm Implementation

Based on the equation 39, we randomly initialise the parameter θ0 to calculate the the

Q value of each state-action pair. To get quicker convergence speed of reinforcement

learning algorithm, we apply a correction term w0 to adjust the update law, which is

designed in Section 5.3.1. Our algorithm is developed to update these parameters and

get the optimal Q value Q∗.

In our algorithm, each hour is seen as a time step within Nt and each day is an episode

within Nµ, which means the training process has Nµ ·Nt steps in total. At each episode,

the algorithm will start from a random state s0. Then, the agent chooses its action at

according to policy π, then its state st will transfer to st+1 and get the reward rt. With

all these obtained information and equations (5, 6, 65, 66), the algorithm can calculate

and update the parameters θt, ωt. After several explorations and training loops, our Q

value Qπ is roughly equivalent to the optimal Q value Q∗. The details of the proposed

algorithm for BESS optimal bidding are summarised in Algorithm I. It is started from a

policy π, learning rate α, β and discount coefficient γ.

5.4 Case Study

In this section, consider an electricity market with 4 BESSs, and these four BESSs bid

in the AGC market to get their rewards. The planning horizon is next day 24-hour bids.

In each state, BESSs make their decision for next day bids and each bid has capacity

bidding price and capacity bidding quantity. And during the bidding process, BESS1

does not know how other BESSs are going to bid. The BESS1 can get the history

clearing price information of the electricity market.
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Algorithm 2 Function Approximation based Reinforcement Learning Algorithm for
Supply-side BESS Bidding
Input: Learning rate α, β, Policy π, Discount coefficient γ
Output: The bidding action ai(t) of BESS owner for next day’s trading market

Initialisation: θ0, ω0

for every episode µ = 1 to Nµ do
Initialise s0, choose a for state s0 with the E-greedy policy π
for every time slot t = 1 to Nt do

Calculate the feature vector φt of state s0

Take action at, obeying the policy π
Get the reward rt from the environment
Calculate the TD error δ(t)
Estimate the next step feature vector φ̂t
Update the parameter θi, ωi
t← t+ 1

end for
µ← µ+ 1

end for
return 24-hour Action Sequence;

5.4.1 Datasets

In our simulation study, the real world datasets are applied to illustrate the effectiveness

of our model. A 4-s based RegD & RegA signal is generated based on real RegD signal

data by PJM’s data set.

Table 5.1: Cost coefficients for simulation studies.

µ CP CE CF Ca
(£/kW ) (£/kWh) (£) (£/kWh)

BESS1 15% 2300 300 2.58e5 14.6
BESS2 15% 2250 450 2.52e5 15.8
BESS3 15% 2470 360 2.49e5 16.2
BESS4 15% 2320 280 2.63e5 15.4
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5.4.2 Case Implementation

In the case studies, it is supposed that all of 4 BESSs can participate in the AGC market.

In this market, BESS1 is assumed as our own BESS, which tends to maximise the profit

of next 24-hour. The decision maker of the BESS1 will implement the function approx-

imation based reinforcement learning algorithm, seeking the proper bidding price and

bidding capacities. In the stochastic bidding market environment, the bidding strate-

gies of all the other BESS and the bidding environment are unknown, which means that

BESS1 only have its individual bidding data and MCP history data. Similar to [111],

the rule of clearing price is simply the highest bid from all accepted regulation offers

in this chapter. After all market participates submit their hourly bids to the SO, the SO

needs to schedule the regulation offer and publish an MCP according to the real-time

load demand, as shown in Fig. 5.4. Then, the BESS owners can calculate their rewards

and costs based on the regulation offer and MCP. For the objective function shown in

Eq. (5.12), the initial time slot is set as t = 1 and the end time slot is set as t = 24.

The round-trip efficiency of the BESS is derived to be 0.868 [50]. Since the function

approximation algorithm is applied in the chapter, the state variables in Eq. (5.42)

will not be aggregated into discrete levels. And the action variables in Eq. (5.43) are

aggregated into discrete levels to get more accurate results. The action aggregate is

achieved by follows.

The bidding prices are set in advance by the BESS and the AGC market, and the other

three capacity bids are considered together, since when two of them are specific in a

domain, the other one should be constrained in some specific values. For example,

if the regulation up and down capacities are defined, then the capacity bids of energy

market should be limited in a specific domain.

Based on the real-time price data from PJM. the bidding price is aggregated into 11
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Figure 5.4: Framework of bidding environment.

levels, and the capacity bids are separated into different 11 levels. Thus the test model

has 14,641 aggregated actions.

The relevant information and cost parameters of the BESSs are shown in Tabs. 1 - 2.

Table 5.2: Parameters of BESSs for simulation studies.

Pmax(MW) Emax(MWh) ηc ηd N fail
100 kp

BESS1 406 900 0.868 0.92 10,000 0.85
BESS2 207 1000 0.88 0.95 10,000 0.85
BESS3 250 625 0.86 0.88 10,000 0.85
BESS4 362 830 0.82 0.86 10,000 0.85
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5.4.3 Training Performance

In this section, we analyse the convergence characteristic of the function approxima-

tion based reinforcement learning algorithm. Note that since the action variables have

been aggregated into 14641 elements and the states have been approximated into 400

elements, we have 5856400 (14641× 400) state and action pairs. Here, the convergence

curves of part of theta parameters are shown in Fig. 5.5.
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Figure 5.5: Update of theta elements.

Since the value of theta converges, the optimal Q-value of each state-action pair will

automatic converge. Thus the optimal policy can be found by searching for the action

with maximum action value for each state. After several training episodes, the profits

line still has some fluctuations due to exploration behaviours of reinforcement learning

algorithm. This exploration behaviour is to ensure the algorithm can reach the optimal

results and find the solution for the bidding strategy as shown in Fig. 5.6.
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Figure 5.6: BESS daily rewards during the training period.

5.4.4 Results and Comparison

Figs. 5.7 - 5.8 show the optimal bidding strategies and bidding prices of the BESS in

different time slots. In this case, regulation capacity dominates most of the day, since

the compensation of the regulation services are high. Furthermore, we test bidding

strategy of the BESS1 in regulation market and energy market with its rivals. To win

the regulation services offer and earn high compensation profits, the bidding regulation

price is trained to be less than the history clearing prices and the rivals’ bids. When the

regulation price are cheap, the BESS will not do much regulation mileages, so as to the

BESS owner will purchase or sell the energy in the energy market to balance the energy

loss and earn some revenue. During that period, the regulation bids are reduced because

of the physical constraints of the charging/discharging rate.

To reveal the impact of the ageing losses and transmission losses, we magnify the loss

coefficient ten times, and the simulation results are shown in Figs. 5.9 - 5.10. The

impact of considering these losses on BESS can be observed by comparing Fig. 5.7
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Figure 5.7: BESS bids.
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Figure 5.8: BESS bidding prices.
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with Fig. 5.9. Due to the increase of ageing losses, the income from the regulation

market is comparatively lower than that before, so that the regulation bids are decreased

to extend the lifetime of BESS and reduce the transmission losses. Furthermore, with

the increase of transmission losses, the Energy bids are increased to balance energy

losses during operations.

In Fig. 5.10, the bidding prices are different from the base case. Because of the high cost

of losses, it is not worth operating the BESS when the prices are low. In this case, the

proposed algorithm will increase the bidding prices to save the cost of regulation market.

The higher bidding price will lose more frequency offers, but reduce the transmission

and ageing losses.
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Figure 5.9: BESS bids with ten times losses penalty.

Table. 3 summarises the profit in different markets and costs separately. It can be

seen that the benefit from regulation market is the major revenue of BESSs. For our

bidding strategy in BESS 1, the BESS has to purchase electricity to balance the en-

ergy consumption and losses, so as to the reward from energy market is negative. It
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Figure 5.10: BESS bidding prices with ten times losses penalty.

means that the BESS would be deeply involved in regulation market to get high rev-

enue. For other BESSs, BESS2 and BESS3 get lower rewards since their maximum

charging/discharging rate limits. The BESS4 has similar parameters as the BESS1,

but earns around $70,000 less than the BESS1. This is because the proposed bidding

strategy of the BESS1 can receive and learn the reward/penalty signal from the system

operator, which does not require any other prior knowledge and study of its rivals. The

comparison results show that the proposed model considering the ageing and transmis-

sion losses presents a more effective bidding strategy for BESS owners in a bidding

environment of multiple rivals, provides a more realistic and accurate cost-benefit result

for investors as well.

In addition, to further verify that the proposed algorithm can obtain the maximum profit

for BESS owners, the comparison cases with different algorithms are studied and listed
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Table 5.3: Income and cost comparison.

BESS1 BESS2 BESS3 BESS4
Profite ($) -17426 -1270 -8147 -14058
Profitcap ($) 346673 182785 208725 284561
Profitperf ($) 37327 14140 18489 23415
Costtotal ($) -10676 -4803 -6419 -8218
Daily Income ($) 355898 190852 212648 285700

in Table 4. Due to the uncertainty of the bidding environment and lack of rival’s in-

formation, some traditional numerical optimisation approaches, such as game theo-

retic [112], are not suitable for this environment. Therefore, we compare our results with

other learning and stochastic optimisation approaches, Q-learning [113], State-Action-

Reward-State-Action (SARSA) [7] and PSO [114]. The proposed FARL algorithm, as

shown in the second column in Table 4, successfully achieves highest revenue compared

with other methods. The highest incomes for each hour are highlighted in Table 4. Al-

though Q-learning, SARSA and PSO could have higher economic performance at some

time slots, our algorithm could help BESS owner get the highest profit for the majority

time periods. Judging from the total income of the day, the proposed FARL has the ad-

vantage by making around 2.5%, 13% and 6.2% improvement than Q-learning, SARSA

and PSO.

5.5 Conclusion

This chapter studied the optimised bidding strategy of the BESS to maximise the profits

under a multi-rivals environment. We firstly proposed a bidding model for the BESS in

the AGC and energy market, then solved the bidding problem with the reinforcement

learning, which using function approximation to avoid aggregated states and dimension

curse. Simulation results verified that the proposed method not only get the higher
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Table 5.4: Hourly income comparison.

Hour FARL Q-Learning [113] SARSA [7] PSO [114]
01:00 6390 5274 3875 5579
02:00 3707 3548 3638 4419
03:00 8468 2570 3268 2723
04:00 4526 4633 2855 2417
05:00 5883 6969 8008 4838
06:00 11803 8070 6901 5744
07:00 7635 16929 9934 19091
08:00 7622 7024 9171 7377
09:00 5795 4817 13588 6920
10:00 9162 6784 14808 13761
11:00 12519 28564 10401 13796
12:00 23876 38742 8322 8787
13:00 24214 2517 18872 16594
14:00 2149 14809 10586 5802
15:00 43959 40732 35518 42943
16:00 42546 21063 24420 26300
17:00 26039 27564 32043 23424
18:00 34487 18029 28299 27555
19:00 36691 27275 17270 32065
20:00 10878 30830 11964 23783
21:00 10381 10893 11153 12171
22:00 5289 7170 12820 19624
23:00 8165 8914 10088 6374
24:00 3714 3215 7147 3029
Total 355898 346935 314949 335116
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revenue from the AGC market, but also extends the lifetime of the BESS and reduces

the losses.



Chapter 6

Short Term Load Forecasting with

Markovian Switching Distributed Deep

Belief Networks

In modern power systems, centralised STLF methods raise concern on high communi-

cation requirements and reliability when a central controller undertakes the processing

of massive load data solely. As an alternative, distributed methods avoid the problems

mentioned above, whilst the possible issues of cyberattacks and uncertain forecasting

accuracy still exist. To address the two issues, a novel DDBN with Markovian switching

topology is proposed for an accurate STLF, based on a completely distributed frame-

work. Without the central governor, STLF is modelled and trained locally, while obtain-

ing the updates through communication with stochastic neighbours under a designed

consensus procedure. The overall network reliability against cyberattacks is enhanced

by continually switching communication topologies. In the meanwhile, to ensure that

114
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the distributed structure is still stable under such a varying topology, the consensus con-

troller gain is delicately designed, and the convergence of the proposed algorithm is

theoretically analysed via the Lyapunov function. Besides, restricted Boltzmann ma-

chines (RBM) based unsupervised learning is employed for DDBN initialisation and

thereby guaranteeing the success rate of STLF model training. Several case studies and

comparison results validate the accuracy and effectiveness of the proposed method.

6.1 Problem Description

The purpose of STLF is to find a proper model that can predict load in an accurate

and timely way. Complex and variable load data will affect the accuracy of the load

forecasting model. To get better forecast accuracy, one of the most useful approaches

is to increase the number of neurons and the hidden layers of the neural network, so

that the model can better fit the data with non-linear characteristics. However, increas-

ing the load data amount and model complexity will increase the training time of the

model, which cannot meet the time requirements of some power applications. More-

over, training massive data with a single computing centre will decrease the efficiency

and increase the cost [27].

In this chapter, we study a novel DBN based STLF method is proposed, which can

be trained under a distributed framework. To protect the data security and deal with

the mass dataset, we introduce the Markovian switching consensus algorithm to decen-

tralise the DBN and the load dataset. It can solve the STLF model by local computing

agents and update the model parameters by communicating with connected neighbours,

which does not need to transfer any information about the load data. Different from the

existing results, the proposed DDBN model will pre-train their local model by unsuper-

vised training to obtain better initialisation of the model coefficients. Such a pre-trained
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initialisation process generates more suitable local models, which consequently yields

fast convergence to the global model with less consensus steps. In the meantime, the

DDBN model will also amend their local parameters based on the information from

their connected neighbours to avoid the over-fitting problem.

6.2 Short-term Load Forecasting Based on Markovian

Switching Distributed Deep Belief Networks

6.2.1 Single Deep Belief Network

The DBN consists of RBM and one output layer to forecast the load. In this chapter,

we apply two different types of RBM to get more accurate results for the STLF, which

are binary RBM and the Gaussian RBM, respectively. The basic structure for STLF is

shown in Fig. 6.1.

RBM2

RBM1 RBM3

Input 
Layer

Hidden 
Layer

Output 
Layer

Figure 6.1: DBN based STLF model.
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For binary RBM, the conditional probabilities P (vi = 1|h) and P (hj = 1|v) are repre-

sented by:

P (vi = 1|h) =
ebi+

∑nh
j=1Wij∗hj

1 + ebi+
∑nh

j=1Wij∗hj
= σ(bi +

nh∑
j=1

Wij ∗ hj), (6.1)

P (hi = 1|v) =
eci+

∑nv
i=1Wij∗vi

1 + eci+
∑nv

i=1Wij∗vi
= σ(ci +

nv∑
i=1

Wij ∗ vi), (6.2)

where σ(x) = 1/[1 + exp(−x)] is the sigmoid function.

In order to solve the continuously-valued inputs, the binary RBM can be extended to

Gaussian RBM [115], which is more suitable for STLF since the electricity load is

continuous and random:

F(v,h) =
nv∑
i=1

(vi − v̄)2

2σ2
i

−
nh∑
j=1

cjhj −
nv∑
i=1

nh∑
j=1

vihjWij, (6.3)

where v̄ and σi are the mean and the standard deviation of the Gaussian distribution for

the visible input vi.

In our model, the input data has been normalised to zero mean and unit variance, and

therefore, the Gaussian RBMs are simplified as:

F(v,h) =
1

2

nv∑
i=1

v2
i −

nv∑
i=1

bivi −
nh∑
j=1

cjhj

−
nv∑
i=1

nh∑
j=1

vihjWij. (6.4)

For the Gaussian RBM, the conditional probabilities P (vi = 1|h) and P (hj = 1|v) are



CHAPTER 6. STLF WITH DDBN 118

derived as:

P (vi|h) =
1√
2π

exp{−1

2
(vi − bi −

nh∑
j=1

Wijhj)
2}

∼ N(bi +

nh∑
j=1

Wijhj, 1), (6.5)

P (hi =1|v) =
eci+

∑nv
i=1Wij∗vi

1 + eci+
∑nv

i=1Wij∗vi
= σ(ci +

nv∑
i=1

Wij ∗ vi). (6.6)

Therefore, the P (hi = 1|v) obeys a Gaussian distribution with mean of bi+
∑nh

j=1Wijhj

and unit variance.

In the RBM models, there are only one visible layer and one hidden layer. Therefore,

the main task of the optimization is to get the maximize P (v), which is the probability

of the model simply on the training input data. In order to achieve the maximize P (v),

we would like to minimize the average negative log-likelihood (NLL):

min
θ
−
∑
v

logP (v,θ) (6.7)

where θ = {b, c,W }. The gradients of the NLL for RBM is calculated as:

∂ − logP (v)

∂θ
= Eh

[
∂F(v,h)

∂θ

∣∣∣∣v]︸ ︷︷ ︸
positive phase

−Ev,h
[
∂F(v,h)

∂θ

]
︸ ︷︷ ︸

negative phase

(6.8)

In the positive phase, the visible variables v are given by the dataset. Therefore, it is easy

to calculate the conditional expectation of ∂F(v,h)/∂θ based on the equations (6.1)-

(6.6). However, the negative phase is hard to calculated, because it is constructed in

current RBM, it cannot get the accurate results. As an effective solution, the contrastive

divergence (CD) approximates the negative terms by means of sampling approaches

[116].
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For binary and Gaussian RBMs, the terms ∂F(v,h)/∂θ can be calculated as:

∂[F(vi, hj)]

∂Wij

= −hjvi (6.9)

∂[F(vi, hj)]

∂bi
= −vi (6.10)

∂[F(vi, hj)]

∂cj
= −hj (6.11)

Representing as the matrix form:

5
W
F(v, h) = −hvT (6.12)

5
b
F(v, h) = −v (6.13)

5cF(v, h) = −h (6.14)

For the negative phase, there exist variables ṽ that can be used to calculate the model

expectation. Hence,

Ev,h
[
∂F(v,h)

∂θ

]
= Eh [5

W
F(ṽ, h)| ṽ] (6.15)

where the negative sample ṽ can be generated by the k steps of Gibbs sampling, starting

at v. This method is also called contrastive divergence (CD) learning, which is proposed

in [116].

The two-stage Gibbs sampling approach is iterating the following steps:

1. Sample h(k+1) from P (h|v(k)) (6.16)

2. Sample v(k+1) from P (v|h(k+1)) (6.17)

Therefore, h0,v1 and h1 can be sampled from the one step Markov chain. Then, the

gradient of the log-likelihood function of the binary states can be approximated as:

∆W = ε(v0 · h0− v1 · h1) (6.18)

∆b = ε(v0− v1) (6.19)

∆c = ε(h0− h1) (6.20)



CHAPTER 6. STLF WITH DDBN 120

6.2.2 Distributed Deep Belief Networks

For DDBN, the gradient descent method is employed to optimise the parameters of

local DBN. When the gradient descent method stops running, the consensus algorithm is

used to optimise the parameters between connected DBN. To improve the data security

during the transmission, the Markovian switching consensus is adopted, instead of the

traditional consensus algorithm. The procedure code of DDBN is shown in Algorithm

3.

Algorithm 3 Distributed Deep Belief Networks.
1: procedure DDBN(DBN, Agents)
2: DBN← Unsupervised Learning RBMs
3: Sites← Array of Network pipes to local CAi

4: while Sites contains unused data do
5: Gradients Reset
6: //Initialise the last layer parameters of DBN
7: for each CAi ∈ Sites do
8: CAi← DBN
9: end for

10: //Start local training for each local site
11: for each CAi∈ Sites do
12: CAi← Forward Propagation
13: CAi← Gradient Descent based on (6.21)
14: CAi← Back Propagation with (6.25)
15: end for
16: //Consensus the weight of local DBN
17: while weights are different do
18: Switching the topologies by transition probability γ
19: Apply the typical Laplacian matrix
20: for each CAi ∈ Sites do
21: Consensus weight with (14)
22: end for
23: end while
24: DDBN← Consensus weight
25: end while
26: end procedure
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Let E be the cost function of the neural networks, written as:

E(D, w) =
1

m

m∑
k=1

e((xk, yk), w), (6.21)

where w is composed of the weights and bias of the neural networks; m is the number

of data samples and e denotes the cost of one sample pair. Separating the data setD into

local agent Di, the cost function is reformulated as:

E(D, w) =
1

m

n∑
i=1

mi∑
k=1

e(xki , y
k
i , wi) (6.22)

=
n∑
i=1

mi

m

1

mi

mi∑
k=1

e(xki , y
k
i , wi) (6.23)

=
n∑
i=1

mi

m
E(Di, wi). (6.24)

Using the gradient-based method [117], the local update law can be designed as:

wki (t+ 1) = wki (t)− η
∂

∂wki
e((xki , y

k
i ), wki ), (6.25)

where η is the step size of the training process.

Here, we formulate the STLF model as a model of the DDBN gradient descent system:

wi(t+ 1) = wi(t) + vi(t) + ui(t), i = 1, · · · , n, (6.26)

where wi is the propagation weight of the ith data centre; vi = −η(∂E(Di, wi)/∂wi) is

the local gradient descent, and ui is the consensus control input. Based on the gradient

descent algorithm and the actual training situation, vi ∈ Rn (where n is the number of

parameters) and assume that the local gradients are bounded in the sense of probability

P
{
vi(t) < δ̄

}
≡ 1.

Motivated by [118], the consensus controller is designed as following:

ui(t) = κ
n∑
j=0

aij(t)(wj(t)− wi(t)), (6.27)
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where κ is the controller gain, and aij(t) is time varying since the topological structures

are Markovian switching. Let Lτ , (τ ∈ Q) be the Laplacian matrix and we have:

w(t) = (wT1 (t), wT2 (t), · · · , wTn (t))T , (6.28)

v(t) = (vT1 (t), vT2 (t), · · · , vTn (t))T , (6.29)

u(t) = (uT1 (t), uT2 (t), · · · , uTn (t))T . (6.30)

Then the model (6.26) can be rewritten as the matrix form based on the controller (6.27):

w(t+ 1) = (I − κLτ )w(t) + v(t). (6.31)

The controller (6.27) can solve the consensus problem of system (6.26), if there exists a

positive constant A ∈ R and the following inequality hold:

lim
t→∞

E[|wi(t)− wj(t)|2] < A, i 6= j, i, j = 1, · · · , n. (6.32)

6.2.3 Convergence Analysis

In this section, we will discuss the DDBN gradient update system with Markovian

switching topological structure, and analyse the mean-square stability of this system.

Let ξi(t) = wi(t) − wj(t) and ζi(t) = vi(t) − vj(t). Then the system (6.31) can be

formulated as:

ξ(t+ 1) = (I − κLτ )ξ(t) + ζ(t), (6.33)

where ξ(t) = (ξT1 (t), ξT2 (t), · · · , ξTn (t))T and ζ(t) = (ζT1 (t), ζT2 (t), · · · , ζTn (t))T . Cor-

responding to this transformation, a new Laplacian matrix is obtained:

Liτ =


l11 − li1 · · · l1n − lin

... . . . ...

ln1 − li1 · · · lnn − lin

 . (6.34)
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Considering system (6.26), assume there is a local neural network h(h = 1, 2, · · · , n)

under a topology τ, (τ ∈ Q). After comparing this network wh with any network wi, the

Laplacian matrix Lhτ can make the controller gain κ satisfy the following conditions:

0 < κλ < 2, (6.35)

where λ is the minimal positive eigenvalue of Laplacian matrix and

λ ∈
⋃Q
τ=1 {λ(Lhτ ), τ ∈ Q}.

If the value of κ satisfies κλ ∈ (0, 2), and we consider that φhτ = I − κLτ , then we

have ρ(φhτ ) < 1, which means ‖φhτ‖ < 1.

Pτ∈Q is a positive symmetric matrix set. Consider a Lyapunov function, we have:

V (ξh(t+ 1)) = ξTh(t+ 1)Pτξh(t+ 1) > 0. (6.36)

Let τ = λmax {Pτ}, τ = λmin {Pτ}, φhτ = maxτ∈Q {φhτ}. Due to ‖φhτ‖ < 1, then we

always have φhτ < 1.

As gradient descent algorithm is used in each iteration, vi(t) < δ̄ will be always true,

i.e., P
{
vi(t) < δ̄

}
= 1. Then we have:

lim
t→∞

E[V (ξh(t+ 1))] = lim
t→∞

E[ξTh(t+ 1)Pτξh(t+ 1)]. (6.37)
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Since γij 6 1, we have:

lim
t→∞

E[V (ξh(t+ 1))]

6 lim
t→∞

Q∑
j=1

γij[φτξh(t) + ζh(t)]TPτ [φτξh(t) + ζh(t)] (6.38)

6 lim
t→∞

Q∑
j=1

γij

[
φτ

Q∑
j=1

γij[φτξh(t− 1) + ζh(t− 1)]

+ ζh(t)

]T
Pτ

[
φτ

Q∑
j=1

γij[φτξh(t− 1) + ζh(t− 1)]

+ ζh(t)

]
(6.39)

6 · · · (6.40)

6 lim
t→∞

[φ̄τξh(0) +
t+1∑
j=1

φ̄τζh(j)]TPτ [φ̄τξh(0)

+
t+1∑
j=1

φ̄τζh(j)] (6.41)

6 lim
t→∞

(
1− ‖φ̄‖t

1− ‖φ̄‖
δ̄)τ̄(

1− ‖φ̄‖t

1− ‖φ̄‖
δ̄) (6.42)

6
τ̄ δ̄2

(1− ‖φ̄‖)2
. (6.43)

Therefore,

lim
t→∞

E[|wi(t)−wj(t)|2]

= lim
t→∞

E[|(wh(t)−wj(t))− (wh(t)−wi(t))|2] (6.44)

62 ∗ lim
t→∞

E[|wh(t)−wj(t)|2 − |wh(t)−wi(t)|2] (6.45)

62 ∗ lim
t→∞

E[‖ξh(t)‖2] (6.46)

6
2τ̄ δ̄2

τ(1− ‖φ̄‖)2
< +∞. (6.47)
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For the proposed DDBN model, the mean-square consensus can be achieved with the de-

signed controller (6.27). It means that all the errors of local DBN parameters lim
t→∞

E[|wi(t)−

wj(t)|2] will converge to zero, which further implies the weights of neural networks can

achieve consensus to the optimal weights w∗. Referring to [119], the distributed learn-

ing framework proposed in this chapter can generate equivalent results as the centralised

DBN.

Distinct from the aforementioned works, we employ the tools of the Mean Squared

Error (MSE) to establish the convergence. Notice that the MSE can diffuse over the

distributed network via the communication channels, and thus, we have considered the

worst case scenario where the most significant error expectation of the agent is used,

as demonstrated in (6.37) - (6.47). It is worth emphasising that [119] has used some

restrictive assumptions, e.g., convexity and basin of attraction to establish the conver-

gence, while the proposed algorithm releases them to the commonly-used assumption.

6.3 Simulation Results and Analysis

6.3.1 Experimental Environment and Data Resources

To test the effectiveness of the proposed DDBN model, fully distributed networks are

built based on MATLAB R2019b and Python 3.6.1.

For the STLF model, the dataset used in case studies is provided by the Global En-

ergy Forecasting Competition (GEFCom) 2017 competition [8] and ISO New England,

including the historical load, daily average temperature and holiday type data for the

period 2016-2019. The electricity load data and average temperature are recorded once

per hour.
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To evaluate the performance of the proposed model, the MSE, Mean Absolute Error

(MAE) and Mean Absolute Percent Error (MAPE) are applied as the performance indi-

cators. MAPE is estimated through the following equation:

εMAPE =
1

N

N∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣× 100%, (6.48)

where yi is the actual load at period i; N is the total length of forecasting periods; and

ŷi is the forecast load at time i.

Similarly, MAE is expressed as:

εMAE =

∑N
i=1 |yi − ŷi|

N
. (6.49)

MSE can be calculated as:

εMSE =
1

N

N∑
i=1

(yi − ŷi)2. (6.50)

6.3.2 Model Setting

Short-term electricity load demand is affected by many factors, including time series,

temperature factors, data types and emergency events. The impact of meteorological

factors on the electricity load is particularly significant because the use of high-power

electrical appliances such as air-conditioning, lighting, and heating is determined by

environmental temperature and time factors [120]. In this chapter, our proposed DDBN

model has the advantage of feature selection, and therefore the STLF model does not

need to be initialised by feature selection and randomly parameter initialisation. The ini-

tialisation work will be finished by unsupervised RBM learning process. Here, weather

factors are quantified based on the environment temperature. Also, the STLF has a sig-

nificant daily periodicity, and therefore the history load in the first two days and one
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week before the forecast date has also been processed as the input variables. The input

and output variable indexes are shown in Table 6.1.

Table 6.1: STLF input and output information.

input features input variables
1-7 actual loads at the previous week

8-14 temperatures at the previous week
15-21 day types at the previous week

22 actual load at 2 days ago
23 temperature at 2 days ago
24 day type at 2 days ago
25 actual load at 24 hours before
26 temperature value at 24 hours before
27 day type at 24 hours before
28 predicted temperature on the forecast day
29 day type on the forecast day

output load value at time t on the forecast day

In order to achieve a unified analysis of various sampling data and improve the pre-

diction accuracy, the raw data are pre-normalised. This chapter implements Gaussian

normalisation to the input data of DDBN; process variables are normalised to zero mean

and unit variance by the following linear transformation:

x?i (k) =
xi(k)− x̄i

σi
, (6.51)

where xi(k) is the ith original input data, x̄i and σi are the average and variance of ith

original input data.

In the simulation studies, the hidden units of local DBN are set as 300, 500 and 200 neu-

rons. The three system communication topologies under consideration are also shown

in Fig. 6.2, each of them has a quarter of dataset.
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Topology 1 Topology 2 Topology 3

DBN1 DBN4

DBN2 DBN3

DBN1 DBN4

DBN2 DBN3

DBN1 DBN4

DBN2 DBN3

Figure 6.2: Communication typologies.

The transition probability matrix of this network is set as:

γ =


0.3 0.4 0.3

0.2 0.3 0.5

0.4 0.4 0.2

 . (6.52)

6.3.3 Experimental Analysis and Comparison

Case 1

This case verifies the effectiveness of the proposed DDBN model. The data from Jan-

uary of 2017 to December of 2018 is selected as the training data, and we randomly

chose four weeks data of 2019 as the testing data, which covers four seasons STLF in

a year. The results are shown in Figs. 6.3 - 6.6 and Table 6.2. The bottom of Figs. 6.3

- 6.6 provides the absolute error at each hour of the test dataset. The blue line is the

forecast results of proposed DDBN model, and it is evident that the proposed DDBN

algorithm has less forecasting error at most of the data points.

From Figs. 6.3 - 6.6 and Table 6.2, the forecast results of the proposed DDBN model

show better fitting to the real load data than the centralised DBN model. For different
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Figure 6.3: Spring short-term load forecasting results.
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Figure 6.4: Summer short-term load forecasting results.
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Figure 6.5: Autumn short-term load forecasting results.
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Figure 6.6: Winter short-term load forecasting results.



CHAPTER 6. STLF WITH DDBN 131

Table 6.2: Comparison of DDBN and DBN models.

MAPE (%) MAE (kWh) MSE (kWh2)
DDBN DBN DDBN DBN DDBN DBN

Spring 1.90 2.40 182.41 247.39 6.31e4 1.04e5

Summer 2.18 2.66 193.52 245.52 6.83e4 1.04e5

Autumn 2.04 2.54 211.53 281.65 7.74e4 1.36e5

Winter 2.08 2.54 194.98 250.56 7.22e4 1.08e5

Average 2.05 2.54 195.61 256.28 7.03e4 1.13e5

seasons and dates, DDBN model can generate satisfactory prediction models in general.

In this case, the average training time of DBN model is 7357.61 seconds, while the

DDBN model only costs 2502.86 seconds. Compared with the centralised DBN model,

the training time consumption of DDBN decreases by 65.98%. Therefore, the proposed

DDBN model meets the STLF requirements and has better accuracy than the centralised

DBN model.

In order to provide results illustrating the distribution of the load forecasting percent-

age errors, box-plots are used to visualise the forecasting errors through five-number

summaries: sample minimum, lower quartile, median, upper quartile, and sample max-

imum [121]. Fig. 6.7 shows the percentage error statistics of hours, weeks and months

in the whole year test dataset among four computing centres, separately.

As depicted in Fig. 6.7, power consumption and forecasting error are different in dif-

ferent periods. Due to the useful unsupervised RBM learning process and distributed

training process, our STLF model can select most of the data information and load

characteristics. From the top figure, the forecast errors in different weekdays are sim-

ilar, which means our model has stable performance over a week. The middle figure

indicates that power consumptions in the morning and evening are higher than that at

noon, and the variance of electricity consumption in the early morning is more signifi-

cant. The bottom figure describes the short-term load observations for each month over



CHAPTER 6. STLF WITH DDBN 132

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.05

0.1

0.15

Sun Mon Tue Wed Thu Fri Sat
0

0.05

0.1

0.15

01:00 06:00 12:00 18:00 00:00
0

0.05

0.1

0.15

M
A

PE
M

A
PE

M
A

PE

0.15

0.1

0.05

0
Sun            Mon           Tue            Wed            The             Fri              Sat

0.15

0.1

0.05

0

0.15

0.1

0.05

0

01:00                  06:00                       12:00                        18:00                       00:00

JAN    FEB   MAR   APR   MAY   JUN   JUL   AUG   SEP   OCT   NOV   DEC

Figure 6.7: Error distribution of STLF.
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the whole year. When the season changes and the hot and cold alternate, the percent-

age error of STLF will be increased (around June and September). However, in other

months, the forecasting error is well controlled within a reasonable range.

Case 2

In this case, we investigate the learning performance of the proposed DDBN model.

Fig. 6.8 depicts the MAPE in the training process among 4 local DDBN agents and

traditional centralised DBN. During the training process, our local DDBN agent has

only a quarter of the dataset of the traditional DBN model. We observe that the local

computing agents of DDBN converge slower than centralised DBN, but can efficiently

get similar accuracy after enough training iterations.
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Figure 6.8: Learning performance comparison with DBN.

In the real power systems, the communication networks may be changed by many rea-

sons, such as cyberattacks and routine maintenance, and therefore we further consider
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the uncertain cyberattack in this case. It is assumed that there is a computing agent

DBN3 which is attacked and loses its ability to communicate with the other comput-

ing agents at 500 iterations, and is re-connected at 1000 iterations after the emergency

repairs.
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Figure 6.9: Learning performance during communication failure.

Fig. 6.9 shows the average MAPE values in successive 200 iterations. It can be seen

that the DBN3 loses its computing power and will not respond to the other neighbouring

agents when the cyberattack comes. However, the rest of computing agents will con-

tinue training through their load dataset and weights. After the computing agent remove

the threat, the DBN3 will be reconnected into the training system so that all other com-

puting agents can share and update their weight information to get better STLF model.

Although the accuracy of STLF model is degraded in next few steps, all the computing

agents can quickly tune the weight of DBN3 to reach a better model. The communica-

tion graph among the agents switches within a finite graph set following a Markovian

chain. Therefore, the proposed algorithm can converge to its optimal location if the
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finite graph set can coverage at least one connected graph. The proposed algorithm can

adaptive to the communication network failures unless the communication graph set

cannot coverage a connect graph. In the case of cyberattacks, the accuracy of STLF

model will not be influenced much by the proposed Markovian switching topology.

Case 3

Here we summarise the different STLF models to illustrate the advantages of proposed

model, three typical existing STLF models (ANN, Support Vector Regression (SVR),

LSTM) are analysed for comparison. The results of different models are summarised in

Fig. 6.10 and Table 6.3. The compared methods have same training data, test data with

3000 training iterations.
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Figure 6.10: Comparison of different algorithms.

From the results given in Fig. 6.10 and Table 6.3, the DDBN algorithm meets the re-

quirements and has better accuracy than other models. For the dataset used in this case,
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Table 6.3: Comparison of different STLF models.

ANN DBN DDBN SVR LSTM
MAPE (%) 3.64 2.00 1.98 2.44 1.95
MAE (W) 460.53 202.31 199.61 256.33 195.64
MSE (W2) 3.36e5 7.27e4 7.19e4 1.13e5 7.03e4

the DDBN algorithm proposed obtains better performance and less prediction errors.

Case 4

We carry out numerical experiments to verify the scalability of the proposed DDBN

model. There are now more than 15.6 million smart and advanced meters operating

across homes and businesses in Great Britain before June of 2019 [122]. The number

of smart meters will continue to grow by around 5% a quarter. These smart meters

will generate massive load data samples in different locations every day, and thus it is

difficult for traditional STLF to collect and analyse those samples relying on a single

computing centre.

Since the quantity of electricity load is developing rapidly, we test the scalability of

the proposed DDBN model. Firstly, we compare the time consumption of the training

process over DDBN, DBN, ANN, LSTM and SVR models. The training speed of the

STLF varies according to the size of load dataset and the model of STLF. The dataset

has been divided as 20000, 40000, 120000 pairs to test the different models. In this

case, the basic structure of the neural networks is set as (250, 350, 200, 1) neurons, and

the DDBN model has four computing agents. The comparison results are shown in Fig.

6.11.

Compared with the centralised DBN method, the DDBN model can realise distributed
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Figure 6.11: Comparison of time consumption.

architecture and solve the STLF problem with distributed computing agents. The dis-

tributed training process reduces the size of a dataset for training in each local network,

and therefore it has advantages in training speed. From Fig. 6.11, it is evident that the

training time of centralised DBN model is much higher than other models. Due to the

pre-training process of RBM, the training speed of ANN and SVR is faster than DBN

and DDBN if the size of the training dataset is small. However, with the increasing of

load data quantity, DDBN model reflects the advantages of distributed structure, which

can significantly accelerate the training speed of the model.

To illustrate the advantages of DDBN more clearly, we record the training speed under

different topologies of DDBN models. The topologies of the distributed models are set

as an undirected ring network [123]. Fig. 6.12 shows that the proposed DDBN model

can reduce the training time with an increasing number of computing agents. It also

reflects that the proposed DDBN model can be applied in STLF. At the same time, if

the load dataset continues to increase, the aim of fast training can be achieved by adding
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Figure 6.12: Time consumption with different computing agents.

more computing agents.

6.4 Summary

This chapter proposes a novel Markovian switching consensus based DDBN model to

solve the STLF problem. The proposed DDBN model separates the massive load dataset

into several local computing agents, which significantly reduces the training time of

STLF and effectively avoids the over-fitting problem with its fully distributed structures.

Meanwhile, the Markovian switching technology is applied in our DDBN model to

improve the stability and robustness of STLF model.

In the numerical simulations, a real-world dataset has been applied to evaluate the per-

formance of the DDBN model. The multiple seasonal variations can be forecast by the

proposed approach, and the simulation results show the advantages in reducing time
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consumption and improving forecast accuracy of STLF.



Chapter 7

Conclusions

In this chapter, we first conclude our main contribution, and then we provide some

possible future works.

7.1 Conclusions

In this thesis, three important issues for the power system management have been ad-

dressed with different algorithms.

First, a distributed initialisation-free control algorithm is proposed for demand side man-

agement by maximising the total revenue of the power system while considering the sys-

tem active power constraints and local physical constraints. The proposed distributed

optimisation strategy is applied based on multi-agent system framework, which is ro-

bust to dealing with single point failures compared with centralised approaches. The

proposed distributed manner can handle the initial errors. Therefore, the power units

can plug-in or plug-off from any power allocations. Moreover, the proposed distributed

140
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algorithm can balance the time-varying power mismatch between supply and demand

side in an isolated power system.

To solve the bidding issue of BESS in power markets, we formulate a function approx-

imation based reinforcement learning model for the BESS owners to maximise their

daily bidding revenue in energy market and regulation market. This decision-making

approach has taken into account the management of the BESS, bidding of the energy

market auction and bidding of regulation market auction, which is seldom integrated in

the previous papers. The ageing model of BESS is also considered in this thesis, which

can protect the health of BESS while maximising individually profit. The proposed

algorithm can provide a bidding strategy by analysing historical market data and local

rewards without considering the information of its rivals. Therefore, the proposed FARL

algorithm can effectively optimise the bidding strategy under an uncertain environment.

Finally, to handle the redundant data and provide accurate short-term load forecast-

ing, we integrate the deep learning algorithm and the distributed optimisation algorithm

together. A Markovian switching framework based distributed deep belief network al-

gorithm is proposed for accurate short-term load forecasting. The introduced method

separate the historical load data under a fully distributed multi-agent framework to re-

duce the training time and computing power. In the meantime, we develop the commu-

nication network by Markovian switching topology to enhance the cybersecurity of the

power data. Moreover, simulation cases are studied to reveal the accuracy and effective-

ness of our approach.
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7.2 Future Research

In the future research, the following open problems could be heuristic topics for the

distributed applications of power systems optimisation and management.

1. In the absence of power flow constraints, the current data-driven solutions cannot

solve the optimal bidding problem of the optimal power flow type with power

system operating constraints, including voltage, heat, current and loss. These can

be further studied in the future.

2. It is possible to integrate the data-driven methods to demand side management

problems. In a power system, there are numerical of smart meters in demand

side, and they will generate a mass of data. With proper analysis, these data are

expected to improve energy efficiency.

3. Most existing results for data-driven methods in power systems are designed and

implemented by model-based algorithms, such as model predict control, machine

learning and deep learning methods. For fast developing renewable energy appli-

cations, the power system needs time-varying operations and objectives, which

is hard to forecast accurately by these methods. Therefore, online adjustment

algorithms are supposed to overcome the error caused by the time-varying char-

acteristics of the power systems.
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