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Abstract 

Winding fault takes up a considerable proportion among all the fault types of transformer.  

Frequency response measurement of transformer has been developed as an effective tool to 

detect the mechanical integrity of windings. In Frequency Response Analysis (FRA) 

technique, the diagnosis measurement should be compared with the reference 

measurement, and winding displacement/deformation may be suggested by the occurrence 

of difference. However, no IEEE or IEC standard has been published regarding the 

interpretation of frequency responses. Also, a large amount of frequency responses have 

been accumulated by the utilities over many years. Utilities may or may not know 

transformer design information, such as the winding construction types. Different winding 

construction types are susceptible to different modes of mechanical deformations, and the 

same asset management method can be applied to transformers with same winding 

construction types.  

Two methods are proposed to derive the mathematical expression for the FRA trace, in the 

format of a transfer function. Using this mathematical expression data can be generated in 

the same format, no matter how or by which FRA measurement device the original FRA 

trace is produced; and the same data format is of necessity for applying numerical indices 

and AI techniques to interpret FRA. Feature Extraction Method divides the frequency 

range into several regions, and complex poles and zeros are extracted to form a feature 

transfer function, the difference between which and the measured data is then corrected by 

real poles and zeros and the constant. It is validated by 48 frequency responses of eight 

400/275/13 kV autotransformers. Extreme Points Identification Method detects extreme 

points and iterates to optimise the transfer function’s parameters. The Feature Extraction 

Method is good at describing the subtle feature of frequency responses, whilst the Extreme 

Points Identification Method ensures the simplistic expression to be identified, which is 

physically achievable by filter design principle. Both methods have been successfully 

applied for the diagnosis of faulty transformer winding. 

Two methods are proposed to identify the winding construction types using frequency 

responses. The supervised machine learning method, Support Vector Machines (SVM), is 

utilised to build an identification model, using FRA traces of transformers with known 

winding type. After testing and validating, the SVM model is then applied to FRA traces 

with unknown winding type information. A set of data from the UK’s National Grid FRA 

database, was used to demonstrate and verify the SVM model. The proposed method can 

successfully identify winding types including multiple layer, plain disc, interleaved disc 

and single helical windings. The unsupervised machine learning method, Hierarchical 

Clustering, is utilised to cluster frequency responses according to the similarity and 

dissimilarity. Once the frequency responses are in the same cluster, it is in default to think 

the windings should share the same winding construction type. It was applied to UK’s 

National Grid FRA database so the frequency responses of transformers with unknown 

winding type can be identified by being clustered into a group together with a frequency 

response with known winding type.  



 

 
12 

 

Declaration 
 

No portion of the work referred to in this thesis has been submitted in support of an 

application for another degree or qualification of this or any other university or other 

institution of learning. 

Copyright Statement 
 

(i) Copyright in text of this thesis rests with the author. Copies (by any process) 

either in full, or of extracts, may be made only in accordance with instructions 

given by the author and lodged in the John Rylands University Library of 

Manchester. Details may be obtained from the Librarian. This page must form 

part of any such copies made. Further copies (by any process) of copies made in 

accordance with such instructions may not be made without permission (in 

writing) of the author. 

 

(ii) The ownership of any intellectual property rights which may be described in 

this thesis is vested in the University of Manchester, subject to any prior 

agreement to the contrary, and may not be made available for use by third 

parties without the written permission of the University, which will prescribe 

the terms and conditions of any such agreement. 

 

(iii) Further information on the conditions under which disclosures and exploitation 

may take place is available from the Head of Department of Electrical and 

Electronic Engineering.  

 

  



 

 
13 

 

Acknowledgment 
 

I would like to express my sincere gratitude to my supervisor Prof Zhongdong Wang for 

her continuous encouragement and support to my PhD study. I respect her for her 

intellectual curiosity, meticulous academic attitude, and cares about her students. She is my 

role of model for life. 

I would like to thank Prof Paul Jarman, Mr Andrew Fieldsend-Roxborough and Dr Gordon 

Wilson from National Grid for the financial and technical support on the FRA project. 

I would like to thank Prof Zanji Wang from Tsinghua University, during and after his short 

academic visit to Manchester, for providing the technical help in the verification of my 

proposed method for transfer function estimation. His kind support and valuable advices 

towards my research are highly appreciated.  

I would like to thank Dr Hongzhi Ding from Doble Engineering for providing the helpful 

information regarding the investigated faulty transformers.  

Also, I would like to thank my friends and colleagues for all the peer support they provided 

during my PhD study. 

Last but not least, I would like to thank my family for their moral and financial support, 

encouragement and constant love for me, especially my father and mother. 

  



 

 
14 

 

Blank page 

  



 

 
15 

 

 Introduction Chapter 1

 

1.1 Introduction 
 

Secure and stable electricity supply depends substantially on the reliability of equipment 

used in a power system. Among all the electrical equipment, transformers are one of the 

most important and expensive apparatus. The lifetime of a transformer is expected to be 

around 40 years [1], and longer operation time of transformers can be acquired by proper 

asset management. Indeed, the in-service time of many transformers in the UK has already 

exceeded the estimated lifetime. Condition monitoring and diagnostics of transformers are 

of importance to avoid failures or outages which usually cause significant economic losses. 

In fact, besides ageing, various types of transformer faults have impacts on the lifetime of a 

transformer. Transformer faults can be generally classified into thermal, mechanical and 

electrical faults according to the fault causes, or faults in winding, tap changer, insulation 

systems, etc. according to the fault locations. Mechanical fault of transformer windings is 

referred here as the winding movement, i.e. winding displacement or deformation. 

According to a survey by CIGRE, among all the failures for large power transformers with 

on-load tap changers, the percentage of winding failure was 19%, while for power 

transformers without on-load tap changers, the percentage of winding failure was 26% [2]. 

Figure 1-1 illustrates the percentage of transformer fault in each category [3, 4]. It can be 

seen that winding mechanical failure takes up a considerable percentage, 30.56%, among 

all the transformer fault types for transformers aged 15 to 25 years [4]. 

 
Figure 1-1 Failure Percentages of Transformers Aged 15-25 Years [3] 

Frequency Response Analysis (FRA) has been developed as an effective and sensitive 

technique to verify the winding integrity of transformers. Different frequency regions of 
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the FRA traces are dominated by different factors, such as transformer core, interaction 

between windings, winding properties and measurement equipment. Frequency response 

should be measured and recorded at the transformer factory, which can be used as a 

reference/baseline for future diagnosis. The FRA technique compares the reference and 

diagnostic frequency responses, and the deviation between them can be interpreted to 

firstly identify if there is a mechanical fault or not, and secondly if possible, to ascertain 

the type, severity, and location of winding fault. It is noticeable that different winding 

construction types may be susceptible to different winding faults due to their difference in 

physical structure. However, no IEEE or IEC standard has been published regarding the 

interpretation of frequency responses. 

This PhD study has two main objectives. One is to develop a mathematic representation of 

FRA curves in the format of a transfer function. The FRA traces then can be expressed 

mathematically in the same format, no matter how or by which FRA measurement device 

the FRA curve is produced. This will ultimately help apply numerical indices and AI 

techniques for FRA interpretation. The other is to identify the winding construction types 

using frequency response, for more accurate interpretation of frequency responses and 

more efficient asset management. 

 Basic Understanding of Transformer Construction 1.1.1

 

A transformer is an electrical apparatus which transfers electrical energy between two or 

more circuits through inductive coupling conductors, i.e., the coils (also called windings), 

without electrical connection between them. The changing current in the primary winding 

of the transformer generates a changing magnetic field, which in turn induces a changing 

electromotive force (emf) in the secondary winding. The voltage ratio of primary and 

secondary windings is decided by the ratio of turns of conductors in primary and secondary 

winding.  

Transformers can be categorised according to power capacity, duty, frequency range, 

voltage class, cooling type, etc. The basic components of power transformers generally 

include core, windings, insulation systems, tap changer, bushing, oil conservator, breather, 

Buchholz relay and other accessories.  

A transformer core provides the main path for magnetic flux to flow when a transformer is 

in operation. There are two types of transformers in terms of core construction: core-form 
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and shell-form transformers. Their main difference lies in the way how windings are 

wrapped. As shown in Figure 1-2, windings surround the core in a core-form transformer, 

whilst in a shell-form transformer the core surrounds the windings. The core-form 

transformers are used widely in Europe and the UK. In Figure 1-2 (b), a three-phase three-

limb core-form transformer is illustrated. In this arrangement, the cross section of yokes at 

the top and bottom is designed the same as the cross section of the limbs, thus a return path 

of the flux is not needed. For large transformers, because of the limitation on its height 

during transportation, the cross section of the yokes is therefore reduced to about half of 

the cross section of the limbs. Consequently, a three-phase five-limb core-form transformer 

should be used to provide flux return path, as shown in Figure 1-2 (c). 

 
 (a) Shell-Form Transformer (b) Three-Limb Core-Form Transformer (c) Five-Limb Core-Form Transformer 

Figure 1-2 Core and Shell Type Transformers [1] 

Insulation materials used in an oil immersed power transformer include insulating oil, 

cellulose paper and pressboard, and wood-based laminates. The transformer’s durability 

mainly depends on the insulation quality and the design of insulation system. 

Tap changers are used to regulate the secondary voltage which is influenced and varied by 

load. The tap changers are normally connected to the high voltage windings because it is 

easier to access than the low voltage windings. Another advantage is that the current is less 

and this leads to better durability of the tap changers. Depending on whether the 

transformer is in operation when adjusting turn ratios, tap changers can be classified into 

two categories: on load tap changer and off circuit tap changer. 

A transformer bushing is an insulated device. It provides a safe passageway for an 

electrical conductor, which carries current, to go through the grounded transformer tank. 

The conductor can be built inside the bushing, or the bushing can be constructed allowing 

the conductor to be drawn through it. Porcelain, oil paper and/or resin are commonly used 

insulation types for bushings. An energised conductor, which is close to the material at 

earth potential, produces an electric field. The bushing can control the shape and strength 

of the electric field, and it reduces the electrical stresses on the insulating materials.  
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Windings are one of the most important components in a transformer; and the choice of 

winding construction type is greatly influenced by the core type, the transformer 

manufacturer’s historic experience, the transformer’s voltage and power ratings. In 

general, for the same power rating, a higher voltage winding prefers to use the winding 

construction type which gives a larger winding series capacitance due to the requirement to 

withstand a stringent Basic Insulation Level (BIL) level. 

In shell-form transformers, sandwich type windings are used, and the cross-sectional top 

view of Figure 1-2 (a) is shown in Figure 1-3. The high voltage winding sections are 

located between low voltage winding sections, hence the name of sandwich type. The 

sandwich type windings have high short-circuit durability and high mechanical strength. 

 
Figure 1-3 Sandwich Winding of Shell-Form Transformer [5] 

In core-form transformers, concentric coils are utilised and windings can be generally 

categorised as single helical type, multilayer type, and disc type [6]. The Single Helical 

winding owns the smallest winding series capacitance and can be used when the voltage is 

low. Plain Disc windings and Intershielded Disc windings have been applied for a wide 

range of voltage levels (normally for a voltage level <= 132 kV but sometimes 275 kV). 

Interleaved Disc windings are suitable for higher BIL level (normally for a voltage level 

>= 275 kV). For historical reasons some manufacturers use Multiple Layer windings’ 

design rather than disc-type windings, hence Multiple Layer windings are used for all high 

and low voltage windings in a transformer. It is also applicable for voltages from 33 kV 

right to 400 kV, or even up to 800 kV [7]. Figure 1-4, Figure 1-5, Figure 1-6 and Figure 

1-7 are the schematic figures of the windings of core-form transformers, illustrating how a 

winding is geometrically arranged. The turn numbers given in those figures are electrical 

turn number representing electrical continuity, e.g. turn 1 is connected with turn 2 although 

they can be geometrically/physically apart.  
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Figure 1-4 shows a 3D cross-sectional view of Single Helical winding structure. It rolls its 

first turn from the top and ends its last turn at the bottom using a former. This type of 

winding is only suitable for low voltage, e.g. a tertiary winding in a transmission 

transformer. It can also be used for a generator step-up transformer. This is due to the fact 

that the generator step-up transformer has low voltage and thus high current in the primary 

winding. Considering the limitation on current density of the conductor material, the cross 

section of the primary winding’s conductor should be large enough for a high current, 

making the helical winding suitable to be used for low voltage primary winding [8].  

 
Figure 1-4 Single Helical Type Winding 

For convenience, when illustrating the structure of the following winding construction 

types, the half 2D cross section of an axial symmetric arrangement, centred to the centre 

line of the core, will be used instead of the 3D one.  

The difference between the two interlayer connections for Multiple Layer winding is 

illustrated in Figure 1-5. There are oil ducts and solid insulations between the layers. It is 

not practical to link the turn at the bottom part of a layer to the turn at the top part of next 

layer due to the limitation of space, as shown in Figure 1-5 (a). The construction of linkage 

in Figure 1-5 (b) is the more preferable design. For transformer high voltage windings, 

when Multiple Layer type winding is utilised, the voltage drop is large between the 

adjacent layers and this needs a higher insulation level. The Multiple Layer type winding 

tends to have less mechanical strength, which needs some special design consideration. 
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                     (a) Inter Layer Connection 1                                  (b) Inter Layer Connection 2 

Figure 1-5 Multiple Layer Type Winding 

Plain Disc type, Interleaved Disc type and Intershielded Disc type windings are widely 

used disc-type windings for core-form transformers in the UK. The disc type winding is 

convolved in such a way that the horizontal discs are wound one disc after another disc, as 

shown in Figure 1-6, while for Multiple Layer type windings the vertical layers are built in 

order. Compared with Multiple Layer winding, the Plain Disc winding design benefits the 

high voltage transformer applications due to less insulation requirements. 

  
Figure 1-6 Plain Disc Type Winding 

Higher level of insulation ability is needed when the voltage rating of transformer goes up, 

and this can be simply represented as BIL. The BIL is usually tested by lightning impulse 

voltage tests. As we know that lightning impulse is composed of high frequency 

components, the transformer winding cannot be regarded as an inductive component any 

longer and the winding capacitance, series and ground, will come to play. The initial 

impulse voltage distribution coefficient α is defined as: 
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𝛼 = √
𝐶𝑔

𝐶𝑠
 Equation 1-1 

where Cg is the winding capacitance to ground, and Cs is the winding series capacitance. In 

this sense α becomes an important parameter for us to estimate the degree of non-linear 

distribution of the impulse voltage along the winding [9]. 

On the other hand, the design practice for the volts per turn under the AC voltage tends to 

remain unchanged, whilst the turn number should be increased with the increase of the 

voltage rating. With a Plain Disc winding, the increase of turn number will simply reduce 

the absolute value of winding series capacitance and increase the winding capacitance to 

ground, which results in more non-linear distribution of lightning impulse voltage along 

the winding. This is the main reason why Plain Disc windings at higher voltage failed the 

BIL test in factory during 1950s. Interleaved Disc type was thus introduced by English 

Electric, UK, in the late 1950s [10]. Its series capacitance is higher than that of the Plain 

Disc winding type. Interleaved Disc winding is labour intensive as there are many joints 

and cross-overs needed to be hand-made. To save the labour cost, another method to 

increase series capacitance is used as the invention of the Intershielded Disc type winding 

in Japan by Morita, Ohta, and Kurita in 1970s [11-13]. The Intershielded Disc winding has 

an lower level of series capacitance than Interleaved Disc winding [9]. Shielded turns 

added between winding turns are able to make the voltage distributed more uniformly 

along a winding, and therefore a lightning surge impact can be tolerated. The arrangements 

of the two disc windings are shown in Figure 1-7. 

 
                (a)  Interleaved Disc Type Winding                       (b) Intershielded Disc Type Winding 

Figure 1-7 Disc Type Windings 

The variations in series capacitance, ground capacitance and inductance of different 

winding construction types will lead to the difference of their RRA characteristics. This is 
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why it is important to understand the transformer design and manufacture development 

history. The voltage and power ratings of a transformer will give us clues on the winding 

equivalent parameters, more importantly knowing the manufacturer related winding 

technology will also help us to estimate the range of the Cs, Cg and L values. 

 Transformer Condition Assessment Methods 1.1.2

 

Periodical condition assessments of in-service transformers, either by online or off-line 

tests, are used for asset management. For different types of transformer faults, different 

methods and tools have different sensitivity, and unfortunately there is no “one fit for all” 

tool at the moment for fault detection and it is unlikely in the near future. Hence the power 

utilities use a suite of methods/tools to conduct health assessment. Dissolved Gas Analysis 

(DGA), Partial Discharge Analysis (PDA), and radio interference analysis are commonly 

used online testing methods. Frequency Response Analysis (FRA), Capacitance and 

Power/Dissipation Factor (C&PF/C&DF) test, Polarisation and Depolarisation Current 

(PDC), and Frequency Domain Spectroscopy (FDS) are some other diagnostic techniques 

intended for offline tests. 

Dissolved Gas Analysis (DGA) is the most frequently used method to detect incipient 

electrical or thermal faults, and it has a tremendous advantage of either conducting 

laboratory based tests on sampled oil or using on-line DGA monitors [14]. Research 

suggested that the percentage of the gases extracted from the oil can help identify types of 

fault, according to Roger’s ratio [15]. Recently the industry practice tends to emphasise 

simplicity, so the key gas method prevails. As an example, if a large quantity of hydrogen 

(H2) gas is detected, a partial discharge type of fault may exist in the transformer. In the 

same logic, ethylene (C2H4) may represent a thermal fault while carbon monoxide and 

dioxide (CO and CO2) may represent a cellulose related fault. 

The Partial Discharge Analysis (PDA) technique can be used to recognise the PD 

phenomenon [16]. PD as defined by IEC 60270, is a localized discharge in a solid or liquid 

dielectric insulation system under high-voltage field stress [17]. If unusual values such as 

gas-in-oil values are detected, PD measurement methods can be used for further diagnosis. 

The multi-terminal PD measurement, Ultra High Frequency (UHF) PD measurement 

method, and the acoustic PD measurement are based on the detection of the electric 

currents, electromagnetic wave, acoustic radiation of the PD phenomenon, respectively. 

Electrical PD measurement is the most sensitive method to directly detect the discharge 
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signal [18]. The localisation of a PD source can be identified by the UHF method 

according to the difference of time of flight measured by different sensors. Research has 

also been conducted recently to locate PD source through UHF signal amplitude strength 

attenuation [19]. However, there is a limitation on the amount of the UHF sensors to be 

used, which is normally 3, through the oil filling valves. Thus the acoustic localisation 

method can be used; piezo-electric acoustic sensors are installed on the transformer tank 

[20].  

As for offline tests, capacitance and power factor of insulation can be measured between 

windings or between winding and ground at power frequency, for the purpose of 

identifying the ageing and degradation of insulating material [21].  

In Frequency Domain Spectroscopy (FDS) test, the complex capacitance/permittivity and 

dielectric power/dissipation factor are measured at different frequencies, normally from 1 

mHz to 1 kHz. Oil/paper conductivity, temperature, moisture in the insulation, insulation 

ageing, acids, etc. are the important influencing factors of FDS. The FDS properties can be 

used to assess the ageing and/or dryness states of a transformer oil-paper insulation system. 

Typically, in the frequency region 0.01 Hz to 10 Hz, the dielectric response is primarily 

affected by the oil properties, while the frequency region below 0.01 Hz and above 10Hz is 

mainly impacted by the properties of solid insulation i.e. paper and pressboard. The FDS 

measurement is time-costing at low frequencies [22].  

Polarisation and Depolarisation Current (PDC) measurement is carried out in the time 

domain to determine the conductivity, moisture content, and ageing status of transformer 

insulation system. A step voltage is applied to the insulation sample, and afterwards, the 

sample is short circuited. During this process, the polarization (charging) and 

depolarization (discharging) currents are recorded. Normally, larger currents indicate 

higher conductivity, higher moisture content and worse ageing state of the transformer 

insulation materials [23, 24]. 

Frequency Response Analysis (FRA) is an effective way to assess transformer mechanical 

condition, particularly on the condition of transformer windings in terms of winding 

displacement and deformation. It is capable to discover winding mechanical faults without 

intruding inside a transformer. For frequency response measurements, the transformer 

winding is usually stimulated by a variable frequency sinusoidal signal at the injection 

terminal point and the response signal is received and measured at another winding 

terminal point. The so called frequency response of transformer winding is described in the 
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frequency domain by the magnitude ratio and phase difference between the injected and 

received signals. The frequency range is normally from a few Hz to a few MHz.  

The frequency response measurement is normally carried out by manufacturers before 

dispatching the transformer to the site first, as the reference for future diagnostic FRA 

measurements, which are conducted normally after the transportation and installation of a 

transformer, or after a system short circuit fault current passes through the transformer, or 

just during a periodical maintenance outage. The FRA trace is influenced by the collective 

effect of the electrical parameters of the winding equivalent circuit, i.e. the capacitance and 

the inductance, which are determined by the physical dimensions and structure of 

windings. The alteration in the reference and diagnostic frequency response traces are 

mainly caused by the changes in the electrical parameters of the windings, and thus 

winding displacement/deformation may be indicated.Shifting/appearance/disappearance of 

resonance/antiresonance is regarded as the key feature for FRA to diagnose the winding 

displacement/deformation. In general, shifting of higher resonant frequency indicates a 

smaller geometrical change in a winding or part of the winding; and shifting of lower 

resonant frequencies (discard the influence of core magnetization) indicates a larger 

geometrical change of winding or the relative change between windings’ positions. Not 

only the deformation, displacement or damage of the transformer winding, the FRA 

technique can also detect the core defects, the contact resistance, the residual 

magnetization, the floating shield, etc. However, the difficulty in interpreting the FRA is to 

correlate the changes in the FRA traces to the change of physical parameters of the 

winding’s equivalent electrical circuit. No standard has been developed to guide the 

identification of winding mechanical faults, or to quantify severity of winding movement. 

 Short-Circuit Withstand Capability and Winding Movement 1.1.3

 

When the power transformers are in operation, the current-carrying windings are 

surrounded by magnetic flux. Consequently, electromagnetic forces are induced on the 

windings, which lead to mechanical stress. The forces can be transferred through the 

windings to other structural components of the transformer. 

The short-circuit withstand capability of transformers refers to their ability to survive the 

external short circuit event, i.e., system disturbances. There are different kinds of short 

circuits in the power system, such as single line to earth short circuit, double phase short 

circuit, and three phase short circuit. When a short circuit fault happens, the current goes 



 

 
25 

 

through an unexpected pathway with very low impedance, thus a high level of short circuit 

current flows in the power network. The short circuit current can be dozens time larger 

than the current in normal operation. Since the electromagnetic force is proportional to the 

squared current, the winding need to stand hundreds time larger induced mechanical 

strength compared with that in the normal condition. Huge mechanical forces can be 

caused in milliseconds. Though the system protection procedure generally interferes 

promptly, damages can still be caused [25]. With the increase in voltage and power ratings, 

the short-circuit withstand capability of the transformers have become more demanding at 

the transformer design stage. 

The induced large mechanical force may lead to the deformation, displacement or damage 

of transformer winding. There are two types of winding deformation. One is the radial 

deformation and the other is the axial displacement. 

The leakage magnetic flux going axially through the core window will generate a radial 

force, which may lead to the radial deformation. The inner (LV) winding withstands the 

inward radial force, while the outer (HV) winding withstands the outward radial force, as 

shown in Figure 1-8 [25]. This can be explained by the left-hand rule, considering the fact 

that the current directions are different in the HV and LV windings, while they are located 

in the same magnetic field. The outward radial force on HV winding is resisted by the 

tension of the conductor along with the friction force between turns. As a result of the 

outward radial force, the tensile tangential mechanical stress is developed. The conductor 

material, copper, has comparatively high material yield strength, which means the HV 

winding does not normally fail. When the tensile tangential mechanical stress exceeds the 

conductor material yield strength, it can lead to the damaged insulation, local axial 

slackness, and cracker of the winding. For the LV winding, the compressive tangential 

mechanical stress is developed. There are two failure patterns of compressive-stressed 

winding. One is the forced buckling and the other the free buckling, depending on the 

stiffness of the winding conductor and the winding support structure. When the stiffness of 

the support structure is stronger, the forced buckling occurs as shown in Figure 1-9 (a) 

[26]. Otherwise, when the winding conductor is stronger, the free buckling occurs. The 

winding can move inwards or outwards for the free buckling, and the outwards direction is 

illustrated in Figure 1-9 (b) [26].  
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Figure 1-8 Radial Forces and Mechanical Stresses [25] 

                     
(a) Forced Buckling                 (b) Free Buckling 
Figure 1-9 Radial Deformation [26] 

The axial force consists of two parts. The first part is the axial compression force. It is 

generated on parallel conductors which carry currents in the same direction, in the 

magnetic flux caused by the conductors themselves. The second part is the axial expansion 

force. The conductors at the bottom and top of the winding withstand axial expansion 

forces in the opposite direction, which direct axially to the winding centre. The expansion 

force is caused by the radial leakage magnetic flux, which is induced by other conductors 

on the bottom and top of the winding. Normally there is a displacement between the 

magnetic centres of the HV and LV winding, which is a magnetic unbalance. A net axial 

force is caused consequently, which can enlarge the axial displacement between the HV 

and LV winding further. The axial forces may lead to different failure modes, such as the 

titling collapse, the telescoping, conductor bending, etc. The conductor titling happens 

when the adjacent set of conductors shift oppositely, and the cross sections of the normal 

and tilted conductors are shown in Figure 1-10 [25]. The telescoping only occurs in layer 

type windings, where some of the turns move axially over the adjacent turns. The 
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conductor may also bend between the support columns, as shown in Figure 1-11 [27]. 

Damage to the conductor insulation is one consequence of the axial force related failures.  

 
(a) Normal Conductors                         (b) Tilted Conductors 

Figure 1-10 Conductor Tilting [25] 

 
Figure 1-11 Conductor Bending [27] 

The physical deformation of transformer windings leads to the variation in electrical 

parameters of the winding’s equivalent circuit. Therefore, the diagnostic frequency 

response of the faulty windings varies from its reference frequency response.  

1.2 FRA Measurement and Data Storage 

 

Several FRA measurement connection methods have been developed and applied, of which 

the sensitivity are different to different types of winding faults. To make the frequency 

response comparable, ideally the same connection method should be used for the reference 

and diagnostic FRA measurements. Besides, due to the choice of different measurement 

equipment, the measured frequency response may be stored in different format. Generally, 

a unified data format is desired for the convenience of further analysis. 

 FRA Measurement 1.2.1

 

The sweep frequency response analysis (SFRA) [28] and the impulse frequency response 

analysis (IFRA) [29, 30] are two methods of frequency response measurement, which are 
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illustrated in Figure 1-12. The main difference between them lies in the injected signals. 

IFRA injects an impulse voltage signal, whilst SFRA injects a sinusoidal signal with 

varying frequency on a wide frequency range. If IFRA is used, the time domain signals, 

both injected and responding signals, can be transformed into the frequency domain using 

Fast Fourier Transform (FFT). 

           
                                (a) IFRA                                                                          (b) SFRA 

Figure 1-12 Methods of Determination of a Transformer’s Transfer Function[31] 

In 1966, W. Lech and L. Tyminski from Poland proposed the Low Voltage Impulse (LVI) 

method, which was found to be sensitive to detect winding movement [29]. In 1992, P. T. 

M. Vaessen and E. Hanique from KEMA laboratories, the Netherlands evolved this 

method into FRA method in their study on power transformers between 100 kVA and 450 

MVA [30]. The input signal and the output signal were sampled in the time-domain, and 

the signals were converted into the frequency domain through FFT. Aliasing was avoided 

by using a low voltage impulse generator with adjustable output voltage from 0 to 300 V. 

A relatively high output voltage leads to a better signal to noise ratio. The resolution of 

both magnitude and phase responses in the frequency domain could be guaranteed. The 

reproducibility and simplicity in implementation of this method were proven. This 

technique was also called as ‘transfer function’ by T. Leibfried and K. Feser at Siemens, 

Germany in 1999 [32], and by E. Rahimpour at the University of Tehran, Iran [33, 34] and 

J. Christian and K. Feser at the University of Stuttgart/Siemens, Germany [35-37]. 

Actually, what they call ‘transfer function’ is the measurement data of frequency response, 

which is different from the ‘mathematical expression’ concept in the following chapters of 

the PhD thesis. 

The SFRA technique was firstly introduced in the year of 1978 by E. P. Dick and C. C. 

Erven from Kinectrics Inc, Ontario Hydro, Canada [38]. They analysed the sweeping 

frequency response results of five different transformers and found that the alteration of 

inter-disc capacitance, inter-winding capacitance, winding inductance, bushing capacitance 

will lead to the changes in the frequency response traces, which suggested the feasibility of 

diagnosis of transformer windings by the frequency response method. A simple equivalent 
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circuit model of the transformer winding was built, but the mutual inductance was not 

considered in this model. The authors suggested that though the correlation between the 

parameters of the electrical equivalent circuit and the FRA traces is proved, it still remains 

difficult to accurately interpret the frequency responses. 

In the past decades, SFRA has been widely used for transformer winding deformation 

diagnosis. FRA technique has good performance in detecting winding mechanical faults, 

including axial bending displacement, radial deformation, short-circuit turns, bushing 

faults, and insulation degradation [34, 39-48]. The IEEE standard C57.149 is developed to 

guide FRA measurement of oil-immersed power transformers [49]. The measurement set 

up, the measurement process, the storage of data are specified in this standard. However, 

for the interpretation of the data, the IEEE standard only provides the typical FRA 

examples to illustrate the failure modes without any further detailed explanations. The IEC 

standard 60076-18 also focuses on the measurement technique and instrument while no 

interpretation guidance is provided, although some FRA measurement examples 

illustrating the influencing factors are included in the annex [50]. The CIGRE brochure 

WG A2.26 aims to provide the basic information of FRA to the non-experts to standardise 

test techniques, and to propose for further study on the improvement of FRA interpretation 

[51]. 

According to IEC 60076-18, the FRA measurement are usually arranged as shown in 

Figure 1-13 [50]. An input signal is injected to the winding system through the source lead, 

which is noted as line A in Figure 1-13 (a). The output signal is measured from a 50 Ω 

earthed resistors through the response lead C. The reference lead is noted as B while lead 

D represents the earth connection. 

 

 
(a) Measurement leads 
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(b) End-to-End Measurement  
Figure 1-13 FRA Measurement Setup [50] 

In [52], J.A.S.B. Jayasinghe and Z.D. Wang, from the University of Manchester, UK, 

studied the influence of connection methods on frequency responses. They carried out 

sensitivity studies regarding simulated axial winding deformation, forced buckling on the 

low voltage winding and conductor axial bending on the high voltage winding, using a 

model of 30 MVA 132/11 kV transformer. Their study concluded that the ‘inductive inter-

winding measurement’ method has the best performance both in the diagnosis of axial and 

radial displacement. As for the axial bending of conductor, the ‘end-to-end measurement’ 

method is the most sensitive method. The authors suggested that ‘end-to-end measurement’ 

and ‘inductive inter-winding measurement’ connection method should be both used, in 

order to identify most types of winding deformation.  

In IEC standard 60076-18, the end-to-end measurement, end-to-end short circuit 

measurement, capacitive inter-winding measurement, inductive inter-winding 

measurement are introduced.  

The end-to-end measurement is the most common connection method, as shown in Figure 

Figure 1-13 (b), and it is also called open-circuit measurement in the IEEE C57.149 

standard. This measurement should be carried out on one end of a winding to the other end, 

with all the other terminals floating, and the phases and windings set as apart as possible. 

Input and output voltages are recorded on the two ends of the winding under test. [49]. 

The end-to-end short circuit measurement method is made on a single winding as well. 

However in this method, the other winding should be short-circuited, as shown in Figure 

1-14, using a three-phase YNd1 transformer as example. By this configuration, the 

influence of the core is eliminated, and focus can be put on the bulk leakage inductance 

between the windings. Apart from the low freuqency region which is contolled by the core, 

its frequency response at the winding-under-test dominant region is similar to that of end-

to-end open-circuit measurement. 
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The inductive inter-winding measurement, as shown in Figure 1-15 using a three-phase 

YNd1 transformer as example, is made on two windings from the same phase. The other 

ends of the two windings should be earthed. This connection method is also called the 

transfer voltage measurement. All the terminals of other windings should be left floating. 

In the low frequency region, the frequency response is controlled by the voltage ratio of the 

two windings. The higher frequency region is not the emphasis of this measurement 

configuration.  

Same as the inductive inter-winding measurement, capacitive inter-winding measurement 

is performed on two windings from the same phase, while the ends of the two windings are 

left floating, as shown in Figure 1-16. With the two windings isolated, the frequency 

response is dominated by the network impedance between them. The magnitude of the 

frequency response has a rising trend when frequency increases, which is capacitive. 

 
Figure 1-14 End-to-End Short-Circuit Measurement [50] 

 
Figure 1-15 Inductive Inter-Winding Measurement [50] 

 
Figure 1-16 Capacitive Inter-Winding Measurement [50] 
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Among all the connection methods, the end-to-end measurement is recommended by IEC 

standard 60076-18 to be carried out on each winding of each phase. The other 

measurement methods can be used as supplementary measurements in diganosis [50]. 

An example of measured frequency response is plotted in Figure 1-17, both in logrithmic 

and lineaer frequency scale. Only the magnitude spectrum is given here as the phase 

spectrum is regarded as redundancy information. The frequency range is from 5 Hz to 200 

kHz. This frequency response is measured on a 400/275/13 kV autotransformer, B phase, 

HV to LV terminals, with the other neutrals earthed.  

 
(a) Logarithmic   

 

 (b) Linear 
Figure 1-17 Example of Measured Frequency Response 

The logarithmic frequency scale plot in Figure 1-17 (a) is useful in showing the overall 

shape and trend of the frequency repsonse, however it tends to over-emphasise the low and 

mid- frequency regions. On the other hand, depending on the upper frequency limit, the 

linear frequency scale plot in Figure 1-17 (b) also squeezes low frequencies in a narrow 

space in the plot and therefore could neglect the characteritiscs in the low frequency 

region. Consequently it is recommended to use both linear and logrithmic scales in 

diagnosis.     

Figure 1-18 plots the end-to-end frequency responses of LV windings of two identical 

single-phase generator transformers from a bank of single-phae units, i.e. the B phase and 

C phase. [51]. It can be seen that the resonant points of the B phase frequency response 

deviate from that of the C phase freuqnecy response, both in the frequency location and the 
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magnitdue. The buckling of the LV winding is shown in Figure 1-19 [51]. This is a good 

example to demonstrate that the FRA technique is sensitive to detect the mechanical fault 

in the transformer winding. 

 

Figure 1-18 Comparison of Frequency Responses from LV Winding of Faulty and Healthy Phases [51] 

 

 
Figure 1-19 Buckling of Inner LV Winding from B Phase [51] 

 

 Data Storage 1.2.2

 

According to IEC 60076-18 standard [50], the lowest frequency measurement shall be at 

20 Hz or lower than 20 Hz. For test objects with a maximum voltage greater than or equal 

to 72.5 kV, the minimum highest frequency measurement should be 1 MHz. For test 

objects with a maximum voltage less than 72.5 kV, the minimum highest frequency 

measurement should be 2 MHz. As suggested, for compatibility and simplicity for all test 

objects, a highest measurement frequency of at least 2 MHz should be utilised. For 
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freuqency range below 100 Hz, intervals of measured data points should be smaller than 10 

Hz; For freuqency range above 100 Hz, at least 200 measurements shall be made in each 

decade of frequency, approximately evenly distributed on either a linear or logarithmic 

scale. If the transformer operator does not require the low frequency information used to 

diagnose changes in the core, then a lower measurement frequency of not less than 5 kHz 

may be specified for the measurement. According to the IEEE standard C57.149 [49], the 

test equipment should be able to sample at least 200 measurement points per decade, either 

distributed linearly or logarithmically. 

For the measuring equipment, IEC 60076-18 standard requires that the signal to noise ratio 

should be no less than 6 dB, and the dynamic range of the magnitude ratio range should 

cover -90 dB to 10 dB. The accuracy of the magnitude ratio should be better than ± 0.3 dB 

from -40 dB to 10 dB, and ± 1 dB from -80 dB to -40 dB, while the accuracy of the phase 

difference should be ± 1°. For the accuracy of frequency, the error should be less than ± 

0.1%. 

HP network analyser HP-4195A, Doble M5400 test set, and OMICRON FRAnalyzer and 

FRANEO 800 are the commonly used FRA measurement devices. 

HP network analyser HP-4195A can be used to measure the frequency response from 10 

Hz up to 500 MHz, with 0.001 Hz resolution. The dynamic range of magnitude ratio is 

larger than 100 dB. The phase difference between ± 180° can be measured. For this device, 

the accuracy of the magnitude ratio and phase difference is ± 0.05 dB and ± 0.3°, at the 

resolution 0.001 dB and 0.01°. This device was used for the FRA measurement 

investigated in this PhD study. Five frequency regions were recorded for the investigated 

FRA measurement, i.e., 5 Hz-2 kHz, 50 Hz-20 kHz, 500 Hz-200 kHz, 5 kHz-2 MHz and 

25 kHz-10 MHz. For each frequency region, 400 evenly linearly distributed points are 

measured.  

The Doble M5400 test set provides a frequency response measurement from 10 Hz to 25 

MHz. It measures the frequency response at logarithmically spaced intervals of 1.2% of the 

frequency range specified. The dynamic range of this device is larger than 90 dB, with a ±1 

dB accuracy at -80 dB [53]. 

The OMICRON FRAnalyzer [54] has a frequency measurement range of 10 Hz to 20MHz. 

its dynamic range is larger than 120dB. When the magnitude ratio is down to -50 dB, the 

accuracy reaches ±0.1 dB difference. And when the magnitude is between -50dB to -80 
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dB, the error is within ±1 dB. The distribution of measurement points and the frequency 

ranges can be customized. For each frequency region, the maximum quantity of 

measurement data points is 400. 

The newest FRA measurement device from OMICRON is FRANEO 800 [55]. Its 

measurement frequency range is from 1 Hz to 30 MHz. For this device, higher precision 

measurements can be performed, with an accuracy of ± 0.5 dB down to -100 dB. The low 

noise ensures that even strong attenuated measurement traces can be measured with high 

accuracy. Thereby, FRANEO 800 is able to achieve the best dynamic range (> 150 dB) for 

SFRA. 

Due to the diverse choice of measurement devices and customised measurement settings, 

the stored frequency response data may vary largely in terms of quantity and location of 

measurements points. In order to compare two sets of frequency response data using 

numerical indexes, the two sets of data needs to be in the same format. 

1.3 Aims and Objectives 
 

Although FRA has been developed for some time for the detection and diagnosis of the 

mechanical integrity of windings, there has been no IEC or IEEE standard established for 

the interpretation of the frequency responses.  

Numerical indices have been used to indicate the similarities and quantify the alteration 

between two frequency response traces. Usually a single numerical value is used. 

Nevertheless, the whole measurement frequency range can be split into several frequency 

regions and the numerical indices can be extracted for each frequency region separately, as 

stated in the Chinese standard DL/T 911-2016 [56]. Such practice is based on the 

knowledge that different frequency regions are controlled by different physical factors.  

The underlying idea behind the development of numerical indices is that the type, location 

and severity of mechanical faults may be indicated through the accumulated experience on 

the corresponding changes in numerical indices.  

However, the values of numerical indices can be varied easily by varying the measured 

frequency points. For example, in the frequency region controlled by transformer core, the 

key information is the frequency location and the magnitude of the first antiresonance 

(trough). A large amount of frequency points on the dropping and rising parts before and 
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after the first trough can be viewed as redundant, and the number of sampling points can 

affect the absolute value of the numeric index. These details require careful consideration 

before the application of numeric indices, especially when setting the “healthy” or 

“deformed” criteria.     

In addition, AI methods have also been applied for the interpretation of FRA measurement 

data, which require the data to be processed in a unified format.  

FRA analysers on the market use different frequency and amplitude resolutions, which 

may lead to the fact that the FRA traces can have different number of frequency points, 

thus data stored in a database with different formats, cannot be analysed by numerical 

indices or auto-processed by AI techniques. In such a scenario, data pre-processing is 

needed so that the measurement data with different frequency resolution can be reproduced 

in the same desired format.  

The redundant and inconsistent format of the FRA measurement data calls for a solution, 

i.e. the transfer function estimation method. The transfer function describes the FRA trace 

mathematically with dozens of parameters, and any changes in the FRA trace can be 

reflected precisely by the changes in the transfer function parameters. 

Noticeably, the boundary frequencies between frequency regions which are dominated by 

different physical factors are empirical. For example, for 400/275/13 kV transformers, 

especially the common and series windings, the frequency regions lower than 2 kHz, 2 kHz 

- 20 kHz, 20 kHz - 1000 kHz are dominated by transformer core, interaction between 

windings influence, winding structure respectively, and the region higher than 1 MHz is 

governed by the measurement setup.  

The boundary frequencies are varied depending on the voltage ratio, power rating, and 

construction type of transformers. The difference in the frequency response traces may be 

resulted from the difference in the construction of transformers, which is the main reason 

for us not to generalise the accumulated knowledge from one transformer to another. 

Therefore, it is important to develop fundamental understanding of transformer winding 

structure, equivalent circuit, winding movement including deformation and displacement 

types, and FRA technique. 

Transformer design information, especially the winding construction type, is the 

manufacturers’ safe guarded know-how. It is well known that different winding 

construction types are susceptible to different modes of mechanical deformations. The AI 
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interpretation techniques, which were developed for the diagnosis of winding fault, tends 

to be usually applicable only for one type of transformer. Hence knowing the winding 

design information is helpful for transformer fault diagnosis. Besides, appropriate asset 

management method can extend the lifetime of transformers, and the same asset 

management method can be applied to transformers with same winding construction types. 

Thus the winding design information is also useful for asset management.  

Over the years, FRA measurement data have been collected by utilities into their databases 

of transformer asset, with or without design information. Better interpretation of faults of 

transformer winding and effective asset management, especially for those transformers 

without any technical support from the Original Equipment Manufacturer (OEM), calls for 

the development of non-intrusive winding construction type recognition techniques. 

The main objectives of the PhD thesis are: 

 Develop transfer function estimation method and make it possible for visualisation 

of key parameters. The data format of any stored frequency response will be unified 

and a unique solution of transfer function which is physically achievable will be 

developed (Chapter 4); 

 Take advantage of a large database to develop fundamental understanding of FRA. 

The influence of the voltage, power ratings, and winding construction types of 

transformers will be studied. The accumulated experience from one transformer 

will be analysed to see if it can be generalised to be applicable to another (Chapter 

3); 

 Apply Support Vector Machine (SVM) and Hierarchical Clustering (HC) methods 

on a large database to identify winding construction types. The SVM model as a 

supervised machine learning method, will be trained and tested by FRA data from 

windings of known types, and it is then applied to other FRA data to identify the 

winding construction type. On the other hand, the HC method is an unsupervised 

machine learning method, the frequency response will be processed by the HC 

method for clustering according to their distances. (Chapter 5 & 6). 

1.4 Methodology 
 

The following methodologies are adopted by the PhD thesis. 

1. Two transfer function estimation methods have been developed. 
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1) The first method extracts complex zeros and poles from frequency regions and 

then combines them together to create a Feature Transfer Function, which 

corresponds to the resonance and anti-resonance of FRA traces. Then a 

Difference Transfer Function is estimated to correct the difference between 

Feature Transfer Function and the measured data. It gives satisfactory match 

between the measured FRA traces and estimated transfer function. However, 

the zeros and poles predicted do not appear sequentially, and may be 

mathematically feasible but not physically achieved by a circuit. 

 

2) Thus the second method is developed, which first initialises a real pole 

according to the starting low-frequency-range magnitude of FRA trace, and 

then initialises complex zeros and poles according to the local minimums’ and 

maximums’ frequency locations and magnitudes. Then, the mutual influence is 

eliminated between complex zeros and poles. Afterwards, the shift of resonance 

and antiresonance are considered. The transfer function developed in this way 

has both mathematical and physical advantages in terms of achievability. 

 

2. Two winding construction type classification methods have been developed. 

 

1) Support Vector Machines (SVM) method belongs to the category of supervised 

machine learning method. A model is built, using the frequency responses of 

known winding construction types as the training data set, and this model can 

be used to predict the unknown FRA traces’ winding construction type.  

 

2) Hierarchical clustering method belongs to the category of unsupervised 

machine learning method. Frequency responses with similar distance are 

grouped together. Frequency responses with unknown winding construction 

type should share the same winding construction type with a frequency 

response with known winding construction type in the same cluster. 

1.5 Outline of Thesis 
 

Chapter 2 Literature Review  
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This chapter summarises and reviews the relevant research carried out by different 

researchers. There are three main parts of this chapter. The first part describes the various 

numerical indices which have been employed to evaluate the frequency responses. The 

second part compares the functionalities of the three types of models which have been 

developed for the frequency response analysis, i.e. white box model, grey box model and 

finite element model. The last part summaries the application of Artificial Intelligence (AI) 

in the FRA filed, such as parameter estimation for FRA models, identification of winding 

faults etc. 

Chapter 3 FRA Database of UK National Grid Company 

This chapter introduces how the frequency responses are stored in the UK National Grid 

Database. Next, the basic information of transformers from the database are analysed, 

including their voltage ratio, power rating and winding construction types. Then, the 

fundamental understanding on the influence of transformer design on the frequency 

responses, especially the influence from winding construction types, are analysed. Lastly, 

the frequency responses used in Chapter 4, 5 and 6 are introduced, 

Chapter 4 Transfer Function Estimation 

In this chapter, two methods to estimate the transfer function are introduced, and for each 

method one paper is produced. 

The first method is based on the MATLAB command ‘invefreqs’. The whole frequency 

ranges are divided into several frequency regions, and the key parameters, complex zeros 

and poles, are extracted from each frequency region to form a Feature Transfer Function. 

Afterwards, the difference between the Feature Transfer Function and measured frequency 

responses are corrected by a Difference Transfer function.  

The second method detected the peak and trough on the FRA trace. One peak corresponds 

to a pair of complex poles whilst one trough corresponds to one pair of complex zeros. The 

format of the transfer function for each pair of complex zeros and poles and for the real 

poles is defined, in order to find a unique solution. 

Both methods produce satisfactory matching results. However, although the first method 

gives a well- matching transfer function, it may produces parameters without physical 

meaning, which means the zeros and poles not appear in sequence and the real part of 

complex zeros and poles may be positive. The second method uses FRA magnitude data 
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only, and it is able to find a unique physically achievable solution. However, the second 

method is not able to match the phase data which ranges from -180° to +180°. 

Chapter 5 Identification of Winding Construction Types by Supervised Machine Learning 

Method 

In this chapter, winding construction types are classified using supervised machine 

learning method Support Vector Machine (SVM). Different winding construction types 

own different equivalent electrical parameters, and thus different features of FRA traces 

are produced. An identification model is built according to the frequency responses with 

known winding construction types. This model consists of several binary classifiers to 

enable multiclass classification, and the quantity of the binary classifiers is determined by 

the quantity of winding construction types to be identified. For a FRA trace with unknown 

winding construction type, its winding construction type is predicted according to the votes 

of the binary classifiers. Cross validation is used to evaluate the effectiveness of 

classification model by constructing different SVM identification models using different 

training and testing data. One of the constructed models is discussed in detail, in which 54 

frequency responses from 4 winding construction types are used as training data to build 

the identification model, and another 54 frequency response are used as testing data to 

verify the model, achieving 100% accuracy. The support vectors are the most important 

input frequency responses, which decide the parameters of the SVM model built. 

Sensitivity studies are carried out to investigate the support vectors. 

Chapter 6 Identification of Winding Construction Types by Unsupervised Machine 

Learning Method 

In this chapter, the winding construction types can be identified using unsupervised 

machine learning method. Hierarchical Clustering is an unsupervised algorithm which 

groups similar observations together. 28 frequency responses from 5 winding construction 

types are investigated. The distance between every two frequency responses are calculated 

and the closest two frequency responses are clustered. The frequency responses are merged 

together until only group is left. The cut off threshold can be either the distance between 

frequency responses or the quantity of clusters left. Frequency responses of winding with 

unknown construction type, clustered together with frequency responses of known winding 

construction type, should share the same winding type. The frequency responses are 

clustered on different frequency regions controlled by different influencing factors i.e. the 

core and the winding structure. It was found that the high voltage winding, low voltage 
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winding and tertiary winding can be clustered into different groups. In addition, the 

windings with high series capacitance (Multiple Layer and Interleaved Disc) and the 

windings with low series capacitance (Plain Disc and Intershielded Disc) can be clustered 

into different groups. 

Chapter 7 Conclusions and Future Work 

This chapter concludes the work by this PhD study and suggests the direction for the work 

to be conducted. 
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  Literature Review Chapter 2

 

2.1 Introduction  
 

FRA is a comparative technique. It firstly needs to find a reference for comparison 

purpose, then identifies the differences between the current measurement result and the 

reference, and lastly interprets the differences and provides diagnosis. The relevant 

research work on FRA will be reviewed and summarised in this chapter, as shown in 

Figure 2-1.  

 

Figure 2-1 Summary of Research on FRA 

As stated, the measured frequency response is to be compared with its fingerprint in a 

database. The fingerprint is also called the baseline/reference measurement. There are 

mainly three categories of comparison for FRA measurement results, i.e. the time based 

comparison, the construction based comparison and the type based comparison, as outlined 

in Figure 2-2. Time based comparison compares two frequency responses of the same 

transformer same phase from different time; type based comparison compares two 

frequency responses of the same phase from the diagnosed transformer and its sister 
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transformer; construction based comparison compares two frequency responses from 

different phases of the same transformer [35].  

 

Figure 2-2 FRA Measurement Results in Different Comparison Types [35] 

When identifying the differences, the emphasis is usually on the analysis of the magnitude 

while little attention is paid to the phase spectrum, due to their high level of redundancy to 

each other. The local maximum of magnitude spectrum is called the peak, while the local 

minimum of magnitude spectrum is called the trough. Any shifting, disappearing or 

appearing of peaks or troughs may indicate the existence of winding related faults, 

mechanical or even electrical. Most of the time although phase spectra are calculated and 

stored after each transformer FRA measurement, they tend to be ignored and only 

magnitude spectra are analysed in depth. However, a recent publication emphasizes the 

importance of phase spectrum in diagnosis [41]. 

The comparative tools of FRA can be divided into two types i.e., the subjective method 

and the objective method. The subjective methods rely on the observation of plots, such as 

the direct comparison of the reference and the diagnosis FRA traces, or any difference 

plots produced using the reference and the diagnostic traces. The objective method refers 

to the method uses mathematical parameters to describe the FRA trace or its alteration. 

The subjective tools include visual inspection [57, 58], difference spectrum [59] and 

signature spectrum [59]. It is suggested in [57] that the expert normally observes the shape 

of the curve and the resonant frequencies to judge the existence of fault. The change in the 

magnitude of the frequency response, appearance or disappearance of the resonant 
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frequencies, and the shift of existing resonant frequencies are used as criteria. The 

difference spectrum is obtained by subtracting the reference FRA trace from the diagnostic 

FRA trace. Minor alteration can be seen in the high frequency range. For example, the 

relocation of leads was reflected in frequency range higher than 2 MHz. Major faults can 

be seen in the low frequency range. For example, High Voltage middle winding grounded 

to earth and interturn faults at the middle of High Voltage winding are reflected in 

frequency range lower than 2 kHz [59]. To produce the signature spectrum, at each 

frequency, the frequency responses of the three phases are averaged, the differences 

between this mean value and those of the three phase frequency responses are squared and 

then summed up, and then the square root of the sum against frequency is the so-called 

signature spectrum. For the healthy transformer, its signature spectrum has a smaller 

magnitude than that of the faulty transformer. In the example provided by the author, the 

healthy transformer’s signature spectrum lay lower than 20 dB while the faulty one is 

located around 100 dB [59]. 

The subjective methods highly rely on the experts’ experience. Due to this limitation, 

objective methods have been the focus of recent research and development. The objective 

methods use the quantitative numbers to reflect the difference or similarity between the 

baseline and the diagnostic measurements, and thus it gives a more direct and more 

accurate conclusion, rather than relying on experience only. The objective tools use 

numerical indices for the comparison of FRA traces. Those indices are extracted base on 

comparison of the measured frequency responses. However, the criterion of numerical 

indices to distinguish ‘healthy or faulty’ is still a challenge. 

To interpret and diagnose the FRA measurement traces, experiments can be carried out for 

sensitivity study, using manually created winding faults, but simulation is a more 

economical way for such investigation. The transformer winding white box models are 

constructed based on the design data of a transformer. Once enough FRA measurement 

data are collected, either produced by experiments or simulation, experience can be 

accumulated regarding the changes of frequency response traces caused by particular 

faults. AI techniques have been applied widely for the recognition of fault patterns of 

transformer windings through frequency responses. Besides, it has also been investigated 

how to estimate the transformer design data from frequency responses, by researchers who 

are keen to know the transformer design data. This is the so-called grey box model. AI 

techniques have also played an important role in the estimation of transformer design data 

by the grey box model. 
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2.2 Numerical Indices for FRA Comparison 
 

Numerical indices, including the single statistical indicator and the transfer function, have 

been used to quantify the result of frequency response comparison. A statistical indicator is 

a single value which reflects the similarity or dissimilarity between two frequency response 

measurements. A transfer function uses a set of parameters to mathematically describe one 

frequency response measurement, and the two sets of parameters are compared between 

the reference and diagnostic frequency response measurements. 

 Statistical Indicators Methods 2.2.1

 

The statistics indicators can be divided into three types, indices extracted directly from 

FRA traces, indices based on resonance and anti-resonance points, or indices base on 

transfer functions.  

Table 2-1 summarises the first type of statistical indicators, which have been used for the 

comparison of FRA traces [60, 61]. X and Y are the magnitude response of the diagnostic 

and reference FRA data normally in dB scale, f is the vector of frequency samples, 𝑑𝑓 is 

the sampling interval of frequency, N is the number of sample points, and 𝜑𝑋 and 𝜑𝑌 are 

the phase vectors of the FRA data. All the statistic indicators are extracted from magnitude 

response but the complex distance, CD in Table 2-1, which uses both magnitude and phase 

vectors. Noticeably, for X and Y, their values may be or may not be in dB, which might 

lead to a different calculation result.  

The correlation coefficient (CC), standard deviation (SD) and absolute sum of logarithmic 

error (ASLE) are three widely used indicators. The closer the correlation coefficient is to 1, 

the closer is the similarity of the two groups of data. In [62], the two groups of measured 

FRA data are viewed same if the value of correlation coefficient of magnitude response is 

larger than 0.995. The stricter criteria are used in [42], where the correlation coefficient 

value of 0.9998 for magnitude and 0.95 for phase are set as the boundary for identifying 

winding displacement. The standard deviation is a quantity describing how much the 

members of a group differ from those of the other group. In [42], a low value of standard 

deviation, lower than 1 for magnitude and lower than 10 for phase, is used to indicate that 

two groups of data resemble each other. If standard deviations are larger, the existence of 

winding deformation is diagnosed. The absolute sum of logarithmic error is an indicator 

that reflects the logarithmic difference between two groups of data. For magnitude, a 
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ASLE value higher than 0.4 for magnitude and higher than 0.8 for phase suggests that a 

fault has occurred in the winding [42]. 

Table 2-1 Numerical Indices Extracted from FRA Traces [60, 61] 

Abbreviation Definition Expression Equation Reference 

ED 
Euclidean 
distance 

𝐸𝐷 = √∑ (𝑌𝑖 − 𝑋𝑖)
2𝑁

𝑖=1   [39, 40] 

CD Complex distance 𝐶𝐷 = √∑
 (|𝑋𝑖𝑐𝑜𝑠𝜑𝑋𝑖 − 𝑌𝑖𝑐𝑜𝑠𝜑𝑌𝑖|

2

+|𝑋𝑖𝑠𝑖𝑛𝜑𝑋𝑖 − 𝑌𝑖𝑠𝑖𝑛𝜑𝑌𝑖|
2

𝑁
𝑖=1 )  [41] 

SD 
Standard 
Deviation 

𝑆𝐷 = √
1

𝑁−1
(∑ (𝑌𝑖 − 𝑋𝑖)

2𝑁
𝑖=1 )  [42] 

ID 
Integral of 
difference 

𝐼𝐷 = ∫(𝑌(𝑓) − 𝑋(𝑓))𝑑𝑓  [34, 43] 

IA 
Integral of 
absolute 

difference 
𝐼𝐴 = ∫ |𝑌(𝑓) − 𝑋(𝑓)|𝑑𝑓 [34] 

SDA 
standardised 

difference area 
𝑆𝐷𝐴 =

∫ |𝑌(𝑓) − 𝑋(𝑓)|𝑑𝑓 

∫ |𝑋(𝑓)|𝑑𝑓 
 [44] 

ASLE 
Absolute sum of 
logarithmic error 

𝐴𝑆𝐿𝐸 =
1

𝑁
∑ |20𝑙𝑜𝑔10𝑌𝑖 − 20𝑙𝑜𝑔10𝑋𝑖|
𝑁
𝑖=1   [42, 45] 

RMSE 
Root mean 

square error 
𝑅𝑀𝑆𝐸 = √

1

𝑁
∑ (

(|𝑌𝑖| − |𝑋𝑖|)

1
𝑁
∑ |𝑋𝑖|
𝑁
𝑖=1

)2
𝑁

𝑖=1
 [46] 

E 
 
 
 
 
 
 
𝝈𝒆 

Expectation 
 
 
 
 
 

Standard 
deviation 

𝐸(𝛥) =   
1

𝑁
∑𝛥𝑖

𝑁

𝑖=1

 

 

𝛥𝑖 =
|𝑌(𝑖)| − |𝑋(𝑖)|

1
𝑁
∑ |𝑋(𝑖)|𝑁
𝑖=1

 

 

𝜎𝑒 = √𝑣𝑎𝑟(𝛥) = 𝐸(𝛥 − 𝐸(𝛥)) 

[47] 
 

σ 
Stochastic 
spectrum 
deviation 

𝜎(%) =
100

𝑁
∑ |

(𝑌𝑖−𝑋𝑖)

𝑋𝑖
|𝑁

𝑖=1   [48] 

MAX 
Maximum of 

difference 
𝑀𝐴𝑋(𝑌𝑖 − 𝑋𝑖) [40, 43] 
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ρ 
Correlation  

factor 

𝜌 =
∑ 𝑋𝑖

∗𝑌𝑖
∗𝑁

𝑖=1

√∑ (𝑋𝑖
∗)2∑ (𝑌𝑖

∗)2𝑁
𝑖=1

𝑁
𝑖=1

 

 

𝑌𝑖
∗ = |𝑌𝑖| −

1

𝑁
∑ 𝑌𝑖

𝑁

𝑖=1
 

𝑋𝑖
∗ = |𝑋𝑖| −

1

𝑁
∑ 𝑋𝑖

𝑁

𝑖=1
 

[44, 47] 

R Relative Factor 𝑅 = {
10,               1 − 𝜌 < 10−10

− log10(1 − 𝜌) , 𝑜𝑡ℎ𝑒𝑟𝑠                      
 [56] 

CC 
Correlation 
Coefficient 

𝐶𝐶 =
∑ 𝑋𝑖𝑌𝑖
𝑁
𝑖=1

√∑ 𝑋𝑖
2𝑁

𝑖=1 ∑ 𝑌𝑖
2𝑁

𝑖=1

 
[42, 45, 63] 

SSE 
Sum squared 

error 
𝑆𝑆𝐸 =

1

𝑁
∑ (𝑌𝑖 − 𝑋𝑖)

2
𝑁

𝑖=1
 [40, 45] 

SSRE 
Sum squared 

ratio error 
𝑆𝑆𝑅𝐸 =

1

𝑁
∑ (

𝑌𝑖
𝑋𝑖
− 1)2

𝑁

𝑖=1
 [39, 40, 45] 

SSMMRE 
Sum squared 

max–min ratio 
error 

𝑆𝑆𝑀𝑀𝑅𝐸 =
1

𝑁
∑ (

max (𝑌𝑖, 𝑋𝑖)

min (𝑌𝑖, 𝑋𝑖)
− 1)2

𝑁

𝑖=1
 [45] 

 

The statistical indicators Correlation Coefficient (CC), Standard Deviation (SD), 

Expectation (E) and Maximum of Difference (MAX) are used in Chapter 4, to evaluate 

how well the estimated transfer function matches to the measured FRA data. 

Different from the fist type of indicators using all the sampled data points, the second type 

of indictors focuses only on the resonant points, i.e., the peaks and troughs on the FRA 

traces. The second type of statistical indicators is summarized in Table 2-2. X and Y 

correspond to reference and diagnostic FRA measurements, A and f are the magnitude and 

frequency vectors of resonant points, 𝐾 is the number of resonant points, and 𝐴𝐹 is the 

area below the FRA trace between two neighbour anti-resonance points, as shown in 

Figure 2-3 [47] which is measured on a simulated 400kVA coil block, w is the weight of 

resonant points for amplitude and frequency.  
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Table 2-2 Indices Based on Resonance and Anti-Resonance Points [60, 61] 

Abbreviation Definition Expression Equation Reference 

MDA 
Mean deviation of 

areas 
𝑀𝐷𝐴 =

1

𝐾
∑|𝐴𝐹𝑌𝑖 − 𝐴𝐹𝑋𝑖|

𝐾

𝑖=1

 [47] 

MAD 
Mean amplitude 

deviation 
𝑀𝐴𝐷 =

1

𝐾
∑|𝐴𝑌𝑖 − 𝐴𝑋𝑖|

𝐾

𝑖=1

 [47] 

MFD 
Index of amplitude 

deviation 
𝑀𝐹𝐷 =

1

𝐾
∑|𝑓𝑌𝑖 − 𝑓𝑋𝑖|

𝐾

𝑖=1

 [47] 

IAD 
Index of amplitude 

deviation 
𝐼𝐴𝐷 =∑|

𝐴𝑌𝑖 − 𝐴𝑋𝑖
𝐴𝑋𝑖

|

𝐾

𝑖=1

 [44, 63] 

IFD 
Index of frequency 

deviation 
𝐼𝐹𝐷 =∑|

𝑓𝑌𝑖 − 𝑓𝑋𝑖
𝑓𝑋𝑖

|

𝐾

𝑖=1

 [44, 63] 

𝑭𝒂 Amplitude function 𝐹𝑎 =∑
𝐴𝑌𝑖
𝐴𝑋𝑖

𝐾

𝑖=1

 [64] 

 𝑭𝒇 Frequency function 𝐹𝑎 =∑
𝑓𝑌𝑖
𝑓𝑋𝑖

𝐾

𝑖=1

 [64] 

𝑾𝒂 
Weighted 

amplitude function 
𝑊𝑎 =∑

𝐴𝑌𝑖
𝐴𝑋𝑖

𝐾

𝑖=1

𝑤𝑎𝑖 [34, 40, 44] 

𝑾𝒇 
Weighted 

frequency function 
𝑊𝑓 =∑

𝑓𝑌𝑖
𝑓𝑋𝑖

𝐾

𝑖=1

𝑤𝑓𝑖  [34, 40, 44] 

 

 
Figure 2-3 Areas between Two neighbour Antiesonance Points [47] 

The third type of statistic indicators are used when the transfer function expression of FRA 

traces is available. This type of indicators will be reviewed in next section regarding 

transfer function. The other two types of statistic indicators are reviewed in this section. 
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In 1995, J. Bak-Jensen and B. Bak-Jensen from the University of Aalborg, Denmark 

introduced the statistical indicator, stochastic spectrum deviation, σ, to evaluate the 

frequency response, using the magnitude spectrum in dB [48]. Experiments were carried 

out on a single phase transformer with 20/√3 kV primary voltage and 110/√3 kV 

secondary voltage. In their study, sensitivity test was carried out to investigate the 

influence on frequency response from insulation oil, the core, the winding/coil insulation. σ 

of frequency region 100 Hz to 10 kHz and frequency region 10 kHz to 1 MHz was 

calculated separately. After the insulating grease is removed, σ reached 3.807% and 

0.760% for frequency region10 Hz to 10 kHz and 10 kHz to 1 MHz. For different depths 

of grooves sawed in the core from 1mm to 8 mm, σ reached 0.443% at most, hardly 

reflecting the influence. When two turns on neighbour winding layer were short circuited, 

σ could be as large as 12.63%. It is understandable that the spectrum deviation is more 

sensitive to winding related electrical faults. The change in frequency response was studied 

during the accelerated ageing procedure leading towards breakdown. After breakdown, σ 

increased up to about 5% for frequency region 100 Hz to 10 kHz and about 0.3% for 

frequency region 10 kHz to 1 MHz. It is summarised that successful recognition of failures 

and ageing problems in transformers relies on measurable variations in characteristic 

parameters – the winding capacitances, total iron losses and core reluctance.  

In 1999, D.K. Xu, C.Z. Fu, and Y.M. Li from Xi’an Jiaotong University, China used the 

correlation coefficient (CC) and standard deviation (SD) as the inputs of the Artificial 

Neural Networks (ANN) algorithm for discriminating winding health conditions [65]. The   

faults were simulated by connecting capacitors between the tap points, and between tap 

points and earth points, on a 35/10kV three-phase model transformer with 54 tapping 

points in the primary winding of B phase. The Correlation Coefficient and Standard 

Deviation on the low, middle, high and the whole frequency ranges, all together 8 

parameters, are used as the input of a three layer ANN system with feed forward 

connections. A binary output suggests either a ‘NORMAL’ or ‘ALARM’ diagnosis result 

for the healthy condition of the transformer. The predication accuracy was 95%, with 24 

training patterns and 20 testing patterns. It was suggested that various training patterns 

should be collected for better identification of faults. According to authors, the method is 

effective, simple, robust and easy to apply. 

In 2004, objective quantitative diagnosis criteria were proposed in the Chinese FRA 

Standard DL/T 911-2016, using relative factor R [56]. The relative factor R is defined 
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using the correlation factor ρ, as shown in Table 2-1, to identify the health condition of 

transformer windings. The relative factors RLF in low frequency region from 1 kHz to 100 

kHz, RMF in middle frequency region from 100 kHz to 600 kHz, and RHF in high frequency 

region from 600 kHz to 1000 kHz are calculated. The winding health conditions can be 

classified into four different stages according to the values, as shown in Table 2-3. Though 

the criteria have been approved to be able to identify the radial and axial displacement 

[47], research also suggested that the Chinses Standard DL/T 911-2016  may fail to 

identify some major faults, such as the mechanical failure with abnormalities in high 

frequency region [63]. 

Table 2-3 Relative Factor and Winding Health Condition [56]  

Winding health condition R 

Severe deformation 𝑅𝐿𝐹 < 0.6 

Obvious deformation 0.6 ≤ 𝑅𝐿𝐹 < 1    or    𝑅𝑀𝐹 < 0.6 

Slight deformation 1.0 ≤ 𝑅𝐿𝐹 < 2    or    0.6 ≤ 𝑅𝑀𝐹 < 1 

Normal deformation 2.0 ≤ 𝑅𝐿𝐹, 1.0 ≤ 𝑅𝑀𝐹  and  0.6 ≤ 𝑅𝐻𝐹 

 

In 2005, J.W. Kim from Technical Research Laboratories, Korea, B. Park from SK 

Teletech, Korea, C.J. Jeong, S.W. Kim and P. Park from Pohang University of Science and 

Technology, Korea used Sum Squared Error (SSE), Correlation Coefficient (CC), Sum 

Squared Ratio Error (SSRE), Sum Squared Max-Min Ratio Error (SSMMRE) and 

Absolute Sum of Logarithmic Error (ASLE) for the fault diagnosis of power transformer 

[45]. When calculating the indices, only the magnitude response was used. With the aim to 

distinguish the faulty phase, experimental tests were carried out with artificial electrical 

faults, including creating short circuit between HV bushing and tank, between LV bushing 

and tank, between tap and tank, inter-tap short circuit, between turn and tank, and inter-

disc short circuit. Two transformers were studied. One is a three-phase 300 kVA 3300/440 

V delta-wye transformer and the other is a 2 MVA 3150/460 V wye-delta transformer. 

Among all the statistical indicators, ASLE has the best performance with the highest 

accuracy in the diagnosis of aforementioned fault types. The authors also concluded that 

SSE often underrates the important information scattered around the trough or lower values 

in a magnitude response. CC is not suitable for the comparisons of similar patterns with 

different magnitudes, because it neglects the deviation in magnitude and emphasises the 
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similarity in shape. SSRE and SMMRE are altered versions of SSE. SSRE does not have 

the disadvantage of CC, but it is dominated by those Yi/Xi ratios whose values are large 

than 1, as shown in Table 2-1. The drawback of SSMMRE is that its objectivity is affected 

by the deviation of high-frequency components.  

In 2006 E. Rahimpour from Iran Transformer Research Institute, Iran and D. Gorzin from 

University of Zanjan, Iran proposed a new method, Weighted Amplitude function 𝑊𝑎 and 

Weighted Frequency function 𝑊𝑓 based on the resonance and anti-resonance points, as 

listed in Table 2-2, to compare the frequency responses and  detect the location and level 

of winding faults, i.e., axial displacement [34]. A disc HV winding and a layer LV winding 

were used in the research. The windings were constructed for the aim of experimental test, 

and approximately correspond to windings of a transformer with rated voltage of 10 kV 

and rated power of 1.3 MVA. The presented method is independent of the frequency 

response types, and the errors from measurement do not need to be taken into 

consideration. The authors believe that this weight function method is more reliable and 

effective than other methods. However, the research is based only on the assumption that 

the amount of resonance and anti-resonance points remains unchanged. 

In 2007, R. Wimmer, S. Tenbohlen and K. Feser from University of Stuttgart, Germany 

used the statistic indicators Expectation 𝐸, Standard deviation 𝜎𝑒, correlation factor ρ to 

evaluate the frequency response [47]. The correlation factor can be viewed as a normalised 

correlation coefficient. When the difference between two sets of data is zero or owns an 

average zero value, 𝐸 is zero. It changes monotonically when the axial displacement 

happens, but not for the radial deformation. Thus this parameter can be used for the 

diagnosis of axial displacement. When two sets of data own constant damping deviation, 

𝜎𝑒 is zero. 𝜎𝑒 shows monotonous behaviour both to axial displacement and radial 

deformation. The correlation factor ρ reflects the linear dependence between two sets of 

data, and it has an inverted characteristic to the Standard Deviation 𝜎𝑒. Sensitivity studies 

were carried out on a set of winding coils with 400 kVA power rating, by shifting the low 

voltage winding 1 cm per step against the high voltage winding. It was concluded that the 

correlation factor is the most sensitive. The authors also suggested that this parameter 

becomes more sensitive when splitting the whole frequency range into several frequency 

regions. 

In 2008, P.M. Nirgude, D. Ashokaraju from Central Power Research Institute, India, A.D. 

Rajkumar from Osmania University, India, and B.P. Singh from Bharat Heavy Electrical 
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Limited, India evaluated Correlation Coefficient (CC), Standard Deviation (SD) and 

Absolute Sum of Logarithmic Error (ASLE) techniques using both magnitude and phase 

responses [42]. Three case studies were carried out respectively on a 31.5 MVA, 132/33 

kV three-phase transformer with Interleaved Disc HV winding and Continuous Disc LV 

winding, a model Continuous Disc winding, and two three-phase transformers by the same 

manufacturer rated 2.5 MVA, 33/11 kV and 16 MVA, 33/11 kV . The authors proposed 

that 1% variation in axial height and/or internal diameter from the reference should be used 

as the threshold to indicate faults in the windings. The corresponding criteria is set as that 

when CC is smaller than 0.9998 for magnitude and 0.95 for phase, SD is larger than 1.0 for 

magnitude and 10 for phase, ASLE is larger than 0.4 for magnitude and 0.8 for phase, an 

fault is indicated. In addition, the severity of displacement/deformation can also be 

concluded from the amount of variation of the parameters from the suggested critical 

values. These methods can also be used when time based comparison is not available, by 

construction or type based comparison. However, the analysis result is more reliable when 

time based comparison is accessible.  

In 2010, E. Rahimpour from ABB, Germany, M. Jabbari from University of Zanjan, Iran 

and S. Tenbohlen from University of Stuttgart, Germany used multiple numerical indices 

extracted from FRA traces to detect the types of mechanical faults, including Standardised 

Difference Area (SDA), Correlation Factor ρ, Index of Frequency Deviation IFD, Index of 

Amplitude Deviation IAD, Weighted Amplitude Function 𝑊𝑎, Weighted Frequency 

function 𝑊𝑓 [44]. In order to increase the sensitivity of proposed comparison method, the 

whole frequency range was divided into several frequency regions, and the aforementioned 

indices were extracted from each frequency region. One test object has an disks high 

voltage winding and a layer low voltage winding, and the FRA data was collected when 

the space between two adjacent disks were alternated in different dimension. Another 

similar test object was used to study different degrees of radial deformation. The 

Standardized Difference Area (SDA) is regarded as an unhelpful numerical index for FRA 

diagnosis, while all of the other numerical indices are useful. The Correlation Factor ρ can 

be used to detect the fault types but it is less reliable than other numerical indices. The IFD 

and IAF have similar properties. Nevertheless, they are not applicable for the diagnosis of 

disc-space variation. Frequency and amplitude weight functions, 𝑊𝑎 and 𝑊𝑓, can both 

reflect the location and level of faults. It suggested that the combination of the numerical 

indices improves the accuracy and reliability of the diagnosis results, especially in terms of 

fault level. 
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In 2012, K. Pourhossein from Islamic Azad University, Iran, G. Gharehpetian from 

Amirkabir University of Technology, Iran, E. Rahimpour from ABB, Germany, and B. 

Araabi from University of Tehran, Iran investigated the properties of Integral of Absolute 

Difference (IA), Maximum of Difference (MAX), Correlation Coefficient (CC), Weighted 

Amplitude Function (𝑊𝑎), Weighted Frequency Function (𝑊𝑓), Sum Squared Error (SSE), 

Sum Squared Ratio Error (SSER) and Euclidean Distance (ED) [40]. Two single phase 

transformer manufactured for special experimental purposes were used for the detection of 

axial displacement and radial deformation separately. The one for axial displacement study 

had Plain Disc HV winding and Multiple Layer winding, and the other for radial 

deformation had HV and LV windings both of Plain Disc type. The investigated 

transformers owned oil-immersed cylindrical tank. To identify the fault types, regional 

Euclidean Distance was used, which is the Euclidean Distance extracted from different 

frequency regions. It was found if all the indicators are standardized between 0 and 1, 

Euclidean Distance has the best linearity against the extent of defect of axial displacement. 

Therefore, it is possible to determine the extent of defect by the value of the index. 

In 2016, S. Tenbohlen from Stuttgart University, Germany and M.H. Samimi from 

University of Thran, Iran introduced the index Complex Distance (CD) using both 

magnitude and phase data to evaluate frequency responses [41]. Experiments were carried 

out on the high voltage and low voltage windings corresponding to a 600 kVA transformer, 

with different level of axial displacement and disc space variation. The importance of 

phase data was emphasised, which is claimed to increase the diagnosis sensitivity and 

stability. Simulation models were used to verify and prove the conclusion. Complex 

Distance performs well even when uncertainties are introduced in the experiments. In 

2017, the same authors used Correlation Coefficient (CC) and Euclidean Distance (ED) to 

test the sensitivity of different connection schemes, terminating resistors and measurement 

impedance, with different mechanical transformer faults, i.e., axial displacement, disc 

space variation and radial deformation [66]. Similar conclusion to [45] is drawn regarding 

the shortcoming of CC, in that the overall magnitude difference could not be reflected. 

Thus the authors used two indices together, i.e., CC and ED, to evaluate the frequency 

responses. The authors concluded that the capacitive inter-winding connection is the most 

sensitive connection method to winding mechanical faults, among the recommended 

standard connection methods. Larger terminal resistors and measurement impedance 

performed better, considering the injection of noise. 
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In this part of literature review, different statistical indicators used in FRA interpretation 

and diagnosis are summarised. Those statistical indicators have been applied in the FRA 

diagnosis to detect the fault type, location and level. Sometimes, the combination of 

several statistical indicators leads to a better identification result. However, when 

calculating the numerical indices, issue is that the magnitude response may be used in dB 

or not by the researchers. This may lead to differences in the interpretation and it is hard to 

identify the criterion.  

 Transfer Function Method 2.2.2

 

Transfer function method represents the FRA traces by mathematical equations, with a 

number of parameters. A rational transfer function in continuous frequency domain, or s 

domain, usually can be described as: 

𝑇𝑠 = 𝑘𝑠
∏ (𝑠−𝑧𝑟𝑘)
𝑁1
𝑘=1  

 

∏ (𝑠−𝑝𝑟𝑗)
𝑀1
𝑗=1

×
∏ (𝑠−𝑧𝑐𝑘)(𝑠−𝑧𝑐𝑘

′ )𝑁1
𝑘=1  

 

∏ (𝑠−𝑝𝑐𝑗)
𝑀1
𝑗=1 (𝑠−𝑝𝑐𝑗

′ )
  Equation 2-1 

where ks is the constant coefficient, zrk and prj are real zero and real pole separately, and zck, 

z’ck are conjugate complex zeros, pcj, p’cj are conjugate complex poles respectively. The 

variable s is related to frequency f and defined as s=2πfi.  

There are three main algorithms for deriving transfer function, of a frequency response, i.e. 

the non-linear least square (NLS), vector fitting (VF) and sub-space representation.  

In 1959, E.C. Levy from Space Technology Labs, USA invented the NLS method [67]. 

The NLS method approximates the frequency response use the ratio of two polynomials: 

𝑇𝑠 =
𝑎𝑚𝑠

𝑚+𝑎𝑚−1𝑠
𝑚−1+⋯+𝑎1𝑠

1+𝑎0

𝑏𝑛𝑠𝑛+𝑏𝑛−1𝑠𝑛−1+⋯+𝑏1𝑠1+𝑏0
  Equation 2-2 

where the parameters a and b represent the coefficient of the transfer function numerator 

and denominator respectively. The method chooses a set of initial parameters, and then 

refines the chosen parameters by successive iterations. The sum of difference square 

between the estimated data and measured data are minimised, by setting the partial 

derivative to zero, to find an optimal solution. In 1992, J. Bak-Jensen, B. Bak-Jenson, S.D. 

Mikkelsen and C.G. Jensen from University of Aalborg, Denmark, firstly introduced 

theNLS method to the FRA field to parameterise the frequency response of a 50 Hz 

(20/√3)kV/(110/√3)V transformer [68]. A second or third order RLC equivalent circuit 

can be constructed according to the estimated transfer function for the frequency range 
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from 50Hz to 300 kHz [68]. However, the model only gave a rough approximation for the 

FRA trace, which means that the overall trend is matched while most of details on the FRA 

trace are neglected. Two reasons contribute to this drawback. One is the order of transfer 

function is too low to give an accurate match, the other is that the adopted circuit is too 

simple to demonstrate the details. However, this study was pioneering this research 

direction to estimate parameters for winding equivalent circuit modelling using the 

frequency response. In 1997, S.M. Islam from Curtin University of Technology, Australia, 

K.M. Coates and G. Ledwich from the University of Newcastle, Australia continued the 

modelling work by proposing a parametric system identification technique to model the 

frequency response [69]. The large frequency range, 50 Hz to 1 MHz was divided into low, 

medium and high frequency ranges. For each frequency range, the transfer function was 

estimated by the NLS method. Different models were built for different frequency ranges, 

and the corresponding electrical parameters are approximated according to the coefficients 

of the transfer function. However, due to the adopted models are of low order, the 

matching result was not accurate enough to reproduce the original complex FRA trace. 

Nevertheless, the alteration in parameters of the built model can still be correlated with 

transformer faults, which enables the transformer diagnosis study. The NLS method was 

also employed to construct equivalent circuit in [70] and to identify transformer fault types 

in [71]. 

In 1996, T. McKelvey, H. Akcay and L. Ljung from Linkoping University, Sweden 

developed two non-iterative state-space identification algorithms to parameterise frequency 

responses [72, 73]. Different from the transfer function representation which is limited to 

single-input single-output systems, a state space representation in matrix format can be 

applied to multiple-input multiple-output systems. The first algorithm used equally 

distributed data in the frequency domain and it can be used when the noise has zero mean. 

The second algorithm was able to deal with arbitrarily located data in the frequency 

domain, but it needed priori knowledge of noise. The transfer function in the frequency 

domain can be computed from the state space representation.  

In 1999, Vector Fitting (VF) method was firstly proposed by B. Gustavsen and A. Semlyen 

from Electrical Power Research Institute, Norway and the University of Toronto, Canada 

[74]. It soon became the most widely used method of transfer function estimation in the 

frequency domain. VF uses partial fraction decomposition of a rational function in the 

following format: 
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𝑇𝑠 =∑
𝑐𝑛

𝑆−𝑝𝑛

𝑁

𝑛=1
+ 𝑑 + 𝑠ℎ  Equation 2-3 

where pn are poles which are either real or complex, cn are their corresponding residues, 

both d and h are real numbers. an and cn are achieved by renewing the pre-defined starting 

complex poles through least squares approximation. Poles and residues are identified at 

two different stages. This method is accurate, stable and effective. In 2006, B. Gustavsen 

improved the method by optimising the pole relocation procedure [75]. A more relaxed 

condition was adopted to replace the original asymptotic condition. By this improvement, 

the selection of initial poles becomes less important. In 2010, L.D. Tommasi from Energy 

Research Center, Netherlands, B. Gustavsen from SINTEF Energy Research, Norway, and 

T. Dhaene from Ghent University, Belgium, proposed a robust transfer function 

identification method [76]. In this method, only the magnitude spectrum was used. The 

estimated FRA phase trace may differ from the measured FRA data, since the method 

produces the minimum-phase shift function.  

Researchers have started to apply Vector Fitting method to the analysis of FRA data after 

its invention. Studies have shown that different choices of transfer function orders for the 

same FRA trace may lead to different amounts and/or value of parameters. Standards 

should be set regarding the choice of transfer function’s order, which should guarantee the 

accuracy as well as the conciseness of estimation. Moreover, it is reported this algorithm is 

sensitive to the predefined starting poles. This means that different starting poles for the 

estimation may lead to dissimilar final poles for the same FRA trace, which results in error 

when calculating indices. Hence, a standard method should also solve this problem so that 

all the rational functions which fit to a single FRA trace can be identical. 

Satisfactory high order transfer function models can be produced by the three introduced 

estimation methods, i.e., non-linear least square (NLS), vector fitting (VF) and sub-space 

(SS). Through simulation of artificial winding faults, work can be conducted to associate 

the estimated parameters with different transformer faults. After the expression of transfer 

function is obtained, two indices can be used for the frequency response comparison, i.e., 

Sum of Absolute Displacement of Poles (SDP) and Faulted-Intact relation (FI): 

𝑆𝐷𝑃 =∑ |
𝑃𝑌𝑖−𝑃𝑋𝑖

𝑃𝑋𝑖
|

𝐾

𝑖=1
  Equation 2-4 
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𝐹𝐼 = (
∑ |𝑎𝑌𝑖|

𝑚

𝑖=1

∑ |𝑎𝑋𝑖|
𝑚

𝑖=1

)(
∑ |𝑏𝑌𝑖|

𝑚

𝑖=1

∑ |𝑏𝑋𝑖|
𝑚

𝑖=1

)  Equation 2-5 

where X and Y are the magnitude response of the diagnostic and reference FRA data 

normally in dB scale, 𝑃 in Equation 2-4 is the pole of partial transfer function in Equation 

2-3, 𝑎 and 𝑏 in Equation 2-5 are the coefficients of the rational transfer function in 

Equation 2-2. 

In 2008, P. Karimifard, G.B. Gharehpetian from Amirkabir University of Technology, Iran 

and S. Tenbohlen from University of Stuttgart, Germany used Vector Fitting method to 

estimate the transfer function of frequency response, for the purpose of determination of 

extent of axial displacement [77]. A detailed transformer model was used, which was 

based on the disc winding (for both HV and LV winding), core geometry and materials to 

produce FRA data. Three different levels of axial displacement were created. The Sum of 

Absolute Displacement of Poles (SDP) was introduced to reflect the extent of 

displacement, which increases when the level of fault increases. However, the SDP values 

for the 3 degrees of deformation, i.e. displacement of 4%, 8% and 12 % of the winding 

height, are 141, 145 and 151, which means the alteration of SDP is relatively small 

compared with the SDP value itself. 

In 2011, M. Bigdeli from Islamic Azad University, Iran, M. Vakilian from Sharif 

University of Technology, Iran, and E. Rahimpour from ABB, Germany used Vector 

Fitting method to detect and evaluate winding faults types, including axial displacement, 

radial deformation, disc space variation and short circuit [78]. To study axial displacement, 

a 31-disc high voltage winding, with 6 turn per disc, and a four layer low voltage winding, 

with 99 turn per layer, were used, which correspond to a transformer with rated voltage of 

10 kV and rated power of 1.3 MVA. To study radial deformation and disc space variation, 

a 30-disc high voltage winding, with 11 turn per disc, and a one layer low voltage winding, 

with 23 turns, were used, which correspond to a transformer with rated voltage of 10 kV 

and rated power of 1.2 MVA. To study short circuit, a 30-disc high voltage winding, with 9 

turn per disc was used, with rated voltage of 10 kV and rated power of 1.2 MVA. A new 

statistic indicator, Faulted-Intact relation (FI) was proposed. FI is less than 1 for axial 

displacement and radial deformation, and it is larger than 1 for disc space variation and 

short circuit. Axial displacement and radial deformation can be distinguished by 

calculating FI from 10 kHz to 100 kHz, whilst disc space variation and short circuit can be 

distinguished by the different alteration in FI depending on different levels of fault. The 
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location of disc space variation can be determined by FI, since it has a unique and specific 

value for a different level and location of disc space variation.  

2.3 Modelling  

 

To model transformer windings, it fundamentally requires the compromise between 

accuracy and complexity, and an appropriate model is needed when analysing a 

transformer winding at different lifetime stages, such as design, operation or post-failure 

analysis. Transformer winding models for FRA can be categorised into two groups: white 

box and grey box models. Each category of model is suitable for certain situations and 

possesses its own advantages.  

 White Box Model  2.3.1

 

In order to understand the deviations induced in the frequency responses and to correlate 

the changes to the winding components, sensitivity studies are needed. A white box 

simulation model is preferred, because it is more economic and flexible than experiments 

on a real transformer for sensitivity study. White box models require geometric 

information and construction documents of the transformer. They can be classified into 

distributed parameter model, lumped parameter model and hybrid model. Distributed 

parameter model is developed based on multi-transmission line theory, and each turn of the 

winding is viewed as a transmission line, for which the propagation of the voltage signal is 

described. However, the calculation becomes very complex when the amount of winding 

turns is huge [79-82]. The lumped parameter model consists of a certain amount of units. 

Each unit contains the electrical circuit components, i.e. the inductor, capacitor, and 

resistor, and represents a section of the transformer winding [33, 83, 84]. The lumped 

parameter model can accurately simulate the frequency response up to 1 MHz, whilst the 

distributed parameter model is suitable for frequency range up to 10 MHz. In [85], hybrid 

model has been first time mentioned in the FRA field, extensive discussion has been 

conducted. However, the definition of hybrid model is not very clear. Normally, by 

definition, a hybrid model can be regarded as a simplified distributed parameter model; 

firstly a part of the winding is modelled using multi transmission line theory, i.e., each turn 

of conductor is treated as a single unit of transmission line using traveling wave equation, 

and the rest of the winding is treated as a lumped parameter model where a couple of discs 

would be regarded as a lumped unit. The two parts are connected to each other as a hybrid 
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model which simplifies the calculation process while the accuracy of frequency response is 

kept. 

In 1992, K. Cornick from UNIST, UK, B. Filliat and C. Kieny from EDF, France, and W. 

Muller from Siemens, Germany proposed a simulation model for the very fast transient 

overvoltage analysis. The simulation model was based on turn by turn analysis, using the 

multiconductor transmission line theory. Experiments were conducted on a three-phase 40 

MVA, 220/34.5/6.9 kV transformer, which showed that the simulation result had a good 

agreement with the experimental result, especially the location of major resonant frequency 

[79]. Though this model predicts the winding’s behaviour accurately, its computation time 

is too long. In 2007, M. Popovand L. van der Sluis from Delft University of Technology, 

Netherlands, R.P.P Smeets from Eindhoven University of Technology, Netherlands, J. 

Lopez-Roldan from Pauwels Trafo Belgium N.V, Belgium and V.V. Terzija from The 

University of Manchester, UK, presented a refined single-phase 15 kVA, 6.6/0.07 kV 

transformer model based on transmission line theory, as shown in Figure 2-4, for the 

purpose to study fast transient oscillations [81]. The elements of the electrical parametric 

circuit of the winding were calculated per turn, containing the capacitance, the inductance, 

the resistance as well as the dielectric losses. In this model, the frequency-dependent iron 

and copper losses were considered. Experimental measurements were carried out, and the 

validity of the model was verified. The voltage distribution on the winding can be 

simulated by this model over a large frequency range, up to 10 MHz.  

 

Figure 2-4 Multi-Conductor Transmission Line Transformer Winding Model [81] 

The lumped parameter model has the advantages of simplicity and ease of application. The 

R-L-C-M lumped model is shown in Figure 2-5 [52]. It has been attracting increasingly 

attentions of researchers due to its ability to precisely represent the internal winding 

voltage distribution [52, 86]. To build this model, the first step is to calculate the electric 

components. Two groups of detailed calculation methods were used in [87, 88], including 

calculations of winding series capacitance, winding ground capacitance, interwinding 
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capacitance, core inductance, air-core self-inductance and mutual inductance. The skin 

effect should also be considered in resistance calculation. The second step was to find the 

system solution. In [69], the system solution was found by MATLAB. The frequency 

response can be produced automatically after the input of electric parameters calculated in 

the first step. In [88], the system solution is found by applying Kirchoff’s Voltage Law 

(KVL) and Kirchoff’s Current law (KCL) to the circuit using complex inductance and 

capacitance matrix for calculation. Through white box models, a one-to-one representative 

relationship can be built between transformer geometrical data and electric parameters. 

 

Figure 2-5 Equivalent Circuit of Two-Winding Transformer [52] 

In 1996, S.M. Islam and G. Ledwich, from the University of Newcastle, Australia, 

constructed a single winding equivalent circuit based on winding geometry without core 

effect [89]. The circuit contained winding series capacitance, ground capacitance, air core 

self-inductance, mutual inductance between each two cells and winding losses. The 

model’s winding geometry was artificially manipulated to simulate winding disc 

deformation, interturn and interdisc short circuit faults. The results demonstrate the ability 

of FRA technique in detecting different winding faults. However, the model can only 

represent a single winding without core, which is not practical. 

In 2003, E. Rahimpour, H. Mohseni, from Tehran University, Iran, and J. Christian, K. 

Feser from University of Stuttgart, Germany, improved the accuracy of transformer model 

[33]. The core effect, frequency dependent losses have been considered in the improved 

model. The model was verified through the comparison between the simulation and 

measurement results of the model, which has a 30-disc high voltage winding and a single 

layer low voltage winding. It was concluded that the simulation results were in good 

agreement with the measurement results in the frequency range from a few kHz up to 1 
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MHz. The model developed in this work has the limitation that it can only represent single 

phase transformers. A more complicated modelling method is needed to represent 3-limb 

and 5-limb cores, as most power transformers operating in the power system are of three 

phase type. 

In 2006, J.A.S.B. Jayasinghe, Z.D. Wang from The University of Manchester, UK, P.N. 

Jarman from National Grid, UK, and A.W. Darwin from AREVA T&D UK Ltd-

Transformers, UK built a simulation model of a 132/11 kV, 30 MVA transformer [52]. In 

this equivalent circuit, a cell consists of the parallel inductor and capacitor. As shown in 

Figure 2-5, 𝐶𝑔 represents the ground capacitance from winding to core or tank, 𝐶𝑠 

represents the series capacitance between winding turns and discs, 𝐿𝑠 is the combination of 

leakage and core inductance and 𝑀𝑖𝑗 represents the mutual inductive couplings between 

every two cells. There are interwinding capacitances between the HV and LV winding. By 

applying Kirchoff’s Voltage Law (KVL) and Kirchoff’s Current law (KCL) to the circuit, 

the ratio of the voltages at terminal nodes can be computed and then a frequency response 

can be derived. In 2010, D. M. Sofian, Z.D. Wang, and J. Li from the University of 

Manchester, UK modelled a three phase 1000 MVA 400/275/13 kV auto-transformer [90]. 

The series capacitance is calculated by Stein’s method [91]. The cross-capacitance (ground 

capacitance and interwinding capacitance) between units in adjacent windings is derived 

from the multi-conductor capacitance model [92]. The inductance calculation methods in 

[93] was used. The same system solution as in [52] was used. It was concluded that in the 

frequency range from 10 Hz to 1 MHz, the simulation results of series and common 

winding followed the trends of measurement results well, while the accuracy of tertiary 

winding modelling should be improved in the high frequency region.  

In 2012, Naser Hashemnia, A. Abu-Siada and Mohammad A. S. Masoum, from Curtin 

University, Western Australia, summarised the influence of different faults on the different 

frequency regions of frequency responses [94]. Deformation caused by the buckling stress 

can be simulated by the decrease of the interwinding capacitance and mutual inductance. 

Besides, the decreased distance between windings leads to the smaller shunt capacitance. 

The inter disc fault due to axial disc space variation is simulated by increasing the series 

capacitance and mutual inductance of the two influenced discs. The change in the series 

capacitance and mutual inductance is used for the simulation of axial displacement. 

Leakage fault, which is fundamentally caused by the significant increase of dielectric 

losses, can be simulated by increasing the conductance to ground. One example of leakage 
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fault is disc to ground fault, which are caused by ground shield damage, insulation damage, 

high moisture content in the winding, abrasion, hotspot and aging insulation. When a short 

circuit fault occurs, the series resistance and inductance in the model should be altered. 

When a radial fault happens, the ground capacitance, capacitance and mutual inductance 

between high voltage and low voltage windings should be changed accordingly. The whole 

frequency range was divided into 3 frequency regions, and the influence from the 

aforementioned faults on different frequency regions are summarised, including the 

alteration in magnitude and the shifting of resonant points. In 2013, the same authors 

investigated the influence of different faults on the frequency responses [95]. It was found 

that the radial displacement has an influence on the whole frequency range, from 10 Hz to 

1MHz, while the axial deformation only influences the frequency range higher than 200 

kHz.  

In short, the white box is suitable for FRA interpretation studies as it can lead to better 

understanding about how the change of physical dimension of transformer windings 

changes the features of corresponding frequency responses. However, the white box model 

requires transformer design data, which may not be accessible in most cases by utilities but 

original equipment manufacturers. 

 Grey Box Model  2.3.2

 

The structure of a grey box model’s equivalent electrical circuit has the same circuit 

topology as the white box model, but its parameters of the circuit are estimated from the 

given frequency response.  

In 2002, J. Pleite, E. Olias, A. Barrado, A. Lazaro and J. Vazquez from Univ. Carlos III, 

Madrid, Spain proposed a method to construct the grey box model [96, 97]. The magnitude 

response of the measured frequency response was used to demonstrate the proposed 

method. In this study, the amount of the basic cells/units of the model was decided by the 

amount of the resonance and anti-resonance. The whole frequency ranges were also 

divided into several frequency regions according to the amount of the resonant frequencies. 

Each cell was assumed to have very limited influence at other frequency regions, and thus 

only dominated in its own intended frequency range. However, this method does not have 

good repeatability. When it is applied to the artificial transformer equivalent winding 

circuits, the calculated values of the circuit elements may deviate from the original data, 

and sometimes the values may even become negative, which is not physically achievable. 
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The biggest problem with this method lies on the unrealistic assumption used by the 

authors. 

In 2011, S. D. Mitchell and J. S. Welsh from University of Newcastle, Australia 

constructed a grey box model for the better interpretation of frequency responses [98].  

Nine frequency responses were measured on a Dyn1 1.3 MVA 11 kV/433 V distribution 

transformer, which included high-voltage end-to-end open circuit test, low-voltage end-to-

end open circuit test, and capacitive interwinding test on three phases. A common set of 

transformer parameters was estimated to simultaneously match all of the nine frequency 

responses. A nonlinear optimization algorithm was used to determine the parameters of the 

model by minimising a cost function representing the difference between the estimated and 

the measured frequency responses. External transformer measurements and knowledge of 

common manufacturing practices were used to constrain model parameters. The estimated 

core cross-sectional area, core yoke length, core limb length, and HV winding turns were 

in good agreement with the actual values, and the estimated frequency response matched 

the measured frequency response both in magnitude and phase up to 1 MHz.  The 

developed model can be used as a test bed for the sensitivity study of model parameters to 

support the analysis of frequency response. In 2013,  the same authors developed  a 

method to make initial estimations and set constraints for major parameters of grey box 

model [99]. The proposed method can reduce the possibility that the model parameters 

converge on local minima without proper constraints, which may not be physically 

representative. The transformer design documentation is the safe guarded technical know-

how of the transformer manufactures. Instead, the external transformer dimensions, routine 

test data, and nameplate details can be obtained and were used to develop the relationships 

for the estimation of initial parameter. With the initial parameter estimates and constraints 

of the winding conductor cross-sectional area, winding conductor length, mean high 

voltage winding diameter, number of turns in the high-voltage winding, the mean core 

yoke and limb lengths of a transformer’s magnetic circuit, and core cross-sectional area, 

the representative parameters of the transformer physical dimensions can be achieved. A 

group of distribution transformers, with different ages, sizes, power ratings and 

manufacturers were used to demonstrate the applicability of proposed method. 

In 2017, R. Aghmasheh and V. Rashtchi from University of Zanjan, Iran, and E. 

Rahimpour from ABB, Germany put forward some new thoughts for the grey box 

modelling [100]. The main contribution of this study is the application of appropriate 

functions to represent the electrical parameters of transformer winding. With the increase 
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of the distance between winding discs, the magnetic coupling between them decreases. 

Therefore, there exists an inequality constrains on the inductances of the model. Weibull 

Distribution function was used for the estimation of both self and mutual inductance. 

Taking the first row of n×n inductance matrix for example, the independent variable of the 

Weibull Distribution function is the number of an element, and the value of Weibull 

Distribution function is the value of the element, i.e. the inductance. Thus the parameter 

identification process was simplified, by reducing the number of unknown parameters, and 

eliminating the inequality constraints between inductances. An exponential function was 

used in the estimation of conductor resistance. The model became more simple and 

feasible because of the proposed method. The proposed method was tested using a 44-disc 

with 7 turns in each disc. The frequency response produced by the grey box model was 

compared with the measure frequency response up to 1000 kHz, and the matching result is 

acceptable, as the shape of measured FRA trace can be well followed by the simulated 

FRA trace. 

 Finite Element Model 2.3.3

 

The Finite Element Model (FEM) is essentially a white box model. The Finite Element 

Model (FEM) is based on 3-dimensional electromagnetic simulation to accurately calculate 

the electrical parameters of equivalent circuit, and an example of the single phase 

transformer FEM model is shown in Figure 2-6. The whole model was meshed into a large 

number of small sections, or the so-called finite elements. The response of the FEM model 

can be obtained by computing the response of each element. In the FEM model, the 

electrostatic energy, leakage fluxes, electromagnetic forces are considered. The valid 

frequency range of the Finite Element Model can be up to 1 MHz [101-104]. 

 

Figure 2-6 3-D Finite Element Model of Single-Phase Transformer [102] 
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In 2014, Z.W. Zhang from University of Liverpool, UK, W.H. Tang, T.Y. Ji and Q.H. Wu 

from South China University of Technology, China, investigated the radial deformations 

through FEM model using COMSOL [101]. A single-phase power transformer was 

modelled. It has a 30 double-disc high voltage winding, with 11 turns per disc, and a 23-

turn, 6 conductors in parallel, helical low voltage winding. In their study, the FEM model 

was used as a computation tool to calculate the inductance and capacitance. The resistance 

and conductor were calculated by analytical formulae according to the transformer 

physical dimension. Those electrical parameters were applied to a hybrid model to produce 

a frequency response. Accuracy of the simulated frequency response was verified with the 

experimental result. The radial deformations lead to the alteration in ground capacitance 

and inductance and thus the change in the frequency response. The authors also suggested 

that other fault types such as axial movements can be studied using this model. 

In 2015, N. Hashemnia, A. Abu-Siada and S. Islam from Curtin University, Australia, built 

a single-phase transformer FEM model using the software of ANSYS [103, 104]. The 

inductances and capacitances were extracted using electrostatic and magnetostatic solvers, 

while the frequency-dependent resistance was obtained by eddy current solver. The 

frequency response could be produced by applying the extracted electrical parameters to 

the lumped parameter model. The impacts from axial displacement and radial deformation 

on the frequency response were studied. In previous study such as [33, 44], the axial 

displacement was simulated by the alteration in the mutual inductance between high 

voltage and low voltage windings, while the alteration in capacitance is not considered. In 

previous study such as [98], the radial deformation was simulated by the alteration in the 

capacitance of high voltage and low voltage windings, while the alteration in inductance is 

not considered. Different from the past research, the study proved that a more realistic 

frequency response can be produced for axial displacement and radial deformation by 

considering the alteration in both capacitance and inductance. Besides, for different levels 

of axial displacement and radial deformation, the corresponding percentage changes of 

electrical parameters were suggested by the authors. 

In 2018, S. Tenbohlen, M. Tahir, from University of Stuttgart, Germany, and E. 

Rahimpour from ABB, Germany, built an FEM model using CST Microwave studio [102].  

A single phase transformer, with continuous disc high voltage winding and helical low 

voltage winding, was modelled, and the power rating of this transformer was about 1 

MVA. The model developed in CST MICROWAVE STUDIO can produce the frequency 

response directly using high frequency solver, without the need to build circuit models. 
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The simulation was verified with experimental results for both healthy and faulty 

windings. Two types of Disc Space Variation (DSV) were investigated, i.e. DSV between 

discs and DSV in full winding. Numerical indices, including Standard Deviation (SD), 

Correlation Coefficient (1-CC), Euclidean Distance (ED), and Cross Correlation Factor 

(CCF) were evaluated for their ability to identify DSV. As the degree of mechanical failure 

increases, all numerical indicators are monotonous. The authors also suggested that the 

inductive interwinding connection scheme is the most sensitive measurement method to 

detect DSV. 

In the white box model, the winding deformations are normally simulated by the 

percentage change in the electrical parameters, especially the capacitance. For FEM model, 

the deformation can be more accurately simulated. Some researchers applied the electrical 

parameters extracted by the FEM model to the lumped parameter model or the hybrid 

parameter, while some researcher use FEM model to produce the frequency response 

directly, for example using the high frequency solver in the design module of CST MW 

STUDIO. One disadvantage of Finite Element Model is that the computation requires long 

time and large memory. 

2.4 Application of Artificial Intelligence in FRA 
 

Different artificial intelligence methods have been applied for the transformer fault 

diagnosis, such as Support Vector Machines (SVM), Clustering Analysis (CA), Artificial 

Neural Networks (ANN), Genetic Algorithm (GA), for multiple purposes, such as 

parameter estimation for grey box model [105] and diagnosis of the type, level, and 

location of transformer faults[39, 64, 106-108]. Several artificial intelligence algorithms 

may be used together to solve some complex problems, or to find a solution with more 

effective performance. The most commonly used artificial intelligence methods and their 

applications will be briefly introduced in this section.  

The artificial intelligence methods including machine learning can be divided into 

supervised and unsupervised types. The supervised machine learning methods require 

observations with known labels as input to build an identification model, and this model 

could be used to estimate the labels of new observations. The unsupervised machine 

learning methods classify the input observations according to the similarity or dissimilarity 

among them, without any guidance, i.e. the labels of observations. 
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 Support Vector Machines (SVM) and Applications  2.4.1

 

SVM  is a supervised machine learning method which was initially proposed for the two-

type classification problem, and it is generally considered to be one of the best algorithms 

for classification problem [109]. Multiclass classification problems can also be solved by 

SVMs if using multiple binary classifiers. An SVM is a generalised linear classifier, which 

can be also applied to the nonlinear classification problem in combination with kernel 

method. 

A binary SVM classifier finds an optimal hyperplane which isolates two groups of 

observations with known types. The distances from the hyperplane to the nearest 

observations from the two groups should be equal. For example, in the two-dimensional 

space in Figure 2-7, an optimal hyperplane, represented by the bold line, leans neither to 

the nearest observation from type C1 (triangles) nor the nearest observation from type C2 

(circles). Each observation, either a triangle or circle, is called a feature in SVM algorithm. 

The boundary features, which are circled in dashed line in Figure 2-7, determine the 

hyperplane of binary classifiers, and they are the nearest observations to the classification 

hyperplane from each feature type. Such boundary features are called support vectors in 

SVM. There may be more than one support vector from each type of features.  

 

Figure 2-7 Binary SVM Classifier Training Data in 2-D space 

In the two-dimensional space in Figure 2-7, the classification hyperplane g(x) =0 is a line 

and it is defined as: 

𝑔(𝒙) = 𝒘𝑻 ⋅ 𝒙 + 𝑏 = (𝑤1 𝑤2) (
𝑥1
𝑥2
) + 𝑏 = 0 Equation 2-6 

where 𝒙 is a point, a 2×1 vector, located on the classification line in the two-dimensional 

space, 𝒘 is the vector of fitted linear coefficients and b is bias. The vector 𝒘 and the bias b 
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determine the slope and the vertical intercept of the classification hyperplane in the two-

dimensional space, respectively. The signs of two types of features on two sides of the 

classification hyperplane are different. In Figure 2-7, the sign of g(𝒙) =𝒘𝒙+𝑏 is positive 

for features from type C1 and negative for features from type C2. 

Define y as the classification label: 

𝑦 = {
    1,          𝑓𝑜𝑟 𝑡𝑦𝑝𝑒 𝐶1  
−1,          𝑓𝑜𝑟 𝑡𝑦𝑝𝑒 𝐶2 

 Equation 2-7 

For the convenience of computation, the whole plane can be scaled such that for the 

support vector 𝒙𝑖, 𝑔(𝒙) = |𝒘𝑻 ⋅ 𝒙𝑖 + 𝑏| equals to 1. To achieve an optimal classifier, the 

geometrical margin 1 ‖𝒘‖⁄  , between the support vector and the classification hyperplane, 

is to be maximized which is equal to minimizing  
1

2
‖𝒘‖2. Thus, the problem to find the 

optimal classification hyperplane in the two-dimensional space can be described 

mathematically as: 

{
         𝑚𝑖𝑛

1

2
‖𝒘‖2                   (𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

𝑦𝑖(𝒘
𝑻 ⋅ 𝒙𝑖 + 𝑏) − 1 ≥ 0    (𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

 
Equation 2-8 

This is a convex Quadratic Programming problem, which also applies to finding the 

optimal classification hyperplane in higher dimensional spaces. To solve it, a Lagrange 

equation can be defined, by combining the constrain function with the objective function 

with a non-negative Lagrange multiplier α: 

𝐿(𝒘, 𝑏, 𝜶) =
1

2
‖𝒘‖2 −∑𝛼𝑖(𝑦𝑖(𝒘

𝑻 ⋅ 𝒙𝑖 + 𝑏) − 1)

𝑛

𝑖=1

 Equation 2-9 

Set 𝜃(𝒘) as: 

𝜃(𝒘) = max
𝛼𝑖≥0

 𝐿(𝒘, 𝑏, 𝜶) 
Equation 2-10 

Since 𝛼𝑖 ≥ 0, when the constrain function in Equation 2-8 is satisfied, there exists 𝜃(𝒘) =

1

2
‖𝒘‖2. Thus the objective function in Equation 2-8 can be expressed as: 

min 
𝒘,𝑏

𝜃(𝒘) = min 
𝒘,𝑏

max
𝛼𝑖≥0

 𝐿(𝒘, 𝑏, 𝜶)   
Equation 2-11 

Under Karush–Kuhn–Tucker condition (constrain function is satisfied and L is 

differentiable regarding 𝒘 and b), the problem in Equation 2-11 can be converted into its 

dual problem according to Lagrange Duality: 
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max
𝛼𝑖≥0

 min 
𝒘,𝑏

𝐿(𝒘, 𝑏, 𝜶) 
Equation 2-12 

To solve Equation 2-12 L should be minimized regarding w and b, by setting their partial 

derivatives as 0, and hence: 

𝒘 =∑𝛼𝑖𝑦𝑖𝒙𝑖

𝑛

𝑖=1

 Equation 2-13 

∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0 Equation 2-14 

Now the problem can be expressed by only the Lagrange multiplier 𝜶 as: 

{
  
 

  
 max

𝛼
∑𝛼𝑖

𝑛

𝑖=1

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗

𝑛

𝑖,𝑗=1

𝑠. 𝑡. 𝛼𝑖 ≥ 0, 𝑖 = 1,… , 𝑛 

∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0

 Equation 2-15 

The Lagrange multiplier 𝜶 can be solved using the sequential minimal optimization 

algorithm. After 𝜶 is computed, w and b are derived as:  

𝒘 =∑𝛼𝑖𝑦𝑖𝒙𝒊

𝑚

𝑖=1

 Equation 2-16 

 

𝑏 = −
max (𝒘𝑻 ⋅ 𝒙𝒊|𝑦𝒊 = −1) + min (𝒘𝑻 ⋅ 𝒙𝒊|𝑦𝑖 = 1)

2
 Equation 2-17 

Once w and b are obtained, the classification hyperplane is found. Therefore, the type of 

new features can be identified according to its sign. 

Since the binary SVM classifier can only distinguish two classes of features, multiple 

binary SVM classifiers are needed for the multiclass classification problem. ‘One-versus-

one’, ‘one-versus-all’ and ‘binary tree’ are three commonly adopted multiclass 

classification strategy [110]. In this study, ‘one-versus-one’ method is used. This means 

that between every two classes, a decision is made on which class the new feature is more 

similar to. Finally, the new feature is identified as the class which wins the most votes. 

For nonlinear classification problem, the SVM algorithm needs to convert the input 

features into a feature space, using kernel functions. The radial basis function, polynomial 

function and sigmoid function are the most commonly adopted kernel functions. The radial 
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basis function reflects the distance of training features from the origin, or any predefined 

point. The polynomial kernel function identifies the resemblance of input samples 

according to both their given features and the combination of them, i.e. the interaction 

features. It is suitable for the normalized training data. The sigmoid function is a 

mathematical function with an ‘s’ shape, and its value ranges between 0 and 1. The 

sigmoid function is widely used for the prediction of probability. 

The SVM model also needs to be trained and tested before it is used for classification as a 

supervised machine learning method. 

In 2012, M. Bigdeli, from Islamic Azad University, Iran, M. Vakilian from Sharif 

University of Technology, Iran, and E. Rahimpour from ABB, Germany used the SVM 

algorithm to recognise four types of transformer winding faults, including axial 

displacement, radial deformation, disc space variation and short circuit of windings [64]. 

Two groups of test objects were studied; one is a 6.5 MVA 20/6.3 kV transformer while 

the other group is four model transformers, with a 10 kV disc type high voltage winding, 

with or without a 0.4 kV low voltage winding, rated power ranging from 1.2 to 1.3 MVA. 

Vector fitting was used in this study to estimate the parameters of transfer function of 

measured FRA traces. The mathematical indices of frequency and amplitude variation at 

the resonant points were used as the input features of SVM classifier. The accuracy of the 

estimation result was very high, ranging from 80% to 100% for different fault types. The 

authors compared the results of proposed SVM method with those of the ANN algorithm, 

and concluded that SVM is more reliable than ANN. 

In 2019, J. Liu, Z. Zhao, C. Tang, C. Yao, C. Li from Southwest University, China, and S. 

Islam from Federation University Australia, Australia used SVM algorithm to identify the 

winding fault types and levels, including disc space variation, inter-disc short circuit and 

radial deformation [107]. The frequency responses of faulty winding were produced using 

a 400 kVA, 10/0.4 kV, specially manufactured 3-phase model transformer. Eight statistic 

indicators are used as the input features of the SVM model, including Correlation 

Coefficient, Euclidean Distance, the maximum of difference, the Integral of Absolute 

difference (IA), the Sum Squared Error, the Sum Squared Ratio Error, the Sum Squared 

Max-Min Ratio Error and Root Mean Square Error. Particle swarm optimisation algorithm, 

grid search algorithm and genetic algorithm were used to optimize the parameters of the 

SVM identification model, and particle swarm optimisation algorithm was regarded as the 

best among the three optimisation methods in this study, in terms of convergence speed 
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and quality of the solution. The accuracy of the model reached 96.3% when identifying the 

fault types. When identifying the fault degrees, the accuracy of disc space variation was 

95.24% while the accuracy of radial deformation is only 70%.  

 Clustering Analysis Methods and Applications 2.4.2

 

Clustering Analysis (CA) methods are unsupervised machine learning algorithms. The 

methods group similar observations into clusters. The observations within the same cluster 

are more similar to each other than to the observations from the other clusters. There are 

several types of CA methods, including connectivity-based clustering, centroid-based 

clustering, distribution-based clustering and density-based clustering. The connectivity-

based clustering, which is also called hierarchical clustering, is the most commonly used 

clustering method. Hierarchical clustering includes agglomerative hierarchical clustering 

and divisive hierarchical clustering. For the agglomerative hierarchical clustering, initially, 

each observation is treated as a separate cluster. The algorithm repeatedly identifies the 

closest two clusters and merges them, until all the clusters are merged into one cluster. The 

divisive hierarchical clustering is opposite to the agglomerative hierarchical clustering. 

Initially, all observations are treated as a single cluster, and the whole big cluster are split 

into smaller clusters until the required cluster number is achieved.  

In agglomerative hierarchical clustering, a distance matrix and a dendrogram can be used 

to aid the clustering process. The distance matrix lists all the distances between every two 

observations, and the closest two observations are merged together, according to the 

smallest distance in the matrix. Then the distance matrix is updated to find the new closest 

two clusters. There are many ways to define the similarity, or distance, between the 

observations, such as Euclidean Distance, Squared Euclidean Distance, Standardised 

Euclidean Distance, City Block Distance, Minkowski Distance, Chebychev Distance, 

Cosine Distance, Correlation Distance, Hamming Distance and Spearman Distance. 

Euclidean Distance, Standardized Euclidean Distance and Correlation Distance are some 

most commonly used distance types. Euclidean Distance is the root of accumulated 

squared data deviation, and Standardised Euclidean Distance is the Euclidean Distance of 

observations after standardisation. Correlation Distance uses a real number between 0 and 

1 to reflect the resemblance between two observations. 

After two objectives are merged, the distance of newly merged cluster to other clusters 

should be updated as well. The linkage method refers to the way how the distances 
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between the newly formed cluster and original cluster are calculated, after two clusters are 

merged. Different linkages criteria can be used to update the distances, including Single 

Linkage, Complete Linkage, Average Linkage, Weighted Linkage, Centroid Linkage, 

Ward Linkage and Median Linkage. The Single Linkage is also called the nearest-

neighbour linkage. The smaller is the distance between the nearest two samples from two 

clusters, the greater is the similarity between the two clusters. The disadvantage of Single 

Linkage is that it may cause loose clustering. This effect is called Chaining, which means 

that two cluster can be merged even if they are separated relatively far, due to the existence 

of two close samples. The Complete Linkage is also called the farthest-neighbour linkage. 

Opposite to Single Linkage, the longest distance between two clusters’ samples is used as 

the distance of the two clusters. Its disadvantage lies in that even if two clusters are very 

close to each other, due to the existence of two far away members, they cannot be merged. 

The Ward Linkage uses inner squared distance, and it is only applicable for the Euclidean 

Distances. 

In 2018, Ali Reza Abbasi and Mohammad Reza Mahmoudi from Fasa University, Iran, 

and Zakieh Avazzadeh from Nanjing Normal University, China attempted to diagnose the 

transformer winding faults by the clustering method with Cross Correlation [108]. A 

detailed transformer model was built to simulate frequency responses under the healthy, 

radial deformation, axis displacement and short circuits conditions. The whole frequency 

ranges were divided into low, middle and high frequency regions, and the clustering were 

carried out on those different frequency regions. The Ward’s Linkage and Squared 

Euclidean Distance were used during the agglomerative hierarchical clustering. A 

conclusion was made that satisfactory clustering results can be achieved, and the 

identification of different fault types is feasible.  

 Other AI Algorithms and Applications  2.4.3

 

Artificial Neural Networks (ANN) are computation models, and they can be either 

supervised or unsupervised. [111]. ANN methods are among the most popular artificial 

intelligence methods in the FRA field, and they have been successfully applied to identify 

the equivalent circuit of transformers [105], or to identify the type, location and severity of 

transformer winding faults[106, 112, 113].  

ANN methods are nonlinear calculation models, which simulate the way that biological 

nervous systems analyse and process information. The network is able to evolve itself 
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based on the input and output, which means that the structures of the ANN models can be 

influenced by the information processed. An example is given in Figure 2-8 to illustrate the 

structure of ANN system, where the neural network consists of many basic units, nodes, 

and the nodes are distributed in three categories of layers, i.e., the input layer, the hidden 

layer and the output layer. The output layer may have multiple nodes or a single node 

[113]. The amounts of the important methodological factors including input/output layers, 

hidden layers, nodes, etc. varying problem from problem. 

More hidden layers can be used for more complex problems. The output of each neuron is 

decided by its input and weight factors:  

𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠 ℎ𝑗 = 𝒇(∑𝑾𝒊𝒋𝒙𝒊) Equation 2-18 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 = 𝒇(∑𝑾𝒋𝒌𝒉𝒋) Equation 2-19 

 

  
Figure 2-8 Example of Multiple Layer ANN Structure [113] 

For the hidden layers, threshold function and sigmoid function are the commonly used 

functions. The threshold function decides whether the input value is larger than a 

predefined threshold. The sigmoid function is a mathematical function, which has a ‘s’ 

shape, and it is often used to introduce nonlinearity in the model. The final classification 

result is related to the result of the output layer. ANN optimises its weight factors by 

reducing the difference between its predicted results and the known example results. 

However, the leaning process of ANN cannot be observed, and its output results are 

difficult to understand. 

The Genetic Algorithms (GA) are artificial intelligence methods for parameters 

optimisation using search heuristic method. The algorithms were inspired by the natural 
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selection process, where the individuals with the fittest characteristics are selected to 

produce offspring. The iterative evolution is adopted in GA, and the candidate solutions in 

each iteration are called a generation. Initially, a group of random candidate solutions are 

formed, which are usually expressed in binary values i.e. string of 1s and 0s. The ‘1’ or ‘0’ 

of the candidate solution is regarded as a gene from a chromosome. The fitness function is 

a predefined objective function, which is used to describe how well the evaluated candidate 

solution meets the desired requirement. Then two candidate solutions are chosen as parents 

to create new candidate solutions, based on their performance according to the fitness 

function. Crossover and mutation are two importance phases of GA algorithm, where the 

genomes (‘1’s and ‘0’s) are alternated. Then the least fitted candidate solutions are 

replaced with the newly produced candidate solutions, keeping the total amount of 

candidate solutions unchanged. Such iteration continues until the terminal condition is 

satisfied, which is normally set as a maximum iteration number or a threshold of the 

evaluated fitness [114].  

Besides the aforementioned artificial intelligence algorithms which are widely applied, 

other algorithms such as the Particle swarm optimization (PSO) algorithm [115], 

imperialist competitive algorithm [116], ABC algorithm [117], chaos optimisation 

algorithm [118], etc. were used in the past research, but theories of those algorithms will 

not be introduced in detail here.  

In 2000, S. Birlasekaran and Xingzhou Yu from Nanyang Technological University, 

Singapore used the ANN algorithm to identify the transformer fault types using frequency 

response data [71]. The transfer function was estimated by NLS method, which is a 

MATLAB inbuilt command, with a fixed order as 32. The frequency locations of the zeros 

and poles were used as the input of back-propagation ANN algorithm. Altogether 12 faults 

were investigated, such as unclamped or loosened screws, interturn faults impedance 

variation at different locations. The accuracy of prediction reached 100%. This research 

provided the study direction to use FRA trace’s mathematical expression, zeros and poles, 

as the key parameters for transformer fault diagnosis. However, there are several 

shortcomings of the proposed method. Firstly due to the limitation of the MATLAB 

command, the transfer function estimation method may fail to match some complex 

measured frequency response which requires high order. Secondly, the location and 

severity of faults cannot be recognised. Lastly, the conclusion was based on the fact that all 

the faults are manually created.  
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In 2001, A. De and N. Chatterjee, from Jadavpur University, India, proposed a fault 

identification method based on ANN algorithm [119]. A group of frequency responses 

were simulated using an EMTP model of a three-phase, 31.5MVA, 132/33kV, y/d 

transformer with tap changer winding. The produced frequency response patterns were 

classified using an unsupervised method, self-organising mapping (SOM), and then fine-

tuned by the supervised method, learning vector quantisation (LVQ). By this way, the 

training process did not require to input the fault categories of produced FRA traces. The 

fault types and locations could be identified. The authors claimed that the developed 

method is able to sense very delicate variation in the frequency response, which may be 

impossible for the experts’ bare eyes to identify. 

In 2006, G. M. V. Zambrano, A. C. Ferreira and L. P. Caloba, from COPPE/UFRJ, Rio de 

Janeiro, Brazil, estimated the parameters of transformer winding model by ANN method 

[105]. The frequency response was obtained from simulation studies based on a single-

winding lumped parameter model. The mathematical expression, a rational transfer 

function, of the frequency response was estimated using ANN algorithm. GA algorithm 

was applied to choose the initial weight factor of each layer of ANN algorithm. Then the 

equivalent electrical circuit model was produced using conventional circuit theory. The 

estimated parameters, including values of the inductance, capacitance and resistance, of a 

four-cell electrical circuit, were very satisfactory, providing an accurate match with the 

simulated frequency response, in the frequency range from 1 Hz to 1 MHz. However the 

example used to test the proposed method was oversimplified. The simulated FRA trace 

was very simple with only a few resonance and antiresonance, while the actual measured 

data may have dozens of resonance and antiresonance. The proposed method still needs to 

be tested and verified using more realistic FRA measurement data. Later on, ABC 

algorithm [117], chaos optimisation algorithm [118], etc. were also applied to construct 

transformer winding models by other researchers. The estimation results were good. Still, 

the FRA data used for estimation are relatively simple, containing only a smaller amount 

of resonant points compared with the actual measured FRA data. 

In 2006, R. Vahid from University of Zanjan, Iran and R. Ebrahim from Iran Transformer 

Research Institute, Iran, used GA algorithm to estimate the parameters of transformer R-L-

C-M models [114]. The test object had a disc type high voltage winding, with 60 discs and 

9 turns in per disc, and with a rated power of 1.2MVA. The unit number of the simulation 

model of the test object was also a parameter to be optimised. Not all the data points on the 

measured FRA trace were used, but the resonant points must be included. In this study, 
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randomly selected initial points were used for GA algorithm. In the worst estimation case, 

the number of iteration reached 5000 and it took about 4 hours to complete the iterations. 

The parameters estimated by the GA algorithm were compared with the calculated 

parameters by analytical formulas proposed in [33], including the self-inductance, mutual 

inductance, series capacitance, ground capacitance and resistance. The estimated 

parameters had a better performance than the calculated parameters in the high frequency 

range. In 2008, the same authors used the artificial intelligence algorithm, improved 

particle swarm optimization (PSO), for the parameter identification of transformer model 

[115]. The same simulation model as that in [114] was used, and every parameter to be 

estimated remained the same as that in [114]. PSO algorithm is an evolutionary 

computation technique and it is inspired by the cooperation and competition behaviour 

between the particles in a swarm. The PSO algorithm was improved by introducing the 

mutation process which is employed in GA algorithm. A fitness function was used to 

evaluate the estimation performance. However, the estimated result was not as good as 

[114], with larger difference between the measured and estimated resonant points. 

In 2012, R. Vahid and H. Shahrouzi from University of Zanjan, Iran and R. Ebrahim from 

ABB, Germany, used an artificial intelligence method called the imperialist competitive 

algorithm for the model reduction of the detailed R-C-L-M model [116]. The test object 

was a 400 kV disc winding, with 86 discs and 9 turns in each disc. The imperialist 

competitive algorithm is the mathematical model of human social evolution. The algorithm 

was used to estimate the parameters of three reduced models, containing 21, 10 and 5 

model units respectively. The reduced model can significantly save the calculation time 

and simplify the problem.  

In 2012, M. Rahmatian, M. S. Naderi, G. B. Gharehpetian and A. J. Ghanizadeh from 

Amirkabir University of Technology, Iran, used the ANN algorithm to distinguish two 

typical fault types, i.e., axial displacement with different degrees of severity and radial 

deformation with different locations [112]. A detailed model was built on based on the 

geometrical parameter of a 1.2 MVA 10 kV/ 400 V transformer and its variation. The high 

voltage winding of the transformer has 30 double discs, while the low voltage winding is a 

double-layer winding. Different fault scenarios were simulated by changing the electrical 

parameters of the constructed model. The features, which were used as the input of the 

ANN algorithm, included Cross Correlation, Euclidean Distance, Sum Squared Error and 

Sum Squared Ratio Error of the diagnosis and reference data. The accuracy reached 75% 

for radial deformation locations and 81.25% for various degrees of severity of axial 
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displacement. Though in this study the quantity of fault types was limited, it still suggested 

a promising direction for the development of a more automated and multifunctional 

diagnosis method.   

In 2014, A. J. Ghanizadeh and G. B. Gharehpetian from Amirkabir University of 

Technology, Iran proposed a more advanced classification method using ANN algorithm 

[39] compared with [112]. Their studies have much in common, such as the construction of 

a detailed transformer model, the employment of ANN algorithm and the features which 

were selected as input of the ANN algorithm. The transformer model has a 30 double-disc 

high voltage winding, and a two-layer low voltage winding. However, in addition to the 

mechanical faults of radial deformation and axial displacement, the study in [39] was able 

to detect the electrical faults disc-to-disc short circuit faults as well. Short circuit faults are 

easy to be detected. The accuracy for fault type identification was as high as 98.8%. When 

the aim changed to identify the fault types as well as their locations, the accuracy dropped 

to 95.4%. Their study suggests that the radial deformation is the most difficult fault type to 

be diagnosed. 

In 2014, Ketan R. Gandhi from Lalbhai Dalpatbhai College of Engineering, India, and 

Ketan P. Badgujar from IITRAM, India used 9 numerical indices as the input parameters 

of ANN algorithm to identify the deviations in frequency responses [113]. Two 10 MVA, 

66/11.55 kV delta/star-connected power transformers and one 12.5 MVA 132/11 star/star 

transformer were used for the case studies. The 9 indices included Correlation Coefficient, 

Mean Square Error, Sum Squared Ratio Error, Sum Squared Min-Max Ratio Error, 

Absolute Sum of Logarithmic Error, Absolute Difference, Min-Max Ratio, Comparative 

Standard Deviation, and Root Mean Square Error. Both the healthy and unhealthy 

transformer FRA data were used to train a multilayer feed-forward ANN with back 

propagation algorithm. Minor, moderate, and significant levels of difference can be 

recognized.  

2.5 Summary  
 

In this chapter, the researches regarding the evaluation methods of frequency responses, 

the modelling of transformer windings and FRA simulation, and the application of 

artificial intelligence in the FRA filed, are reviewed.  
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Subjective and objective methods have been applied in the interpretation and diagnosis of 

frequency response. The subjective methods rely on the expert’s experience, while the 

objective methods use statistic indicators, including numerical indices and transfer function 

expression. The numerical indices are produced either using all the measured data points or 

only the resonant points. The transfer function uses several zeros, poles and a constant to 

mathematically express the frequency response. The fault types, location and level can be 

identified by the combination of statistic indicators, claimed by some of the publications. 

There are three types of transformer models. The white box model is built using the 

geometric and construction information of the transformers. It contains the distributed 

parameter model, lumped parameter model and hybrid model. The white box model can be 

used to produce frequency responses. Meanwhile, the grey box model uses the frequency 

responses to estimate the parameters of the equivalent electrical circuit of transformer 

winding. The FEM model uses a more realistic 3D electrostatic and electromagnetic 

modelling approach to calculate equivalent parameters and produce frequency response, 

and it is essentially a white box model.   

Artificial Intelligence algorithms have been widely applied in the FRA field, including the 

ANN algorithms, SVM algorithms, Generic Algorithms and so on. Those algorithms have 

been applied for the estimation of the parameters of winding models and for the 

identification of fault types, locations and levels of transformer windings.  

In this PhD study, to achieve better evaluation of frequency responses, two transfer 

function estimation methods are developed. One method can precisely reproduce the 

original FRA trace, while the other method can give a satisfactory matching result with a 

physical achievable transfer function. By the transfer function method, the amount of the 

measurement data points can be effectively reduced without losing information. 

Though the artificial intelligence methods have been applied in the FRA field for a long 

time, there is no research conducted on the winding type classification using FRA data. 

Considering the fact that the utilities have accumulated a large amount of frequency 

responses with or without transformer design information, such as the winding 

construction type, there is a need to develop methods to identify the winding types for 

more accurate interpretation of frequency response and better asset management. Two 

methods are developed in this PhD study for this purpose. 
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 FRA Database of UK National Grid Company Chapter 3

 

3.1 Introduction 
 

The frequency responses investigated in this PhD study are introduced in Chapter 3, which 

are provided by the UK National Grid Company.  

This chapter consists of four sections. The first section introduces how FRA data are stored 

in UK National Grid’s FRA database, how FRA data are extracted from this database, and 

how to replot the FRA traces. The second section is about the design information of 

measured transformers, including their quantity distribution in terms of power rating, 

voltage ratio, and winding type. The information regarding failures of transformers 

recorded in the database is provided as well. The third section is about the fundamental 

understanding of the relationship between transformer design and the features of FRA 

traces. The fourth section introduces the frequency responses used in the following 

chapters. 

3.2 Data Storage and Extraction 

 Data Storage 3.2.1

 

The FRA database provided by UK National Grid contains the measured FRA data for the 

time period from 02/07/1990 to 18/11/2005.  

Due to the particular FRA measurement device used, i.e., HP network analyser 4195A, 5 

measurements were taken for the frequency regions 5 Hz to 2 kHz, 50 Hz to 20 kHz, 500 

Hz to 200 kHz, 5 kHz to 2 MHz, and 25 kHz to 10 MHz, respectively. For each region, 

400 evenly distributed frequency points are recorded with sampling interval 0.005 kHz, 

0.05 kHz, 0.5 kHz, 5 kHz and 25 kHz respectively. Both the magnitude and phase 

responses are recorded and they are stored separately in .txt format files. One .txt file only 

contains either magnitude spectrum or phase spectrum from a frequency region of one 

measurement.  

Therefore, to obtain the full range FRA data for one transformer winding, information 

from all the related txt should be extracted and then combined. 
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 Data Extraction and FRA Traces Plotting 3.2.2

 

An excel file is provided by UK National Grid to extract and plot the magnitude spectrum 

of a specific FRA measurement using Macros.  

This excel file owns 7595 rows and 20 columns, and covers around 600 transformers. One 

row in this excel file corresponds to the FRA measurement record of a transformer 

winding. The different columns are the basic information of the transformer and the 

measurement, as well as the location and name of txt files storing the measurement data. 

An example of one row from the excel file is given below. Figure 3-1 shows the screenshot 

of the 1494
th

 row. Column A to C is the basic information of the transformer, including its 

site i.e. substation, its unit number, and the transformer number (TNUMBER). Column D 

is the manufacturer of the transformer. The same manufacturer tends to use the same 

design, such as winding construction types. Column E is the measured phase. A phase and 

C phase have similar magnetic reluctance path whilst B phase has a different magnetic 

reluctance path due to the symmetric design of the core, thus its FRA trace at the low 

frequency region is different from the other two phases. Column F describes the 

measurement connection. Column G is about the tap winding information, i.e. how it is 

connected, though the 400/275/13 kV auto transformers do not have tap windings, and this 

voltage ratio group is the focus of this PhD study. When the tap winding’s connection is 

changed, the winding under test will change accordingly, thus the frequency response will 

change. Column H describes the terminal connection method of other windings, which can 

also influence the frequency response, for example, delta connected tertiary windings can 

bring untested windings through the coupling effect. Column I is the test date.  

 
(a) 

 
(b) 

Figure 3-1 Excel File Record for T4668 A Phase, N to LV 

Columns J to O indicate the name of .txt file in which FRA data are stored. A text file’s 

name consists of three parts. The first part is the element stored in column J ‘DISK’. The 

second part is the element contained in one column from the columns K to O, which 

specify the frequency regions 5 Hz to 2 kHz, 50 Hz to 20 kHz, 500 Hz to 200 kHz, 5 kHz 
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to 2 MHz, and 25 kHz to 10 MHz. The last part is ‘C1’ or ‘C2’. ‘C1’ leads to the 

magnitude spectrum while ‘C2’ leads to the phase spectrum. By combining the three parts, 

the corresponding filename can be obtained. Column P suggests the location of folder 

storing the txt files of each measurement. For example, it is revealed by 1494
th

 row that in 

the folder ‘C:\Work\Databases\Databases\txc\fra\FRA14’, a txt file called ‘B4416C1’ 

stores the FRA magnitude spectrum from 5 Hz to 2 kHz for the measurement on A phase, 

N to LV winding of transformer ‘T4668’. The frequency points, on which FRA data are 

sampled, are not recorded since they are in the same format for every FRA measurement. 

And those frequency points can be produced easily according to the frequency range and 

sampling intervals mentioned above. 

However, this excel file can neither extract the phase data, nor combine the magnitude 

spectra from different frequency regions.  

A MATLAB programme was written to extract and replot the frequency responses, 

requiring the information of transformer name, tested phase, tested winding, FRA 

measurement connection method etc. as input.  

Different from the excel programme, the MATLAB programme used the combined data to 

plot a single FRA trace for the desired whole frequency range. For example, when 

extracting the frequency responses from 5 Hz to 200 kHz, to eliminate these duplicate 

measurement points at lower frequencies, 40 redundancy data were eliminated from the 2
nd

 

measurement, and 40 redundancy data from the 3
rd

 measurement, resulting in 1120 data 

points per FRA trace. For the 1494
th

 row of FRA measurement, the combined total of 1120 

data points produced the magnitude and phase spectra against frequency as shown in 

Figure 3-2.  

Due to the redundancy between the magnitude response and the phase response, researches 

have been focused on the magnitude response. Therefore, the phase plots will not be shown 

in the following part of this chapter. 
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Figure 3-2 5 Hz to 200 kHz FRA Plot for T4668 A phase, N to LV  

3.3 Analysis of Transformers Basic Information 
 

UK National Grid FRA database contains 5963 frequency responses with transformer 

identity, from 474 known transformers, and 1631 frequency responses without transformer 

identity. By counting sites and unit numbers, it can be found that the 1631 frequency 

responses are from 134 other transformers. 

Among the 474 transformers with TNUMBER recorded in the FRA database, the voltage 

ratios and power ratings of 269 transformers out of 474 can be acquired, and 149 out of 

269 transformers have known winding types, with the available information sources. 

 Voltage Ratio and Power Rating  3.3.1

 

For the 269 transformers with known voltage ratios and power ratings, their voltage 

distribution is shown in the following pie chart in Figure 3-3. The 275/132 kV transformers 

have the largest quantity, 90. The numbers of 400/132 kV transformers and 400/275/13 kV 

transformers are 68 and 44 respectively. All of the above mentioned transformers are 

autotransformers, which add up to the amount 202.  
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Figure 3-3 Pie Chart of Voltage Distribution of Transformers with known Tnumber 

For an autotransformer, when measuring the frequency response, their neutrals are 

separate. Normally the FRA test is a single phase end-to-end open circuit test, with the 

other neutrals earthed, but in some cases they may be floating. The tertiary winding 

terminals are delta-connected, and they are normally connected internally with the tank and 

brought out by small bushings. 

Out of the 269 transformers, there are 128 transformers of which the high voltage side is 

275 kV. The quantity distribution of the 128 transformers in terms of different levels of 

voltage ratio and power rating is shown in Table 3-1. The number in bracelet indicates the 

corresponding quantity of each power rating group. There are mainly 3 categories, 275/132 

kV, 275/33 kV and 275/66kV, with or without tertiary winding. It can be seen that 275/132 

kV transformers take up the majority, and more than half of them own a 13 kV tertiary 

winding. Their power ratings range from 75 MVA to 240 MVA. The highest power rating 

reaches 240 MVA, which is also the most populated power rating of this voltage level.  

Vector group is a method used by IEC to classify the winding configurations of three phase 

transformers. To describe HV winding connection, capital letters are used. For description 

of LV and tertiary winding connection, small letters are used. ‘D/d’ and ‘Y/y’ mean that 

the winding is delta and star connected respectively. ‘Z/z’ means interconnected star. ‘N/n’ 

means that the neutral is brought out. The number followed by the letters representing LV 

and tertiary winding shows difference in the phase angle between them with the HV 

winding. The hour indicator is used, where ‘1’ represents 30°, ‘2’ represents 60°, and ‘12’ 

represents 360° or 0°.  The digital ‘11’ means that the LV winding lags the HV winding by 

330°, or that the LV winding leads the HV winding by 30°. The winding configuration 

impacts the interaction between windings, and thus has an influence on the frequency 

response.  
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For the 275/132 kV autotransformers, the vector group YNa0d11 is used. This means that 

the HV winding is star connected with natural brought out. ‘a0’ means that it is an auto 

transformer and LV winding, i.e. common winding, is in phase with the series winding, i.e. 

part of the HV winding, with 0° displacement. TV winding is delta connected and leads the 

HV winding and LV winding by 30°. For 275/33 kV transformers, the winding connection 

scheme is YNd1 or YNd11. For 275/66 kV transformers, the winding connection scheme 

is YNd1, YNd11, or for 275/66/13 kV YNynd11. YNynd11 refers to the winding 

configuration that both the HV winding and LV winding are star connected, HV and LV 

windings are two physically separate windings, and the tertiary is delta connected, leading 

the HV winding 30°. 

Table 3-1 Transformer with 275 kV High Voltage Side 

Voltage Ratio Number 
 

Number Power Rating 

275/132 kV 90 

275/132/11 kV 31 
120MVA 

(27) 

180MVA 

(3) 

240MVA 

(1) 

275/132/13 kV 56 
 

180MVA 

(14) 

240MVA 

(42) 

275/132kV 

(no tertiary) 
3 

  

240MVA 

(3) 

275/33 kV 24 
  

75MVA 

(2) 

100MVA 

(15) 

120MVA 

(7) 

275/66kV 14 

275/66/13kV 

(star/star) 
5 

120MVA 

(1) 

180MVA 

(4)  

275/66/33kV 

(star/star) 
2 

120MVA 

(2)   

275/66kV 

(Star/delta) 
7 

120MVA 

(3) 

150MVA 

(1) 

180MVA 

(3) 

 

There are 112 out of 269 transformers whose high voltage side is 400 kV, as shown in 

Table 3-2. 68 of them are 400/132kV transformers and 44 of them are 400/275/13kV 

transformers. For both 400/275/13 kV and 400/132/13 kV autotransformers, the vector 

group is YNa0d11. 
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Table 3-2 Transformers with 400 kV High Voltage Side 

Voltage 

Ratio 
Number 

 
Number Power Rating 

400/132
kV 

68 

400/132/13kV 55 
220MVA 

(1) 

240MVA 

(52) 

276MVA 

(1) 

288MVA 

(1) 

400/132kV  

no tertiary 
13 

  

240MVA 

(13)  

400/275/
13 kV 

44 

500MVA 

(5) 

750MVA 

(22) 

900MVA 

(1) 

950MVA 

(1) 

1000MVA 

(14) 

1100MVA 

(1) 
  

 Winding Construction Types 3.3.2

 

The winding construction types of all known transformers are summarised in this section. 

This design information can be acquired in different ways. The winding construction type 

information is most reliable if it is from the transformer manufacturer. The winding type 

can also be acquired by disassembling retired or failed transformers. Besides, the 

transformers from the same design group would have the same design. Therefore, it is also 

feasible to obtain the winding construction information of the transformer if the winding 

type of another transformer from the same design group is known.  

Table 3-3 shows the winding type distribution of 275/132kV transformers. In each row, the 

transformers have exactly the same winding types in terms of common, series, tap and 

tertiary windings. It can be seen that there are only a few common windings and series 

winding are layer type for 275/132kV transformers. The Plain Disc winding takes up the 

majority of disc windings, followed by Interleaved Disc winding and Intershielded Disc 

winding. For the tap winding and tertiary winding, Single Helical and Layer windings are 

used. Because of the existence of high-frequency components in the spectrum of a voltage 

surge and lightning impulse, the voltage distribution along the winding is non-linear, which 

leads to larger local stress on the beginning of the winding. Higher Basic Insulation Level 

(BIL) is needed for transformers with higher voltage rating. Plain Disc winding are often 

used for lower voltage rating up to 132kV windings. To overcome the non-linear 

distribution of impulse voltage, Intershielded Disc winding and interleaved winding, which 

own higher series capacitance, are often used.  
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Table 3-3 275/132kV Transformer Winding Types 

 
Group 

Tx 

Number 

Series 

winding 

Common 

winding 

Tap 

winding 

Tertiary 

winding 

275/132kV A 3 NA NA NA - 

275/132/11 

kV 

(31)  

A 7 Plain Disc Plain Disc Layer Layer 

B 1 Layer Layer NA NA 

C 6 Disc Disc Layer NA 

D 8 
Interleaved 

Disc 
Interleaved 

Disc 
Helical NA 

E 9 NA NA - NA 

275/132/13 

kV 

(56) 

A 15 Plain Disc Plain Disc NA NA 

B 8 Plain Disc Plain Disc NA Helical 

C 1 Plain Disc Plain Disc Helical Helical 

D 1 
Interleaved 

Disc 
Intershielded 

Disc 
NA NA 

E 1 Disc Disc NA NA 

F 1 Five-layer Disc Layer NA 

G 1 Layer Layer Layer 
 

H 28 NA NA - NA 

‘NA’ is abbreviation for ‘Not Available.’ 

 

It can be seen in Table 3-4 that 275/33 kV transformers are divided into four types 

according to the construction of windings. Due to the low voltage windings is only 33 kV, 

helical winding can be applied for this low voltage level in group B.  For 275/66 kV 

transformers with or without tertiary windings, the layer winding type and disc winding 

type take up 50% of the total amount separately.  

Table 3-4 275/33kV & 275/66kV Transformer Winding Types 

 
Group 

Tx 

Number 

HV 

winding 

LV 

winding 

Tap 

winding 

Tertiary 

winding 

275/33kV 

(24) 

A 8 Interleaved Disc Plain Disc Interleaved Disc - 

B 1 Plain Disc Helical NA NA 
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C 2 
Double Concentric 

coils (no more 
information) 

NA NA NA 

D 13 NA NA NA NA 

275/66 

kV 

(7) 

A 1 Plain Disc Plain Disc Double Concentric NA 

B 1 Plain Disc Plain Disc NA NA 

C 5 NA NA NA NA 

275/66/13 

kV 

(5) 

A 3 Layer Layer Double Concentric NA 

B 1 Plain Disc Plain Disc NA Helical 

C 1 NA NA NA NA 

275/66/33 

kV 
A 2 NA NA NA NA 

‘NA’ is abbreviation for ‘Not Available.’ 

For 400/132 kV transformers in Table 3-5, 55 out of 68 400/132kV transformers have a 13 

kV tertiary winding. For the 13 transformers without tertiary winding, all of the common 

and series windings are of disc type. For the common and series windings from the 55 

transformers with a 13 kV tertiary winding, only a small portion of them are layer type.  

Table 3-5 400/132kV Transformer Winding Types 

 
Group 

Tx 

Number 

Series 

winding 

Common 

winding 

Tap 

winding 

Tertiary 

winding 

400/132kV 

(13) 

A 8 Plain Disc Plain Disc Two-layer - 

B 2 Interleaved Disc Plain Disc NA - 

C 3 NA NA NA - 

400/132/13kV 

(55) 

A 5 Plain Disc Plain Disc Two-layer NA 

B 11 Plain Disc Plain Disc NA NA 

C 5 Interleaved Disc Plain Disc Helical NA 

D 4 Interleaved Disc Plain Disc NA Helical 

E 6 Layer Plain Disc Layer NA 

F 2 Layer Layer NA Layer 

G 22 NA NA NA NA 

‘NA’ is abbreviation for ‘Not Available.’ 
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In Table 3-6 44 400/275/13kV transformers are summarised. Same as 400/132 kV 

transformers, the disc type winding has a larger amount than the layer winding type. Plain 

Disc winding is the most widely used winding construction type, and then follows the 

Interleaved Disc winding. The Multiple Layer winding type has a larger proportion than 

the Intershielded Disc winding.  

Table 3-6 400/275/13kV Transformer Winding Types 

400/275/13 

kV 

(44) 

Group 
Tx 

Number 

Series 

winding 

Common 
winding 

Tertiary 

winding 

A 4 Plain Disc Plain Disc Single Helical 

B 9 Plain Disc Plain Disc NA 

C 6 Interleaved Disc 
Intershielded 

Disc 
Single Helical 

D 1 Interleaved Disc 
Interleaved 

Disc 
Single Helical 

E 4 Interleaved Disc Interleaved 
Disc 

NA 

F 2 Multiple Layer Multiple Layer Single Layer 

G 3 Multiple Layer Multiple Layer NA 

H 1 Disc Disc NA 

I 14 NA NA NA 

‘NA’ is abbreviation for ‘Not Available.’ 

The focus of this PhD study is on the 400/275/13kV transformers. This is because that the 

400/275/13kV transformers are auto-transformer and they have no tap windings. This is 

regarded as comparatively simpler winding structure. Besides, the winding type 

information of this voltage ratio’s transformers is the most complete as compared with 

transformers from other voltage ratios.  

 Record of Transformer Failures 3.3.3

 

According to the record of UK Nation Grid Company, the statistics of transformer failures 

from 1962 to 2002 are listed in the first column of Table 3-7. For the 20 failed 400/275/13 

kV transformers, there are 7 transformers whose frequency responses are recorded in the 

FRA database, as shown in second column of Table 3-7. Considering the fact that the time-

based comparison may not be available for all transformers, the construction-based 

comparison is also used when analysing the frequency responses of faulty transformers. 

Nevertheless, data are often not available due to incomplete records. Hence the numbers of 
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failed transformers with obvious alteration in frequency responses are listed in third 

column of Table 3-7 for information.  

Table 3-7 Statistic of Faulty Transformers from Year 1962 to 2002 

 
No.  failed 

transformer 
No.  failed transformer 

with FRA record 

No.  failed transformer 
with  obviously altered 

frequency response 

400/275/13 kV 20 7 1 

400/132 kV 13 5 1 

275/132 kV 19 6 1 

275/66 kV 3 0 0 

275/33 kV 7 2 2 

400/66 kV 2 0 0 

400/7.9 kV 1 1 0 

 

Table 3-8 gives the information of the seven 400/275/13 kV transformers with FRA 

records, including rated power, manufacturer, winding construction type, manufacture year 

and failure year, and a brief note of fault diagnosis. T3983, T4296, T4297 and T4281 are 

rated at 500 MVA, T6606 and T5611 are 750MVA, and T6463 is 1000 MVA. T3983, 

T4296, T4297 and T4281 are manufactured by Bruce Peebles with the same design in the 

years 1965-1967. It is believed that they are the manufacturer’s first design for the voltage 

level of 400 kV. All of those transformers were rewound, repaired or modified to a slightly 

different design in the years 1967-1970. The transformers have Plain Disc series and 

common windings and a helical tertiary winding. For this design, it is believed by the 

experts that short-circuit withstand capability might not be adequate, which partially 

contributes into loose clamping and leads to arcing/sparking at the loose clamping bolts. 

T4281, T4296 and T4297 all had dielectric failures. 

As stated, the incomplete frequency response measurements and different measurement 

connection schemes lead to the limited amount of frequency responses available for 

comparison between reference and diagnosis measurements. As shown in Table 3-7, under 

the same measurement connection scheme, using either time-based or construction-based 

comparison, only one 400/275/13 kV transformer, i.e. T6463, has the reference and 

diagnosis frequency responses with obvious alteration. It failed in 1999 because of a short 

circuit current passing through the transformer, and a post-failure examination was also 
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carried out. This transformer was scrapped, and visual inspection indicated significant 

common winding movement, as shown in Figure 3-4. 

Table 3-8 Information of 400/275/13 kV Failed Transformers 

Tnumber 
Rated  
Power 
(MVA) 

Manufacturer 
Winding 

construction 
type 

Made 

year 
Failed year 

Fault 

T3983 

500 
Bruce  

 Peebles 

Plain Disc 
series and 
common 
windings, 
helical TV 
winding 

1965 1966 possibly  
winding fault 

T4296 
1966 1973&1996 

inter-phase 
 insulation; 

lightning strike, 
major 

insulation 

T4297 
1967 2000 arcing/sparking 

 fault 

T4281 
1996 1976&1993 

possibly  
gassing 
fault; 

arcing/sparking 
 fault 

T6606 750 

Hawker 
Siddeley  
Power 

 Transformers 

Not  
Available 

1978 1991 Not  
Available 

T5611 750 
Hackbridge  

and 
 Hewittic 

Plain Disc 
series and 
common 
windings 

1969 1993 inter-phase 
 insulation 

T6463 1000 
Parsons 
Peebles 

Not  
Available 

1976 1999 short  
circuit 
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(a) Photo 1 

 

(b) Photo 2 

Figure 3-4 Observed Damage to the Shield Ring on the Common Winding Top End 

The reference frequency response measurement was made on 13/06/1998, and the 

diagnosis one was on 1/3/2000. The connection method used is end-to-end open-circuit 

test, with the other neutrals earthed and the delta-connected tertiary windings’ terminals 

floating. The measured frequency responses of A, B, and C phase on N to LV and HV to 

LV are plotted in Figure 3-5. It can be see that nearly all the features, resonances and anti-

resonances, of the diagnosis frequency responses have shifted to the right when comparing 

with the references. For the HV to LV measurements, there is a significant change around 

50 kHz where the diagnosis FRA magnitude of an antiresonance dropped to around -100 

dB. 
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(a) N to LV 

 
 (b) HV to LV 

Figure 3-5 Frequency Responses of Transformer T6463 

3.4 Fundamental Understanding on Influence of Transformer Design  
 

The transformer’s winding design affects its frequency response. In this section, examples 

will be given to investigate the influence from voltage ratio and power rating, using the 

examples from 400/275/13 kV autotransformers group.  

Figure 3-6 shows the FRA traces from A, B, and C phases of common winding of 400/275 

kV autotransformers T5291. Empirically, for 400/275/13 kV autotransformers, the 

frequency regions 5Hz -2 kHz, 2 kHz -20 kHz, 20 kHz -1000 kHz are dominated by 

transformer core, interaction between windings, winding structure respectively, and the 

region higher than 1 MHz is governed by the measurement setup. The frequency 

boundaries may change due to the variation in the voltage, power rating, winding types etc. 

On the frequency region 5Hz -2 kHz, the FRA traces from A phase and C phase own two 

troughs and one peak, while the FRA trace from B phase own only one trough. This can be 

explained by the difference in their magnetic reluctance path, which is caused by the 

transformer core structure. B phase has two symmetric reluctance paths, while A phase and 

C phases both have two different reluctance paths. On the frequency region 2 kHz to 20 
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kHz, the double peak characteristic can be seen. The first peak is dominated by the tertiary 

connection, and the second peak is controlled by the interaction of common and series 

windings from the same phase [120].  

According to [120], the frequency region 20 kHz to 500 kHz is controlled by the winding 

types, mainly the winding series capacitance in proportion to the shunt capacitance. 

Around the frequency 1000 kHz, the interaction between inductance of the earthing lead 

and the capacitance of the transformer causes an evident peak. In this PhD study, for 

400/275/13 kV transformers, the frequency region 20 kHz to 1000 kHz is regarded to be 

dominated by the properties of winding-under-test, after observing a large amount of 

frequency responses in the National Grid FRA database. 

 

Figure 3-6 Influence Factors of FRA traces from Auto-Transformers without Tap Winding 

 Voltage Influence 3.4.1

 

Comparison of the measured FRA traces is done on the common, series, and tertiary 

windings from the same transformer, T5291, which own different voltages, as shown in 

Figure 3-7.  

In low frequency region, i.e. 5 Hz to 2 kHz, the transformer core is the dominant 

equivalent component of the equivalent circuit of the windings under-test. The starting 

magnitude of the common and series winding FRA trace is dominated by the core 

inductance 𝐿𝑐, which can be calculated as:  
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Figure 3-7 Comparison of Frequency Responses from Different Windings of the Same Transformers 

𝐿𝑐 =
𝑁2𝑢0𝑢𝑟𝐴

𝑙𝑐
    Equation 3-1 

where 𝑁 is the number of winding turns, 𝑢0 and 𝑢𝑟 are the permeability of vacuum and 

core separately, 𝐴 is the cross-sectional area of the core, and 𝑙𝑐 is the mean length of the 

leg. The basic SI units for the recorded values are used in the calculation. 

 

The common windings, 275 kV, have higher voltage than the series windings, 125 kV, thus 

the common windings have more turns than the series windings. As a result, when other 

influence factors are the same, more turns leads to a higher core magnetising inductance, a 

higher reactance, and thus a lower starting magnitude. This leads to the smaller starting 

magnitude of the common windings in the core controlled frequency region. The tertiary 

have the smallest voltage 13 kV, thus it has the highest starting magnitude. Note that the 

equivalent core impedance of the TV winding is too small to the measuring impedance of 

50 Ω, the starting magnitude at 5 Hz is close to 0 dB. 

The starting magnitude of B phase is smaller than that of A phase and C phase. This could 

be explained by the core structure. B phase has lower magnetic reluctance paths compared 

with A phase and C phase, which results in higher core magnetizing inductance and thus 

lower starting magnitude. 
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The common winding and series winding are of Multiple Layer winding type. For the 

frequency region controlled by winding structure, i.e., winding series capacitance in 

proportion to the shunt capacitance, from 20 kHz o 1000 kHz, the common winding and 

series winding own similar FRA magnitude traces, which rise roughly at 20 dB per decade 

with oscillations. Though their voltages are different, their magnitudes on the winding 

controlled frequency range are similar. The FRA traces of tertiary winding own the highest 

magnitude from 0 to 100 kHz. In the frequency region larger than 1000 kHz,  although for 

the common and series windings, it is controlled by the measurement set up, for the FRA 

traces of tertiary winding, its own winding characteristics is shown, i.e. the most distinct 

resonances caused by tertiary winding construction, i.e. the smallest series capacitance. 

 Power Rating Influence 3.4.2

 

The influence of power rating is investigated in this section, through three 400/275/13 kV 

transformers from the same manufacturer. The vector groups of the three transformers are 

the same. The frequency responses of both series windings and common windings, on B 

phase, from transformer T6987 of 1000 MVA power rating, 16% impedance, transformer 

T7008 of 750 MVA power rating, 20% impedance, and transformer T6933 of 500 MVA, 

12% impedance, are plotted in Figure 3-8. As stated, when measuring the frequency 

responses, the other neutrals are earthed and the tertiary windings are delta-connected and 

floating. Both the series winding and common windings of the transformers are of Plain 

Disc winding type. The frequency region 5 Hz to 200 kHz are shown in Figure 3-8 in a 

linear frequency plot to better illustrate the characteristics of the frequency response. 

The core sizes of the transformers with difference power rating are expected to be 

different. A shorter and fatter core design leads to a higher core inductance, which 

influence the starting magnitude of frequency response. The permeability of the core and 

residue of magnetization also influence the starting magnitude. Thus, more information is 

needed for a more meaningful and convincing discussion for the low frequency region 

which would be just ignored here. 

Equation 3-2 and Equation 3-3 show how to calculate the leakage inductance of winding at 

50 Hz frequency, neglecting the influence of the resistance, using voltage bases of 275 kV 

and 125 kV, and power rating bases 500 MVA, 750 MVA, and 1000 MVA: 
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𝑍 = 𝑍𝑝𝑢 × 𝑍𝑏𝑎𝑠𝑒 = 𝑍𝑝𝑢 ×
𝑉𝑏𝑎𝑠𝑒2

𝑆𝑏𝑎𝑠𝑒
    Equation 3-2 

𝐿 =
|𝑍|

2𝜋𝑓
    Equation 3-3 

Table 3-9 Information of Transformers with Different Power Rating 

TNUMBER T6981 T7008 T6933 

Power Rating(MVA) 1000 750 500 

Design Group S01 S02 S03 

Impedance (%) 16 20 12 

Leakage inductance of Series 
winding(mH) 

7.958 13.262 11.937 

Leakage inductance of Common 
winding(mH) 

38.515 64.192 57.553 

 

According to the equations, a smaller power rating indicates a higher winding leakage 

inductance. However, there are also other impact factors including the voltage and the 

impedance, thus in Table 3-2, the inductance of the 500 MVA transformer is smaller than 

that of the 750 MVA transformer. The leakage inductance is a lumped global element, 

hence it would be reflected more in the low and middle frequency region <20 kHz, as seen 

in Figure 3-7. In general, a higher inductance makes the resonance shifting to the left (i.e. 

shift to the lower frequency end), and this is particularly true for the 2rd peak of the 

‘double-peaks’ in the middle frequency region. 

The capacitance of the winding is influenced by the winding construction types, the 

physical dimensions of windings, the turn numbers, the coil cross section etc. Though for 

the three transformers, their winding types are the same, there is limited information on 

other influence factors. In general, smaller capacitance makes the resonance shifting to the 

right (i.e. shift to the higher frequency end). 

In Figure 3-8, it can be seen that for both series and common windings, along with the 

increase of the power rating, the resonance frequency locations shift to higher frequency 

locations, which are individually marked in the rectangles. The right shifting patterns in the 

high frequency region may be explained by the combined influence of the winding 

capacitance and inductance. In a way, although the values of inductance and capacitance 

may be different, the inductance and capacitance matrixes may have a similar pattern for 

the three transformers. 
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(a) Series Winding 

 
(b) Common Winding 

Figure 3-8 Comparison of Different Power Ratings with Same Voltage 

 Winding Construction Types Influence 3.4.3

 

The ‘typical’ FRA traces of four winding types from 400/275/13 kV autotransformers are 

plotted Figure 3-9, i.e., Multiple Layer, Plain Disc, Interleaved Disc and Single Helical 

windings. These are the measured FRA data on a winding with its winding type known, 

selected based on empirical experiences after observing thirty three-phase 400/275/13 kV 

transmission transformers with known winding types, including series, common and 

tertiary windings. In the database, the same windings may have several measurements 

which were taken at different time, or with different connection arrangements of winding 

terminals. 
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Figure 3-9 Typical FRA Traces of Different Winding Types 

The Single Helical winding, used for the tertiary windings, has the highest magnitude 

roughly from 5 Hz to 100 kHz. This is because the tertiary winding has the lowest voltage 

and power rating (13 kV, 60 MVA), hence the overall winding inductance and winding 

series capacitance are the smallest. The Plain Disc winding has a lower winding series 

capacitance, and its FRA trace has the oscillatory camel humps characteristics which can 

be observed between about 20 kHz and 500 kHz. Either an overall rising or flat trend may 

appear in this frequency region for a Plain Disc winding. Multiple Layer and Interleaved 

Disc windings have high winding series capacitance, and their FRA traces have a rising 

trend from 20 kHz to 1 MHz. The FRA trace of Interleaved Disc winding has a smoother 

rising trend, while that of Multiple Layer winding has some obvious fluctuations. The 

reason behind this observation could be explained, as the Interleaved Disc winding has a 

higher winding series capacitance in proportion to the winding shunt capacitance, as 

compared to the Multiple Layer winding, and this higher ratio eliminates the appearance of 

resonant frequencies in this region. Based on the experience of the limited amount of 

Intershielded Disc windings which were scrapped, it was concluded that the FRA 

characteristics of Intershielded Disc winding are not unique; it looks like Plain Disc 

winding type. 

As stated, Plain Disc windings and Intershielded Disc windings have been widely used in 

various voltage levels, normally less than or equal to 132 kV but in some cases up to 275 

kV. Interleaved Disc windings are appropriate for higher Basic Insulation Level, normally 
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for a voltage level larger than or equal to 275 kV. Multiple Layer windings are used for all 

voltage levels by some particular manufacturers due to historic reasons. It is also 

applicable for voltages from 33 kV right to 400 kV, or even up to 800 kV. In general, 

windings with high series capacitance, such as Interleaved Disc winding type and Multiple 

Layer winding type, are more capable to withstand the lighting impulse. All of the four 

winding types mentioned above can be used for both series and common windings of the 

400/275/13 kV transformers to be studied. As for the tertiary winding, Single Helical 

winding type is customarily used. 

3.5 Investigated Transformers 
 

The 400/275/13 kV autotransformer group will be mainly studied in the following 

chapters, and are introduced in this section. One faulty transformer of 275/132/11kV used 

for demonstration is also introduced in detail.  

 Transfer Function Estimation 3.5.1

 

Two transfer function estimation methods are introduced in Chapter 4. Two frequency 

responses from a 500 MVA, 400/275/13/kV autotransformer, as shown in Figure 3-10, are 

used for demonstration purpose. This 500MVA five-limb autotransformer is manufactured 

in 1966 by AEI Wythenshawe, and it has Multiple Layer type series and common 

windings. The measured frequency response on A phases HV to LV terminals is used to 

demonstrate Feature Extraction Method, while the measured frequency response on B 

phases HV to LV terminals is used to demonstrate the Extreme Points Identification 

Method.  

The frequency responses from 5 Hz to 200 kHz are investigated, including 1120 frequency 

points per trace. For this transformer, the frequency region governed by the core is up to 2 

kHz; the frequency region controlled by interaction between windings is from 2 kHz to 20 

kHz; and frequency region 20 kHz to 200 kHz is dominated by winding properties, i.e., 

design parameter, and winding type.  
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(a) B Phase 

 

(a) A Phase 

Figure 3-10 FRA Plots from Multiple Layer Winding, measured on Series Winding of T4668 

To verify the Feature Extraction Method, the frequency responses of series and common 

windings from A, B, and C phases of eight transformers are studied. The information of the 

eight transformers is listed in Table 3-10. Particularly, three frequency responses of 

different winding types are used to demonstrate the effectiveness of the developed method, 

which are plotted in Figure 3-11, Figure 3-12, Figure 3-13, including the frequency 

response from the Interleaved Disc winding (B phase series winding of transformer 

T6976), and the frequency responses from Plain Disc windings (B phase common and 

series windings of transformer T3983). 

Table 3-10 Transformers to be studied in Chapter 4 

TNUMBER 
Common 
winding 

Series 
winding 

Power Rating Manufacturer 

T4668 Multiple Layer Multiple Layer 750MVA AEI 

T5562 Multiple Layer Multiple Layer 750MVA AEI 

T5291 Multiple Layer Multiple Layer 750MVA AEI 

T4439 Multiple Layer Multiple Layer 750MVA FER 

T5492 Plain Disc Plain Disc 750MVA FER 

T3983 Plain Disc Plain Disc 750MVA PPT 

T4673 Multiple Layer Multiple Layer 750MVA CAP 

T6976 Intershielded Disc Interleaved Disc 1000MVA GEC 
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Figure 3-11 FRA Plot of Interleaved Disc Winding, measured on B Phase Series Winding of T6976 

 

Figure 3-12 FRA Plot of Plain Disc Winding, measured on B Phase Common Winding of T3983 

 

Figure 3-13 FRA Plot of Plain Disc Winding, measured on B Phase Series Winding of T3983 

To verify the Extreme Points Identification method, the frequency response of Plain Disc 

winding type is investigated as shown in Figure 3-14. The example used in Chapter 4 is the 

measurement made on C Phase series winding of transformer T5492. This transformer is 

one of the eight transformers in Table 3-10.  

 

Figure 3-14 FRA Plot of Plain Disc Winding, measured on C Phase Series Winding of T5492 
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Both of the proposed methods for transfer function estimation are applied for diagnosis of 

faulty transformers. As an example, a 275/132/11kV, 120MVA, Yan0d_ autotransformer 

manufactured by Metropolitan Vickers in 1954 and installed at the site of Carrington 

substation in 1956, numbered as T2305 in the UK National Grid’s database, is used in 

Chapter 4. It has a three-limb core. The transformer has a helical tertiary winding, Plain 

Disc common winding, five-layer series winding, and a two-layer multi-start tap winding. 

A line-end revising tap changer made by AEI was used at the terminal of 132 kV with a 

tapping range of ±15%, in ±9 steps of 1.67% per step. The schematic and physical 

arrangement of the reversing tapping configuration is shown in Figure 3-17. The winding 

direction is clockwise for series winding, and anticlockwise for common winding. The 

winding direction of reversible regulating winding can be set either as clockwise or 

anticlockwise. Therefore, the winding output voltage can be reduced in a subtractive sense 

(i.e. the switch is connected from 2 to 3 in Figure 3-17(b)), that is ‘buck,’ and increased by 

an additive sense (i.e. the switch is connected from 2 to 13 in Figure 3-17(b)), that is 

‘boost.’ Noticeably, the numbers in Figure 3-17(b) are not the tap positions, but the 

connection points. 

T2305 failed in September 2004, due to an internal short-circuit caused by damage to tap-

changer from incorrect oil handling.  The B phase tap winding axially collapsed. Figure 

3-16 shows the significant tap winding deformation. 

                                              
 

                    (a) Schematic Arrangement                           (b) Physical Arrangement      
Figure 3-15 Buck/Boost Tapping Arrangement [1] 
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Figure 3-16 Winding Movement of Tap Winding from B Phase T2305 

For this transformer, there are no previous frequency response measurement results 

available before the fault. Therefore, the construction-based comparison should be used. 

Three FRA measurements were conducted using end-to-end open-circuit test, with the 

other neutrals earthed. Because the short circuit fault occurred on the LV winding side, the 

first FRA measurement was conducted on N to LV, with tap position from N to 2. 

According to Figure 3-15 (b), under this connection scheme, only the LV winding is tested, 

at nominal voltage. It can be seen in Figure 3-17 (a) that the three frequency responses 

from A, B, and C phases do not show obvious alteration from 5 Hz to 1 MHz. The minor 

alterations at about 3 kHz, which is in the frequency region controlled by winding 

interaction, may be  caused by the direct electric connection between the LV and tap 

winding, similar to the auto-transformer connection which is very familiar to the readers, 

and the shift of the resonance and antiresonance around 10 kHz to 100 kHz and at about 

800 kHz, is caused by the electrostatic and electromagnetic coupling and interaction 

between LV and tap windings, note that tap winding end is floating.  Thus the second FRA 

measurement was conducted on N to LV with tap position at Tap 19, which is the 

maximum tap of +15%. This means that the diagnosis measurement include LV + tap 

winding. The frequency responses from 5 Hz to 1 MHz of A, B, and C phases are plotted 

in Figure 3-17 (b). The frequency response of B phase is significantly different from the 

frequency responses of A and C phases, and this helped site test engineers to suspect that 

the tap winding of B phase is faulty. The third FRA measurement was conducted on the tap 

winding only, with tap lead position from 3 to 13. According to Figure 3-15 (b), with this 

connection scheme, the LV and HV windings are not under measurement but only the tap 

winding. The frequency responses from 5 Hz to 1 MHz are plotted in Figure 3-17(c). The 
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shift of the resonances and antiresonances in the frequency response of B phase can be 

easily observed.  

  
(a) Series Winding in Nominal Condition 

 

 
(b) Series Wining with +15% Tap Winding 

 

 
(c) Tap Winding 

Figure 3-17 Frequency Responses of A, B, and C Phase of Transformer T2305 

In Chapter 4, the frequency responses from 5 Hz to 200 kHz of the second FRA 

measurement results shown in Figure 3-17(b) are used to test the proposed methods for 

transfer function estimation. Within this frequency region, the alteration in the frequency 

response of B phase can be clearly reflected. The diagnosis frequency response of B phase 

is compared with the reference frequency response of A phase. 
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 Winding Type Identification 3.5.2

 

In the FRA database of UK National Grid, both the magnitude and phase spectra were 

recorded, and only the magnitude frequency spectrum is used for winding type recognition. 

As mentioned before, the boundary frequencies of 2 kHz and 20 kHz are empirical; hence 

the whole range from 5 Hz to 1 MHz will be used in the following study of the SVM 

model in Chapter 5. There exists a great similarity for FRA traces in the frequencies lower 

than 20 kHz for all the Multiple Layer, Plain Disc and Interleaved Disc windings, and this 

similarity is regarded reasonable as this frequency region is dominated by the core and the 

interaction between windings. Inclusion of the low frequency regions would increase the 

complexity for classification but enhance the confidence level of the SVM model 

developed. 

For the Multiple Layer winding type, 30 FRA traces are used from two 500 MVA 

400/275/13 kV transformers and three 750 MVA 400/275/13 kV transformers, including 

the common and series windings from A, B, and C phases, and they are plotted in Figure 

3-18. For the Plain Disc winding type, 36 FRA traces are investigated from four 750 MVA 

and two 1000MVA 400/275/13 kV transformers, including common and series windings 

from A, B, and C phases, and they are shown in Figure 3-19. The choices of FRA traces 

for the Interleaved Disc winding type are rather limited because only a small quantity of 

frequency responses from this type is available in the database. For this winding type, 18 

FRA traces are used, and they are from three 750MVA 400/275/13 kV transformers of the 

same manufacturer, from A, B, and C phase of common and series windings, as plotted in 

Figure 3-20.For the Single Helical winding type, 6 FRA traces from the tertiary windings 

of two 750 MVA 400/275/13 kV transformers and 9 FRA traces from two 1000 MVA and 

one 750MVA 400/275/13 kV transformers are used, as plotted in Figure 3-21. 



 

 
106 

 

 

Figure 3-18 FRA Plots of Multiple Layer Windings 

 
Figure 3-19 FRA Plots of Plain Disc Windings 

 
Figure 3-20 FRA Plots of Interleaved Windings 
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Figure 3-21 FRA Plots of Single Helical Windings 

For the study of unsupervised machine learning methods in Chapter, to avoid the influence 

of measurement setup, the measured FRA data up to 200 kHz are used. The 28 frequency 

responses under investigation are from five different winding types, i.e., Intershielded Disc 

winding type, Plain Disc winding type, Multiple Layer winding type and Single Helical 

winding type. The frequency responses are plotted in Figure 3-22 and their information are 

listed in Table 3-11.All of the 28 frequency responses are from 11 400/275/13 kV 

autotransformers, as shown in Table 3-11. Among the 11 transformers, 6 of them are used 

in Chapter 4, i.e. T6976, T3983, T4668, T4673, T5562 and T5492, and their information 

can be found in Table 3-10.  The information of other 5 transformers is listed in Table 

3-11(c). 

The FRA traces [34] of Intershielded Disc windings are from the common and series 

windings of T7014 and T6976. The FRA traces {5-10} of Plain Disc windings are from the 

common and series windings of T3983, T4297, and T6124. The FRA traces {11-14} of 

Multiple Layer windings are from the common and series windings of T4668 and T4673. 

For the 6 FRA traces from Interleaved Disc windings, {15, 16} are from the series 

windings of T7014 and T6976, while {17-20} are from the common and series windings of 

T4083 and T4082. All of the {1-20} traces are from A phase, expect that {2, 11, 13} are 

from B phase. FRA traces from different phase have different patterns in the low frequency 

region <2 kHz, thus the clustering difficulty is increased by using FRA traces from 

different phases. For the Single Helical winding, {21-24} are from T5562, {25-27} are 

from T5492 and {28} is from T3983.  
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Figure 3-22 FRA Plots of Common, Series and Tertiary Windings under Investigation in Chapter 6 

Table 3-11 Basic Information of FRA Traces under Investigation in Chapter 6 

(a) Winding Construction Types 

Winding  
Type 

Amount of 
Trace 

Trace  
Label 

Transformer 

Intershielded Disc 4 {1, 2, 3, 4} T7014 T6976 

Plain Disc 6 {5, 6, 7, 8, 9,10} T3983 T4297 T6124 

Multiple Layer 4 {11,12,13,14} T4668 T4673 

Interleaved Disc 6 {15,16,17,18,19,20} T7014 T6976 T4083 T4082 

Single Helical 8 {21,22,23,24,25,26,27,28} T5562 T5492 T3983 
 

(b) HV/LV/TV Winding  

Winding  
Type 

Trace 
 Number 

Trace  
Label 

Series Winding 9 {5,6,7,12, 15,16,17,18} 

Common Winding 11 {1,2,3,4,8,9,10,13,14,19,20} 

Tertiary 8 {21,22,23,24,25,26,27,28} 

 
(c) Transformer Information 

Tnumber 
Common 
winding 

Series 
winding 

Power Rating Manufacturer 

T7014 Intershielded Disc Interleaved Disc 1000MVA GEC 

T4297 Plain Disc Plain Disc 500MVA Bruce Peebles 

T6124 Plain Disc Plain Disc 1000MVA Hackbridge and Hewittic 

T4083 Interleaved Disc Interleaved Disc 750MVA English Electric 

T4082 Interleaved Disc Interleaved Disc 750MVA English Electric 
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3.6 Summary  
 

In this chapter, the FRA Database of UK National Grid is introduced and analysed. The 

FRA data were acquired by the same measurement device and they are stored in the 

database in the same format, hence it is easy to extract the FRA data.  

Then the basic information of the transformers are analysed, including the voltage ratio, 

power rating and their winding types. The statistics of failed transformers are given. The 

quantity distribution of transformers for different voltage ratios summarized, and the most 

common used voltage ratios includes 275/132 kV, 400/132 kV and 400/275/13 kV. For 

each voltage ratio, the quantity distributions for different power ratings are summarised in 

Table 3-1 and Table 3-2. The correlation between the transformer designs and the FRA 

traces are investigated. All the transformers with known winding types are summarised in 

Table 3-3 to Table 3-6. It is found that the Plain Disc winding is the most commonly used 

winding structure. The influence from the voltage and power rating are analysed by 

comparing the FRA traces. 

The influence of transformer winding designs on FRA traces is introduced using the 

400/275/13kV auto transformers as example. The typical FRA traces of different winding 

types are illustrated, and their characteristics are introduced. Lastly, the frequency 

responses to be used in the following chapters are introduced along with the corresponding 

transformer information.  
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  Transfer Function Estimation Chapter 4

 

4.1 Introduction 
 

Frequency Response Analysis (FRA) is a sensitive technique to identify the mechanical 

health condition of transformer windings. If variation occurs to the reference and 

diagnostic frequency responses measured on the same windings with the same connection 

scheme, a winding displacement or deformation may be indicated.  

Although the FRA technique was introduced to diagnose transformer mechanical faults 

several decades ago, no IEC/IEEE FRA interpretation standard has been established yet. 

There have been three routes to investigate FRA interpretation; one is to develop the 

fundamental understanding of FRA traces through simulation and modelling, among which 

there are white box and grey box models, and/or using artificial intelligence algorithms. 

White box models are based on transformers’ design data, and grey box models are based 

on various measurement results at transformer terminals including frequency responses. 

The second route is more direct, attempting to establish “yes/no” rules by quantifying the 

similarity or difference between the reference and diagnostic frequency responses, among 

which both numerical indices and transfer function expression were used. The third 

investigation route is to utilize artificial intelligence algorithms including pattern 

recognition methods to classify fault type/location/severity and so on. 

As stated in Chapter 2, the numerical index is a single value reflecting the relationship of 

two sets of data to be compared, and windings can be mechanically classified into different 

levels of health condition according to the indices extracted from the low, middle and high 

frequency ranges [40-42, 44, 45, 47, 56, 65]. However, this method is highly experience 

based and the associated criteria developed based on limited experience are often 

challenged by new cases in field. On the other hand, a transfer function uses a set of 

parameters to mathematically represent a FRA trace, as long as the representation is 

accurate, the set of parameters contains more information than the numerical index, which 

creates possibilities for detailed interpretation and a possibly more realistic development 

route for interpretation standard. 

The rational transfer function, Ts, can be expressed by zeros and poles as follows: 
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𝑇𝑠 = 𝑘𝑠
∏ (𝑠−𝑧𝑟𝑘)
𝑁1
𝑘=1  

 

∏ (𝑠−𝑝𝑟𝑗)
𝑀1
𝑗=1

×
∏ (𝑠−𝑧𝑐𝑘)(𝑠−𝑧𝑐𝑘

′ )𝑁1
𝑘=1  

 

∏ (𝑠−𝑝𝑐𝑗)
𝑀1
𝑗=1 (𝑠−𝑝𝑐𝑗

′ )
  

Equation 4-1 

where ks is the constant coefficient, zrk and prj are real zero and real pole respectively, and 

zck, z’ck are conjugate complex zeros, pcj, p’cj are conjugate complex poles respectively. The 

complex zeros and poles are in the form s=σ+jω, where ω=2πf and f is the frequency 

location of resonance or anti-resonance, σ is the frequency dependent damping rate. For 

real zeros and poles, σ=0. The transfer function is physically achievable when its real zeros 

and poles are negative, and its complex zeros and poles own negative imaginary parts.  

Two methods to estimate the transfer function representation of FRA measurement results 

are proposed in this chapter, both of which use the rational transfer function expression. 

For the first method, a program is developed to auto-process the measured data and to 

obtain the transfer function expression. It is implemented in MATLAB using the inbuilt 

command ‘invfreqs’, which is based on Non Linear Least Square algorithm. This method 

requires both the FRA magnitude and phase spectra as the input. Measurement results 

across the large frequency range are divided into several frequency regions, and key 

information, i.e., complex poles and zeros, is abstracted from each frequency region to 

form the Feature Transfer Function. Afterwards, correction is needed to eliminate the 

difference between the Feature Transfer Function and measured FRA data. This method is 

verified as valid by estimating the transfer functions for 48 groups of measured frequency 

responses of 400/275/13 kV auto-transformers. 

The second method is called the Extreme Points Identification Algorithm, which aims to 

find a unique solution for a physically achievable transfer function, and this is crucial for 

the interpretation of FRA results. The proposed method uses the FRA magnitude spectrum 

only. The extreme points, i.e., resonance and antiresonance, on a FRA magnitude trace are 

identified to initialise parameters for its mathematical expression. Both the magnitude and 

frequency location of an extreme point are not only determined by itself but also are 

mutually influenced by other extreme points. Hence iterations are carried out to optimise 

the parameters. All the finalised parameters predicted by this method are physically 

achievable, and the quantity of parameters is controlled to be the same as twice of the total 

number of peaks and troughs plus 1, which ensures the simplification of the mathematical 

transfer function expression. This algorithm has been successfully applied on the selected 

FRA traces from the UK National Grid’s database. 
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As mentioned, the FRA measurement data in the UK National Grid’s database contains 400 

evenly distributed data points each for the following five frequency regions:  5Hz to 2 kHz, 

50 Hz to 20 kHz, 500 Hz to 200 kHz, 5 kHz to 2 MHz and 25 kHz to 10 MHz. The 

frequency responses studied for the transfer function estimation in this chapter are from 5 

Hz to 200 kHz, and each contains 1120 frequency points.  

4.2 Feature Extraction Method 

 

The FRA trace in Figure 4-1, which was introduced in Chapter 3, is used to demonstrate the 

proposed Feature Extraction Method. The oscillations from 5 Hz to 100 Hz in the phase 

response data are resulted from noise. 

 

Figure 4-1 FRA Plot from Multiple Layer Winding, measured on B Phase Series Winding of T4668 

 Methodology 4.2.1

 

A flow chart, as given in Figure 4-2, is used to show the estimation process of the proposed 

Feature Extraction Method. The frequency response data is firstly pre-processed as input, 

and the whole frequency range from 5 Hz to 200 kHz is divided into several frequency 

regions, according to the number of resonance points and the amount of data points in each 

frequency region. Complex zeros and poles are extracted from each frequency region and 

combined to construct a Feature Transfer Function (FTF), which has a similar shape to the 

measured frequency response. The difference between FTF and the measured frequency 

response is corrected to produce the Finalised Transfer Function (FDTF). 
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Figure 4-2 Flow Chart of Feature Extraction Method 

MATLAB command ‘invfreqs’ can be employed to estimate transfer function expression of 

the measured frequency response in the continuous frequency domain. Both zeros and 

poles, complex or real, can be produced by ‘invfreqs’. The complex zeros and poles, 

s=σ±jω, are corresponding to the resonances or antiresonances, and the location 𝑓 of which 

can be roughly calculated as:  

𝑓≈
|𝜔| 

 

2𝜋
  

Equation 4-2 

After the resonant point which is controlled by a pair of complex poles, the magnitude drops 

40 dB per decade, whilst the magnitude rises 40 dB per decade after an antiresonant point 

controlled by a pair of complex zeros. A pair of complex zeros cause the phase response to 

rise 180° after the antiresonant points, whilst a pair of complex poles cause the phase 

response to drop 180° after the resonant points. The real zeros and poles do not cause any 

resonance or antiresonance and they both contribute to the flat magnitude at the beginning 

part of a frequency response, and afterwards the real zero makes the magnitude rise 20 dB 

per decade, and the real pole makes the magnitude drop 20 dB per decade. A real zero 

causes the phase response to rise 90° while a real pole causes the phase response to drop 

90°. 

Location of the inflection point 𝑓′ is related to the absolute value |𝜔| of real zero and pole: 
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𝑓′ =
|𝜔|

2𝜋
  

Equation 4-3 
 

The ‘invfreqs’ command cannot be used directly for the whole frequency range, because 

that the number of resonant points for the whole frequency range is huge, as a result a 

transfer function with very high order is needed. However, the ‘invfreqs’ command is only 

able to process the estimation of transfer function with low order. Experience shows the 

‘invfreqs’ command is able to estimate transfer functions with an order up to 30, and this 

number may vary slightly with different situations. Therefore, the division of frequency 

regions is needed to guarantee that the amount of the resonant points in each frequency 

region is within the estimation ability of this inbuilt command. Noticeably, in the low 

frequency region from 5 Hz to 2 kHz, the measured frequency points have a larger quantity 

of 400, and there may be noises in this region. Though there may be only several resonant 

points with in this frequency region, it is found that better estimation result can be obtained 

by dividing this region into two smaller regions, i.e. 5 Hz to 1 kHz and 1 kHz to 2 kHz.  

Although the frequency range from 5 Hz to 200 kHz is investigated in this study, the 

proposed method is applicable to any frequency range. In the case of a wide frequency 

range, the order of the Difference Transfer Function, which represents the difference 

between the Feature Transfer Function and the measured data, may exceed the estimation 

ability of the inbuilt command, and the whole frequency range should then be divided into 

several regions to estimate this Difference Transfer Function.   

The frequency boundaries of division may vary accordingly. Although they are fixed in this 

study and are based on experience, it is expected that as long as the appropriate amount of 

resonant points and data points are include in each region, the estimation accuracy would 

not be affected. This method intrinsically ensures the key information to be extracted from 

each frequency region without any effect from the other frequency regions. 

4.2.1.1 First Step: Feature Transfer Function 

 

There are three stages to construct a Feature Transfer Function (FTF).   

A. Frequency Range Division 

 

In the first stage to construct the Feature Transfer Function, it is compulsory to divide the 

whole frequency range into several frequency regions for the aforementioned reasons. Each 

frequency region needs to have sufficient number of data points to avoid some of the zeros 



 

 
115 

 

or poles which should be extracted to be ignored. The frequency response in Figure 4-1 is 

used to show how to estimate its transfer function for the frequency range from 5 Hz to 200 

kHz. All the 1120 data points are divided into 7 frequency regions, i.e., 5 Hz to 1 kHz, 1 

kHz to 2 kHz, 2 kHz to 20 kHz, 20 kHz to 65 kHz, 65 kHz to 110 kHz, 110 kHz to 155 kHz 

and 155 kHz to 200 kHz. 

B.   Selection of Order of Transfer Function 

 

The command ‘invfreqs’ requires to input the orders of numerator and denominator  of the 

transfer function to be estimated, which are equal to the amounts of zeros and poles 

respectively. When estimating a transfer function for each frequency region, the choice of 

the order has an impact on the precision of estimation. If the order is smaller than what is 

demanded, some features on the FRA trace may be ignored. Nevertheless, redundant zeros 

and poles may appear if the selected order is more than adequate. There is no such a 

relationship as that the estimation accuracy can be improved with the increase of the order. 

For simplification, the order of the numerator is set equal to that of the operator. An optimal 

order should be selected for each frequency region.  

There exists a wide range selection for the transfer function’s order for each frequency 

region. The possible range of transfer function order is predefined for each frequency 

region, based on the approximate amounts of zeros and poles. For each candidate order, 

estimation can be conducted using ‘invfreqs’. If there exist redundant zeros and poles, the 

redundant parameter are supposed to be cancelled before comparing one candidate order 

with other orders.  

The complex zeros and poles satisfy the following criteria are viewed as redundant: 

 For the imaginary part, the variation between the frequency location of zeros and 

poles should be smaller than 2/5 of the sampling interval; 

 For the real part, the absolute difference value should be smaller than 60, or when the 

absolute difference value is larger than 60, the variation in percentage should be less 

than 0.6%. 

The criteria of ‘2/5 of the sampling interval’, ‘60’, and ‘0.6%’ are empirical values and 

experience based. 
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The first criterion ensures that the redundant complex zeros and poles which are located 

close enough to be cancelled, and the second criterion ensures that the damping rate of the 

redundant complex zero and pole are viewed to be nearly the same. In the low frequency 

band, the damping rate is small. It may occur that although the absolute difference in the 

real part is minor, the relative percentage difference is huge. Therefore, the second criterion 

is made such that the redundant complex zeros and complex poles in low frequency region, 

which have small real part, can be cancelled. Of course for the redundant real zeros and real 

poles, only the second criterion should be satisfied. 

To compare different orders, the maximum magnitude and phase errors between the 

measured and estimated data is recorded for each order, and the Correlation Coefficient is 

also calculated for the estimated and measured frequency responses for each order. The 

optimal order should be selected according to the following rules: 

 The maximum magnitude error of the optimal order should be smaller than 3 times 

the minimum value of those from all the rest orders. The same rule applies to phase. 

This rule guarantees that the local deviations for both magnitude and phase are 

within acceptable range. 

 The magnitude Correlation Coefficient of the optimal order should be larger than 

0.9999. This rule guarantees that the global similarity in the shape of the measured 

and estimated magnitude data. 

 The phase Correlation Coefficient should be as close to 1 as possible. This rule 

guarantees that the global similarity in the shape of the measured and estimated 

phase data. Because the phase is more sensitive than the magnitude, when the local 

deviation is controlled and the match of magnitude data is ensured, the optimal order 

is finally chosen as the one with the maximum phase Correlation Coefficient. 

The ‘3 times’ in first criteria of order selection is empirically based. Noticeably, though 

Correlation Coefficient has the drawback that it only reflects the similarity in the shape of 

the traces, this problem is solved by using maximum errors of the magnitude and phase in 

combination. 

For instance, according to the criteria set above, for the frequency region from 2 kHz to 20 

kHz, the optimal order is selected as 22. The estimated and measured frequency responses 

are plotted for comparison in Figure 4-3. 
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Figure 4-3 Measured and Estimated FRA Plot on 2-20 kHz Frequency Region 

Table 4-1 lists the parameters of the estimated transfer function with order 22, as shown in 

Figure 4-3, over the frequency region from 2 kHz to 20 kHz, after redundant zeros and 

poles are cancelled. For simplification, for a pair of conjugate complex zeros/poles, only the 

zero/pole with positive imaginary part is listed, in the order of frequency from low to high. 

It can be seen that the pair of complex zeros and pair of complex poles listed in row 5 are 

located at 0.07 kHz and 1.91 kHz separately, outside the frequency region 2 kHz to 20 kHz. 

Though for the concerned frequency region such complex parameters have an influence on 

magnitude of the estimated transfer function, no resonance or antiresonance are caused. The 

complex zeros Z9 and poles P8 locate at 18.71 kHz and 18.55 kHz, though the resonance 

and antiresonance cannot be obviously seen on the magnitude response, their effects can be 

clearly observed on the phase response, as shown in the circle in Figure 4-3.  

Table 4-1 Estimated 2-20 kHz Transfer Function Parameters 

 Zero Pole fz(kHz) fp(kHz) 

1 -244413 -108552 - - 

2 -90929 -2314 - - 

3 115561 126547 - - 

4 188838 152950 - - 

5 -1080+413i -717+12025i 0.07 1.91 

6 -1381+22869i  -1763+27247i  3.64 4.34 

7 -5488+77217i  -339680+76899i  12.3 12.25 

8 -6941+94283i  -5601+80918i  15.01 12.89 

9 -13412+117507i -12298+116477i  18.71 18.55 
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C. Extraction of Zeros and Poles  

 

The last stage of step one is to build the Feature Transfer Function using the extracted 

conjugate complex zeros and poles from each frequency region. Each antiresonance should 

be corresponding to a pair of conjugate complex zeros, whilst each resonance should be 

corresponding to a pair of conjugate complex poles.  

When extracting complex zeros and poles from each frequency region, the following two 

criteria should be met: 

 Only the complex zeros and poles located within the estimated frequency region 

should be selected. 

 Complex zeros or poles whose ratio between real and imaginary parts larger than 2 

should not be selected. 

It is found that the relative height as compared to those surrounding frequency points caused 

by complex zeros or poles is related with the ratio of their real and imaginary parts. If the 

ratio of real and imaginary parts is larger than 2, this pair of complex zeros/poles can be 

regarded as a pair of real zeros/poles, as the effects of this pair of complex zeros/poles are 

identical to the real zeros/poles. Thus the second selection criterion should be used. This 

conclusion is based on the sensitivity study on the effects of the ratio between the real and 

imaginary parts on the frequency responses, and a ratio equal to 2 is used as the boundary 

based on experience. 

Among all the zeros and poles in Table 4-1, Z6 to Z9 and P6, P8, P9 are extracted. The 

complex pole P7 is not corresponding to any resonance. As mentioned, it can be seen that Z9 

and P9 are located closely in frequency, though no resonance nor antiresonance can be seen 

in the magnitude spectrum around 18.5 kHz. However, in Figure 4-3, the corresponding 

frequency band in the dashed circle on the phase spectrum shows the slight downward and 

upward trends, and this proves the presence of the complex zeros and poles. It means that 

the criteria set are appropriate. 

After the application of the criteria above, all the chosen parameters from seven frequency 

regions are listed in Table 4-2, which contains19 complex zeros and 18 complex poles in 

total.  A constant coefficient k with value 1 is used for the Feature Transfer Function. The 

FRA trace constructed using the chosen complex zeros and poles of Feature Transfer 

Function, T1, are plotted in Figure 4-4. 
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Table 4-2 FTF Parameters 

k=1 

1 Zero Pole fz(kHz) fp(kHz) 

2 -33+1282i -722+12029i 0.204 1.915 

3 -1381+22869i -1763+27247i 3.640 4.337 

4 -5488+77217i -5601+80918i 12.290 12.879 

5 -6941+94283i -12298+116477i 15.006 18.538 

6 -13412+117507i -13110+146501i 18.702 23.317 

7 -11946+148301i -19154+239420i 23.604 38.106 

8 -20283+239837i -14415+265817i 38.172 42.307 

9 -13739+264539i -17389+280834i 42.104 44.697 

10 -15783+288870i -22272+396277i 45.976 63.071 

11 -23034+396277i -23585+427230i 63.071 67.998 

12 -23285+428596i -19294+454204i 68.215 72.291 

13 -19310+466778i -22937+519877i 74.292 82.743 

14 -23621+521010i -22932+675461i 82.924 107.506 

15 -21766+679055i -20724+836681i 108.078 133.166 

16 701958+775922i -35857+861613i 123.495 137.134 

17 -19639+837936i 899351+885796i 133.366 140.983 

18 -34724+866957i -30636+1102403i 137.985 175.458 

19 -28682+1106887i -83579+1216002i 176.172 193.538 

 

 
Figure 4-4 Comparison of FTF Plot and Measured Data 

It can be seen that a pair of complex zeros and a pair of complex poles are located both at 

63.071 kHz in Table 4-2, and their real parts are very similar. However, those parameters 

cannot be cancelled; otherwise small difference will be caused both on the magnitude and 

phase traces. This is because that the resolution on the magnitude spectra is not fine enough 
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to show the resonance or antiresonance, whilst the phase spectra are very sensitive to reflect 

the existence of such closely located complex poles/zeros. 

At this stage, the Feature Transfer Function T1 is constructed in Equation 4-4: 
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4.2.1.2 Second Step: Difference Transfer Function 

 

It can be seen in Figure 4-4 that the magnitude and the overall trace shape of FTF are not 

consistent with the measured FRA data. Therefore, in the second step, FTF is compared 

with measured data, and the Difference Transfer Function (DTF) should be used to correct 

and represent the deviation. 

The magnitude data m2 and phase data h2 of the DTF can be computed as: 

1

2
m

m
m measured  

Equation 4-5 

12 hhh measured   Equation 4-6 

where mmeasured and hmeasured are the measured magnitude and phase data, m1 and h1 are the 

magnitude and phase of the FTF respectively. The difference magnitude and phase spectra 

are shown in solid line in Figure 4-5. 

When choosing the optimal order of DTF using ‘invfreqs’, the aforementioned criteria 

apply, except that the data error for each possible order is ignored in low frequency region 

below 10 Hz. This is because that the first couple of data points tend to have large variation 

whilst those at the high frequency region match with each other well, especially for phase 

estimation. This may be caused by the fact that the frequency range is too large. The 

estimation of DTF is done for the whole frequency range. Such relaxation in the criteria is 

within the acceptable range since only the first one or two data are significantly different.  

After the redundant zeros and poles are cancelled from the DTF, Figure 4-5 compares the 

estimated frequency response representing the difference, and Table 4-3 lists the parameters 

of this transfer function in the following format: 
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The difference between the calculated and estimated difference frequency responses in the 

first couple of data points is enlarged to view due to the logarithmic frequency scale used in 

Figure 4-5.The DTF is only about the offset, because all of the complex zeros and poles 

causing resonance and antiresonance, which can be easily observed on the frequency 

response, are excluded. 

 

Figure 4-5 Comparison of DTF Plot and Calculated Data 

Table 4-3 DTF Parameters 

k=-3.4369e-14 

 Zero Pole fz(kHz) fp(kHz) 

1 3068285 -11 - - 

2 -30400 -32878 - - 

3 -61165+240663i -58293+241886i 38.304 38.498 

4 -137983+522372i -138914+533428i 83.141 84.900 

5 -69725+872229i 684191+852497i 138.824 135.683 

6 -112405+994077i -67101+871369i 158.217 138.687 

7 807949+1028917i -109242+1002993i 163.762 159.636 

 

4.2.1.3 Third Step: Finalized Transfer Function 

 

The last step is to correct the FTF with the DTF, and thus the Finalised Transfer Function 

(FDTF), is obtained. FDTF can be achieved by multiplying FTF and DTF:  

21 TTTs   Equation 4-8 
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When combining the FTF with the DTF, the constant coefficient of FDTF is the same as the 

constant coefficient of DTF. All the zeros and poles listed above for FTF and DTF are 

contained in FDTF. 

Table 4-4 lists all the parameters of FDTF. For no-source network, zeros and poles of 

transfer function are expected to appear alternatively. However, for some zeros and poles 

in Table 4-4, the sequence is irregular. And such areas can be called fuzzy areas, noted in 

grey colour in Table 4-4, while the remaining areas are called explicit areas. Actually, 

there are roughly 11 troughs and 10 peaks which are dominant and obvious on the 

measured frequency response. However, there exist 24 pairs of complex zeros and 23 pairs 

of complex poles in the estimated transfer function FDTF, as shown in Table 4-4, the 

amount of which is much larger than the actual number of peaks and troughs. This is 

because that the proposed method is able to describe the delicate features of the frequency 

response. Figure 4-6 compares the final estimated transfer function traces with measured 

data, and it can be seen that the result is satisfactory.  

 

Figure 4-6 Comparison of FDTF Plot and Measured Data of Multiple Layer Winding  

Table 4-4 FDTF Parameters 

k=-3.4369e-14 

 Zero Pole fz(kHz) fp(kHz) 

1 3068285 -32878 - - 

2 -30400 -11 - - 

3 -33+1282i -722+12029i 0.204 1.915 

4 -1381+22869i -1763+27247i 3.640 4.337 

5 -5488+77217i -5601+80918i 12.290 12.879 



 

 
123 

 

6 -6941+94283i -12298+116477i 15.006 18.538 

7 -13412+117507i -13110+146501i 18.702 23.317 

8 -11946+148301i -19154+239420i 23.604 38.106 

9 -20283+239837i -58293+241886i 38.172 38.498 

10 -61165+240663i -14415+265817i 38.304 42.307 

11 -13739+264539i -17389+280834i 42.104 44.697 

12 -15783+288870i -22272+396277i 45.976 63.071 

13 -23034+396277i -23585+427230i 63.071 67.998 

14 -23285+428596i -19294+454204i 68.215 72.291 

15 -19310+466778i -22937+519877i 74.292 82.743 

16 -23621+521010i -138914+533428i 82.924 84.900 

17 -137983+522372i -22932+675461i 83.141 107.506 

18 -21766+679055i -20724+836681i 108.078 133.166 

19 701958+775922i 684191+852497i 123.495 135.683 

20 -19639+837936i -35857+861613i 133.366 137.134 

21 -34724+866957i -67101+871369i 137.985 138.687 

22 -69725+872229i 899351+885796i 138.824 140.983 

23 -112405+994077i -109242+1002993i 158.217 159.636 

24 807949+1028917i -30636+1102403i 163.762 175.458 

25 -28682+1106887i -83579+1216002i 176.172 193.538 

26 -80724+1215272i - 193.422 - 

 Application on Other Winding Construction Types 4.2.2

 

The proposed method has been tested on 48 groups of FRA data of 400/275/13 kV auto-

transformers and 3 typical examples are given in the following sections.  

4.2.2.1 Interleaved Disc Winding 

  

An estimation example of the frequency response from an Interleaved Disc winding is 

plotted in Figure 4-7, and the estimated parameters are listed in Table 4-5. For the 

Interleaved Disc winding, many closely located resonant and antiresonant points exist in 

the 20 kHz to 200 kHz frequency region. All the fuzzy zooms are noted in grey, and it can 

be seen that the more the small oscillations, the more frequent the fuzzy areas appear.   
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Figure 4-7 Comparison of FDTF Plot and Measured Data of Interleaved Disc Winding 

Table 4-5 Estimated Parameters of Interleaved Disc Winding by Feature Extraction Method 

 k=1.1023e-1 

 Zero Pole fz(kHz) fp(kHz) 

1 1538798 1290631 - -  

2 -321119 -43770  - - 

3 -39735 -16  -  - 

4 -57+1205i -793+16374i 0.192 2.607 

5 -912+26724i -1893+33467i 4.255 5.329 

6 -5017+74358i -4905+75235i 11.840 11.980 

7 -5486+94979i -5148+96166i 15.124 15.313 

8 -5706+109015i -5099+109969i 17.359 17.511 

9 -7620+113403i -7886+117228i 18.058 18.667 

10 -7907+142554i 10213+144180i 22.700 22.959 

11 9575+143832i -58730+152390i 22.903 24.266 

12 -60708+163167i -4978+206797i 25.982 32.929 

13 -5347+206680i -13611+247769i 32.911 39.454 

14 -14621+246943i -10551+303233i 39.322 48.286 

15 -10755+304547i -22448+352930i 48.495 56.199 

16 -22742+353935i -425976+374986i 56.359 59.711 

17 -222224+405564i -377142+411845i 64.580 65.580 

18 -16061+442673i -16210+442809i 70.489 70.511 

19 -45413+464536i -46926+461022i 73.971 73.411 

20 -197046+536565i -178586+505898i 85.440 80.557 

21 -16625+564337i -17117+563668i 89.863 89.756 

22 -33871+648590i -33879+653296i 103.279 104.028 

23 -93487+665262i -95205+657829i 105.933 104.750 

24 235926+784996i 220180+770378i 124.999 122.672 

25 256876+805660i -19924+808350i 128.290 128.718 

26 -20119+809179i 268839+833256i 128.850 132.684 

27 -52146+890834i -51097+889583i 141.853 141.653 

28 -24958+910135i -24524+910423i 144.926 144.972 
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29 -26842+1016365i -26612+1016453i 161.842 161.856 

30 -16350+1051480i -16146+1051345i 167.433 167.412 

31 -41087+1152820i -40726+1152502i 183.570 183.519 

32 -813275+1215919i -680935+1796577i 193.618 286.079 

 

4.2.2.2  Intershielded Disc Winding 
 

An estimation example of the frequency response from an Intershielded Disc winding is 

plotted in Figure 4-8, and the estimated parameters are listed in Table 4-6. All the fuzzy 

areas are noted in grey. Although the Intershielded Disc winding has more obvious 

resonances compared with the Interleaved Disc winding, there still exist many small 

oscillations on its typical camel hump feature. 

 
Figure 4-8 Comparison of FDTF Plot and Measured Data of Intershielded Disc Winding 

Table 4-6 Estimated Parameters of Intershielded Disc Winding by Feature Extraction Method 

 k=-8.772e10 

 Zero Pole fz(kHz) fp(kHz) 

1  783683 - - 

2 -9363 -10154 - - 

3 -66+1238i -10 0.200 - 

4 -126+1996i -63+1288i 0.320 0.205 

5 -1308+33012i -782+22996i 5.257 3.662 

6 -4847+76961i -4140+59665i 12.255 9.501 

7 -6040+89640i -4484+77967i 14.274 12.415 

8 -18219+109304i -5786+90688i 17.405 14.441 

9 9440+118634i -6257+105714i 18.891 16.833 

10 -11069+132651i -15857+127617i 21.123 20.321 
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11 -69820+160567i -51111+148293i 25.568 23.614 

12 1218061+171103i -1203+215182i 27.246 34.265 

13 -1480+215228i -18775+224906i 34.272 35.813 

14 -1801+244980i -1672+244679i 39.010 38.962 

15 -10866+293784i -8364+301376i 46.781 47.990 

16 -12519+308950i -16304+355396i 49.196 56.592 

17 -507891+362647i -60248+377497i 57.746 60.111 

18 -16187+365469i -5936+440267i 58.196 70.106 

19 -53686+380271i -27274+474007i 60.553 75.479 

20 -5998+440160i -216040+485032i 70.089 77.234 

21 -11941+501807i -13679+502460i 79.906 80.010 

22 -20261+516618i -30854+587577i 82.264 93.563 

23 -31345+582265i 12349+636948i 92.717 101.425 

24 -31105+621561i -55637+652470i 98.975 103.896 

25 12667+636600i -23333+658130i 101.369 104.798 

26 -26509+658958i -87302+681162i 104.930 108.465 

27 -78634+694593i -28535+742209i 110.604 118.186 

28 -27214+754253i -14435+804854i 120.104 128.161 

29 -14292+805109i -24418+875226i 128.202 139.367 

30 -24070+875159i -17586+932695i 139.357 148.518 

31 -17738+932613i -73446+951946i 148.505 151.584 

32 -73959+949758i -32258+996558i 151.235 158.688 

33 -32347+1000076i -46416+1221930i 159.248 194.575 

34 -47065+1224111i 1217945+1234389i 194.922 196.559 

35 -30968+995493i -640418+2363117i 158.518 376.293 

36 -43511+1225830i -43235+1224033i 195.196 194.910 

37 -52914+1198785i 958485+2013659i 190.889 320.646 

38 2930+1301082i 5499+1300699i 207.179 207.118 

 

4.2.2.3 Plain Disc Winding  

  

An estimation example of the frequency response from a Plain Disc winding is plotted in 

Figure 4-9 and the estimated parameters are listed in Table 4-7. All the fuzzy areas are 

noted in grey. The noise, which appears as a small peak around 50 Hz is eliminated by 

using an appropriate order for the frequency band 0 to 1 kHz. Though the local deviation is 

noticeably, it is still within the acceptable range according to the criteria set. 
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Figure 4-9 Comparison of FDTF plot and Measured Data of Plain Disc Winding  

Table 4-7 Estimated Parameters of the Plain Disc Winding by Feature Extraction Method 

 k=2.8002E-28 

 Zero Pole fz(kHz)  fp(kHz) 

1 -723174 -24016 - - 

2 -22135 -9 - - 

3 -52+1936i -604+14831i 0.310 2.360 

4 -954+25001i -1747+36703i 3.981 5.844 

5 -4943+83212i -4927+83623i 13.250 13.316 

6 -5896+100351i -6103+103604i 15.979 16.497 

7 -10102+148314i -8539+146831i 23.617 23.381 

8 -59437+160490i -66056+167415i 25.556 26.658 

9 -8104+221491i -8375+213405i 35.269 33.982 

10 -7727+254217i -9659+246309i 40.480 39.221 

11 41897+279350i -16096+275543i 44.482 43.876 

12 -55113+315027i -5824+380747i 50.164 60.629 

13 -5475+381153i -11610+381551i 60.693 60.757 

14 -23270+382554i -43629+396271i 60.916 63.100 

15 -40951+398951i -7995+400182i 63.527 63.723 

16 -8670+400523i -91840+454669i 63.778 72.400 

17 -124585+453500i -9927+478779i 72.213 76.239 

18 -9266+480399i -13318+495680i 76.497 78.930 

19 -10509+494072i -415617+531664i 78.674 84.660 

20 -933428+502719i -20603+589485i 80.051 93.867 

21 -17685+582954i -25542+656886i 92.827 104.600 

22 -23884+661554i -77060+730207i 105.343 116.275 

23 -71678+726903i -29542+798108i 115.749 127.087 

24 -28612+795538i -16021+889831i 126.678 141.693 

25 -15876+889787i -26628+947585i 141.686 150.889 

26 -26620+949796i -50982+1015226i 151.241 161.660 

27 -49931+1013977i -56560+1075183i 161.461 171.207 

28 -55444+1074726i -38466+1096961i 171.135 174.675 

29 -38659+1095426i -26975+1253996i 174.431 199.681 
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30 -25354+1254568i - 199.772 - 

31 3137759+2127287i - 338.740 - 

 

 Application on Faulty Winding 4.2.3

 

The frequency responses measured on A phase and B phase, common winding, N to LV 

(Tap 19) of the 275/132/11 kV autotransformer T2305 are used to demonstrate the 

effectiveness of the transfer function estimation method. Axial collapse occurred on the tap 

winding of B phase.  In Figure 4-10, the frequency responses of A phase and B phase from 

5 Hz to 200 kHz given and they are different at the low frequency region, i.e., A phase has 

two troughs and B phase only has one, due to the asymmetry of the three-limb core. 

Attention should be paid to the mid- and high frequency regions where significant 

differences exist including the shifting of resonances and antiresonances; and new 

resonances also appear around 80 kHz and 120 kHz. 

 
(a) Logarithmic  
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(b) Linear 

Figure 4-10 Comparison of Frequency Responses from A Phase and B Phase N to LV T2305 

The proposed Feature Extract Method is applied to the frequency responses in Figure 4-10. 

The estimated and the measured frequency responses of A phase are compared in Figure 

4-11. The estimated and the measured frequency responses of B phase are compared in 

Figure 4-12. The parameters of their estimated transfer function are listed in Table 4-8 and 

Table 4-9 respectively. In Figure 4-14, the measured frequency responses from A phase 

and B phase are plotted together, while the estimated frequency responses for A phase and 

B phase are plotted together to compare if the difference between the two frequency 

responses can be reflected by the proposed estimation method .  

It can be seen that both of the estimated frequency response traces are in good agreement 

with the measured results. The shifting of the resonant points can be reflected by the 

change in the estimated parameters. For example, the original resonance located at 39.0 

kHz, as the same as that in frequency response of A phase, is shifted to 35.0 kHz in 

frequency response of B phase after the fault, which are circled in dashed line in Figure 

4-13. Accordingly, the corresponding pair of complex poles changes from -9696±244344i 

to -8797±220568i. The difference in the frequency locations of resonances is reflected by 

the difference of the imaginary parts of the two pairs of complex poles. The higher the 

frequency, the larger is the imaginary part of the complex poles. The difference in the real 

parts is not important hence would not be discussed here. In general, the smaller the 

absolute value of the real part, the sharper the shape of the resonance would be.  
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Although the shifting of the resonant points can be reflected, the change in the number of 

resonant points is concealed by the proposed method, as mentioned before the number of 

estimated resonant points are not always the same as what is seen by naked eyes in the 

FRA plot, and sometimes more parameters than needed are used to describe the delicate 

features of the frequency response. The frequency response of B phase has more resonant 

points than that of A phase. For the frequency response from A phase, there are 36 pairs of 

complex zeros and 34 pairs of complex poles used for its expression. For the frequency 

response from B phase, there are 34 pairs of complex zeros and 33 pairs of complexes 

poles in its transfer function.  

This method focuses more on a well matched result and the appropriate amount of 

parameters matched with the number of peaks and troughs sometimes becomes secondary. 

Therefore due to the uncertainty in the amount of key parameters, the difference in the 

amount of resonant points of A phase and B phase is not considered. 

 

Figure 4-11 Comparison of Measured and Estimated Frequency Responses of T2305 N to LV A Phase  

 



 

 
131 

 

 

Figure 4-12 Comparison of Measured and Estimated Frequency Responses of T2305 N to LV B Phase  

Table 4-8 Estimated Parameters of T2305 N to LV A Phase 

 k= 2.4835e-14 

 Zero Pole fz(kHz) fp(kHz) 

1 368222 -1580896 - - 

2 49155 1289698 - - 

3 -54+2107i 38881 0.335 - 

4 -105+3094i -12 0.492 - 

5 -974+30923i -60+2230i 4.922 0.355 

6 104165+51929i -1050+24346i 8.265 3.875 

7 -1924+63076i -1003+32461i 10.039 5.166 

8 -4690+77703i -2620+70842i 12.367 11.275 

9 -6133+84915i 82767+76644i 13.515 12.198 

10 -3762+90216i -3563+78036i 14.358 12.420 

11 -3373+125058i -7024+86529i 19.904 13.772 

12 -3915+160513i -4343+100052i 25.546 15.924 

13 -67465+189225i -3609+151177i 30.116 24.060 

14 -185240+194231i -69081+189291i 30.913 30.127 

15 -5286+281482i -203838+202292i 44.799 32.196 

16 -12138+316078i -9696+244344i 50.305 38.889 

17 -3814+325953i -8092+278238i 51.877 44.283 

18 -13234+357898i -6989+327299i 56.961 52.091 

19 -17787+396505i -12424+356406i 63.106 56.724 

20 -11634+412958i -7161+361414i 65.724 57.521 

21 -637745+476956i -19114+397046i 75.910 63.192 

22 -6369+501016i 366633+435426i 79.739 69.300 

23 -72741+521043i -11553+493015i 82.927 78.466 

24 -10556+542863i -62727+510849i 86.399 81.304 
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25 421265+550818i -10335+523691i 87.665 83.348 

26 -15138+558274i -16362+557221i 88.852 88.684 

27 -15439+706272i -12938+705218i 112.407 112.239 

28 7739+727525i -802029+709859i 115.789 112.978 

29 -11836+765550i 7434+727818i 121.841 115.836 

30 -16133+778452i -22931+733012i 123.895 116.662 

31 -22943+848113i -9714+761542i 134.981 121.203 

32 -38616+1015362i -24561+824891i 161.600 131.286 

33 -23455+1024978i -23533+993160i 163.130 158.066 

34 -37304+1044750i -38977+1016856i 166.277 161.838 

35 -117586+1122257i -31977+1040379i 178.613 165.581 

36 -17518+1264473i -103500+1129952i 201.247 179.837 

37 -107671+1265546i -52627+1254433i 201.418 199.649 

38 -81581+1983203i -15760+1261551i 315.637 200.782 
 

Table 4-9 Estimated Parameters of T2305 N to LV B Phase 

 k= -1.8279e-14 

 Zero Pole fz(kHz) fp(kHz) 

1 -379871 -653552 - - 

2 199184 -9 - - 

3 -85+2667i -1085+26695i 0.424 4.249 

4 -1029+33785i -1053+34372i 5.377 5.471 

5 -2447+62489i -3925+75166i 9.945 11.963 

6 -3346+82140i -2884+82090i 13.073 13.065 

7 -3759+94973i 33720+120964i 15.115 19.252 

8 33234+120200i -5393+127836i 19.130 20.346 

9 -3296+137177i 183187+143976i 21.832 22.914 

10 -4205+159923i -4349+150507i 25.453 23.954 

11 -20101+175335i -16042+171434i 27.905 27.285 

12 -6523+275575i -8797+220568i 43.859 35.105 

13 167309+287335i -7898+272589i 45.731 43.384 

14 -10071+300542i -7306+310980i 47.833 49.494 

15 3292+349347i 238844+344282i 55.6 54.794 

16 -24924+360952i -11385+348628i 57.447 55.486 

17 703877+367410i -4597+369412i 58.475 58.794 

18 -4723+368353i 31340+437935i 58.625 69.699 

19 32771+440499i -14395+470014i 70.108 74.805 

20 -15189+489961i -10193+506709i 77.98 80.645 

21 -5533+509613i -14200+537036i 81.107 85.472 

22 -13854+545535i -36130+633821i 86.825 100.876 

23 -35224+632484i -119622+656457i 100.663 104.478 

24 -96780+679918i -16142+705851i 108.212 112.34 

25 -21317+736512i -11290+743663i 117.22 118.358 

26 -13618+746137i -15144+765616i 118.751 121.852 

27 -17580+784654i -19868+814712i 124.882 129.665 

28 -20030+837099i 381119+821385i 133.229 130.727 
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29 420300+839718i 10531+857658i 133.645 136.501 

30 10459+857340i -22175+970609i 136.45 154.477 

31 -79769+981924i -72817+980045i 156.278 155.979 

32 -26827+1000474i -77512+1064418i 159.23 169.407 

33 -66163+1061786i -26242+1189723i 168.988 189.35 

34 -26237+1192105i -25091+1226938i 189.729 195.273 

35 -38313+1261568i 13624+1368608i 200.785 217.821 

36 1288+1358302i - 216.181 - 
 

 
(a) Measured  

 
(b) Estimated  

Figure 4-13 Comparison of Measured and Estimated Frequency Responses of T2305 N to LV B Phase  
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 Summary  4.2.4

 

The proposed method estimates the transfer function of a frequency response over a large 

frequency range by extracting key information, the complex zeros and poles, from several 

frequency regions to construct a Feature Transfer Function (FTF), and then correct FTF 

with a Difference Transfer Function (DTF). 

The method is accurate and efficient, and the frequency responses can be processed 

automatically by the developed MATLAB program. Compared with other function fitting 

methods it has a better performance to reflect subtle features.  

This method has been tested on eight 400/275/13 kV auto-transformers. For each 

transformer, six groups of frequency responses from three phases, two windings (series and 

common windings) are used, which are 48 groups of data all together. All of the estimation 

results match well with the measured frequency responses.  

However when the method is tested on the frequency responses on the tertiary windings, not 

all of them can find good match. This is because the exact values set in cancellation criteria 

are related to transformer characteristics, which means the set criteria suitable for the series 

and common windings are not suitable for tertiary windings.  

This method can be used for transformer winding diagnosis by comparing the parameters of 

transfer functions representing the reference measurement data and the diagnostic 

measurement data. If the parameters are changed, a mechanical fault may be indicated on 

the winding. In addition, the transfer functions obtained can be used to help design black 

box models of transformers, if the excitation and terminal connections are properly taken in 

account. The advantage of such models is that they are capable to represent the transformers 

with accuracy for a wider frequency range. 

4.3 Extreme Points Identification Algorithm 
 

The Extreme Points Identification Algorithm is proposed in this section for the transfer 

function estimation of frequency response. In this method, the extreme points on FRA 

magnitude trace are used for the computation of transfer function parameters, using their 

magnitudes and corresponding frequency locations. The proposed algorithm is applied 

both on artificially constructed and measured FRA traces. 
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 Methodology  4.3.1

 

The understanding of the effects of real/complex zeros/poles on the frequency response is 

the foundation to develop the proposed algorithm. After the introduction of fundamental 

understanding, an artificially constructed FRA trace is used as an example to explain the 

procedure of the proposed estimation algorithm with the help of a flow chart. Only the 

magnitude response is needed for the proposed methodology. 

4.3.1.1 Fundamental Understanding of Poles and Zeros 

 

As mentioned before, for a physically achievable system, the real zeros and poles of the 

expected transfer function should be negative, whilst the real part of  a pair of complex 

zeros/poles are supposed to be negative too.  

The height and location of the resonance and antiresonance on the magnitude FRA trace 

are decided by the real and imaginary part of complex zeros and poles. Normally the 

imaginary part is dominant and hence it can be used to approximate the location of 

resonant point as show in Equation 4-2. However the real part definitely has some 

considerable effects and it would be taken into consideration to help improve the precision 

of the calculated parameters of the transfer function.  

The transfer function of a single pair of complex poles, σ+ωi and σ-ωi, can be expressed as: 

 𝑇𝑠 =
𝑘

(𝑠−(𝜎+𝜔𝑖))(𝑠−(𝜎−𝜔𝑖))
  

Equation 4-9 

where k is the constant controlling the overall magnitude of the trace, 𝜎 mainly controls the 

sharpness of the resonance, and ω dominants  the location of resonance. Normally ω is 

about dozens of times of σ. 

Examples of complex poles’ Bode plots are given in Figure 4-14 with different value of σ, 

ω and k. For each trace, its magnitude remains as a constant before its peak, and drops at 

40dB per decade after its peak. When k changes, the trace shifts down or up without 

changing its shape, as shown by the two traces H1 and H2. For convenience, k is defined to 

fix the starting magnitude as 0 dB:  

𝑘 = 𝜎2 + 𝜔2 Equation 4-10 
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Figure 4-14 Examples of Different Pairs of Complex Poles 

If 𝜔 varies while k is defined using Equation 4-10, the peak shifts to the left or right 

accordingly. When ω decreases, the peak shifts to the left, as shown by traces H1 and H3. 

When frequency f changes, the magnitude m of a pair of complex poles can be calculated 

according to Equation 4-11: 

𝑚 =
𝜎2+𝜔2

√16𝜎2𝜋2𝑓2+((𝜎2+𝜔2)−4𝜋2𝑓2)2
  

Equation 4-11 

 

By setting the derivative of the magnitude m to zero, it can be found m reaches the 

maximum amplitude at the frequency point: 

𝑓 =
√𝜔2−𝜎2

2𝜋
(𝜔 > 𝜎)  

Equation 4-12 

 

This means the location of resonance is decided by both the real and imaginary parts. The 

real part normally has a smaller influence because it has much smaller value than the 

imaginary part. 

For a specific FRA trace, of which the transfer function contains only one pair of complex 

poles, once the magnitude m0 and its corresponding frequency f0of its resonance are 

known, σ  and ω  could be computed using the following equations: 

 
𝜎 = −√

2𝜋2𝑓0
2𝑚0

√𝑚0
2−1

− 2𝜋2𝑓0
2   

Equation 4-13 

 

 
𝜔 = √

4𝜋2𝑓0
2𝑚0

√𝑚0
2−1

− 𝜎2   
Equation 4-14 

 

The standardised transfer function of a real pole is defined as: 

𝑇𝑠 =
𝑝

𝑠−𝑝
  

Equation 4-15 

 

For a real pole p, there exists no resonance in its magnitude trace. Its magnitude trace starts 

from 0 dB and goes horizontally before frequency point p/2π, smoothly bends around this 

frequency point, and drops at 20 dB per decade after p/2π Hz. 
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The value of p can be calculated by the frequency f’ and magnitude m’ of any point on 

slope part of its magnitude trace: 

𝑝 = −√
2𝜋𝑓′𝑚′

√1−𝑚′2
   

Equation 4-16 

 

When the resonance is located beyond the estimated frequency range, which means the 

location and magnitude of extreme point are unknown, an alternative solution can be used 

to roughly estimate this pair of complex poles. The parameters can be calculated using its 

induced magnitude m1 and corresponding frequency f1 at an arbitrary frequency point 

within the measured frequency range, which is defined as the higher boundary of estimated 

frequency range in this study, and a manually defined resonance frequency f0 outside the 

estimated frequency range: 

 𝑐 =
𝑓1

𝑓0
  

Equation 4-17 

 
𝜎 = −√

2𝜋2𝑓1
2𝑚1√2c−1

√𝑚1
2−1

− 2𝜋2𝑓1
2𝑐   

Equation 4-18 

 
𝜔 = √

4𝜋2𝑓1
2𝑚1√2c−1

√𝑚1
2−1

− 𝜎2   
Equation 4-19 

f0 is normally set as several times of the higher boundary of the estimated frequency range. 

By this way of estimation, the measured and estimate magnitudes of higher boundary of 

the measured frequency range can be matched. 

Both the magnitude plots of a pair of complex zeros and a real zero own horizontal 0 dB 

starting magnitude, in the predefined standardised format similar to the complex and real 

poles. A pair of complex zeros’ magnitude owns an antiresonance, which behaves as a 

trough, and rises at 40 dB per decade after the antiresonance. The magnitude trace of real 

zero, z, rises at 20 dB per decade after z/2π Hz. The values of a real zero and a pair of 

complex zeros can be calculated in similar ways as a real pole and a pair of complex poles 

stated above. 

4.3.1.2 Estimation Procedure 

 

The flowchart in Figure 4-15 illustrates the prediction process of the proposed method. The 

parameters are initialised firstly. Then iterations are carried out to optimize the parameters 

by eliminating the mutual influence between zeros and poles, and recalculate the locations 

of the resonant points. Iteration process would stop if the number of iteration is reached or 

the locations of extreme points are updated adequately to meet the correct precision.  

Lastly, the parameters located out of the concerned frequency range are estimated to give a 
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better match of the higher frequency boundary. 

 

Figure 4-15 Flow Chart of Extreme Points Identification Algorithm 

An artificially constructed frequency response given in Figure 4-16 is used as an example 

to explain the estimation procedure. 

 

Figure 4-16 Example of Artificial FRA Trace  
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A. Parameters Initialization 

 

The first step of parameter initialisation is to initialise a real pole. The starting part of the 

trace in Figure 4-16, before 0.1 kHz, is dominated by the slope part of a real pole. This 

pole could be identified by Equation 4-16.  

Then all local minimum and maximum magnitude points, e.g. the two peaks and three 

troughs in Figure 4-16, which are corresponding to two pairs of complex poles and three 

pairs of complex zeros, are identified. In fact, the magnitude of resonance or antiresonance 

point consists of two parts, one of which is the pole’s or zero’s own magnitude, and the 

other is the influence from other zeros and poles. The trough/peak height of a pair of 

complex zeros/ poles can be obtained by removing the induced magnitude by other zeros 

and poles from the total magnitude. Once the magnitude and corresponding frequency are 

known, according to Equation 4-13 and Equation 4-14, the parameters can be solved. In 

the stage of parameter initialisation, the influence from the uninitialised parameters to the 

initialised parameters is viewed as 0.  

In Figure 4-16, the red dashed slope is the latter part of the real pole’s Bode plot, which 

drops 20 dB per decade. The blue dash line is the asymptotic Bode plot of the first pair of 

complex zeros, of which the antiresonance is located at about 0.2 kHz. Considering the fact 

that the magnitude trace of a pair of complex zeros or poles either rises or drops at 40 dB 

per decade after the resonance or antiresonance, the combined influence from the lower 

frequency range to higher frequency range causes the magnitude response either rises or 

drops at 20 dB per decade roughly. Therefore, the magnitude of the red dashed at about 0.2 

kHz and the magnitude of blue dashed line at about 2 kHz can be viewed as the influence 

from the lower frequency range, which are represented by two yellow arrows in Figure 

4-16. The first pair of complex poles’ peak magnitude could be approximated as the 

residue after removing the influence from the real pole and the first pair of complex zeros, 

which is about from -80 dB to -50 dB. Such prediction process is repeated until all of the 

following complex zeros and poles are initialised. 

B. Parameters Iteration  

 

As mentioned, since the parameters of the transfer function are sequentially processed, the 

effect from poles/zeros at higher frequency to the ones at lower frequency is not considered 

at parameter initialisation stage.  



 

 
140 

 

Only through iteration the correct parameters of the transfer function can be finalised. 

After the parameter initialisation stage, in the following iterations, the influence from 

higher frequency can be approximated using the parameters at higher frequency computed 

from the former iteration. The parameters are updated, with the mutual influence updated 

iteration by iteration. An accurate transfer function expression can be approached. Only a 

couple of iterations are needed in our experience.  

C. Reallocation 

 

A problem may appear when the resonance and antiresonance are located too close. For 

example, when a pair of complex zeros is very close to a pair of complex poles, the 

magnitude of points around the resonance caused by complex poles will drop due to the 

influence of the antiresonance caused by complex zeros. If the peak point drops more than 

its neighbor point, the original magnitude difference between them may be compensated. 

As a result, the point with the highest magnitude will change, and the resonance shifts. In 

order to solve this problem, the estimated traces are compared with the measured traces. 

When the locations of resonance or antiresonance do not match, the points which are used 

as the resonance or antiresonance points in the former iteration will shift accordingly. For 

instance, when the estimated resonance frequency is higher than the measured resonance 

frequency, the point used to calculate the poles will be shifted to a lower position by one 

data point in the next iteration.  

Actually, due to the resolution limitation, it is found that instead of matching a specific 

point, it is better to match the region between two measurement points, which contains the 

actual resonance or antiresonance. 

In the developed program, 20 iterations would be sufficient to eliminate the mutual 

influence between complex parameters. Instead of setting a termination condition, a total 

iteration number is set for simplification. Altogether 100 iterations are used, considering 

the fact normally the actual location of a resonance point will not shift more than 5 data 

bits away from the local extreme point. This iteration number satisfies the needs when 

dealing with FRA data currently investigated. The iteration number could be changed 

according to different needs.  

Finally, the constant k is achieved by multiplying each constant coefficient from every zero 

and pole together. 



 

 
141 

 

D. Parameters Out Of Concerned Range 

 

Parameters may exist with resonance/antiresonance lying outside the higher boundary of 

the concerned frequency range. Nevertheless, they may still have an influence on the 

magnitude within the concerned frequency range, which means their magnitude rises from 

0 dB before the extreme points. If the last parameter within the measurement frequency 

range is a pair of complex zeros, a pair of complex poles can be added outside the 

frequency range, vise verse. The added pair of complex poles outside the frequency range 

can be calculated using a manually defined resonance frequency, and the magnitude and 

frequency of an arbitrary point on the frequency response, according to Equation 4-17 to 

Equation 4-19. By adding this pair of complex poles, the boundary frequency point’s 

magnitude of the measured FRA can be matched with the estimated transfer function. 

Another method is to use the measured resonant point out of the concerned range, when the 

measured data is available, to achieve a better estimation result. One more resonant point 

out of the frequency range is used when applying the Extreme Points Identification 

Algorithm in this section. 

 Application on Artificial Data 4.3.2

 

The artificial constructed frequency response plotted in Figure 4-16 consists of 2000 data 

points, which are logarithmically evenly distributed from 1 Hz to 100 kHz. The 

comparison of the artificially constructed frequency response and its estimated transfer 

function is shown in Figure 4-17, which illustrates a satisfactory result. 

The original parameters, which are used to artificially construct the frequency response, 

and the estimated parameters are listed in Table 4-10. Their percentage difference in the 

real and imaginary parts of parameters are calculated and shown in Table 4-11. It can be 

seen that for the imaginary part, the percentage difference is very small, while the 

difference in the real part is comparatively larger. This is corresponding to the fact that the 

imaginary part is more dominant than the real part. Four numerical indices are used to 

describe the similarity between the original and estimated data in Table 4-12. The average 

Absolute Magnitude Difference is very small, only 0.1503 dB, with a Standard Deviation 

of 0.0574 dB. Among all the 2000 data points to be compared, the Maximum Absolute 

Magnitude Difference is as small as 1.0937 dB, suggesting a satisfactory result in terms of 

local deviation. Besides, the Correlation Coefficient shows a good match in the overall 



 

 
142 

 

shape between the original and estimated data, since the closer the Correlation Coefficient 

to 1, the higher similarity there exists. 

The estimated complex zeros and poles are also plotted in Figure 4-17, in both logarithmic 

and linear frequency scales, corresponding to the plotted frequency responses. The poles 

are plotted below the x axis in red line while the zeros are plotted above the x axis in blue 

line. The x axis is the location of the complex parameters, as shown in Figure 4-17, and the 

y axis is the peak/trough height of the complex parameters as shown in Equation 4-13. 

Noticeably, sensitivity study has shown that the data resolution has an influence on the 

final result estimated. The higher resolution leads to a more accurate estimation result. 

However, since the measured data have a fixed resolution, it is hard to further improve in 

this aspect unless we use interpolation to increase the resolution. 

 

 

 
(a) Logarithmic 
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(b) Linear 

Figure 4-17 Estimation of Artificial Frequency Responses 

Table 4-10 Estimated Transfer Function Parameters of Artificial Frequency Response 

Original Parameters Estimated Parameters 

k=5.2460e-09 k=5.1484e-09 

Zeros Poles Zeros Poles 

-35+1403i -3 -36+1403i -3 

-1381+202869i -721+12028i -1450+203210i -709+12039i 

-4588+250217i -4063+247247i -4637+250065i -3931+247191i 
 

 

Table 4-11 Comparison of Estimated and Original Parameters of Artificial Frequency Response 

Constant Coefficient Difference 

1.86% 

Zeros Poles 

Difference 

of 

real part 

Difference of 

imaginary 

part 

Difference 

of 

real part 

Difference of 

imaginary 

part 

2.9% 0.0% 0.0% - 

5.0% 0.2% 1.7% 0.1% 

1.1% 0.1% 3.2 % 0.0% 
 

 

Table 4-12 Numerical Indices Comparing Original and Estimated Frequency Responses 

Average absolute magnitude difference 0.1503 dB 

Standard deviation of magnitude 0.0574 dB 

Maximum absolute magnitude difference 1.0937 dB 

Correlation Coefficient of magnitude 1.0000 
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 Application on Measured Data  4.3.3

 

The proposed method is tested both on the windings with high and low series capacitance, 

i.e., the Multiple Layer winding and Plain Disc winding. All FRA traces are supposed to 

start with a real pole, and the real pole is followed by sequentially appeared pair of 

complex poles and pair of complex zeros. Examples of the use of the developed algorithm 

to estimate the transfer functions for FRA plots from 400/275/13kV auto-transformers are 

given in this section. 

A. High Series Capacitance Winding Type 

1) Application example 
 

Multiple Layer windings have high series capacitance. In the frequency region which is 

dominated by winding properties, approximately from 20 kHz to a hundreds kHz, the 

magnitude normally rises at 20 dB per decade with fluctuations. The proposed algorithm is 

applied on the frequency response in Figure 4-1. Figure 4-18 shows the measured and the 

estimated frequency response. 

The estimated transfer function is in the format of Equation 4-7, without any real zeros. 

The parameters of estimated transfer function, zc and pc, are plotted in Figure 4-18 as well. 

The estimated parameters are listed in Table 4-13. The pair of complex poles outside the 

measured frequency range is not shown in Figure 4-18 to give a clearer view. 

Altogether 10 pairs of complex zeros, 10 pairs of complex poles and 1 real pole are used to 

describe this frequency response, which can significantly reduce the quantity of stored 

data, from a few thousands FRA measurement data points to a few dozens of transfer 

function parameters. The negative real pole, -9, is related to the low frequency range 

controlled by the transformer core. This real pole can be influenced by whether 

demagnetization is carried out before FRA measurement, thus it may not be as important 

as the complex parameters. All real parts of the complex zeros and complex poles are 

forced to be negative, which correspond to the resistance of the electrical winding circuit. 

All zeros and poles are forced to appear in sequence, because the fact that between two 

local maximum there must exist a local minimum and between two local minimum there 

must exist a local maximum.  
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(a) Logarithmic  

 

6 

 
 (b) Linear 

Figure 4-18 Comparison of Measured and Estimated Multiple Layer Winding Frequency Response 
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Table 4-13 Estimated Parameters of Multiple Layer Winding by Extreme Points Identification Method 

 k= 2.8727e+05 

 Zero Pole fz(kHz) fp(kHz) 

1 - -9 - - 

2 -36+1383i -44+1571i 0.220 0.250 

3 -47+1697i -722+12368i 0.270 1.965 

4 -1493+23296i -1719+27699i 3.700 4.400 

5 -6594+78503i -5434+81862i 12.450 13.000 

6 -7811+94258i -15815+283185i 14.950 45.000 

7 -15335+289433i -17669+455873i 46.000 72.500 

8 -17923+465301i -55751+687133i 74.000 109.000 

9 -51803+693089i -77460+839246i 110.000 133.000 

10 -81742+858414i -48724+1110052i 136.000 176.500 

11 -51323+1119584i -814725+1577551i 178.000 215.000 

 
 

Table 4-14 lists four numerical indices which evaluate how well the estimated transfer 

function matches the measured frequency response. The Average Absolute Magnitude 

Difference is 0.3390 dB. The Correlation Coefficient is 0.9995, which suggests a good 

match between the estimated and measured data as well. 

Although most of the complex zeros and poles are identified, some closely located zeros 

and poles such as the pair of complex poles and the pair of complex zeros around 20 kHz, 

do not cause extreme values on the magnitude trace and are ignored deliberately to 

simplify the processing. This unavoidably contributes to the average difference and 

especially local difference between both magnitude and phase responses. Unlike the 

dominant zeros and poles which cause local extreme values on the FRA trace, such kind of 

recessive zeros and poles could be identified by the change in the rising or decreasing rate 

of magnitude response. Ideally when the acceleration of magnitude response changes its 

sign, a pair of complex zeros or a pair of complex poles is indicated. Nevertheless, due to 

the resolution limitation and noise in the measured data, it still remains difficult to 

accurately identifying recessive complex zeros and poles.  

Table 4-14 Numerical Indices Comparing Measured and Estimated FRA Traces 

Average absolute magnitude difference 0.3390 dB 

Standard deviation of magnitude 0.3189 dB 

Maximum absolute magnitude difference 2.2194 dB 

Correlation Coefficient 0.9995 

2) Comparison with other methods 
 

In Figure 4-19, the estimated result by the proposed method is compared with the 
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estimations produced by other algorithms, i.e., Vector Fitting Method and Feature 

Extraction Method. The measured frequency response is also plotted as the reference. A 

high level of similarity can be seen visually between the measured data and the estimation 

results by the above 3 methods. 

 
(a) Logarithmic 

 
(b) Linear 

Figure 4-19 Comparison of Estimated Frequency Responses by Different Methods 

Figure 4-20 plots the complex parameters estimated by the Vector Fitting Method without 

the parameters which are out of the measurement frequency range, as well the 

corresponding estimated frequency response. The real poles, real zeros and constant are 

listed in Table 4-15. 

Figure 4-21 plots the complex zeros and poles estimated by the Feature Extraction Method 

in combination with the estimated frequency response. All the estimated parameters are 

shown in Table 4-16. The pairs of complex zeros and the pair of complex poles around 153 

kHz are with positive real part, nevertheless they can roughly cancel with each other.  

The numerical indices comparing the measured and estimated FRA traces using Vector 

Fitting and Feature Extraction are listed in Table 4-17. The Correlation Coefficients 

between the measured data and the estimated data by Vector Fitting Method, Feature 

Extraction Method and Extreme Points Iteration Method are 1.0000, 1.0000 and 0.9994 

separately. The newly proposed method has the smallest correlation coefficient, which is 

understandable as the recessive zeros and poles are neglected. The Extreme Points 



 

 
148 

 

Identification method performs well globally regardless of acceptable local variation. 

 

 
(a) Logarithmic 

 

 
(b) Linear 

 

Figure 4-20 Complex Parameters of Estimated Transfer Function for Multiple Layer Winding Type Using 
Vector Fitting method 
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Table 4-15 Estimated Parameters of Multiple Layer Winding by Vector Fitting Method 

 k=1.7900e+6 

 Zero Pole fz(kHz) fp(kHz) 

1 - -128940 - - 

2 -199 -3492 - - 

3 -3427 -220 - - 

4 -106128 -43 - - 

5 -34+1387i -6 0.221 - 

6 -46+1692i -42+1570i 0.269 0.250 

7 -1426+23284i -753+12360i 3.699 1.964 

8 -5552+77571i -1813+27691i 12.314 4.398 

9 -6825+94796i -5861+80677i 15.048 12.806 

10 -16641+125021i -16094+121039i 19.721 19.093 

11 -9170+148756i -9722+147245i 23.630 23.384 

12 -12808+289612i -13928+284838i 46.048 45.279 

13 -93317+306454i -96476+298702i 46.457 44.992 

14 -18262+466876i -18862+456420i 74.249 72.579 

15 -33850+547286i -33978+546153i 86.937 86.755 

16 -27211+688358i -28018+686277i 109.470 109.133 

17 -49748+878733i -51289+866718i 139.630 137.701 

18 -25611+883900i -26880+885548i 140.618 140.874 

19 -63372+1050470i -60331+1046281i 166.883 166.244 

20 -31153+1115851i -28786+1111372i 177.524 176.821 

21 - -2280067+3452004i - 412.504 

 

 

 

 

 



 

 
150 

 

 

 
(a) Logarithmic 

 

 
(b) Linear 

Figure 4-21 Complex Parameters of Estimated Transfer Function for Multiple Layer Winding Type Using 
Feature Extraction Method 

 

 

 



 

 
151 

 

Table 4-16 Estimated Parameters of Multiple Layer Winding by Feature Extraction Method 

 k=-2.0200e-14 

 Zero Pole fz(kHz) fp(kHz) 

1 4532795 - - - 

2 -66860 4375 - - 

3 4569 -14 - - 

4 -35+1388i -44+1572i 0.221 0.250 

5 -46+1697i -752+12358i 0.270 1.963 

6 -1419+23289i -1815+27680i 3.700 4.396 

7 -5558+77852i -5627+80919i 12.359 12.847 

8 -6997+94680i -11974+119328i 15.028 18.896 

9 -13111+121599i -12563+148621i 19.240 23.569 

10 -11129+150072i -20650+209600i 23.819 33.197 

11 -20409+209517i -18723+248948i 33.187 39.509 

12 -17766+249904i -15528+281827i 39.673 44.786 

13 -15282+288369i -56173+348483i 45.831 54.738 

14 -56739+350470i -10298+419804i 55.043 66.794 

15 -10364+419721i -18769+456256i 66.780 72.554 

16 -18407+466723i -36677+541811i 74.223 86.034 

17 -36980+543362i -67440+677163i 86.278 107.238 

18 -69935+680017i -19771+690359i 107.654 109.829 

19 -18717+691146i -16245+840392i 109.959 133.728 

20 -15643+840503i -31949+860657i 133.747 136.883 

21 -31030+866844i -121870+934182i 137.874 147.409 

22 -107544+946340i 14240+965707i 149.639 153.680 

23 14138+965763i -93507+1018347i 153.689 161.390 

24 -110916+1030659i -16631+1043771i 163.082 166.100 

25 -16810+1043808i -30634+1112738i 166.106 177.031 

26 -32779+1118201i -43905+1178032i 177.891 187.359 

27 -44779+1178994i -233596+1330736i 187.507 208.505 

28 -278749+1340177i - 208.631 - 

 

Table 4-17 Numerical Indices Comparing Measured and Estimated Frequency Responses 

 
Vector 

Fitting 

Feature 

Extraction 

Average absolute  

magnitude difference 
0.0306 dB 0.0732 dB 

Standard deviation  

of magnitude 
0.0610 dB 0.1473 dB 

Maximum absolute 

magnitude difference 
0.7193 dB 2.4725 dB 

Correlation Coefficient 

Of magnitude 
1.0000 1.0000 

 

 



 

 
152 

 

The quantities of different types of parameters estimated by the 3 methods are shown in 

Table 4-18 Feature Extraction has the largest quantity of estimated parameters. Among all 

the methods, Extreme Points Iteration Method owns the smallest quantity of parameters. 

Only one real pole is produced by this method while the other two methods produce 

several real zeros and poles. For the proposed method, all of the complex zeros and poles 

estimated are dominant and they are found to coincide with part of those parameters 

estimated by the other two methods. For both Vector Fitting Method and Feature 

Extraction Method, redundant zeros and poles may appear, and some zeros and poles may 

not appear in sequence. For Feature Extraction Method some zeros and poles may not have 

physical meaning (with positive real part). If the cancellation criteria of Feature Extraction 

Method are relaxed, more zeros and poles can be viewed as identical.  

Table 4-18 Comparison of Amount of Estimated Parameters  

Number 
Vector 

Fitting 

Feature 

Extraction 

Extreme 

Point 

Real zero 3 3 0 

Real pole 5 2 1 

Complex zero pairs 16 25 10 

Complex pole pairs 16 24 10 
  

All of the 3 methods need to consider zeroes or poles outside the measured frequency 

range, i.e., beyond 200 kHz. 

B. Low Series Capacitance Winding Type 

 

Plain Disc Winding has relatively low series capacitance. In the frequency region 

controlled by winding properties, Plain Disc Winding’s frequency response has the feature 

of the camel humps, with either rising or flat magnitude trend.  

An example of the frequency response with flat magnitude trend is plotted in black line in 

Figure 4-22, which is tested on C phase, Plain Disc Winding, HV to LV terminals of a 

400/275/13 kV autotransformer. In this case, when the phase oscillates between ±180 

degrees, the Vector Fitting method will fail to do the estimation, whilst the other two 

methods can estimate the transfer functions. Using the newly proposed method, the 

estimation result is plotted in red line in Figure 4-22. The parameters of the estimated 

transfer function are also plotted in Figure 4-22, and their exact values are given in Table 

4-19. Two pairs of recessive complex zeros and poles are added manually to eliminate the 

evident difference between the measured and estimated data, i.e. -26312±522168i and -
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22390±534540i located at 83 kHz and 85 kHz, and -32990±861428i and -32424±880243i 

located at 137 kHz and 140 kHz .Despite the small deviation caused by the other recessive 

parameters, the overall magnitude shows good agreement with the measured frequency 

response. However, the phase comparison shows a significant difference. The estimated 

phase plot is the minimum phase shift function. And this deviation is caused by the time 

lag caused by travelling wave during the FRA measurement.  

 

 

 

(a) Logarithmic  
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(b) Linear 
Figure 4-22 Comparison of Measured and Estimated Plain Disc Winding FRA Traces C phase HV to LV 
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Table 4-19 Estimated Parameters of Plain Disc Winding by Feature Extraction Method 

 k=-2.4039e+6 

 Zero Pole fz(kHz) fp(kHz) 

1  -9   

2 -60+1666i -53+1729i 0.265 0.275 

3 -72+2169i -580+14777i 0.345 2.350 

4 -797+24517i -1747+36171i 3.900 5.750 

5 -6670+85398i -5599+86889i 13.550 13.800 

6 -160553+238177i -18365+223808i 28.000 35.500 

7 -15325+245523i -12602+264195i 39.000 42.000 

8 -12119+292419i -15082+333350i 46.500 53.000 

9 -14757+377280i -13113+418038i 60.000 66.500 

10 -9341+449345i -19509+503033i 71.500 80.000 

11 -26312+522168i -22390+534540i 83.000 85.000 

12 -8195+574970i -18225+616022i 91.500 98.000 

13 -59021+674887i -17283+710210i 107.000 113.000 

14 -15060+760415i -29466+773393i 121.000 123.000 

15 -26655+823529i -32990+861428i 131.000 137.000 

16 -32424+880243i -23411+923925i 140.000 147.000 

17 -81617+952265i -37675+1081364i 151.000 172.000 

18 -36333+1131557i -67383+1158068i 180.000 184.000 

19 -50090+1188578i -275901+1440388i 189.000 225.000 
 

The numerical indices from Table 4-20 are used to reflect the similarity between the 

measured and estimated data. Noticeably, the Average Absolute Phase Difference is only 

35.7549 degrees, which may seem to be small when considering the large frequency span 

from 20 kHz to 200 kHz. This is because that there are 760 points from 5 Hz to 20 kHz 

whose phase data match perfectly, and the amount of those data points is considerable.  

In Figure 4-23, the estimation result from Feature Extraction method is compared with the 

measured data. It can be seen that not only the magnitude, but also the phase matches 

perfectly. The estimated parameters are plotted in Figure 4-23 and listed in Table 4-21.  In 

Table 4-12 four numerical indices are used to evaluate the results. The Maximum Absolute 

Phase Difference is very large, reaching 358.7255 degrees. This variation is at 44.0 kHz, 

where the phase oscillates between ±180°. Actually this 358.7255 degrees difference could 

be wrapped into 1.2745 degree. Generally, the estimation result is satisfactory.  

The Feature Extraction Method uses 2 real zeros, 2 real poles, 39 pairs of complex zeros 

and 39 pairs of complex poles to describe the given FRA trace. However, the Extreme 

Points Iteration method uses only 1 real pole, 18 pairs of complex zeros and 18 pairs of 

complex poles, producing satisfactory magnitude matching result and minimum phase 

shift. 
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Table 4-20 Numerical Indices comparing Measured and Estimated FRA Traces 
 Using Extreme points Identification Method 

 

 magnitude phase 

Average absolute difference 0.3259 dB 35.7549 degree 

Standard deviation 0.2637 dB 54.2685 degree 

Maximum absolute difference 1.7288 dB 294.7913 degree 

Correlation Coefficient 0.9994 0.7048 
 

 

 

 

 

 

 

 
(a) Logarithmic  
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(b) Linear 

Figure 4-23 Comparison of Measured and Estimated Plain Disc Winding FRA Traces C phase HV to LV 
Using Feature Extraction Method 

Table 4-21 Estimated Parameters of Plain Disc Winding by Feature Extraction Method 

 k=-7.9880e-19 

 Zero Pole fz(kHz) fp(kHz) 
1 -79938 5432 - - 
2 5812 -8 - - 
3 -47+1662i -48+1710i 0.264 0.272 
4 -72+2180i -586+14666i 0.347 2.332 
5 -786+24624i -1760+36243i 3.917 5.761 

6 -4623+68599i -136214+40091i 10.893 - 

7 -5287+82626i -4655+68855i 13.123 10.933 
8 -5807+85593i -6028+83681i 13.591 13.284 
9 100235+126615i -5238+86046i 12.312 13.669 
10 -17179+146114i 95042+126585i 23.094 13.307 

11 -212572+188635i -17715+146694i - 23.176 
12 -11124+229155i -10627+222156i 36.428 35.317 
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13 -11796+241182i -10709+235302i 38.339 37.411 
14 -10893+291387i -14066+268224i 46.343 42.630 

15 -39143+373273i -13693+333833i 59.081 53.086 
16 -16999+377849i -38308+384467i 60.076 60.885 

17 123910+403104i -14440+421981i 61.050 67.121 

18 10909+446627i -35194+430223i 71.062 68.243 
19 -25246+458429i -19638+495414i 72.851 78.786 
20 -20644+568390i -19552+550898i 90.402 87.623 
21 -9784+574740i -20044+602409i 91.459 95.823 
22 -24141+659285i -22452+641981i 104.858 102.112 
23 9849+667057i 9913+666988i 106.154 106.143 
24 -38761+674983i -35857+680159i 107.250 108.100 
25 -31897+720580i -19026+706891i 114.572 112.464 

26 -13477+760694i -26601+733329i 121.049 116.636 

27 -59754+818736i -27726+777903i 129.958 123.728 

28 31566+828966i -27894+858030i 131.838 136.487 
29 -25271+882108i -124854+890481i 140.334 140.324 
30 -147257+893517i -25832+910010i 140.263 144.774 
31 62747+956066i -30655+952266i 151.835 151.479 

32 -28674+956625i 64757+965335i 152.183 153.292 
33 54314+992590i 60503+982212i 157.739 156.027 

34 35833+1015194i 33625+1015296i 161.472 161.501 

35 6140+1121205i -38831+1088809i 178.443 173.179 
36 -19091+1128380i 6368+1121062i 179.562 178.420 
37 -62231+1145301i -25875+1127401i 182.011 179.384 
38 8484+1239662i 8223+1239578i 197.294 197.281 

39 -924+1243669i -861+1243685i 197.936 197.939 

40 -32682+1259527i -16824+1268729i 200.393 201.907 
41 -893810+1900451i 446842+1484454i 266.926 225.300 

Table 4-22 Numerical Indices Comparing Measured and Estimated FRA Traces using Feature Extraction 
Method 

 magnitude phase 

Average absolute difference 0.1717dB 1.7337 degree 

Standard deviation 0.1794 dB 15.1192 degree 

Maximum absolute difference 2.2950 dB 358.7255 degree 

Correlation Coefficient 1.0000 1.0000 

 

 Application on Faulty Winding 4.3.4

 

The proposed Extreme Points Identification Algorithm is applied for diagnosis of faulty 

winding. As mentioned, the complex parameters out of concerned frequency range can be 

estimated using an artificially defined resonant point, to accurately represent the measured 
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data at high frequencies on the concerned frequency range.  

This method is applied to the frequency responses of 275/132/11 kV autotransformer 

T2305. The B phase tap winding of this transformer is axially collapsed.  

The measured frequency responses on common windings of A phase and B phase, N to LV 

(Tap 19) are estimated, and the comparison is illustrated in Figure 4-24 and Figure 4-25. 

The corresponding parameters are listed in Table 4-23 and Table 4-24. Noticeably, all of 

the resonant points are located at the measured frequency point, under the assumption of 

the algorithm that the resonance and antiresonance are located at a measured frequency 

point. 

The estimated frequency responses match well with the frequency responses measured for 

both A phase and B phase. The original resonance located at 39 kHz, which should be the 

same as the one in the frequency response of A phase, is shifted to 35 kHz in the frequency 

response of B phase after the fault, which is circled in Figure 4-26 (a). The shifting can be 

reflected by the alteration of estimated parameters. The pair of complex poles -

7522±245160i becomes -8016±220058i. In section 4.2.3, the two corresponding pairs of 

complex poles, estimated by the Feature Extraction Method, are -9696±244344i and -

8797±220568i. The differences between their imaginary parts are 0.33% and 0.23%, whilst 

the differences between the real parts are 22.42% and 8.87%. The imaginary parts are very 

similar. The large deviation in the real parts is understandable, since the real part does not 

play an important role as the imaginary parts in determining the resonant frequency, and 

the real part is influenced by the neighbour resonant points.  

There are 17 pairs of complex zeros and 16 pairs of complex poles used to describe the 

frequency response from A phase in this proposed method, whilst there are 18 pairs of 

complex zeros and 17 pairs of complex poles used to describe the frequency response from 

B phase. As well known, the frequency response of A phase has 2 resonance and 1 

antiresonance in the core controlled frequency region, roughly below 2 kHz, while the 

frequency response of B phase has only 1 resonance, due to the difference in the magnetic 

reluctance paths. This means that due to the fault, there are 2 new pairs of complex zeros 

and 2 new pairs of complex poles appearing in the frequency response of B phase. The 

newly appeared resonant points are circled in dashed line in Figure 4-26 (b). One new pair 

of complex zeros and one new pair of complex poles appear around 80 kHz, i.e. -

9332±490177i and -12765±496536i, while the other new pairs of complex zero and 
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complex poles appear around 120 kHz, i.e. -26758±741899i and -20957±704029i, as listed 

in Table 4-24.  

The measured frequency response of A and B phase are plotted together and the estimated 

ones are plotted together in Figure 4-26. It can be concluded that the proposed method is 

able to give a satisfactory match of the measured frequency response, and the difference 

between the reference and diagnostic frequency response can be analysed through the 

parameters estimated.  

 

 

 

 

(a) Logarithmic  
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(b) Linear 
Figure 4-24 Comparison of Measured and Estimated Frequency Response of N to LV A phase T2305 

 

 

 

 

(a) Logarithmic  
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(b) Linear 
Figure 4-25 Comparison of Measured and Estimated Frequency Response of N to LV B phase T2305 

Table 4-23 Estimated parameters of N to LV A Phase T2305 

 k=  1.4752e-08 

 Zero Pole fz(kHz) fp(kHz) 

1 -68+2106i -7 0.335  

2 -106+3081i -68+2263i 0.490 0.360 

3 -1170+30810i -979+24210i 4.900 3.850 

4 -2069+62866i -1059+32690i 10.000 5.200 

5 -4210+89634i -2694+71365i 14.250 11.350 

6 -3539+125085i -4226+100620i 19.900 16.000 

7 -4391+160281i -3292+150832i 25.500 24.000 

8 -21358+289815i -7594+245162i 46.000 39.000 

9 -8743+323702i -37099+300748i 51.500 47.500 

10 -10332+411678i -5875+361331i 65.500 57.500 

11 -7671+502713i -12954+490260i 80.000 78.000 

12 -424558+742767i -8567+521575i 97.000 83.000 

13 -13139+543654i -340720+748111i 86.500 106.000 

14 -14403+779248i -21215+729158i 124.000 116.000 

15 -25911+845486i -24992+820336i 134.500 130.500 

16 -27675+1021393i -21235+992970i 162.500 158.000 

17 -98007+1323104i -41225+1254173i 210.000 199.500 
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Table 4-24 Estimated parameters of N to LV B Phase T2305 

 k= 1.9089e-08 

 Zero Pole fz(kHz) fp(kHz) 

1 -79+2672i -6 0.425 - 

2 -1121+33948i -1100+26726i 5.400 4.250 

3 -2446+62252i -1075+34574i 9.900 5.500 

4 -3501+95255i -4061+75508i 15.150 12.000 

5 -4739+138311i -5344+125777i 22.000 20.000 

6 -4958+160298i -3630+150840i 25.500 24.000 

7 -46476+255588i -8016+220058i 40.000 35.000 

8 -9491+295462i -32884+265935i 47.000 42.000 

9 -5787+348765i -9608+311166i 55.500 49.500 

10 -32668+390925i -44710+385873i 62.000 61.000 

11 -9332+490177i -18519+474742i 78.000 75.500 

12 -8732+509013i -12765+496536i 81.000 79.000 

13 -17217+546908i -14246+534261i 87.000 85.000 

14 -26758+741899i -20957+704029i 118.000 112.000 

15 -16195+788706i -18831+766780i 125.500 122.000 

16 -22799+832834i -17394+810718i 132.500 129.000 

17 -35755+996527i -22831+961598i 158.500 153.000 

18 -65950+1289740i -35660+1222600i 205.000 194.500 

 

 

 

(a) Logarithmic  
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(b) Linear 
Figure 4-26 Comparison of Measured and Estimated Frequency Response of T2305 

 

 Summary 4.3.5
 

A novel method has been developed to estimate the transfer function of frequency 

response.  It is simple to apply and easy to understand, while giving a unique solution to a 

specific FRA trace; Regardless of which kind of measurement device is used, which may 

have different accuracy on the magnitude, i.e. -80dB/-100dB, and how the data are 

sampled as different devices can be set with different sampling frequency range, with 

different distribution on either a logarithmic or linear frequency scale, the large quantity  of 

stored FRA data (normally a few thousands) could be shrunk into several dozens of zeros, 

poles and a constant.  

The resolution does have an influence on the estimation result using this proposed method, 

especially when zeros and poles are closely located. Three methods to estimate transfer 

functions are compared. And their advantages and disadvantages are listed in Table 4-25. 

The similarity in the shape of traces can be reflected mathematically by the parameters of 

transfer functions estimated. When any changes happen to the FRA trace, such as the 

magnitude variation, shift in resonance or antiresonance, or changes in quantity of zeros 

and poles, the parameters of transfer function could also be changed which can be used as 
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indicators of fault. 

Application of this method to diagnosis transformer windings is promising. The unique 

solution of transfer function can guarantee an accurate interpretation. Further work needs 

to be done to complete this method in terms of recessive parameters. 

 

Table 4-25 Comparison of 3 Estimation Methods 

 

 Vector Fitting 
Feature 

Extraction 

Extreme Points 

Identification 

Need magnitude spectrum only    

No redundant zeros/poles    

Zeros & poles in sequence    

Physically achievable Meaning    

Process data with phase between ±90°    

Process data with phase between ±180°    

Match phase data between ±180°    

Unique solution    

4.4 Conclusion  
 

Two methods have been developed and they are introduced in this chapter.  The first 

method is called Feature Extraction Method, is based on the MATLAB command 

‘invfreqs’, which uses the Non Linear Least Square algorithm. Because this command is 

only capable to estimate a transfer function with limited order, the larger frequency range 5 

Hz to 200 kHz are divided into several frequency regions. The key information, complex 

zeros and complex poles, are extracted from each frequency region and combined to form 

a Feature Transfer Function. Then a Difference Transfer Function is used to correct the 

deviation between the Feature Transfer Function and the measured data, and a Finalized 

Transfer Function can be produced. This method has been applied on different winding 

types, and satisfactory match for both magnitude response and phase response can be 

achieved. However, the complex poles and zeros of the finalised transfer function may not 

be physically achievable and may not appear in the right sequence. 

Thus the second method, Extreme Points Iteration Method, is proposed. The height and 

frequency location of the resonance and antiresonance are related to the real and imaginary 

parts of the complex parameters. The mathematical relationships can be built to compute 

the complex parameters. Iterations should be conducted to eliminate the mutual influences 

between the complex parameters. This method has been successfully applied on the FRA 

traces from a Multiple Layer winding and a Plain Disc winding. Due to the existence of 

recessive parameters, the application on an Interleaved Disc winding is not as good as the 
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estimation on the other winding types, thus further work is required to identify the 

recessive parameters. 

The Extreme Points Iteration Method is capable to produces a physically achievable 

minimum phase shift transfer function for the frequency response with phase data 

oscillating between ±180°.  

Both of the proposed methods have been applied to estimate the transfer functions of the 

frequency responses measured on common windings of A phase and B phase, from N to 

LV (Tap 19) of a 275/132/11 kV autotransformer. The investigated transformer’s tap 

winding of B phase axially collapsed and because there was no previous FRA 

measurements done on the investigated transformer, construction based comparison 

method was applied. The frequency response from A phase is used as reference 

measurement.  

Both of the estimation methods are able to produce well-matched frequency responses of 

the measurement results. The parameters of the transfer functions estimated by both 

methods are able to reflect the alteration in the frequency responses. The Feature 

Extraction Method can describe the delicate features of the frequency responses well. The 

Extreme Points Identification Algorithm can generate a simpler transfer function 

expression, which is physically achievable. Each pair of the complex parameters, produced 

by Extreme Points Identification Algorithm, corresponds to a resonant point. Therefore, the 

analysis of alteration in the frequency response is easier using Extreme Points 

Identification algorithm.  
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 Identification of Winding Construction Types by Chapter 5

Supervised Machine Learning Method 

5.1 Introduction 
 

Windings are important electrical components of a transformer, and the choice of winding 

construction type is greatly influenced by the transformer manufacturer’s historic 

experience, the transformer’s voltage and power rating. In general, for the same power 

rating, a higher voltage winding prefers to use the winding construction type which gives a 

larger winding series capacitance due to the requirement to withstand a stringent BIL level. 

It is well known that different winding construction types are susceptible to different 

modes of mechanical deformations, hence knowing the winding design information is 

helpful for transformer fault diagnosis. However in practice, transformer asset managers in 

utilities know it too well that a large number of transformers operating in their networks 

are lack of design information such as winding type, structure and dimension, as this 

information is the manufacturers’ safe guarded know-how. Effective asset management, 

especially for those transformers without any technical support from the Original 

Equipment Manufacturer (OEM), calls for the development of non-intrusive winding type 

recognition techniques. 

Frequency Response Analysis (FRA) has been developed as an effective and sensitive 

technique to identify winding mechanical movement such as displacement or deformation. 

The FRA characteristics at different frequency regions are determined by different parts of 

a transformer. For the 400/275/13 kV transformers to be investigated, the frequency range 

can be split into three regions 0.005-2 kHz, 2-20 kHz and 20-1000 kHz, which are 

dominated by the core, inter-winding interaction and the structure of the winding-under-

test, respectively. The frequency region higher than 1 MHz is influenced by the FRA 

measurement setup such as the bushing and the earthing lead. For the frequency region of 

20-1000 kHz, the ratio between winding series capacitance and shunt capacitance is the 

main shaping factor. Different winding types have different typical values of winding 

series capacitance, and thus different FRA characteristics in this frequency region. This 

lends itself to the winding type recognition. 

Different artificial intelligence methods, especially pattern recognition techniques have 

been applied for the transformer fault diagnosis. Those methods have also been applied to 
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FRA for various purposes, such as estimation of parameters of transformer models and 

identification of winding. Pattern recognition techniques developed so far assumed that the 

winding type information is known beforehand and the solutions derived focused solely on 

that type. However, for different winding types, the characteristics of their FRA are 

different, thus the fault pattern may differ significantly. The identification of winding type 

is the cornerstone for further study of winding mechanical faults in order to establish a 

generic interpretation guide. On the other hand, as mentioned, different winding types are 

susceptible to different types of mechanical faults, thus knowing the design information 

such as the winding type can be helpful for transformer asset management. Therefore, 

there is an urgent need to identify winding types through FRA measurement data. 

Support Vector Machine (SVM) method is a supervised machine learning method for 

classification problem. It finds an optimal hyperplane which separates two types of data in 

binary problems. Multiple binary SVM classifiers are used when the number of data types 

to be identified is larger than two. The SVM method has been employed successfully for 

the recognition of transformer winding fault types and degrees. The advantage of SVM is 

that it can deal with small size of samples, nonlinearity, and high dimensional issues. In 

addition, it can overcome the problem of local minimums in neural networks. 

In this chapter, a novel SVM-based winding type recognition method is proposed. The 

SVM is trained and tested by FRA traces from the UK’s National Grid FRA database of a 

group of three winding three phase 400/275/13kV auto transformers. Four winding types, 

including multiple layer, plain disc, interleaved disc and single helical are used in these 

transformers. Then, the SVM built is applied to FRA traces without winding type 

information to test its performance in winding type recognition. The test results and 

sensitivity studies confirm that the proposed method is comprehensive and can be used 

along with expert experience and forensic information to aid transformer winding fault 

interpretation and transformer asset management. 

In the UK’s National Grid FRA database, both the magnitude and phase are recorded, and 

only the magnitude frequency spectrum is used which proves to be sufficient for winding 

type recognition. 

5.2 Support Vector Machine  
 

A hard-margin classification model requires all features to be accurately classified, while a 

soft-margin classification model allows a certain amount of features to be misclassified. 
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Normally for soft-margin model, a regularization parameter can be used to avoid 

overfitting, by restricting the norm of the parameters. SVM was initially proposed for the 

two-type classification problem. Multiclass classification problems can also be solved by 

SVMs if using multiple binary classifiers. An SVM is a generalised linear classifier, which 

can be also applied to the nonlinear classification problem in combination with kernel 

method. In this study, only the hard-margin linear classifier is discussed. 

The SVM algorithm finds a separation hyperplane from two groups of observations with 

known types and utilises it to categorize new examples. The hyperplane is also referred to 

as the decision boundary. The process of devising an SVM can be divided into two stages: 

training where the optimal hyperplane(s) is obtained from observing training data; and 

testing where the SVM is validated with a group of observations with known types. Upon 

completion, the SVM can be used to classify new observations. 

 Binary SVM Classifier  5.2.1

 

Binary SVM classifier finds a classification hyperplane, which separates two groups of 

observations with known types. The distances from this hyperplane to the nearest 

observations separately from the two data types should be equal. For example, in the two-

dimensional space of Figure 5-1, an optimal hyperplane, represented by the bold line, leans 

neither to the nearest observation from type C1 (triangles) nor the nearest observation from 

type C2 (circles). Each observation, either a triangle or circle, is called a feature in SVM 

algorithm. The boundary features, which are circled in dash line in Figure 5-1, decide the 

hyperplane of binary classifiers, and they are the nearest observations to the classification 

hyperplane from each feature type. Such boundary features are called support vectors in 

SVM. 

 

Figure 5-1 Binary SVM Classifier in Two-Dimensional Space 

It is stated in details how to build a binary SVM model in Chapter 2. 
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 Multiclass SVM Classifier 5.2.2

 

Since the binary SVM classifier can only distinguish two types of data, multiple binary 

SVM classifiers are needed for the multiclass classification problem. ‘One-versus-one’, 

‘one-versus-all’ and ‘binary tree’ are three commonly adopted multiclass classification 

strategy. In this study, ‘one-versus-one’ method is used. This means that between every 

two classes, a decision is made on to which class the new feature is more similar, and the 

new feature is identified as the class which wins the most votes. 

5.3 Winding Type Classification 
 

The purpose of this study is to use SVM algorithm to classify the winding type of 

transformers. To obtain a well-functioned SVM model, the input features should be 

carefully selected. The statistic indices are not suitable as they are normally used for the 

comparison between two FRA traces, which means they indicate the similarity or 

dissimilarity between two sets of data, but not the characteristics of a single set of data. 

Though the transfer function can accurately describe the FRA traces in a mathematical 

way, one problem is that the parameters of a transfer function do not have a fixed quantity 

for both complex poles and zeros. This is because the number of peaks and troughs on 

different FRA traces from different winding types may vary. Besides, the quantity of real 

zeros and poles is also hard to be unified. Therefore, it is difficult to find appropriate input 

features for the SVM model using transfer function expression. As a result, in the study, 

the measured magnitude responses of different FRA traces, with unified format, are 

selected as the input features. FRA analysers on the market use different frequency and 

amplitude resolutions, which lead to the fact that the FRA trace may have different number 

of frequency points. In case such a scenario arises, pre-processing of data is needed and by 

applying transfer function estimation method, the measurement data in different frequency 

resolution can be expressed into a mathematical equation, which can reproduce FRA traces 

in the same desired format.  

The FRA traces used for training and testing the SVM model are obtained from National 

Grid’s FRA database with the same format, and all together 108 FRA traces are used in 

this study, including 30 multiple layer winding FRA traces, 36 plain disc winding FRA 

traces, 27 interleaved disc winding FRA traces and 15 single helical winding FRA traces. 

Before training the SVM model, standardization should be applied to all 108 FRA traces as 

follows:  
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𝒙′ =
𝒙 − 𝑥𝑎
𝜎

 
Equation 5-1 

 

where 𝒙 is the original vector consisting of the 1280 FRA amplitudes in dB for the 

frequency range from 5 Hz to 1000 kHz, 𝑥𝑎 is the mean value of the original vector, 𝜎 is 

the standard deviation of original vector, and 𝒙′ is the standardised dimensionless vector. 

The range of 𝒙′ is roughly from -4 to 3. Though the classification difficulty will be 

increased after standardization, the focus can be put more on the traces’ characteristics, 

rather than relying on the difference in magnitude. 

There are altogether four winding types to be identified. Since the ‘one-versus-one’ 

strategy is adopted, a binary classifier is needed for every two winding types. Therefore, a 

total number of (4×3/2) =6 binary classifiers should be built. The input features are the 

standardized FRA magnitude response 𝒙′. If there are altogether n FRA traces used as 

training feature, and there are 1280 points in each FRA magnitude response, the input of 

the SVM model to be built is an n ×1280 matrix.  

Using the methodology introduced in Chapter 2, the weight vector 𝒘 and bias b for each 

binary classifier can be computed with a given set of training data. By doing so, the 

multiclass classification SVM model can be built. Four labels are used for the four 

investigated winding types. The output of the SVM model is the label of the identified 

winding type, and the meaning of each label is as follows: 

Label 1: Multiple Layer winding; 

Label 2: Plain Disc winding; 

Label 3: Interleaved Disc winding; 

Label 4: Single Helical winding. 

 Cross Validation Process 5.3.1

 

Cross validation and bootstrap are two resampling methods, which can be used to evaluate 

the effectiveness of classification models when the quantity of available features is limited. 

Bootstrap resamples randomly with replacement, which means duplicate features may be 

sampled. In a soft-margin SVM model, the weight of duplicate features changes, thus the 

parameters of SVM model can be influenced. A hard-margin SVM classification model 

does not notice the duplicate features.  

The cross validation method without replacement is preferred. K-fold Cross Validation is 

therefore used to verify the applicability of SVM model under the small sample size 
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setting. It divides the original data into K roughly equal-sized folds. One fold is used as the 

testing data, and the rest K-1 folds are used as the training data. Each of the K folds should 

be used as the testing data once, which means K classification models are built. This makes 

the most of the available information. When the value of K is selected, the average 

accuracy can be used to evaluate the performance of the SVM model. With the change of 

K, the performance of the model may change. The model with the highest accuracy can be 

chosen. 

The FRA traces from the A, B, and C phase of the same transformers should be all grouped 

into either the training or testing data group due to their similarity, in order to guarantee the 

credibility of the classification model. Considering there are 15 single helical FRA traces 

from 5 different transformers, the maximum amount of folds is 5. The 108 FRA traces 

investigated in this study are divided into 2, 3, 4, and 5 roughly equal-sized folds 

respectively. For example, for the 2 folds cross validation, there are 12 frequency 

responses from Multiple Layer winding, 18 frequency responses from Plain Disc winding, 

18 frequency responses from Interleaved Disc winding and 6 frequency responses from 

Single Helical winding are used are training data, and the rest of the frequency responses 

are used as testing data. The number of training and testing traces when K changes are 

listed in Table 5-1. For each K-fold cross validation, different combination of training 

traces are selected randomly without repetition for 20,000 times. To guarantee that the 

sampling size 20,000 is large enough, the cross validation process is conducted twice. The 

corresponding average accuracies are listed in Table 5-1. It can be seen that the overall 

accuracy is satisfactory, which proves the feasibility of winding type classification through 

SVM method. Among all the SVM models built, the lowest accuracy is 38.89% when 

K=2. Though for this particular model, the training features used may not be appropriate, 

however the accuracy is still larger than 25% which can be resulted from random guess 

when distinguishing the four winding types. In this cross validation process, with the 

increase of number of training data, the accuracy of the SVM model increases.  

Since the models of 2-fold cross validation have the lowest accuracy, one of the models 

built when K=2 with an accuracy of 100% is more of interest to investigate further in order 

to increase our understanding on when and why the SVM method can work well. 
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Table 5-1 Cross Validation Accuracy 

 
Number of 

Training Traces 

Number of 

Testing Traces 
 

Winding type 1 2 3 4 1 2 3 4 Accuracy 1 Accuracy 2 

K=2 12 18 18 6 18 18 9 9 97.70% 97.75% 

K=3 18 24 18 9 12 12 9 6 99.54% 99.56% 

K=4 21 27 21 12 9 9 6 3 99.97% 99.97% 

K=5 24 30 21 12 6 6 6 3 100.00% 100.00% 

  

 FRA Traces and Training Process 5.3.2

 

For the SVM model with an accuracy of 100%, which is built when K=2, altogether 54 

FRA traces are used to train the SVM model, and another 54 FRA traces are used to test 

the model.  

As mentioned before, the boundary frequencies of 2 kHz and 20 kHz are empirical; hence 

the whole range from 5 Hz to 1 MHz should be used in the following study of the SVM 

model. There exists a great similarity for FRA traces in the frequencies lower than 20 kHz 

for all the multiple layer, plain disc and interleaved disc windings, and this similarity is 

reasonable as the frequency region is dominated by the core and the interaction between 

windings. Inclusion of the low frequency regions would increase the complexity for 

classification but and enhance the confidence level of the SVM model developed. 

For the Multiple Layer windings, the training features are 12 FRA traces from two 500 

MVA transformers, including the common and series windings from A, B, and C phases, 

as plotted in Figure 5-2(a). The testing features are 18 FRA traces from three 750 MVA 

transformers, including the common and series windings from A, B, and C phases, as 

plotted in Figure 5-2(b). It can be seen that for the Multiple Layer windings, training 

features have more obvious oscillations than the testing features in the frequency range 20 

kHz to 1000 kHz.  

For the Plain Disc windings, the training features are 18 FRA tracs from two 750 MVA 

and one 1000MVA transformers, including common and series windings from A, B, and C 

phases. The testing features are 18 traces from two 750 MVA and one 1000MVA 

transformers, including common and series windings from A, B, and C phases As 

mentioned, Plain Disc windings’ FRA traces can either have a rising or flat trend in the 

frequency range 20 kHz to 1000 kHz. All the training and testing features own rising trend, 



 

 
174 

 

except that 3 testing FRA traces from the A, B, and C phases of one 750 MVA 

transformer’s series windings own flat trend, as shown in Figure 5-3.  

The choice of FRA traces of Interleaved Disc windings is limited, due to its small quantity 

of frequency response stored in National Grid database. For this winding type, there are 18 

training FRA traces from three 750MVA transformers of same manufacture, from A, B, 

and C phase of common and series windings. The testing features are 9 FRA traces from 

A, B and C phases of the series windings of three 750 MVA transformers, as plotted in 

Figure 5-4. 

For the Single Helical windings, 6 FRA traces from two 750 MVA transformers are used 

as training features while 9 FRA traces from two 1000 MVA and one 750MVA 

transformers are used as testing features, as plotted in Figure 5-5. 

 
(a) Training Multiple Layer Windings   (b) Testing Multiple Layer Windings 

Figure 5-2 Multiple Layer Windings used for Training and Testing 

 
(a) Training Plain Disc Windings   (b) Testing Plain Disc Windings 

Figure 5-3 Plain Disc Windings used for Training and Testing 
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(a) Training Interleaved Disc Windings   (b) Testing Interleaved Disc Windings 

Figure 5-4 Interleaved Disc Windings used for Training and Testing 

 
(a) Training Single Helical Windings   (b) Testing Single Helical Windings 

Figure 5-5 Single Helical Windings used for Training and Testing 

Once the parameters of SVM model are computed, the distances from the training vectors 

to the hyperplanes of each binary classifier can be calculated. For example, the distances 

from 12 training multiple layer winding FRA traces (Label 1) to the following 3 binary 

classifiers, 1 VS 2, 1 VS 3 and 1 VS 4, are tabulated in Table 5-2. For each binary 

classifier, the closest training vectors to its hyperplane are the support vectors. The 

distances between the support vectors and the corresponding hyperplane should ideally be 

1. In Table 5-2 to Table 5-5, the distances from all 54 training vectors to the hyperplanes of 

the relevant binary classifiers are listed. The range of these distances is from -1.5 to -1, and 

1 to 1.5, which indicates that the distances between every two training vectors from the 

same winding type are small, due to their high similarity. Considering inevitable 

calculation errors, all the training vectors, whose distances to any classification 

hyperplanes range from 0.9990 to 1.0010, are considered as support vectors. All the 

support vectors are noted with ‘*’ in Table 5-2 to Table 5-5. As stated, there may be more 

than one support vector for each winding type 
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It can be seen in Table 5-2 that for Multiple Layer VS Interleaved Disc classifier, traces 8, 

9, and 11 are all very close to 1. They are plotted in Figure 5-6. It can be seen that Trace 9 

and Trace 11 almost overlap with each other. However, trace 8 differs a lot from the other 

two traces. This means that not all the support vectors have a very high similarity in shape 

between each other, though they have the same distance to the classification hyperplane.  

Table 5-2 Distances from the Input Multiple Layer Features to the Hyperplane of Binary Classifier 

Multiple Layer 
training traces 

1VS2 1VS3 1VS4 

1 1.0243 1.0058 0.9997* 

2 1.0173 1.1676 1.0013 

3 1.0001* 1.0459 1.0027 

4 1.4132 1.1755 1.0055 

5 1.4006 1.5139 1.0000* 

6 1.4301 1.2443 1.0022 

7 1.0465 1.0139 1.0030 

8 1.0986 1.0004* 1.0094 

9 1.0151 1.0002* 1.0000* 

10 1.4159 1.1933 1.0074 

11 1.5086 1.0002* 1.0594 

12 1.4092 1.2991 1.0000* 
 

Table 5-3 Distances from Plain Disc Input Features to the Hyperplane of Binary Classifier 

Plain Disc 
training traces 

1VS2 2VS3 2VS4 

1 -1.0615 1.0506 1.0078 

2 -1.0658 1.1224 1.0003* 

3 -1.0385 1.0362 1.0005* 

4 -1.1457 1.1119 1.0213 

5 -1.0673 1.0813 1.0002* 

6 -1.1076 1.0831 1.0189 

7 -1.0076 1.0148 1.0281 

8 -1.0357 1.0859 1.0126 

9 -0.9999* 0.9999* 1.0067 

10 -1.1179 1.1222 1.0002* 

11 -1.0548 1.0869 1.0000* 

12 -1.0781 1.0566 1.0518 

13 -1.0358 1.0260 1.0383 

14 -1.0600 1.1123 1.0218 

15 -1.0002* 0.9999* 1.0311 

16 -1.0300 1.0003* 1.0826 

17 -1.0000* 1.0216 1.0200 

18 -1.0358 1.0146 1.0706 
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Table 5-4 Distances from Interleaved Disc Input Features To the Hyperplane of Binary Classifier 

Interleaved Disc 
training traces 

1VS3 2VS3 3VS4 

1 -1.0943 -1.0155 1.0000* 

2 -1.1479 -1.0431 0.9995* 

3 -1.0674 -1.0614 1.0033 

4 -1.0807 -1.4572 1.0067 

5 -1.0006* -1.4724 1.0000* 

6 -1.0003* -1.4434 1.0058 

7 -0.9998* -1.0001* 1.0055 

8 -0.9996* -1.0136 1.0084 

9 -1.0614 -1.0054 1.0046 

10 -1.0004* -1.4887 1.0170 

11 -1.0218 -1.4380 1.0110 

12 -1.1275 -1.4767 1.0183 

13 -1.1843 -1.0541 1.0035 

14 -1.2479 -1.0548 1.0000* 

15 -1.1119 -1.0263 1.0060 

16 -1.0390 -1.4586 1.0077 

17 -1.0177 -1.4654 1.0017 

18 -1.1013 -1.4587 1.0066 

Table 5-5 Distances from Single Helical Input Features to the Hyperplane of Binary Classifier 

Single Helical 
training traces 

1VS4 2VS4 3VS4 

1 -0.9994* -1.0000* -0.9996* 

2 -1.0160 -1.0340 -1.0138 

3 -1.0004* -1.0005* -0.9998* 

4 -1.0218 -1.0605 -1.0189 

5 -1.0042 -1.0177 -1.0073 

6 -1.0045 -1.0003* -1.0007* 

 

Figure 5-6 Comparison of Multiple Layer Traces 8, 9, and 11 



 

 
178 

 

 Testing Process 5.3.3

 

Two testing features are selected as an example to show the process of winding type 

prediction. One testing feature is of the multiple layer winding, measured on A Phase, 

common winding, and the other testing feature is of the plain disc winding, measured on A 

Phase, common winding. 

For the Multiple Layer VS Plain Disc classifier, its weight matrix w is plotted against in 

frequency solid lines in both Figure 5-7(a) and Figure 5-7(b). The bias factor b is -0.1956. 

The first testing feature 𝒙u1 to be identified is plotted in Figure 5-7(a) after standardization, 

and the second testing feature 𝒙u2 is plotted in Figure 5-7(b) , both in dash lines. The 

accumulated values ∑ 𝑤𝑖
𝑛
𝑖=1 ⋅ 𝑥u𝑖 + 𝑏 for the two testing features 𝒙u1 and 𝒙u2 are plotted 

against frequency in Figure 5-7(c) and Figure 5-7(d). The final value of g(𝒙u) can be 

calculated: g(𝒙u1) =1.0954−0.1956=0.8998 and 𝑔(𝒙u2) =-8392−0.1956=-1.0347. For the 

first testing feature, the positive number 0.8998 advises that it should be a Multiple Layer 

winding.  For the second testing feature, the negative value suggests that it should be Plain 

Disc winding. The higher the absolute value of g(𝒙u) is, the farer the testing feature is from 

the classification hyperplane, and the higher the prediction confidence is. In Figure 5-7(c), 

the value of first testing feature ∑ wi
n
i=1 ⋅ xui + b starts from a negative number and then 

becomes positive in the frequency region 2-20 kHz dominated by winding interaction. Its 

absolute value, i.e., prediction confidence, grows rapidly from 0.1184 to 0.8998, in the 

frequency domain controlled by winding type. Such behaviour suggests that in this 

example, weight factor of the magnitude points on the frequency region from 20 kHz to 

1000 kHz plays the most important role in the decision process. 

In Figure 5-7(d), the value of second FRA trace ∑ 𝑤𝑖
𝑛
𝑖=1 ⋅ 𝑥u𝑖 + 𝑏 remains negative over 

whole frequency range. For the frequency region controlled by winding properties, from 20 

kHz to 200 kHz, there exists the camel humps characteristics and the absolute value of 

g(𝒙u2) increases to 1.3070 as well as the prediction confidence. From 200 kHz to 1000 

kHz, the camel humps disappear and the rising trend with oscillation becomes similar to 

the characteristics of the multiple layer winding type, thus the absolute value of g(𝒙u2) 

decreases to 1.0350, as well as the prediction confidence. The prediction results from all 6 

binary classifiers are listed in Table 5-6. For the first testing vector, the multiple layer 

winding type wins the most votes, 3, which suggests that the winding corresponding to 𝒙u1 

is has the multiple layer winding type. Similarly, the winding with regard to the second 
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testing feature 𝒙u2 is classified as having the plain disc winding type. The proposed 

method successfully identifies the correct winding type in both cases. 

Noticeably, even though the testing feature 𝒙u1 belongs neither to the plain disc winding 

nor the interleaved winding, the plain disc VS interleaved winding classifier determines it 

having the interleaved disc winding type. It indicates that the testing feature 𝒙u1 is more 

analogous to the feature of an interleaved disc winding than that of a plain disc winding. 

This conclusion corresponds to the fact that the FRA traces of multiple layer and 

interleaved disc windings share some similarity in the rising magnitude trend from 20 kHz 

to 1000 kHz, though their oscillation levels are different. 

All the 54 testing features are identified correctly, as shown in Table 5-7. For plain disc 

windings, although all the training FRA traces have rising magnitude trend, the three 

testing FRA traces with flat trend are classified into the right winding type. The 

classification result is encouraging, in that the overall characteristics of FRA traces can be 

identified by considering not the magnitude but the trend. The testing process confirms that 

the developed SVM model can correctly classify FRA traces that are different from 

training data and is ready for winding type recognition. 

 

   

(a) Multiple Layer VS Plain Disc Classifier Weight Matrix and Testing FRA trace 1 
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(b) Multiple Layer VS Plain Disc Classifier Weight Matrix and Testing FRA trace 2 

 

 

(c) Accumulated Value ∑ 𝐰𝐢
𝐧
𝐢=𝟏 ⋅ 𝐱𝐮𝐢 + 𝐛 of Testing FRA Trace 1   
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(d) Accumulated Value ∑ 𝐰𝐢
𝐧
𝐢=𝟏 ⋅ 𝐱𝐮𝐢 + 𝐛 of Testing FRA Trace 2 

Figure 5-7 Classification of Testing Feature Example 

 

Table 5-6 SVM Voting Result for Testing Feature 𝒙u 

 Testing trace 1 Testing trace 2 

Classifier 
𝑔(𝒙u1) 

Value 
1 2 3 4 

𝑔(𝒙u2) 

Value 
1 2 3 4 

1 VS 2 0.8998  × - - 
-

1.0347 
×  - - 

1 VS 3 1.1701  - × - 1.5322  - × - 

1 VS 4 1.0469  - - × 0.4519  - - × 

2 VS 3 -0.8589 - ×  - 0.9999 -  × - 

2 VS 4 1.2167 -  - × 0.7495 -  - × 

3 VS 4 1.0598 - -  × 0.5478 - -  × 

 

Table 5-7 Testing Result of SVM Model 

Winding 
type 

Training 
set 

Testing 
set 

Accurate 
number 

identified 

Accuracy 
 

Multiple Layer 12 18 18 100% 

Plain Disc 18 18 18 100% 

Interleaved Disc 18 9 9 100% 

Single Helical 6 9 9 100% 
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 Application  5.3.4

A total of 51 FRA traces, from ten 400/275/13 kV transformers, without winding type 

information are classified by the SVM model built. The 51 traces are plotted in Figure 5-8 

after standardisation. Among all the 51 FRA traces, 30 traces correspond to series 

windings and the rest are obtained from common windings. In parallel, the winding types 

of the traces are also manually identified based on expert experience, which are used as the 

reference to validate the SVM prediction results. 

Winding classification by expert experience suggests that 6 of them are of Multiple Layer 

winding type, 36 of them are of Plain Disc winding type and 9 of them are of Interleaved 

Disc winding type. The Plain Disc winding type was widely used for 400/275/13 kV auto 

transformers before 1960s before the Interleaved Disc winding type was  invented, thus it 

takes up the largest number. The FRA traces of Single Helical windings are not included 

here because the measurement information indicates they belong to tertiary windings and 

the majority of tertiary windings use the Single Helical winding type. However, this does 

not mean that the FRA traces of Single Helical windings can be excluded from training 

data of the SVM model, since the measurement information may sometimes be missing. 

Tests show that the SVM model generates the same classification results as the expert 

experience. As shown in Table 5-8, according to the two classification methods, 6 traces 

are both classified as Multiple Layer winding type, 36 traces are both classified as Plain 

Disc winding type and 9 traces are both classified as Interleaved Disc winding type. The 

proposed method achieves 100% success rate in winding type recognition. 

 

Figure 5-8 51 Unknown FRA Traces to be Classified 
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Table 5-8 Application of SVM to FRA Traces with Unknown Winding Types 

Manually identified 
 winding Type 

SVM identified 
winding type 

Corresponding 
rate 

Multiple Layer 6 Multiple Layer 6 100% 

Plain Disc 36 Plain Disc 36 100% 

Interleaved Disc 9 Interleaved Disc 9 100% 

 

5.4 Sensitivity Study 
 

Training features determine the structure of SVM model and parameters of SVM 

classifiers. Therefore, the features chosen for training the SVM play an important role on 

the performance of SVM. It is crucial to ensure the choice of training features does not 

severely deteriorate the accuracy of winding type recognition. To this end, three sensitivity 

studies are carried out to investigate the impact of training data selection on the SVM 

performance. First of all, Multiple Layer winding type features initially used for testing are 

chosen to train the SVM. The study is devised to see if the SVM design can be easily 

swayed by training data as these features are similar to another winding type. In SVM 

theory, training features can be classified into two categories: non-support vectors and 

support vectors based on their distances to the classification hyperplane. The other two 

sensitivity studies focus on the impact of removing these two types of vectors from training 

data on the SVM design and performance. 

Figure 5-9 plots the distances from all training features with both Multiple Layer winding 

type and Plain Disc winding type to the Multiple Layer VS Plain Disc classifier as 

discussed. It can be seen from the figure that the features with these two different winding 

types are separated by a large distance of 2, compared to the distances between features 

with the same winding type, the largest of which is around 0.5. This indicates that the 

training features with the same winding type are located closely but not necessarily share 

similarity in their FRA trace shapes. 

 

Figure 5-9 Distance Scatter Plot of Multiple Layer and Plain Disc Training Features to Multiple VS Plain 
Disc Classifier 
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 Exchange Training and Testing Features 5.4.1

 

As shown in Figure 5-2, the magnitude responses of the training features and testing 

features for the Multiple Layer winding type are different, in the frequency region between 

20 kHz and 1000 kHz. The testing features shown in Figure 5-2 (b) are smoother than the 

training features shown in Figure 5-2, which means that the testing features are more 

similar to those of the interleaved disc winding type. 

When the training features and testing features are exchanged for the Multiple Layer 

winding type, the classification result will change, as shown in Table 5-9. Taking multiple 

Layer features and Plain Disc features for example, Figure 5-10(a) and Figure 5-10(b) 

show the distances from the new training data and the new testing data to the new Multiple 

Layer VS Plain Disc classifier, respectively. The classification result during the testing 

process remains the same for Multiple Layer features and Plain Disc features after the 

exchange. However, it can be seen from Figure 5-10(c) that one Interleaved Disc winding 

type testing feature is wrongly classified as Multiple Layer type. The voting results for this 

Interleaved Disc winding type feature are shown in Table 5-10. Due to the change of 

Multiple Layer training features, all three classifiers related to this winding type are 

affected. When such classifiers are applied to the Interleaved Disc winding type feature, 

the values of g(𝒙) change. Most importantly, the sign of g(𝒙) alters for the classifier 1 VS 

3, leading to incorrect classifying it as Multiple Layer winding type. Eventually, the feature 

is falsely identified as Multiple Layer type because it wins the most votes according to the 

classification criterion in a multiclass SVM problem. However, the classification 

confidence is not high for this specific classifier, being 0.1886 which is smaller than 

0.3717 when the original SVM classifier is used. Consequently, there is a high probability 

for it to cross the classification hyperplane, once the training features change again. The 

exchange of training and testing features for Multiple Layer winding reduces the 

dissimilarity between the Multiple Layer training features and Interleaved Disc training 

features.  

Table 5-9 Sensitivity Study: Exchange of Training and Testing Data 

Winding Type Training set Testing set 
Accurate  Number 

 identified 
Accuracy 

Multiple Layer 18 12 12 100% 

Plain Disc 18 18 18 100% 

Interleaved Disc 18 9 8 89% 

Single Helical 6 9 9 100% 
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Table 5-10 Voting Results for Wrongly Classified Testing Feature 

 
Before exchange After exchange 

Classifier g(x) Value decision g(x) Value decision 

1 VS 2 0.6421 1 0.7914 1 

1 VS 3 -0.3717 3 0.1886 1 

1 VS 4 0.9198 1 0.9332 1 

2 VS 3 -0.8038 3 -0.8038 3 

2 VS 4 1.4215 2 1.4215 2 

3 VS 4 0.8386 3 0.8386 3 

 

 
(a) Distance Scatter Plot of Multiple Layer and Plain Disc Training Features to Multiple Layer VS Plain 

Disc Classifier 
 

 
(b)  Distance Scatter Plot of Multiple Layer and Plain Disc Testing Features to Multiple Layer VS Plain 

Disc Classifier 

 
(c) Distance Scatter Plot of Multiple Layer and Interleaved Disc Testing Features to Multiple Layer VS 

Interleaved Disc Classifier  

 
Figure 5-10 Distance Scatter Plot after Exchange of Training and Testing Multiple Layer Features 

When the training data and testing data from the four winding types are swapped, the 

accuracy of the SVM prediction model drops to 67%.  

 Delete Non-Support Vectors 5.4.2

 

This section examines the impact of deleting non-support vectors from training data on the 

performance of the proposed SVM. After the SVM model is built, the support vectors can 

be identified. All the support vectors are noted by ‘*’ in Table 5-2 to Table 5-5. Instead of 

using all features, this time only the support vectors are used for training the SVM. The 

result shows that the newly built SVM model is identical to the original SVM model. 
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Figure 5-11 shows the change in the quantity of training features. Only 27 FRA traces are 

used for the newly constructed SVM model, which is half of the amount of the original 54 

training FRA traces. If any feature of the rest 27 training features is deleted, the parameters 

of the original SVM model will change, though the classification results might remain the 

same for the testing features. 

A comparison is done in Figure 5-11 on the weight matrixes of Multiple Layer VS plain 

Disc classifier, before and after the non-support vectors are deleted. It shows that the two 

weight matrixes exactly overlap with each other. The correlation coefficient and average 

difference are used to describe the similarity between the parameters of SVM before and 

after the change of training data. All the correlation coefficients for the 6 binary classifiers 

are 1.0000, with 0 mean differences. The biases of the 6 binary classifiers also remain 

unchanged, with a difference value of 0. The bias of 1 VS 2 classifier before and after is 

listed in Table 5-11. 

 

Figure 5-11 Comparison of 1 VS 2 Classifier before and after Deletion of Non-Support Vectors 

Table 5-11 Bias Factor before and after Exchange 

 Original  New 

Bias factor -0.1956 -0.1956 

 

 Delete Support Vectors 5.4.3

 

This section investigates the effect of deletion of support vectors from training data on the 

SVM performance of winding type recognition. The sensitivity study is carried out on the 

Multiple Layer VS Plain Disc winding type binary classifier. 
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As tabulated in Table 5-2, 12 FRA traces of multiple layer type windings are used as 

training vectors in the original SVM model. These 12 FRA traces are from A, B and C 

phases of two transformers. It can be found that the support vector for this binary classifier 

from multiple layer winding type is the 3rd training vector in Table 5-2. FRA traces from 

three phases of the same transformer series/common winding are similar in shape and their 

features are close to each other. To accelerate and simplify the process, the training 

features corresponding to the other two phases are removed together with the support 

vector to be deleted. After deletion the SVM is trained with the rest features and a new 

support vector can be identified. Performance of the newly built SVM is assessed. 

Afterwards the new support vector is deleted together with two features from the same 

transformer series/common winding. Such process to remove support vectors iterates until 

only 3 vectors from the same transformer winding are left. The weight matrices in all  the 

iterations are plotted in Figure 5-12. The values of the corresponding biases and the 

performance of SVM are tabulated in Table 5-12 and Table 5-13, respectively. 

On the first iteration, the weight matrix deviates slightly from the original. The deleted 

features are from a common winding. The SVM model functions well, identifying all 

testing features correctly. This suggests that the deleted support vectors are similar to a 

number of remaining training vectors and their deletion does affect the performance of the 

SVM. On the second iteration, the weight matrix differs from the previous weight matrix 

considerably. The deleted features are also from the common winding and the remaining 

features are all from series windings. This leads to the significant change in the weight 

matrix because it is determined only by the series windings rather than the combination of 

common and series windings. The FRA trace of multiple layer series windings is similar to 

that of interleaved windings, so the SVM trained only by the former can have difficulties to 

distinguish these two winding types. At this stage 9 multiple layer windings are wrongly 

classified as interleaved disc windings and the prediction accuracy drops to 83%. On the 

third iteration, only 3 features from series windings are used as training vectors. The 

classification accuracy remains at 83%. Slight changes can be observed in the weight 

matrix. This is because FRA traces obtained from series windings share great similarity. 

For the 9 wrongly classified multiple layer windings, the g(x) values of Multiple Layer VS 

Interleaved Disc classifier are listed in Table 5-14. It can be seen from the table that the 

sign of g(x) changes from positive to negative after the first iteration. Hence, the SVM 

wrongly classify the features as interleaved disc type windings. 
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 The study demonstrates the importance of the support vectors in the training of SVMs. 

The performance of the proposed winding type recognition method depends on if the 

suitable support vectors are included in training. However, non-support vectors are 

indispensable because the support vector is a relative concept and there always exists a 

support vector, but not necessarily a suitable one. It is found that completely removing 

training features from either common or series winding can deteriorate the performance of 

the SVM. 

 

Figure 5-12  Weight Matrix Changing Process 

 

Table 5-12 Bias Factors Changing Process 

 Original Step 1 Step 2 Step 3 

Bias factor -0.1956 -0.2226 -0.3663 -0.3235 

 

Table 5-13 Accuracy Changing Process 

 Training set Testing set Accurate number Accuracy 

Original 12 54 54 100% 

Step 1 9 54 54 100% 

Step 2 6 54 45 83% 

Step 3 3 54 45 83% 
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Table 5-14 Multiple Layer VS Interleaved Disc Classifier g(x) Value of Wrongly Classified Multiple Layer 
Features Changing Process 

Multiple Layer 
features 

Original Step 1 Step 2 Step 3 

1 1.1701 1.1699 -2.4613 -2.1110 

2 1.4254 1.4253 -2.2660 -1.9860 

3 1.1953 1.1952 -2.4509 -2.0963 

4 1.0599 1.0598 -2.1795 -2.0031 

5 1.5126 1.5126 -1.8913 -1.8511 

6 1.0774 1.0774 -2.1864 -2.0041 

7 1.1416 1.1414 -2.3361 -2.1157 

8 1.5241 1.5241 -2.0551 -1.9632 

9 1.0846 1.0843 -2.3573 -2.1289 

 

5.5 Conclusion 

 

In this study, a novel SVM-based method is proposed for transformer winding type 

recognition using FRA data. The SVM model is built with FRA traces of 400/275/13kV 

auto transformers from the UK’s National Grid Database. This model is trained using FRA 

traces with design information, and later tested by different FRA traces with a 100% 

accuracy rate. Examples are given to show the prediction process and to analyze the 

influence of different frequency regions on the final classification result. The frequency 

region from 20 kHz to 1000 kHz controlled by the winding structure plays an important 

role in the winding type recognition. Subsequently, the SVM is applied to 51 FRA traces 

with unknown winding type, and the prediction result is validated with the classification 

made by expert experience. The proposed method successfully identifies the correct 

winding type in all cases, which demonstrates the satisfactory performance of the SVM-

based method. Sensitivity studies are carried out to investigate the impact of training data 

selection on the performance of SVM. It is concluded that the performance is mainly 

affected by support vectors. When small changes occur to the support vectors, the SVM 

model might still produce correct prediction results for the original testing vectors. 

However, the prediction accuracy will drop once the support vectors change significantly. 

It is important to identify and include the critical FRA traces in the training data for 

accurate identification. To ensure the suitable support vectors are used to build the 

classification model, it is suggested to use as many training FRA traces as possible. 

Meanwhile, expert judgement and practical experience can be exercised and referred to 

when training the SVM model 
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With the changes in the voltage ratio, power rating, winding types, etc., the frequency 

region dominated by the properties of winding-under-test, may be different. The linear 

SVM model built in this paper would be only applicable with confidence to the 400/275/13 

kV autotransformers with different power ratings (500MVA, 750MVA and 1000 MVA). 

Further study should be carried out on winding type recognition of transformers with a 

variety of voltage levels, such as a mixed database of 275/33 kV, 275/132/13 kV, and 

400/275/13 kV transformers. 
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  Identification of Winding Construction Types by Chapter 6

Unsupervised Machine Learning Method 
 

6.1 Introduction 

 

Over the years utilities have accumulated a large number of measured frequency responses 

whilst the transformers’ design information such as winding construction types may or 

may not be necessarily known.  

Different winding types own different equivalent electrical parameters, i.e. capacitance and 

inductance. For instance, the Interleaved Disc winding has higher series capacitance whilst 

the Plain Disc winding has lower series capacitance. Resonance and anti-resonance are 

caused by the conjunct effect of inductance and capacitance. They normally appear as local 

maximum and minimum, i.e. peak and trough on FRA traces. The variation in their 

equivalent electrical parameters, especially winding series capacitance, leads to the 

different characteristics on their FRA traces. As a result, unalike features are caused at 

specific frequency regions of frequency response, especially the high frequency region 

which is dominated by winding-under-test. Consequently it is possible to correlate FRA 

characteristics with known design features.  

Same faults may occur to same winding types and result in similar distortions of FRA 

features. In the UK forensic examination are routinely carried out on retired transformers, 

and knowledge can then be acquired for asset management. Therefore, any technique 

which helps to identify the unknown winding types of transformers is desirable when 

considering the fact that a significant number of transformers’ design information is 

unknown to the utilities.  

The unsupervised machine learning method, Hierarchical Clustering, is applied on the 

FRA traces of 400/275/13 kV autotransformers in this chapter for the identification of 

winding types. The frequency responses investigated in this chapter are from five winding 

types, i.e. Intershielded Disc winding, Plain Disc winding, Interleaved Disc winding, 

Multiple Layer winding, and Single Helical winding. The Hierarchical Clustering groups 

similar frequency responses together according to the distances between them. Clustering 

using different frequency regions is also investigated, considering the fact that different 

frequency regions are controlled by different physical factors.  
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With the technique employed in this study, in combination with expertise knowledge and 

forensic information accumulated, the utility will be able to develop a strategy to manage 

similar type of transformers and achieve effective asset management. Besides, once the 

winding construction type is known, it is also helpful for the fault diagnosis of transformer 

windings. 

6.2 Hierarchical Clustering 
 

Hierarchical clustering method is an unsupervised machine learning algorithm which 

groups similar objects together as introduced in Chapter 2. Different from supervised 

machine learning method, it does not require any training process using input data with 

known classifications. For a given group of observations, each observation is initially 

treated as a separate cluster, and the algorithm repeatedly identifies the closest two clusters 

and merges them, until all the clusters are merged into one cluster. An example using 

Hierarchical clustering method to cluster six dataset will be given. 

As shown in Table 6-1, six datasets, A – F, the distances between every two datasets are 

listed in Table 6-1 (a). Hierarchical Clustering algorithm finds the smallest distance in this 

distance matrix, which is 10 between E and F in Table 6-1 (a), thus E and F are clustered 

together first. Then, the smaller distance between A to E and A to F is adopted as the 

distance from A to the new cluster {E, F} which is 77. This way of calculating the new 

distance between the newly merged cluster and other clusters is called Single Linkage. The 

new distance matrix is recalculated in Table 6-1 (b), where the smallest distance is 16 

between A and B. The algorithm keeps merging clusters until only one cluster exists, as 

shown in Table 6-1 (c)-(d).  

Table 6-1 Distance Matrix Example 

B 16   
   

     
    

C 47 37   
  

B 16   
  

    

D 72 57 40   
 

C 47 37   
 

C 37    

E 77 65 30 31   D 72 57 40   D 57 40  

F 79 66 35 23 10 E+F 77 65 30 23 E+F 65 30 23 

 
A B C D E 

 
A B C D  A+B C D 

   (a)     (b)   (c) 

C 37    

D+E+F 57 30 C+D+E+F 37 

 
A+B C 

 
A+B 

 
(d) 

 
(e) 
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Dendrogram in Figure 6-1 shows the corresponding process of merging.  The horizontal 

axis is the dataset, and vertical axial is the distance between the datasets. 

The clustering result can be decided either by the pre-set final cluster number or by the cut 

off distance. When the final cluster number is set as 2, then two clusters {A, B} and {C, D, 

E, F} are divided. When the cut off distance is set at the height of the dash line in Figure 

6-1, clustering result remains the same. 

In fact, the distance between two observations reflects the similarity between them. 

Euclidean Distance is used in this study. Weighted Linkage uses the average of two 

distances between a specific cluster and the two observations to be merged, as the new 

distance. In the given example in Table 6-1, using weighted linkage, the distance of newly 

merged cluster {E,F} to cluster A is (77+79)/2=78.  

 

 

  
(a) 

    
(b) 

 

 (c) 

 

 (d) 

 

(e) 

Figure 6-1 Dendrogram of Datasets A – F in Figure 6-1 

 

6.3 Application of Hierarchical Clustering 
 

As illustrated in Figure 3-9, Single Helical winding has a higher magnitude roughly from 5 

Hz to 100 kHz. For the frequency region of 20 kHz to 1000 kHz, which is believed to be 

dominated by winding properties, Multiple Layer winding’s FRA magnitude trace rises 

about 20dB per decade with obvious oscillations. With a higher series capacitance, 

Interleaved Disc winding has the same rising speed but the trace is smoother. Camel 
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humps usually appear on Plain Disc winding’s frequency response. The FRA characteristic 

of Intershielded Disc winding is not unique; it looks like Plain Disc winding. For both 

winding types, the smooth rising trend would occur after camel humps feature.  

Different frequency regions of frequency response are influenced by different transformer 

parts. For the 400/275/13 kV autotransformers investigated, transformer core, inter-

winding influence, properties of winding-under-test and measurement setup are believed to 

dominate the bandwidths < 2 kHz, 2-20 kHz, 20-1000 kHz and >1000 kHz respectively. 

Actually, the boundary points of bandwidth, 2 kHz, 20 kHz, and 1000 kHz, are empirical. 

The concerned FRA characteristic in one frequency region can move up or down to 

another frequency region when the voltage and power ratings of winding or winding type 

changes. For clarity, to avoid the influence of measurement setup, the measured FRA data 

up to 200 kHz, are used to test the unsupervised machine learning methods in this study. 

All together 28 measured FRA traces from 400/275/13 kV autotransformers are studied, 

and their winding type information are listed in Table 3-11 and FRA traces are plotted in 

logarithmic scale in Figure 3-22. There are 4 frequency responses from Intershielded Disc 

winding with label {1-4}, 6 frequency responses from Plain Disc winding with label {5-

10}, 4 frequency responses from Multiple Layer winding with label {11-14}, 6 frequency 

responses from Interleaved Disc winding with label {15-20}, and 8 frequency responses 

from Single Helical winding with label {21-28}. The frequency responses {5-7, 12, 13, 15-

18} are from series windings, the frequency responses {1-4, 8-10, 13, 14, 19, 20} are from 

common windings, and the frequency response {21-28} are from tertiary windings. 

For each frequency response, there are 1120 data points for the frequency range from 5 Hz 

to 200 kHz. Euclidean Distance and Weighted Linkage are used for clustering. The 

Euclidean Distance between two frequency responses is calculated as: 

 

Equation 6-1 

where Xa
i
 and Xb

i
 are the magnitudes at frequency point i on FRA traces a and b, in the unit 

of dB.  

For Weighted Linkage, cluster K is produced by merging two clusters M and N, the 

distance between the new cluster K and another cluster L, 𝑑(𝐾, 𝐿), can be calculated as the 
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mean value of the distances 𝑑(𝑀, 𝐿) between Clusters M and L and the distance 𝑑(𝑁, 𝐿) 

between Clusters N and L: 

𝑑(𝐾, 𝐿) =
𝑑(𝑀, 𝐿) + 𝑑(𝑁, 𝐿)

2
 

Equation 6-2 

 

The clustering Dendrogram using Euclidean Distance and Weighted Linkage is shown in 

Figure 6-2. 

 

 
Figure 6-2 5 Hz to 200 kHz Clustering Dendrogram using Euclidean Distance Weighted Linkage 

Suppose the final cluster number is set as 2, the left cluster contains 8 traces of Single 

Helical Winding type, and the right cluster contains traces from the rest winding types.  

For the left hand side cluster, 8 traces {21- 28} from Single Helical winding are grouped 

due to their high magnitude compared with other frequency response at most frequencies 

in the whole range. The frequency responses {21-24} are tested on the same transformer, 

and they are clustered together firstly. The frequency responses {25-27}, with distances 

around 100, are from another transformer and thus they are clustered together. The 

frequency response {28} is from a third transformer, and its distance to the other Single 

Helical Traces from other transformers is about several hundreds. The frequency responses 

{23, 25, 28} are plotted in Figure 6-3 (a). Though the three frequency response all have 

high magnitude compared with the series and common windings, there still exist obvious 

difference in them. The locations of their antiresonance, which drop to around -40dB, are 

0.265 kHz, 0.475 kHz and 2.3 kHz separately. The resonance of frequency response 28, 

circled in solid black lines, located close to that of frequency response 23. It can be seen 

that the similarity between the shapes of frequency responses 23 and 28 is higher than that 
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between frequency responses 25 and 28. Thus frequency response 28 is clustered in to {21-

24} rather than {25-27}, leading to the clustering result shown in Figure 6-2. 

For the right hand side cluster, all common windings {1-4, 8-10, 13, 14, 19, 20} are cluster 

together into a sub-group due to similarity between them. Series windings {5-7} are 

clustered into the sub-group of common windings afterwards. Finally the rest of series 

windings traces {11, 12, 15-18} are merged with the common windings and the series 

windings mentioned above. The common windings 9, 10 and 14 are plotted together in 

Figure 6-3 (b) to investigate the clustering process. Before 0.4 kHz, their FRA magnitude 

spectra almost overlap with each other. Before about 3 kHz, they all have a rising trend, 

and the magnitude difference among themselves is much smaller compared with the 

difference between them and the series/tertiary windings. Therefore, the common windings 

are clustered together, mainly due to their similarity in the low frequency region before 

several kHz. 

However, this result is not desirable, since it does not distinguish winding types, but 

perhaps overemphasized the differences in magnitude.  

 
(a) Comparison between Traces 23, 25, and 28 
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(b) Comparison between Traces 10,14,19 

Figure 6-3 Examples of Frequency Responses from 400/275/13 kV Transformers                 

 

As known the frequency range 5 Hz to 200 kHz can be split into three regions and the 

relation among the distances exists as: 

 Equation 6-3 

where d, d1, d2, d3 are the Euclidean distances of 1120 points from 5 Hz to 200 kHz, 400 

points from 5 Hz to 2 kHz, 360 points from 2 kHz to 20 kHz and 360 points from 20 kHz 

to 200 kHz. It should be noted that the distance between two frequency responses is not 

only affected by the distance at each measured frequency but also the amount of measured 

frequency points.  

It is worth to study the distance in each frequency region to understand their individual 

contribution to the final clustering classification results. 

 Bandwidth Dominated by Core and by Winding Interaction 6.3.1

 

Using frequency response in the 5 Hz – 2 kHz region which is dominated by the core, the 

dendrogram is shown in Figure 6-4. Set the final cluster number as 3 and a clear clustering 

result can be obtained, i.e. the tertiary windings on the left, common windings in the 

middle and series windings cluster on the right. Clearly d1 are sensitive to the voltage 

levels. i.e. the number of turns, and is good at classifying tertiary, common and series 

windings. The classification result is reasonable as frequency response is dominated by the 

equivalent core in this frequency region and the core inductance is proportional to the 

voltage level (number of turns) squared.  
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Figure 6-4 5 Hz to 2 kHz Clustering Dendrogram using Euclidean Distance Weighted Linkage 

The winding interaction dominated frequency region is from 2 kHz to 20 kHz. Due to its 

complexity, the clustering results, using frequency response at this frequency region only, 

are messy, as shown in Figure 6-5. And thus discussion will not be included in this section. 

Due to frequency response 3 is from Intershielded Disc winding while frequency response 

10 belongs to Plain Disc winding, the line connecting them in Figure 6-5(b) are in black 

colour. 

 

 
Figure 6-5 2 kHz to 20 kHz Clustering Dendrogram using Euclidean Distance Weighted Linkage 

 Bandwidth Dominated by Winding Properties 6.3.2

 

For winding-property controlled frequency region 20 Hz to 200 kHz, the clustering results 

for the common and series windings are shown in Figure 6-6. Two clusters are clearly 
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formed. Multiple Layer and Interleaved Disc windings are clustered together whilst Plain 

Disc and Intershielded Disc windings are gathered together as the other cluster. Multiple 

Layer windings and Interleaved Disc windings are both the type of windings with high 

series capacitance, and Plain Disc windings and Intershielded Disc windings are the type of 

windings with low series capacitance. 

Discussions on d3 are detailed here. For the left hand side cluster {11-20}, traces {14, 15, 

16, 19, 20} are assembled as one small group, and traces {11, 12, 13, 17, 18} are 

assembled as another small group. Interleaved Disc traces {15, 16} are merged with a 

distance as tiny as 4, and Interleaved Disc traces {19, 20} are merged with a distance of 

10. The distance between small cluster {15, 16} and cluster {19,20} rises to 68, mainly due 

to the large distances between Multiple Layer trace 14 and Interleaved Disc traces {19, 

20}, which are 104 and 108. Because of the same reason, the distance between cluster {14, 

15, 16, 19, 20} and cluster {11, 12, 13, 17, 18} rises to 150, and this distance 150 is largely 

influenced by the distance between the two most dissimilar traces members in the cluster. 

The final distance between the last two clusters in Figure 6-6 of the 20 trance is 356. 

Actually the distance between clusters is not only influenced by the largest distance (which 

is 503 between Plain Disc winding {5} and Interleaved Disc winding {17}), but also every 

distance between every two traces. In the right hand side cluster {1-10}, the Intershielded 

Disc windings are clustered firstly, and then the Plain Disc windings are merged with the 

Intershielded Disc windings.  

In summary, from 20 kHz to 200 kHz, the difference in winding series capacitance causes 

the magnitude difference in the FRA traces and leads to this clustering result. 

 
Figure 6-6 20 kHz to 200 kHz Clustering Dendrogram using Euclidean Distance Weighted Linkage 
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6.4 Summary  
 

In this chapter, the unsupervised machine learning method Hierarchical Clustering is used 

to process 28 frequency responses measured on 400/275/13 kV autotransformers, with the 

aim to identify winding types.  

Initially each frequency response is viewed as a cluster. The frequency responses are 

clustered according to the distances between each other. The 28 clusters are merged until 

the predefined final cluster number or the cut off distance is met.  

When using the frequency response from frequency range 5 Hz to 200 kHz, 8 Single 

Helical Windings can be easily picked out due to their high magnitude in most frequencies, 

especially at the low frequency region of 5 Hz to 100 kHz. The frequency responses 

measured on common and series windings can also be roughly clustered together.  

Due to the particular FRA measurement device used, for the frequency region <20 kHz, a 

larger amount of data points, 760, is used; this is in contrast to the  amount of  data points, 

360, at the higher frequency region from 20 kHz to 200 kHz. This means more weight is 

given to the low bandwidth, and thus the difference between Single Helical windings and 

other windings are emphasised. The weight can be adjusted according to different needs, 

by reproducing frequency response using transfer function estimation method. 

The frequency regions 5 Hz to 2 kHz and 20 kHz to 200 kHz, which are controlled by the 

core and the property of winding-under-test, are investigated. Using the frequency region 

controlled by the core, which is 5 Hz to 2 kHz, the tertiary, common, and series windings 

can be clustered and identified correctly. Using the frequency region controlled by the 

winding properties, which is 20 kHz to 200 kHz, the windings with high series capacitance 

(Multiple Layer winding and Interleaved Disc winding) can be clustered together, while 

the windings with low series capacitance (Plain Disc winding and Intershielded Disc 

winding) can be clustered together.  

When a proper clustering method is adopted, the frequency response with unknown 

winding type can be correctly identified by being clustered into a group of frequency 

responses together with a frequency response with known winding type. Once the 

frequency responses are in the same cluster, it is in default to think the windings should 

share the same winding construction type.  
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  Conclusions and Future Work Chapter 7

 

7.1  Conclusions  

 

FRA technique has been widely applied in the diagnosis of transformer winding related 

mechanical faults. This PhD thesis focuses on the study of a group of UK National Grid 

400/275/13 kV autotransformers and their FRA measurement records from the FRA 

database, to develop the methods for transfer function estimation and winding type 

identification.  

The current FRA diagnostic method for winding mechanical integrity assessment is largely 

subjective. As the best practice in the utilities; experts rely on their understating of FRA 

curves, transformer design, prior knowledge of system short-circuits or incident reports 

during transportation/installation, to make diagnostic decisions; and these decisions are 

often yes/no for a question such as if there is winding deformation/displacement or not.  

Different from the subjective diagnosis according to experts’ experience, objective 

diagnosis attempts to use mathematical parameters to indicate and quantify the differences 

between the reference and measured frequency responses. Other than numeric indices, one 

of the mathematic methods is transfer function representation, which uses either real or 

complex zeros and poles and a constant coefficient to mathematically describe the 

frequency response. The changes in the frequency responses can be reflected by the 

alteration of the parameters of transfer functions, and objective diagnostic rules can be then  

made according to the relationships between these mathematic parameters and their 

changes with the type, severity and location of the winding movement. 

In the UK National Grid FRA database, there exists a large amount of FRA measurement 

traces, whose transformer design information are not known to the utility, such as the 

winding construction types. Knowing the winding construction type is helpful for the 

diagnosis of transformer winding through FRA technique, as well as for the effective asset 

management. The specific frequency regions of FRA traces are influenced by the different 

factors including the winding construction type, though the exact and specific boundary of 

this frequency region can be influenced by the transformer’s voltage ratio, power rating 

and winding type used. Different frequency response features are caused by different 
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winding construction. Thus it is feasible to identify the winding construction types 

according to the characteristics of frequency responses.   

The main work conducted in this PhD study can be divided into two parts. One part is on 

the development of transfer function estimation methods for accurate representation of 

frequency responses. Two estimation methods are developed. The other part is on the 

winding type classification using the measured FRA data. The supervised machine learning 

method, Support Vector Machines (SVM) and the unsupervised machine learning method, 

Hierarchical Clustering, are employed. Detailed conclusions will be given in the following 

sections. 

 Conclusions on Transfer Function estimation 7.1.1

 

Frequency responses of 400/275/13 kV autotransformers from 5 Hz to 200 kHz are used 

for the demonstration of developed methodologies for transfer function estimation.  

The first method, Feature Extraction Method, developed in this PhD study is based on the 

Non Linear Least method. The key information, complex zeros and poles are extracted 

from frequency regions to construct a Feature Transfer function, and the Difference 

Transfer Function is used to correct the difference between the Feature Transfer Function 

and the measured frequency responses. A MATLAB program is developed to 

automatically process the input frequency responses. The proposed method has been tested 

on eight transformers. For each transformer, 6 frequency response from both series and 

common windings of A, B, and C phases, are processed, which means a total amount of 48 

FRA traces are given their transfer function representation. Four winding types are 

included, i.e. Multiple Layer winding, Plain Disc winding type, Interleaved Disc winding 

type and Intershielded Disc winding type. For each FRA trace, the time length of running 

the estimation program is about from 10 to 15 seconds, on a computer with Inter-i7-4770 

3.4GHz processor, 16 GB RAM and 64-bit operating system. This method is proved to be 

very accurate and efficient. 

The estimation result is well matched with the measured FRA data for both magnitude and 

phase data. This developed method is especially good at the matching of delicate features 

of FRA traces. The cancellation criteria, when extracting the complex zeros and poles from 

different frequency regions, can be adjusted to control the estimation accuracy, or to avoid 

the over fit of noise on the FRA traces in different situations. However, one problem with 

this method is that the estimated complex zeros and poles may not appear in sequence and 
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they may have positive real part, which indicates that they are not physically achievable, 

i.e. the transfer function could not be given an electrical circuit through e.g., filter design 

software. The choice of order for each frequency region, and the cancellation criteria both 

have an influence on the Finalised Transfer Function, which mean the solution may not be 

unique. 

Considering the shortcoming of the first method, the second method, Extreme Points 

Identification Algorithm, is developed. Different from the first method which requires both 

magnitude and phase frequency response data, the second method needs the magnitude 

response only for the estimation of transfer function. A real pole is used to describe the 

decreasing magnitude trend before the first trough. The induced height at each peak and 

trough on the frequency response, by complex poles and zeros, are calculated, and the 

height along with the location of the peak or trough can be used to compute the 

corresponding complex parameters. The mutual influence between different parameters 

can be eliminated by iterations. In addition to the fact that the complex zeros and poles are 

enforced to appear in sequence, this method also forces the real part of the complex 

parameters to be negative. A unique solution which is physically achievable thus can be 

guaranteed. Similar program running time to the first method is required by the second 

method, on the same computer. The time length may increase when more iterations are 

needed.  

This method has been verified on two typical winding types, i.e., the Multiple Layer 

winding type and Plain Disc winding type, and those two types of windings own obvious 

magnitude oscillations and the local minimum and maximum are easy to identify. 

Compared with other estimation methods, this proposed method uses the smallest amount 

of parameters to describe the FRA traces, which assures the simplicity of the mathematical 

expression. No redundant zeros or poles appear and only one real pole is needed, while 

other methods may have several pairs of redundant zeros and poles along with a few real 

poles and zeros. 

A problem with the second method is that when the complex zeros and poles are located 

too close, the local minimum or maximum magnitude may be hidden, thus a pair of 

complex zeros and poles might be neglected. Another problem is also found on the 

estimation of phase data. Though phase data is not used, the phase data between ±90° can 

be accurately matched. However, for the frequency response with phase data which 

oscillates between ±180°, the estimated transfer function produces FRA phase data which 
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oscillates between ±90° to guarantee the physically achievable transfer function using the 

estimated parameters. This situation occurs when the original Frequency response is not a 

driving point transfer function. 

Both of the proposed methods have been applied for the diagnosis of a 275/132/11 kV 

autotransformer. The tap winding of B phase from this transformer is axially collapsed. 

The parameters produced by both methods can reflect the shifting of the resonant points in 

the measured frequency response as compared with the reference. However the second 

method which is the Extreme Points Identification Algorithm, is preferred, because its 

complex parameters, i.e. the complex zeros and poles, are corresponding to the 

antiresonance and resonance points of the frequency response. This means it is 

advantageous to use this method when interpreting the differences between the reference 

and diagnostic frequency responses. 

 Conclusions on Winding Construction Type Classification 7.1.2

 

Both the supervised and unsupervised machine learning methods are employed on 

frequency response for the identification of the winding types. All the frequency respones 

come from the 400/275/13 kV autotransformers. 

For the supervised machine learning method, Support Vector Machine (SVM), a particular 

classification model is studied, where a multiple type classification model, using 54 

frequency responses with known winding types. When testing this SVM model using 54 

frequency responses with known winding types, the classification accuracy reaches 100%. 

Then the model is applied for winding type identification after testing. For another group 

of 51 FRA traces, with unknown winding types, both subjective classification using expert 

knowledge and the SVM classification are conducted, to yield to same prediction results. 

Therefore, the classification ability of SVM model is verified.  

Sensitivity studies are carried on the key features, or support vectors, which decides the 

parameters of the built SVM model. It is found that when the support vectors remain 

unchanged, no matter how many the non-support vectors are used, the SVM model 

remains the same. If the support vectors are removed from the training data of the SVM 

model, as a result, the parameters of the model will change. However, it is hard to 

accurately locate support vectors in the large amount of input features. Therefore, it can be 

concluded that to build a proper SVM model, adequate input features are needed.  This 
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means a higher probability to contain the proper support vectors, and to construct a well 

functioned SVM model.  

The unsupervised machine learning method Hierarchical Clustering is also used for the 

identification of winding types of frequency responses.  28 frequency responses are 

clustered into different groups according to the distances between each another. The 

clustering result shows that tertiary, common, and series windings can be roughly clustered 

together. The influences from different frequency regions are investigated. It is possible to 

identify frequency responses from the tertiary windings, common windings and series 

winding, using 5 Hz to 2 kHz frequency response, whose magnitudes are related to the 

numbers of winding turns. Windings with high series capacitance, i.e. Multiple Layer 

winding type and Interleaved Disc winding type, and windings with low series capacitance, 

i.e. Intershielded Disc winding type and Plain Disc winding type, can be clustered together, 

using 20 kHz to 200 kHz frequency response.  

It is found that actually the amount of data points has an influence on the clustering result. 

The quantity of data points can be viewed as a weight factor, related to the measured 

frequency range, which has influence on the distances between FRA traces. This weigh can 

be adjusted by reproducing frequency response using transfer function estimation methods. 

When a proper clustering method is adopted, the identification of unknown frequency 

response can be achieved by clustering frequency responses with known and unknown 

winding types together. The winding type of the unknown frequency response is suggested 

by the known frequency response in the same clusters. 

7.2 Future Work 
 

This PhD study focuses on the transfer function estimation and winding type classification 

using measured frequency response of transformers. Further study is still needed to 

advance the developed methods. The detailed suggestion future work will be given in the 

following section. 

 Future Work on Transfer Function Estimation 7.2.1

 

As mentioned, the first method developed is able to obtain satisfactory estimation results. 

Nevertheless, the selection of order of each frequency region, as well as the cancellation 

criteria for a pair of redundant zeros or poles, has influence on the Finalised Transfer 

Function. The future work plan for this method is suggested as follows: 
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The criteria for the selection of order of transfer function to be estimated for a frequency 

region should be improved. It should allow different orders for the numerator and the 

denominator according to the amount of peaks of troughs contained in a frequency region. 

A better estimation result is expected with this improvement, which should significantly 

reduce the possibility of producing parameters without physical meaning. However, even 

with this improvement, the solution may not be unique, since that the quantity of real zeros 

and poles cannot be controlled with the inbuilt MATLAB command. 

For the cancellation criteria, study should be conducted to give an adjustment guide for 

different situations, such as for a different winding construction type, i.e. Single Helical 

winding type, or for transformers with another voltage ration. Also, the criteria should 

balance between guaranteeing the estimation accuracy and avoiding the measurement 

noise. Recommendation should be made after further study. Noticeably, the division of 

frequency regions might change accordingly. 

For the second method developed, the following study is suggested: 

The subtle features should be considered by either identifying the change in the rate of 

magnitude increase/decrease with frequency or by using the more sensitive phase data. 

Once the closely located complex zeros and poles are estimated, the accuracy of the 

proposed method can be further improved. This method should be improved and applied 

on winding types with subtle features, such as Interleaved Disc winding. 

 Future Work on Winding Construction Type Classification 7.2.2

 

For the supervised machine learning method SVM, the following further work is 

suggested: 

The method should be applied on frequency responses of transformers with other voltage 

ratios, such as 275/132kV transformers and 275/33kV transformers. For each voltage ratio, 

a different SVM model should be built. For example, the Multiple Layer winding from two 

transformers with different voltage ratio can be viewed as two difference classifications in 

the SVM model. 

The input of the current SVM model is selected as the measured frequency responses after 

standardisation, which makes the most of the known information. An alternative way is to 

use the parameters extracted from the frequency response as the input of the model.  
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Currently, the linear SVM model is sufficient for the investigated winding type 

classification. The nonlinear SVM model, which pre-processes the frequency responses, 

may be used for more complex classification challenge such as identification of winding 

types using the mixed groups of frequency responses from transformers with different 

voltage ratio as mentioned above. The nonlinear SVM model requires the design of a 

proper kernel function to pre-process the input data. 

For the unsupervised machine learning method, Hierarchical Clustering, the following 

further work is suggested: 

Application on transformers with different voltage ratios should be carried out. For 

Hierarchical Clustering method, the selection of frequency range of FRA data should be 

careful, since the frequency range controlled by the winding properties may vary with the 

voltage ratios and power ratings of transformers. 

The transfer function estimation method can be used to generate any arbitrary number of 

data in any frequency region to investigate a proper weighting factor for different 

frequency regions, in order to develop a more appropriate clustering method. 

For both methods, the following future work is suggested: 

The classification of winding types may be combined with the transfer function estimation, 

by using the parameters of transfer function as the input to both machine learning methods. 

However, the order of the transfer function should be defined to guarantee the uniform 

format of the input feature for the SVM model and to enable the calculation of distance 

between two sets of transfer function parameters. 
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Appendices 

Appendix A: Application of Dynamic Time Warping (DTW) 
 

Considering the shifting/scaling of frequency response’s characteristics caused by sizing 

including rated voltage and power, a technique called Dynamic Time Warping (DTW) can 

be helpful to pre-process the FRA data for better identifying the same characteristics at 

different frequencies. The DTW technique, which is able to scale or shift part of the 

features on FRA traces, is used in combination with Hierarchical Clustering to enhance the 

classification ability by identifying the features located at different frequencies. 

1. Pre-processing by DTW 

 

In time series analysis, DTW is one of the algorithms for measuring similarity between two 

temporal sequences, which may vary in speed. It can be used to identify same 

characteristics before and after scaling. DTW horizontally scales two traces to align them 

to each other, which means it can be used for the ‘feature to feature’ comparison after data 

being processed. Among all the possible paths, it chooses the one which has smallest 

moving distance. Horizontal points will be inserted to compensate the part where the 

height is not aligned. Generally the greater the difference between the two traces, the more 

insertion points there are. Indeed, any data that can be turned into a linear sequence can be 

analyzed with DTW.  

1) Methodology 

 

An example, using two data sets A and B, will be given to explain the DTW technique.  

Data set A consists of data points 1, 3, 4, 9, 8, 2, 1, 5, 7, 3 and data set B consists of data 

points 1, 6, 2, 3, 0, 9, 4, 3, 6, 3, as plotted in Figure 1. It can be seen that the peaks and 

troughs on the two sets of data are not aligned.  

A distance matrix is helpful to find the possible moving path to match the features on the 

two datasets, as shown in Table 1. An element Xij in this distance matrix contains the 

distances between the corresponding two points, Ai and Bj, from the two datasets, which 

represents a possible alignment in the possible moving path, and the value of Xij is defined 

in Equation 1: 

𝑋𝑖𝑗 = |𝐴𝑖 − 𝐵𝑗| + min (𝐷(𝑖−1,𝑗−1), 𝐷(𝑖,𝑗−1), 𝐷(𝑖−1,𝑗)) Equation 1 
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where D(m,n) is the absolute difference between Am and Bn, Xij is the smallest distances 

among 𝐷(𝑖−1,𝑗−1), 𝐷(𝑖,𝑗−1), and 𝐷(𝑖−1,𝑗). Among all the possible moving paths, the path with 

the smallest accumulated moved distance between the two traces should be used. The 

distance matrix should be calculated starting from X11. Though not all possible moving 

steps are shown in the distance matrix, the one with the smallest accumulated distance is 

surely included. After the distance matrix is calculated, start from the right bottom corner, 

the path with the least accumulated distance is selected.  For the two datasets A and B, the 

selected path is noted in grey shade, as shown in Table 2. The mapping path for A is 1, 6, 

2, 3, 0, 9, 9, 4, 3, 6, 6, 3, and for B is 1, 3, 3, 3, 4, 9, 8, 2, 1, 5, 7, 3. Figure 2 shows the 

traces of A and B after mapping. 

 

Figure 1 Data Sets A and B to be Processed by DTW Technique 

 

Table 1 Distance Matrix of Data Sets A and B to be Processed 
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Table 2 Distance Matrix of Data sets A and B Processed 

 

1 6 2 3 0 9 4 3 6 3 

1 0 5 6 8 9 17 20 22 27 29 

3 2 3 4 4 7 13 14 14 17 17 

4 5 4 5 5 8 12 12 13 15 16 

9 13 7 11 11 14 8 13 18 16 21 

8 20 9 13 16 19 9 12 17 18 21 

2 21 13 9 10 12 16 11 12 16 17 

1 21 18 10 11 11 19 14 13 17 18 

5 25 19 13 12 16 15 15 16 14 16 

7 31 20 18 16 19 17 18 19 15 18 

3 33 23 19 16 19 23 18 18 18 15 
 

 

Figure 2 Data Sets A and B Processed by DTW Technique 

2) Application of DTW on Two Datasets 

 

In the first part of this section, sensitivity study on the DTW method is carried out using 

artificial frequency responses. Two influencing factors are investigated, i.e. the location of 

the features on the frequency response and the overall magnitude of the frequency 

response.  In the second part of this section, the application of the DTW on the measured 

frequency responses from the same or different winding types is demonstrated. 

a. Sensitivity Study on Artificial FRA Trace   

 

Two artificial FRA traces are constructed for the sensitivity study of DTW, as shown in 

Figure 3. For each trace, 200 data points are sampled linearly from 1 Hz to 0.5 kHz. Both 

trace 1 and trace 2 own two troughs and 1 peak, located at different frequencies. The 
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horizontal axis in Figure 3(b) is data point, instead of frequency, for the convenience of 

comparison after DTW is applied.  After DTW technique is applied, the two traces are 

plotted in Figure 3(c). It can been seen that even if the original peaks and troughs on two 

traces are located far away, they can be matched together after the DTW is applied. 

However, if the parameters of Trace 2 are changed so that the peak and troughs move to 

lower frequency range, i.e. the first trough from 0.0392 kHz to 0.024 kHz, the second 

tough from 0.0667 kHz to 0.0493 kHz, the first peak from 0.131 kHz to 0.0349 kHz, as 

shown in Figure 4(a)-(b), the matching result changes, as shown in Figure 4(c).  It can be 

seen that the second trough on Trace 2 is matched with the first trough of Trace 1. Thus it 

can be concluded that the locations of the features on the original traces to be processed 

have an influence on the matching result. This is understandable since that the DTW seeks 

the smallest accumulated path. Therefore, it should be noticed that when applying DTW 

technique, it is important to select the relevant frequency range to be processed. In order to 

verify this conclusion, a further study is carried out. The parameters of Trace 1 and Trace 2 

in Figure 4 remain the same, and the frequency range is extended from 0.1 Hz to 5 kHz. 

Because of the extension of frequency range, the features are comparatively closer located 

in terms of data points, and thus a more desired result is obtained, as shown in Figure 5. 

The influence of overall magnitude is investigated in Figure 6. The parameters of Trace 1 

and Trace 2 in Figure 3 remain unchanged, except that Trace 2 is shifted upwards for 

30dB. It can be seen that the peaks and troughs from the two traces are not aligned. 

Instead, part of the slope of Trace 1 is aligned with the peak and troughs of Trace 2. This is 

because that magnitude is also regarded as a feature of the original data. The measured 

frequency responses from different winding types do have different overall magnitudes. 

For example, the Single Helical winding type has the highest magnitude, roughly from 0 

Hz to 100 kHz.  Therefore, the magnitude of the FRA trace is also expected to play a role 

in the clustering process in combination of DTW technique.. 
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(a) Horizontal Axis using Frequency   

 
(b) Horizontal Axis using Data Point 

 
(c) Artificial traces processed by DTW 

 Figure 3 Artificial FRA Traces for Sensitivity Study on DTW Method 
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(a) Horizontal Axis using Frequency   

 
(b) Horizontal Axis using Data Point 

 
(c) Artificial traces processed by DTW 

 

 Figure 4 Influence of Feature Location on DTW Technique 1 
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(a) Horizontal Axis using Frequency   

 
(b) Horizontal Axis using Data Point 

 
(c) Artificial Traces Processed by DTW 

 

 Figure 5 Influence of Feature Location on DTW Technique 2 



 

 
222 

 

 
(a) Horizontal Axis using Frequency   

 
(b) Horizontal Axis using Data Point 

 
(c) Artificial Traces Processed by DTW 

 

 Figure 6 Influence of Magnitude on DTW Technique 



 

 
223 

 

b. Application on Measured FRA Trace   

 

In Figure 7, comparison of two frequency responses from Plain Disc winding, from 5 Hz to 

200 kHz, before and after DTW applied is illustrated. The horizontal axis is data point for 

both Figure 7(a) and Figure 7(b).  For the frequency region controlled by the core 

properties below 2 kHz, it can be seen that after application of DTW, the two troughs and 

one peak from both traces are shifted and scaled to match each other. For the frequency 

region 2 kHz to 20 kHz controlled by winding properties, the flatting area on the trace 7 

can be clearly seen, which is used to match the trough and two peaks of trace 9. For the 

most concerned frequency region 20 kHz to 200 kHz, the peaks and troughs are aligned to 

each other with several flatting areas on both traces, which may be hard to find visually 

due to their intensity. The quantity of data points increases from 1120 to 1802, and the 

distance between the two traces changes from 406 to 137 after DTW is applied. Therefore, 

DTW is able to enhance the similarity between two traces.  

Another example is shown in Figure 8 when DTW is applied on two frequency responses 

from two difference winding types, i.e. Plain Disc winding and Interleaved Disc Winding. 

For the two traces, the peaks and troughs from 5 Hz to 20 kHz are matched well with small 

amount of flatting data points, since their magnitude difference is small. However, the 

difference in the winding controlled frequency region, 20 kHz to 200 kHz, remains huge 

after DTW processing. The quantity of data points for both race rises from 1120 to 1565. 

The distance between the two traces is reduced from 383 to 233. Though the similarity 

between them is enhanced, there still exists a significant difference between the distance of 

frequency responses from same winding type (137) and the distance of frequency 

responses from difference winding type (233), after application of DTW.  
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(a) 

 
(b) 

Figure 7 DTW Applied on Two Windings of Same Type (Plain Disc Windings) 
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(a) 

 
(b) 

Figure 8 DTW Applied on Two Different Windings (Plain Disc and Interleaved Disc Windings) 

 

2. Clustering DTW processed Data 

 

The Euclidean Distance should be calculated after the traces being processed by DTW. In 

order to make the Euclidean Distance comparable, all the Euclidean Distance are divided 

by the number of data points of frequency response after processed by DTW, and then 

multiplied by the original data points 1120.  

When DTW is applied on every two of the 28 frequency responses in Chapter 6 to 

calculate their Euclidean Distance, a better clustering result than the former attempts can 

be produced as shown in Figure9. 
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Figure9 5 Hz to 200 kHz Clustering Dendrogram using Euclidean Distance Weighted Linkage 

The overall distance is reduced as compared with Figure 6 2, with the final distance 

between the last two clusters decreasing from about 900 to about 550. It can be seen that 

all traces are divided into three distinctive groups; one group contains all the 8 Single 

Helical windings and the others are separated into two groups, one with low capacitance 

(Plain Disc winding and Intershielded Disc winding) and the other with high capacitance 

(Multiple Layer winding and Interleaved Disc winding). 

3. Summary 

 

With DTW technique applied to pre-process the FRA data, the same FRA features at 

different frequencies can be scaled or shifted. This pre-processing technique significantly 

increases the chance to correctly group the same winding types. Three clustering groups 

can be identified as Single Helical winding, winding with low series capacitance (Plain 

Disc winding and Intershielded Disc winding) and windings with high series capacitance 

(Multiple Layer winding and Interleaved Disc winding).  
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