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Abstract Human activity recognition (HAR) is an im-

portant branch of human-centered research. Advances

in wearable and unobtrusive technologies offer many

opportunities for HAR. While much progress has been

made in HAR using wearable technology, it still remains

a challenging task using unobtrusive (non-wearable)

sensors. This paper investigates detection and track-

ing of multi-occupant HAR in a smart-home environ-

ment, using a novel low-resolution Thermal Vision Sen-

sor (TVS). Specifically, the research presents the devel-

opment and implementation of a two-step framework,

consisting of a Computer Vision (CV) based method

to detect and track multiple occupants combined with

Convolutional Neural Network (CNN) based HAR. The

proposed algorithm uses frame-difference over consecu-

tive frames for occupant detection, a set of morpholog-
ical operations to refine identified objects, and features

are extracted before applying a Kalman filter for track-

ing. Laterally, a 19-layer CNN architecture is used for

HAR and afterward the results from both methods are

fused using time interval based sliding window. This

approach is evaluated through a series of experiments

based on benchmark Thermal Infrared datasets (VOT-

TIR2016) and multi-occupant data collected from TVS.

Results demonstrate that the proposed framework is

capable of detecting and tracking 88.46% of multi-
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occupants with a classification accuracy of 90.99% for

HAR.
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1 Introduction

Over several decades, advances in pervasive comput-

ing has offered great promise towards the potential of

indoor localization and Human Activity Recognition

(HAR) [1]. Over this period, significant research effort

has been targeted towards the creation of solutions that

can reliably monitor individuals through the use of on-

body wearable sensors, dense sensors, and vision sen-

sors [2]. Whilst results utilizing on-body sensors has

improved greatly, wearable solutions are often said to

be impractical, as they can be difficult to carry or in-

convenient to wear continuously [3]. Additionally, vision

sensors capable of capturing RGB or grayscale images

have been studied intensively within the Computer Vi-

sion (CV) domain. The use of cameras, however, raises

serious privacy concerns [4].

Recently, researchers have been investigating the

potential of deploying unobtrusive, inexpensive and low

resolution Thermal Vision Sensors (TVS) for occupant

detection and pervasive sensing [5]. Similar to tradi-

tional vision based approaches, TVS suffer from same

limitations for handling complex object appearances

due to shape deformation, low resolution, varying num-

ber of objects, pose variation, motion estimation, and

object re-identification [6]. TVS do, however, address

some of the challenges as they tend to be more robust

to illumination changes, can operate even in complete

darkness and offer less intrusion on user’s privacy [7].
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The majority of research into HAR has focused on

single occupant environments. Nevertheless, living en-

vironments are usually inhabited by more than one per-

son. Therefore, HAR in the context of multi-occupancy

would provide a more practical solution, however, also

more challenging. The difficulty with multi-occupant

HAR stems from two related challenges in occupant

identification, known as data association, and the di-

versity of human activities.

In CV, object tracking remains one of the most

significant research challenges [8, 9]. This becomes

even more complex when using TVS for monitoring

multi-occupants, as data only corresponds to varia-

tion in temperature. Therefore a different strategy is

required for identification and re-identification of the

occupants [10]. The aforementioned challenges are ad-

dressed by proposing and implementing a robust CV-

based integrated framework for multi-occupant detec-

tion, tracking and HAR based on TVS.

The remainder of the article is organized as follows:

Sect. 2 presents a review of related work; Sect. 3 formu-

lates the problem and introduces the proposed frame-

work describing our pragmatic approaches for multi-

occupant tracking and HAR; Sect. 4 presents experi-

mental details; Sect. 5 presents both quantitative and

qualitative evaluations and comparisons on thermal

frame sequence and VOT-TIR2016 benchmarks; Sect. 6

offers concluding remarks with a discussion about fu-

ture improvements.

2 Related work

Multi-object Tracking (MOT) in CV domain has been

studied for decades and has attracted a lot of research

attention. It is, however, still far from solved regard-

ing HAR [11]. Many solutions exist for HAR in a con-

trolled environment. These solutions mostly involve the

deployment of numerous wearable and pervasive sen-

sors [12], which can lead to increased cost, privacy con-

cerns and more often inconvenience. To alleviate these

challenges, attention of the research community has di-

rected to low-cost unobtrusive sensors [13].

TVS are an excellent candidate for pervasive sens-

ing due to their inexpensive nature, portability, limited

maintenance requirement and lower privacy issues com-

pared to traditional cameras. Hevesi et al. [14] have il-

lustrated that such a sensing modality can be deployed

for indoor HAR and monitoring of sedentary behavior

of a single occupant in an office environment. Solutions

based on TVS mostly require CV based approaches

for locating moving objects by identifying them as a

region of interest (ROI) in a frame sequence. Detec-

tion of a ROI is deemed as the first step in most CV-

based applications [15]. It may involve various tech-

niques such as: (1) thresholding, which yields low accu-

racy and is of lesser use in current applications [16]; (2)

multi-resolution processing which faces challenges for

detecting objects during congestion [17]; (3) edge de-

tection which has challenges in deriving an ROI where

the shape of object is highly dynamic; (4) inter-frame

differencing which uses consecutive frames for detecting

an ROI but can only be considered for a sequence of a

shorter duration [18]; (5) an optical flow based detec-

tion which requires a large number of frames resulting

in poor performance; (6) background subtraction which

extract objects not belonging to the background, how-

ever, this technique requires a static background as an

initialization.

Regarding MOT various techniques [19] have also

been proposed by the research community. These tech-

niques focus on addressing common challenges such as

frequent occlusions, identical appearances, track man-

agement and interaction among objects. No single ap-

proach currently exists which can address all of these

challenges. MOT in any visual tracking system usually

involves three functional models [20]: (1) appearance

model, which describes the object and distinguishes it

from the non-objects; (2) motion model which charac-

terizes the current and predicts the future states of an

object by tracking their trajectories; (3) searching strat-

egy which helps to identify and match an object based

on the appearance model in a frame sequence.

Motion models have gained significant attention for

object state estimation. They operate by producing ac-

curate motion affinity models in a linear motion space,

which can be used to predict object position [21]. Thus,

it reduces the search space by capturing the dynamic

behavior of the object. To solve the linear tracking

problem, where continuity of moving objects is not

abrupt, Kalman filtering (KF) is often used [22]. This

approach can track moving objects using their center

of gravity [23]. KF is a linear state-space motion model

proved to be an optimal tracker suitable for practical

applications. It promises a good compromise between

computational complexity and performance for object

tracking by utilizing a point-based approach in learning

statistical features [24]. It uses identified features and

uncertainty information to estimate different states of

an object through the successive frames. KF may, how-

ever, experience object drifting due to the loss of an

object’s appearance information in a frame sequence.

The object drifting complexities require efficient object

refinement schemes to analyze object motion proper-

ties leading to proper data association [25]. Yilmaz et

al. [21] addressed some of the issues and complexities

related to data associations through a joint solution for
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state estimation. Choi et al. [26] formulated the prob-

lem of multi-occupancy and resolved it through multi-

ple target tracking. They merged the problems of HAR

and tracking into a single probabilistic graphical model

for tracking individual actions. Similarly, an adaptive

framework was also proposed by Shen et al. [27] to iden-

tify the correct state of the targets. They suggested the

use of an adaptive detection algorithm for MOT task to

refine the detection targets and minimize the detection

errors.

In order to classify Activities of Daily Living

(ADLs), it has been observed that CNN have shown su-

perior performance over the traditional Machine Learn-

ing (ML) approaches such as Support Vector Ma-

chines [28] and feed-forward neural networks [29]. The

visual object recognition tasks [30] can be performed

over the raw low-resolution TVS frames using CNN,

which is easier to train by adjusting a few parame-

ters and inter-layer connections. It extracts meaning-

ful features without requiring domain knowledge and

with minimum preprocessing over a stacked sequence of

frames [31]. The CNN model has the capability to ex-

tract multiple motion features encoded in the adjacent

TVS frames for automatic classification of ADLs [32].

The current work is closely related to [4] in which

the authors proposed a system for indoor player track-

ing captured through the thermal camera at a sports

arena and pedestrian tracking in a courtyard. Ray et

al. [33] proposed a detection algorithm, which does not

depend on any prior background knowledge for object

detection and also does not require initialization. Sim-

ilarly, Leira et al. [34] considered the problem of small

unmanned aerial vehicles equipped with thermal cam-

eras for real-time target detection and tracking at sea

using the KF based technique. Tiwari et al. [35] high-

lighted the research gaps for video-based HAR. They

suggested designing an approach to improve the ro-

bustness of the detection and tracking algorithms by in-

creasing the number of occupants, which can be tracked

over a sequence.

The purpose of this study is to propose a frame-

work for moving object detection, tracking and classifi-

cation of ADLs with increased performance using low-

resolution thermal video frames. To achieve this goal,

an implementation using a KF was devised by build-

ing a robust object appearance model with morpho-

logical feature refinements. It also involves the Hun-

garian algorithm for data association per frame [27].

Additionally, this study evaluates the robustness of the

integrated framework to detect and track ADLs of the

users using low-resolution TVS. For this, the solution

was tested using comprehensive experimental analysis

drawing quantitative and qualitative comparisons. Ro-

TVS Multioccupant Detection 
& Tracking

TVS Activity Recognition

TVS  Multioccupant Feature Vector

TVSFF
TVSMoAR

Unobtrusive Multioccupant Detection and Tracking (uMoDT)

for HAR
CV

CNN

Fig. 1: Overview of proposed solution strategies as

uMoDT framework

bust tracking systems, such as [36], mostly involve an

appearance and motion model to track the candidate

states of the target. Computational complexity, how-

ever, increases proportionally with the increase in the

number of targets to be tracked [37]. Therefore, a joint

optimization is essential for MOT. Most MOT research

focuses on tracking-by-detection methods, however, an

extension to it, by classifying the activities may result

in boosting the overall effectiveness of these methods.

3 Proposed uMoDT framework

This section initially outlines the design challenges be-

fore presenting the algorithmic solutions and then de-

tailing the overall framework.

3.1 Overview

The main challenges in CV-based object detection and

tracking applications are correct identification of ROI,

reliable and efficient handling of moving objects along-

with their inter-frame associations. These challenges,

however, become even more complex for interacting

multi-objects, which may have erratic movements rep-

resented by low-resolution appearances in a frame se-

quence. For this, an efficient method is required to pre-

dict their motion and manage data association [38]. Ad-

ditionally, recognition of interaction amongst objects

and classification of activities is also a computation-

ally intensive task and requires a more robust process.

This further requires a trade-off when implementing the

above-mentioned methods in a more efficient manner

for a complete, coherent and correct detection, track-

ing and classification of an occupant’s activities. To

address the aforementioned challenges, as presented in

Fig. 1, we propose a unified scalable unobtrusive Multi-

occupant Detection and Tracking (uMoDT ) framework,
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Fig. 2: Proposed unobtrusive Multi-occupant Detection and Tracking (uMoDT) framework for HAR

which detects, tracks and recognizes different indoor ac-

tivities under multioccupancy using TVS.

The uMoDT framework addresses six strategies as

described below:

– We propose an online framework, which uses a CV-

based algorithm, with improved morphological fea-

tures, for an automatic multi-target initialization

using frame differencing with an optimum thresh-

old.

– We rely on refined morphological characteristics,

which ensure efficient detection and tracking accu-

racy over the dynamic patterns for nonrigid moving

targets per-frame.

– We use the Hungarian method for track assignment

problem with an approach for maintaining an asso-

ciation history of re-identified tracks of individual

moving objects per-frame.

– The proposed framework is validated using a dataset

gathered at Smart Environments Research Group

(SERG) laboratory from the Ulster University, UK.

It proved to be computationally robust and achieves

a promising tracking accuracy in comparison with

other MOT methods.

– We also demonstrated quantitative evaluations on

the publicly available dataset for the VOT-TIR2016

challenge proving the practicality and efficacy of the

proposed framework with the state-of-the-art.

– Additionally, we propose to apply a CNN architec-

ture to extract and learn spatial features from multi-

ple successive Thermal Vision Sensor Frame (TVS-

F) for individual action recognition.

The focus of the presented work is to simultaneously

detect multi-occupants as well as recognize their activ-

ities frame-by-frame from TVS. It also requires a so-

lution for resident data association in a smart-home

environment, which is accomplished by unifying two

different approaches. Firstly, using the CV-based tech-

nique, which detects, tracks, and monitors the occu-

pant within the controlled area by observing a robust

frame difference between the consecutive frames. Sec-

ondly, the CNN layers are invoked by the TVS frame

sequence (TV S Fseq), which recognizes the occupant’s

individual activities such as Walking, Standing, Sitting,

Fall down. Finally, the recognized activities are asso-

ciated with each occupant using the proposed Ther-

mal Vision Sensor Feature Fusion (TV SFF ) method per

frame.

3.2 Computer vision-based occupant detection and

tracking

This Section describes the inner details of the proposed

framework to detect the presence of multi-occupants

in real-time, and track them throughout the duration

of TV S Fseq by following them from frame-by-frame.

Fig. 2 illustrates the overall uMoDT framework with

underlying several components, namely TVS sensor as

an Input device, TVS-F Preprocessing, Occupant Track-

ing, and TVS-F Feature Extraction. These components

are connected in series whereas the information flow

between subcomponents is discussed further in the fol-

lowing subsections.
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o)

Fig. 3: (a) Empty smart living room. Single occupant activities shown as (b) Sitting (c) Standing (d) Walking

(e) Stretching (f) Fall Down. Multi-occupant activities shown as (g) Two persons Sitting (h) One person Sitting

while other Standing (i) One person Sitting while other Walking (j) One person Standing while other Fall Down

(k) Both persons Standing (l) One person Standing while other Stretching (m) Both persons Walking (n) All are

Walking (o) one person Walking while other one Stretching

Algorithm 1 TVS-MoFV: Thermal Vision Sensor multi-occupant frame vector algorithm

Input TVS F: Thermal Vision Sensor grayscale sequence frames;
Output: Multi-occupant Frame Vector TV SMoFV .

1: procedure TVS MatPreProcessing
2: Load TV S Fseq ← {TV S F1, TV S F2 . . . TV S Fn} where i = {1, 2, . . . n}
3: Read Matrix TV S Fseq . Reads sequence of frames TV S Fseq
4: for all TV S Fi to TV S Fn do
5: function Low thresholding(TV S Fi)
6: TV S Fi − TV S Fi−1 > TV STh . Frame differencing sensitive to threshold
7: Bn ← TV S Fi . Identify ’n’ Occupants as Blobs
8: TV S Fi ← Gaussk,l(TV S Fi) . Smoothing by Gaussian blur k=l=3
9: end function

10: function morphologicalTV SPreProcessing(TV S Fi) . Morphological filtering
11: TV S Fi ← Ekw,kh(TV S Fi) . Erode: width ’w’ & height ’h’ =8
12: TV S Fi ← Dkw,kh(TV S Fi) . Dilate: width ’w’ & height ’h’ =8
13: end function
14: function Detect Contour(TV S Fi)
15: Cntn ← TV S Fi
16: Find CntnContours
17: for all i = 1 to n do
18: min(B) < Cnti < max(B) . min Blob Area < ContourArea < max Blob Area
19: Pxi,yi ← Cnti(pxi

, pyi)
20: BRn ← boundingrectangle(Pxi,yi) . Assign Bounding Rectangle
21: array [BR]← BRn . Populate Rectangle Array
22: P� ← array [BR] . GetContourFeatures Perimeter
23: An ← area(Pxi,yi) . GetContourFeatures Area
24: A� ← array [BR]
25: Pavg ← Averagepixels(BRn) . Compute pixel p, average avg for Bounding Rectangle
26: end for
27: end function
28: end for
29: return TV SMoFV ←

[
Pxi,yi ,P�,An,A�, Cntn

]
30: end procedure

3.2.1 Input frames

In this study, we propose to mount the Heimann HTPA

TVS [39] in the ceiling of the smart-home’s living room

and kitchen at the height of 3m. The monitored space

is a quadrilateral area with dimensions 4×3.5m. This

setting provides a clear field of view and collects an

aerial view of the multi-occupants as seen in Fig. 3.

It also overcomes the challenges related to occupant-

to-occupant and, occupant-to-scene occlusion, whilst

avoiding camera motion and is operative even in com-

plete darkness. The TVS ensures a high degree of

user’s privacy by capturing low-resolution grayscale

TV S Fseq with the dimensions of 32h×31v×1. Each of

the 992 pixels correspond to an area within the smart

living room and kitchen represented by each pixel value
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ranging between 0 and 255. This range sets a corre-

spondence of every pixel with an average temperature

characteristic to that area. The TV S Fseq is managed

by using RESTful HTTP services, which are processed

by the server.

3.2.2 Multi-occupant Feature Vector (TVS-MoFV)

The frames represent the presence of heat sources

within the TV S Fseq. The characteristics of identi-

fied heat sources are calculated by using the proposed

Thermal Vision Sensor Multi-occupant Feature Vector

(TVS-MoFV) algorithm. It gathers multi-occupant fea-

ture vectors in TV S Fseq frame-by-frame. The series of

tasks performed by TVS-MoFV are described in Algo-

rithm 1, which are summarized as follows:-

– Converts the JSON 32×31 matrices into the se-

quence of frames TV S Fseq.

– Segments the TV S Fn frames in order to de-

tect foreground (multi-occupant) and background

(static smart living room or kitchen) per frame.

– Applies the Low thresholding TV STh function with

a background subtraction method sensitive to

threshold [40].

– Convolves the TVS-F using Gaussian Kernel

Guassk,l for smoothing and reducing noise with the

kernel k=l=3.

– Performs morphological filtering and binarization

on TV S Fn to reduce the thermal noise using oper-

ations such as Erode Ekw,kh and Dilate Dkw,kh .

– Determines the presence of multi-occupant using

connected pixels termed as the contours Cntn rep-

resented by blobs in the sequence of binary frames

TV S Fn.

– Assigns and encapsulates each identified Cnti,
within the ROI, represented by Bounding Rectan-

gles i.e. BRn.

– Estimates the centroid Pxi,yi for the identified Cnti
surrounded by BRn, which acts as a pivot for fur-

ther tracking.

– Computes an array of the morphological feature vec-

tor for every TV S Fi frame, which includes Perime-

ter P�, Area A�, and Contour Pixel Average Pavg

for every BRn in the TV S Fi.

The learned frame vector TV SMoFV from every TVS-

F comprises of the morphological states of the detected

occupant. These states represent the occupant’s ther-

mal area, a center of contour, a perimeter of the bound-

ing box, and the area enclosed within the bounding box

encapsulating the occupant. These multiple features be-

come the basis for TV SMoAR with the support of the

proposed method TV SFF required for the data associ-

ation before recognizing and associating individual ac-

tivities.

3.2.3 Multi-occupant Detection and Tracking

(TVS-MoDT)

Algorithm 2 describes the TVS Multi-occupant Detec-

tion and Tracking (TVS-MoDT) method to identify,

predict, plot, visualize, and maintain the occupant’s

tracks within TV S Fseq. Some of the key features for

this algorithm are summarized as below:-

– The TV S Fseq is read as input simultaneously as in

the case of Algorithm 1.

– The detected contours Cnti through Algorithm 1 are

iterated within TV S Fseq for computing the vector

point Vp responsible for tracking and maintaining

the history of the tracks as shown in Line 4-11.

– For every detection D for Cnti the tracks Ti are

initialized as shown in Line 15.

– We used two classical efficient methods, Hungarian

method, and KF to handle the occupant’s data as-

sociation and smoother motion refinement with po-

sition prediction of the multi-occupant respectively.

– The optimal assignment
−→
A and cost C computation

task for tracks T assigni is performed using the Hun-

garian method.

– We employed KF to generate multi-occupant mo-

tion trajectories i.e. estimation and position predic-

tion for the blob representing each of the individual

occupants as mentioned in the Line 32.

– The UpdateKalman prediction function predicts the

position of the occupant based on the history from

previous TVS-F whereas the update function recti-

fies the state of the multi-occupant from the current

TVS-F (Lines 39-45).

– Every multi-occupant being tracked is assigned

Tracking ID (Tid) representing tracklets. The mor-

phological features such as position, size and other

statistical measurements are also calculated for

blob.

– Tid is dynamically assigned (or reassigned) to blobs

with rapidly varying sizes. The array with tracking

identifiers represents each occupant’s motion model

and state history.

3.3 CNN-based activity classification

The CNN has been utilized for real-time multi-occupant

AR from the TV S Fseq. It is computationally built

on five major mathematical functions such as Con-

volution, Batch Normalization, Rectified Linear Unit
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Algorithm 2 TVS-MoDT: Thermal Vision Sensor multi-occupant detection and tracking algorithm

Input TVS F: Thermal Vision Sensor gray-scale frame sequence;
Output: Multi-occupant tracks TMoDT .

1: procedure TVS MatPreProcessing
2: Load TV S Fseq ← {TV S F1, TV S F2 . . . TV S Fn} where i = {1, 2, . . . n}
3: Read Matrix TV S Fseq . Reads Sequence of Frames TV S Fseq
4: for all TV S Fi to TV S Fn do
5: function VectorPoint Vp(TV S Fi, Cntn) . Detect VectorPoint
6: for all i = 1 to n do
7: P+

c ← BRn {Cntn} . Iterate Contours
8: array [D]← P+

c . Array of detections
9: TV S Fi ← Draw (BRn, TV S Fi) . drawRectangle← Contours

10: TV S Fi ← Draw (P+
c , TV S Fi) . drawCenterPoint← Contours

11: end for
12: end function
13: function Track Ti(Cntn,D, TV S Fi) . initialize (NoOfTracks, TrackSize)
14: for all i = 1 to Size ([D]) do
15: Ti ← new(T ,D)
16: Cost [i] [i]← Euclid(T predi ,D) . Euclidean distance between prediction & detection
17: C ← Cost [i] [j]

18:
−→
A ← V ector(Assignment)

19: T assigni ← HungarianAssignment (C,
−→
A)

20: if (C > Dthreshold) then . Identify unAssigned tracks
21: [T unassingedi ]← add(T unassingedi ) . Search Un Assigned Tracks
22: end if
23: if ([T VS Fskippedi ] > maxf ) then
24: T VS F i ← remove (T VS F i) . Remove not detected tracks

25:
−→
A ← remove (

−→
Ai) . Remove assignments

26: end if
27: if (size(Dunassigned

i ) > 0) then
28: Ti ← add(Ti,Dunassigned

i ) . Initialize New Tracks for un Assigned Detects
29: end if
30: Ti ← T skippedi > T VSSkippedAllowed
31: /* Update Kalman for All Detected Contours */
32: T VS ← UpdateKalman(TV S Fi,D) . Predict, Update Kalman Occupant State
33: /* Iterate the No of contours, detections in the T VS F i */

34: for all t = 1 to Size (
−→
A) do

35: Tid ← Ti(t)
36: T VS F i ← T VS Fappend(T VS F i, Tid,P+

c ) . Draw tracks
37: [T VS F i]history ← T VS Fappend(T VS F i,P+

c ) . Contours & Tracks History
38: end for
39: /* Update T VS F i with Kalman Prediction and Correction */
40: It← n (Cntn) . Number of Contours
41: while It.hasnext do
42: TV S Fi ← update (TV S Fi,P+

c , [T VS F i]history) . Kalman Effect
43: TV S Fi ← draw (P+

c , [T VS F i]history) . Kalman prediction updation
44: TV S Fi ← draw line (P+

c , Ti−1, Ti, [T VS F i]history)
45: end while
46: end for
47: end function
48: end for return TMoDT
49: end procedure

(ReLU), Pooling, and Soft-max. These functions are ap-

plied in a hierarchical residual block within an architec-

ture, which provides fully connected layers for process-

ing TV S Fseq to get multi-occupant activity classifica-

tion output per frame. These are briefly discussed in

the following subsections.

3.3.1 Input layer

An input layer for the CNN architecture reads the

grayscale TV S Fseq of the fixed dimensionality, re-

quires TV S FTrain to train the model while produc-

ing an output TV S Flabelled, representing ”n” activities
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performed by the multi-occupants.

TV S Flabelled ← {TV S Fseq, TV S FTrain, actn}CNN
(1)

3.3.2 Convolutional layer

The Convolutional Layer is responsible for extracting

the pixel-wise features from the input TVS-F. To learn

the TVS-F features, the kernel weights are adjusted

automatically through back-propagation training. The

convolution is obtained by taking dot product (•) be-

tween sub-part of the TVS-F and the convolutional ker-

nel K. In response, a feature map fc is computed by

sliding the convolutional kernel over the TVS-F spa-

tially. The output xl,ji for the lth convolutional layer

having the jth feature map on the ith unit can be pre-

sented mathematically as:

xl,ji = σ

(
bj +

m∑
a=1

wjax
l−1,j
i+a−1

)
(2)

where σ is a non-linear mapping, it uses hyperbolic tan-

gent function, tanh(·) [41].

3.3.3 Batch normalization layer

The input channel x across the mini-batch is normalized

x̂i by the introduction of a batch normalization layer

[42]. Normalized activation is computed using mini-

batch mean µB , standard deviation σ2
B for input chan-

nel x, and ε to provide the numeric stability for mini-

batch variances, described as:

x̂i =
xi − µB√
σ2
B + ε

(3)

It increases the performance of CNN training and re-

duces sensitivity of the neural nets.

3.3.4 ReLU layer

Rectified Linear Unit (ReLU), a nonlinear activation

function responsible for introducing a point-wise non-

linearity to the CNN by resolving the vanishing gradi-

ent problem [43]. ReLU layer processes an element-wise

activation function over each individual input x, wher-

ever the value is less than zero, is set to zero and it also

linearly conveys the input for positive inputs described

by Eq. 4:

fτ = ReLU(xi) =

{
xi, xi ≥ 0;

0, xi < 0;
(4)

A rectified feature map fτ is obtained as an outcome.

3.3.5 Max-pooling layer

The max-pooling layer produces compact feature space

by taking the sub-samples of fτ thus reducing the spa-

tial dimensionality and sensitivity of the output. The

pooling operation derives maximum value from the set

of nearby inputs as mentioned in equation 2, which can

also be represented mathematically as [31]:

f l,ji = max
r∈R

(xl,ji×T+r) (5)

where R represents pooling size and T as a pooling

stride. The soft-max classifier is placed at the final

layer for HAR. The TVS-F features obtained from the

stacked convolutional and pooling are represented as:

f l = [f1, f2, f3.....fK ] (6)

where K represents the number of units learned from

the last pooling layer, which acts as a feature map for

the soft-max classifier.

3.3.6 Training process

The CNN is trained in a supervised learning fashion

by selecting the parameters using Gradient-based opti-

mization method. For faster convergence, the stochastic

gradient descent method is applied [44]. The training

process involves a series of steps such as propagation

and weight update. The gradients are computed in the

propagation step by using standard forward [41] and

back-propagation algorithms [45], by minimizing the ob-

jective function, which is given mathematically as:

xli =
∑
j

wl−1j,i σ(xl−1i ) + bl−1i (7)

where xli represents the output feature and w is the

weight vector. The output feature map is passed to ev-

ery subsequent layer till it reaches the output layer,

which is formulated as:

∂L

∂yl−1i,j

=

m−1∑
a=0

∂L

∂xli−a

∂xli−a

∂yl−1i,j

=

m−1∑
a=0

∂L

∂xli−a
wa,b (8)

It applies chain-rule for computing the propagation er-

ror and the whole process remains cyclic until the CNN

reaches a satisfactory validation state or attains the

stopping criterion.
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Table 1: List of 16 activities recorded for data collection

Activity ID Activity Type Activity Name No. of Occupants

Act1 Single FallDown 1

Act2, Act3 Single, Multi Sitting 1, 2

Act4 Multi SittingStanding 2

Act5 Multi SittingWalking 2

Act6, Act8 Single, Multi Standing 1, 2

Act7 Multi StandingFallDown 2

Act9 Multi StandingStretching 2

Act10 Multi StandingWalking 2

Act11 Single Stretching 1

Act12, Act15, Act16 Single, Mutli Walking 1, 2, 3

Act13 Multi WalkingFallDown 2

Act14 Multi WalkingStretching 2

3.3.7 Classification

The soft-max regression function in the final layer of the

neural network leads to the multi-occupant HAR using

TVS-based Activity Recognition (TVS-AR) method. It

normalizes the output, which is computed by fully con-

nected layers, and more often is a combination of a

set of positive numbers with their sum equivalent to

one, and value ranges between [0 . . . 1]. These ranges

are further transformed into classification probabilities

through the Classification layer in the CNN residual

block. The i-th probability value for soft-max function

p(yi) [46] is computed as:

ŷi = p(yi) = softmax(xi) =
exp(xi)∑n
k=1 exp(xk)

, i = 1 . . . Nc

(9)

The cross-entropy [45] is minimized between the output

probability vector ŷ and total number of class labels ’y’

as follows:

E = −
Nc∑
i=1

(yilog(ŷi) + (1− yi)log(ŷi)), i = 1 . . . Nc (10)

where yi represents binary indicator if the class label

’c’ is correctly classified from the ith neuron and ŷ is

the predicted probability of the ith class.

4 Experiments

The complete real-time prototype application for

our proposed uMoDT framework is built for multi-

occupant detection, tracking and AR. To demonstrate

the functionality of the uMoDT framework, we first dis-

cuss the dataset and later the implementation insights.

4.1 Dataset

We collected 57,290 frames in a sequence from three

healthy male volunteers aging 25±7 [yrs]; height

1.55±0.7 [m] and weight 68±8 [kg]. Each volunteer

performed different ADLs individually and collectively

in a smart living room over a duration of at least 3

minutes each, reported in Table 1. During the entire

collection, the application was neither reparameterized

nor recalibrated, which means this setting remained

valid for all kind of ADLs performed during this study.

Additionally, TV S Fseq was annotated with LabelImg,

an open source annotation tool [47]. During labeling,

multi-occupants were approximated by using bound-

ing rectangles over the subsequent frames by assigning

them unique identifiers referred as ground-truth Gi in
the TV S Fseq. This process followed a strict annotation

protocol by qualified researchers.

The goal is to quantitatively evaluate the proposed

uMoDT framework and prove its accuracy and robust-

ness. For this, we tested and compared it, also on

five challenging, publicly available annotated sequences

from VOT-TIR2016 challenge [48, 49]. These sequences

were mostly captured with the help of static FLIR and

thermal cameras.

4.2 Implementation details

The proposed uMoDT framework, comprising of TVS-

MoFV (Algorithm 1), TVS-MoDT (Algorithm 2)

and TVS-AR method, was implemented. The former

algorithms utilize the Java-based standard libraries

OpenCV (an open-source API) [50] while the latter

method requires MATLAB interfaces (machine learn-

ing toolbox API). The uMoDT framework was imple-
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Table 2: List of benchmark dataset sequences and their details

ID Dataset Sensor Resolution Frames Object Threshold

1 ETHZ-CLA [51] FLIR TAU320 324×256 659 Human 115

2 Soccer [4, 48] 3×AXIS Q-1922 1920×480 3,000 Human 120

3 Crouching [48] FLIR A655SC 640×480 625 Human 125

4 Depthwise Crossing [48] FLIR A655SC 640×480 858 Human 135

5 Crowd [48] FLIR Photon 320 640×512 78 Human 110

6 TV S Fseq Heimann 32×31 57,290 Human 155

(a) (b) (c) (d)

(e) (f) (g) (h) (i) (j) (k) (l)

Fig. 4: Examples of raw Input (I) frames and processed Output (O) frames using proposed framework.

(a) & (b) ETHZ-CLA (I&O) (c) & (d) Soccer (I&O) (e) & (f) Crouching (I&O) (g) & (h) Depthwise Cross-

ing (I&O) (i) & (j) Crowd (I&O) (k) & (l) TVS-F (I&O)

mented and evaluated using the PC system equipped

with AMD A10-5800K APU with Radeon(tm) HD

Graphics (4 CPUs 3.8GHz), 16GB RAM, and NVIDIA

GeForce GTX 750 GPU 4GB.

Proposed algorithms, TVS-MoFV for feature ex-

traction and TVS-MoDT for multi-occupant detection

and tracking were tested. Both of them used stored

TV S Fseq, which was retrieved from the intermediate

repository as JSON object arrays, by a pull-based web-

service. In TVS-MoFV, TVS-F vector was obtained by

varying binary threshold values and finding the best

Table 3: Processing time for benchmarks and TV S Fseq
with TVS-MoDT and TVS-AR algorithms

Algorithm Dataset Duration(s)

ETHZ-CLA 3.91×10−6

Soccer 2.99×10−6

TVS-MoDT Crouching 6.35×10−6

Depthwise Crossing 2.93×10−6

Crowd 2.93×10−6

TV S Fseq 4.88×10−6

TV S Fseq(O = 1) 7.1×10−2

TVS-AR TV S Fseq(O = 2) 8.3×10−2

TV S Fseq(O = 3) 9.0×10−2

value, suitable for each of VOT-TIR2016 benchmark

datasets and the TV S Fseq as mentioned in Table 2.

The parametric settings also involved finding the op-

timal value for the contour area in order to predict

the maximum number of occupants in the benchmarks

and TV S Fseq as shown in Fig. 4. These TVS-F fea-

ture vectors support while iterating the multi-occupant
represented as Blobs predicted as bounding rectangles,

implemented through the TVS-MoDT algorithm. The

Euclidean distance was calculated between the detected

and predicted bounding rectangles for multi-occupant

tracking frame-by-frame. The processing time for each

algorithm and method to process a single frame is re-

ferred to in Table 3. The source code for uMoDT frame-

work and TV S Fseq is available on GitHub at [52].

To recognize multi-occupant’s ADLs from

TV S Fseq, a supervised CNN model was trained.

For this the entire collection of TV S Fseq was sorted

into two subset groups i.e. training and test categories,

each having sixteen classes. The training set is further

split with random TSV-F distribution into two halves

i.e. 70% for training samples (TV S FTrain) and re-

maining to validate each class. We used 28,485 TVS-F

samples to train CNN model and 1,920 TVS-F test

samples (120 TVS-F for each of 16 classes) to evaluate

the prototype uMoDT framework application.
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Table 4: TVS-AR: Activity recognition for multi-occupants using Convolution Neural Networks

Layer Layer Type Activation Parameters (No. of units, Size, Stride)

1 TV S Fseq Image Input 32×32×1 images with zerocenter normalization

2 conv1 Convolution 16 3×3×1 convolutions with stride [1 1] and padding [1 1 1 1]

3 batchnorm1 Batch Normalization Batch normalization with 16 channels

4 relu1 ReLU ReLU

5 maxpool1 Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0]

6 conv2 Convolution 32 3×3×16 convolutions with stride [1 1] and padding [1 1 1 1]

7 batchnorm2 Batch Normalization Batch normalization with 32 channels

8 relu2 ReLU ReLU

9 maxpool2 Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0]

10 conv3 Convolution 32 3×3×32 convolutions with stride [1 1] and padding [1 1 1 1]

11 batchnorm3 Batch Normalization Batch normalization with 32 channels

12 relu3 ReLU ReLU

13 maxpool3 Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0]

14 conv4 Convolution 64 3×3×32 convolutions with stride [1 1] and padding [1 1 1 1]

15 batchnorm4 Batch Normalization Batch normalization with 64 channels

16 relu4 ReLU ReLU

17 fc Fully Connected 16 fully connected layers

18 soft-max soft-max Bayesian binary classifier

19 classoutput Classification Output crossentropyex with FallDown and 15 other classes

The nineteen-layer, CNN architecture is designed

based on the findings from the systematic comparison

and benchmarking to achieve an affordable classifica-

tion time and computation cost [53]. The implemented

CNN architecture comprises of two units i.e. feature ex-

tractor and a non-linear classifier [29]. The former unit

encapsulates fifteen layers (Layer2. . . Layer16) whereas

the latter unit i.e. non-linear classifier is built on all

fully connected layers along with the soft-max classi-

fier. During the model training process, the CNN hyper-

parameters were set with the help of input functions,

by adjusting the learning rate effectively to 0.01, ev-

ery 10 epochs using Stochastic Gradient Descent with

Momentum (SGDM) algorithm with the maximum 20

number of epochs size [45]. For every iteration, a mini-

batch of size 16 (64) was applied for which the details

are mentioned in Table 4.. The output of the last ReLU

(relu4) at Layer 16, is given to fully connected layer

Layer 17, which uses the features and processes it for

class prediction based on the TV S FTrain. The classi-

fication layer i.e. Layer 18 uses the soft-max activation

function, which squashes the output probability vector

between sixteen multi-occupant activities and returns

the binary indicator to them.

5 Results and discussion

In literature there exist several performance measures

to deal with single-target and multi-target tracking,

however, none of them proved to be a defacto stan-

dard. In our experiments, we adopted some of the effec-

tive multi-occupant detection and tracking evaluation

strategies to: a) detect and track the multi-occupants

and b) classify multi-occupant activities in TV S Fseq.

For this, we investigated frame properties in the se-

quences to identify the influence of different parameters

such as variable thresholds and overlap measures on

the overall performance. Moreover, conformity of eval-

uation measures to any other application and sequence

have been proven by the uMoDT framework on VOT-

TIR2016 sequences other than TV S Fseq.

5.1 Multi-occupant detection and tracking evaluation

Objectively quantitative assessment of multi-occupant

detection and tracking is not a straight forward task.

Most of the evaluation techniques require a ground-

truth Gi, which serves as a reference to measure the

performance quantitatively. We adopted such evalua-

tion methods, which rely on frame based spatial overlap

between Gi and bounding rectangles BRn [54].

5.1.1 Evaluation metrics

The object detection in benchmark sequences and

multi-occupant detection in TV S Fseq uses standard

Pascal, Intersection over Union (IoU) criterion, a nat-

ural bounding box evaluation measure for comparing
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Fig. 5: Quantitative evaluations shown in (a) ETHZ-CLA (b) Soccer (c) Crouching (d) Depthwise Crossing (e)

Crowd (f) TVS-F

spatial overlap and localization accuracy [48]:

IoU(BRn, Gi) =
BRn ∩Gi

BRn ∪Gi
(11)

5.1.2 Performance evaluation and analysis

We take the advantage of the Counting algorithm to

estimate number of occupants against Gi frame-wise in

each of the sequence [55]. In our experiments, we con-

sidered count detection as true positive (TP) for IoU

greater than 0.5 otherwise as false positive (FP). For

IoU<0.5, however, we also considered rotated BRn lo-

cations for each object obtained from KF in the frame

to see if updated object state has any spatial overlap re-

lation with ground-truth. Fig. 5(a-f) present results for

Gi, detected, and KF predicted BRn frame-wise in each

sequence. The best counting success rate is achieved by

using improved frame pre-processing algorithms TVS-

MoFV (1) and TVS-MoDT (2) for the Soccer sequence

with around 94.76% whereas TV S Fseq achieved a

counting accuracy of 88.46%. Results by the counting

algorithm using KF predicted occupants exhibit an ex-

cellent performance for each sequence where occupants

are well separated in the frames as compared to the se-

quences in which they are occluded by each other. To

evaluate multi-occupant detection and tracking perfor-

mance, it is not suitable to use only one single metrics,

therefore, we extend the frame-wise IoU overlap mea-

sure for performance evaluation by estimating Multiple

Object Tracking Accuracy (MOTA), an accepted evalu-

ation measure [56]. MOTA measure also takes into ac-

count the impact of erroneous responses such as: false

negatives (FNt), false positives (FPt), number of iden-

tity switches IDSt, and Gt at time t. By combining these
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Table 5: Evaluation comparison of the uMoDT framework for benchmark sequences and TV S Fseq

Name FP↓ FN↓ MOTA↑ IDS↓ Precision↑ Recall↑ MSE↓
D

a
ta

se
t

ETHZ-CLA 441 414 5.58 210 0.61 0.44 1.04

Soccer 311 1540 74.42 246 0.94 0.39 5.19

Crouching 163 428 57.17 243 0.80 0.29 1.08

Depthwise 456 408 53.03 180 0.72 0.38 0.96

Crowd 110 211 57.40 110 0.81 0.41 12.27

TV S Fseq 52 469 64.26 72 0.87 0.42 0.84

Table 6: Evaluation comparison for the uMoDT framework against other techniques

Name FP↓ FN↓ MOTA↑ IDS↓

M
e
th

o
d

Bochinski et al. [57] 5702 70278 57.1 2167

Wan et al. [58] 10604 56182 62.6 1389

Bewley et al. [59] 7318 32615 33.4 1001

Murray et al. [60] 3130 76202 27.4 786

Chen et al. [61] 9253 85431 47.6 792

Gade et al. [55] 9.8% 18.8% 70.36 219

uMoDT (TV S Fseq) 52 469 64.26 72
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Fig. 6: ROC curves for benchmark sequences and

TV S Fseq

sources of error, MOTA is defined as:

MOTA = 1−
∑
t (FNt + FPt + IDSt)∑

tGt
(12)

We report quantitative evaluations and comparative

analysis through the experiments over a set of test se-

quences for frame-based detection and tracking in Ta-

bles 5 and 6 respectively. It is evident that the uMoDT

framework demonstrated better performance in terms

of MOTA for benchmark sequences and TV S Fseq. It

outperformed other techniques on all sequences espe-

cially for Soccer sequence and TV S Fseq with MOTA

scores of 74.42% and 64.26% respectively. Additionally,

the Mean Squared Error (MSE) between the localiza-

tion of predicted BRn and Gi was also computed as:

MSE =
1

n

n∑
i=1

(BRn −Gi)
2

(13)

The error rates showed lowest MSE value of 0.84, which

was achieved for TV S Fseq and a highest MSE value of

12.27 for Crowd sequence. The tabulated results, how-

ever, showed a higher number of IDSt, an increased

MSE, and a decreased MOTA, which appeared to be

from occlusions and deforming blobs.

The performance of uMoDT is also compared by

constructing ROC curves for accumulated true detec-

tion rates and false positive rates using Gi and predicted

BRn with IoU>0.5 as shown in Fig. 6. The ROC curve

produced by TV S Fseq has shown a larger area un-

der the curve than other sequences. This suggests and

validates the robustness of the proposed algorithm for

occupant detection. TV S Fseq has lessor FPR, which

is due to minimal occlusion as compared to other se-

quences especially in Crowd sequence, which has max-

imum occlusion. Fig. 7 shows the resulting precision-

recall curves based on overlap metric. Such a quan-

titative analysis proves as how successfully the BRn

are predicted for Gi in the benchmark sequences and

TV S Fseq. The uMoDT framework achieved a highest
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Fig. 7: Precision-recall curves for benchmark sequences

and TV S Fseq

area under the curves with an average 97.16% preci-

sion rate for TV S Fseq and the lowest one with around

72.04% for ETHZ-CLA sequence.
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Fig. 8: Accuracy-robustness plot for the uMoDT with

benchmarks and TV S Fseq

5.1.3 uMoDT robustness

To assess the ability of the uMoDT framework as how

it deals with the tracking failure, we further quantify

it for robustness measure correlated with accuracy. Ro-

bustness refers to the uMoDT failures whenever the

overlap IoU measure becomes equal to zero. To mea-

sure the average overlap areas and complete failures,

these measures are intuitively computed for benchmark

sequences with IoU threshold value equal to zero. We

also assumed each occupant in a frame as a separate

entity, represented by an independent motion trajec-

tory to evaluate tracking performance [62]. The result-

ing robustness, however, in some cases does not have

an upper bound so it was interpreted as a reliability,

defined by e−S(F0/N) for visualizing purpose [63, 64].

Here N denotes number of frames for an individual se-

quence, S represents the number of frames since the

last failure, and F0 is a failure rate, which is set as IoU

equal to zero. We executed the uMoDT framework sep-

arately for each sequence to record their average scores,

failure rate and unsupervised re-initialization for multi-

occupants.

Fig. 8 demonstrates the effectiveness of the uMoDT

framework, which proved to be most robust on TVS-

F sequence (positioned most right) but it was sur-

passed by Crouching sequence, which appeared to be

more accurate (positioned higher). The observed high

robustness for TV S Fseq is because of no occlusion,

static distinguishable background and quality of multi-

occupant estimates using KF. On the other hand, high

average accuracy for Crouching sequence is observed,

which is due to frequent re-initialization as occupant’s

appearance is challenging which matches with back-

ground. The uMoDT framework performed differently

between the benchmark sequences depending on their

frame properties, however, it achieved an overall best

performance except for the Crowd sequence (positioned

lowered). At a closer look, we see that in terms of accu-

racy it is challenging as occupants are not well distin-

guishable from background and also frequent uMoDT

failures occur due to occlusions. It still, however, has

achieved satisfactory robustness.

5.2 Multi-occupant activity recognition

In the following subsection, to show the generality of

the TVS-AR method, we describe and evaluate the pro-

posed CNN-based model using the TV S Fseq for AR.

We present the classification results to prove the perfor-

mance and suitability of the presented approach using

low-resolution TV S Fseq in terms of accuracy [65]. We

used frame-based approach for recognizing 16 different

activities showing the efficacy of a model by demon-

strating it for a high HAR accuracy score of approxi-

mately 90.99%.

5.2.1 Activity recognition evaluation metrics

The performance metric that is most widely used to

evaluate a classifier in the context of multiclass classifi-
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Table 7: Average accuracy confusion matrix for multi-

occupant HAR
Ground Truth Activities
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Act1 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Act2 0 120 0 0 6 0 0 0 0 0 0 0 0 0 0 0

Act3 0 0 117 0 0 0 0 80 0 0 0 0 0 0 0 0

Act4 0 0 0 96 0 0 0 0 0 0 0 0 0 0 0 0

Act5 0 0 0 24 114 0 0 0 0 0 0 0 0 0 0 0

Act6 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0 0

Act7 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0

Act8 0 0 3 0 0 0 0 40 0 0 0 0 0 0 0 0

Act9 0 0 0 0 0 0 0 0 120 60 0 0 0 0 0 0

Act10 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0

Act11 0 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0

Act12 0 0 0 0 0 0 0 0 0 0 0 120 0 0 0 0

Act13 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0 0

Act14 0 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0

Act15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120 0

Act16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120

cation is overall accuracy [41]. The recognition accuracy

is linear to the number of training frames. The train-

ing frames were used to fit in the parameters such as

weights, validation set to fine tune the parameters and

CNN architecture. The performance of the customized

CNN was evaluated on validation split as a test data

to validate the generalization and prediction power of

the classifier. Additionally, the other most common per-

formance evaluation metrics such as precision, recall, F-

measure also provided an essential information required

to assess the classification model [43].

5.2.2 Performance evaluation of activities

For each experiment, we followed the data splits and

cross-validation evaluation technique for TV S Fseq.

We divided TV S Fseq into three splits: training split

TV S FTrain to train CNN model, validation split to

tune the hyper-parameters such as learning rate, epoch

size on unseen data, and finally test split to evalu-

ate the classification performance. An average accu-

racy of 97.34% was achieved with a learning rate of

0.01 for 28,485 TV S Fseq. A drop in accuracy, how-

ever, was observed with a decrease in the learning

rate. The test split contained 1,920 TVS-F for vali-

dating 16 activities as mentioned in the confusion ma-

trix illustrated through Table 7. It is observed that the

TVS-AR method accurately classified most of single-

occupant and multi-occupant activities. Nevertheless,

some confusion has been observed for multi-occupant

activities such as StandingWalking (Act10) and Stand-

ingStretching (Act9) have been confused due to simi-

lar motion patterns for Walking and Stretching. This

is due to the activity Stretching, which involves exten-

sion of arms and returning to their original position,

again sharing motion patterns to the activity Standing

in a TV S Fseq. Similarly, static multi-occupant activi-

ties SittingSitting (Act3) and StandingStanding (Act8)

Act1 Act2 Act3 Act4 Act5 Act6 Act7 Act8 Act9 Act10 Act11 Act12 Act13 Act14 Act15 Act16

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Activity

         Average
 Precision
 Recall
 F-Measure

Fig. 9: Classification accuracy using CNN for test TVS-

F

share similar occupant appearances in the TV S Fseq.

For these, the activities Standing and Sitting were con-

fused due to similar heat maps in the frames. Further-

more, Fig. 9 shows the evaluation metrics in terms of

Precision, Recall and F-Measure. By visualizing these,

it can be concluded that multi-occupant activity i.e.

(Act8) with both occupants Standing and (Act10) with

one occupant Standing and other one Walking has

shown the lowest performance for the test split of

TV S Fseq.

6 Conclusions

In this work, we proposed and demonstrated an

unobtrusive Multi-occupant Detection and Tracking

(uMoDT ) framework for HAR based on low resolu-

tion TVS. In this study, by using a binarization tech-

nique with Gaussian filter for smoothing, a morpholog-

ical improvement with inversion and dilation process,

an individual occupant in the form of the blob was de-

tected over a sequence of frames. This blob was fur-

ther tracked by using a KF with location improvement

and evaluated with Intersection over Union (IoU). The

above methods achieved detection and tracking accu-

racy of 88.46% for Thermal Vision Sensor frame se-

quence (TV S Fseq). Additionally, a CNN-based multi-

occupant HAR method was evaluated, achieving a val-

idation accuracy of 97.34% and an accuracy of 90.99%

for classification tasks. This experimentation demon-

strates improvements in occupant detection and, activ-

ity association using TVS. The experimental evaluation

using state-of-the-art benchmark datasets also revealed

the robustness and effectiveness of the proposed frame-
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work. Further improvements may be achieved by intro-

ducing multiple TVS(s) for HAR. These settings may

include movable TVS to recognize ADLs for more com-

plex scenarios at different indoor locations.
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