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Abstract
Accurate identification of brain function is necessary to understand neurocognitive 
aging, and thereby promote health and well-being. Many studies of neurocognitive 
aging have investigated brain function with the blood-oxygen level-dependent (BOLD) 
signal measured by functional magnetic resonance imaging. However, the BOLD sig-
nal is a composite of neural and vascular signals, which are differentially affected by 
aging. It is, therefore, essential to distinguish the age effects on vascular versus neural 
function. The BOLD signal variability at rest (known as resting state fluctuation am-
plitude, RSFA), is a safe, scalable, and robust means to calibrate vascular responsivity, 
as an alternative to breath-holding and hypercapnia. However, the use of RSFA for 
normalization of BOLD imaging assumes that age differences in RSFA reflecting only 
vascular factors, rather than age-related differences in neural function (activity) or neu-
ronal loss (atrophy). Previous studies indicate that two vascular factors, cardiovascular 
health (CVH) and cerebrovascular function, are insufficient when used alone to fully 
explain age-related differences in RSFA. It remains possible that their joint considera-
tion is required to fully capture age differences in RSFA. We tested the hypothesis that 
RSFA no longer varies with age after adjusting for a combination of cardiovascular 
and cerebrovascular measures. We also tested the hypothesis that RSFA variation with 
age is not associated with atrophy. We used data from the population-based, lifespan 
Cam-CAN cohort. After controlling for cardiovascular and cerebrovascular estimates 
alone, the residual variance in RSFA across individuals was significantly associated 
with age. However, when controlling for both cardiovascular and cerebrovascular esti-
mates, the variance in RSFA was no longer associated with age. Grey matter volumes 
did not explain age differences in RSFA, after controlling for CVH. The results were 
consistent between voxel-level analysis and independent component analysis. Our find-
ings indicate that cardiovascular and cerebrovascular signals are together sufficient 
predictors of age differences in RSFA. We suggest that RSFA can be used to separate 
vascular from neuronal factors, to characterize neurocognitive aging. We discuss the 
implications and make recommendations for the use of RSFA in the research of aging.
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1 |  INTRODUCTION

The worldwide population is rapidly aging with an increas-
ing number and proportion of older adults across the globe 
(Beard et  al., 2016). Considering the cognitive decline and 
increasing burden of dementia in aging societies, there is a 
pressing need to understand the neurobiology of cognitive 
aging. This will inform efforts to maintain mental wellbeing 
into late life, allowing people to work and live independently 
for longer. Research in cognitive neuroscience of aging has 
used blood-oxygen level-dependent (BOLD) signal measured 
by functional magnetic resonance imaging (fMRI) as one of 
the standard ways to examine the neural mechanisms of cog-
nition. However, the BOLD signal measures the activity of 
neurons indirectly through changes in regional blood flow, 
volume and oxygenation. This makes BOLD a complex con-
volution of neural and vascular signals, which are differen-
tially affected by aging (Logothetis, 2008). Without careful 
correction for age differences in vascular health, differences 
in fMRI signals can be erroneously attributed to neuronal 
differences (Liu, Hebrank, Rodrigue, Kennedy, Section, 
et al., 2013; Tsvetanov et al., 2015) and their behavioral rel-
evance overstated (Geerligs & Tsvetanov,  2016; Geerligs 
et al., 2017; Tsvetanov et al., 2016).

It is possible to control for vascular differences in fMRI sig-
nal using additional baseline measures of cerebrovascular re-
activity, including CO2-inhalation-induced hypercapnia (Liu 
et al., 2019), breath-hold-induced hypercapnia (Handwerker 
et  al.,  2007; Mayhew et  al.,  2010; Riecker et  al.,  2003; 
Thomason et al., 2005, 2007), hyperventilation-induced hy-
pocapnia (Bright et al., 2009; Krainik et al., 2005), and cere-
bral blood flow (CBF) or venous oxygenation measures (Liau 
& Liu, 2009; Lu et al., 2010; Restom et al., 2007). However, 
such methods have not been widely used, in part to imprac-
ticalities in large-scale studies, and poor tolerance by older 
adults (for a review see Tsvetanov et al., 2020). Additionally, 
a hypercapnic challenge may not be neuronally neutral, given 
participants' awareness of the aversive challenge, which may 
differ with age (Hall et  al.,  2011). Breath-hold compliance 
may also decrease with age (Jahanian et  al.,  2017). Such 
biases affect data quality and reliability measures (Magon 
et al., 2009), highlighting the advantage of non-invasive and 
“task-free” estimates of vascular components in the BOLD 
time series.

The BOLD signal variability in a resting state (“task-
free”) is one such estimate and is also known as resting 
state fluctuation amplitudes (RSFA) (for a review see 

Tsvetanov et al., 2020). It has been proposed as a safe, scal-
able and robust cerebrovascular reactivity mapping technique 
(Golestani et al., 2016; Jahanian et al., 2014; Kannurpatti & 
Biswal, 2008; Liu, Li, et al., 2017). The use of RSFA as a 
normalization method for BOLD follows the assumption that 
age differences in RSFA reflect only vascular factors, rather 
than age-related differences in neural function or neuronal 
loss (atrophy). Fluctuations in the BOLD signal are associ-
ated with fluctuations in cardiac rhythm (Glover et al., 2007) 
that are independent of those associated with respiratory 
rate and depth (Chang et  al.,  2009, 2013), suggesting that 
RSFA may be susceptible to vascular signals of varying eti-
ologies, such as cardiovascular and cerebrovascular factors. 
Evidence in support of cardiovascular factors comes from 
Tsvetanov and colleagues (Tsvetanov et  al.,  2015, but also 
Makedonov et al., 2013; Viessmann et al., 2017; Viessmann 
et  al.,  2019; Theyers et  al.,  2018), who demonstrated that 
age-related differences in RSFA are mediated by cardiovas-
cular health (CVH) (as measured by pulseoximetry and elec-
trocardiography, ECG), but not by neural function in terms 
of neural variability (as measured by magnetoencephalogra-
phy, MEG). Evidence in support of cerebrovascular factors 
comes from Garrett et  al.  (2017) who found that “gold-  
standard” measures of cerebrovascular function (arterial spin 
labeling, ASL, and CO2 inhalation-induced hypercapnia) are 
associated with RSFA. Importantly, both studies reported 
age-related differences in RSFA that remain after adjusting 
for individual differences in either cardiovascular or cerebro-
vascular factors. However, neither study considered jointly 
cardiovascular and cerebrovascular factors, and it remains 
unclear whether the unexplained age-related differences in 
RSFA reflect joint contributions from cardiovascular and 
cerebrovascular factors, as in the case of BOLD signal fluc-
tuations (Chang et al., 2009, 2013). Alternatively, the unex-
plained age differences in RSFA may reflect neuronal factors, 
such as atrophy (Grady & Garrett, 2013), even though varia-
tion in neuronal activity does not explain the effect of age on 
RSFA (Tsvetanov et al., 2015).

Cardiovascular, cerebrovascular, and other physiological 
signals, but not neuronal signals, contribute to the age-related 
differences in RSFA, yet none of these non-neuronal mea-
sures on their own could fully account for the effects of age on 
RSFA. It is possible that various vascular signals contribute to 
different components of the age effects on RSFA (Tsvetanov 
et al., 2020). However, no study to date has tested whether the 
cardiovascular and cerebrovascular signals together fully cap-
ture the effects of age on RSFA––an assumption underlying 
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the use of RSFA as a scaling method. In this study, we sought 
to investigate the effects of age on RSFA by the simultaneous 
assessment of the independent and shared effects of cardio-
vascular, cerebrovascular and neuronal effects on age-related 
differences in RSFA. To this end, we used a set of cardiovascu-
lar, cerebrovascular and volumetric measures in a population-  
based study of healthy aging (age 18–88, N  >  250, www.
cam-can.org). We hypothesized that age-related variation in 
RSFA are predicted by cardiovascular and cerebrovascular 
factors, but not grey matter volume (GMV), and therefore 
that the residuals in RSFA––after adjusting for these vascular 
factors––are not associated with age.

2 |  METHOD

2.1 | Participants

Figure  1 illustrates the study design and image process-
ing, using the Cambridge Centre Aging and Neuroscience 
data set (Cam-CAN). Ethical approval was granted by 
Cambridgeshire 2 Research Ethics Committee. Participants 

gave written informed consent. A detailed description of ex-
clusion criteria can be found in Shafto et al. (2014), including 
poor vision (below 20/50 on Snellen test; Snellen, 1862) or 
hearing (threshold 35 dB at 1,000 Hz in both ears), ongoing 
or serious past drug abuse as assessed by the Drug Abuse 
Screening Test (Skinner, 1982), significant psychiatric dis-
order (e.g., schizophrenia, bipolar disorder, and personality 
disorder) or neurological disease (e.g., stroke, epilepsy, trau-
matic brain injury). At an initial home assessment (Phase I), 
completed the Mini-Mental State Examination (MMSE > 25; 
Folstein et al., 1975) and Edinburgh Handedness Inventory 
(Oldfield,  1971). Participants attended MRI (T1-weighted, 
arterial spin labeling (ASL), FLAIR-based white mat-
ter hyperintensities (WMH), resting state EPI-BOLD and 
field-map images), and MEG (including resting state ECG-
recording) on two occasions (Phase II and III) separated by 
approximately 1 year. We include here 226 full data sets of 
good quality, required for all analysis (e.g., T1-weighted, 
FLAIR, ASL, resting fMRI and ECG recordings, see below). 
Demographic characteristics of the sample are described in 
Table  1. Imaging data were acquired using a 3T Siemens 
TIM Trio.

F I G U R E  1  Visual representation of the analysis strategy in terms of data inclusion (above top dotted line), processing (below top dotted line) 
either at a within-subject level (white dotted-line rectangles) or between-subject level (peach-color dotted-line rectangles) and analysis (below 
second dotted line). Measures of cardiovascular health (CVH) included blood pressure (BP), heart rate variability (HRV) from electrocardiogram 
(ECG) recordings, white matter-matter hyperintensities (WMH) from fluid-attenuated inversion recovery (FLAIR) and BMI (not shown), all of 
which were submitted to factor analysis. Neurovascular function (NVF) estimates were based on cerebral blood flow from arterial spin labeling 
(ASL) acquisition. Grey matter volume (GMV) was estimated from a T1-weighted MRI acquisition. Resting state fluctuation amplitudes (RSFA) 
were estimated from resting-state fMRI BOLD acquisition. Regionally specific measures (RSFA, CBF, and GMV) were submitted to multiple 
linear regression either on a voxel-level or on a component-level using outputs from group ICA. ICA––independent component analysis; LV––
latent variable; LST––lesion-segmentation tool; PCA––principal component analysis; rsFMRI––resting state fMRI; TLV––total lesion volume; 
WMLB––white-matter lesion burden

http://www.cam-can.org
http://www.cam-can.org
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2.2 | T1w image acquisition and processing

A 3D-structural MRI was acquired for each participant using 
T1-weighted Magnetization-Prepared Rapid Gradient-Echo 
(MPRAGE) sequence with Generalized Autocalibrating 
Partially Parallel Acquisition (GRAPPA) acceleration 
factor 2; Repetition Time (TR)  =  2,250  ms; Echo Time 
(TE) = 2.99 ms; Inversion Time (TI) = 900 ms; flip angle 
α = 9°; field of view (FOV) = 256 mm × 240 mm × 192 mm;   
resolution = 1 mm isotropic) with acquisition time of 4 min 
and 32 s.

All image processing was done using Automatic 
Analysis (AA 4.0; Cusack et  al.,  2014; https://github.
com/autom atica nalys is/autom atica nalysis) implemented 
in Matlab (Mathworks, https://uk.mathw orks.com/). The 
results here come from Release004 of the CamCAN pipe-
lines. Each particpant’s T1 image was coregistered to the 
MNI template in SPM12 (http://www.fil.ion.ucl.ac.uk/
spm; Friston et  al.,  2007), and the T2 image was then 
coregistered to the T1 image using a rigid-body transfor-
mation. The coregistered T1 and T2 images underwent 
multi-channel segmentation (SPM12 Segment; Ashburner 
& Friston, 2005) to extract probabilistic maps of six tissue 

classes: GM, WM, cerebrospinal fluid (CSF), bone, soft 
tissue, and background. The native-space GM and WM 
segmentations were used for diffeomorphic registration 
(DARTEL; Ashburner, 2007) to create whole group tem-
plate images (Taylor et al., 2015). The group template was 
normalized to the MNI space using 12-parameter affine 
transformation.

2.3 | fMRI image acquisition and processing

RSFA was estimated from resting state Echo-Planar Imaging 
(EPI) of 261 volumes acquired with 32 slices (sequential 
descending order), slice thickness of 3.7  mm with a slice 
gap of 20% for whole brain coverage (TR  =  1,970  ms; 
TE = 30 ms; flip angle α = 78°; FOV = 192 mm × 192 mm; 
resolution = 3 mm × 3 mm × 4.44 mm) during 8 min and 
40 s. Participants were instructed to lay still with their eyes 
closed. The initial six volumes were discarded to allow for 
T1 equilibration. We quantified participant motion using the 
root mean square volume-to-volume displacement as per 
Jenkinson et al. (2002). The rs-fMRI data were further pre-
processed by wavelet despiking (see below).

T A B L E  1  Participants' demographic information, grouped by decile in accordance with the original design of the Cam-CAN cohort (Green 
et al., 2018; Shafto et al., 2014)

Decile Statistical testsa 

1 2 3 4 5 6 7
Χ2 or 
F-test P-value

Age range [years] 18–27 28–37 38–47 48–57 58–67 68–77 78–90

Gender, n (% per 
decile)

0.15 0.989

Men 7 (46.7) 19 (46.3) 19 (50) 19 (52.8) 19 (50) 17 (56.7) 14 (50)

Women 8 (53.3) 22 (53.7) 19 (50) 17 (47.2) 19 (50) 13 (43.3) 14 (50)

Handednessb 1.34 0.241

Mean/SD 91/12 85/42 86/27 93/11 79/48 97/5 91/30

Range [Min/
Max]

65/100 −65/100 −56/100 58/100 −78/100 86/100 −56/100

Education, n (% 
per decile)

4.07 <.001

None 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 5 (16.7) 1 (3.6)

GCSE/O-level 2 (13.3) 1 (2.4) 6 (15.8) 3 (8.3) 4 (10.5) 2 (6.7) 4 (14.3)

A-level 2 (13.3) 2 (4.9) 3 (7.9) 12 (33.3) 9 (23.7) 9 (30) 8 (28.6)

Degree 11 (73.3) 38 (92.7) 29 (76.3) 21 (58.3) 25 (65.8) 14 (46.7) 15 (53.6)

Mini-Mental 
State Exam

3.17 0.006

Mean/SD 29.5/0.9 29.6/0.7 29.1/1.2 29.2/0.9 29.1/1 28.7/1.3 28.8/1.3

Range [Min/
Max]

27/30 27/30 26/30 26/30 27/30 26/30 25/30

aStatistical test to indicate wheter demographics vary between deciles. 
bHigher scores indicate greater right-hand preference. 

https://github.com/automaticanalysis/automaticanalysis
https://github.com/automaticanalysis/automaticanalysis
https://uk.mathworks.com/
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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The EPI data were unwarped (using field-map images) to 
compensate for magnetic field inhomogeneities, realigned to 
correct for motion, and slice-time corrected to the middle slice. 
The normalization parameters from the T1 image processing 
were then applied to warp functional images into MNI space. 
We applied data-driven wavelet despiking to minimize motion 
artefacts (Patel et  al., 2014). We observed a high association 
between the amount of outlying wavelet coefficient and head 
motion across subjects (r  =  .739, p  <  .001), demonstrating 
that it captured a large amount of motion artefacts in the data. 
Spatially normalized images were smoothed with a 12  mm 
FWHM Gaussian kernel. A general linear model (GLM) of 
the time-course of each voxel was used to further reduce the 
effects of noise confounds (Geerligs et al., 2017), with linear 
trends and expansions of realignment parameters, plus average 
signal in WM and CSF, their derivative and quadratic regres-
sors (Satterthwaite et al., 2013). The WM and CSF signal was 
created using the average across all voxels with corresponding 
tissue probability larger than 0.7 in associated tissue probabil-
ity maps available in SPM12. A band-pass filter (.0078–.1 Hz) 
was implemented by including a discrete cosine transform set in 
the GLM, ensuring that nuisance regression and filtering were 
performed simultaneously (Hallquist et  al.,  2013; Lindquist 
et  al.,  2019). Finally, we calculated subject specific maps of 
RSFA based on the normalized standard deviation across time 
for processed resting state fMRI time series data.

2.4 | ASL image acquisition and processing

To assess resting CBF, we used pulsed arterial spin labeling 
(PASL, PICORE-Q2T-PASL in axial direction, 2,500  ms 
repetition time, 13  ms echo time, bandwidth 2,232  Hz/Px, 
256 × 256 mm2 field of view, imaging matrix 64 × 64, 10 slices, 
8 mm slice thickness, flip angle 90°, 700 ms inversion time (TI) 
1, TI2 = 1,800 ms, 1,600 ms saturation stop time). The imag-
ing volume was positioned to maintain maximal brain coverage 
with a 20.9 mm gap between the imaging volume and a labeling 
slab with 100 mm thickness. There were 90 repetitions giving 
45 control-tag pairs (duration 3′52″). In addition, a single-shot 
EPI (M0) equilibrium magnetization scan was acquired. Pulsed 
arterial spin labeling time series were converted to CBF maps 
using ExploreASL toolbox (Mutsaerts et al., 2018). Following 
rigid-body alignment, the spatial normalized images were 
smoothed with a 12 mm FWHM Gaussian kernel.

2.5 | Cardiovascular measures

2.5.1 | Physiological recordings

Cardiac activity data were acquired using bipolar ECG while 
acquiring the MEG data, and processed using PhysioNet 

Cardiovascular Signal Toolbox (Goldberger et al., 2000; Vest 
et al., 2018) in Matlab (MATLAB 2017b, The MathWorks 
Inc, Natick, MA). To address non-stationarity in ECG re-
cordings, mean heart rate (HR), and hearth rate variability 
(HRV) summary measures were based on the median across 
multiple sliding 5-min windows in 30-s steps across the en-
tire eyes closed, resting-state acquisition, 8.5 min. Estimation 
of mean heart rate (HR) was based on the mean number of 
successive N-N (normal-to-normal) intervals within each 
60-second interval during each 5-min period recording. To 
estimate the HRV, we used the frequency-domain informa-
tion of normal-to-normal (NN) intervals, which provides a 
measure of low- and high-frequency components of the HRV 
(unlike time-domain alternatives, for example, the root mean 
squared difference of successive intervals (RMSSD), which 
pertain mainly to high-frequency dynamics of HRV, (Malik 
et  al.,  1996). We calculated low-frequency (0.05–0.15  Hz; 
LF-HRV) and high-frequency (0.15–0.4  Hz; HF-HRV) 
power. Segments classified as atrial fibrillation were ex-
cluded from further analysis, and any participant with >50% 
atrial fibrillation was excluded.

2.5.2 | White matter hyperintensities

Estimates of white matter lesion burden in our sample have 
been reported previously (Fuhrmann et  al.,  2019). In sum-
mary, white matter lesion was estimated using the lesion 
growth algorithm in the LST toolbox for SPM (Schmidt 
et al., 2012) with κ of 0.7.

2.5.3 | Other risk factors of CVH: Blood 
pressure and body mass index

Systolic and diastolic blood pressure were measured at rest, 
seated, using an automated sphygmomanometer (A&D 
Medical Digital Blood Pressure Monitor, UA-774). The av-
erage of three measurements was used. BMI was calculated 
as weight (kg)/height (m)2, using portable scales (Seca 875).

2.6 | Data reduction

Data sets of interest stemmed from a wide range of modali-
ties (RSFA, ASL, T1-weighted, FLAIR, and ECG meas-
ures). To make these data sets tractable, we analysed a set 
of summary measures for each of the modality (also known 
as features or components) as illustrated in Figure 1. This 
had two advantages. First, it reduced the number of statisti-
cal comparisons. Second, it separated spatially overlapping 
sources of signal with different aetiologies within a modal-
ity (Xu et  al.,  2013), for example, cardiovascular versus 
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cerebrovascular signals, which may vary across individu-
als and brain region in RSFA (Tsvetanov et al., 2015) and 
ASL data (Mutsaerts et  al.,  2017). We used independent 
component analysis (ICA) across participants to derive 
spatial patterns of each imaging modality across voxels. 
As a proxy of vascular health, we used exploratory factory 
analysis to derive a latent variables from a set of measures 
related to cardiac function derived from the resting heart 
rate signal and other risk factors (Varadhan et  al.,  2009; 
Wardlaw et al., 2014).

2.6.1 | Indices of RSFA, T1, and CBF maps 
using independent component analysis

Group ICA was implemented on RSFA, GMV, and CBF 
maps separately. For each modality, data were decomposed 
to a set of spatially independent sources using the Source-
Based Morphometry toolbox (Xu et al., 2009) in the Group 
ICA for fMRI Toolbox (GIFT; http://mialab.mrn.org/softw 
are/gift). In brief, the fastICA algorithm was applied after 
the optimal number of sources explaining the variance in the 
data was identified using PCA with Minimum Description 
Length (MDL) criterion (Hui et  al.,  2011; Li et  al.,  2007; 
Rissanen, 1978). By combining the PCA and ICA, one can 
decompose an n-by-m matrix of participants-by-voxels into 
a source matrix that maps independent components (ICs) to 
voxels (here referred to as “IC maps”), and a mixing matrix 
that maps ICs to participants. The mixing matrix indicates 
the degree to which a participant expresses a defined IC. The 
loading values in the mixing matrix were scaled to stand-
ardized values (Z-scores) and used for between-participant 
analysis of summary measures from other modalities. The 
maximum number of available data sets within each modal-
ity was used, recognizing that ICA decomposition accurately 
represents individual variation despite different group sizes 
while maximizing statistical power (Calhoun et  al.,  2008; 
Erhardt et al., 2011).

2.6.2 | Indices of vascular health using 
exploratory factor analysis

As a vascular health index, we sought a summary measure 
that characterized the complexity of cardiovascular signal 
(Varadhan et al., 2009; Wardlaw et al., 2014). We used factor 
analysis on the mean HR, high-frequency and low-frequency 
HRV, systolic and diastolic blood pressure, white matter hy-
perintensities and body-mass index to extract a set of latent 
variables reflecting variability in CVH across all individuals. 
The analysis used matlab factoran.m with default settings. 
Input variable distributions which deviated from Gaussian 

normality (1-sample Kolmogorov-Smirnov Test, p  <  .05) 
were log-transformed (1-sample Kolmogorov-Smirnov Test, 
p > .05) (Fink, 2009).

2.7 | Analytical approach

We performed both voxel-wise and component-based analy-
ses using multiple linear regression (MLR) with robust fitting 
algorithm (matlab function fitlm.m). Voxel-level analysis 
was based on voxel-wise estimates across all imaging maps 
(RSFA, GM and ASL), while component-based analysis was 
based on component-wise estimates across all imaging com-
ponents. We adopted a two-stage procedure for each RSFA 
voxel/component (Figure 1). In the first stage we used MLR 
with RSFA values for all individuals as dependent variable. 
The second stage correlated the residuals from each model 
with age.

In the first level models, independent variables included 
either CVH, CBF or grey matter measures and RSFA val-
ues as dependent variable. Covariates of no interest included 
gender, head motion and handedness. In the model with grey 
matter (model V, see below), the signal defined in the CSF 
mask was considered as a covariate of no interest to min-
imize the influence of non-morphological confounds in   
T1-weighted data (Bhogal et al., 2017; Ge et al., 2017; Tardif 
et al., 2017). Additional inclusion of total intracranial volume 
(TIV) did not change the principal results. Non-normally 
distributed variables were logarithmically or exponentially 
transformed to conform normality (Fink, 2009).

We constructed five models:

• Model 1: Covariates [of no interest]

• Model 2: Covariates and cerebrovascular measures

• Model 3: Covariates and cardiovascular measures

• Model 4: Covariates, cardiovascular and cerebrovascular 
measures

• Model 5: Covariates and GMV measures

y∼�01+Covs+�

y∼�01+�1CBF1+Covs+�CBF

y∼�01+�1CVH+Covs+�CVH

y∼�01+�1CBF+�2CVH+Covs+�CBF,CVH

y∼�01+�1GMV+Covs+�GMV

http://mialab.mrn.org/software/gift
http://mialab.mrn.org/software/gift
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Note that the independent variables in Models 2, 4 and 5 in-
cluded measures with voxel-specific information, that is, RSFA 
values across subjects in a given voxel were predicted by the 
CBF/GM values for the corresponding voxel.

The residuals, ɛ, from each model were then used in a 
second-stage linear regression (i.e., correlational analysis) 
to estimate their association with age. Voxels where the 
residuals correlate with age (p <  .05, FDR-corrected) in-
dicate that the independent variables in first-stage model 
could not explain sufficiently the age-dependent variabil-
ity in RSFA. Conversely, residuals not associated with age 
would suggest that the independent variables considered in 
the model are sufficient to explain age-dependent variabil-
ity in RSFA.

This two-stage procedure was performed for each voxel of 
RSFA maps resulting in a statistics map for each model indi-
cating the association between residuals and age. Statistical 
maps were corrected for multiple comparisons at p  <  .05 
(FDR-corrected). To further address multiple comparisons 
and voxel-voxel mapping between modalities, we performed 
complementary analysis where voxel-wise estimates of brain 
measures were substituted with subject-wise IC loadings, see 
Section 2.6.

We also tested whether the distribution of age-RSFA re-
siduals correlations across all voxels formed differed from 
the predicted distribution under pure randomness. We con-
structed 5000 distributions of age-RSFA residual correlations 
across all brain voxels (DVoxels), where RSFA residuals were 
based either on a model with obseved RSFA values (DVoxels1) 
or permuted RSFA values (DVoxels2-5000). Distribution me-
dians and distribution shapes were compared using Wilcoxon 
rank sum test and Kolmogorov-Smirnov test, respectively. 
We performed a pair-wise comparison across all 5000 distri-
bution shapes using Kolmogorov-Smirnov test, resulting in 
a distribution of 4999 similarity scores (DSimilarity) between 
each DVoxels with the remaining 4999 DVoxels. Next, we esti-
mated the number of times (Np) the distribution of similarity 
for observed RSFA values (DSimilarity1) is statistically differ-
ent than the permuted distributions of similarities (DSimilarity 
2-5000) using Wilcoxon rank sum test. The ratio Np/5000 

provided a level of significance, for example, a value <.05 
suggested that the distribution of age-RSFA residual values is 
not as predicted by a model with pure randomness (at signifi-
cance level p < .05) and suggests an association between age 
and RSFA residuals. The procedure was applied separately 
for each of the five models across all brain voxels, as well as 
for different tissue types (cerebrospinal fluid, grey matter and 
white matter voxels with values above 0.25 in SPM's tissue 
probability maps).

3 |  RESULTS

3.1 | Main and age effects of RSFA, CBF, 
and CVH

3.1.1 | Resting state fluctuation amplitudes

Whole group voxel-wise analysis revealed relatively high 
RSFA values (relative to the average across the brain) across 
all individuals in the frontal orbital, inferior frontal gyrus 
(IFG), dorsolateral prefrontal cortex (dlPFC), superior fron-
tal cortex, anterior and posterior cingulate, and lateral pari-
etal cortex (Figure 2a). With respect to aging, we observed 
age-related decreases in RSFA in the bilateral IFG, bilat-
eral dlPFC, bilateral superior frontal gyrus, primary visual 
cortex, cuneus, precuneus, posterior and anterior cingulate, 
superior temporal gyrus, medial parietal cortex, and lateral 
parietal cortex (Figure  2b). Regions in the proximity of 
frontal white matter, cerebrospinal fluid and large vascular 
vessels showed a significant increase of RSFA values as a 
function of age.

3.1.2 | Cerebral blood flow

Whole group voxel-wise analysis revealed a pattern of rela-
tively high CBF across all individuals in cortical and subcorti-
cal brain areas with high perfusion and metabolism properties 
(Figure  2c) including caudal middle-frontal, posterior 

F I G U R E  2  Average RSFA, CBF, and Grey Matter Volume and the effects of age on each modality (SPM{beta} and SPM{t} maps, 
respectively)

(a)

(c) (d)

(f)(e)

(b)
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cingulate, pericalcarine, superior temporal, and thalamic re-
gions. Moderate to low CBF values in the superior-parietal 
and inferior-frontal areas of the cortex (Figure 2c, every 10 
axial slices from −30 to 70) may reflect the axial positioning 
of the partial brain coverage sequence used in the study. With 
respect to aging, we observed age-related reductions in CBF 
in the bilateral dorsolateral prefrontal cortex, lateral parietal 
cortex, anterior and posterior cingulate, pericalcarine, and 
cerebellum (Figure 2c). In addition, we observed age-related 
CBF increase in regions susceptible to individual and group 
differences in in arterial transit time biasing the accuracy of 
CBF estimation, including middle temporal gyrus (Mutsaerts 
et al., 2017).

3.1.3 | Grey matter volume

We identified significant whole group effects across all grey 
matter voxels (Figure  2e). In addition, there was a wide-
spread age-related decrease in GMV, in bilateral temporal 
lobes, bilateral prefrontal, middle and superior frontal areas, 
bilateral medial occipital areas, cerebellum, and subcortical 
areas including thalamus, caudate, and putamen (Figure 2f), 
consistent with previous reports (Mohajer et al., 2020; Peelle 
et al., 2012; Tsvetanov et al., 2020).

3.1.4 | Cardiovascular health

An exploratory factor analysis with principal component 
analysis indicated a three-factor structure of the CVH 
and risk measures. Factor 1 loadings indicated a factor 
expressing variability in blood pressure measures, where 
individuals with higher subject scores had larger systolic 
and diastolic pressure (Figure 3). Subjects scores did not 
correlate with age (r  =  +.061, p  =  .328), indicating that 
variability in blood pressure was not associated uniquely 
with aging over and above their contribution to other fac-
tors in the analysis. Factor 2 was mainly expressed by heart 
rate and HRV measures, where individuals with high sub-
ject scores had low resting pulse and high HRV metrics. 
Subject scores were correlated negatively with increasing 
age (r = −.417, p < .001), consistent with findings of age-
related decrease in HRV (Figure 3). Finally, Factor 3 was 
expressed negatively by HRV and positively by WMH and 
systolic blood pressure, indicating that individuals with 
high subjects scores were more likely to have high bur-
den of WMH, high systolic blood pressure and low HRV 
(Figure 3). Subject scores were associated positively with 
age (r = +.713, p < .001), suggesting that a portion of the 
age-related decrease in HRV is coupled with increase in 
WMH and systolic blood pressure.

F I G U R E  3  Variable loadings (left column) and association between age and subjects scores for three factors resulting from factor analysis 
on cardiovascular risk variables. Pulse––mean heart rate, HRV-HF––high-frequency heart rate variability, HRV-LF––low-frequency high rate 
variability, BP-Dia––diastolic blood pressure, BP-Sys––systolic blood pressure, WMH––white matter hyperintensities, BMI––body-mass index
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3.2 | Correlations between age and 
RSFA residuals

3.2.1 | Voxel-based analysis

Covariates of no interest only (model I)
The whole group voxel-wise analysis of RSFA maps revealed 
brain regions with high vascular reactivity including frontal 
orbital, inferior frontal gyrus, inferior frontal gyrus, dorso-
lateral prefrontal cortex, superior frontal cortex, anterior and 
posterior cingulate, and lateral parietal cortex. We observed 
age-related decrease in RSFA in the bilateral inferior frontal 
gyrus, bilateral dorsolateral prefrontal cortex, bilateral supe-
rior frontal gyrus, primary visual cortex, cuneus, precuneus, 
posterior and anterior cingulate, superior temporal gyrus, me-
dial parietal cortex, and lateral parietal cortex. In addition, 
we observed age-related decrease in RSFA in the proximity 
of ventricles and large vascular vessels. Voxel-wise associa-
tions between RSFA and covariates of no interest - gender 
and handedness - are shown in Figure S1.

Controlling for cerebrovascular factors (model II)
We observed significant correlations between age and the 
RSFA residuals after controlling for subject variability in 
CBF and covariates of no interest at an FDR-adjusted p-value 
of .05 (Figure 4, model II). The spatial extent and the size of 

the statistical maps were similar to the analysis with RSFA 
residuals after controlling for covariates only (Figure 2d and 
Figure 4, model I), suggesting that CBF does not fully ex-
plain variability in RSFA.

Controlling for cardiovascular factors (model III)
We observed no significant correlations between age and the 
RSFA residuals after controlling for variability in CVH and 
covariates of no interest at an FDR-adjusted p-value of .05 
(Figure 4, model III), suggesting that CVH can explain suf-
ficiently age-dependent variability in RSFA, at least at the 
level of statistically corrected voxels.

Controlling for cardiovascular and cerebrovascular 
factors (model IV)
We observed no significant correlations between age and 
the RSFA residuals after controlling for variability in CVH, 
CBF, and covariates of no interest at an FDR-adjusted   
p-value of .05 (Figure 4, model IV), suggesting that CVH and 
CBF together explain sufficiently age-dependent variability 
in RSFA.

Controlling for GMV (model V)
We observed significant correlations between age and the 
RSFA residuals after controlling for GMV and covariates 
of no interest at an FDR-adjusted p-value of .05 (Figure 4, 

F I G U R E  4  Voxel-wise associations between age and RSFA residuals after controlling for: covariates only (Cov, Model I); Cov and cerebral 
blood flow (CBF, Model II); Cov and cardiovascular health (CVH, Model III); Cov, CBF, and CVH (Model IV); and Cov and grey matter volume 
(GMV)
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model V), suggesting that GMV does not adequately explain 
variability in RSFA, at the voxel-wise level.

3.2.2 | Distribution-based analysis

The medians of observed and permuted data did not differ 
significantly (p > .1 for all five models). In terms of the dis-
tributions, the level of statistical significance decreased after 
controlling for cardiovascular, cerebrovascular and GMV 
signals (p < .001, p < .001, p = .015, and p < .001 for models 
1, 2, 3 and 5, respectively), see Table 2. The model consider-
ing jointly cardiovascular and cerebrovascular signals (model 
4) indicated a difference in the distribution of observed and 
permuted data (p = .016), reflecting a small level of correla-
tion between age and RSFA residuals in some voxels. It is 
unclear whether the signal originated in a particular tissue 
type, so we repeated the permutation approach for each tissue 
type separately (Table 2). For models 1, 2 and 5 the RSFA re-
siduals were associated with age across all three tissue types, 
suggesting that variability in cerebrovascular and grey mat-
ter cannot account fully for the effects of age on RSFA in 
all tissue types. However, the models controlling for CVH 
(Models 3 and 4) were not significant for grey matter and 
white matter tissue. The analysis on CSF voxels was highly 
significant suggesting that any potential age-related effects 
on RSFA not captured by cardiovascular and cerebrovascular 
signals on voxel-level are focal to CSF areas, rather than grey 
matter or white matter.

3.2.3 | Component-based analysis

CVH signals sufficiently explained variance in RSFA, in 
the voxel-based analysis (after FDR correction for multi-
ple comparisons) and in grey matter areas in distribution-
based analysis. This was not the case for CBF or GMV in 
the voxel-based analysis, as well as for CVH in CSF regions 
in distribution-based analysis. However, this might reflect 

limitations of these analyses to separate spatially overlap-
ping sources of signal with different aetiology and the large 
number of comparisons (see Methods). Therefore, we used 
independent component analysis to decompose each imaging 
modality to a small number of spatially independent compo-
nents and test their ability to explain variance of RSFA.

Figure 5 shows the decomposition of the RSFA, CBF, and 
GMV data sets with 18, 13, and 16 number of components, 
respectively, according to the MDL criterion (Li et al., 2007). 
The spatial maps of the components and the between-sub-
ject correlations of loading values revealed patterns of sig-
nal from grey matter, white matter, cerebrospinal fluid, and 
vascular aetiology (Figure 5), which were highly consistent 
with voxel-wise analysis (Figure  2), previous reports of 
RSFA (Tsvetanov et  al.,  2015) and structural data (Eckert 
et al., 2010; Liu, Yao, et al., 2017).

The effects of aging on the independent components 
loadings was consistent with the voxel-level analysis. 
Specifically, RSFA components with vascular ethology in-
dicated an age-related increase in the loading values, while 
ICs confined within grey matter areas showed age-related de-
crease in the loading values (Figure 5a, left side of the panel). 
Several CBF components demonstrated age-related decrease 
in loading values, including inferior frontal gyrus, superior 
frontal gyrus, cuneus, precuneus, lateral occipital cortex, and 
motor cortex (Figure 5b, left side of the panel). All but one 
GMV component in the cerebellum demonstrated age-related 
decrease in loading values consistent with brain-wide atrophy 
in aging (Figure 5).

Next, we turn to the correlations between age and residu-
als of the RSFA ICs. We focused on ICs that showed age-re-
lated differences in the subject loading values (10 out of 18), 
after controlling for CBF IC loading values, GMV IC loading 
values or CVH factor loadings (Figure 6).

Controlling for cerebrovascular factors (model II)
The associations between age and RSFA residuals after con-
trolling for CBF loading values were weaker in vascular ICs 
and abolished in GM ICs compared to the analysis with covar-
iates only (Figure 6, Model I vs Model 2). Unlike in the voxel-
based analysis, this ICA approach suggests that CBF does 
explain some age-related variability in RSFA across many 
networks, especially those in GM areas, which may be due to 
reduced number of comparisons and improved characterisa-
tion of sources of signals in RSFA and CBF data using ICA.

Controlling for cardiovascular factors (model III)
After controlling for differences in CVH, RSFA residuals in 
two ICs (IC3 and IC7) were correlated with age (uncorrected 
p-value at .05 significance level), although to a lesser extent 
compared to the analysis with covariates only (Model III vs 
Model I), indicating that CVH can explain age-dependent 
variability in most, but not all, RSFA ICs.

T A B L E  2  Evaluation of the difference in distribution shape 
across voxels in the whole brain, as well as voxels within grey matter 
(GM), white matter (WM), and cerebrospinal fluid (CSF) areas

Model
Whole 
Brain GM WM CSF

1 <.001 <.001 .009 <.001

2 <.001 <.001 .009 <.001

3 .015 n.s. .048 .005

4 .016 n.s. .039 .007

5 <.001 <.001 .004 <.001

Note.: Tests showing no difference in the distributions at uncorrected p-value 
.05 are indicated by n.s.
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Controlling for cerebrovascular and cardiovascular 
factors (model IV)
We observed no significant correlations between age and the 
RSFA residuals after controlling for variability in CVH and 
CBF (even at an uncorrected p-value of .05, see Figure 6), 
suggesting that together, CVH and CBF can explain age-  
dependent variability in RSFA.

Controlling for GMV (model V)
RSFA ICs adjusted for GMV ICs demonstrated reduced cor-
relations between RSFA and age (particularly RSFA ICs of 

grey matter territories), indicating that age-related differences 
in RSFA ICs can be partly explained by grey matter atrophy.

Controlling for GMV independent of cardiovascular 
factors
Some degree of association between age differences in 
RSFA and grey matter atrophy is expected given CVH has 
been linked to brain-wide atrophy (Gu et al., 2019; Srinivasa 
et al., 2016) and T1-weighted data are confounded by non-
morphological signals (Bhogal et al., 2017; Ge et al., 2017; 
Tardif et  al.,  2017). Therefore, to test whether the effects 

F I G U R E  5  Inependent component analysis spatial maps and correlation between-subject loadings for RSFA (a), cerebral blood flow (b) and 
grey matter volume (c) data sets. The relationships between age and IC loadings are shown circles on the left hand-side of each correlation matrix, 
FDR-adjusted p-value of .05

(a) (b) (c)

F I G U R E  6  Component-based associations between age and RSFA residuals after controlling for: covariates only (Cov, Model I); Cov and 
cerebral blood flow (CBF, Model II); Cov and cardiovascular health (CVH, Model III); Cov, CBF, and CVH (Model IV); Cov and grey matter 
volume (GMV); and Cov and grey matter volume residuals (GMVr) after controlling for the effects of CVH (see text). Grey circles   
denote uncorrected p-value >.05, circles without black outline denote uncorrected p < .05 and circles with black outline denote FDR-adjusted   
p-value at .05
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of brain atrophy on RSFA were independent of the effects 
of CVH on brain atrophy, we controlled for the effects of 
CVH in GMV ICs. Then we used the GMV residuals after 
fitting CVH to GMV IC loadings (i.e., GMV orthogonalized 
with respect to CVH) to estimate RSFA residuals and subse-
quently their correlation with age (Figure 6, Model 6). The 
effects between RSFA residuals and age in Model 6 were 
similar to Model 1, suggesting that GMV differences inde-
pendent of CVH were not correlated to differences in RSFA.

4 |  DISCUSSION

The principle result of this study is to confirm the suitabil-
ity of resting state fluctuation amplitude (RSFA) to quantify 
vascular influences in BOLD-based fMRI signals, and to 
demonstrate that the age effects on RSFA reflect variabil-
ity in vascular factors rather than neuronal factors. We dem-
onstrate that the effects of age on RSFA can be sufficiently 
captured by the joint consideration of cardiovascular (based 
on ECG, BP, WMH, and BMI measures) and cerebrovascu-
lar factors (CBF from ASL). Variance in brain atrophy (GM 
volume Figure 6) and neuronal activity (Kumral et al., 2020; 
Tsvetanov et  al.,  2015) do not explain unique relationship 
between RSFA and age. This means that RSFA is a suitable 
measure for differentiating between vascular and neuronal in-
fluences on task-based BOLD signal. Without modeling the 
age-related differences in cardiovascular and cerebrovascular 
factors, changes in “activity” based on BOLD-fMRI could be 
misinterpreted, thereby undermining conceptual advances in 
cognitive aging.

4.1 | Cardiovascular factors and age 
differences in RSFA

We used factor analysis to estimate CVH from a wide range 
of cardiovascular measures (Varadhan et al., 2009; Wardlaw 
et  al.,  2014). Our three-factor solution resembled previous 
reports (Chen et  al.,  2000; Goodman et  al.,  2005; Khader 
et al., 2011; Mayer-Davis et al., 2009), with two factors asso-
ciated with blood pressure and heart rate variability (factors 
1 and 2, respectively). A third factor expressed white mat-
ter hyperintensities, blood pressure, heart rate variability and 
body-mass index, suggesting a cerebrovascular origin.

These three factor indices of CVH explained most of 
the age-related variability in RSFA, leaving little to no as-
sociations between age and RSFA residuals in grey matter 
regions (after controlling for these cardiovascular signals). 
This suggests that differences in CVH mediate most of the 
age effects on RSFA (Tsvetanov et al., 2015). Interestingly, 
each CVH factor was associated with a distinct spatial RSFA 
pattern (Supplementary Figure S2) and collectively provided 

additional explanatory value for the overall age differences in 
brain-wide RSFA. Next, we turn to neural and cerebrovascu-
lar contributions to BOLD.

4.2 | Cerebrovascular signals and age 
differences in RSFA

Our measure of cerebrovascular function was based on CBF 
estimates from a common perfusion-based ASL sequence. 
Here, we refer to cerebrovascular function as an umbrella 
term of physiological alterations in the neurovascular unit 
including resting CBF, cerebrovascular reactivity, cerebral 
autoregulation and pulsatility. The observed average, gen-
der and age effects were consistent with previous reports. 
The age effects on CBF values were in agreement with pre-
vious reports (Chen et  al.,  2011; Zhang et  al.,  2018), with 
decreases mainly found in regions that are associated with 
high perfusion and metabolic demand, including precuneus, 
cuneus, prefrontal cortices, and cerebellum. The mechanisms 
underlying the observed CBF decrease across the adult lifes-
pan is a subject of continuous debate between structural and 
physiological alterations of the neurovascular unit (Girouard 
& Iadecola,  2006; Tarumi & Zhang,  2018; Tsvetanov 
et al., 2020). We also observed age-related increase in CBF 
in temporal regions, which may reflect macro-vascular arti-
facts that are common to arterial spin labeling findings (Detre 
et al., 2012; Mutsaerts et al., 2017) due to prolonged arterial 
transit time with aging (Dai et  al.,  2017). This nonspecific 
nature of resting CBF signal changes during aging is particu-
larly problematic for fMRI BOLD studies, since differences 
in physiology on that level may confound the interpretation 
of the BOLD signal as a surrogate measure of evoked neural 
activity (Whittaker et al., 2016).

Compared to voxel-wise estimates, our component-  
wise CBF values captured better the age-related effects 
of RSFA, especially in grey matter areas (see below on 
differences between voxel-wise and component-wise 
analysis). Nevertheless, neither the voxel-wise nor the 
componen-based analysis of CBF values could explain 
sufficiently the effects of age on RSFA, suggesting that 
RSFA may not be attributed exclusively to sources of sig-
nal linked to cerebrovascular function (Garrett et al., 2017; 
Liu, Hebrank, Rodrigue, Kennedy, Park, et al., 2013). There 
was a positive correlation between resting CBF and RSFA 
in brain areas typically associated with high blood perfu-
sion and metabolic demands, including cuneus, precuneus, 
intraparietal sulcus, inferior temporal cortices, dorsolateral 
prefrontal cortex, and anterior cingulate (Figure S3). But, 
we also observed negative associations between RSFA and 
CBF in inferior brain areas, mainly close to vascular terri-
tories, that is, the higher the RSFA the lower the CBF val-
ues were in these regions (Figure S3). This may reflect the 
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dominance of pulsatility influences in RSFA signals near 
vascular territories and the CSF (for more information see 
section: Spatial distribution and age effects on RSFA). This 
may have adverse effects on tissue perfusion in neighboring 
areas (Tarumi et al., 2014). The coexistence between pos-
itive and negative relationships between RSFA and CBF 
measures in our study explains previous observations of a 
varied direction in the relationship between these measures 
across regions for groups and individuals with differences 
in vascular health (Garrett et al., 2017).

4.3 | Joint effect of cardiovascular and 
cerebrovascular factors

The joint consideration of cardiovascular and CBF meas-
ures fully explained the (significant) effects of age on 
RSFA in grey matter regions, despite their differential as-
sociation with aging (Zlokovic, 2011). This suggests that 
RSFA can normalize BOLD fMRI for both cardiovascular 
and cerebrovascular factors as highly reliable and tempo-
rally stable measurement compared to current standard 
approaches to normalize BOLD fMRI (e.g.,. hypercapnia) 
(Golestani et  al.,  2015; Lipp et  al.,  2015). Lower repro-
ducibility in “gold standard” approaches could be due to 
susceptibility of cerebrovascular measures to short-term 
variable physiological modifiers (e.g., caffeine, nicotine, 
time of the day, and drowsiness) (Clement et  al.,  2018). 
The high reproducibility of RSFA in healthy adults could 
come from the additional contribution of short-term but 
stable CVH signals (e.g., heart condition or white matter 
hyperintensities), which are independent of cerebrovascu-
lar factors. RSFA reflects both cardiovascular and cerebro-
vascular signals, which are associated with distinct spatial 
patterns (see section spatial distribution and age effects on 
RSFA). RSFA can help dissociate age-related differences 
in cardiovascular, cerebrovascular, and neural function 
in task-based BOLD signal, which is important for using 
fMRI to understand the mechanisms of cognitive aging.

4.4 | GMV and age differences on RSFA

Voxel-wise and component-based analyses indicated weak 
associations between age differences in RSFA and GMV, 
which were abolished after adjusting for variability in CVH. 
Interestingly, the strongest effects were at the boundaries be-
tween grey matter and other tissue types (white matter and 
CSF), rather than deep cortical areas (Figure S3). The spatial 
pattern of the effects for cortical areas was similar to those 
observed between CBF and RSFA measures. There was a 
positive relationship between RSFA and GMV in the pre-
cuneus, intraparietal sulcus, dorsolateral prefrontal cortex, 

and dorsal anterior cingulate; which could reflect the cer-
ebrovascular component of the RSFA signal (see above). In 
addition, the cerebellum and subcortical areas near vascular 
territories showed negative associations, that is, individuals 
with less GMV had larger RSFA values, likely reflecting the 
cardiovascular components of the RSFA signal (see below, 
Spatial distribution and age effects of RSFA). Importantly, 
there were no associations between RSFA and GMV after 
adjusting for cardiovascular health. This is suggestive of 
an indirect association between RSFA and GMV intro-
duced by cardiovascular effects on brain-wide atrophy (Gu 
et al., 2019; Srinivasa et al., 2016) and other non-morpholog-
ical confounds in T1-weighted data (Bhogal et al., 2017; Ge 
et al., 2017; Tardif et al., 2017). The lack of evidence for an 
association between age-related effects on RSFA and brain 
atrophy after adjusting for cardiovascular health is consistent 
with previous reports using direct physiological measures of 
neural activity (MEG and EEG): no age-related associations 
between RSFA and neuronal indices were detected (Kumral 
et al., 2020; Tsvetanov et al., 2015). Furthermore, potential 
age-related associations between RSFA and cognitive func-
tion are fully explained by cerebrovascular risk factors, such 
as WMH burden (Millar et al., 2020). Taken together these 
findings suggest that the age-related differences in BOLD 
signal variability at resting state are unlikely to be of neu-
ronal origin beyond the effects of age on various types of 
vascular signals.

4.5 | Spatial distribution and age effects 
on RSFA

The voxel-wise and component-based analysis of RSFA 
maps reveal brain regions with high vascular reactivity (Di 
et al., 2012; Kalcher et al., 2013; Kannurpatti et al., 2011; Liu, 
Hebrank, Rodrigue, Kennedy, Section, et al., 2013; Mueller 
et al., 2013; Yezhuvath et al., 2009), and accord with previ-
ous studies of average and age effects on RSFA (Golestani 
et al., 2016; Lipp et al., 2015; Liu, Li, et al., 2017; Tsvetanov 
et al., 2015). These patterns of spatially distinct cortical areas 
might reflect segregation of cortical tissue composition, for 
example, delineation on the basis of vascular density and 
metabolic demands in areas with cyto- or myeloarchitec-
tonic differences (Annese et al., 2004; Fukunaga et al., 2010; 
Geyer et  al.,  2011; Glasser & Van Essen,  2011). The age-
related increase in RSFA in areas with vascular, WM and 
CSF partitions may reflect the impact of vascular pulsatil-
ity downstream of cerebral arteries due to wall stiffening of 
blood vessels (Robertson et  al.,  2010; Webb et  al.,  2012), 
which may influence BOLD signal variability in neighboring 
brain tissue (Lee & Oh, 2010; O'Rourke & Hashimoto, 2007; 
Tarumi et al., 2014; Viessmann et al., 2017). The pulsatility 
can influence signal in white matter and cerebrospinal fluid 
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areas (Makedonov et al., 2013; Tarumi et al., 2014; Theyers 
et al., 2018; Viessmann et al., 2019). In addition, it is also 
possible that the RSFA signal in one area of the brain cap-
tures the presence of multiple sources of signal with different 
aetiology. For example, the observed signal in one CSF voxel 
may be a mixture of signals coming from fluctuations in rest-
ing CBF in neighboring vascular territories and pulsatility 
influences in the perivascular space. Spatially overlapping 
sources of signal might be difficult to detect and dissociate 
using a univariate approach. This motivates the use of mul-
tivariate data-driven approaches, as highlighted by our find-
ings. In sum, this suggests that RSFA reflects different types 
of vascular signals with distinct spatial patterns in terms of 
signals with cerebrovascular origin in grey matter regions, 
and those with cerebro- and cardio-vascular origin in other 
parts of the brain.

5 |  LIMITATIONS AND FUTURE 
DIRECTIONS

There are limitations to the current study. In terms of CVH, 
there may be more important measures that were not present in 
the CamCAN sample. Moreover, the analysis of heart rate var-
iability estimates was based on normal-to-normal beats (Vest 
et al., 2018). The difference between NN- and RR-beat anal-
ysis is that the former considers the detection and exclusion 
of segments and participants with atrial fibrillation and other 
abnormal beats. While NN-beat analysis optimizes the detec-
tion of unbiased estimates of CVH, it also precludes sensitivity 
to potential effects of arrhythmia and abnormal heart beats on 
RSFA in our analysis, which might be relevant to regions sus-
ceptible to pulsatility effects (Webb & Rothwell, 2014).

In terms of cerebrovascular signals, the use of ASL-
based CBF measurements could be complemented with in-
dividual-based arterial transit time measurement in order 
to improve the accuracy of ASL imaging in older popula-
tions (Dai et al., 2017). There are also other means to assess 
cerebrovascular function, including cerebrovascular reac-
tivity, including CO2-inhalation-induced hypercapnia (Liu 
et al., 2019), breath-hold-induced hypercapnia (Handwerker 
et  al.,  2007; Mayhew et  al.,  2010; Riecker et  al.,  2003; 
Thomason et al., 2005, 2007), hyperventilation-induced hy-
pocapnia (Bright et al., 2009; Krainik et al., 2005), and ve-
nous oxygenation (Liau & Liu, 2009; Lu et al., 2010; Restom 
et al., 2007) and it is possible that these might reveal effects 
in RSFA where ASL-based CBF does not. Future studies 
should explore the utility of additional estimates from resting 
ASL-based CBF data to complement CBF quantitation. For 
instance, little is known about whether resting CBF variabil-
ity, which is statistically similar to RSFA, is sensitive to cere-
brovascular reactivity and other vascular origins (Robertson 
et al., 2017). The ease, safety, and tolerability of RSFA across 

the lifespan yields a considerable advantage for population 
and clinical studies.

Similar to the CBF analyses, the GMV findings gener-
alized across voxel-wise and component-based analysis, but 
the component-based analysis seemed to be more sensitive to 
the age effects on RSFA in both CBF and GMV data sets. The 
greater generalization across data sets with independent com-
ponent analysis than voxel-based analysis may reflect several 
factors (Calhoun & Adali, 2008; Passamonti et al., 2019; Sui 
et  al.,  2012), for example, reducing the burden of multiple 
comparisons, pooling information across multiple voxels 
with similar profiles, separating sources of signal with dif-
ferent etiology but with overlapping topologies and possibly 
improving the spatial correspondence across imaging modal-
ities with different spatial scales, sequence parameters and 
signal properties. Therefore, the use of component-based 
analysis in studies comparing approaches for normalization 
of physiological signals may improve understanding the na-
ture of the signal and the extent to which these neuroimaging 
modalities are related to one another.

In the current study, RSFA was estimated from resting 
state fMRI BOLD data prior to collection of other task-based 
fMRI scanning as in previous validation studies of RSFA 
(Kannurpatti & Biswal, 2008; Tsvetanov et al., 2015). Other 
means of RSFA-like estimates have been proposed for scal-
ing BOLD activation data using fMRI BOLD data at different 
non-resting cognitive states, for example, during task periods 
(Kazan et al., 2016) or fixation-/resting-periods succeeding 
task periods (Garrett et al., 2017). Given that short periods 
of cognitive engagement can modulate the BOLD signal in 
a subsequent resting state scan (Sami & Miall, 2013; Sami 
et  al.,  2014), future studies are required to generalize our 
findings to RSFA-like estimates derived from other types of 
fMRI BOLD acquisition.

Finally, this study has focussed on the effects of aging, but 
other studies aiming to understand individual differences or drug 
effects in fMRI BOLD might be affected in a similar manner. 
Therefore, future studies should consider the origins of the signal 
contributing to RSFA (cerebrovascular vs cerebrovascular) and 
more broadly their influence in fMRI BOLD imaging studies. In 
the light of increasing evidence of the role of cardiovascular and 
cerebrovascular factors in maintaining cognitive function, future 
studies might even consider RSFA as a predictor, rather than just 
as a covariate of no interest, when modeling the effects of inter-
est (e.g., age or performance). Furthermore, while the proposed 
approach is based on plausible neurophysiology that can be used 
to evaluate its contribution to cognitive function, future studies 
could improve absolute quantification of neural function to-
gether with its integration with deoxyhemoglobin-dilution-based 
modeling (Davis et  al.,  1998; Hoge et  al.,  1999a, 1999b), he-
modynamic response function modeling (West et  al.,  2019), 
generative modeling (Friston et al., 2003; Jafarian et al., 2020;   
Tsvetanov et  al.,  2016) and model-free decomposition   
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(Bethlehem et al., 2020; Campbell et al., 2015; Samu et al., 2017; 
Tsvetanov et al., 2018) of fMRI BOLD data.

6 |  CONCLUDING REMARKS

Cardiovascular and cerebrovascular signals together predict the 
age differences in RSFA, establishing RSFA as an important 
marker that can be used to accurately separate vascular signals 
from neuronal signals in the context of BOLD fMRI. We pro-
pose that RSFA is suitable to normalize BOLD, and control 
for differences in cardiovascular signals. This is particularly 
relevant to the research in neurocognitive aging, and may re-
duce selection bias, for example, by permitting the inclusion of 
individuals with a wider range of hypertension, cardiovascular 
conditions or comorbidity. The use of RSFA as a mechanism 
to adjust for confounds in BOLD-fMRI, or as a predictor, will 
allow the development of better models of aging and age-re-
lated disorders (Cabeza et al., 2018; Tsvetanov et al., 2018).
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FIGURE S1 Voxel-wise associations between RSFA and 
covariates of no interests (gender—left panel and handed-
ness—right panel), Model I. Maps are thresholded at uncor-
rected p-values of .05 for more complete description of the 
spatial represnation.
FIGURE S2 Voxel-wise associations between RSFA and 
three factors of cardiovascular health (Model III). Maps are 
thresholded at uncorrected p-values of .05 for more complete 
description of the spatial represnation
FIGURE S3 Voxel-wise associations between RSFA and 
CBF (left panel, Model II) and GMV (right panel, Model V). 
Maps are thresholded at uncorrected p-values of .05 for more 
complete description of the spatial represnation
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