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• Two-part study proposing an alternative approach to realising BIPV/T facades 
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Abstract 20 

Building Integrated Photovoltaic Thermal (BIPV/T) systems which generate electricity 21 

and heat simultaneously are promising solutions for Net Zero Energy Buildings (NZEB). 22 

Despite BIPV/T offering clear energetic and space saving advantages compared to 23 

separate PV and solar thermal, overheating problems occur when no thermal demand 24 

exists, resulting in reduced yields, stagnation damage, and excessive fluid flow 25 

pressures. This two-part study examines an alternative approach combining BIPV, 26 

Planar Liquid-Vapour Thermal Diodes (PLVTD) and Integrated Collector-Storage Solar 27 

Water Heaters (ICSSWH) to achieve BIPV/T functionality and retain heat overnight to 28 

minimises parasitic demands and reduce overheating. The introductory paper (Part 1 29 

of 2) established novelty and rationale for BIPV-PLVTD-ICSSWH concepts, reviewed 30 
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state-of-the-art and performance benchmarks, and used theoretical modelling to 31 

predict behaviour from key design and operational parameters. This paper (Part 2 of 32 

2) describes prototype realisation and multi-day solar simulator laboratory thermal and 33 

photovoltaic testing for covered and uncovered variants exposed to different irradiance 34 

levels. Measured solar thermal efficiencies with and without transparent covers were 35 

ηT,col = 60% and 58% respectively under zero heat loss conditions whilst overnight 36 

heat loss coefficients were Ur,sysAsys/u = 23.0 and 25.4 W·m-3K-1 respectively, showing 37 

good agreement with theoretical predictions. Photovoltaic performance reduced with 38 

increasing absorber temperature as expected, although maximum power point 39 

efficiencies (E,mpp = 11.4% at T1≈25°C and 5.6% at T1≈89°C, without cover) were 40 

lower than expected owing to partial delamination and PV cell damage. The work 41 

demonstrates practical operation of a vertical BIPV-PLVTD-ICSSWH, identifies key 42 

areas for design development, and highlights benefits of application in NZEB facades.  43 

Graphical abstract 44 

 45 
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PV/T solar absorber  
generates heat and power  
at ηT≈60% and ηE≈11% 

Integrated Collector-Storage Solar Water Heating  
vessel reduces parasitic energy consumption & reduces 
maximum stagnation temperature  

Planar Liquid-Vapour Thermal Diode 
reduces over-night heat losses enabling  
Ur,sysAsys/u<25 W·m-3K-1 and ηT,24≈35% 

Integrated into NZEB facades to increase 
solar collection area whilst also reducing 
demands on valuable floor and roof space 



1 Introduction 47 

Net Zero Energy Buildings (NZEB) and Near Zero Energy Buildings (nZEB) are 48 

increasingly being designed with Building Integrated Photovoltaics (BIPV) to generate 49 

electricity and Building Integrated Solar Thermal Systems (BISTS) to supply domestic 50 

hot water and contribute towards space heating demands (COST, 2015; Good, 2015). 51 

Mismatches between energy demands and solar availability (instantaneously, diurnally 52 

and over inter-seasonal timescales) mean that thermal energy storage is an essential 53 

part of most BISTS and is crucial for achievement of a high solar fraction (Affolter et 54 

al., 2006; Drosou et al., 2014). Electrical energy storage is likewise crucial for high 55 

solar fraction BIPV systems (Kats and Seal, 2012; Sorgato et al., 2018; Belussi et al., 56 

2019). Building Integrated Photovoltaic-Thermal (BIPV/T) façade systems combine 57 

solar electricity and thermal energy (hot air and/or water) generation into vertical 58 

elements of building envelopes to make efficient use of all available insolated surfaces 59 

(Zondag, 2008; Yang & Athienitis, 2016). This is important for NZEBs where there is 60 

a high ratio of energy demand to envelope surface area, and in particular to the case 61 

of tall buildings where roof space for solar collectors is inherently limited. The most 62 

common realisation of water-heating PV/T collectors is to bond a conventional PV 63 

module to the absorber of a conventional sheet-and-tube flat solar water heater 64 

(Dupeyrat et al., 2011; Calise et al., 2016) or other planar heat removal device 65 

(Kazemian et al., 2018; Fayaz et al., 2019). Despite offering clear energetic 66 

advantages when suitable thermal demands exist, PV/T collectors suffer similar 67 

stagnation and overheating problems as closed-back BIPV systems (ie reduced 68 

electrical yields and eventual delamination damage) and conventional solar flat plate 69 

solar water heaters (ie over-pressurisation, denaturing of heat transfer fluids, damage 70 

to selective coatings, melting of polymeric components) when no thermal demands 71 

exist (Dupeyrat et al., 2011; Hasanuzzaman et al., 2016; Lazzarin and Noro, 2019). 72 

Stagnation overheating can be avoided by ensuring continuous fluid flows on hot sunny 73 

days but the corresponding parasitic energy requirements (eg for pumps and/or heat 74 

rejection fans) would have potential to far exceed the corresponding modest gains in 75 

electrical yields and the ancillary equipment needed (large thermal stores and/or heat 76 

rejectors) occupies valuable floor space.  77 

Integrated Collector-Storage Solar Water Heaters (ICSSWH) are an alternative to 78 

conventional flat plate or evacuated tube collector solar water heating systems. Whilst 79 



ICSSWH systems suffer significant overnight heat losses (eg unavailability of stored 80 

heat for morning bathing etc) they offer a number of advantages in respect of cost, 81 

space, and inherent passive protection from overheating. Recent studies by Pugsley et 82 

al. (2016, 2017, 2019, 2020) proposed the use of Planar Liquid-Vapour Thermal Diodes 83 

(PLVTD) to reduce problems of overnight heat loss in flat-form ICSSWH collectors. 84 

Studies by Krauter (2004) and Ziapour et al. (2014) examined the performance 85 

(respectively through experimental and simulation work) of novel PV-ICSSWH devices 86 

and identified a dearth of published work on similar concepts. Development of the 87 

novel BIPV-PLVTD-ICSSWH approach proposed in this two-part study has the potential 88 

to overcome key problems associated with the individual technologies (namely, BIPV/T 89 

overheating during stagnation, and ICSSWH overnight heat losses) and to realise new 90 

synergies. An exploded diagram illustrating the component parts of a BIPV-PLVTD-91 

ICSSHW collector is shown in Figure 1. The fundamental principles of PV/T, ICSSWH 92 

and PLVTD concepts underpinning this study were reviewed in our introductory paper 93 

(Part 1 of 2) which also established state-of-the-art performance benchmarks and 94 

examined the expected energetic behaviour using a theoretical heat transfer model. 95 

The present paper (Part 2 of 2) concludes the study on this novel approach to BIPV/T 96 

by describing the realisation of a BIPV-PLVTD-ICSSWH prototype and presenting 97 

results of multi-day solar simulator laboratory tests for covered and uncovered variants 98 

exposed to different irradiance levels. This paper presents the measured temperatures, 99 

solar thermal collection, photovoltaic generation, and overnight heat retention 100 

efficiencies to establish performance benchmarks for the first ever BIPV-PLVTD-101 

ICSSWH prototype, and compares these against theoretical modelling predictions in 102 

order to validate the model and identify key aspects of the design which can be 103 

improved. The key benefits and challenges associated with practical implementation of 104 

BIPV-PLVTD-ICSSWH concepts to support realisation of NZEBs as part of global 105 

decarbonisation efforts to tackle the climate crisis is also reviewed, with specific focus 106 

on building façade and heat pump system integration. 107 

 108 



 109 

Figure 1: Key components of the BIPV-PLVTD-ICSSWH concept 110 

 111 

2 Operating principles and performance benchmarks 112 

The fundamental physical arrangement of the BIPV-PLVTD-ICSSWH device proposed 113 

in Figure 1 can be represented by the lumped parameter model shown in Figure 2. The 114 

model describes how the input solar irradiance (G) passes through transparent cover 115 

layers (optical transmissivity ) before being absorbed by the PV cells (solar 116 

absorptivity  and temperature T0) which convert the incident solar flux into thermal 117 

energy and electrical energy. The thermal power is either lost (q0a) to the ambient 118 

environment (at temperature Ta) or transferred (q03) through the thermal diode via the 119 

evaporator (at temperature T1) and condenser (at temperature T2) to heat the water 120 

storage tank (at temperature T3) where it becomes available for delivery to thermal 121 

loads (qT). Some of the solar heat gained by the tank is lost through the insulated tank 122 

sidewalls and back plate (q3ia). Thermal diode heat losses (q4ia) from the insulated 123 

PLVTD sidewalls (at temperature T4) are neglected as these are small by comparison. 124 

Absorber heat losses (q0a) pass through the absorber laminate (from the cells at 125 

temperature T0 to the front surface at T5) and airgap to the transparent cover (at 126 



temperature T6) and eventually to the ambient. The amount of electrical power 127 

produced by the PV cell array (qE=IPV·VP) is dependent upon the irradiance; the pump 128 

and load electrical resistances; and the PV cell array electrical characteristics, which 129 

are themselves dependent upon the PV cell material properties and temperature. Some 130 

of the electrical power generated by the PV is delivered to a small pump (qP) which 131 

distributes a working fluid film to wet the PLVTD evaporator and the remainder (qload) 132 

is available to serve applied electrical loads. Further details of the theoretical model 133 

together with corresponding mathematical expressions and scenario simulations are 134 

presented in a separate paper (Part 1 of 2) which serves as the introduction to this 135 

two-part study. 136 

Thermal power gained by an ICSSWH during solar collection periods is usually 137 

determined using either quasi steady-state or whole-day testing based upon the rate 138 

of temperature rise of the stored thermal mass (qT =M∙cp∙ΔT3/tcol) where qT is the heat 139 

gain, M∙cp is the mass and specific heat capacity product of the thermal store, and ΔT3 140 

is the rise in thermal store temperature during a collection period of duration tcol. Loss 141 

of stored heat overnight is likewise determined in a similar manner with reference to 142 

the heat retention period duration tret. Equations 1 to 3 define the solar thermal 143 

collection efficiency (𝜂𝑇,𝑐𝑜𝑙), heat retention efficiency (𝜂𝑇,𝑟𝑒𝑡), and heat loss coefficient 144 

(Ur,sysAsys). Collection efficiencies are evaluated with reference to total insolation (H) 145 

which is the product of the irradiance (G) incident on the collector aperture (area A1) 146 

during the collection period. Retention efficiencies are evaluated with reference to the 147 

amount of heat contained within the thermal store at the start of the retention period 148 

(assumed to commence at the end of the preceding collection period) and are 149 

normalised in relation to ambient temperatures at the end of the collection period 150 

(𝑇𝑎[𝑡𝑐𝑜𝑙]) and averaged throughout the retention period (𝑇̃𝑎[𝑡𝑟𝑒𝑡]). Collection performance 151 

is influenced by the solar thermal condition (Equation 4) such that the highest 152 

efficiencies occur when the stored water temperature is close to the ambient 153 

temperature (zero heat loss when N=0 because T3=Ta) and efficiency reduces with 154 

increasing ΔT3a, especially when the irradiance is low. The introductory paper of this 155 

study (Part 1 of 2) established 𝜂𝑇,𝑐𝑜𝑙≈60% at N≈0.035 m2K∙W-1 as a state-of-the-art 156 

benchmark for ICSSWH collection efficiency and also established benchmark specific 157 

heat loss coefficients of Ur,sysAsys/A1≈1 W∙m-2K-1 and Ur,sysAsys/u≈10 W∙m-3∙K-1 at 158 

ΔT3a≈25°C, where u is the water storage tank volume. Heat could feasibly be drawn 159 



to serve thermal load demands at any time of day (eg morning or evening bathing, 160 

space heating at night, etc) hence Equation 5 describes the diurnal thermal efficiency 161 

(T,24) which is a composite of the collection and retention efficiencies. Provided that 162 

tcol and tret cover a contiguous 24 hour period then T,24=1 describes the hypothetical 163 

case where all available solar energy is collected and then retained without loss, 164 

whereas T,24=0 would occur if no heat was collected or all collected heat was lost.  165 

Photovoltaic cells and modules are commonly characterized with reference to Standard 166 

Test Conditions (STC at G=1000 W/m2 irradiance with spectrum AM1.5 and T0=25°C 167 

cell temperature) using performance metrics derived from current-voltage curves. 168 

Performance of PV/T collectors commonly deviates significantly from that occurring 169 

under STC because cells are operated at elevated temperatures in order to deliver 170 

useful heat. The cell temperature (T0) is determined by the absorber temperature (T1) 171 

which in turn is determined by a combination of ambient temperature (Ta) and fluid 172 

delivery temperature (T3). The inclusion of transparent covers over the absorber 173 

reduces the influence of Ta to enable high T3 and/or operation in cold and windy 174 

climates but unfortunately covers also introduce optical losses which reduce the level 175 

of irradiance incident on the PV cells. Key performance metrics for PV elements 176 

(defined in Equations 6 to 9) include short circuit current (Isc), open circuit voltage 177 

(Voc), electrical power delivered at the maximum power point (qE,mpp), fill factor (FF), 178 

voltage-temperature coefficient (𝐾𝑉:𝑇), current-temperature coefficient (𝐾𝐼:𝑇) and 179 

voltage-irradiance coefficient (𝐾𝑉:𝐺). 180 

𝜂𝑇,𝑐𝑜𝑙 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛 𝑠𝑡𝑜𝑟𝑒 𝑎𝑡 𝑡=𝑡𝑐𝑜𝑙 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑡=𝑡0 𝑡𝑜 𝑡=𝑡𝑐𝑜𝑙 
=

𝑀∙𝑐𝑝(𝑇3[𝑡=𝑡𝑐𝑜𝑙] − 𝑇3[𝑡=𝑡0])

𝐻∙𝐴1
    Equation 1 181 

𝜂𝑇,𝑟𝑒𝑡 =
𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛 𝑠𝑡𝑜𝑟𝑒 𝑎𝑡 𝑡=𝑡𝑐𝑜𝑙+𝑡𝑟𝑒𝑡 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛 𝑠𝑡𝑜𝑟𝑒 𝑎𝑡 𝑡=𝑡𝑐𝑜𝑙
=

𝑀∙𝑐𝑝(𝑇3[𝑡=𝑡𝑐𝑜𝑙+𝑡𝑟𝑒𝑡] − 𝑇̃𝑎[𝑡𝑟𝑒𝑡])

𝑀∙𝑐𝑝(𝑇3[𝑡=𝑡𝑐𝑜𝑙] − 𝑇𝑎[𝑡=𝑡𝑐𝑜𝑙])
   Equation 2 182 

𝑈𝑟,𝑠𝑦𝑠𝐴𝑠𝑦𝑠 =
𝑀∙𝑐𝑝

 𝑡𝑟𝑒𝑡
ln (

1

𝜂𝑇,𝑟𝑒𝑡
)         Equation 3 183 

𝑁 =
𝑇̃3−𝑇̃𝑎

tcol ∫ G
t=tcol

t=0

           Equation 4 184 

𝜂𝑇,24 = 𝜂𝑇,𝑐𝑜𝑙 ∙ 𝜂𝑇,𝑟𝑒𝑡          Equation 5 185 



𝑞𝐸,𝑚𝑝𝑝 = 𝐼𝑚𝑝𝑝 ∙ 𝑉𝑚𝑝𝑝 = 𝐹𝐹 ∙ 𝐼𝑠𝑐 ∙ 𝑉𝑜𝑐        Equation 6 186 

𝐾𝑉:𝑇 =  
𝑉𝑜𝑐,𝑇0  −  𝑉𝑜𝑐,𝑆𝑇𝐶

𝑉𝑜𝑐,𝑆𝑇𝐶 (𝑇0−25)
          Equation 7 187 

𝐾𝐼:𝑇 =  
𝐼𝑠𝑐,𝑇0  −  𝐼𝑠𝑐,𝑆𝑇𝐶

𝐼𝑠𝑐,𝑆𝑇𝐶 (𝑇0−25)
          Equation 8 188 

𝐾𝑉:𝐺 =  
𝑉𝑜𝑐,𝐺

𝑉𝑜𝑐,𝑆𝑇𝐶
           Equation 9 189 

 190 
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 192 

 193 

G Incident solar radiation flux  G Absorbed solar radiation 

Ta Ambient environmental temperature   q03 
Thermal power transferred from the absorber to the 
water storage tank through the thermal diode 

T0 Photovoltaic cell temperature  qT Net rate of heat gained by the stored water bulk 

T1 
Temperature of absorber laminate substrate and 
PLVTD evaporator plate  

 q0a Heat loss from PV cells 

T2 Temperature of condenser plate and tank mantle  q3ia 
Heat loss from the back and sides of the water 
storage tank not covered by the thermal diode 

T3 Temperature of water bulk stored in the tank  q4ia Heat loss from PLVTD sidewalls 

T4 Thermal diode sidewall temperature  qE Electrical power yielded from PV 

T5 Absorber laminate surface temperature  qP 
Electrical power consumed by the evaporator wetter 
pump which is then all converted to heat 

T6 Transparent cover temperature  qload Electrical power delivered to load 

Figure 2: Lumped parameter model of a BIPV-PLVTD-ICSSWH 194 

Photovoltaic yield (qload = qE – qp) 
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3 Experimental work 195 

3.1 Design and realisation of a prototype 196 

The design of a laboratory prototype BIPV-PLVTD-ICSSWH collector was developed 197 

with due consideration for constraints imposed by building and façade integration (see 198 

Section 4). A prototype with z=1400 mm high by y=700 mm wide absorber and 100L 199 

capacity water storage tank was fabricated, consisting of the key components 200 

illustrated on Figure 1 with properties as detailed in Table 1:  201 

1) Removable transparent acrylic cover set over a sealed air-filled cavity in order 202 

to insulate against solar absorber heat losses.  203 

2) Solar PV/T absorber formed of 120 quartered mc-si PV cell pieces (78x78mm) 204 

covered by transparent acrylic plates bonded to the matt black painted PLVTD 205 

evaporator plate using transparent silicone resin. The PV cell pieces were 206 

arranged as 15 separate strings (each forming a row of 8 cell pieces, as shown 207 

on Figure 3) and bonded to, and electrically isolated from, the stainless steel 208 

substrate by 5 small pieces of 1mm thick self-adhesive polyurethane foam. The 209 

PV cells were electrically interconnected in a series-parallel configuration on 5 210 

buses (labelled A to E on Figure 3) to produce Voc ≈ 24 V and sufficient current 211 

(Ip ≈ 0.5 A) to drive the evaporator wetter pump.  212 

3) Stainless steel PLVTD constructed of 0.9mm plates and sidewalls with 200 213 

cylindrical tubular internal support struts. A novel cross-sectional shape was 214 

developed to enable integration of the working fluid reservoir without causing a 215 

liquid thermal bridge (see Figures 2&4). The evaporator wetting system 216 

consisted of a small manifold-mount centrifugal pump fitted to the reservoir 217 

base with a stainless steel pipe supplying fluid to a linear distribution nozzle at 218 

the head of the evaporator plate to create a falling film. Refer to Pugsley (2017) 219 

and Pugsley et al. (2020) for further details concerning PLVTD design attributes. 220 

4) Flat profile open-top water storage tank formed of stainless steel sheet folded 221 

into a 4-sided rectangular box shape, welded to the PLVTD condenser plate, and 222 

insulated externally on all sides (including lid) with polystyrene foam.  223 

Prototype fabrication commenced with the metalwork fabrication (see Pugsley, 2017; 224 

Pugsley et al., 2020 for more details) according to the arrangement shown on Figure 4. 225 

After repairing minor envelope vacuum leaks at welded joints, the PLVTD enclosure 226 

was evacuated to 0.01 kPa, which removed non-condensable gases and enabled 227 

injection of 0.9kg working fluid through an arrangement of valves. The prototype was 228 



then mounted on a frame before fitting thermocouples and insulation. The PV cells 229 

were cut to size using Ulster University’s specialist high velocity ceramic disc cutting 230 

machine and soldered to apply tinned copper electrical tabbing. Finally, the absorber 231 

surface was painted, the PV cells strings were assembled, and mounted, encapsulating 232 

resin was cast in place, and power cables were connected as illustrated on 233 

Figures 3 & 5. Unfortunately, despite care being taken to protect the PV, damage was 234 

sustained to several cells in the process of fixing and casting them in place. 235 

Table 1: Key properties of the BIPV-PLVTD-ICSSWH prototype  236 

Quantity Value Unit Basis 

Volume of water in storage tank (u) 0.1 m3 Typical tank size reported in literature* on ICSSWH systems  

Aperture and absorber area (A1) 1 m2 Typical absorber size reported in literature* on ICSSWH systems 

PV cell coverage of absorber area (A0) 0.75 m2 15 strings, each formed of 8 quarter-cell pieces (78x78mm)   

Absorber laminate thickness (x15) 5 mm 
Absorber laminate consisted of PV cells cast in transparent crystal-clear 
silicone resin (nominal 2mm overall thickness). Resin was bonded to 
stainless steel substrate and faced with 3mm transparent acrylic sheet 

Removeable transparent cover thickness (x56) 33 mm 
Comprising of 3mm transparent acrylic sheet mounted on a polystyrene 
foam frame to form 30mm air gap between absorber and cover  

Depth of PLVTD (x12) 70 mm Dimension as discussed by Pugsley et al. (2020)  

Depth of tank (x3) 100 mm Tank volume divided by absorber area 

Standard power output of PV cell (qSTC) 4.24 W 156x156mm pseudo square mc-si M-2BB solar PV cell (Bosch, 2010) 

*The reader is directed to the literature review presented in our study introduction paper (Part 1 of 2) 237 

 238 

3.2 Experimental method 239 

The aim of the experimental work was to investigate the behaviour of the whole BIPV-240 

PLVTD-ICSSWH prototype collector under representative operating conditions to 241 

validate expected behaviours predicted by the theoretical model in terms of solar 242 

thermal and photovoltaic collection efficiencies, overnight heat retention, and diurnal 243 

thermal efficiency. The thermal test experimental methodology largely follows the 244 

precedents set by Smyth et al. (2003, 2015, 2018 & 2019) and Muhumuza et al. (2019) 245 

whereby the prototype is exposed to constant simulated solar irradiance before being 246 

left to cool overnight. Most previously documented solar simulator tests on ICSSWH 247 

prototypes have covered a single 24h period whereas each test in the present work 248 

covered a 100h period corresponding to 4 consecutive days. Our preceding paper 249 

(Part 1 of 2) which introduces the present study sets out a table of insolation and 250 

average irradiance levels for three contrasting climate locations (Belfast, UK; Rome, 251 

Italy; Riyadh, Saudi Arabia) at different latitudes based on 22 years of extra-terrestrial 252 

solar radiation measurements and earth surface satellite imagery (NASA, 2019; 253 

Stackhouse et al., 2018). Equator-facing vertical surfaces such as building facades 254 



(assuming no shading) in Rome receive H24≈12 MJ/m2 during both summertime and 255 

wintertime periods. Lower vertical plane insolation values typically occur in Riyadh 256 

during summer (H24≈7 MJ/m2 due to the acute incident angles associated with high 257 

solar altitudes) and also in Belfast (H24≈9 MJ/m2 in summer and H24≈4 MJ/m2 in winter 258 

owing to the predominantly cloudy local climate). Higher vertical plane insolation 259 

values are common in Riyadh during winter (H24≈14 MJ/m2) and at the spring and 260 

autumn equinoxes in Rome where H24≈20 MJ/m2) occurs on the sunniest days. In order 261 

to be representative of the stable mid-range insolation conditions in Rome and to 262 

account broadly for the typical minima and maxima, the following four separate 100h 263 

tests were undertaken:  264 

1) Moderate daily insolation (H24=13.2MJ/m2) with a transparent cover. 265 

2) Moderate daily insolation (H24=13.2MJ/m2) without a transparent cover.  266 

3) Low daily insolation (H24=8.0MJ/m2) without transparent cover.  267 

4) High daily insolation (H24=18.8MJ/m2) without transparent cover.  268 

These daily insolation scenarios were simulated using 6h periods of exposure to 269 

columnated vertical plane irradiance of G=370, 610 and 870 W/m2 (for low, moderate 270 

and high insolation scenarios respectively) incident on the prototype at an angle 271 

normal to the aperture plane. Irradiance was provided by the Ulster University solar 272 

simulator (Zacharopoulos et al., 2009; Arya et al., 2018) which consists of 35 metal 273 

halide lamps fitted with columnating lenses providing illumination uniformity of ±10% 274 

and an infrared filter to ensure realistic daylight spectrum similar to AM1.5. 275 

The prototype was instrumented with 50 thermocouples (T-type, accuracy verified to 276 

to ±0.3°C) to measure temperatures of the various elements of the prototype (T0, T1, 277 

T2, T3, T4, T5, T6 and Ta as per Figure 2) and to examine planar spatial variations. The 278 

majority of thermocouples were bonded to the metal body of the PLVTD or located 279 

within the water storage tank (see Figure 4) although some were attached to the rear 280 

of the PV cells (labelled according to cell number on Figure 3 as T0 (y,x) where y = row 281 

number of string and x = cell column number) and embedded within the absorber 282 

laminate or fixed to the insulation and transparent cover elements (see Figures 3 & 6). 283 

Temperature readings were made using a datalogger (Delta-T DL2e) set to record 284 

every 5 minutes.  285 

 286 



 287 

PV cell temperature measurement locations are denoted by T0 (y,x) where y = row number of string and x = cell column number 288 

 289 

Figure 3: Photovoltaic cell layout, series parallel wiring arrangement, and temperature measurement locations 290 
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 291 

Figure 4: Exploded view of the PLVTD and water tank 292 
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e
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1) Absorber-Evaporator plate (12 thermocouples bonded to front surface to measure temperature T1) 
2) Condenser-tank plate (12 thermocouples bonded to rear surface to measure temperature T2) 
3) Water storage tank back, sides and base (5 submerged thermocouples measuring T3) 
4) Sidewalls forming the top, bottom and sides of the PLVTD envelope (5 thermocouples bonded to measure temperature T4) 
a) Array of tubular struts forming internal structure 
b) Evaporator wetter distributer and diffuser nozzle 
c) Spigot for vacuum pump connection and working fluid injection 
d) Evaporator wetter pump mounting plate 
e) Working fluid reservoir with thermal break separating from condenser plate   

 



 

 

  

Figure 5: Photos showing PV/T absorber fabrication: All process stages (Top); Bare PV cells & cables (Left) Complete prototype (Right)   293 

 294 

Paper to protect from paint overspray 

Black spray paint applied to clean stainless steel surface 

Bare tabbed PV cell string fixed to absorber 
surface using double-sided adhesive foam tape 

Finished encapsulated cells temporarily covered with protective cling film 

PV cells covered by transparent Perspex plates. Masking tape 
used to retain transparent silicone resin during pouring and curing  



The storage tank temperature (T3) changes with time (t) and was used to calculate the 295 

instantaneous thermal power (q3) delivered to or lost from the tank based on the 296 

relationship q3 = M∙cp∙ΔT3/tcol. Initial tests were undertaken to determine thermal 297 

conductance of the insulated water storage tank and PLVTD sidewalls by covering the 298 

evaporator plate with 300mm of insulation, filling the tank with water at 70°C, and 299 

measuring the time taken to cool to Ta=23°C room temperature. Measurement results 300 

suggested residual heat loss of U3a=1.1 W·m-2K-1 over an area of A3ia=2.3 m2 301 

decreasing with time to U3a=0.6 W·m-2K-1 as the tank temperature reduced towards 302 

ambient. Having quantified residual heat losses, the instantaneous heat fluxes through 303 

the absorber and thermal diode (q03/A1) and lost from absorber to ambient (q0a/A1) 304 

could be calculated with reference to the energy balance model (refer to our study 305 

introduction paper, Part 1 of 2). Tests were undertaken with the PV elements coupled 306 

to an electrical load throughout (load resistance was adjusted periodically to ensure 307 

maximum power point operation) but without any thermal load (no water draw-offs, 308 

to simulate multi-day stagnation behaviour). The electrical load was temporarily 309 

disconnected every 2 hours during each collection period (for about 5 minutes on each 310 

occasion) to permit sampling of the PV module current-voltage characteristics using a 311 

Daystar DS1000 curve tracer which automatically sweeps the load condition from Isc 312 

to Voc through the maximum power point operating condition (qE,mpp). Supplementary 313 

measurement equipment included a calibrated pyranometer (Kipp & Zonen CM4) to 314 

measure irradiance levels; two Digital Multimeters (Amprobe AM-510-EUR) to monitor 315 

photovoltaic currents and voltages and measure load resistance; an Infrared 316 

Thermometer (Fluke 561) and a Thermal Imaging Camera (Testo 875-1i) to measure 317 

absorber surafce temperatures. The experimental procedure is detailed in full by 318 

Pugsley (2017) but is not repeated here for the sake of brevity. 319 

3.3 Solar thermal collection and heat retention results 320 

Temperature time histories with corresponding solar irradiances and absorber heat 321 

fluxes are shown on Figures 6 to 9 for each of the multi-day tests. Solar heat collection 322 

is apparent when the prototype is exposed to irradiance which causes the absorber-323 

evaporator plate temperature (T1) to rise and for heat flux (150<q03/A1<600 W·m-2) 324 

to be transmitted to the condenser-tank plate (T2) across the PLVTD temperature 325 

difference (3<ΔT12<30°C) causing a steady increase in water storage tank 326 

temperature from the starting condition T3≈Ta≈17°C.  327 



 328 

Figure 6: Temperature and heat flux time history results for tests under high irradiance without absorber transparent cover 329 

 330 

Figure 7: Temperature and heat flux time history results for tests under low irradiance without absorber transparent cover 331 
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 332 

Figure 8: Temperature and heat flux time history results for tests under moderate irradiance without absorber transparent cover 333 

 334 

Figure 9: Temperature and heat flux time history results for tests under moderate irradiance with absorber transparent cover 335 
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Retention periods occur when irradiance ceases (G=0) causing absorber-evaporator 336 

plate temperatures to fall below those of the condenser-tank plate (5<-ΔT12<25°C) 337 

and for a steady heat loss flux (15<-q03/A1<60 W·m-2) to develop causing a steady 338 

decrease in T3. As discussed by Pugsley et al. (2020), the measured heat fluxes and 339 

temperature differences imply thermal diode conductances of Uf,12≈38W·m-2K-1 in 340 

forward (collection) mode and Ur,12=1.7W·m-2K-1 in reverse (retention) mode.  341 

Water storage tank temperatures were observed to reach maxima of 𝑇3 = 𝑇̃𝑎 +34 = 342 

61°C and 𝑇3 = 𝑇̃𝑎 + 15 = 40°C by the end of Day 4 respectively for the high and low 343 

irradiance tests without transparent cover (see Figures 6 and 7). Day 4 maximum 344 

temperatures for the moderate irradiance tests without and with the transparent cover 345 

(see Figures 8 & 9) were respectively 𝑇3 = 𝑇̃𝑎 + 29 = 53°C and 𝑇3 = 𝑇̃𝑎 + 34.8 = 57°C 346 

which shows the beneficial effect of reducing absorber heat losses. These test results 347 

(obtained for H24=13.2MJ/m2 without wind) correspond reasonably closely to the 348 

theoretical modelling (refer to Figure 9 of our study introduction paper, Part 1 of 2) 349 

which predicted a Day 4 maximum temperature of 𝑇3 = 𝑇̃𝑎 + 29.2 = 51.2°C for Variant B 350 

which is representative of a BIPV-PLVTD-ICSSWH with single transparent cover 351 

operating under average summertime conditions in Rome (H24=11.5MJ/m2 with 2m/s 352 

wind). This provides reasonable validation of the model when allowing for minor 353 

differences in insolation and the absence of wind during tests.  354 

The measured instantaneous and daily solar thermal collection efficiencies are 355 

presented on Figure 10. Based on least-squares regression lines (R2>0.88) fitted to 356 

the measured data, the zero-loss performances (N=0 m2K∙W-1) of the bare absorber 357 

and single covered variants of the BIPV-PLVTD-ICSSWH collector are ηT=58% and 60% 358 

respectively. Measured performances at the benchmark solar thermal condition 359 

(N=0.035 m2K∙W-1) are ηT=40% and 49% respectively, somewhat lower than the 360 

ηT=60% target for state-of-the-art ICSSWH collectors as expected, due to some of the 361 

incident energy (~10%) being converted to electricity rather than heat. Measured 362 

trends are in reasonable agreement with predicted performances which provides 363 

further model validation. Small discrepancies between modelled and measured results 364 

are primarily associated with the thermal diode conductance which was modelled as 365 

constant Uf,12 ≈ 38W·m-2K-1 but varied in practice (95% of values varied in the range 366 



±17 W·m-2K-1 as reflected by the scatter in the measured data) owing to its 367 

temperature and heat flux dependence (refer to Pugsley et al., 2020).  It should be 368 

noted that data on Figure 10 excludes transients during the first 30 minutes of each 369 

collection period when the rise in tank temperature occurs very much slower than the 370 

rise in absorber temperature owing to the lag introduced by the latent thermal mass 371 

associated with liquid-vapour phase change within the PLVTD. Apparent instantaneous 372 

solar thermal efficiencies during these transients were typically ~10% lower than the 373 

steady-state values. 374 

 375 

 376 

Figure 10: Solar thermal collection efficiency of BIPV-PLVTD-ICSSWH prototype with and without transparent cover 377 
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  379 

Figure 11: Measured diurnal thermal efficiencies and specific heat loss coefficients on Days D1, D2, D3 & D4 of testing 380 

 381 

Measured diurnal thermal (ηT,24) efficiencies and volume specific heat loss coefficients 382 

(Ur,sysAsys/u) are summarised on Figure 11. Whole-period results for each day (D1, D2, 383 

D3 & D4) of each test (irradiances G = 370, 610 & 870 W/m2 with and without cover) 384 

are presented with reference to daily solar thermal condition (N24 calculated according 385 

to Equation 5 based on 24h average 𝑇̃3 and 𝑇̃𝑎). Results show that single covered and 386 

bare absorber variants of the BIPV-PLVTD-ICSSWH prototype achieved diurnal 387 

efficiencies of ηT,24 = 35% and 29% respectively at the benchmark solar thermal 388 

condition (N=0.035 m2K∙W-1) which is in good agreement with model predictions.   389 

Measured heat loss coefficients were Ur,sysAsys/u = 25.4 and 23.0 W·m-3K-1 respectively 390 

for the bare absorber and single covered variants of the BIPV-PLVTD-ICSSWH, 391 

corresponding to 18h heat retention efficiencies of ηret = 71% and 69% respectively. 392 

These values are broadly similar to those predicted by the theoretical model (Ur,sysAsys/u 393 

≈ 20 W·m-3K-1, refer to our study introduction paper, Part 1 of 2) and as expected, do 394 

not exhibit significant dependence upon temperature within the ranges examined. As 395 

predicted by the modelling results the heat loss coefficients demonstrate that the 396 

transparent cover provides only a small benefit (~10% Ur,sys improvement or ~2% 397 
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extra ηret) in respect of controlling overnight heat loss when used in tandem with a 398 

PLVTD. The model suggests that the cover would have a much larger effect if no PLVTD 399 

were employed which is why most ICSSWH collectors (which do incorporate thermal 400 

diodes) employ one or more transparent covers to control overnight heat loss.  401 

3.4 Photovoltaic performance results 402 

Measured open circuit voltages, short circuit currents, and fill factors for each string 403 

are shown on Figure 12. The same data for the whole module (formed by connecting 404 

the strings as a 5x series by 3x parallel module, see Figure 3 and discussion in 405 

Section 3.1) is shown on Figure 13.  406 

Open circuit voltage under moderate to high irradiance conditions varied from 407 

Voc=4.75±0.07 V per string at 25°C to a little less than 4V at 70°C (Figure 12a) and 408 

the maximum measured overall module open circuit voltage was Voc = 5 x 4.75 = 24V 409 

(Figure 13). Corresponding voltage-temperature coefficients (KV:T = -0.36%/K for 410 

strings and KV:T = -0.38%/K for whole module) are very close to the manufacturers 411 

published data (single cell KV:T = -0.37%/K according to Bosch, 2010). A slight drop in 412 

open circuit voltage is apparent under low irradiance (G=370 W/m2), corresponding to 413 

voltage-irradiance coefficient of 𝐾𝑉:𝐺≈96%, broadly as expected. 414 

Short circuit currents varied from Isc = 0.4A for the worst string under low irradiance 415 

up to Isc = 1.7A for the best string, and Isc = 4.5 A for the whole module, under high 416 

irradiance (G=870 W/m2). Calculated current-intensity relationships for individual 417 

strings were found to be in the range 23 < Isc/(G∙A) < 40 mA/W which is lower than 418 

the expected 45 mA/W implied by manufacturer’s performance data (Bosch, 2010). 419 

This is largely attributed to partial delamination of the bonded transparent covers 420 

(which gave cells a slightly whitened or faded appearance, implying optical losses) and 421 

also due to accidental cell damage (cracks etc which reduce active collection area and 422 

introduce electrical resistances). Comparison of short circuit currents measured on 423 

20 & 25 May against those measured on 16 May (see Figure 12b) clearly indicates a 424 

performance drop for Strings 2 & 3 which is consistent with cells having suffered 425 

permanent damage such as thermo-mechanical stresses causing cells to crack. Smaller 426 

performance drops are also evident for Strings 1, 8, 9 and 10 and are consistent with 427 

optical losses caused by cover delamination. Whole-module test data (Figure 13) 428 

indicates that the current-temperature effect is KI:T ≈ -0.04%/K (based on trendline 429 

gradients) or KI:T≈-0.07%/K (across the temperature range) with an abrupt non-linear 430 



step in behaviour at a critical temperature (T1≈50°C for most tests but T1≈70°C for 431 

the high irradiance test). Current-temperature effects are usually linear and of 432 

relatively small positive magnitudes (KI:T≈+0.03%/K expected for a single cell 433 

according to Bosch, 2010) but in this case the effect is significantly negative and non-434 

linear, consistent with PV cell fractures induced by thermal stress. The absorber 435 

laminate is formed of a mixture of metal (thermal diode evaporator), ceramic (PV 436 

cells), and polymeric (bonded transparent cover) elements which all have different 437 

thermal expansion coefficients. This induces thermal stress which causes cracks to 438 

form when the absorber temperature increases due to the metal and polymeric 439 

elements expanding more quickly than the fragile PV cells. The cracks open when the 440 

absorber is hot, which causes fractured parts of the PV cells to be electrically isolated 441 

from the strings. The cracks close again when the absorber cools, allowing fractured 442 

parts to reconnect to the string (albeit imperfectly).  443 

A typical 8-cell string achieved fill factors of FF=74% during high irradiance tests and 444 

FF=77% during low irradiance tests (Figure 12) which is consistent with the typical 445 

75%<FF<85% range reported in the literature (refer to Section 2.2 of our study 446 

introduction paper, Part 1 of 2). Whole-module tests (Figure 13) exhibited a wider 447 

range of measured fill factors (66%<FF<81%) but average values were very similar 448 

to those measured for individual strings. As expected, the lowest measured fill factors 449 

typically correspond to the highest irradiances when series resistances (eg soldered 450 

connections, tabbing, and cables) have the greatest influence. As expected, measured 451 

fill factors do not appear to exhibit any significant temperature dependence.   452 

Measured current-voltage and load-power curves for the whole module are presented 453 

on Figures 14 & 15 respectively. As expected, voltage reduces with increasing 454 

temperature and current reduces with reducing irradiance. The optimal load conditions 455 

indicated by the peaks on Figure 15 were used during the experiments as a guide to 456 

enable periodic adjustment of the load resistance (RE) to ensure continuous operation 457 

close to the maximum power point. The highest measured maximum power point 458 

power output (qE,mpp=75W, FF=70%, RE=5Ω) occurred whilst the tank was close to its 459 

lowest temperature under the high irradiance condition (G=870 W/m2 without cover, 460 

T3=17°C). The lowest measured output (qE,mpp=24 W, FF=72%, RE=14Ω) occurred 461 

whilst the tank was close to its maximum temperature under the low irradiance 462 

condition (G=370 W/m2 without cover, T3=40°C). Figure 14 indicates that a reduction 463 



in Isc occurs when the transparent cover is added (13% reduction for T3≈17°C cold 464 

tank case, 6% reduction for T3≈50°C hot tank case) but the exact magnitude of the 465 

optical loss (expected to be ~8%) is impossible to determine owing to superimposed 466 

current-temperature effects. Figure 16 shows how the maximum power point electrical 467 

efficiency of the whole PV module varies with absorber temperature from maxima at 468 

T1≈25°C of E,mpp 11.4% (without cover) and E,mpp 9.8% (with cover) to minima of 469 

E,mpp 5.6% (without cover at T1≈89°C) and E,mpp 5.9% (with cover at T1≈62°C). 470 

Measured low temperature efficiencies for the covered collector are lower than 471 

expected (E,mpp 10.9% predicted by the theoretical model, refer to Figures 7 and 9 of 472 

our study introduction paper, Part 1 of 2). This reduction can be explained by the 473 

accidental cell damage which occurred during fabrication and by the optical losses 474 

caused by partial delamination of the bonded transparent cover during initial tests. 475 

Measured efficiencies at higher temperatures deviate further from model predictions 476 

owing to the higher than expected current-temperature effect which appears to be 477 

associated with thermal stress cracks in the PV cells (see discussion above). 478 

  479 



 480 

 481 

 482 

a) Upper graph shows temperature dependence of average measured open circuit voltage. Vertical error bars represent the observed 483 
range of voltage variation between different strings. 484 

b) Middle graph compares measured short circuit currents for each string. Measurements were made at various different temperature and 485 
irradiance conditions and on various dates.  486 

c) Lower graph compares measured Fill Factors for each string under high and low irradiance conditions. 487 

Figure 12: Results of photovoltaic measurements on individual 8-cell strings 488 
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 492 

 493 
a) Upper graph shows temperature dependence of measured open circuit voltage.  494 
b) Middle graph shows temperature dependence of measured short circuit current.  495 
c) Lower graph compares shows temperature dependence of measured Fill Factors. 496 

The x-axis corresponds to the absorber temperature less the Standard Test Condition (STC) reference temperature of 25°C. 497 

Figure 13: Results of photovoltaic measurements on the whole module 498 
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Figure 14: Current-voltage characteristics of the photovoltaic module under a variety of different conditions 501 

 502 

 503 

Figure 15: Load-Power characteristics of the photovoltaic module under a variety of different conditions 504 
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Figure 16: Variation in measured maximum power point photovoltaic efficiency with temperature and irradiance 507 

 508 

3.5 Conclusions concerning model validity   509 

The measured thermal behaviour of the BIPV-PLVTD-ICSSWH prototype is in good 510 

agreement with the theoretical model. Measured maximum and minimum water 511 

storage tank temperatures are typically within ±3°C of modelled values, solar thermal 512 

collection efficiencies are typically within ±3% of modelled values, and specific 513 

overnight heat loss coefficients are typically within ±3 W·m-3K-1 of modelled values. 514 

The photovoltaic performance of the prototype was somewhat worse than expected 515 

owing to accidental damage to PV cells during fabrication and also due to delamination 516 

of the bonded transparent cover. The current-temperature relationship was the 517 

opposite of that expected and exhibited non-linearities which appear to be the result 518 

of PV cell cracks induced by thermal stress. Despite these issues, measured voltage-519 

temperature trends, the current-irradiance relationship, and fill factors, were all 520 

broadly as expected, indicating that the core theoretical model is valid.  521 
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4 Building integration and future concept development  523 

Development of the BIPV-PLVTD-ICSSWH approach from concept to reality requires 524 

an appreciation of the available energy resource, the key operating principles, and a 525 

validated theoretical understanding of device behaviour, as established through the 526 

parametric modelling and experimental work presented in this two-part study. Future 527 

design work and realisation of pre-commercial prototypes requires consideration of the 528 

application context (such as the thermal and electrical energy demands served by the 529 

system) as well as the practical constraints and opportunities associated with 530 

integration into conventional architectural and building services systems. 531 

4.1 Building energy demands 532 

Total energy use in buildings is determined by a combination of thermal demands and 533 

occupier electrical loads. Thermal demands for space heating and cooling depend upon 534 

local climatic conditions, building envelope thermal insulation, solar shading, and 535 

occupancy rates, but tend to be proportional to total envelope area (façades plus roof, 536 

through which heat losses and gains occur). Occupier electrical loads and domestic hot 537 

water demands depend upon user needs and occupancy rates but tend to be 538 

proportional to floor area (Bellusi et al., 2019). For any PV/T system to be useful, there 539 

must be a demand for both electricity and low-grade heat, and the solar collectors 540 

must be coupled to the building’s heating and electrical systems (Affolter et al., 2006; 541 

Zondag, 2008; Calise et al., 2016).  542 

Demands for electricity are often reasonably well matched to the diurnal and seasonal 543 

availability of solar resources, especially in hot and sunny climates where summertime 544 

cooling demands are significant (Sorgato et al., 2018). Even when supply and demand 545 

are ill-matched, excess electricity can often be utilised effectively by exporting it to the 546 

mains electricity grid or storing it in batteries (Kats and Seal, 2012). Domestic hot 547 

water demand is typically reasonably constant throughout the year and can be an 548 

effective way of utilising the heat produced by PV/T systems provided that the heat 549 

can be delivered at a sufficiently high temperature (with consequent sacrifice of PV 550 

efficiency, as demonstrated by Figure 16) and stored in sufficient quantity without 551 

significant heat losses. Whilst the required temperatures can be readily achieved in 552 

warm and sunny climates, it is more difficult in cold and windy climates, and the 553 

provision of heat loss control features (such as single or double transparent covers) 554 

reduces PV efficiency and also increases the risk of stagnation overheating when hot 555 

water demands are low. Space heating is typically the largest thermal demand for 556 

buildings in cool climates and can be accomplished using relatively low heat delivery 557 



temperatures in many cases (eg underfloor heating) but unfortunately, the greatest 558 

need (during winter) does not occur when the best solar resource is available (during 559 

summer). This issue is clearly problematic for latitude tilted and near-horizontal (eg 560 

roof mounted) collectors which typically receive 2 to 5 times more insolation in summer 561 

than they do in winter (refer to Table 1 in our study introduction paper, Part 1 of 2). 562 

The seasonal solar resource variance is however much less pronounced in the case of 563 

facade integrated collectors. Seasonal mismatches between solar resource availability 564 

and heat demands can, in principle, be dealt with by using thermal storage but the 565 

vessels required tend to be prohibitively large and supply temperatures limited (too 566 

low for domestic hot water or conventional hydronic heating systems employing 567 

radiators). These issues are often cited as major barriers against the widespread 568 

adoption of PV/T and other types of solar space heating. 569 

4.2 Heat pump integration 570 

More than a decade ago, Zondag (2008) suggested that: “More experience should be 571 

obtained for unglazed PV/T collectors combined with a heat pump, since this may be a 572 

promising development for the future”. Subsequent research investigating the use of 573 

low temperature heat from PV/T systems as a thermal source for heat pumps appears 574 

to have been somewhat scarce (Good et al., 2015; Qu et al., 2016; Calise et al., 2016) 575 

until very recently (Lazzarin et al., 2019; Shao et al., 2020; Yao et al., 2020; Zhou et 576 

al., 2020). Stagnation overheating during times of low thermal demand and transient 577 

overheating disrupting compressor start-up are common themes in these recent 578 

studies. Overheating in PV/T heat pump systems not only reduces PV electrical 579 

efficiency and increases risk of damage to collectors (especially those featuring 580 

transparent covers and air gaps to reduce heat losses) but also poses problems for 581 

heat pump operation (eg excessive refrigerant pressures which impair compressor 582 

function and damage seals etc). As demonstrated in our study introduction paper (Part 583 

1 of 2) the BIPV-PLVTD-ICSSWH concept provides a passive means of preventing 584 

overheating and stabilising temperature fluctuations, thus representing a promising 585 

avenue for further development. 586 

4.3 Façade integration 587 

The BIPV-PLVTD-ICSSWH concept is intended to be integrated into building facades 588 

and is particularly relevant for multi-storey buildings where the roof area is small 589 

compared to the total façade area and the usable floor area. Whilst vertical façade-590 

mounted solar collectors generally receive lower levels of irradiance than tilted roof-591 

mounted collectors, and are more likely to be subjected to shading from surrounding 592 



buildings and trees, the total solar resource incident on multi-storey building facades 593 

is commonly greater than that incident on the roof owing to the much larger overall 594 

area. In new buildings and major refurbishments, façade mounted solar collectors 595 

should ideally be an integral part of the façade design and construction process (rather 596 

than a bolt-on addition) for reasons of aesthetics, economics and maintainability. 597 

Façade integration of a BIPV-PLVTD-ICSSWH involves a variety of design drivers and 598 

constraints, some of which are common to conventional BIPV installations, and others 599 

which primarily relate to the ICSSWH element. These include: 600 

• Visual appearance is recognized as a crucial consideration for (and potential 601 

barrier against) widespread adoption of BIPV and BISTS. Absorber surface colours 602 

and planar forms can be manipulated to achieve architectural expression or 603 

alternatively to “camouflage” collectors if preferred (Tripanagnostopoulos et al., 604 

2000; Affolter et al., 2006; and COST, 2015). The absorber surface and any 605 

transparent covers need to be aesthetically appropriate and their dimensions 606 

need to be compatible with the building facade’s structural grid. 607 

• Relatively high capital costs of BISTS are often seen as prohibitive. However, 608 

collector components (such as insulation, exterior weather facing surface, 609 

structure) can replace elements of the façade resulting in net cost reductions 610 

compared to bolt-on solutions. Collectors also produce energy which means that 611 

the façade will partially or wholly “pay for itself” over time. 612 

• Façade zone and structural compatibility constraints may limit overall BIPV-613 

PLVTD-ICSSWH depth or limit tank volumes. The form of the device inherently 614 

needs to be slender in order to fit within the depth of conventional façade 615 

constructions. The weight of the stored water in the tank will impose significant 616 

structural loads on façade structural elements and/or floor slab edges in addition 617 

to self-weight and wind loads, hence a compromise between desired storage 618 

capacity and structural loading constraints must be sought. Fixings and pipe 619 

penetrations must not compromise the integrity of the structure and should 620 

ideally be readily accessible for inspections and maintenance.  621 

• Electrical compatibility with conventional cabling and inverter arrangements 622 

is important to ensure interoperability with existing market solutions. PV panel 623 

voltages and shading tolerance needs to be considered. Micro-inverters may be 624 

a good solution in these respects. Cable routes should be accessible and avoid 625 

clashes with structural elements. 626 



• Thermal compatibility with conventional façade thermal insulation, 627 

condensation control, and ventilation strategies. Integrated BIPV-PLVTD-628 

ICSSWH collectors must not significantly add to building heat loads when the 629 

stored water is hot (eg during summer). Likewise, the collectors and associated 630 

pipework must not compromise the envelope by causing thermal bridging or 631 

creating condensation problems.   632 

• Protection of PV cells against mechanical and thermal stress, weathering and 633 

humidity, as well as electrical isolation from the collector main body (metal). 634 

The issue of thermal stress should not be underestimated, especially given the 635 

problems encountered with temperature induced PV cell cracking observed 636 

during the experiments undertaken in the present study.  637 

• Robustness and stability of construction materials and joints/interfaces with 638 

due regard to operating and stagnation temperatures; thermal expansion 639 

stresses; exposure to precipitation (rain, snow, hail, and atmospheric moisture); 640 

wind loads, and UV radiation. The water storage tank must withstand the self-641 

weight of the water it contains (together with any applied water pressure) and 642 

the PLVTD must maintain a reliable vacuum, thus these components require 643 

dimensional stability to ensure negligible leak risk. 644 

• Maintenance of collector components needs careful consideration. Components 645 

requiring regular maintenance should be accessible from inside the building. 646 

Where this proves impossible, the cost and complexity of access to façade 647 

mounted collectors on tall building can be minimized by utilizing available façade 648 

access equipment (window cleaning cradles etc) and ensuring that façade access 649 

strategies consider collector maintenance. 650 

• Other façade design requirements such as fire protection, fire safety of 651 

component materials, and sound insulation may also be relevant factors in the 652 

design of a viable BIPV-PLVTD-ICSSWH system. 653 

The abovementioned opportunities and constraints were considered insofar as possible 654 

during the design of the prototype examined in this study, but further work will be 655 

required to refine the concept through consultation with architects, façade engineers 656 

and other construction professionals. Issues concerning costs, structural loading and 657 

material robustness are the main areas of design risk to be addressed in future studies.  658 

One of the most unique aspects of the BIPV-PLVTD-ICSSWH concept is the thermal 659 

diode component. Whilst our experimental prototype functioned adequately during the 660 



laboratory tests, the pumped evaporator wetter mechanism was found to be 661 

problematic in respect of vacuum leakage, excessive power consumption, and uneven 662 

wetting of the evaporator plate which impaired the forward mode thermal diode 663 

performance (described in more detail by Pugsley et al., 2017 & 2020). It was also 664 

found that the strut array support structure inside the PLVTD (see Figure 4) was 665 

difficult to fabricate. Further development of the PLVTD component will focus on the 666 

use of passive evaporator wetting mechanisms (such as capillary wicking) and trialling 667 

alternative structural support arrangements.  668 

5 Conclusions 669 

This two-part study examined an alternative space-and-energy-efficient approach to 670 

BIPV/T which combines BIPV, ICSSWH, and PLVTD concepts. Our first paper (Part 1 of 671 

2) established the novelty and rationale for the concept and used theoretical modelling 672 

to predict behaviour. The present paper (Part 2 of 2) described the realisation of a 673 

prototype; presented results of multi-day solar simulator laboratory tests to validate 674 

the theoretical model; identified key practical considerations and areas for future 675 

design improvement; and discussed the key benefits and challenges associated with 676 

integrating BIPV-PLVTD-ICSSWH concepts into NZEB facades as part of global 677 

decarbonisation efforts to tackle the climate crisis.  678 

The vertically oriented BIPV-PLVTD-ICSSWH prototype (A1=1m2 absorber & PLVTD 679 

area with 75% PV cell coverage; x=70mm PLVTD depths; u=0.1m3 hot water store) 680 

was tested using a solar simulator under representative scenarios (6h exposure at 681 

G=370, 610 and 870 W/m2 with and without transparent cover followed by 18h 682 

darkness, repeated for 4 daily cycles) to examine multi-day behaviour. Measurements 683 

quantified time variant absorber (19<T1<89°C) and stored water (17<T3<61°C) 684 

temperatures; instantaneous solar thermal (26<ηT<68%) and photovoltaic 685 

(5.6<ηE<11.8%) collection efficiencies; whole-module temperature dependent 686 

current-voltage characteristics (19<Voc<24V, KV:T = -0.38%/K, 1.5<Isc<4.5A, 687 

KI:T ≈ -0.04%/K, 66<FF<81%); heat loss coefficients (21<Ur,sysAsys/u<29W·m-3K-1); 688 

and diurnal thermal efficiencies (24<ηT,24<46%). Key findings were as follows: 689 

• From a common starting condition of T3≈Ta≈17°C, water storage tank 690 

temperatures were observed to reach Day 4 maxima of T3 = 61, 53, 40 and 691 

57°C respectively for G=870, 610 and 370 W/m2 irradiance tests without 692 

transparent cover and G=610 W/m2 irradiance tests with transparent cover.  693 

• Solar thermal efficiencies with and without the transparent cover were found to 694 

be ηT,col=60% and 58% respectively under zero heat loss conditions 695 



(N=0.0 m2K∙W-1), falling to ηT,col=49% and 40% respectively at the benchmark 696 

solar thermal condition (N=0.035 m2K∙W-1).  697 

• Measured overnight heat loss coefficients were Ur,sysAsys/u = 23.0 and 698 

25.4 W·m-3K-1 respectively with and without the transparent cover, 699 

corresponding to 18h heat retention efficiencies of ηT,ret 71% and 69%.  700 

• Compared to modelled values, measured water storage tank temperatures were 701 

typically within ±3°C, solar thermal collection efficiencies were typically within 702 

±3%, and specific overnight heat loss coefficients were typically within 703 

±3 W·m-3K-1, indicating that the theoretical model is suitably valid to enable 704 

thermal performance predictions across diurnal and seasonal timescales. 705 

• Overall maximum power point PV module efficiencies were observed to reduce 706 

with increasing absorber temperature from E,mpp = 11.4% (at T1≈25°C) to 707 

5.6% (at T1≈89°C) without transparent cover. Adding the transparent cover 708 

reduced performance to E,mpp = 9.8% (at T1≈25°C). Allowing for issues 709 

associated with PV cell cracks and transparent cover delamination, the 710 

measured trends in PV performance were broadly as expected, indicating that 711 

the core elements of the theoretical model are valid.  712 

Whilst the experimental prototype functioned adequately during the laboratory tests, 713 

opportunities for design refinements have been identified to support realisation of pre-714 

commercial prototypes focussed on integration into conventional architectural facades 715 

and building services systems, including: 716 

• Use of passive evaporator wetting mechanisms and alternative internal 717 

structural support arrangements within the PLVTD.  718 

• Optimisation of integrated thermal storage sizing to accommodate diurnal and 719 

seasonal supply and demand mismatches; provide stable temperatures to 720 

support operation as a thermal source for heat pumps; minimise potential for 721 

stagnation overheating during hot and sunny low heat demand periods; and 722 

satisfy structural loading constraints associated with weight of storage media.  723 

The BIPV-PLVTD-ICSSWH façade concept provides a passive means of addressing 724 

overheating and thus represents a promising avenue for further development. Issues 725 

concerning costs, structural loading and material robustness do however need to be 726 

addressed as part of a multi-disciplinary design approach to support realisation of 727 

NZEBs as part of global efforts to tackle the climate crisis.  728 
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 737 

Nomenclature 738 

Latin symbols 739 

A Surface area [m2] 740 

cp Specific heat capacity at constant pressure [J·kg-1 K-1] 741 

FF Photovoltaic Fill Factor [%] 742 

G Solar irradiance [W·m-2] 743 

H Solar insolation [MJ·m-2] 744 

I Electrical current [A] 745 

K Photovoltaic performance correction coefficients [% or %/K] 746 

M Mass [kg] 747 

N Solar Thermal Condition [m2·K·W-1] 748 

q Thermal or electrical power [W] 749 

R Thermal or electrical resistance [K·W-1] 750 

t Time [s] 751 

T Temperature [°C] 752 

𝑇̃[𝑡] Average temperature, during time period [°C] 753 

u Volume [m3] 754 

U Thermal conductance or heat transfer coefficient [W·m-2 K-1] 755 

V Electrical voltage [V] 756 

x Distance along an axis which is parallel to the PLVTD depth [m] 757 

y Distance along horizontal axis perpendicular to PLVTD depth [m] 758 

z Distance along an axis which is perpendicular to x and y axes [m] 759 

 760 

Greek and other symbols 761 

𝛼 Absorptivity 762 

ΔT Temperature difference [°C] 763 

 Efficiency [%] 764 

 Transmissivity 765 

 766 

Subscripts 767 

0 Photovoltaic cells 768 

1 Planar Liquid-Vapour Thermal Diode, Plate 1 which is the evaporator in forward mode 769 



2 Planar Liquid-Vapour Thermal Diode, Plate 2 which is the condenser on forward mode 770 

3 Hot water storage tank 771 

4 Sidewalls of the Planar Liquid-Vapour Thermal Diode 772 

5 External surface of the solar absorber 773 

6 Transparent element covering solar absorber 774 

0a Between PV cells and ambient environment 775 

03 Between PV cells and hot water storage tank 776 

1a Between solar absorber and ambient environment 777 

12 Between (or average of) the two plates 778 

15 Between the PLVTD and the external surface of the solar absorber (through the laminate) 779 

24 Diurnal period of 24 hours 780 

3a Between water storage tank and ambient environment 781 

3ia  Between water storage tank and ambient environment through insulation 782 

4ia Between insulated PLVTD sidewalls and ambient environment 783 

56 Across the air gap between the solar absorber and transparent cover 784 

a Ambient environment 785 

col Collection (period of solar absorber illumination, eg daytime) 786 

E Electrical 787 

f Forward mode 788 

load Connected electrical load 789 

mpp Maximum Power Point 790 

oc Open circuit 791 

P Pump 792 

PV Photovoltaic 793 

r Reverse mode 794 

ret Retention (period without solar absorber illumination, eg night-time) 795 

sc Short circuit 796 

STC At Standard Test Conditions 797 

sys Whole system 798 

T Thermal 799 

I:T Current-Temperature relationship 800 

V:T Voltage-Temperature relationship 801 

V:G Voltage-Irradiance relationship 802 

 803 

Abbreviations 804 

AM Air Mass index 805 

BIPV Building Integrated PhotoVoltaics 806 

BISTS Building Integrated Solar Thermal Systems 807 

ICSSWH Integrated Collector-Storage Solar Water Heater 808 

mc-si Mono-crystalline silicon 809 

NZEB Net Zero Energy Building 810 

nZEB Nearly Zero Energy Building 811 

PLVTD Planar Liquid-Vapour Thermal Diode 812 

PV/T Photovoltaic-Thermal 813 

STC Standard Test Conditions (for PV cells and modules) 814 
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