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Abstract In many real-world classification problems

there exist multiple subclasses (or clusters) within a

class; in other words, the underlying data distribution

is within-class multimodal. One example is face recog-

nition where a face (i.e. a class) may be presented in

frontal view or side view, corresponding to different

modalities. This issue has been largely ignored in the

literature or at least under studied. How to address

the within-class multimodality issue is still an unsolved

problem. In this paper, we present an extensive study

of within-class multimodality classification. This study

is guided by a number of research questions, and con-

ducted through experimentation on artificial data and

real data. In addition, we establish a case for within-

class multimodal classification that is characterised by
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the concurrent maximisation of between-class separa-

tion, between-subclass separation and within-class com-

pactness. Extensive experimental results show that within-

class multimodal classification consistently leads to sig-

nificant performance gains when within-class multimodal-

ity is present in data. Furthermore, it has been found

that within-class multimodal classification offers a com-

petitive solution to face recognition under different light-

ing and face pose conditions. It is our opinion that the

case for within-class multimodal classification is estab-

lished, therefore there is a milestone to be achieved in

some machine learning algorithms (e.g. Gaussian mix-

ture model) when within-class multimodal classifica-

tion, or part of it, is pursued.

Keywords Within-class multimodality · linear

discriminant analysis · subclass discriminant analysis ·
separability-oriented subclass discriminant analysis

1 Introduction

Understanding the underlying data distribution before

applying a machine learning process is an important

step in the analysis of data, as otherwise, wrong choices

may be made in the different stages of the machine

learning process. Every single algorithm used in ma-

chine learning has, either explicitly or implicitly, some

assumptions about the data for it to work effectively.

For linear regression, the typical assumptions include

linearity (there is linear relationship between the in-

dependent and dependent variables), exogeneity (the

errors between observed and predicted values should

have conditional mean zero), multicollinearity (the in-

dependent variables must all be linearly independent),

homoscedasticity (the errors have the same variance in
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each observation) and normality (the errors have nor-

mal distribution) [7, 23]. For random forests [2], one as-

sumption is that changes in the dependent variable are

best described by hyper-rectangles in the independent

variables (because they are based on trees). Another

assumption is that no future value of the dependent

variable will be outside of the range of values already

in the training data. If the distribution of data can

be described as the canonical statistical distributions

it is possible to gain much inferential and predictive

power [15]. The key to any successful use of data in an

analysis or in making a decision is applying the correct

machine learning/statistical modelling technique to the

data at hand.

In this paper we consider a particular type of data

distribution where there are multiple modalities (con-

centrations/clusters of data) within each class, within-

class multimodality, and study how to choose the right

feature extraction methods to model such data more

effectively. Figure 1(a) illustrates within-class multi-

modality at a conceptual level, where there are two and

three modalities respectively in Class One and Class

Two. Within-class multimodality is prevalent in the

real world. For example, we can recognise people un-

der different illuminations, and also in different poses.

If we represent face images of the same person under

different illuminations, it is likely that different images

with different illuminations will be in different clus-

ters (see Figure 1(b) for an illustration). Actually, face

recognition under varying illuminations is a challenging

problem[25, 31]. The same can be said of face recogni-

tion in different head poses (see Figure 1(c) for an il-

lustration). Another potential application is energy dis-

aggregation of appliances by non-intrusive load moni-

toring (NILM) [8, 11, 12, 19], namely disaggregating

the total consumption readings into the consumption

patterns of each individual appliance, where the total

consumption reading of a house represents a class and

the appliances in a house are the modalities within this

class. Therefore, dividing a class into multiple modali-

ties is similar to disaggregating the total consumption

of all appliance into the consumption of each appliance.

Within-class multimodality has been largely ignored

in the literature, or at least under studied. The closest

studies are linear discriminant analysis (LDA) [5, 22],

subclass discriminant analysis (SDA) [32], Mixture sub-

class discriminant analysis (MSDA) [6], and separability-

oriented subclass discriminant analysis (SSDA) [26]. Un-

like LDA which separates different classes under the as-

sumption that each class is unimodal, SDA, MSDA and

SSDA recognize that a class may be multimodal and

seek to find LDA dimensions based on multimodality

descriptors through the notion of subclass. SDA, MSDA

and SSDA have better classification performance than

LDA, which indicates the importance of within-class

multimodality for classification. LDA is a classical ap-

proach to discriminant dimensionality reduction. It trans-

forms data from the original data space into a lower di-

mensional space (LDA space) so that the within-class

compactness is maximised whilst the between-class sep-

aration is maximised. This is achieved through max-

imising the well-known Fisher objective, which is com-

posed by the within-class scatter matrix and between-

class scatter matrix [5, 22]. In the presence of within-

class multimodality, LDA reduces dimensionality by merg-

ing multiple modalities in each class into a single modal-

ity. SDA extends LDA in order to separate classes at a

subclass level rather than at a class level. It transforms

data into a lower dimensional LDA space so that the

between-subclass separation is maximised, and within-

class compactness is maximised. The SDA subclasses

are discovered using the leave-one-out-test (LOOT) cri-

terion proposed in [32] or the stability criterion [18].

MSDA extends SDA by replacing SDA’s within-class

scatter matrix with a new within-subclass scatter ma-

trix. SSDA further extends SDA to minimise the level

of overlap between subclasses within every class; thus

the between-class separation is maximised, between-

subclass separation is maximised and within-class com-

pactness is maximised. The SSDA subclasses are dis-

covered by the agglomerative hierarchical clustering al-

gorithm using a new criterion called the separability

criterion [26], which aims to divide each class into sev-

eral non-overlapping clusters.

A lot is known about within-class unimodality clas-

sification1, whose aim is to build a model assuming

there is one modality per class. It is well-known that si-

multaneously minimising intra-class variance and max-

imising inter-class variance will increase learning perfor-

mance [4, 28, 29]. However, not enough is known about

within-class multimodality classification, when data dis-

tribution is within-class multimodal. Existing studies

(e.g. SDA and SSDA) only scratch the surface in mul-

timodality, and many questions remain unanswered. In

this paper, we present an extensive study of within-class

multimodality classification as guided by the follow-

ing five key questions about within-class multimodal-

ity that are important for the understanding of multi-

modality, the design of new learning algorithms and the

improvement of existing learning algorithms.

– Question 1: Why do we consider multimodality?

– Question 2: How many clusters should we use?

– Question 3: How should we utilise the clusters?

1 Unimodality is when data distribution has one centre of
concentration, whereas multimodality is when data distribu-
tion has multiple centres of concentration.
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(a) Modalities in two classes (b) Examples of illumination modalities
existing in the face images

(c) Examples of head pose modalities ex-
isting in the face images

Fig. 1: (a) There are two modalities in Class One, and three modalities in Class Two, where different modalities

are marked by different colours. (b) Each person has three different illumination modalities: two face images in

the green dotted circle are taken under normal lighting; one face image in the cyan dotted circle is taken under

normal lighting and right light on; one face image in the orange dotted circle is taken under normal lighting and

left light on. (c) Each person has two different head pose modalities: two face images in the green dotted circle are

taken with frontal head pose, and one face image in the cyan dotted circle is taken with rightwards head pose.

– Question 4: Do we have real benefits?

– Question 5: If we keep increasing modalities, what

will happen?

The study of these questions is important for a num-

ber of reasons. Firstly, it will reveal a relationship be-

tween the modality of the data distribution and the

comparative performance of the classification, so it is

possible to gain an insight into the data through the

comparative model performance using different data di-

mensionality reduction techniques. Secondly, it will es-

tablish the fact that different dimensionality reduction

techniques are suitable for different data distributions.

Thirdly, it will provide a direction for improving other

machine learning algorithms such as neural networks

by designing new loss functions.

We create artificial data sets having a range of modal-

ities and conduct extensive experiments in order to an-

swer Questions 1-3 (and possibly Question 5). We also

select real world data sets that clearly have multiple

modalities and conduct extensive experiments to an-

swer Question 4. The contributions of this paper are

highlighted as follows:

– We answered the abovementioned five key questions.

– We obtained the following useful findings: 1) when

within-class multimodality is present, the concur-

rent maximisation of between-class separation, within-

class compactness and between-subclass separation

can lead to significant performance gains; 2) within-

class multimodal classification offers a competitive

solution to face recognition under different lighting

and face pose conditions, where each lighting/pose

condition corresponds to a separate modality in the

data space; 3) There is correlation between multi-

modality and performance gain in within-class mul-

timodality classification. Optimal performance can

be expected if the number of modalities in the within-

class multimodality classification algorithm is the

same as the true number of within-class modalities

The rest of the paper is organised as follows. Sec-

tion 2 presents relevant work including linear discrim-

inant analysis (LDA), subclass discriminant analysis

(SDA) and separability-oriented subclass discriminant

analysis (SSDA). Section 3 focuses on artificial data sets

and their rationale. Section 4 attempts to answer vari-

ous questions about multimodality using artificial data
sets, and Section 5 attempts to answer other questions

using real data sets. Section 6 concludes the paper with

a summary.

In the rest of the paper we use cluster, subclass and

modality in different contexts but these terms are in-

terchangeable in this paper.

2 Related Work

In this section, we present an overview of related work,

including the LDA, SDA and SSDA to provide the con-

text for this work and introduce the necessary technical

notations.

2.1 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a classical method

for discriminant analysis. It has been widely used in
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many areas, such as pattern recognition [13, 14] and

machine learning [10, 27]. LDA seeks to find a lin-

ear combination of features that separates two or more

classes of objects. The resulting combination may be

used as a linear classifier, or more commonly, for di-

mensionality reduction before later classification [30].

LDA uses a between-class scatter matrix Sb to measure

the separability of classes, and uses a within-class scat-

ter matrix Sw to measure the compactness of each class.

Then LDA attempts to find a linear projective matrix

W that projects data into a new space, LDA space,

that is spanned by LDA features (or LDA dimensions),

such that a measure of the between-class scatter matrix

Sb in the new space is maximised and simultaneously

the same measure of the within-class scatter matrix Sw
in the new space is minimised. Sb and Sw are defined,

respectively, as follows:

Sb =
1

N

C∑
i=1

Ni(µi − µ)(µi − µ)T , (1)

Sw =
1

N

C∑
i=1

Ni∑
j=1

(xij − µi)(xij − µi)
T , (2)

where N is the number of samples, Ni is the number of

samples in class i, C is the number of classes, µi is the

mean of class i, µ is global mean of all samples, and xij
denotes the jth sample in class i.

LDA is an optimisation process, with the following

Fisher objective:

JLDA(W ) =
tr(WTSbW )

tr(WTSwW )
, (3)

where W is a projective matrix that projects data from

the data space to the LDA space. In order to find an

LDA space that can separate different classes well, LDA

needs to find the matrix W ∗ = arg maxW JLDA(W ). It

turns out that the sought-after projective matrix W ∗

is composed of the eigenvectors corresponding to the

largest eigenvalues of S−1w Sb [26], under the assumption

that every class is Gaussian distributed and has the

same covariance.

2.2 Subclass Discriminant Analysis

Subclass discriminant analysis (SDA) [32] is a variant

of LDA that separates classes at a subclass level rather

than at a class level, based on the observation that the

data distribution in a class may be multimodal (i.e.,

forming clusters). This is achieved by dividing each

class into a set of subclasses and then running an LDA-

like optimisation process to maximise between-subclass

separation and within-class compactness.

The between-class scatter matrix Sb of LDA is re-

placed by the between-subclass scatter matrix, which is

defined below Eq.(4):

SSDAb =

C−1∑
i=1

Ki∑
j=1

C∑
l=i+1

Kl∑
n=1

pijpln(µij −µln)(µij −µln)T ,

(4)

where C denotes the number of classes, Ki (Kl)denotes

the number of subclasses in class i (l), µij (µln) de-

notes the mean of the jth (nth) subclass in class i (l),

pij =
Nij

N (pln = Nln

N ) denotes the prior of the jth (nth)

subclass of class i (l), and Nij (Nln) is the number of

samples in jth (nth) subclass of class i (l).

The within-class scatter matrix of SDA is re-defined

as the sample covariance matrix as below Eq.(5):

SSDAw =
1

N

N∑
j=1

(xj − µ)(xj − µ)T , (5)

where N , xj , and µ are the number of instances, the

jth instance and the mean of all instances, respectively.

The Fisher objective is re-defined as follows (Eq.(6)):

JSDA(W ) =
tr(WTSSDAb W )

tr(WTSSDAw W )
. (6)

In order to divide each class into the same num-

ber of subclasses, a leave-one-out-test (LOOT) crite-

rion [32] or a faster stability criterion [18] is used to-

gether with a nearest neighbour based clustering al-

gorithm [32]. Firstly, the clustering algorithm is used

to sort the samples of each class so that samples with

smaller Euclidean distance stay closer. To achieve this,

two samples A and B are found in each class that have

the largest Euclidean distance between each other, and

are taken as the 1st and nth samples in the sorted data.

After that, the samples ranked from 1st to (n/2)th are

near A, and the samples ranked from (n/2+1)th to nth

are near B. Then, based on the number of subclasses

set by the user, the sorted samples are divided into the

specified number of subclasses for each class. Finally,

the LOOT criterion or stability criterion is used to find

the optimal number of subclass for each class.

2.3 Separability-Oriented Subclass Discriminant

Analysis

Separability-oriented subclass discriminant analysis

(SSDA) [26] is an extension of SDA, which also sepa-

rates classes at subclass level. It aims to (1) maximise

the between-subclass separation within every class; (2)
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maximise the within-class compactness; and (3) max-

imise the overall between-class separation. This is achieved

through an LDA-like optimisation process operating at

subclass level and with a different Fisher objective.

The way to find optimal subclasses for each class is

very different from SDA. SSDA aims to find subclasses

with no or little overlap through agglomerative hierar-

chical clustering guided by a separability criterion [26].

The resulting clustering is one that maximises the av-

erage euclidean distance (AED) between the mean of a

class and the means of subclasses in the class.

Three versions of SSDA exist [26], each having dif-

ferent combination of between-class scatter matrix and

within-class scatter matrix. One version is reviewed here.

The between-class scatter matrix in SSDA, SSSDAb , is

defined in terms of the subclasses:

SSSDAb =

C∑
i=1

Ni
N

Ki∑
j=1

(µij − µ)(µij − µ)T , (7)

where N is the number of samples in the data set, Ni
is the number of samples in class i (i = 1, 2, . . . , C, C

is the number of class) such that
∑C
i=1Ni = N , Ki is

the number of subclasses in class i, µ is the mean of

the whole data set and µij is the mean of subclass j of

class i.

The within-class scatter matrix is the standard LDA

within-class matrix, SSSDAw = Sw. Therefore, the Fisher

objective of SSDA JSSDA(W ) is below, replacing Sb by

SSSDAb . Moreover, we summarise the idea of SSDA in

the Algorithm 1 and show the main steps of SSDA algo-

rithm using a flowchart, see Fig. 2. Here, the notations

used in the flowchart have same meaning as those used
in the Algorithm 1.

JSSDA(W ) =
tr(WTSSSDAb W )

tr(WTSSSDAw W )
=
tr(WTSSSDAb W )

tr(WTSwW )
.

(8)

3 Artificial Data

In order to answer the research questions mentioned

above, we generate four types of artificial data.

– Type 1, consists of two different classes and samples

in each class are from a single multivariate normal

distribution. This type is denoted by C2M1.

– Type 2, consists of two different classes and every

class has two subclasses of samples generated from

two multivariate normal distributions. This type is

denoted by C2M2.

Algorithm 1 SSDA: In this algorithm, C is the number of
classes, AEDik is the average euclidean distance between the
mean of class i and the means of subclasses in class i, and
K∗

i is the number of subclasses found by SSDA for class i

Input: A set of training data X with class labels and the
maximum number of subclasses K.

Output: Transformation matrix W∗.
for i = 1 to C do

for k = 1 to K do
Calculate AEDik using the agglomerative hierarchi-
cal clustering guided by a separability criterion.

end for
K∗

i = argmaxk(AEDik).
Calculate SSSDA

b with K∗
i subclasses using Eq.(7).

Calculate Sw using Eq.(2).
The columns of transformation matrix W∗ is given by
the eigenvectors corresponding to the largest eigvenval-
ues of S−1

w SSSDA
b .

end for

Fig. 2 The flowchart of SSDA algorithm

– Type 3, consists of two different classes and every

class has three subclasses of samples generated from

three multivariate normal distributions. This type is

denoted by C2M3.

– Type 4, consists of three different classes, and every

class has three subclasses of samples generated from

three multivariate normal distributions. This type is

denoted by C3M3.

The number of variables is one parameter in a multi-

variate normal distribution, which is set to 30 for all

types of artificial data in our studies. Two other im-

portant parameters are: the mean µ and covariance σ,
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which are needed to generate artificial data from a mul-

tivariate normal distribution. In our studies, the mean

µ is a 1-by-30 vector and the values of the mean vector

are integers chosen randomly from the range [1, 10]. Co-

variance σ is a 30-by-30 diagonal matrix. There are two

covariance matrixes for C2M1, one for each class. The

values of one covariance matrices for C2M1 are integers

chosen randomly from the range [10, 21], and the val-

ues of the other covariance matrix are integers chosen

randomly from the range [20, 41].

There are four covariance matrices for C2M2, one

for each subclasses and two for each class (there are

two subclasses in each class). For class one, the values

of the covariance matrices for the two subclasses are

integers chosen randomly from the range [10, 21], and

the values of the covariance matrices for the two sub-

classes of class two are integers chosen randomly from

the range [20, 41].

There are six covariance matrices for C2M3, one for

each subclass and three for each class. For class one,

the values of the covariance matrices for the three sub-

classes are integers chosen from the ranges [10, 21] ran-

domly. For class two, the values of the covariance ma-

trices for the three subclasses are integers chosen ran-

domly from the range [20, 41].

There are nine covariance matrices for C3M3, one

for each subclass and three for each class. For class one,

the values of the covariance matrices for the three sub-

classes are integers chosen from the ranges [1, 10] ran-

domly. For class two and class three, the values of the

covariance matrices for the three subclasses are integers

chosen randomly from the ranges [10, 21] and [20, 41],

respectively.

In total 10 data sets are generated for each type,

and every class of every artificial data set (any type)

has 1000 samples. Therefore C2M1, C2M2 and C2M3

each has a total of 2000 samples with 1000 per class.

For C2M2 and C2M3, the samples in each class are ran-

domly placed into two and three subclasses respectively

according to a probability distribution which varies from

data set 1 to 10. C3M3 has a total of 3000 samples

with 1000 per class. The samples in each class are ran-

domly placed into three subclasses in the same way as

for C2M2 and C2M3. The actual number of samples

per subclass are shown in Table 2, Table 3 and Table 4.

4 Multimodality in Artificial Data

Multiple modalities exist in data. In order to have full

insights about the issue of within-class multimodality,

various questions can be asked and answered. In the

Introduction, some questions are posed explicitly, and

Table 1 Classification accuracy with kNN (k=1) of Original,
LDA, SDA and SSDA on ten C2M1 data sets

Data sets
Methods

Original LDA SDA SSDA

C2M1-1 0.8700 0.9700 0.9750 0.9700
C2M1-2 0.8590 0.9540 0.9640 0.9540
C2M1-3 0.8430 0.9500 0.9580 0.9660
C2M1-4 0.8180 0.9490 0.9610 0.9540
C2M1-5 0.8540 0.9540 0.9540 0.9540
C2M1-6 0.8730 0.9620 0.9650 0.9660
C2M1-7 0.8730 0.9670 0.9750 0.9690
C2M1-8 0.8630 0.9660 0.9660 0.9700
C2M1-9 0.8170 0.9320 0.9380 0.9320
C2M1-10 0.8590 0.9620 0.9620 0.9620

the rest of this paper is to seek answers to these ques-

tions. Some questions will be answered using artificial

data in this section. Other questions will be answered

using real-world data in the next section.

4.1 Q1: Is it necessary to address within-class

multimodality?

To answer this question we consider and compare ex-

perimentally three approaches in the presence of within-

class multimodality:

– separating within-class modalities for every class through

the extraction of features by dimensionality reduc-

tion methods such as SDA and SSDA;

– merging within-class modalities as a uni-modality

for every class in the process of feature extraction

using a dimensionality reduction method such as

LDA; and

– doing nothing about within-class multimodality and

using the original data for classification.

In order to evaluate these three approaches, we con-

duct experiments using k-nearest neighbour (kNN, k=1)

as the classifier on all of the artificial data sets. We con-

sider four cases: (1) Original: the original artificial data

sets without any processing for dimensionality reduc-

tion (2) LDA processed (3) SDA processed (4) SSDA

processed. In addition, we use one half of each data set

for training and the other half for testing.

Table 1, Table 2, Table 3 and Table 4 show the ex-

perimental results in the four cases on all of the arti-

ficial data sets. From these results, we can observe the

following:

– It is apparent that SSDA outperforms Original and

LDA on all artificial data sets. In particular, SSDA

improves classification accuracy over Original by at

least 9% on all of the C2M1, C2M2 and C2M3 data

sets, and by at least 14% on the C3M3 data sets.
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Table 2 Classification accuracy with kNN (k=1) of Original, LDA, SDA and SSDA on ten C2M2 data sets, along with the
ratio between the numbers of samples from different subclasses in each class.

Data sets
Methods & ratio

Original LDA SDA SSDA
ratio

Class One Class Two
C2M2-1 0.7850 0.8390 0.9190 0.9370 684:316 701:299
C2M2-2 0.8430 0.9070 0.9410 0.9600 676:324 693:307
C2M2-3 0.8630 0.9500 0.9690 0.9750 521:479 508:492
C2M2-4 0.7970 0.8900 0.9430 0.9610 479:521 499:501
C2M2-5 0.8180 0.8770 0.8770 0.9300 491:509 497:503
C2M2-6 0.8530 0.9220 0.9430 0.9520 486:514 512:488
C2M2-7 0.8640 0.9190 0.9560 0.9590 289:711 305:695
C2M2-8 0.8000 0.9020 0.9250 0.9300 274:726 294:706
C2M2-9 0.7600 0.8860 0.9080 0.9100 186:814 208:792
C2M2-10 0.8230 0.9230 0.9270 0.9450 793:207 796:204

Table 3 Classification accuracy with kNN (k=1) of Original, LDA, SDA and SSDA on ten C2M3 data sets, along with the
ratio between the numbers of samples from different subclasses in each class.

Data sets
Methods & ratio

Original LDA SDA SSDA
ratio

Class One Class Two
C2M3-1 0.7720 0.8370 0.8740 0.9250 208:531:261 189:535:276
C2M3-2 0.8380 0.8750 0.8810 0.9490 359:187:454 362:216:422
C2M3-3 0.7450 0.7990 0.8940 0.9220 358:360:282 327:380:293
C2M3-4 0.8090 0.8930 0.9180 0.9490 141:354:505 130:398:472
C2M3-5 0.7830 0.8680 0.9430 0.9490 11:347:642 7:351:642
C2M3-6 0.7850 0.8400 0.8400 0.9190 8:347:645 2:343:655
C2M3-7 0.7960 0.8470 0.8470 0.9290 188:652:160 194:612:194
C2M3-8 0.7830 0.8420 0.8420 0.9330 437:394:169 438:403:159
C2M3-9 0.7840 0.8390 0.8390 0.9200 431:142:427 413:150:437
C2M3-10 0.7710 0.8460 0.8460 0.9060 426:161:413 452:147:401

Table 4 Classification accuracy with kNN (k=1) of Original, LDA, SDA and SSDA on ten C3M3 data sets, along with the
ratio between the numbers of samples from different subclasses in each class.

Data sets
Methods & ratio

Original LDA SDA SSDA
ratio

Class One Class Two Class Three
C3M3-1 0.7593 0.8480 0.8947 0.9433 659:127:214 654:155:191 666:131:203
C3M3-2 0.7740 0.8287 0.9053 0.9413 559:114:327 569:115:316 562:107:331
C3M3-3 0.7773 0.8587 0.9080 0.9400 776:147:77 785:152:63 736:174:90
C3M3-4 0.7120 0.7267 0.7267 0.9220 313:278:409 326:237:437 321:246:433
C3M3-5 0.7767 0.8067 0.8067 0.9393 330:262:408 265:287:448 317:284:399
C3M3-6 0.7273 0.7647 0.8800 0.9253 425:243:332 449:242:309 400:260:340
C3M3-7 0.7847 0.8180 0.8920 0.9280 168:435:397 195:425:380 176:441:383
C3M3-8 0.7720 0.8560 0.8560 0.9413 165:405:430 183:412:405 163:450:387
C3M3-9 0.7840 0.8680 0.8893 0.9433 36:613:351 46:622:332 47:601:352
C3M3-10 0.7987 0.8787 0.8787 0.9520 16:500:484 23:462:515 20:487:493

– LDA, SDA and SSDA outperform Original consis-

tently, so dimensionality reduction in the style of

LDA can indeed improve classification performance

significantly. Whilst this is not new, it indicates that

doing nothing about multimodality is suboptimal.

– When there is only one modality per class: it is clear

from Table 1 that the differences between LDA,

SDA and SSDA do not appear to be significant. This

suggests that when there is only one modality per

class, doing dimensionality reduction using SDA or

SSDA makes little difference from using LDA.

– As for LDA and its variants, we can rank order them

in terms of their performance: LDA≤SDA≤SSDA

on the artificial data sets with within-class mul-

timodality, namely C2M2, C2M3 and C3M3. This

suggests that dealing with within-class multimodal-

ity the SSDA way is better.

– When there are multiple modalities per class: from

Table 2, Table 3 and Table 4, it is clear that doing

dimensionality reduction at the subclass level as in

SDA or SSDA is better than at the class level as in

LDA. Furthermore, SSDA clearly outperforms SDA

in these experiments. This suggests that separating
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subclasses (in other words, reducing the overlap of

different subclasses) within every class and at the

same time separating all classes is a better approach

than simply pulling subclasses in a class from the

subclasses of other classes.

– When the number of modalities per class increases:

according to Table 1, Table 2 and Table 3, in gen-

eral the classification accuracy drops in all meth-

ods, suggesting that the complexity of the problem

increases. This can be seen more clearly in Fig. 3.

Interestingly, the margin of performance drop is the

smallest with SSDA, suggesting that SSDA is more

robust than Original, LDA and SDA when the num-

ber of modalities per class changes.

From these observations we can draw the conclusion

that it is indeed necessary to deal with the issue of

within-class multimodality. Furthermore, this conclu-

sion will be confirmed by using the real data sets in

Section 5.

4.2 Q2: How many within-class modalities should we

use?

There is a clear difference between SDA and SSDA in

terms of classification accuracy as shown in Table 1,

Table 2, Table 3 and Table 4. SDA and SSDA are both

trying to separate classes at subclass level but they are

different in two ways: (1) how to find the within-class

multimodalities; (2) once found, how to make use of

these modalities. We examine the first issue in this sub-

section and discuss the second issue in Subsection 4.3.

SDA uses a stability criterion to find class modal-

ities, whereas SSDA uses a separability criterion. Ta-

ble 5, Table 6, Table 7 and Table 8 show the numbers

of class modalities found by SDA and SSDA for the

10 data sets, of type C2M1, C2M2, C2M3 and C3M3,

respectively. It is clear that the numbers are quite dif-

ferent for SDA and SSDA. The numbers found by SSDA

in general are quite close to the true numbers of within-

class modalities, and identical in most of the data sets.

Apart from in a few cases, the numbers found by SDA

are quite different to the true numbers.

Furthermore, SSDA can even find true within-class

modalities for classes with imbalanced proportions of

data between subclasses. For instance, SSDA separates

each of Class One, Class Two and Class Three of C3M3-

10 into three modalities, when their subclass ratios are

16 : 500 : 484, 23 : 462 : 515 and 20 : 487 : 493 respec-

tively.

All of these observations suggest that (1) the steadily

good classification performance is guaranteed by the

correct the number of modalities found; and (2) SSDA

can find the number of within-class modalities more

correctly than SDA, which will be verified on the two

face databases in Subsection 5.2.

Table 5 The number of subclasses found by SDA and SSDA
for each class in the C2M1 data sets

Data sets
Methods SDA SSDA

Class
One

Class
Two

Class
One

Class
Two

C2M1-1 3 3 1 1
C2M1-2 3 3 1 1
C2M1-3 3 3 2 2
C2M1-4 4 4 2 2
C2M1-5 1 1 1 1
C2M1-6 3 3 2 2
C2M1-7 2 2 4 4
C2M1-8 1 1 2 2
C2M1-9 2 2 1 1
C2M1-10 1 1 1 1

Table 6 The number of subclasses found by SDA and SSDA
for each class in the C2M2 data sets

Data sets
Methods SDA SSDA

Class
One

Class
Two

Class
One

Class
Two

C2M2-1 5 5 4 2
C2M2-2 6 6 2 2
C2M2-3 4 4 2 2
C2M2-4 6 6 2 2
C2M2-5 1 1 3 3
C2M2-6 4 4 2 2
C2M2-7 4 4 3 2
C2M2-8 6 6 2 2
C2M2-9 3 3 2 2
C2M2-10 2 2 4 2

Table 7 The number of subclasses found by SDA and SSDA
for each class in the C2M3 data sets

Data sets
Methods SDA SSDA

Class
One

Class
Two

Class
One

Class
Two

C2M3-1 8 8 3 3
C2M3-2 10 10 3 3
C2M3-3 3 3 3 3
C2M3-4 6 6 2 3
C2M3-5 3 3 3 3
C2M3-6 15 15 3 3
C2M3-7 1 1 3 3
C2M3-8 1 1 3 3
C2M3-9 1 1 3 3
C2M3-10 1 1 4 4
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Fig. 3 The classification performance of Original, LDA, SDA and SSDA on ten C2M1 data sets, ten C2M2 data sets and ten
C2M3 data sets: In the line charts, the horizontal axis shows the ten data sets from C2M1, C2M2 and C2M3, and the vertical
axis shows the classification accuracy.

Table 8 The number of subclasses found by SDA and SSDA
for each class in the C3M3 data sets

Data sets
Methods SDA SSDA

Class
One

Class
Two

Class
Three

Class
One

Class
Two

Class
Three

C3M3-1 4 4 4 3 3 3
C3M3-2 5 5 5 3 3 3
C3M3-3 3 3 3 3 3 3
C3M3-4 1 1 1 3 4 3
C3M3-5 1 1 1 3 3 3
C3M3-6 2 2 2 3 3 3
C3M3-7 5 5 5 3 3 3
C3M3-8 1 1 1 3 3 3
C3M3-9 6 6 6 3 3 3
C3M3-10 1 1 1 3 3 3

4.3 Q3: How should we utilise the modalities?

After the multiple within-class modalities are found,

we need to utilise them in order to reduce dimensional-

ity for the purpose of effective classification. SDA and

SSDA provide different solutions, all based on the LDA

optimisation process but with different Fisher objec-

tives. To compare these two solutions, we apply the

SDA and SSDA optimisation processes on the artifi-

cial data sets consist of within-class modalities (i.e.,

C2M2, C2M3 and C3M3). In addition, the true num-

ber of within-class modalities (True-MN) is used in the

both SDA and SSDA. The experimental results are pre-

sented in Table 9, Table 10 and Table 11.

From Table 9, 10 and 11, it is clear that the per-

formance of SSDA with True-MN is consistently higher

than SDA with True-MN. Therefore, it suggests that

the SSDA optimisation process can better utilise the

modalities than the SDA optimisation process. Fur-

thermore, it shows that maximising inter-subclass and

inter-class separation at the same time is a worthwhile

goal of LDA-like dimensionality reduction when the

true modalities are found in data.

Table 9 The classification accuracy with kNN (k=1) of SDA
and SSDA using the true number of within-class modalities
on the C2M2 data sets

Data sets
Methods

SDA with True-MN SSDA with True-MN

C2M2-1 0.9080 0.9260
C2M2-2 0.9350 0.9600
C2M2-3 0.9670 0.9750
C2M2-4 0.9460 0.9610
C2M2-5 0.9230 0.9230
C2M2-6 0.9480 0.9520
C2M2-7 0.9380 0.9570
C2M2-8 0.9300 0.9300
C2M2-9 0.8970 0.9100
C2M2-10 0.9270 0.9380

Table 10 The classification accuracy with kNN (k=1) of SDA
and SSDA using the true number of within-class modalities
on the C2M3 data sets

Data sets
Methods

SDA with True-MN SSDA with True-MN

C2M3-1 0.9120 0.9250
C2M3-2 0.9120 0.9490
C2M3-3 0.8940 0.9220
C2M3-4 0.9320 0.9490
C2M3-5 0.9430 0.9490
C2M3-6 0.8920 0.9190
C2M3-7 0.8960 0.9290
C2M3-8 0.8970 0.9330
C2M3-9 0.9000 0.9200
C2M3-10 0.8730 0.8980

5 Multimodality in Real Data

Separating within-class multimodalities results in good

performance on artificial data, when the modality of the

data is known. For real-world data, the modality of the

data is unknown even if we believe that there should be

multimodality, e.g., as in the problem of face recogni-

tion discussed in Section 1. Can we obtain real benefits

by addressing within-class multimodality in real-world

data in the same way as for artificial data? This is the
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Table 11 The classification accuracy with kNN (k=1) of SDA
and SSDA using the true number of within-class modalities
on the C3M3 data sets

Data sets
Methods

SDA with True-MN SSDA with True-MN

C3M3-1 0.9093 0.9433
C3M3-2 0.9153 0.9413
C3M3-3 0.9080 0.9400
C3M3-4 0.8580 0.9167
C3M3-5 0.9213 0.9393
C3M3-6 0.8933 0.9253
C3M3-7 0.9047 0.9280
C3M3-8 0.9253 0.9413
C3M3-9 0.9220 0.9433
C3M3-10 0.9480 0.9520

question we want to answer in this section. We con-

sider two types of data. One is general data from the

UCI data repository [3]; the other is face image data,

as it is intuitively plausible that there is within-class

multimodality associated with lighting conditions and

head pose.

In our experiments, we consider k-nearest neighbor

(kNN, k=1) as the classifier. We conduct a study on

the within-class classification problem by focusing on

extracting discriminant features in this paper. Some

commonly used classifiers have built-in feature selec-

tion/extraction functions. For example, Support Vector

Machine (SVM) and Decision Tree (DT) select features

as part of the learning process. KNN classifier does not

have any built-in feature selection/extraction function,

so it is selected and used in our experiments. Addition-

ally, we use ten-fold cross-validation as the evaluation

framework, and Estimated Mean Accuracy (EMA) and

Standard Error of the Mean (SEM) [9] as the evalu-

ation metrics: EMA =
∑10

i=1 pi
10 , where pi denotes the

percentage of correct classification in the ith fold vali-

dation; SEM = δ√
10

, where δ =

√∑10
i=1(pi−EMA)2

9 . So,

the higher EMA and lower SEM are, the better classi-

fication performance is. Moreover, to make the evalu-

ation results more reliable, we ran each experiment 10

times using ten-fold cross-validation, and reported the

average EMA (AEMA) and average SEM (ASEM).

5.1 General data

We select eleven UCI data sets using two criteria: (1) all

attributes must be numerical; (2) there must be many

attributes so that dimensionality reduction is meaning-

ful. General information about the eleven UCI data sets

is shown in Table 12.

Furthermore, we compare SSDA and SDA against

adaptive local linear discriminant analysis (ALLDA) [20].

To compare ALLDA as fairly as possible, we follow the

experimental settings used in the [20] since we do not

have the source code of ALLDA. In [20], four UCI data

sets are used to test the performance of ALLDA. They

are Australian, Heart, Pima and Diabetes, respectively.

We can not find the Diabetes data set corresponding to

the description in the [20], so we compare SDA and

SSDA with ALLDA on the remaining three data sets.

The experimental settings used in the [20] are: (1)sev-

eral samples are randomly selected from every class

with same proportion as training data and the rest of

samples as testing data. The splits of Australian, Heart

and Pima data sets are described in the Table 13; (2)1-

nearest neighbor is used as the classifier and each exper-

iment is conducted using 20 random splits; (3)the mean

accuracy (Macc) and standard deviation (Std) are the

evaluation of classification performance.

Table 12 General information about the ten UCI data sets
used, where #I denotes the number of instances, #C denotes
the number of classes and #A denotes the number of at-
tributes

Name of data set (Acronym) #I #C #A

QSAR Biolodegradation (QSAR-B) 1055 2 41
Climate Model Simulation Crashes (CMSC) 540 2 18
Diabetic Retinopathy (DR) 1151 2 19
Multiple Feature-fou (MF-fou) 2000 10 76
Musk(Version 1)-Clearn1 (M1-C1) 476 2 166
Parkinsons 195 2 22
Statlog Project (SP) 846 4 18
White Wine Quality (WWQ) 4898 7 11
Yeast 1484 10 8
Isolet 7797 26 617
Vertebral 310 2 6

Table 13 General information and the split about Aus-
tralian, Heart and Pima data set, where #C denotes the
number of classes, #Training denotes the number of train-
ing data, #Testing denotes the number of testing data and
#A denotes the number of attributes

Name of data set #C #Training #Testing #A

Australian 2 207 483 14
Heart 2 54 216 13
Pima 2 149 619 8

Experimental results are presented in Table 14 and

Table 15. The experimental results of ALLDA in the

Table 15 are cited from [20]. From these results we note

the following observations:

– LDA, SDA and SSDA achieve better performance

than Original on the majority of the UCI data sets.

This furtherly verifies the conclusion drawn by using

artificial data sets that it is necessary to deal with

the issue of within-class multimodality.
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– SSDA achieves better performance than the other

three methods on the majority of data sets. In par-

ticular, SSDA outperforms LDA on all UCI data

sets.

– Compared with Original and LDA, both SDA and

SSDA have superior performance on CMSC, DR,

MF-fou, Parkinsons, Yeast and Isolet. This suggests

that these data sets are likely to have salient within-

class multimodalities. Fig.4 is a visualisation of these

data sets in a two-dimensional space by t-SNE [16],

where different colours represent different classes. t-

SNE is a technique for visualising high-dimensional

data sets by giving each sample a location in a two-

or three-dimensional space. It can be observed that

these data sets comprise different class and some

class clusters consist of several clusters, which cor-

respond to within-class modalities. In particular, the

presence of multimodality is clear in Parkinsons,

where class one consists of several red clusters and

class two consists of several cyan clusters.

5.2 Face image data

We conduct face recognition experiments on two widely

used face databases: AR face database [17] and FERET

face database [21]. Face Recognition is a multi-class

classification problem, where each person is regarded as

a class. Face recognition attempts to determine whether

a face image is from someone in the database when

we have a collection of images for each person in the

database. A person’s set of face images may contain

multiple modalities when they are captured in different

illumination conditions or head poses. So, the purpose

of this study is to test whether the within-class mul-

timodality methods discussed in this paper can bring

benefit to this problem.

In our experiments, the images are represented us-

ing their pixel values, resulting in large numbers of fea-

tures. Therefore, our face recognition task becomes a

small sample size (SSS) problem [24]. To deal with this

problem, a two stage PCA + LDA method [1] is used.

We use PCA to reduce data dimensionality, retaining

principal components that can explain 90% of the vari-

ance, before LDA, SDA and SSDA are used. Details of

the two face databases used in our experiments are the

given below:

– AR face database: The AR face database contains

frontal-view face images of 126 different persons (70

males and 56 females). Each person was photographed

under different lighting conditions (normal lighting,

normal lighting and left light on, normal lighting

and right light on, normal lighting and both left and

right lights on) and distinct facial expressions (neu-

tral expression, smile, anger, and scream), and some

images have partial occlusions (sunglasses or scarf).

For each person, a total of 13 images were taken in

each session for a total of two sessions, which were

separated by an interval of two weeks. Hence, there

are 26 frontal face images per person. In our exper-

iments, we use a subset of the AR face data set,

which comprises 700 face images from 100 persons.

We use 7 non-occluded face images of each person

taken under different lighting conditions and differ-

ent facial expressions from the first session. Also,

Besides, we crop the face part of the image and then

resize all images to a standard image size of 80 x 100

pixels (see Fig. 5(a) for some examples). Thus, every

face image in the AR database has 8000 features.

– FERET face database: The FERET face database

includes over 10,000 face images, which have differ-

ent head poses, lighting conditions and expressions.

In our experiments, we use a subset of the FERET

face database that consists of 700 images from 100

people, with 7 images per person. Again the face

portion of each image is cropped out and normalised

to a standard image size of 100 x 100 pixels (see Fig.

5(b) for some examples). We have 10000 features for

each image of FERET.

We run experiments with Original, LDA, SDA and

SSDA on the AR and FERET face databases 10 times

using ten-fold cross-validation. Experimental results are

shown in Table 16 and Table 17. It is clear that SSDA

achieves higher face recognition accuracy than the other

three methods on both face image databases; SDA also

outperform Original and LDA on both face databases.

These results suggest that within-class multimodality

does exist in these image databases, and tackling within-

class multimodality in the manner of SDA and SSDA

does bring benefits.

Furthermore, we want to see what within-class modal-

ities SDA and SSDA can find for AR and FERET, and

if the modalities found are consistent with reality. To

achieve this, we apply SDA and SSDA on all images

of AR and FERET, respectively. Therefore, the max-

imum number of modalities for each class is set as 7

for both methods since every person only has 7 images

in AR and FERET databases. According to the within-

modalities found by SDA and SSDA shown in the Fig. 6

and Fig. 7, we obtain the following observations:

– From Fig. 6, it readily see that the four modali-

ties found by SSDA correspond to four different il-

lumination conditions existing in the AR database:

normal lighting, normal lighting and left light on,

normal lighting and right light on, normal lighting
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Table 14 AEMA±ASEM values with kNN (k=1) of Original, LDA, SDA and SSDA on Eleven UCI data sets

Data sets
Methods Original LDA SDA SSDA

AEMA ± ASEM AEMA ± ASEM AEMA ± ASEM AEMA ± ASEM
QSAR-B 0.7928 ± 0.0139 0.7954 ± 0.0111 0.7580 ± 0.0132 0.8381 ± 0.0102
CMSC 0.8895 ± 0.0106 0.9384 ± 0.0087 0.9389 ± 0.0074 0.9454 ± 0.0093
DR 0.6172 ± 0.0129 0.6448 ± 0.0138 0.6451 ± 0.0148 0.6796 ± 0.0122
MF-fou 0.8269 ± 0.0068 0.8152 ± 0.0071 0.8374 ± 0.0067 0.8343 ± 0.0063
M1-C1 0.8578 ± 0.0142 0.7881 ± 0.0193 0.7462 ± 0.0219 0.8814 ± 0.0149
Parkinsons 0.8454 ± 0.0254 0.8389 ± 0.0219 0.8424 ± 0.0255 0.8616 ± 0.0213
SP 0.7020 ± 0.0136 0.7879 ± 0.0116 0.7744 ± 0.0122 0.8313 ± 0.0105
WWQ 0.5980 ± 0.0058 0.6254 ± 0.0062 0.6096 ± 0.0066 0.6339 ± 0.0080
Yeast 0.5238 ± 0.0152 0.5217 ± 0.0137 0.5295 ± 0.0133 0.5328 ± 0.0148
Isolet 0.8967 ± 0.0030 0.9469 ± 0.0260 0.9488 ± 0.0025 0.9594 ± 0.0022
Verbebral 0.8390 ± 0.0188 0.7742 ± 0.0203 0.8265 ± 0.0198 0.8119 ± 0.0229

Table 15 Macc±Std values with kNN (k=1) of Original, LDA, SDA, SSDA and ALLDA on Australian, Heart and Pima data
set, where the results of ALLDA are cited from the paper [20]

Data sets
Methods Original LDA SDA SSDA ALLDA

Macc ± Std Macc ± Std Macc ± Std Macc ± Std Macc ± Std
Australian 0.6340 ± 0.0163 0.8000 ± 0.0247 0.6262 ± 0.0184 0.8148 ± 0.0164 0.7775 ± 0.0198
Heart 0.6116 ± 0.0279 0.7750 ± 0.0328 0.7303 ± 0.0254 0.7887 ± 0.0207 0.7431 ± 0.0064
Pima 0.6670 ± 0.0167 0.6845 ± 0.0181 0.6945 ± 0.0187 0.6933 ± 0.0162 0.6763 ± 0.0249

Table 16 EMA ±SEM values with kNN (k=1) of Original,LDA, SDA and SSDA on the AR face database

AR
Methods Original LDA SDA SSDA

EMA ± SEM EMA ± SEM EMA ± SEM EMA ± SEM
1 0.5099 ± 0.0158 0.5978 ± 0.0195 0.7806 ± 0.0249 0.8397 ± 0.0076
2 0.5107 ± 0.0117 0.5706 ± 0.0339 0.7822 ± 0.0276 0.8511 ± 0.0182
3 0.5092 ± 0.0173 0.5866 ± 0.0187 0.7188 ± 0.0352 0.8431 ± 0.0159
4 0.5081 ± 0.0195 0.5647 ± 0.0250 0.8052 ± 0.0220 0.8356 ± 0.0195
5 0.5068 ± 0.0203 0.5877 ± 0.0225 0.7682 ± 0.0393 0.8517 ± 0.0156
6 0.5129 ± 0.0186 0.5912 ± 0.0237 0.7814 ± 0.0317 0.8432 ± 0.0129
7 0.5128 ± 0.0168 0.5761 ± 0.0218 0.7366 ± 0.0240 0.8309 ± 0.0103
8 0.5136 ± 0.0132 0.5716 ± 0.0221 0.7402 ± 0.0307 0.8326 ± 0.0208
9 0.5115 ± 0.0162 0.5770 ± 0.0270 0.7830 ± 0.0085 0.8539 ± 0.0127
10 0.5088 ± 0.0183 0.5636 ± 0.0285 0.7939 ± 0.0183 0.8459 ± 0.0125

Average 0.5104 ± 0.0168 0.5787 ± 0.0243 0.7690 ± 0.0262 0.8428 ± 0.0146

Table 17 EMA ±SEM values with kNN (k=1) of Original,LDA, SDA and SSDA on the FERET face database

FERET
Methods Original LDA SDA SSDA

EMA ± SEM EMA ± SEM EMA ± SEM EMA ± SEM
1 0.5381 ± 0.0109 0.6065 ± 0.0158 0.6131 ± 0.0179 0.6844 ± 0.0110
2 0.5465 ± 0.0167 0.5646 ± 0.0187 0.6059 ± 0.0196 0.6912 ± 0.0192
3 0.5375 ± 0.0147 0.5866 ± 0.0161 0.5961 ± 0.0218 0.6836 ± 0.0199
4 0.5328 ± 0.0155 0.5898 ± 0.0172 0.6172 ± 0.0153 0.6798 ± 0.0147
5 0.5394 ± 0.0190 0.5979 ± 0.0147 0.6118 ± 0.0234 0.6902 ± 0.0102
6 0.5425 ± 0.0163 0.6038 ± 0.0192 0.6130 ± 0.0221 0.7095 ± 0.0179
7 0.5349 ± 0.0250 0.5867 ± 0.0217 0.6065 ± 0.0160 0.6884 ± 0.0229
8 0.5340 ± 0.0240 0.5913 ± 0.0179 0.6061 ± 0.0166 0.6747 ± 0.0187
9 0.5400 ± 0.0255 0.5961 ± 0.0191 0.6071 ± 0.0185 0.6979 ± 0.0197
10 0.5311 ± 0.0174 0.5710 ± 0.0212 0.6025 ± 0.0223 0.6868 ± 0.0187

Average 0.5377 ± 0.0185 0.5894 ± 0.0182 0.6079 ± 0.0193 0.6887 ± 0.0173
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(a) QSAR-B (b) CMSC (c) DR (d) MF-fou

(e) M1-C1 (f) Parkinsons (g) SP (h) WWQ

(i) Yeast (j) Isolet (k) Verbebral

Fig. 4 The data visualisation of QSAR-B, CMSC, DR, MF-fou, M1-C1, Parkinsons, WWQ, SP, Yeast, Isolet and Verbebral
in a two-dimensional space

(a) Examples of images in the AR face database

(b) Examples of images in the FERET face database

Fig. 5 Sample images from the face databases

and both left and right light on. Although SDA suc-

cessfully finds two types of illumination modalities:

normal lighting and left light on, normal lighting

and both left and right light on, it mixes up the

images with normal lighting and left light on.

– For FERET database, both SDA and SSDA find dif-

ferent types of within-class modilities for different

classes as shown in the Fig. 7. Again, SSDA iden-

tifies two types of illumination modalities for each

class: normal lighting and low lighting. But SDA
fails to find the modality with low lighting for some

classes, such as Fig. 7(a)(2).

– Apart from identifying the illumination modalities

in the FERET database, SSDA can find all correct

head pose modalities for some classes (see Fig. 7(b)(3)):

frontal modality, leftwards modalities with two dif-

ferent angles and rightwards modalities with two dif-

ferent angles. In addition, SDA also can find some

correct head pose modalities for some classes, for ex-

ample, the modalities represented by the cyan and

purple dotted cilcles shown in the Fig. 7(a)(3).

Therefore, all results from these experiments on two

real face databases are consistent with the results on

the artificial data sets. When there is within-class mul-

timodality in the data, dealing with the multimodality

problem in the manner of either SDA or SSDA is ben-

eficial and, furthermore, the SSDA approach is better

than the SDA approach. Interestingly, we have shown

that SDA and SSDA offer potential solutions to a chal-
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lenging problem – face recognition under different light-

ing and head pose conditions.

5.3 The Results: Runtime Performance

Running results of Original, LDA, SDA and SSDA are

shown in Table 18. It is clear that SSDA are slower

than Original and LDA but fast than SDA in the most

of data sets.

Table 18 Running time, in seconds, of Original, LDA, SDA
and SSDA on eleven UCI data sets and two face databases
10 times using ten-fold cross-validation

Data sets
Methods

Original LDA SDA SSDA

QSAR-B 1.7328 2.6739 20.6197 9.7620
CMSC 0.6416 1.0664 6.7935 2.4880

DR 0.7180 1.2667 17.6121 12.0517
MF-fou 1.7049 3.4528 42.9585 10.1369
M1-C1 0.8752 4.4181 17.4592 12.0827

Parkinsons 0.6188 0.9393 8.4054 1.8269
SP 0.6151 1.2622 17.6392 4.5284

WWQ 1.9772 2.8096 87.9767 117.6188
Yeast 0.9834 1.6027 16.4443 9.5505
Isolet 134.1505 1057.5846 1951.6677 1140.4812

Verbebral 0.6817 1.0112 3.8639 3.7453
AR 34.3839 19.2355 63.6227 42.9422

FERET 43.3403 21.9655 306.4279 65.8793

6 Conclusion

Within-class multimodality exists in real-world data and

is first studied by [32] and more recently by [26], but

many questions are unanswered about within-class mul-

timodality, and its true value is not uncovered fully.

This paper presents an extensive study of the within-

class multimodality problem through experiments on

both artificial data and real data in order to establish a

strong case for within-class multi-modal classification.

It has been shown using both artificial data and real

data that when within-class multimodality is present,

maximising between-subclass separation, between-class

separation and within-class compactness at the same

time in the manner of SDA or SSDA will increase clas-

sification performance, with SSDA being the better ap-

proach. It is also shown that addressing within-class

multimodality this way is optimal if the true number

of modalities is known. Interestingly, the experiment on

face image databases suggests that SDA and SSDA offer

an alternative approach to addressing face recognition

under different lighting and head pose conditions.

We believe that a strong case for within-class mul-

timodal classification can be established. We also be-

lieve that this classification approach offers a new per-

spective on improving existing classification algorithms

such as Gaussian mixture model and convolutional neu-

ral networks, and even devising new classification algo-

rithms. These will be our future research directions.

Acknowledgements The work is partially funded by EU
Horizon 2020 project ”Analysis System for Gathered Raw
Data” (Project Acronym: ASGARD, Project ID: 700381, Project
Call: H2020-EU.3.7. - Secure societies - Protecting freedom
and security of Europe and its citizens).

References

1. Belhumeur PN, Hespanha JP, Kriegman DJ

(1997) Eigenfaces vs. fisherfaces: Recognition us-

ing class specific linear projection. IEEE Transac-

tions on pattern analysis and machine intelligence

19(7):711–720

2. Breiman L (2001) Random forests. Machine learn-

ing 45(1):5–32

3. Dheeru D, Karra Taniskidou E (2017) UCI ma-

chine learning repository. URL http://archive.

ics.uci.edu/ml

4. Em Y, Gag F, Lou Y, Wang S, Huang T, Duan

LY (2017) Incorporating intra-class variance to

fine-grained visual recognition. In: 2017 IEEE In-

ternational Conference on Multimedia and Expo

(ICME), pp 1452–1457, DOI 10.1109/ICME.2017.

8019371

5. Fisher RA (1936) The use of multiple measure-

ments in taxonomic problems. Annals of eugenics

7(2):179–188

6. Gkalelis N, Mezaris V, Kompatsiaris I (2011) Mix-

ture subclass discriminant analysis. IEEE Signal

Processing Letters 18(5):319–322

7. Hayashi F (2000) Econometrics. Princeton Univer-

sity Press

8. He K, Stankovic L, Liao J, Stankovic V (2016)

Non-intrusive load disaggregation using graph sig-

nal processing. IEEE Transactions on Smart Grid

9(3):1739–1747

9. Huang GB, Mattar M, Berg T, Learned-Miller

E (2008) Labeled faces in the wild: A database

forstudying face recognition in unconstrained en-

vironments

10. Jia W, Deng Y, Xin C, Liu X, Pedrycz W (2019)

A classification algorithm with linear discriminant

analysis and axiomatic fuzzy sets. Mathematical

Foundations of Computing 2(1):73–81



Within-class Multimodal Classification 15

(a) Modality distributions found by SDA (b) Modality distributions found by SSDA

Fig. 6 Examples of modality distributions found by SDA and SSDA on the AR face database, where dotted circles with
different colours represent different modalities found by SDA and SSDA. In the (b), the green dotted circle represents the
illumination modality with normal lighting; the cyan dotted cilcle represents the illumination modality with normal lighting
and right light on; the orange dotted circle represents the illumination modality with normal lighting and left light on; the red
dotted circle represents the illumination modality with normal lighting and both left and right light on.

(a) Modality distributions found by SDA (b) Modality distributions found by SSDA

Fig. 7 Examples of modality distributions found by SDA and SSDA on the FERET face database, where dotted circles with
different colours represent different modalities found by SDA and SSDA.

11. Kaselimi M, Doulamis N, Doulamis A, Voulodi-

mos A, Protopapadakis E (2019) Bayesian-

optimized bidirectional lstm regression model for

non-intrusive load monitoring. In: ICASSP 2019-

2019 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), IEEE, pp

2747–2751

12. Kaselimi M, Doulamis N, Voulodimos A, Protopa-

padakis E, Doulamis A (2020) Context aware en-

ergy disaggregation using adaptive bidirectional

lstm models. IEEE Transactions on Smart Grid

13. Li CN, Shao YH, Yin W, Liu MZ (2019) Robust

and sparse linear discriminant analysis via an alter-

nating direction method of multipliers. IEEE trans-

actions on neural networks and learning systems

14. Li H, Zhang L, Huang B, Zhou X (2020)

Cost-sensitive dual-bidirectional linear discrimi-

nant analysis. Information Sciences 510:283–303

15. Louppe G (2014) Understanding random

forests: From theory to practice. arXiv preprint

arXiv:14077502

16. Maaten Lvd, Hinton G (2008) Visualizing data us-

ing t-SNE. Journal of machine learning research

9(Nov):2579–2605

17. Mart́ınez AM, Kak AC (2001) Pca versus lda. IEEE

transactions on pattern analysis and machine intel-

ligence 23(2):228–233

18. Martinez AM, Zhu M (2005) Where are linear fea-

ture extraction methods applicable? IEEE Transac-

tions on Pattern Analysis and Machine Intelligence

27(12):1934–1944

19. Murray D, Stankovic L, Stankovic V, Lulic S,

Sladojevic S (2019) Transferability of neural net-

work approaches for low-rate energy disaggrega-

tion. In: ICASSP 2019-2019 IEEE International

Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), IEEE, pp 8330–8334

20. Nie F, Wang Z, Wang R, Wang Z, Li X (2020)

Adaptive local linear discriminant analysis. ACM

Transactions on Knowledge Discovery from Data

(TKDD) 14(1):1–19

21. Phillips PJ, Moon H, Rizvi SA, Rauss PJ

(2000) The feret evaluation methodology for face-

recognition algorithms. IEEE Transactions on pat-

tern analysis and machine intelligence 22(10):1090–

1104

22. Rao CR (1948) The utilization of multiple mea-

surements in problems of biological classification.

Journal of the Royal Statistical Society Series B

(Methodological) 10(2):159–203

23. Seber GA, Lee AJ (2012) Linear regression analy-

sis, vol 329. John Wiley & Sons

24. Sharma A, Paliwal KK (2015) Linear discrimi-

nant analysis for the small sample size problem: an



16 Huan Wan∗ et al.

overview. International Journal of Machine Learn-

ing and Cybernetics 6(3):443–454

25. Vishwakarma VP, Dalal S (2020) A novel non-linear

modifier for adaptive illumination normalization for

robust face recognition. Multimedia Tools and Ap-

plications pp 1–27

26. Wan H, Wang H, Guo G, Wei X (2018)

Separability-oriented subclass discriminant analy-

sis. IEEE transactions on pattern analysis and ma-

chine intelligence 40(2):409–422

27. Wang F, Wang Q, Nie F, Li Z, Yu W, Wang R

(2019) Unsupervised linear discriminant analysis

for jointly clustering and subspace learning. IEEE

Transactions on Knowledge and Data Engineering

28. Wen Y, Zhang K, Li Z, Qiao Y (2016) A discrimina-

tive feature learning approach for deep face recogni-

tion. In: European conference on computer vision,

Springer, pp 499–515

29. Wen Y, Zhang K, Li Z, Qiao Y (2019) A compre-

hensive study on center loss for deep face recog-

nition. International Journal of Computer Vision

127(6-7):668–683

30. Ye J, Ji S (2010) Discriminant analysis for dimen-

sionality reduction: An overview of recent develop-

ments. Biometrics: Theory, Methods, and Applica-

tions Wiley-IEEE Press, New York

31. Zhang W, Zhao X, Morvan JM, Chen L (2018)

Improving shadow suppression for illumination ro-

bust face recognition. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence PP(99):1–1,

DOI 10.1109/TPAMI.2018.2803179

32. Zhu M, Martinez AM (2006) Subclass discriminant

analysis. IEEE Transactions on Pattern Analysis

and Machine Intelligence 28(8):1274–1286


