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Abstract 

Aim: Evidence suggests beneficial metabolic effects of the nonapeptide hormone, arginine 

vasopressin (AVP), on metabolism, as also observed recently with the closely related 

oxytocin peptide.  

Materials and Methods: In the current study we have exchanged selected amino acids at 

position 3 and 8 of AVP, namely phenylalanine and arginine, with those of oxytocin to 

generate novel analogues with altered receptor selectivity. Secondary modification by N-

terminal acetylation was used to impart stability to circulating endopeptidases. Analogues 

were screened for degradation, bioactivity in rodent/human clonal beta-cells and primary 

murine islets together evaluation of receptor activation profile. 

Results: Analogue Ac3IV, which lacked effects at V2 receptors responsible for modulation 

of fluid balance, was selected as the lead compound for assessment of antidiabetic efficacy in 

high fat fed (HFF) mice. Twice daily administration of Ac3IV, or the gold-standard control 

exendin-4, for 22 days reduced energy intake as well as body weight and fat content. Both 

interventions decreased circulating glucose levels, enhanced insulin sensitivity and 

substantially improved glucose tolerance and related insulin secretion in response to an 

intraperitoneal or oral glucose challenge. The peptides decreased total- and increased HDL-

cholesterol, but only Ac3IV decreased LDL-cholesterol, triglyceride and non-fasting 

glucagon concentrations. Elevations of islet and beta cell areas were partially reversed, 

accompanied by suppressed islet cell proliferation, decreased beta-cell apoptosis and, in the 

case of exendin-4, also decreased alpha-cell apoptosis.  

Conclusion: AVP-based therapies that exclusively target V1a and V1b receptors may have 

significant therapeutic potential for the treatment of obesity and related diabetes, that merits 

further clinical exploration. 

Keywords: Vasopressin, receptor selectivity, enzymatic stability, obesity, type 2 diabetes 



 
 

1. Introduction 

The past 15 years have witnessed a substantial increase in the treatment options available for 

type 2 diabetes with the timely introduction of glucagon-like peptide-1 (GLP-1) mimetics, as 

well as dipeptidyl peptidase-4 (DPP-4) and sodium-glucose co-transporter-2 (SGLT-2) 

inhibitors [1]. In particular, the clinical success of GLP-1 mimetics has illustrated the benefit 

of simultaneous activation of multiple physiological pathways by a single peptide entity, 

conferring positive effects on insulin secretion and action, gut motility, appetite and body 

weight as well as cardiovascular and neuronal function [2]. Unimolecular dual or even triple 

acting peptides targeting GLP-1, GIP and glucagon receptors are now being developed to 

modulate multiple receptor sites [3,4]. Other peptides being explored include apelin, peptide 

YY (PYY), cholecystokinin (CCK-8), fibroblast growth factor-21 (FGF-21), oxyntomodulin, 

irisin, obestatin and xenin [5,6]. Given present imperfections in attempts to normalise blood 

glucose and prevent risk of diabetic complications [5], the search continues for other 

naturally occurring peptide hormones with beneficial action profiles that can be structurally 

modified to confer enzyme stability and long duration of action for potential exploitation in 

T2DM therapy [4]. 

Arginine vasopressin (AVP), also known as antidiuretic hormone (ADH) is a 

nonapeptide synthesised in the hypothalamus and secreted by the posterior pituitary gland 

[7]. Although the classically recognised physiological action of AVP is in the regulation of 

fluid balance and cardiovascular function [8], an increasing body of evidence suggests that 

AVP plays an important role in glucose homeostasis and metabolic control [9]. The 

biological effects of AVP are mediated through modulation of three separate GPCRs, namely 

Avpr1a (V1a), Avpr1b (V1b) and Avpr2 (V2) [10]. Whilst the V2 receptor is responsible for 

the effects of AVP on the kidney and water retention [11], V1a and V1b receptors are 

expressed in metabolically active tissues [10]. Studies in AVP receptor knockout (KO) 



 
 

rodents confirm a role for AVP signalling in metabolism. Thus, plasma glucose levels are 

elevated in V1a receptor KO mice [12] but reduced in V1b KO mice [13]. Mice with double 

V1a and V1b receptor KO present with unaltered circulating glucose levels, but this is 

accompanied by hyperinsulinaemia and glucose intolerance [14]. Furthermore, an inherent 

genetic mutation leading to lack of AVP production in rats results in reduced plasma insulin 

concentrations [15]. Genetic variation in AVP receptor expression in humans is also 

associated with obesity and increased prevalence of diabetes [16,17].  

 In addition, AVP receptors are present on pancreatic islets and their activation directly 

evokes insulin secretion and protects against beta cell loss [18]. AVP is also known to 

stimulate glucagon secretion [19], but AVP-induced insulin release only occurs in the 

presence of high glucose concentrations, whereas effects on glucagon secretion are only 

apparent when glucose levels are low [20]. This represents a physiologically important action 

in the maintenance of glucose homeostasis, linked to prevention of both hyper- and 

hypoglycaemia. Such a biological characteristic is also evident with the incretin hormone GIP 

[5,21], which is now considered to possess bona fide therapeutic promise for diabetes 

[22,23]. Taken together, these observations suggest that AVP may have untapped potential 

for exploitation in the treatment of diabetes and related metabolic disorders. 

Interestingly, AVP has a strikingly similar structure to oxytocin with the two 

nonapeptides only differing at positions 3 and 8, with phenylalanine and arginine in AVP 

being replaced by isoleucine and leucine in oxytocin [24]. Although native oxytocin is best 

known for positive effects on mood and reproductive function [25], enzyme resistant 

analogues have recently been developed and shown to exert notable benefits on body weight, 

glucose homeostasis, lipid metabolism and pancreatic architecture in HFF mice [26,27]. We 

hypothesised that the similarity in structure between the two hormones provides a good 

foundation for the generation of novel and therapeutically interesting peptides that could 



 
 

positively interact with both oxytocin and AVP receptor subtypes. In an attempt to generate 

such compounds, we designed six novel AVP peptides where amino acids at positions 3 and 

8 in AVP were replaced by those of oxytocin (Table 1). We also examined effects of removal 

of the characteristic disulphide bridge plus addition of N terminal acetyl group to impart 

enzyme resistance, as employed previously [27]. 

The AVP analogues were initially screened for enzymatic stability, insulin secretory 

responses in vitro and ex vivo together with receptor activation profile. The lead peptide 

emerging from these studies, namely Ac3IV, which lacked appreciable effects at V2 

receptors, was progressed to antidiabetic efficacy testing in high fat fed (HFF) mice in head-

to-head comparison with the clinically approved GLP-1 mimetic, exenatide. Our results 

suggest that such designer AVP analogues constitute a potentially exciting new drug class 

meriting further exploration for the treatment of obesity and type 2 diabetes. 

 

2. Materials and Methods 

2.1 Peptides  

All peptides (Table 1) were obtained from Synpeptide Co. Ltd. (Shanghai, China) at 95% 

purity. Characterisation of the peptides was carried out in-house by HPLC and MALDI–ToF 

MS, as described previously [28]. Abbreviated names are used for AVP analogues, denoting 

as appropriate, the position and type of amino acid substitutions in AVP (where AVP is 

abbreviated to V), namely 3IV and 8LV, presence of N-acetyl group (abbreviated to Ac) and 

indication of reduced form without disulphide bridge by letter R.   

 

2.2 Plasma stability 



 
 

To establish in vitro stability of the peptides, peptides (10 μg) were incubated with 5 μl of 

overnight (18 h) fasted murine plasma at 37ºC, with degradation profiles acquired using RP-

HPLC and MALDI-ToF, as described previously [29]. 

 

2.3 In vitro and ex vivo insulin secretion  

Rat BRIN BD11 and human 1.1B4 cells were utilised to investigate the influence of test 

peptides on insulin release. The origin and secretory characteristics of these clonal beta-cells 

have been detailed in full elsewhere [30,31]. Insulin secretory activity (20 min) of test peptides 

(10-12 – 10-6 M) at 5.6 and 16.7 mM glucose was determined as previously described [27]. In a 

separate series, BRIN BD11 cells were incubated at 16.7 mM glucose with test peptides (10-6 

M) alone, or in combination with 10-6 M of either a selective oxytocin (L-351,257; Tocris), V1a 

(SR-49059, Sigma-Aldrich), V1b (Nelivaptan; SR -149415, Axon Medchem) or V2 

(Tolvaptan, Sigma-Aldrich) receptor antagonist, and insulin secretion determined as described 

above. Given somewhat unexpected lack of effect of L-351,257 on Ac3IV mediated insulin 

secretion, insulin secretory effects of Ac3IV were examined in INS1 832/13 cells with 

CRISPR-Cas9 induced knockout (KO) of the oxytocin receptor. Full details on the generation 

and characterisation of the KO cell line have previously been reported [27]. For isolated islets 

studies, islets were obtained from male C57BL/6 mice by standard collagenase digestion, as 

described previously [32]. Fresh islets were preincubated for 30 min at 37°C in Krebs–Ringer 

bicarbonate buffer (pH 7.4) supplemented with 10 mM HEPES, 0.1% bovine serum albumin 

and 1.1 mM glucose, prior to conducting insulin secretion studies (n=4) over the following 60 

min. 

  

2.4 Animals  



 
 

Studies were conducted in 20-week old HFF male NIH Swiss mice (Envigo Ltd, UK) 

previously maintained on a high fat diet for 12 weeks (45% fat, 20% protein, 35% 

carbohydrate; percent of total energy 26.15 kJ/g; Dietex International Ltd., Witham, UK; 

catalogue number 824018) to evoke dietary induced obesity-diabetes. All mice were housed 

individually and kept in a temperature-controlled environment (22 ± 2 oC), with a 12 hour 

light/dark cycle. Experiments were carried out in accordance with the UK Animal Scientific 

Procedures Act 1986. All animal studies were approved by the University of Ulster Animal 

Welfare and Ethical Review Body (AWERB). No adverse effects were observed during the in 

vivo procedures.  

 

2.5 In vivo experimental design 

HFF mice were allocated into comparable groups (n=8) based on blood glucose and body 

weight and were administered either saline vehicle (0.9% (w/v) NaCl, i.p.), Ac3IV or 

exendin-4 (both at 25 nmol/kg, bw, i.p.) twice daily for 22 days. This peptide dose was 

chosen based on our previous studies assessing metabolic effects of AVP in mice [18]. An 

additional control group of HFF mice receiving either native AVP or oxytocin was not 

employed due to the short biological half-lives of these peptides [18,27]. Cumulative food 

and fluid intake, body weight, non-fasting glucose and insulin concentrations were monitored 

at regular intervals. At the end of the treatment period, plasma was collected for assessment 

of circulating glucagon and lipids. In addition, i.p. and oral glucose (18 mmol/kg) tolerance 

tests were performed in 18 h fasted mice, with peripheral insulin sensitivity (15 U/kg bw, i.p.) 

examined tests in non-fasted mice, at the end of the study. At termination, body composition 

was assessed by dual energy X-ray absorptiometry (DEXA) scanning using a PIXImus 

densitometer (GE Medical Systems, USA), prior to subsequent analyses detailed below [33].  

 



 
 

2.6 Terminal analyses  

Following completion of DEXA analysis, pancreatic tissues were excised and processed for 

either histological analysis or hormone content. Briefly, pancreatic tissues were divided 

longitudinally with half snap frozen for hormonal content measurement as described 

previously [34], and the other half processed for immunohistochemical analysis using 

standard laboratory methods, as previously described from our laboratory [35].  

 

2.7 Biochemical analysis  

Blood samples were collected from the cut tip on the tail vein of conscious mice. Blood 

glucose was measured immediately using a hand-held Ascencia Contour blood glucose meter 

(Bayer Healthcare, Newbury, Berkshire, UK). For plasma insulin and glucagon, blood was 

collected in chilled fluoride/heparin coated micro-centrifuge tubes (Sarstedt, Numbrecht, 

Germany) and centrifuged using a Beckman micro-centrifuge (Beckman Instruments, 

Galway, Ireland) for 10 minutes at 12,000 rpm. Plasma was separated and stored at -20oC, 

until determination of plasma insulin by radioimmunoassay [36] and glucagon by a 

commercially available ELISA kit (EZGLU-30K, Merck Millipore). Plasma lipid profile was 

assessed by an ILab 650 Clinical Analyser (Instrumentation Laboratory, Warrington, UK). 

 

2.8 Statistical analysis  

Analyses were performed using GraphPad PRISM software (Version 5.0). Values are 

expressed as mean ± S.E.M. Comparative analyses between groups were carried out using a 

One-way ANOVA with Bonferroni’s post hoc test or student's unpaired t-test, as appropriate. 

The difference between groups was considered significant if P<0.05. 

 

3. Results 



 
 

3.1 Plasma degradation 

AVP was fully degraded by a 4 hour incubation in plasma (Table 1). In addition, oxytocin 

and all non N-terminally acetylated AVP analogues were also degraded by more than 60% 

during the 4 hour incubation (Table 1). N-acetylation of the cysteine residue in 3IV or 3IVR 

generated AVP analogues that were completely stable (Table 1).  

 

3.2 Effects of AVP analogues on in vitro insulin secretion 

Representative dose-dependent insulin secretory responses of native AVP and oxytocin, as 

well as the two enzymatically stable analogues, namely Ac3IV and Ac3IVR, in both cell lines 

are depicted in Figure 1A-D. As expected, AVP induced prominent insulinotropic effects, 

with both AVP analogues also displaying clear dose-dependent actions in each cell line 

(Figure 1A-D). Full concentration-response curves could not be obtained, thus precluding 

calculation of EC50 values, as well as any comment about relative efficacy of these 

compounds in the different cell lines. Nonetheless, clear insulinotropic efficacy of Ac3IV was 

confirmed in murine islets at a concentration of 10-6 M (Figure 1E).  

 

3.3 In vitro receptor activation profile of AVP analogues   

As expected, AVP-induced insulin secretion was strongly linked to activation of oxytocin, 

V1a and V1b receptors, and to a lesser degree with V2 receptors (Table 1). Removal of the 

disulphide bridge in AVP completely abolished activity at V2 receptors (Table 1). 

Interestingly, the insulinotropic activity of 8LV was related to interaction with all oxytocin 

and vasopressin receptors subtypes, and especially V2 receptors (Table 1). Activity at all 

receptors, barring V1b, was dramatically decreased by disulphide bond removal (Table 1). 

Substitution of isoleucine for phenylalanine in AVP represented by 3IV, had minimal impact 

of receptor activation profile in BRIN BD11 cells (Table 1), but removal of the characteristic 



 
 

AVP disulphide bridge, substantially decreased activity at the level of the oxytocin receptor 

and annulled all V2 receptor activity (Table 1). N-terminal acetylation of 3IV, to yield 

Ac3IV, diminished activity at oxytocin receptors, as evidence by the marked reduction in the 

ability of the oxytocin-receptor antagonist L-351,257 to reduce the insulin secretory response 

in BRIN BD11 cells (Table 1). When the disulphide bridge was removed from Ac3IV, 

oxytocin receptor activity was restored but activity at V1b, and particularly V1a, receptors 

reduced (Table 1). Given Ac3IV exhibited pronounced enzymatic stability and good 

insulinotropic efficacy in 1.1B4 cells, oxytocin receptor interaction was also examined in 

INS1 832/13 beta cells with CRISPR-Cas9 induced oxytocin receptor KO to corroborate 

findings with L-351,257. As shown in Figure 1F, insulin secretory effectiveness of Ac3IV 

was significantly (P<0.05) more prominent than AVP in oxytocin receptor KO beta cells.  

 

3.4 Effects of twice daily administration of Ac3IV on body weight, energy intake, fluid 

intake and plasma glucose, insulin and glucagon in HFF mice 

Based on enzymatic stability, impressive in vitro bioactive profile and lack of effect at V2 

receptors which mediate renal actions of AVP, Ac3IV was selected for antidiabetic efficacy 

testing in HFF mice, and compared directly head-to-head against the clinically approved 

GLP-1 mimetic, exendin-4. Twice daily administration of 25 nmol/kg Ac3IV or exendin-4 

resulted in significant (P<0.05 to P<0.001) reductions in body weight (Figure 2A), and 

importantly body fat content (Figure 2B), by day 22 when compared to HFF control mice. 

This was associated with significantly decreased (P<0.05 to P<0.001) cumulative energy 

intake in both treatment groups (Figure 2C). Fluid intake was similar in all groups with a 

small cumulative increase observed after 19 days of Ac3IV treatment (Figure 2D). 

Circulating blood glucose levels were also decreased in all treatment groups, culminating in 

significant (P<0.01) reductions when compared to HFF controls on day 22 (Figure 2E). This 



 
 

was accompanied by reduced overall glucose exposure in exendin-4 and Ac3IV mice during 

the entire treatment period (Figure 2E inset). Corresponding, daily plasma insulin 

concentrations were largely unaltered during the study, but there was a significant decrease 

(P<0.05) in this parameter in both treatment groups on day 16 (Figure 2F), as well as in 

overall insulin levels during the 22 days (Figure 2F inset). Plasma glucagon levels were not 

changed in exendin-4 treated HFF mice, but significantly reduced (P<0.05) by Ac3IV 

treatment (Figure 3A).  

 

3.5 Effects of twice daily administration of Ac3IV on pancreatic hormone content, lipid 

profile and bone mineral density in HFF mice 

Pancreatic insulin content was significantly reduced (P<0.05 to P<0.01) in both treatment 

groups when compared to HFF control mice (Figure 3B), whereas pancreatic glucagon 

content was not altered (Figure 3C). In terms of lipid profile, Ac3IV and exendin-4 therapy 

were both associated with reduced total cholesterol (Figure 3D) and increased HDL-

cholesterol (Figure 3E) levels, but only Ac3IV significantly (P<0.05) decreased LDL-

cholesterol and triglyceride concentrations (Figure 3F,G). Bone mineral density (P<0.01) and 

content (P<0.05) were increased on day 22 in both the HFF treatment groups of mice (Figure 

3H,I).   

 

3.6 Effects of twice daily administration of Ac3IV on glucose tolerance and insulin 

sensitivity in HFF mice 

Administration of exendin-4 twice daily for 22 day significantly (P<0.05 to P<0.01) 

decreased individual and overall blood glucose levels following an i.p. glucose challenge 

(Figure 4A,B). Ac3IV treatment was also associated with significantly (P<0.05) decreased 

glucose 0-120 min AUC values when compared to HFF controls (Figure 4B). In addition, 



 
 

individual glucose-induced insulin concentrations were only increased (P<0.05 – P<0.01) by 

Ac3IV (Figure 4C), with both treatment regimens increasing overall AUC insulin values 

(Figure 4D). In response to an oral glucose challenge, the treatment interventions 

significantly decreased individual (P<0.05 to P<0.001) and overall (P<0.01) blood glucose 

levels when compared to saline controls (Figure 4E,F). There were no changes in plasma 

insulin concentrations at individual timepoints (Figure 4G), but exendin-4 and Ac3IV both 

increased (P<0.01 to P<0.001) 0-120 overall plasma insulin concentrations in response to an 

oral glucose load (Figure 4H). Furthermore, the glucose lowering activity of exogenous 

insulin was significantly increased (P<0.01 to P<0.001) by both treatments on day 22 (Figure 

4I,J), which was  supported by a significant decrease (P<0.01 to P<0.001) in HOMA-IR 

values in these groups of mice when compared to saline treated HFF controls (Figure 4K).  

 

3.7 Effects of twice daily administration of Ac3IV on pancreatic islet morphology in 

HFF mice 

Representation histological images of pancreatic islets stained for insulin and glucagon are 

shown in Figure 5A. High fat feeding was associated with insulin resistance and islet 

expansion, but both exendin-4 and Ac3IV significantly decreased islet and beta-cell areas 

when compared to HFF saline controls (Figure 5B,C), with effects being more prominent in 

Ac3IV treated mice. There was no significant change in alpha-cell area between the groups of 

HFF mice (Figure 5D). Proliferation rates of alpha and beta cells were decreased by both 

exendin-4 and Ac3IV treatment (Figure 5E,F). Apoptotic rates were also examined by co-

staining glucagon or insulin, respectively, with TUNEL dye (Figure 5G,H). Both exendin-4 

and Ac3IV reduced (P<0.01 – P<0.001) beta cell apoptosis rates when compared to saline 

control mice (Figure 5G), with exendin-4 treatment also increasing (P<0.05) the rate of 

alpha-cell apoptosis (Figure 5H).  



 
 

 

4. Discussion 

The presence of AVP receptors on pancreatic beta-cells, as well as related positive effects of 

AVP on insulin secretion demonstrated many years ago [37], have since been confirmed by 

several laboratories [18,38,39]. AVP also has established satiety actions [40], as well as an 

ability to avert the onset of hypoglycaemia [9]. Indeed, hypothalamic AVP neurons 

regulating glucagon secretion are considered to function as metabolic glucose sensors [41], 

supporting an important role for AVP in glucose homeostasis. Such actions are believed to be 

largely mediated through activation and modulation of V1a and V1b receptor signalling [10]. 

Despite this knowledge, the potential therapeutic utility of AVP has been overlooked to date. 

The reason for this is likely two-fold; firstly, AVP has an extremely short half-life in the 

circulation and secondly, AVP also activates V2 receptors that are linked to aquaporin-

mediated fluid reabsorption and concomitant elevation of blood pressure [42]. The present 

study was undertaken to directly overcome these drawbacks, through generation of 

enzymatically stable AVP peptides that possess a receptor activation profile more compelling 

to long-term benefits in obesity-diabetes.   

 Given the similarity in amino acid sequence of AVP and oxytocin [10], plus the 

established benefits of oxytocin receptor activation in diabetes [27], introduction of key 

oxytocin residues into the sequence of  AVP analogues might be envisaged to generate 

peptides with additional beneficial oxytocin receptor activation properties. However, it 

should be noted that oxytocin has a much less prolonged and diminished effect on insulin 

secretion than AVP as observed in this study and elsewhere [37], highlighting the major 

importance of V1a and V1b receptor activity for beta-cell actions. Interestingly, AVP is also 

believed to play a role in somatostatin secretion [43], indicating a complex mode of action on 

islet cells. Although it has been suggested that the stimulatory effects of AVP on insulin 



 
 

secretion are indirectly mediated by glucagon via paracrine islet interactions [20], we and 

others clearly show involvement of direct beta-cell stimulatory effects [12,18,39]. In 

agreement, we observed only moderate insulinotropic actions of the AVP analogues in clonal 

beta-cells, with much more prominent effects in isolated murine islets, confirming 

importance of paracrine islet cell signalling in this regard [20].  

In the current study, native AVP and some related analogues modulated both oxytocin 

and AVP receptor signalling pathways in BRIN BD11 cells, but preservation V2 receptor 

activity and associated effects on the kidney and fluid retention were not considered 

favourable. Interestingly, reduced AVP exhibited bioactivity at oxytocin, V1a and V1b , with 

no interaction at V2 receptors, but this peptide was relatively unstable. It should also be noted 

that removing the disulphide bridge appeared to lead to slightly different effects on insulin 

secretory activity of native AVP and Ac3IV. This is likely to reflect distinct changes in the 

three dimensional structure of the peptides and their interaction with receptors on target cells. 

However, further studies and detailed structure/function analysis are required to clarify this 

aspect. In addition, investigation of specific downstream signalling pathways would also have 

been useful to help further confirm receptor selectivity of the AVP analogues. However, on 

closer inspection, our in vitro characterisation data for 3IV, and the daughter analogue 

Ac3IV, led to selection of the N-terminally acetylated analogue to evaluate the potential 

benefits of combined V1a and V1b receptor signalling in diabetes. This included careful 

consideration of enzymatic stability, receptor activation prolife and in vitro bioactivity in 

both rodent and human beta-cells. Key in this decision was the lack of effect of Ac3IV on V2 

receptors and resistance to enzymatic degradation. In this regard, AVP is known to be rapidly 

degraded by vasopressinase enzymes in the circulation, as well as being subject to renal 

elimination [9]. Whilst our in vitro system suggests excellent enzymatic stability of Ac3IV, it 

did not assess the influence of kidney filtration on peptide bioactivity. To assist with more 



 
 

pragmatic quantification of the ability of Ac3IV to reverse metabolic dysregulation present in 

HFF mice, beneficial effects were compared directly against the approved antidiabetic drug, 

exendin-4. Importantly, there was no obvious change in mouse behaviour during, and gross 

tissue anatomy was unaltered at the end of, the Ac3IV treatment regimen suggesting lack of 

toxicity of this compound. Further longer-term studies are required to fully assess safety 

issues, but it is noteworthy that Ac3IV is structurally identical to native AVP barring addition 

of an N-terminal acetyl group and substitution of the third amino acid residue, phenylalanine 

for isoleucine, that already exists in the closely related peptide hormone oxytocin. 

Both peptide interventions decreased circulating glucose, body weight and fat content 

in HFF mice, presumable in part linked to prominent satiety actions. This is in full agreement 

with established metabolic benefits of GLP-1 receptor activation [2], and in harmony with 

actions of V1a receptor activation to suppress appetite [12]. Studies in mice pair-fed to mimic 

Ac3IV induced reductions of food intake would be required to help establish if benefits on 

body weight and metabolism occurred independently of changes in energy intake. Consistent 

with lack V2 action which might otherwise cause fluid retention, Ac3IV had only marginal 

effects on water intake with even a small cumulative increase being apparent towards the end 

of the study, but further studies are required to fully assess effects of Ac3IV on renal 

function. Somewhat surprisingly, given the established glucagonostatic effects of GLP-1 

receptor agonism [2] and reported glucagonotropic actions of AVP [20], circulating glucagon 

concentrations were reduced by Ac3IV, but not by exendin-4. This being in the face of 

increased pancreatic alpha-cell apoptotic rates in exendin-4 treated HFF mice, and a tendency 

for reduced pancreatic glucagon content. In relation to this, there was a reduction in islet- and 

beta-cell areas, as well as pancreatic insulin content, in both treatment groups of HFF mice, 

accompanied by decreased proliferation of both alpha- and beta-cells. Thus, changes in islet-

cell proliferation rates, or in recently reported islet cell transitioning events [44], probably 



 
 

outweigh decreased beta-cell apoptosis observed with both peptides. Moreover, GLP-1 

receptor signalling has recently been linked to positive effects on alpha- and beta-cell 

transdifferentaition [45]. Taken as a whole, it could be assumed that reductions in islet- and 

beta-cell areas are directly linked to the improved diabetic state evoked by both treatment 

regimens, leading to reduced metabolic demand.  

In keeping with this, circulating insulin concentrations were largely unaltered and 

peripheral insulin sensitivity significantly improved in peptide treated HFF mice, in 

accordance with notable GLP-1 and V1b receptor mediated benefits on insulin action [14,33]. 

Moreover, both Ac3IV and exendin-4 reduced total- and increased HDL-cholesterol levels. 

However, only Ac3IV significantly reduced circulating LDL-cholesterol and triglyceride 

levels, highlighting this as a distinct advantage over exendin-4 given that diabetes and obesity 

represent key risk factors for cardiovascular disease [46]. In addition, obesity-driven forms of 

diabetes are also associated with increased occurrence of bone fragility fractures [47,48], and 

both Ac3IV and exendin-4 augmenting bone mineral content and density, implying another 

potentially important therapeutic benefit.  

In spite of this, it should also be noted that increased levels of copeptin, a peptide co-

secreted with AVP and considered as an excellent surrogate marker for assessing circulating 

AVP concentrations [49], is associated with metabolic dysregulation and onset of diabetes 

[9]. However, this effect could well be linked to AVP receptor desensitisation and inherent 

adaptations to increase AVP secretion, and as such requires further detailed study. Indeed, a 

very similar phenomenon is reported for the incretin hormone GIP in type 2 diabetes [50] that 

possesses significant parallels with the bioactive profile of AVP, and this issue now appears 

to be more than surmountable from a therapeutic viewpoint [23]. Moreover, both oral and 

intraperitoneal glucose tolerance were substantially improved by Ac3IV in HFF mice, and 

consistently linked to the glucose-dependent insulinotropic actions. Such positive effects are 



 
 

particularly notable given aforementioned reductions in beta-cell area and pancreatic insulin 

content. Interestingly, AVP has been shown to stimulate V1b receptor-dependent secretion of 

GLP-1 from mouse and human intestines [51], and this could be one potential reason for the 

observed similar benefits of Ac3IV and exendin-4 on glucose disposal. Furthermore, we and 

others have previously illustrated similarities in beta-cell signalling pathways for AVP and 

the other hormones including incretin hormones [18]. However, further studies would be 

required to confirm the potential positive impact of Ac3IV on the secretion and action of 

GLP-1 and other gut hormones. 

In conclusion, combined sustained activation of V1a and V1b receptor pathways by 

Ac3IV exerts notable benefits on body weight and energy regulation, glucose homeostasis, 

insulin action and lipid metabolism, as well as reversing detrimental effects of high fat 

feeding on pancreatic architecture. Metabolic benefits were at least equivalent, and at times 

superior, to those exerted by the clinically approved GLP-1 mimetic, exendin-4. Future 

investigations into the therapeutic potential of AVP for the treatment of obesity and related 

diabetes may also want to consider further peptide optimisation and approaches capable of 

combining specific metabolic benefits of GLP-1 mimetics alongside V1a and V1b receptor 

activation. In this respect, it is not altogether uninteresting that effective strategies exist for 

the oral administration of both AVP and GLP-1 analogues [52].  
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Table 1: Amino acid sequence, degradation profile, insulin release characteristics and receptor selectivity of AVP analogues 

 
  

 

 

 

 

 

 

 

 

Replacement of amino acids in AVP with those from oxytocin in positions 3 and 8 are indicated in bold underlined text for each analogue. ˂ > indicates 

presence of the disulphide bridge between the two cysteines at position 1 and 6. To assess enzymatic stability, peptides (n=3) were incubated with plasma for 

4 h and degradation profile followed by RP-HPLC. For insulin secretory experiments, BRIN BD11 cells were incubated (n=8; 20 min) with peptides (10-6 M) 

in combination with 10-6 M of either selective oxytocin (OTRa, L-351,257), V1a (V1aRa , SR-49059), V1b (V1bRa , SR -149415) or V2 (V2Ra, Tolvaptan) 

receptor antagonists, and percentage inhibition of insulin secretion recorded. Values are expressed as mean ± SEM. *P<0.05, **P<0.01, ***P<0.001 

compared with respective control. Abbreviations: Ac; acetyl. 

 

Peptide/ 
Analogues Sequence %  degradation at 4 h % reduction in insulin secretion compared to the control in the presence of 

receptor antagonists 
   OTRa V1aRa V1bRa V2Ra 

AVP C<YFQNC>PRG-NH2 100 ± 0.1 42 ± 5* 64 ± 3*** 57 ± 6*** 20 ± 10 

AVPR CYFQNCPRG-NH2 65 ± 0.4 59 ± 6** 42 ± 5* 39 ± 5 * 0 

Oxytocin C˂YIQNC>PLG-NH2 65 ± 0.9 42 ± 5* 15 ± 7 62 ± 4*** 1 ± 6 

8LV C<YFQNC>PLG-NH2 67 ± 0.1 42 ± 11* 46 ± 5*** 76 ± 5*** 92 ± 2*** 

8LVR CYFQNCPLG -NH2 88 ± 0.7 27 ± 20 8 ± 15 58 ± 5 ** 0 

3IV C<YIQNC>PRG-NH2 68 ± 0.2 68 ± 3*** 82 ± 3*** 45 ± 9* 22 ± 10 

3IVR CYIQNCPRG-NH2 64 ± 0.4 13 ± 5 34 ± 11* 46 ± 13* 0 

Ac3IV Ac-C<YIQNC>PRG-NH2 0 17 ± 4 24 ± 3*** 22 ± 5** 0 

Ac3IVR Ac-CYIQNCPRG-NH2 0 50 ± 4*** 12 ± 5 15 ± 5 0 



 
 

Figure legends 

Figure 1. Effects of AVP, oxytocin and AVP analogues Ac3IV, Ac3IVR on insulin 

secretion and receptor selectivity. (A-D) Effects of AVP and related analogues (10-12 - 10-6 

M) on insulin secretion (20 min) at (A,C) 5.6 and (B,D) 16.7 mM glucose from (A,B) rodent 

BRIN BD11 or (C,D) human 1.1B4 beta cells. (E) Isolated islets from male mice were 

incubated (60 min) at 16.7 mM glucose and the effects of AVP, oxytocin and Ac3IV (10-8 

and 10-6 M) on insulin secretion examined. (F) Effects of AVP and Ac3IV on insulin 

secretion (20 min) from oxytocin receptor KO INS1 832/13 beta-cells at 16.7 mM glucose. 

Values are mean ± SEM (A-D,F) n=8 and (E) n=3. *P<0.05, **P<0.01, ***P<0.001 

compared to respective glucose alone control. ΔP<0.05 compared to AVP at the same 

concentration. 

 

Figure 2. Effects of twice daily administration of Ac3IV or exendin-4 on (A) body 

weight, (B) total body fat, cumulative (C) energy and (D) fluid intake, as well as (E) 

glucose and (F) insulin concentrations in HFF mice. (A,C-F) Parameters were measured at 

regular intervals prior to, and during, 22 days twice-daily treatment with test peptides 

(25 nmol/kg bw) in HFF mice. (B) Parameter was measured on day 22. (E,F) Insets depict 

AUC data for glucose and insulin over the 22 day treatment period. All values are expressed 

as mean ± SEM for 7 mice. *P<0.05, **P<0.01, ***P<0.001 compared with HFF-saline 

control mice. 

 

Figure 3. Effects of twice daily administration of Ac3IV or exendin-4 on pancreatic 

circulating glucagon, hormone content, lipid profile and body composition in HFF mice. 

Parameters were measured after 22 days treatment with twice-daily injection of test peptides 

(25 nmol/kg bw) in HFF mice. (A) Plasma glucagon was determined using a commercially 



 
 

available ELISA kit. (B,C) Pancreatic tissue was isolated at the end of the study and (B) 

insulin or (C) glucagon content determined following acid-ethanol extraction. (D-G) 

Terminal non-fasted plasma (D) total cholesterol, (E) HDL-cholesterol (F) LDL-cholesterol 

and (G) triglycerides were measured by an ILab 650 Clinical Analyser. (H) Bone mineral 

density and (I) bone mineral content were measured by DXA. Values are mean ± SEM for 7 

mice. *P<0.05, **P<0.01 compared with HFF-saline control mice. 

 

Figure 4. Effects of twice daily administration of Ac3IV  or exendin-4 on glucose 

tolerance and insulin sensitivity in HFF mice. Parameters were measured after 22 days 

treatment with twice-daily injection of test peptides (25 nmol/kg bw) in HFF mice. (A,E) 

Blood glucose and (C,G) plasma insulin were measured prior to and after (A,C) i.p. or (E,G) 

oral administration of glucose alone (18 mmol/kg) at t = 0 min in 18 h fasted mice. (B,D,F,H) 

Respective AUC data for 0-120 min post glucose injection are shown. (I,J) Blood glucose 

was measured after i.p. administration of insulin (15 U/kg bw) at t = 0 min in non-fasted mice. 

(K) HOMA-IR was calculated using fasting insulin (mUI/L) multiplied by fasting glucose 

(mmol/L) divided by 22.5 on day 22. All values are expressed as mean ± SEM for 7 mice. 

*P<0.05, **P<0.01, ***P<0.001 compared with HFF-saline control mice. 

 

Figure 5. Effects of twice daily administration of Ac3IV or exendin-4 on pancreatic islet 

architecture as well as alpha- and beta cell proliferative and apoptotic rates in HFF 

mice. Parameters were measured after 22 days treatment with twice-daily injection of test 

peptides (25 nmol/kg bw) in HFF mice. (A) Representative images of islets showing insulin 

(red) and glucagon (green) immunoreactivity from each treatment group. (B-D) Islet 

architectural analysis included assessment of (B) total islet, (C) beta- and (D) alpha-cell 

areas. (E,G) Beta- and (F,H) alpha-cell proliferation or apoptotic rates were measured by co-



 
 

staining with insulin or glucagon, respectively, and (E,F) Ki-67 antibody or (G,H) TUNEL 

reagent, as appropriate. Values are mean ± SEM for 7 mice. *P<0.05, **P<0.01, ***P<0.001 

compared with HFF-saline control mice.  
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