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• Existing greenness exposure metrics
are inadequate in estimating multiple
pathways.

• We developed novel metrics of
greenspace availability, accessibility,
and visibility.

• We generated composite greenspace
exposure combining three individual
metrics.

• We found inverse associations be-
tween composite greenspace and pre-
mature mortality.

• The positive impact of greenspace
exposure is more pronounced in de-
prived neighbourhoods.
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Background:Greenspace exposures are oftenmeasured using single exposuremetrics, which can lead to conflict-
ing results. Existingmethodologies are limited in their ability to estimate greenspace exposure comprehensively.
We demonstrate new methods for estimating single and combined greenspace exposure metrics, representing
multiple exposure types that combine impacts at various scales. We also investigate the association between
those greenspace exposure types and premature mortality.
Methods: We used geospatial data and spatial analytics to model and map greenspace availability, accessibility
and eye-level visibility exposure metrics. These were harmonised and standardised to create a novel composite
greenspace exposure index (CGEI). Using thesemetrics, we investigated associations between greenspace expo-
sures and years of potential life lost (YPLL) for 1673 neighbourhoods applying spatial autoregressivemodels.We
also investigated the variations in these associations in conjunction with levels of socioeconomic deprivation
based on the index of multiple deprivations.
Results: Our new CGEI metric provides the opportunity to estimate spatially explicit total greenspace exposure.
We found that a 1-unit increase in neighbourhood CGEI was associated with approximately a 10-year reduction
in YPLL. Meaning a 0.1 increment or 10% increase in the CGEI is associatedwith an approximately one year lower
premature mortality value. A single 1-unit increase in greenspace availability was associated with a YPLL reduc-
tion of 9.8 years, whereas greenness visibility related to a reduction of 6.14 years. We found no significant asso-
ciation between greenspace accessibility and YPLL. Our results further identified divergent trends in the relations
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eralised Linear Model; GM, Greater Manchester; IMD, Index of Multiple Deprivation; LSOA, Lower Super Output Area; LULC,
Problem; NDVI, Normalised Difference Vegetation Index; SARAR, Spatial Autoregressive With Autoregressive Error; UGCoP,
reenness Visibility Index; YPLL, Years Of Potential Life Lost.
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between greenspace exposure types (e.g. availability vs. accessibility) and levels of socioeconomic deprivation
(e.g. least vs. most).
Conclusion: Our methods and metrics provide a novel approach to the assessment of multiple greenspace expo-
sure types, and can be linked to the broader exposome framework. Our results showed that a higher composite
greenspace exposure is associated with lower premature mortality.

© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The connection between humanhealth and thenatural environment
is widely recognised (Frumkin et al., 2017; Díaz et al., 2018; Bratman
et al., 2019; Remme et al., 2021). Several recent reviews have demon-
strated that human interactions with nature, particularly exposure to
green and blue spaces (commonly referred to jointly as ‘greenspaces’)
provide multiple pathways enabling positive health benefits (Hartig
et al., 2014; Markevych et al., 2017). The importance of these pathways
is also recognised in the increasing emphasis on urban green infrastruc-
ture as a core part of spatial planning (Lindley et al., 2019; Dennis et al.,
2020). Existing literature indicates that exposure to greenspace reduces
health risk factors associated with all-cause mortality, adverse preg-
nancy outcomes, elevated blood pressure, type 2 diabetes, among
others via improved physical health (Kondo et al., 2018; Rojas-Rueda
et al., 2019; Jimenez et al., 2021). Studies have also reported positive ef-
fects related to greenspace exposure on mental health. Positive effects
on mental health include the reduction of anxiety levels and stress
levels aswell as alleviating depression, improving sleep, enhancing cog-
nitive development, and improving overall life satisfaction (Dadvand
et al., 2015; Fong et al., 2018; Kondo et al., 2018). Nonetheless, a few
studies have also found null, mixed, or adverse effects related to
greenspace exposure (Picavet et al., 2016; Dzhambov et al., 2020).
Noting this, some scholars have argued that the possible reasons for
these inconsistent findings might be attributed to differences in mea-
suring exposures in terms of both spatial and temporal variations as
well as in the context of specific health and medical conditions
(e.g., allergies) that may be negatively impacted by some types of
green space exposure (Markevych et al., 2017; Davis et al., 2021; Stas
et al., 2021).

The conceptualisation of greenspace exposure used to frame previ-
ous studies involving objective measurement can be broadly classified
into three categories; greenspace availability, accessibility, and visibility
(Dadvand andNieuwenhuijsen, 2019). These three categories represent
the most commonly used spatial measures of greenspace exposure
(Ekkel and de Vries, 2017; Labib et al., 2020b). Each of these three
greenspace exposure categories are linked to different, though often
overlapping, mechanistic pathways influencing health (Hartig et al.,
2014; James et al., 2015; Markevych et al., 2017; Bratman et al., 2019).
For example, availability of greenspace has been associated with the re-
duction of environmental stressors (e.g., air and noise pollution, heat
mitigation) (Frumkin et al., 2017; Lindley et al., 2019). Access to
greenspacesmay encourage physical activities and increase social cohe-
sion, linked to the capacity building pathway (Hartig et al., 2014;
Markevych et al., 2017; Nieuwenhuijsen et al., 2017). Visibility of
greenspace or ‘greenness’ visibility (Labib et al., 2021) may be associ-
ated with stress recovery and attention restoration (Ulrich, 1984;
Kaplan and Kaplan, 1989). Additionally, spatial measures of greenspace
exposure may act as proxies for the “cumulative opportunity” of expo-
sure to nature (Frumkin et al., 2017), the actual exposure will depend
on the usage and time spent in contact with greenspaces (Bratman
et al., 2019; Holland et al., 2021). It should be noted that, unlike some
other external environmental exposure types (Turner et al., 2017), the
precise impact and value of greenspace exposure influences are, as
yet, unclear. This is due at least in part to themultiplemechanistic path-
ways involved in health benefits, the heterogeneous exposure assess-
ment methods applied in existing studies, and the difficulty in
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accounting for actual exposure in terms of amount of time spent in na-
ture (Turner et al., 2017; Labib et al., 2020b; Holland et al., 2021).

Existing approaches to the objectivemeasurement of greenspace ex-
posure typically only consider one of these three types of exposure
(availability, accessibility, and visibility) and often associate them indi-
vidually with health indicators. Accordingly, the aggregate value of the
impact of greenspace on human health is not yet well understood
(Frumkin et al., 2017; Bratman et al., 2019; Labib et al., 2020b).
Understanding the influence of aggregate exposure is crucial because
many of the non-communicable disease and health indicators consid-
ered in relation to greenspace exposure can be attributed to the aggre-
gate effects of multiple exposure types (Frumkin et al., 2017; Silva
et al., 2018; Labib et al., 2020b). Additionally, individuals are exposed
to varying amounts and types of greenspace at different locations
(e.g., home, office, streets), and this variability may result in differing
health effects both on any given individual and from individual to indi-
vidual over time (Helbich, 2018). Such variations in exposure over dif-
ferent spatial and temporal extents also relates to the uncertain
geographic context problem (UGCoP) noted by (Kwan, 2012). For
greenspace exposure, the UGCoP indicates that there is spatial uncer-
tainty in the actual areas over which the greenspace exposure can im-
pact health outcomes along multiple pathways and contexts (Pearce,
2018; Labib et al., 2020a). The pre-existing methodologies applied to
greenspace exposure assessments are usually considered at a fixed spa-
tial scale. As a result, there are uncertainties in estimating the aggregate
effects of greenspace exposure at multiple locations related to varying
temporal and spatial scales (Kwan, 2012; Helbich, 2018; Labib et al.,
2020b). To better understand exposure duration, exposure sequences,
and exposure accumulation, measurement of aggregate greenspace ex-
posures at multiple scales therefore requires careful attention.

In this regard, newmethodological solutions are required that allow
the measurement of composite greenspace exposure based on hierar-
chical spatial scale values. Turner et al. (2017) indicated that conducting
assessments of greenspace exposures that represent the totality of all
such measurements in aggregate may have only moderate feasibility
for the study of larger populations. Turner et al. also noted that it
would be difficult to infer this exposure at the individual-level in such
populations. However, the rapid advancement in spatial science
disciplines (e.g., Geographical Information Science- GIS) and related
location-based technologies, such as remote sensing, Global Navigation
Satellite Systems, and environmental and personal sensors, in conjunc-
tion with increased computing capabilities for big data analysis could
help overcome at least some of the aforementioned challenges (Jia,
2019; Labib et al., 2020b).

Considering the above arguments, the primary aim of the present
study was to develop a new index that allows estimation of aggregate
greenspace exposures at hierarchal spatial scales by applying tools
and techniques related to GIS, satellite images, and other spatial data.
Wepresent a new composite greenspace exposure index (CGEI) that in-
tegrates three spatially explicit objective greenspace exposure types
(i.e., availability, accessibility, and visibility) for the provision of city-
or region-wide measurements of greenspace exposure at fine spatial
resolutions. We also investigate statistical associations between single
and composite greenspace exposure estimates at the neighbourhood
scale in relation to years of potential life lost (YPLL) as ameasure of pre-
mature mortality. Previous studies indicated that the availability of
greenspace reduced mortality and morbidity for diverse populations

http://creativecommons.org/licenses/by/4.0/
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(Coutts and Horner, 2016; James et al., 2016; Fong et al., 2018; Rojas-
Rueda et al., 2019), and that greenspace availability varies with the
level of social deprivation and inequality in any given neighbourhood
(Mitchell and Popham, 2008; Labib et al., 2020a). We therefore
hypothesise that greenspace exposure characteristics (and by extension
YPLL) for socially deprived neighbourhoods will differ depending on
whether composite or single greenspace exposure measurements are
used. We also expect that overall greenspace exposure in such
neighbourhoods will reduce YPLL in those neighbourhoods.

2. Methods and materials

2.1. Study settings

Weundertook this study in theGreaterManchester (GM) area of the
United Kingdom. Greater Manchester is a post-industrial city-region
with an area of 1276 km2 and an estimated population of 2.8 million
as of 2016 (Dennis et al., 2018). The city-region has a diverse landscape
pattern, including flat plain areas surrounded by hills (the Pennine
Chain) that rise to 500 m in the north and east. It has varying
greenspaces of different sizes and types such as urban parks, pastoral
areas, river corridors, and multiple areas of urban to rural transition
(Dennis et al., 2018; Labib et al., 2020a). In the context of greenspace ex-
posure, the differing characteristics in the area's natural environment
are of particular interest for understanding the variability and impor-
tance of different types of greenspace exposure. From the perspective
of both human health and socioeconomic inequalities, Greater
Manchester is also an important area of study in a UK context, because
neighbourhoods in the city-region have a range of social deprivation
characteristics, from the particularly affluent through to extremely de-
prived. These levels, in turn, are associated with both varied and ele-
vated levels of illness and disability (GMCA, 2019; Dennis et al., 2020).

2.2. Single greenspace exposure modelling

The composite greenspace exposure index we created in this study
represents a combined measurement of three single greenspace expo-
suremetrics (i.e., availability, accessibility, and visibility).We developed
each of these individual metrics as distinct measures of greenspace ex-
posure, with each following a different methodological approach using
multiple sources of spatial data, tools, and analytical frameworks. The
following sections summarise and discuss the methods applied in de-
veloping the single exposure metrics.

2.2.1. Greenspace availability exposure
We created a greenspace availability exposure index (GAVI) as a

multi-scale, multi-metric map combining three commonly used
greenspace metrics i.e., Normalised Difference Vegetation Index
(NDVI), Leaf Area Index (LAI), and Land Use-Land Cover (LULC) at five
spatial scales (i.e., 100, 200, 300, 400, and 500 m spatial resolutions -
which can be thought of as equivalent to differing buffer distances
commonly used to estimate exposure) following the methodology de-
scribed in Labib et al. (2020a). These thresholds were carefully selected
considering the spatial scale and resolution of the input data, and are
thus less vulnerable to scaling effects (Labib et al., 2020a). We consid-
ered these three metrics to account for different characteristics of
greenspace representing photosynthetically active vegetation. NDVI
characterises greenspace density, LAI measures greenspace volume,
and LULC accounts for the overall presence or absence of greenspace
(James et al., 2015; Engemann et al., 2019). NDVI and LAI were obtained
from 10 m resolution Sentinel-2 satellite images (collected on 4th July
2018, with cloud cover <2%). Sentinel-2 satellite images were selected
due to their higher overall accuracy in identifying vegetation compared
to moderate resolution Landsat images (Markevych et al., 2017; Labib
and Harris, 2018). The LULC greenspace data were obtained from
Dennis et al. (2018) . Dennis et al. (2018) combined a supervised
3

classification of Sentinel 2A data from the Copernicus Scientific Data
Hub with a range of supplementary data on land cover and land use,
including from the Ordnance Survey Greenspace Layer. The LULC
data included five land cover types (i.e., urban, water, tree canopy,
forbs-shrubs, and grass), with a spatial resolution of 10 m.

For each greenspace metric, we calculated mean values in each grid
cell of themap atfive spatial scales (i.e., resolution) and combined these
five scale maps using a weighted average method to produce multi-
scale greenspace availability maps based upon NDVI, LAI and LULC
(Fig. S1, Supplementary document). The multi-scale weighting, based
upon lacunarity analysis, accounts for scale sensitivity effects observed
at varying buffer distances, a detailed description of which is available
in Labib et al. (2020a). Finally, we took the mean of the three maps to
produce our multi-metric, multi-scale availability index using Eq. (1).

GAVIj ¼
GSNDVIj þ GSLAIj þ GSLULCj
� �

T
ð1Þ

In Eq. (1), GAVIj is the greenspace availability index value for cell j,
and GSNDVIj, GSLAIj, and GSLULCj are multi-scale greenspace metric ‘expo-
sure’ values for corresponding cell j. T is the number of metrics (in our
case, T = 3). In this case, GAVI values ranged between 0 and 1, where
1 indicated the highest availability of greenspace, and 0 denoted the
lowest level of, or no available, greenspace. It should be noted that we
removed negative NDVI values from our computation, as these values
represented bodies of water or other non-green features. We then set
the negative NDVI values to zero. LAI values were normalised using
minimum-maximum normalisation to obtain values consistent with
other metrics. Details of LAI transformation and calculation can be
found in Labib et al. (2020a). For this research, we re-sampled the
GAVI map to 5 m resolution using nearest neighbour technique in
ArcGIS Pro (v 2.4) to achieve consistency with other exposure layers.

2.2.2. Greenspace accessibility exposure
We computed the greenspace accessibility exposure index following

a four-step method. First, we selected publicly accessible greenspaces
within the study area. Second, we identified the access points for
these greenspaces. Third, we ran a network analysis to measure and
map the shortest network distance from the access points to any loca-
tion within the study area. Fourth, we normalised the access distance
to produce an accessibility raster map for the study area. The details of
these steps follow.

2.2.2.1. Step 1: selecting accessible greenspaces. To determine accessible
greenspaces, we used two GIS datasets; UK Ordnance Survey (OS)
Open Greenspace (scale: 1:2500), and the OS Master Map Accessible
Natural Greenspace layer (scale: 1:2500). We selected greenspaces
that were publicly accessible to any users within or surrounding the
GM area (up to 10 km). This distance was selected following Natural
England's ‘Accessible Natural Greenspace Standards’ (ANGSt) model,
which details standard access distances for varying greenspaces sizes
in the UK see Comber et al. (2008).We considered the greenspaces out-
side the boundary of the study area to account for edge effects, whereby
people living by the boundary may have access to nearby greenspaces
that are just outside of, or on, the boundary. Our selection included pub-
lic parks and open gardens, national parks, country parks, local nature
reserves, and Countryside and Rights of Way Act (CRoW) accessible
greenspaces. A detailed description of the greenspaces is listed in
Table S1, Supplementary document. We selected these greenspace types
based on previous studies evaluating greenspace accessibility in the
UK (i.e., including spaces which are generally open to the public;
(Pauleit et al., 2003; Comber et al., 2008). The size of our selected
greenspaces ranged between 0.04 ha (400 m2) to more than 500 ha
(5 km2), in order to ensure that we accounted for many forms of
greenspace, from small ‘pocket parks’ through to large country parks.
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2.2.2.2. Step 2: Access point identification. In urban areas like GM,
greenspaces are usually entered through specific access points
(Comber et al., 2008). To account for this,we identified the access points
for greenspaces using two approaches. Firstly, using the OS Open
Greenspace access points layer, we selected the access points that inter-
sect the boundary of the greenspaces. However, this data layer did not
contain access points for many natural greenspaces (e.g., country
parks). To identify themissing access points, we performed a geometric
intersection between the greenspace polygon layer (Step 1) and a road
and path network layer (OS MasterMap ITN Layer Urban Paths, Scale 1:
1250) using ArcGIS Pro (v2. 4). This intersection operation identified the
points where streets and paths intersected the greenspace boundaries
and, thus, could be access points. The two datasets were combined for
use in this analysis.

2.2.2.3. Step 3: Network distance analysis. To determine the accessibility
of a greenspace from a given location, we calculated the network dis-
tance, as this recognises that individuals generally need to follow desig-
nated road or path networks in order to reach greenspaces in urban
areas (Labib et al., 2020b). This was achieved by undertaking a ‘service
area’ analysis in QGIS (v 3.14) using the QNEAT3 toolbox to measure
and map the network distance from greenspace access points to all
other locations within the study area, using the QNEAT3 Isochrone
Area (Iso-Area) algorithm. In Iso-Area, the starting points were repre-
sented by greenspace access points (identified in Step 2). Using the
road and path network layer (OS ITN Layer Urban Paths; details:
https://bit.ly/31GaYlu) the Iso-Area algorithm produced a network dis-
tance surface (raster) from the access points by applying the TIN-
interpolation method (toolbox details: https://root676.github.io/
IsoAreaAlgs.html) to a maximum distance of 10 km based on the
upper limit in the ANGSt model (Pauleit et al., 2003; Comber et al.,
2008). The output raster layer mapped the network distances at a spa-
tial resolution of 10m for computational efficiency.Wemasked the ras-
ter layer to exclude the extra cells generated outside the Greater
Manchester boundary and re-sampled to 5m resolution to achieve con-
sistency with other layers and datasets.

2.2.2.4. Step 4: accessibility index calculation.Utilising the raster grid layer
produced in Step 3 (Fig. S2, Supplementary document), we computed the
greenspace accessibility index for each raster grid cell within the study
area using Eq. (2).

GACIj ¼
NDmax−NDj
� �

NDmax
ð2Þ

In Eq. (2), GACIj is the greenspace accessibility index expressed as a
continuous value for cell j, ranging between 0 and 1, where 0 indicates
the lowest accessibility and 1 indicates the highest. NDmax is the maxi-
mum network distance from the nearest access point within the entire
study area (in our case themaximumdistancewas 5932.7m);NDj is the
network distance of a cell from the nearest greenspace access points.

2.2.3. Greenness visibility exposure
We measured and mapped eye-level greenness visibility exposure

for an observer located at ground level by applying viewshed analysis
using new software we developed as part of our analysis (available at:
https://github.com/jonnyhuck/green-visibility-index). We combined a
binary greenness layer produced using LULC data from Dennis et al.
(2018) with LiDAR based digital surface and digital terrain model data
(Environmental Agency, 2016) to perform viewshed analysis at a
800 m viewing distance at 5 m intervals for >86 million observer loca-
tions covering the whole study area. We used a line of sight (LOS) algo-
rithm, in conjunction with an empirical distance decay model, in order
to calculate a distance-weighted ratio of visible greenness to visible
area from each given observation point. The details of the decay
model and LOS algorithm are reported in Labib et al. (2021). Based on
4

the LOS and decay weight values, we used Eq. (3) to compute the
viewshed greenness visibility index for the study area. The details of
the data, algorithms, steps, and modelling process can be found in
Labib et al. (2021).

VGVIj ¼
∑
n

1
Gi � di

∑
n

1
Gi � di

� �
þ ∑

n

1
Vi � di

� � ð3Þ

where, VGVIj is the ‘viewshed greenness visibility index’ value for the
observer cell j; Gi is the visible green cell, Vi is the visible non-green cell,
and di is distance decay weight corresponding to visible cell i. The esti-
matedVGVI values rangedbetween 0 and 1,where 0=novisible green,
and 1 = all visible green (Labib et al., 2021).

2.3. Composite greenspace exposure index (CGEI)

We combined the three single exposure indices into a composite
index value for greenspace exposure. The resulting composite
greenspace exposure index is produced by calculating the mean of the
GAVI, GACI, and VGVI datasets. We used Eq. (4) to produce the CGEI
map.

CGEIj ¼
GAVIj �wGAVI þ GACIj �wGACI þ VGVIj �wVGVI
� �

wGAVI þwGACI þwVGVIð Þ ð4Þ

In Eq. (4), CGEIj is the composite greenspace exposure index value
for cell j; GAVIj, GACIj, and VGVIj represent the respective availability, ac-
cessibility, and visibility index values for cell j obtained from single ex-
posure maps; w represents the weighting value for each metric. The
resulting operation produced the composite greenspace exposure
index map at 5 m spatial resolution for the study area. Note that in
this study we have used an equal weighting (w = 1) for each of the
three single exposure metrics. Equal weighting was used in this case
as currently there is no empirical evidence supporting alternative
weightings for these single greenspace metrics in relation to their po-
tential effects on prematuremortality. However, theCGEI can also be es-
timated using differing weights for each individual metric. To illustrate
the CGEI estimation process using different weightings for individual
metrics we experimented with several hypothetical weight values see
Supplementary note-1 for further details.

2.4. Assessment of CGEI and single exposure indices

The potential implications of the composite greenspace exposure
metric reported in the present study were evaluated in two ways.
Firstly, we investigated how the composite greenspace exposure mea-
surement and its individual components each related to neighbourhood
socioeconomic deprivation. Secondly, we compared each of the metrics
to neighbourhood YPLL. We used English Lower Super Output Area
(LSOA) Census units due to the availability of population-level socioeco-
nomic deprivation and YPLL data, as well as several confounding vari-
ables. LSOAs contain a mean population of around 1500 and range
from 1000 to 3000 and are widely used to represent neighbourhood
units in national analyses (Mitchell and Popham, 2008; Daras et al.,
2019). In our analysis, we examined 1673 LSOAswith a total population
of 2,682,528 and a mean population of 1603 (standard deviation 394).

2.4.1. Exposure variations at different deprivation levels
We obtained socioeconomic and health data from the English

Indices of Multiple Deprivation (IMD) 2015 (DCLG, 2015). The IMD
dataset includes social deprivation scores for the LSOAs across seven
sub-domains (i.e., income, health, employment, crime, education, living
environment, and barriers to housing and services). In this study, we
used IMD deciles to investigate variations of greenspace exposure in

https://bit.ly/31GaYlu
https://root676.github.io/IsoAreaAlgs.html
https://root676.github.io/IsoAreaAlgs.html
https://github.com/jonnyhuck/green-visibility-index
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LSOAs with differing deprivation levels. An IMD decile value of 1 indi-
cated the highest level of deprivation and 10 indicated the lowest
level of deprivation. We used a box plot to explore the differences in
greenspace exposures visually and then conducted an ANOVA with
post hoc Tukey Honestly Significant Difference analysis to identify
whether the differences in exposure values among the IMD deciles
were statistically significant or not.

2.4.2. Associations of greenspace exposures with YPLL
The years of potential life lost outcome variable was extracted from

the IMD 2015 health and disability sub-domain. YPLLmeasures ‘prema-
ture death,’ defined as death before the age of 75 fromany cause, includ-
ing death due to disease or other external causes. This indicator was
estimated based on mortality data for the period 2008 to 2012 as the
numerator, and the denominator was the 2008–2012 population esti-
mate. The details of YPLL estimation can be found in the IMD technical
report (DCLG, 2015). YPLL is age and sex standardised, therefore it is
not vulnerable to biases such as disproportionate representation by a
certain demographic section, or double counting (DCLG, 2015; Dennis
et al., 2020). Additionally, it is also weighted by the age of the individual
who has died, reflecting the higher impact of an unexpected death of a
younger person, than an older one. It should be noted that YPLL is a
population-level inference of premature mortality, which has been ag-
gregated to the neighbourhood level (LSOA) for the purposes of this
analysis. The associations that we observe are therefore at the
population-level and the effects are not transferable to individuals or
to different spatial scales of analysis.

Pearson correlation coefficients (r)were calculated to assess correla-
tions among greenspace exposure metrics, YPLL, and neighbourhood
socioeconomic variables. Additionally, a hierarchical cluster-based
‘heat map’ visualisation was produced based on the correlation coeffi-
cients to identify clustering among correlated variables (method details
in Zhang et al., 2017). Most previous studies have used non-spatial
models to explain the associations between exposure and health out-
comes (Mitchell and Popham, 2008; Dadvand et al., 2015; Dennis
et al., 2020). In this study, we have applied both non-spatial and spatial
models to investigate the associations between greenspace exposures
and YPLL based on frequentist statistical inferences. Results from non-
spatial regression models indicating associations between greenspace
exposures and YPLL are presented in Note-2, Supplementary document.
In our non-spatial models, we applied the generalised linear model
(GLM) with a gamma distribution and an identity link function to ac-
count for positive values of YPLL that could skew distributions. We
have also performed multiple linear regressions to aid comparison be-
tween the non-spatial and spatial models. While the GLM allows non-
normal error distribution of the residuals, the residualsmayhave spatial
autocorrelation, which might violate the assumption of independence
of error distribution. We therefore computed Moran's I statistic
(Moran, 1950) for the model residuals in order to identify the presence
of spatial autocorrelation in non-spatial models. All the non-spatial
models indicated significant spatial autocorrelation in the regression re-
siduals (Note-2, Supplementary document), thus demonstrating spatial
dependency and violating the model assumption of independence of
observations and inflating the model parameter estimates. As a result,
these results are not reported here.

We fitted spatially explicit models to account for potential spatial
autocorrelations and spatial dependencies among the variables in the
models. As such, we used a ‘spatial autoregressive with autoregressive
error’ (SARAR) model, which accounts for spatial dependence in both
independent and dependent variables (Kelejian and Prucha, 2010;
Bivand et al., 2013). As both our dependent and independent variables
were spatially explicit, SARAR provides a better fit for the model than
other spatial regression models such as spatial lag and spatial error
models. The details of SARAR modelling can be found in Note-3,
Supplementary document and Kelejian and Prucha (2010). In ourmodel-
ling we used a first order queen contiguity spatial weight matrix, this
5

decision was informed by a previous study see Anselin and Rey
(2014) and our experimental observations of model fit.

We formulated several regression models sequentially for both the
spatial approaches, in order to explore the associations between YPLL
and greenspace exposure for all of the LSOAs (all population model).
In this regard we considered unadjusted and adjusted models. Model
1 is un-adjusted where each greenspace exposure metric was entered
in separate models; Model 2 was adjusted for confounders. Model 2 in-
cluded variables from Model 1 and the confounders. The selection of
confounders was informed by a previous systematic review of the rele-
vant literature (Labib et al., 2020b) and reference to several original
studies (Richardson and Mitchell, 2010; Wheeler et al., 2015; Dennis
et al., 2020). In the fully adjusted models, we included income scores,
crime deprivation scores, barriers to housing-service scores, distance
to nearest general medical practice (GPs), the Shannon diversity score,
and annual average PM10 concentration as confounders. Income,
crime, and barriers to housing and service scores acted as proxy indica-
tors for income levels, crime rates, physical and financial accessibility of
housing and local services together. Distance to GP represents access to
health services (Ensor and Cooper, 2004; Daras et al., 2019). The
Shannon diversity score indicated the overall land cover mix within
the study area as a proxy for vegetation quality (Dennis et al., 2020).
Finally, the PM10 concentration indicated one element of the ambient
air quality of these neighbourhoods since there may be an additional
health burden from air qualitywhich is not accounted for by greenspace
benefits (Medina et al., 2004; Jeanjean et al., 2016; Khomenko et al.,
2021). We also tested sensitivity to other confounders such as employ-
ment and the education deprivation score, both of these demonstrated
high multicollinearity with income deprivation while not improving
the models, and so were not included. We assessed each model's ex-
planatory power (pseudo R2), Akaike Information Criterion (AIC), and
likelihood ratio test (LR) in evaluating the model's goodness of fit,
prior to determining the optimum selection of confounders and most
robust models.

In addition to population analysis for all the neighbourhoods
(LSOAs) in the study area, we explored whether the association be-
tween aggregate greenspace exposure and YPLL varied by sub-groups
at different levels of deprivation. We used the IMD score to classify
each LSOA, and hence its population, into multiple deprivation quintile
groups (Table S2, Supplementary document). For each group, we applied
the samemodelling structure and adjusted for the same confounders as
previously described for the pooled analysis. Statistical significance
was set at p < 0.05, and the v.3.6 R (R Team, others and R Core
Team, 2013) statistical package was used for all statistical analyses.
The code and results can be found in GitHub (https://github.com/
labiblm/CompositeGreenspaceExposure).

3. Results

3.1. Greenspace exposure distribution and variations

The greenspace exposure index (single and composite) maps are
presented in Fig. 1. It is clear from Fig. 1 that greenspace availability
(Fig. 1A) and visibility (Fig. 1C) have a similar broad spatial pattern:
exhibiting high exposure values at the rural periphery of the study
area and along riparian corridors; and low exposure values in the
urban cores. However, while the broad patterns are similar, the detailed
patterns differ considerably due to the presence of buildings or other
obstructing features that affect greenspace visibility. Fig. 1 also illus-
trates that the accessibility index (Fig. 1B) exhibits a rather different
spatial pattern to the other two measures. We found relatively higher
accessibility exposure values in and arounddense urban cores, likely be-
cause these areas typically have many small to medium-size public
parks and gardens (e.g., sized 2–20 ha), and good transport links.
However, these urban parks and gardens did not result in higher avail-
ability or visibility exposure values due to their fragmented pattern and

https://github.com/labiblm/CompositeGreenspaceExposure
https://github.com/labiblm/CompositeGreenspaceExposure


Fig. 1.Maps showing the single and composite greenspace exposure metrics (A) availability, (B) accessibility, and (C) visibility. (D) is the composite greenspace exposure map calculated
by averaging three single exposuremaps listed in (A–C). The conceptual representation of each type of exposure showed differences inmeasuring andmodelling single exposure type and
the composite is a summary of all three exposures together.
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low connectivity. Fig. 1, therefore, demonstrates thedifferences in expo-
sure values depending on how exposure is conceptualised and mea-
sured. Fig. 1(D) illustrates the composite greenspace exposure index
map. This map is a combined output of the three single indices, and
each cell of this map indicates themean exposure value of the three ex-
posure surfaces as our measure of aggregate greenspace exposure.

The relationship between the three input indices and the resulting
composite index is also illustrated for a terraced house located near to
a park (Fig. 2). Due to the close proximity of the park (only a few streets
away), the house has a very high accessibility exposure value (0.957).
Conversely it has a much lower visibility value (0.065) as the park can-
not be seen due to the local terrain and intervening buildings. Finally,
the house has a relatively low value for greenspace availability (0.225)
because of the densely built-up nature of the surrounding area. The
composite greenspace exposure index value (CGEI = 0.416) provides
an aggregate overall moderate score for greenspace exposure for this
particular house. Therefore, the composite greenspace exposure metric
represents a comprehensive measurement that accounts for all three
objective exposure types together.

3.2. Deprivation and greenspace exposures

The analysis of different greenspace exposure metrics and social
deprivation deciles at the neighbourhood (LSOA) scale indicates varia-
tions in how greenspace exposures co-vary with social deprivation
(Fig. 3). Fig. 3 illustrates that the least deprived areas have greater
greenspace exposure compared to the most deprived areas in the do-
mains of greenspace availability, visibility, and composite greenspace
exposures. In the case of accessibility, however, we observed higher ex-
posure values for more deprived areas, although with a smaller level of
variation across the IMD deciles (summary descriptive statistics Table S3,
Supplementary document). This result illustrates accessibility exposure
6

in our case study area has a different spatial distribution than availabil-
ity and visibility based on existing greenspaces, parks and gardens. In
the case of Greater Manchester, the most deprived neighbourhoods
often have public parks and gardens in close proximity, but these
neighbourhoods have low greenspace visibility and availability expo-
sure because they are more densely built-up areas with low provision
of private gardens and streets with low levels of canopy coverage.
Conversely, the least deprived neighbourhoods usually exhibit lower
building density, greater provision of private gardens, and streets with
greater levels of canopy coverage, but with less provision of public
parks and gardens in proximity. These results demonstrate that appar-
ent inter-group variations in individual greenspace exposure measures
can bemisleading, and therefore illustrate the benefit of this composite
measure.

The ANOVA analysis demonstrates that the differences in greenspace
exposures among different deprivation deciles are statistically significant
for all greenspace exposures (Table S4, Supplementary document). The
post-hoc analysis identifies an interesting pattern in which differences
are usually only significant in the case of the difference between the
most and least deprived deciles. However, among similar deprivation
deciles (e.g., 1–3 or 7–9) the differences in greenspace exposures are
not statistically significant (Table S4, Supplementary document). This result
implies that neighbourhoods that share similar deprivation levels usually
demonstrate similar characteristics in terms of greenspace exposure.

3.3. Associations among greenspace exposure types and YPLL

Correlation analyses showed that there were very strong positive
correlations among composite, availability and visibility metrics for
theGreaterManchester neighbourhoods. By contrast, greenspace acces-
sibility only had a small correlation with the composite metric, and a
weak negative correlation with the availability and visibility exposure



Fig. 3. Greenspace exposure indices compared to different IMD deciles. Dots indicate outliers in the measurements of greenspace exposures.

Fig. 2. Differences in greenspace exposure values for an example residence. GAVI shows availability exposure value, GACI shows accessibility exposure value, VGVI presents visibility
exposure and CGEI shows the composite greenspace exposure value for the example residence.
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metrics (Fig. 4A). The ‘heat map’ also illustrates a similar pattern, as
availability, visibility and the composite metric are clustered in the
same group, indicating high similarity among these metrics; whereas
the accessibility metric was not included in this cluster with the other
greenspace metrics (Fig. 4B). Such divergent patterns of greenspace ac-
cessibility measure were also observed in the spatial distribution
greenspace exposure maps shown in Fig. 1.

The correlation analyses and the correlation ‘heat maps’ further indi-
cated that the availability, visibility, and composite greenspace exposure
measures have moderate to weak negative correlations with YPLL and
are in contrasting cluster groups with it as well (Fig. 4B). Additionally,
these metrics have negative correlations with deprivation scores and
the air quality variable, but they have positive correlationswith distance
to GP (Fig. 4A). In contrast, the accessibility greenspace exposure metric
has a positive correlation with YPLL, deprivation score, and air quality
variables, all of which are clustered in the same group (Fig. 4B).
Fig. 4. (A) Correlations among greenspace exposure types, neighbourhood premature
mortality (YPLL), socioeconomic variables, and the physical environment (i.e., land use
mix, and air quality). Green boxes indicate positive correlation coefficients and brown
boxes indicate negative correlation coefficients. Unshaded boxes indicate no significant
correlations, shaded boxes indicate significance at p < 0.05. (B) correlation coefficient
‘heat map’ with clusters of variables. Blue boxes indicate similarity between clusters and
observations, red boxes indicate dissimilarity of observations and dendrogram lines illus-
trate the hierarchical clusters among variables. (For interpretation of the references to col-
our in this figure legend, the reader is referred to the web version of this article.)
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Regression analysis results are presented in Fig. 5 and Table 1.
Similar to the correlation results, Fig. 5(A) indicates significant inverse
associations of availability, visibility, and composite greenspace expo-
sure with YPLL both for unadjusted and adjusted models. These associ-
ations are generally attenuated to some extent in the adjusted models.
The results indicate increasing availability, visibility, and composite
greenspace exposures were associated with lower YPLL values at the
population level analysis. By contrast, for greenspace accessibility expo-
sure, we found increasing accessibility was associated with higher YPLL
values. In the unadjusted model, the effect is significant, but following
the adjustment, the effect attenuates and becomes insignificant
(Table 1). This result implies that, at the population level, accessibil-
ity exposures do not significantly relate to YPLL in the case study
area. Overall, these findings meant that the association between
greenspace exposure and YPLL, or premature mortality, differed
across different types of greenspace exposure metrics. Therefore,
measuring exposure using a single metric might not present a com-
plete picture of the influence of greenspace exposure on health
(e.g., premature mortality).

The adjusted CGEI exposure model indicates that a single unit
increase (from CGEI 0 to 1, or 100%) in composite greenspace exposure
is associated with a reduction of approximately ten years in the YPLL
value. Thus, a 0.1 increment or 10% increase in the composite
greenspace exposure value is associated with an approximately one
year lower premature mortality value. It should be noted that both
availability and the composite exposure models have nearly identical
effect size and R2 values (~ 0.702, Table 1), meaning that they both ex-
plain similar levels of variability in YPLL after controlling for con-
founders. This is partly a result of similarities between the availability
and visibilitymetrics caused by the fact that ‘visible’ greenspace (amea-
sure of line of sight) is also likely to be ‘available’, though the inverse is
not necessarily true. The result of this is that the effect of the availability
and visibility surfaces upon the composite are quite similar, meaning
that (in the case of equal weighting of the three inputs in Eq. (4) the
composite surface resembles both of them quite closely (Fig. 4A). In ad-
dition, the exposure metrics and health indicator were aggregated at
neighbourhood scale. The aggregated information may have reduced
variance, which in turn affected the explanatory power of the models.
Based on these results, we therefore cannot fully confirm which metric
is the better predictor of neighbourhood level YPLL for our study area.
However, despite having very similar R2 values, the composite metric
when compared with all the individual exposure metrics (Fig. 5A), has
a slightly greater effect size (Table 1). In addition, conceptually the
CGEImeasures holistic greenspace exposure. Considering the preceding
we used the CGEI metric for subgroup analysis in the case of each socio-
economic deprivation group.

Fig. 5B shows variations in the effects of composite greenspace
exposure on YPLL for people living in areas with different socioeco-
nomic deprivation levels. Increasing greenspace exposure is signifi-
cantly inversely correlated with premature mortality among people
living in areas of greater deprivation (groups 3–4) compared to
those in the least deprived areas (groups 1–2). It should be noted
that there is no significant composite greenspace exposure effect
on YPLL for people living in areas of relatively low or no deprivation
(groups 2, 1). Additionally, for people living in the least deprived
areas (group 1), the effect of composite greenspace exposure on
YPLL is the opposite of the hypothesised direction, implying that in
the least deprived areas, increased greenspace may be associated
with increased YPLL, though this effect is not statistically significant.
For group 5 greenspace exposure is not significant in the adjusted
model. It is possible that in the most deprived areas, the higher pre-
mature mortality rate may be attributed to other reasons that we did
not consider in the models (e.g., unhealthy food habits, race/ethnic-
ity) (Cecchini et al., 2010). Nevertheless, overall we have observed a
deprivation-related gradient in the effect of greenspace exposure on
premature mortality.



Fig. 5. The YPLL parameter estimates greenspace exposure relations for all neighbourhoods with a 95% confidence interval (A), and neighbourhoods stratified by different socioeconomic
deprivation groups (B). The positive parameter estimate values indicate higher numbers of years of potential life lost, and negative values indicate lower numbers of years of potential life
lost at the population and sub-group levels. (Detailed model outputs can be found in Note-3, Supplementary document).
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4. Discussion

4.1. Multiple spatially explicit measures of greenspace exposures

To our knowledge, this is the first study that estimates greenspace
exposure comprehensively by combining multiple spatially explicit
greenspace exposure measures into a composite metric. Previously
Rugel et al. (2017) developed a composite natural space index at a
fixed spatial scale (i.e., postcode) combining multiple measures of
greenness. The methodological approach that we have developed in
this study has improved upon this fixed scale approach by standardising
and harmonising different greenspace exposure measures in order to
Table 1
Greenspace exposure and YPLL relationships using spatial regression models. The ‘Effect Estim
exposure.

Greenspace exposure Model adjustment Model outcom

Effect estimate

Availability Unadjusted −13.03⁎⁎⁎

Adjusteda −9.8⁎⁎⁎

Accessibility Unadjusted 5.95⁎⁎⁎

Adjusted 4.02
Visibility Unadjusted −6.80⁎⁎⁎

Adjusted −6.06⁎⁎⁎

Composite Unadjusted −12.46⁎⁎⁎

Adjusted −9.95⁎⁎⁎

CI: Confidence interval. R2 is Nagelkerke pseudo-R-square. (Detailed model outputs can be fou
⁎⁎⁎ Indicate statistical significance at p < 0.05.

a Model adjusted for: Income score, Crime score, Barriers to housing score, Shannon diversi
(PM10).

9

produce a composite metric that estimates aggregate greenspace expo-
sure at hierarchical spatial scales and fine spatial resolutions.We named
this the composite greenspace exposure index (CGEI). We argue that
the greenspace exposure modelling and mapping methods we devel-
oped in this study offer the opportunity to provide comprehensive
estimates at the population level and provide the basis to infer
individual-level aggregate greenspace exposures at meaningful tempo-
ral and spatial scales.

CGEI differs from traditional single exposure metrics in that it can
capture objective greenspace exposure holistically and combine multi-
ple inter-twined greenspace exposure types. Such a holistic exposure
measure allows for a better understanding of the overall impact of
ate’ values are the numbers of years of potential life lost associated with unit greenspace

es R2

95% CI (low; up) p

−16.59; −9.48 6.661E-13 0.577
−15.90; −3.06 0.0037 0.702
2.47; 9.44 0.0008 0.565
−3.94; 11.98 0.3228 0.70
−8.8; −4.80 2.64E-11 0.576
−10.36; −1.75 0.0057 0.702
−16.35; −8.56 3.621E-10 0.573
−17.89; −2.00 0.014 0.702

nd in Note-3, Supplementary document).

ty score, Distance to nearest general medical practice, and annual average air pollution
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greenspace exposure upon health outcomes such as mortality, morbid-
ity, and non-communicable diseases that may be linked with multiple
greenspace exposures. However, it should be noted that the composite
is an aggregated expression of the single greenspace indices. Although it
provides generalised exposure information it obviously cannot deter-
mine the specific cause-effect relations of each exposure type to specific
health outcomes. For example, visibility may be more important in un-
derstanding the impact on a specific mental health outcome such as
stress recovery, (Ulrich, 1984; Kaplan, 1995), than total greenspace
exposure as represented in the composite measure. We therefore
argue that the use of the CGEI does not diminish the importance of
the use of individual exposure maps, as they provide the opportunity
to understand specific types of exposure and, hence, which pathways
correspond to which health indicators. As a result, these metrics are
complementary to one another when evaluating the health impact of
greenspace.

Greenspace exposuremaps (both composite and singlemetrics) can
be used to assess greenspace exposures for places where people live
(e.g., home), work (e.g., office), or go about their daily activities
(e.g., school, shops) (Fig. 6). In addition to these fixed locations, the re-
sults allow the estimation of individual exposure profiles by taking ac-
count of people's everyday movement (e.g., using GPS tracks) and the
amount of time they spend in different locations (details in Note-4,
Supplementary document). In Fig. 6, we provide the example of a hypo-
thetical household of three people (two adults, one child) with a CGEI
value of 0.60 for the home. However, each household member spends
differing amounts of time in various locations, and each member has
different travel routes. The child travels to school (CGEI 0.42) along
streets exhibitingmoderate levels of green cover. The child has an over-
all CGEI of 0.55 based on time spent at home, school, and during periods
of movement. Similarly, the first adult (adult1) travels to the office
(office-1) (CGEI 0.34), taking a route that exhibits relatively low
greenspace exposures for an overall CGEI of 0.501. Finally, the second
adult (adult2) travels to a different office (office-2) (CGEI 0.31) along
a routewith lowgreenspace exposure, providing anoverall CGEI of 0.48.
Fig. 6. A schematic illustration of space-time mobility-based greenspace exposures for three in
depending on the characteristics of their daily movement patterns.
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In the illustrative example (Fig. 6), we demonstrate how themapped
outputs could be readily used to generate aggregate greenspace expo-
sure estimates for individuals in households with different exposure
profiles. In turn these individualised exposure profiles could be linked
with individualised health data. While the composite provides an esti-
mation of aggregate greenspace exposures, the single exposure maps
can nevertheless provide crucial insights into the different types of
greenspace exposure that an individualmay experience at different spa-
tiotemporal scales. This type of space-time exposure profiling has been
utilised in other exposure studies relying on activity-based exposure
measurements (Briggs, 2005; Zhang et al., 2018), butmultiple exposure
pathways have not been considered. Our new approach reduces
existing methodological challenges in objective greenspace exposure
assessments that rely on single exposure metrics, including measure-
ment of exposure at fixed spatial scales, the uncertain geographic con-
text problem, and issues with heterogeneous methods of exposure
assessments across studies (Kwan, 2012; Turner et al., 2017; Helbich,
2018; Labib et al., 2020b).

4.2. Impact of greenspace exposure types on premature mortality and
deprivation

We tested the effects of greenspace exposure in relation to
neighbourhood-level socioeconomic deprivation in its relation to
years of potential life lost (YPLL), a measure of premature mortality.
We found that areas with higher availability and visibility exposures
are usually the least deprived, and the most deprived areas have com-
paratively low greenspace exposures according to the same metrics.
When we considered accessibility exposure. The results demonstrated
the opposite trend, indicating that themost deprived areas have greater
accessibility to public greenspaces (Dennis et al., 2020), than the least
deprived due to the frequent proximity of small or medium size
(e.g., 2–20 ha) public greenspaces. We speculate that such patterns
could be attributed to the nature of the development of post-
industrial towns in England, where parks were historically built by
dividuals living in the same household, and the varying exposure profiles each experience
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mill owners among dense terraced housing in order to support the fac-
tory workers, following the Open Spaces Act of 1877 and Public Health
Act 1875 (Clark, 1973; Jordan, 1994). In such towns and cities, such
dense terraced housing areas typically present with higher deprivation
values. Our accessibility result is therefore consistent with previous
work suggesting that greenspace accessibility is greater in areas of
greater socioeconomic deprivation in the UK (Barbosa et al., 2007;
Jones et al., 2009).

When comparing the mean composite greenspace exposure values
for neighbourhoods at differing socioeconomic levels, we observed a
deprivation-related gradient in greenspace exposure, in which the
least deprived areas exhibited higher composite greenspace exposures
than themost deprived areas. These results alignwith previous research
showing that greener neighbourhoods are also less deprived communi-
ties (Mitchell and Popham, 2008; Rigolon et al., 2021). However, we
show that the composite measure presented here can estimate and dif-
ferentiate greenspace exposures to a greater extent than the individual
single exposure metrics which are typically used to evaluate the rela-
tionships between inequality and greenspace exposure. The results of
the present study also suggest that the composite index has the poten-
tial to reveal new or refined health associations in previously reported
studies which have so far only used traditional (e.g., percentage of
neighbourhood greenspace) or individual metrics (e.g., accessibility).
As we have demonstrated, single exposure metrics measuring differing
factors such as accessibility or availability may provide results that ap-
pear different or contradictory (Fig. 3). As a result, single metric-based
results can potentially misrepresent the true level of differences in
greenspace exposure experienced by neighbourhoods at different levels
of socioeconomic deprivation.

When we evaluated the associations between greenspace exposure
and premature mortality (i.e., YPLL), the results showed that individual
greenspace exposure metrics (i.e., availability, accessibility, and visibil-
ity) provided considerable variances in effect sizes (e.g., effect size for
availability:−9.80, visibility:−6.06) and directions regarding the asso-
ciations between exposures and outcomes (Table 1). Both the availabil-
ity and visibility greenspace exposure metrics indicate significant
negative associations and imply that higher levels of greenspace avail-
ability or visibility are associated with lower YPLL (reduced premature
mortality). These findings are consistent with previous studies indicat-
ing greater availability or visibility of greenspace can have positive
health benefits, including reductions in mortality (Fong et al., 2018;
Kondo et al., 2018; Rojas-Rueda et al., 2019).

Our results, which show no significant associations between
greenspace accessibility and YPLL, are consistent with several previous
studies reporting associations between greenspace exposure and health
outcomes (Richardson et al., 2010; Klompmaker et al., 2018; Jarvis et al.,
2020; Labib et al., 2020) but not with others (Coutts et al., 2010; Wilker
et al., 2014; Dennis et al., 2020). These latter studies reported positive
health effects related to increased greenspace accessibility. Such incon-
sistent resultsmight be linked to different approaches to conceptualising
andmeasuring accessibility (e.g., shortest distancevs.fixed distance) be-
tween the present study and previous studies (Jarvis et al., 2020; Labib
et al., 2020b). It must also be noted that several other studies have
argued that the positive effect of greenspace accessibility may be
context-specific (Jones et al., 2009; Richardson et al., 2010). For example,
proximity to greenspaces does not always ensure greater use in many
communities if areas have poor walkability (Zuniga-Teran et al., 2019)
or where the poor perception of greenspace may deter its use (Jones
et al., 2009). Therefore, even if greenspace accessibility is high, if that
greenspace attracts few visits then the associated proactive health ben-
efits might not be significant.

Despite these inconsistent associations when using single metrics, in
line with our hypothesis, we found increasing overall community
greenspace (i.e., measured as composite greenspace exposure) was as-
sociated with a lower level of premature mortality. Our overall findings
are consistentwith previous reports of thepositive impact of greenspace
11
exposure associated with reductions in different types of mortality
among people living in greener communities (Mitchell and Popham,
2008; Coutts and Horner, 2016; James et al., 2016; Rojas-Rueda et al.,
2019).

Our research suggested that variations in the effects of different
greenspace exposure measurements might link with the underlying
mechanistic pathways associated with each exposure metric (Marselle
et al., 2021; Zhang et al., 2021). For example, greenspace availability
(i.e., the overall amount of vegetation in an area) might reduce the ef-
fect of harmful environmental stressors such as air pollution or heat
(Markevych et al., 2017; Lindley et al., 2019) and reduce premature
death. Greenspace accessibility (i.e., the relative proximity of public
green spaces) may be associated with building capacities by encourag-
ing physical activity and social cohesion (Hartig et al., 2014; Markevych
et al., 2017). However, in our case study area at the population level,
suchmechanismsmight not be as effective as other pathways. This con-
clusionwas supported by the insignificant association between accessi-
bility and YPLL in the adjusted model. Visibility of greenspace may be
linked with restoring capacities related to psychological mechanisms
such as stress recovery that reduce morbidity (Ulrich, 1984; Frumkin
et al., 2017; Markevych et al., 2017). In the present study, the effect
size of visibility was even smaller than that for availability, indicating
the positive effect of visible greenspace might have an even lower rela-
tive impact than availability in lowering premature mortality. Overall,
the composite greenspace exposure showed a slightly larger effect
size than any individual metric in the adjusted model (Table 1). As the
composite greenspace exposure accounts for all three well-known im-
portant mechanistic pathways through which nature influences health
(Markevych et al., 2017), it is reasonable to argue that composite
greenspace exposure might have a stronger relationship with prema-
ture mortality than has previously been considered when based only
on individualmetrics (e.g., visibility, accessibility). Thisfinding is critical
because it implies that many health-related indicators such as mortal-
ity, morbidity, and other non-communicable diseases and health syn-
dromes might be influenced by the aggregate impact of multiple
greenspace exposure types due to the multiple associated exposure
benefit pathways.

We also found significant differences in the relationship between
composite greenspace exposure and YPLL among groups at different so-
cioeconomic deprivation levels. Our results indicate that increasing
greenspace exposure in areas ofmoderate to extreme deprivation corre-
sponds to a lower YPLL (reduced premature death) than in the least de-
prived areas. These findings are consistent with published studies that
suggest that the health benefits of increased greenspace exposure are
more pronounced among low-income and socioeconomically deprived
populations (Marmot, 2020; Rigolon et al., 2021; Wu and Kim, 2021).

4.3.Methodological approach inmultiple spatially explicit exposuremodelling

In this study, we developed a newmethodological solution for mea-
suring aggregate greenspace exposures at hierarchical scales and fine
resolutions. The completemeasurement of a set of environmental expo-
sures can be linked with the broader framework of the ‘Exposome,’
which considers the totality of human environmental exposures from
conception onward (Wild, 2012). The exposome concept includes all
external and internal exposures throughout a human lifespan (Wild,
2012; Vrijheid et al., 2020). Analysis of a subset of external greenspace
exposures might provide a more useful framework for studying the as-
sociations between aggregate greenspace exposure and human health,
as opposed to using a single type of greenspace exposure. The method-
ological process we introduce in this study illustrates an approach that
allows a measurement of the summation of the multiple spatially ex-
plicit exposures and allows capturing high spatial-temporal exposure
variability at multiple scales. Therefore, a spatially explicit composite
measurement could be considered a step toward a “spatial exposome”
and results from such measurements can be utilised to support the
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broader exposome framework. A spatial exposome allows for spatial hi-
erarchies in aggregate exposure assessments for any given set of exter-
nal environmental exposures, which can then, in turn, allow the
inference of comprehensive exposure profiles for individuals as well
as for populations of varying sizes. While our composite exposure met-
ric provides an introductory example of the spatial exposome concept, it
will require further development in termsof other sets of external expo-
sure variables (e.g., air, noise pollution) and time points.

4.4. Limitations and future developments

Althoughwe have evaluated the robustness of ourmethodology and
elucidated the implications for understanding premature mortality and
socioeconomic inequality, our study does have some limitations. First,
our exposure metrics are spatially explicit objective measurements of
greenspace exposure based on the different vegetated areas alone
(i.e., they do not include blue spaces). Furthermore, the measurements
primarily represent the quantity of greenspace rather than its perceived
quality (whichwehave used as a confounder). As a result, consideration
should be given to integrating objective (e.g., vegetation diversity) or
subjective (e.g., attractiveness) measurements of quality with the com-
posite greenspace exposure index in future studies. Such subjective per-
ceptions of greenspace exposure could be collected using individual
surveys and integrated with our objective assessment to provide an
overall understanding of the effect of both objective and perceived
greenspace exposure on health.

Second, to evaluate our newmetric, we investigated the direct asso-
ciation between greenspace exposure and premature mortality. We did
not conduct an explicit mediation analysis to understand themediating
effect of variables such as air or noise pollution or heat. Although some
previous studies have indicated mixed results for, and relatively lower
effects from, these variables in terms of their mediation of the associa-
tions between greenspace exposure and health (James et al., 2016;
Vienneau et al., 2017). In future studies, these variables should be criti-
cally evaluated for their potential effects on results generated using our
composite greenspace measurement approach applying more explicit
mediation and moderation approaches, such as structural equation
modelling (Dzhambov et al., 2020).

Third,we used equalweights for each of the single greenspace expo-
sure metrics in the composite greenspace calculations. No pre-existing
evidence existed to indicate the precise level of health benefits associ-
ated with each type of greenspace exposure based on their differing
effect pathways, the individualistic nature of the impacts, and the spa-
tiotemporal variability. However, it would be possible to construct a
weighted average for the composite exposure estimation if such infor-
mation is available. In supplementary Note-1, we provided a worked ex-
ample of weighted composite greenspace exposure index estimation
based on a range of hypothetical weights. To generate actual weights
for different input layers of the composite in future applications, a
meta-analyses or analytical hierarchy approach could be adopted to
identify the relative importance of availability, accessibility, and visibil-
ity exposures considering different health outcomes.

Finally, our population-level inference of greenspace exposure and
premature mortality was made using cross-sectional data, and we had
no means of knowing the extent to which individuals experienced var-
iances in their levels of greenspace exposure throughout their lives.
Therefore, we cannot confirm that the relations we observed can be in-
ferred as a causal effect of greenspace exposure on prematuremortality.
Additionally, the population and exposure informationwere aggregated
at the neighbourhood administrative boundary scale (LSOA). As a result,
the correlations observed in aggregate cannot be transferred to individ-
uals or to different spatial scales of analysis, due to the potential
presence of zoning effects associated with the modifiable areal unit
problem and ecological fallacy (Openshaw, 1984; Goodchild, 2011). Al-
though Annerstedt Van Den Bosch et al. (2016) noted that spatially ag-
gregated population data is an acceptable alternative to using individual
12
data, we recognise that to fully understand the effect of comprehensive
greenspace exposure on individual health, longitudinal and life-course
assessments of greenspace exposure need to be accounted for (Turner
et al., 2017; Jia, 2019).

5. Conclusion

In this study, we provided a newmethodology for estimatingmulti-
ple greenspace exposure metrics. Our approach has the potential to re-
duce the heterogeneity inherent in current approaches to greenspace
measurements, as it provides a technique that allowsmultiple quantita-
tive greenspace exposuremeasurement practices to be harmonised and
standardised. This enables a shift from the traditional approach of mea-
suring single greenspace exposure toward a more holistic approach to
greenspace exposure estimation atmultiple spatial scales. Our approach
also allows more spatially explicit aggregate exposure assessment and
can be partially linked with the exposome framework. When applying
the new index to population-level analyses, we found significant nega-
tive associations between community greenspace exposure and prema-
ture mortality. The association between increased greenspace exposure
and lower premature mortality was particularly marked in areas with
higher aggregate greenspace exposure levels. However, such associa-
tions differed significantly based on any given community's level of so-
cioeconomic inequality. Overall, our results suggest that composite
greenspace exposure measurements can reveal new insights into the
public health benefits of exposure to the natural environment. Further-
more, the variations in the level of benefit derived by individuals from
given levels of greenspace exposure may depend on the population of
which they are members and their socioeconomic status.
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