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Abstract 15 

The measurement of wave forces acting on marine structures is a complicated task, both during physical 16 

experiments and, even more so, in the field. Force transducers adopted in laboratory experiments require a 17 

minimum level of structural movement, thus violating the main assumption of fully rigid structure and 18 

introducing a dynamic response of the system. Sometimes the induced vibrations are so intense that they 19 

completely nullify the reliability of the experiments. On-site, it is even more complex, since there are no 20 

force transducers of the size and capacity able to measure such massive force intensity acting over the very 21 

large domain of a marine structure. To this end, this investigation proposes a Bayesian methodology aimed 22 

to remove the undesired effects from the directly (laboratory applications) or indirectly (field applications) 23 

measured wave forces. The paper presents three applications of the method: i) a theoretical application on 24 

a synthetic signal for which MATLAB® procedures are provided, ii) an experimental application on 25 

laboratory data collected during experiments aimed to model broken wave loading on a cylinder upon a 26 

shoal and iii) a field application designed to reconstruct the wave force that generated recorded vibrations 27 

on the Wolf Rock lighthouse during Hurricane Ophelia. The proposed methodology allows the inclusion of 28 

existing information on breaking and broken wave forces through the process-based informative prior 29 

distributions, while it also provides the formal framework for uncertainty quantification of the results 30 

through the posterior distribution.  31 

Notable findings are that the broken wave loading shows similar features for both laboratory and field data. 32 

The load time series is characterised by an initial impulsive component constituted by two peaks and 33 

followed by a delayed smoother one. The first two peaks are due to the initial impact of the aerated front 34 

and to the sudden deceleration of the falling water mass previously upward accelerated by the initial 35 

impact. The third, less intense peak, is due to the interaction between the cylinder and remaining water 36 

mass carried by the individual wave.  37 

Finally, the method allows to properly identify the length of the impulsive loading component. The 38 

implications of this length on the use of the impulse theory for the assessment or design of marine 39 

structures are discussed. 40 

 41 
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List of symbols 68 

 ( ): displacement of the mass or measured force; 69 

 (   ) or IRF: unit-impulse response functions; 70 

 ( ): external system perturbation; 71 

 : mass (or equivalent mass) of the modelled body; 72 

 : dimensional system stiffness;  73 

 : the dimensional system viscous damping coefficient; 74 

  : system natural frequency; 75 

  : system damped natural frequency; 76 

 : system damping ratio; 77 

 : time; 78 

 : recorded force response time vector; 79 

 : unknown external load time vector; 80 

 : Toeplitz matrix representing the convolution operation; 81 

 : time vector; 82 

  : data covariance matrix; 83 

 (   ): posterior distributions; 84 
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 ( ): prior distributions; 85 

 (   ): conditional probability;  86 

      : prior distributions expected value; 87 

  : prior distribution covariance matrix; 88 

 : right singular vector matrices;  89 

 : left singular vector matrices; 90 

 : singular values matrix; 91 

 : identity matrix; 92 

  : prior distributions correlation matrix; 93 

    : non-diagonal prior covariance matrix; 94 

  : response of the laboratory model to the force exerted by the impact hammer; 95 

  : force exerted by the impact hammer; 96 
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known and the system IRF is unknown; 98 

 : matrix resulting from the QR decomposition; 99 

Hm0: spectral significant wave height; 100 

Hm0MAX: maximum recorded significant wave height; 101 

TP: spectral peak wave period; 102 

TS: spectral significant wave period, TS= TP /1.07; 103 

Tm= spectral mean wave period TS= TP /1.19; 104 

dP: spectral peak wave direction; 105 

CHi: accelerometer ith signal; 106 

H0.21%: wave height with exceedance probability equal to 0.21% 107 

  108 

Jo
urn

al 
Pre-

pro
of



4 
 

1. Introduction 109 

Impulsive loading due to a breaking wave or to the initial impact of a broken wave is of great interest for 110 

the design of offshore and coastal structures. The transient nature of this load, relatively short duration 111 

(e.g. some 0.02 s (Goda et al., 1966)) and high intensity, makes it of great interest not only from the 112 

hydraulic point of view but also from the structural one, Dermentzoglou et al. (2020). The time domain 113 

representation of impulsive loading is characterised by sharp shapes that are not adequate to properly 114 

highlight its particular nature and dangerousness. However, a frequency domain approach better serves to 115 

present how the content of energy within an impulsive load can be dangerous for every kind of structure. 116 

Indeed, the energy is spread among a large range of frequencies (theoretically from 0 to ∞, e.g. Figure 1) so 117 

that the risk for induced resonance, and consequently, amplification of the effective load, is significant. 118 

Figure 1 shows, through the well-known Kronecker delta, these phenomena wherein the upper panel 119 

presents the time series of the Kronecker delta and the lower panel its Hilbert-Huang spectrum (HHs) with 120 

energy spreading through all the analysed frequencies.  121 

 122 

Figure 1 (a) Theoretical (Kronecker delta) impulsive load and (b) its Hilbert-Huang spectrum (HHs).  123 

This is true not only for on-site conditions, where the amplification of the effective load can be detrimental 124 

for the structure integrity (Serinaldi and Cuomo, 2011), but also when the impulsive wave force has to be 125 

measured in a hydraulic laboratory. As a result, the measurement of wave forces acting on marine 126 

structures is a complicated task, both during physical experiments and, even more so, in the field. Force 127 

transducers adopted in laboratory experiments require a minimum level of structural movement, thus 128 

violating the main assumption of fully rigid structure and introducing a dynamic response of the system 129 

that masks the hydrodynamic load (Dassanayake et al., 2019a). On-site, it is even more complex, since 130 

there are no force transducers of the size and capacity able to measure such massive force intensity acting 131 

over the very large domain of a marine structure. Field wave pressures have been measured to determine 132 

the overall loading, producing benchmark information for understanding the interaction between wave and 133 

structures (Bullock et al., 2007). Wave pressures have been measured with success in several experimental 134 

campaigns (Cuomo et al., 2010; Cuomo et al., 2007; de Almeida and Hofland, 2020; de Almeida et al., 2019; 135 

Stagonas et al., 2016); however, the overall description of the total wave forces is affected by several 136 

assumptions and possible inaccuracies in the spatio-temporal integration of those pressures (Lamberti et 137 
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al., 2011; Martinelli et al., 2018). Therefore a force reconstruction method is required with its inherent 138 

downsides due to the solution of the underlying inverse problem (Maes et al., 2018; Sanchez and Benaroya, 139 

2014).   140 

The problem of characterising the impulsive wave loadings has attracted researchers’ interest since 1958, 141 

when Hall performed the first laboratory experiments aimed to characterize the breaking wave forces on a 142 

circular pile located on a sloping beach, (Hall, 1958). Several authors follow these pioneering tests and are 143 

nicely summarized by Tu (2018) and Tu et al. (2017a). Goda et al. (1966) were the first to formalize a 144 

mathematical model to describe breaking wave loading and to highlight the need to consider within the 145 

description of the loading condition the dynamic of the affected structure, at both the model and prototype 146 

scale. Goda based his final formula on the combination of experimental results and von Karman theory 147 

(Von Karman, 1929). Later, (Campbell, 1980) performed drop tests instead of wave impact tests, in order to 148 

achieve a reasonably large Froude number (e.g. > 0.6) so that the total load was mainly dominated by the 149 

slamming component. Despite achieving high rigidity in test set-up (natural frequency around 550Hz), the 150 

amplification due to the dynamic response was large enough to mask the hydrodynamic load. Hence, to 151 

properly describe the pure hydrodynamic load, the experimental system was modelled as a lumped mass 152 

and was forced with a hyperbolic function. The goal of the method was to identify which shape of the 153 

hyperbolic function allowed the best match between the dynamic response of the experimental set-up and 154 

the response of the single degree of freedom (SDoF) model. More recently, (Wienke and Oumeraci, 2005) 155 

performed a large scale test aimed at identifying the breaking wave loading on vertical cylinder under the 156 

action of focused wave groups. The model comprised a cylinder installed in deep water and fastened at 157 

both ends. Also in this case the transient nature of the impulsive wave loading induced dynamic response 158 

of the experimental set-up, so they applied a similar method to that of Campbell (1980), though removing a 159 

known quasi-static force from the experimental dynamic response. The approach allowed the verification 160 

of the assumed theoretical description of the impulsive load by contrasting a SDoF model response and the 161 

measured dynamic force. However, both Campbell (1980) and Wienke and Oumeraci (2005) avoided the 162 

use of the inverse method, and under the hypothesis of linear response of the experimental structures, 163 

instead verified their formula by means of the convolution process between the developed empirical 164 

equation and the impulse response function (IRF) of the structure. Dynamic amplification of breaking wave 165 

loading during experimental study was also highlighted by Choi et al. (2015), where they quantified, and 166 

subsequently removed, this unwanted effect by means of the combined use of the Empirical Mode 167 

Decomposition (EMD) and Computational Fluid Dynamic model (CFD). Later, a similar approach based on 168 

Ensemble Empirical Mode Decomposition (EEMD) was applied by Dassanayake et al. (2019a) and 169 

Dassanayake et al. (2019b) to remove the effects of the vibration induced by broken waves on the 170 

experimental set-up aimed to model an offshore rock lighthouse. Despite the EEMD approach being more 171 

accurate in removing the dynamic response of the structure than EMD, it still presents disadvantages 172 

related to the overestimation of the quasi-static force component, as also highlighted by Tu (2018).  173 

It was only within the WaveSlam project (HYDRALAB IV framework) that the inverse estimation of the 174 

breaking wave force acting on marine structures has been successfully undertaken. Four different 175 

approaches were proposed within Tu’s related PhD thesis  (Tu, 2018), all of them based on the 176 

deconvolution between the recorded wave force and the dynamic response of the structure. The first 177 

method, called optimization-based deconvolution (OBD) (Tu et al., 2015), is based on the minimization of 178 

the Euclidean distance between the measured force and the modelled force given by the superimposition 179 

of the scaled and shifted hammer test responses. The other three methods are mainly based on the 180 

deconvolution between the IRF and the measured dynamic response of the structure under the breaking 181 

wave action. The so-called “horizontal approach” is a two-step approach based on the impact hammer test 182 
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results. The IRF is identified by means of conjugate gradient technique while it is later applied to the 183 

recorded dynamic response through a weighted eigenvector expansion method in order to obtain the wave 184 

slamming force. The horizontal approach relies on two main parameters for the regularization of the 185 

solution, the stopping factor and the weighting factor for the first and second steps respectively. Both are 186 

defined by the user in order to control the noise effect in the IRF definition (first step) and to discriminate 187 

the smallest eigenvalues of the deconvolution matrix (second step), thus reducing the risk of numerical 188 

instability through a regularization approach (Tu et al., 2017b). The so-called “vertical approach” uses the 189 

linear regression technique. Similarly to the horizontal approach, it also reconstructs the wave impact force 190 

at each investigated location by using the hammer impact force, the hammer response force, and the wave 191 

response force at the same measurement location. For each investigated location, the wave impact force is 192 

conceived of as a result of the hammer hitting this location with different amplitudes many times in a row, 193 

hence the interval between every two imaginary hammer impacts is an input required from the user and is 194 

called step factor. The step factor indirectly controls the size of the deconvolution matrix and the accuracy 195 

of the reconstructed impact force.  The last proposed approach is the “extended vertical approach”. 196 

Similarly to the OBD, the extended vertical approach accounts for the contribution of the impacts at 197 

different locations into the measured force responses, while treating each transducer simultaneously. In 198 

this approach, the response locations and the impact locations are distinguished. More recently Maes et al. 199 

(2018) applied a recursive joint input-state estimation algorithm for the inverse estimation of the breaking 200 

wave loading on hydro-elastic model scaled wind turbine monopile and the induced members forces at the 201 

base of the flexible structure. The algorithm is based on the dynamic behaviour of the flexible monopile 202 

along the incoming wave direction where the modal parameters are experimentally identified via impact 203 

hammer tests. The results show relatively close agreement between the measured and reconstructed 204 

forces with an average absolute error around 27% for the impact force and 19% for the overturning 205 

moment. However, the overall method relies on the assumption of triangular pressure distribution for 206 

which there is no evidence that it can be used within the whole loading process.  Despite this assumption, 207 

Maes et al.’ work sets a foundation for the inverse wave force identification through the dynamic response 208 

of the structures. Finally, to estimate the magnitude of the slamming load on offshore wind turbine, 209 

Paulsen et al. (2019) applied a simplified dynamic model of the laboratory set-up to describe the transfer 210 

function and hence partially remove the dynamic oscillation of the cylinder. However, the methodology is 211 

not described in detail by Paulsen et al. because of the different focus of the analysis.  212 

This work intends to make progress in the application of the inverse method to reconstruct wave forces 213 

exerted on marine structures. We aim to present a new Bayesian inverse method to reconstruct both field 214 

and laboratory forces due to breaking or broken waves. While tackling the three main downsides of the 215 

inverse methods, i.e. solution existence, uniqueness and stability (Aster et al., 2018), the proposed 216 

approach will provide not only a proper framework to analyse future laboratory and field data from 217 

offshore and coastal structures, but also a tool to account for the prior knowledge on breaking wave forces 218 

and a formal approach for the uncertainty quantification of the results through the posterior distribution. 219 

Therefore, this paper is not aimed at producing a comprehensive description of the specific impulsive load 220 

due to the broken waves on a cylinder upon a shoal, but instead at presenting and describing a useful 221 

Bayesian methodology to achieve a more comprehensive and general result. In order to achieve this, the 222 

paper presents an introductory overview on the experimental problems related to the measurement of the 223 

wave forces and on the issues connected with the inverse methodology required to solve the inevitable 224 

violation of fully rigid model assumption, based on linear systems theory. The convolution between the 225 

input signal and the IRF is the core concept of the methodology, therefore, the assumption of linear elastic 226 

behaviour of the structure is implicitly adopted. From the statistical point of view, the main hypothesis is 227 
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related to the noise affecting the data that is considered normally distributed and independent. Through 228 

the development of the paper, the method is applied to both laboratory and field data. Despite the 229 

different nature of the recorded experimental and field vibrations - one is a laboratory effect whereas the 230 

other is a real structural response - the methodology is successfully applied to reconstruct both wave 231 

forces. 232 

The method will be presented in the following chapter where the main theoretical background and 233 

numerical issues will be treated in order to provide the required background knowledge. The proposed 234 

method will then be applied to the laboratory force measurements (chapter 4) and field accelerations 235 

measurement (chapter 5) as illustrative examples of application. Finally, discussions about the main results 236 

of the applications and the resolved issues will be gathered in chapter 6. 237 

 238 

  239 
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2. Method  240 

The proposed solution for the inverse problem is a merger of structural and statistical models, thus it 241 

requires a proper formulation of the fundamental hypotheses for both aspects. The approach describes the 242 

dynamic behaviour of the investigated structure by means of damped single degree of freedom model 243 

(SDoF) (whether it is laboratory or prototype one), under the main structural hypothesis of linear time-244 

invariant behaviour. This means that the wave loading that is to be reconstructed, cannot generate plastic 245 

deformation and also that the structure has fully elastic behaviour under such loading. This allows the 246 

calculation of the response ( ( ), e.g. displacement of the mass or measured force) to an arbitrary time-247 

varying external perturbation (e.g. the wave force) by means of the superposition of a series of unit-248 

impulse response functions (IRF or  (   )) due to a series impulses composing the external perturbation 249 

( ( )). This concept is well known within the earthquake engineering as Duhamel’s integral (Rajasekaran, 250 

2009) or more generally under the mathematical concept of Fredholm integral equation of the first kind 251 

(Aster et al., 2018) and is represented in eq.(1): 252 

 ( )  ∫  ( )   (   )  
 

 

 (1) 

while the displacement IRF for damped SDoF can be written as shown in eq.(2).  253 

 (   )  
 

    
   (     (   ))     (   (   ))               (2) 

where   is the mass (or equivalent mass) of the modelled body,   and   are the dimensional stiffness and 254 

viscous damping coefficient,    is the natural frequency calculated through the well-known equation 255 

   √
 

 
,   is the damping ratio expressed by   

 

 √
 

 

 and    is the damped natural frequency described 256 

by       √    . 257 

Most often in civil engineering the damping ratio does not exceed 20%, thus the damped and natural 258 

frequencies tend to be the same (Lee et al., 2018; Martinelli and Lamberti, 2011; Rajasekaran, 2009). 259 

However, despite the optimum laboratory set-up making use of stiff instruments, the nature of the 260 

connection of the sought instruments with additional elements (as in the case presented in this paper) 261 

could perhaps introduce damping to a level requiring distinction of damped and natural frequencies.  262 

The proposed method aims to solve the inverse deconvolution operation that will remove the dynamic 263 

effect of the structure (i.e.  (   ) in eq.(1)) and allows the reconstruction of the wave force  ( ). As an 264 

illustrative example, we can assume that the measured data ( ( )) is the response of a force transducer to 265 

an external load  ( ) that we want to reconstruct by removing the dynamic response due to the model set-266 

up. Standard laboratory force measurements rely on transducers that integrate strain gauges, thus the 267 

structure must be free to move, hence violating the hydraulic modelling assumption of a fully rigid 268 

structure. Therefore, to reconstruct a force resulting from the dynamic response of the system, e.g. a force 269 

transducer connected with a structure, the required IRF should not be expressed in term of displacement 270 

per unitary impulse (i.e. m/Ns) as in eq.(2), but in term of inertia force per unitary impulse, (i.e. N/Ns), 271 

Figure 2. Knowing the analytical expression of the displacement IRF, the calculation of the force IRF is easily 272 

achievable by means of the multiplication between the laboratory structure mass ( ) and the second time 273 

derivative of eq.(2). Eq.(3) shows the resulting expression, in which   can be simplified as presented in 274 

eq.(5). For the illustrative example, the numerical values of the dynamic parameters are described in Figure 275 

2. 276 
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       (
  

      (       )     (    )

    
 

        (       )     (    )

 

 
    (       )     (    )

 
) 

(3) 

  277 

 278 

 279 

Figure 2 Analytical force IRF for a linear system having mass (M) equal to 20 kg, natural (ωn) and damped (ωd) 280 
frequency the same and equal to 10 Hz, stiffness (k) equal to 1000 Nm and damping ratio (ζ) 2%, sample time step (Δt) 281 

equal to 0.001 s. 282 

The convolution integral in eq.(1) can be rewritten in more convenient matrix notation as presented in the 283 

eq.(4):  284 

     (4) 

where the symbols in bold denote a vector of values varying in time, i.e.   is the recorded force response 285 

time series,   is the sought unknown external load and   is a square Toeplitz matrix representing the 286 

convolution operation.   comprises lagged IRFs, so that the rows are time-reversed and the columns are 287 

non-time-reversed versions of the IRF lagged by i and j as shown in eq.(5). The resulting convolution matrix 288 

with example columns are presented in Figure 3.  289 

 (   )  

{
 
 
 

 
 
 

(

 
 
 
 

  
      

(      (     ))     (   (     ))

  
 

        
(      (     ))     (   (     ))  

    
(      (     ))     (   (     )) )

 
 
 
 

      (     )

                                                                                                          (     )}
 
 
 

 
 
 

 (5) 
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 290 

 291 

Figure 3 Convolution matrix and example of columns for the illustrative IRF example in Figure 2 292 

The fundamental statistical hypothesis of the method is related to the noise affecting the data ( ( )), that is 293 

assumed to be normally and independently distributed with a corresponding diagonal covariance matrix 294 

  . Moreover, the proposed approach relies on Bayes’ theorem as presented in eq.(6). Hence, the sought 295 

model is assumed to be a random variable so that the final solution is a probability distribution  (   ) for 296 

the model parameters, often called the posterior distributions.  297 

where  ( ) denotes the prior distributions and  (   ) is the conditional probability, that, given a 298 

particular model  , corresponding data   will be observed.  299 

In other words, and more specifically related to the inverse force reconstruction, we aim to identify a 300 

probability distribution for each instant (  ) described by the time vector ( ) that our identified model 301 

( (  )) might have generated the measured response ( (  )). Furthermore, we want to probabilistically 302 

describe how our model ( (  )) is effective in modelling the real unknown wave force ( (  )) that generated 303 

the measured response  (  ). The Bayesian approach allows the natural incorporation of the prior 304 

information about the final solution that comes from previous knowledge or experience by means of the 305 

time-varying prior distributions  ( (  )). Therefore, the previously developed knowledge on wave impact 306 

(e.g. Dassanayake et al. (2019a); Dassanayake et al. (2019b); Pappas et al. (2017); Wienke and Oumeraci 307 

(2005)) and on the structural dynamic behaviour (e.g. Antonini et al. (2019); Brownjohn et al. (2019); 308 

Brownjohn et al. (2018); (Pappas et al., 2017; Pappas et al., 2021); Pappas et al. (2019); (Raby et al., 2019b)) 309 

can be directly considered within the analysis. The prior distributions are assumed to be normal 310 

distributions varying with time as in eq.(7), with expected value        and associated covariance matrix 311 

  .  312 

 ( )     
 
 (

        )
 
  
  (        ) (7) 

 (   )  
 (   ) ( )

∫  (   ) ( )  
          

 (6) 
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The likelihood that given a particular model, a response vector ( ) will be observed is expressed by the 313 

likelihood function  (   ) eq.(8).  314 

 (   )     
 
 
(    )   

  (    )
 (8) 

Therefore, through the resolution of the integral in eq.(6) the prior and posterior distribution are related in 315 

a way that makes the computation of  (   ) possible. The final result of the method is a series of normal 316 

distributions (i.e. one for each sampled data value), describing the unknown wave force as shown in eq.(9).  317 

 (   )   
  

 
 (

(    )   
  (    ) (        )

 
  
  (        ))

 
(9) 

It must be noted that  (   ) does not provide a single value that we can consider “the wave force”, thus 318 

to provide a single model output of the wave force, the maximum a posteriori value (MAP), i.e. the wave 319 

force associated with the largest value of  (   ), is proposed as suggested by Aster et al. (2018), leading 320 

to a simplification of eq.(9) in eq.(10) and eq.(11), as proposed by Tarantola (1987).   321 

 (   )     
 
 
(      )  

  
  (      )

 (10) 

    (    
      

  )
  

 (11) 

Rewriting   
   and   

   in terms of matrix square root by means of, for example the Singular Value 322 

Decomposition (SVD), the MAP solution can be now calculated by the minimization of the exponent in 323 

eq.(9) resulting in a standard linear least-squares problem presented in eq.(12). 324 

   ‖[
  

   ⁄  

  
   ⁄

]  [
  

   ⁄  

  
   ⁄       

]‖

 

 

 (12) 

where the multiplication of   
   ⁄  with   and of   

   ⁄  and   can be seen as a transformation that makes 325 

the data (affected by random noise) and the unknown models (intrinsically stochastic due to the Bayesian 326 

nature of the methodology) independent with a normalised standard deviation for both the data and 327 

model space respectively.  328 

 329 

 330 

3. Theoretical example 331 

Usually the convolution matrix  as given by eq.(5) and shown in Figure 3 is mildly to severely ill-conditioned, 332 

hence the inverse problem is not straightforward because we can anticipate a severe amplification of the 333 

noise contained within the real data. In the example proposed above the condition number of the matrix   334 

is slightly larger than 88’800 due to its wide range of singular values between 24 and 2.7 x 10-4, Figure 4.  335 

Therefore, even assuming optimistically the recording signal is affected by a 0.01% noise level,  the results 336 

of the inverse process will be dominated by the amplified noise.  337 

Jo
urn

al 
Pre-

pro
of



12 
 

 338 

Figure 4 Singular values matrix   for the example presented in Figure 2 and Figure 3 339 

For explanation purposes, we can conceive the reconstruction of an impulsive wave force (black line in 340 

Figure 5) acting on the laboratory set-up characterised by the force IRF in Figure 2 and that the force 341 

measurement (i.e. the system response) is affected by some white noise (blue line in Figure 5). A standard 342 

approach to tackle this inverse problem would be through the application of the least-squares method with 343 

the support of the Singular Value Decomposition (SVD). Indeed, the system presented in eq.(4) (i.e. 344 

    ) can be solved for   once the inverse of the matrix   is obtained via the SVD decomposition as 345 

presented in eq.(13).  346 

          (13) 

 347 

 348 

Figure 5 Theoretical example: input force (black), theoretical measurement (red dotted) and noisy measurement (blue) 349 
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where   and   are the right and left singular vector matrices respectively and   is the singular values 350 

matrix. The reconstruction of the impulsive wave force from the theoretical measurement (i.e. the 351 

noiseless red dotted line in Figure 5) fits its noiseless data perfectly, being essentially identical to the 352 

original impulsive force (Figure 6.a). If the same procedure is applied to more realistic white noise data (i.e. 353 

the blue line in Figure 5,          ) the solution is meaningless. The information about the original 354 

impulsive wave force is overwhelmed by the noise, enormously amplified by the inversion process (Figure 355 

6.b).  356 

To control the unstable character of the proposed inverse problem, a first preliminary method can rely on 357 

the property of the Fourier transform. Indeed, the Fourier transform of a convolution between two 358 

elements is equal to the product of the two Fourier transforms, so that the solution is trivial within the 359 

frequency domain. However, the solution of the inverse problem remains extremely sensitive to small 360 

changes in the records ( ) and requires a regularisation process that can be achieved by imposing equal to 361 

zero the smallest elements of the Fourier transform of the records, hence obtaining a sort of truncated 362 

Fourier transform. Even though this method is rather effective in term of computational time, does not 363 

come without downside aspects. The threshold that defines the level of the “smallness” of the Fourier 364 

transform elements to be zeroed is unknown and depends on the noise realisation, therefore for each case 365 

it should be properly defined introducing a subjective selection of this fundamental parameter. The result 366 

of this simplified method is presented in Figure 6.c with the cyan colour.  367 

To overcome the instability issue due to the ill-conditioning of the convolution matrix a truncated SVD (i.e. 368 

the inverse of the matrix   is obtained by using only the largest singular values) can be applied in order to 369 

reconstruct a reasonable estimation of the original force and avoid the subjective selection of the above 370 

mentioned threshold. Figure 6.c shows the reconstructed force obtained using the L-curve criterion 371 

(Hansen, 1992; Hansen, 2007) as a guide for selecting the Tikhonov regularisation parameter (Tikhonov and 372 

Goncharsky, 1987) where only the first 168 singular vectors of the matrix   are used within the inverse 373 

process. The SVD truncated approach allows the detection of the essential features of the original impulsive 374 

force; however, this technique, as well as the truncated Fourier transform, introduces some spurious 375 

oscillations and loss of resolution generating a wider impulse and reduced amplitude as shown in the 376 

zoomed box in Figure 6.c.  377 Jo
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 378 

Figure 6 Application examples of the truncated Fourier transform and least square method and SVD for the 379 
reconstruction of the incident force: a) theoretical data; b) noisy data; c) noisy data, truncated SVD and truncated 380 

Fourier transform 381 

3.1. Informative prior distributions 382 

In order to properly apply the previously developed Bayesian method, the prior distributions need to be 383 

defined. Having described the dynamics of the system, this information can be incorporated into the 384 

process by means of informative priors. It is reasonable to believe that the force shown in Figure 5 should 385 

have been applied to the system at least some instants before the change of its status (i.e. t=0.5 s). After 386 

that, it is reasonable to assume that the maximum force value (calculated, for example, using the Wienke 387 

and Oumeraci (2005) approach) should have been applied to the structure at least a short time after the 388 

maximum response value (i.e. t=0.57 s) after which the incident force should have dropped to 0. Moreover, 389 

assuming that the incident force is an impulsive wave force there is enough knowledge (e.g. Cuomo et al. 390 

(2010); Cuomo et al. (2007); Wienke and Oumeraci (2005)) to believe that the rising slope is steeper than 391 

the decreasing one. Hence we can assume a trapezoidal-shaped zero-covariance prior distribution that 392 

preferentially concentrates the model structure around the instant of the maximum response by imposing 393 

a zero prior with small standard deviation far from the maximum system response (Figure 7). 394 
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 395 
Figure 7 Trapezoidal shaped zero-covariance prior distribution 396 

Figure 8 shows the comparison of the Bayesian inverse approach and the least square method approach. It 397 

is evident that the Bayesian solution is still severely affected by some noisy oscillation and large 398 

uncertainties around the reconstructed force. Because the prior distribution has zero covariance, the 399 

resulting model realisations are quite rough. 400 

 401 
Figure 8 Application examples of Bayesian inverse method with informative trapezoidal shaped zero-covariance prior 402 

distribution 403 

Therefore, the prior distributions can be designed to enforce a smoothness constraint on the realisation of 404 

the posterior distribution by specifying a non-diagonal prior correlation matrix (  ). The positive 405 

definiteness of    can be guaranteed by constructing the matrix so that each column is the autocorrelation 406 
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of a pre-selected function in which the zero-lag (unit) maximum is centred on the diagonal of   . Due to 407 

the particular shape of the impulsive wave loading, i.e. close to a triangle with the highest corner 408 

corresponding to the peak force, the autocorrelation of a triangle function that produces a cubic 409 

approximation to a Gaussian function is selected. Moreover, we can base the correlation time scale on the 410 

previously developed knowledge of the impulsive wave force duration (Cuomo et al., 2010; Goda et al., 411 

1966; Wienke and Oumeraci, 2005) so that the prior correlation function falls off with a time scale of 0.05 s, 412 

i.e. the zero-lag (unit) maximum of the correlation sequence is centred on the element   and zero at 413 

approximately          (Figure 9). Hence, given the non-uniform diagonal elements of the covariance 414 

matrix    and the correlation matrix   , the non-diagonal prior covariance matrix      is defined as in 415 

eq.(14):  416 

         (  )     (14) 

 417 

 418 
Figure 9 A correlation function for the prior distribution.   's 4000th column (i=4000) 419 

 420 

Figure 10 shows the final result of the developed Bayesian inverse method, in which full use of the previous 421 

knowledge about both the dynamic behaviour of the system and the physical knowledge about the 422 

breaking wave loading have been incorporated within the prior distributions and therefore within the 423 

inverse process. The obtained solution is, not surprisingly, considerably improved by the more restrictive 424 

prior model. This is because the true model is highly restricted and thus consistent with the prior 425 

distributions. Moreover, it can be recognised that, despite the restrictive prior model, the information 426 

carried by the data is not overwhelmed by the prior distribution. The zoomed box in Figure 10 clearly 427 

depicts a smaller credible interval for the rising part of the impulsive force (i.e.            ) than for 428 

the falling one (i.e.           ) even if the assumed prior variance is the same. Thus, it can be argued 429 

that the slope of the original signal can be interpreted as an index of the relative importance or strength, 430 

within the Bayesian process, between the information carried by the data and that carried by the prior 431 

model. The 95% credible interval is not the standard 95% confidence interval, rather it is the 95% 432 

probability interval calculated from the posterior distributions, so that there is 95% probability that each 433 

 (  ) value lies within the corresponding symmetric interval around the MAP value.  434 

In this chapter, three different methods to solve the inverse problem aimed to reconstruct the incident 435 

wave force from a noisy signal recorded on a, or from a structure have been presented. The first and more 436 

simplified method makes use of the Fourier transform properties and the subjective selection of the 437 

threshold to solve the instability issue due to the noise affecting the records. The second is based on the 438 

SVD decomposition of the convolution matrix, the Tikhonov regularisation criterion and the L-curve 439 

technique for the selection of the threshold aimed to identify the largest singular values to consider within 440 

the resolution of the deconvolution process. The third, and most comprehensive one, is based on the Bayes 441 
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theorem, it provides the framework to inherently quantify the uncertainty in the final solution and to 442 

account for the prior knowledge about impulsive wave loading and structural dynamic. All the proposed 443 

methods allow a reasonable reconstruction of the incident force, each of them with its own downsides, but 444 

still all of them applicable to further case studies involving coastal and offshore structures under impulsive 445 

wave loadings. 446 

The above theoretical example, as well as the following laboratory and field applications, have been 447 

entirely developed within the MATLAB® environment. The entire procedure chain adopted to complete the 448 

theoretical example is also released as additional material to this document, aiming for a straightforward 449 

easy application to different case studies. 450 

 451 
Figure 10 Application examples of Bayesian inverse method with informative trapezoidal shaped zero-covariance prior 452 

distribution 453 
 454 

 455 

4. Laboratory application 456 

4.1. Laboratory setup 457 

A series of physical model tests on a vertical cylinder upon a variety of 2D shoals was performed within the 458 

STORMLAMP (STructural behaviour Of Rock Mounted Lighthouses At the Mercy of imPulsive waves) 459 

research project framework in the wave flume of the COAST Laboratory, University of Plymouth. The flume 460 

is 35 m long, 0.6 m wide and 1.2 m high. A lighthouse is modelled as a vertical aluminium cylinder (weight 461 

9.88 kg) installed at the middle of the shoal, while the adopted foreshore steepness for the test reported 462 

here is 1:5. The water surface is measured by means of 16 wave gauges (WG), spread before and after the 463 

shoal, while two cameras, standard and high-speed ones, are used to capture the wave development along 464 

the foreshore (standard ones) and at the cylinder (high speed one) (Figure 11 and Figure 12). The high 465 

speed camera records were also used to evaluate the runup along the cylinder by means of the 466 

methodology presented by Dassanayake et al. (2019a). The offshore flume bed is flat and the mean free 467 

surface is coincident with the upper part of the shoal, i.e. 0.5 m (Figure 11). The cylinder diameter ( ) is 468 

0.12 m, while the width of the upper shoal platform is 0.36 m. The 0.5 m high cylinder is suspended from its 469 
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top and behaves as a vertical cantilever, leaving a minimal gap (i.e. 0.7 mm) between the cylinder bottom 470 

surface and the shoal. The top of the cylinder is connected to a 6 degrees of freedom load cell 471 

(model:6A40B-500/20 – weight 0.4 kg, (Interface, 2019)), that in turn is connected to a beam which is part 472 

of the main supporting structure (Figure 12). The height of the force transducer is 40 mm, while the origin 473 

of the coordinate system is located 32 mm above the cylinder top surface, so that the cylinder bottom 474 

surface is at 532 mm from the origin. The load cell is equipped with 6 temperature-compensated bridges 475 

providing output for each of the 6 degree of freedom. Therefore the output signals have to be post-476 

processed by means of a 6x6 calibration matrix in order to extract the force and moment values. The set-up 477 

enables force measurements along three perpendicular axes with three simultaneous moments. The 478 

sample frequency is 5120 Hz, but all the signals have been decimated to 1000 Hz in order to reduce the 479 

computational effort of the inverse process. Regular, irregular and focused waves were run; however, this 480 

investigation considers the applied methodology to reconstruct the wave force, hence results from regular 481 

waves only are presented. The assumption of 2D model is valid for the present test, hence, the wave force 482 

is acting along the negative y-direction and the induced moment is positive around the x-direction, Figure 483 

11.  484 
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Figure 11 Overall laboratory set-up 

 

 
Figure 12 Shoal (1:5)-cylinder set-up details 

 485 

The cantilever scheme leads to a versatile set-up but also to an unavoidable reduction in the overall system 486 

stiffness, requiring the need to properly address the wave-induced vibrations. Figure 13 upper and middle 487 

panels show the typical recorded force and moment patterns for a regular wave case characterised by 488 

wave height (H) equal to 0.14 m measured at WG11 on the shoal (water depth 0.1 m and distance from the 489 

cylinder 0.5 m) and period (T) equal to 1.5 s (Figure 13 dotted line lower panel). A similar vibration pattern 490 

is present for all the wave states, highlighting the overwhelming effects of the structural dynamic response 491 

on the recorded force. Figure 13 also shows the raw records and the Hilbert-Huang spectrum (HHs) 492 

presenting a clear pattern due to the natural frequency of the laboratory set-up which becomes the 493 

dominant feature of the records. Between 3.0 and 3.2 s a sudden jump in the instantaneous frequency and 494 

energy is detectable which is likely to indicate the instant at which the wave impacted the structure, as 495 

confirmed by the measured runup (lower panel solid line). Proceeding along the signal development, the 496 

natural frequency of the structure becomes dominant as shown by the instantaneous energy concentration 497 

between 12 and 12.5Hz. Less energetic intrinsic mode functions (IMFs) are also grouped around the lower 498 

frequencies close to the incoming wave frequency equal to 0.66Hz, however due to the large difference in 499 
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instantaneous energy they are barely discernible. Overall, it is evident that the recorded force is not the 500 

wave force but the response of the model to an external perturbation. Finally, we want to stress that, 501 

although in this example the dynamic response is particularly effective in corrupting the measurement, any 502 

impulsive wave force measurements should be properly post-processed with different deconvolution 503 

techniques in order to extract real features and intensity of the incident force, regardless of whether the 504 

laboratory model is relatively stiff.  505 

 506 

Figure 13 Raw recorded force (upper panel) and induced moment (middle panel) together with their HHs, the colour 507 
palettes indicating the instantaneous energy. Lower panel shows the measured runup and measured surface elevation 508 
at 0.5 m from the lighthouse, WG11 in Figure 11. This example refers to a regular wave case characterised by H=0.18 509 

m and T=1.5s 510 

4.2. Laboratory Bayesian inverse method application 511 

As for any dynamic system, the first step is the identification of the dynamic behaviour. In order to properly 512 

describe the dynamic response of the laboratory model, impact hammer tests have been performed with 513 

the aim to experimentally reconstruct the force IRF. The impact hammer tests made use of a piezoelectric 514 

impact hammer equipped with a rubber head (Figure 14) which was used to hit the dry cylinder, i.e. 515 

without any surrounding water, 3 times around a lower location where the wave impact is expected (Figure 516 

15). By using the dry IRF within the inverse process, we are implicitly assuming that the dynamic 517 

parameters of the laboratory model remain the same during the interaction with the wave. From the 518 

preliminary results of wet IRFs, we identified that the damping ratio increases and the natural frequency 519 

decreases due to the additional viscous damping and added mass due to the surrounding water. However, 520 

the uncertainty in the level of the water that should have been considered to properly reproduce the wave 521 

impact conditions do not allow the use of the wet IRF within the inverse process and therefore the dry IRF 522 

has been used through the entire paper. The final adopted IRF is the time average of 3 IRFs each of them 523 

calculated, as will be described, by dividing the signals shown in Figure 15 in shorter and equally spaced 524 

segments with a length equal to 2.06 s and highlighted by the red dotted lines. 525 
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Figure 14 Impact hammer tests and 
impact location 

 

Figure 15 Impact hammer tests records and the used three 
segments (red dotted lines) 

The sought IRF can be seen as the time domain image of the frequency response function (FRF) of the 526 

system, so that the IRF can be calculated as the inverse Fourier transform of the ratio between the Fourier 527 

transform of the system output (lower panel in Figure 15) and the Fourier transform of the system input 528 

(upper panel in Figure 15) or simply the time domain deconvolution of the two. Under the hypothesis of 529 

fully rigid cylinder and supporting structure the overall laboratory set-up can be approximated by a single 530 

degree of freedom system with a strict relation between the rotation at the force transducer and the 531 

displacement at the tip of the cylinder so that the same IRF can be used for both force and moment. 532 

Appendix A presents the derivation of the IRF and the comparison between the IRF, calculated under the 533 

above-mentioned hypothesis and by explicitly taking into account both the force and the moment. 534 

However, despite the robust theoretical basis, the operation as described above in the case of noisy 535 

discrete measurements is ill-conditioned, so that a regularization procedure needs to be applied also at this 536 

stage. Here, the issue is tackled by means of the least-squares solution supported by the QR 537 

decomposition. Each of the three experimental IRFs, calculated by means of the three signal segments 538 

identified in Figure 15, is calculated as the solution of the linear system presented in eq.(15):  539 

  

∫     
        

 

(15) 

where    is one of the three segments representing the response of the laboratory model to the impulsive 540 

force exerted by the impact hammer (i.e.   ) that in turn is divided by the time integral of the impulsive 541 

force recorded by the impact hammer, i.e.   .    is a matrix defined using the same method of matrix   542 

(eq.(4)) with the main difference that, in this case, each column is defined as a lagged hammer force, i.e. 543 

  . Therefore, the sought solution is the IRF that minimises both the norms in eq.(16).  544 

{
   ‖       

  

∫     
‖

   ‖   ‖

 (16) 

The applied regularization approach is aimed at treating the smallest elements along the diagonal of the 545 
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matrix   (obtained from the QR decomposition of the matrix   ) as zeros, so that the effect of the noise in 546 

the impact hammer records does not play a major role in the final solution. Plotting the elements along  ’s 547 

diagonal is enough to identify a reasonable regularization threshold that in this example is set to 0.5; 548 

however this value should be evaluated for each case. Figure 16 shows the calculated average IRF that has 549 

been adopted for all the following analysis. The clear presence of multiple components with their own 550 

frequency (13, 90, 475 and  535 Hz, see Appendix A) might be related to the quasi-rigid rotation of the 551 

cylinder around the transducer (13 Hz), to the second flexural mode of the cylinder, having the centre of 552 

mass moving in phase opposition relative to the tip (90 Hz), to the first natural mode of a cylindrical 553 

cantilever element (475 Hz) and to the supporting structure vibrations (535 Hz).   554 

 555 
Figure 16 The identified IRFs for both horizontal force and moment 556 

Finally, in order to identify the intrinsic noise within the data, and then define the covariance matrix (  ) 557 

associated with the data, the signal is assumed to comprise a smoothly varying function plus additive 558 

Gaussian noise with zero mean and variance to be estimated; the methodology described by D'Errico 559 

(2007) is applied here, for the estimation of the signal noise variance. The identified variance values are 560 

0.0015 N2 and 2.5x10-6 (Nm)2 for the force and moment, respectively, and are assigned to the elements 561 

along   ’s principal diagonals. 562 

4.3. Laboratory informative prior distributions 563 

As presented in the theoretical example, the definition of the prior distributions is based on the previous 564 

knowledge on the impulsive wave loading on cylindrical structures (Goda et al., 1966; Tanimoto et al., 1987; 565 

Von Karman, 1929; Wienke and Oumeraci, 2005). Despite alternative approaches being available, recently 566 

the work of Wienke and Oumeraci has been successfully applied in preliminarily investigations of wave 567 

loading on offshore rock lighthouses (Trinh et al., 2016), hence it is used as reference for the definition of 568 

the prior distribution. However, a large proportion of the waves that interact with the lighthouse, and 569 

accordingly, also in the present laboratory experiments, rarely break directly onto the structure, instead 570 

they mostly reach the structure already broken with an initial aerated and turbulent front (Bressan et al., 571 

2018). Therefore a modification is applied to the standard Wienke and Oumeraci approach and the wave 572 

celerity (  ) is calculated according to the method of Bonneton (2004) for broken waves in the surf zone, 573 

resulting in a value 1.5 m/s. Hence, the maximum value for the prior distribution is kept equal to the 574 

maximum force calculated according to the modified Wienke’s method, i.e. 31N and is approximately 575 

applied at 0.06 m from the bottom of the cylinder (i.e. 0.47 m from the origin of the axis). These 576 

dimensions are associated with a curling factor of 0.46 and wave crest of 0.08 m at the breaking point 577 
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(Figure 13 upper panel).  578 

 579 
Figure 17 Recorded signals and normal prior distributions (mean and standard deviation) 580 

Finally, due to the large uncertainties on the multitude of phenomena affecting the interaction between 581 

the flow and the structure, a relatively non-restrictive standard deviation is assumed. Thus, a value equal to 582 

half the mean value is assigned to the standard deviation in order to fully describe the prior normal 583 

distributions for both horizontal force and overturning moment, as shown in Figure 17. Due to the non-fully 584 

breaking nature of the waves action, for the definition of the prior distribution, the time length of the 585 

impulsive force is initially estimated to be 0.04 s, according to Goda et al. (1966) who presented the longest 586 

values among the available impulsive model lengths, i.e. 
 

    
. Hence, the prior correlation function falls off 587 

with a time scale of 0.04 s.  588 

4.4. Laboratory results 589 

Results of the analysis are shown in Figure 18 for a record of 5 incident regular waves, with 1.5 s period and 590 

wave height around the breaking point of 0.14 m (a movie of the 5 incident waves and the obtained results 591 

is available as additional material to this document). Panel a) shows the water surface elevation recorded 592 

at WG11 situated on the shoal (i.e. water depth 0.1 m and distance from the cylinder 0.5 m) and the 593 

measured runup, while panels b & d) show the identified wave force and induced moment respectively, 594 

and panels c & e) their HHs. The runup is defined as the level B runup proposed by Grue and Osyka (2021), 595 

i.e. the runup of a thin layer of water and air mixture, and water layer which was no longer attached to the 596 

surface of the pile, or high spray concentration. 597 
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 598 

Figure 18 Example result for regular wave T=1.5s and wave height around the breaking point 0.14 m. a) water surface 599 
elevation recorded at WG11 (0.1 m water depth and 0.5 m from the cylinder) and Runup, b, d) the identified incident 600 

wave force and moment and c, e) the Hilbert-Huang spectrum.  601 

The dynamic amplification due to the structure is completely removed from the records allowing the 602 

description of a clear signal and the identification of the main loading features due to the broken waves. 603 

The detected force and moment highlight the presence of common features within the signals. Two peaks 604 

are clearly visible for all the loading events while a third one is slightly less pronounced but still present for 605 

all the events. The first peak is related to the violent impact of the first broken aerated front (red arrow 606 

Figure 18.b,d), the second is mainly due to the sudden deceleration of the falling down water mass 607 

previously upward accelerated by the impact with the cylinder (green arrow Figure 18.b,d). A third, less 608 

intense, peak due to the remaining water mass carried by the wave is also detected and is clearly visible for 609 

the third wave (purple arrow Figure 18.b,d) but it is also present within the other loading events with a 610 

smaller intensity. Despite the above-described loading mechanism is confirmed by the movie provided with 611 

this document some doubts arise regarding the effects of the cylinder compliance and movement. The 612 

moment transducer actually measures a small transducer deformation and rotation of the cylinder that due 613 

to the moderately high frequency of the induced oscillations and distance from the hinge point may result 614 

in a significant velocity of the cylinder in contact with water. However, to what extent this process affects 615 

the reconstructed force is not trivial to define and it has been assumed negligible in this work in light of the 616 

reasonable agreement with the later-described field results. As identified by Liu et al. (2019) and 617 

Kristiansen and Faltinsen (2017) for breaking wave on a vertical deep water cylinder, the content of energy 618 

for the impulsive load part is spread over a frequency range broader than the incident wave frequency. For 619 

the analysed case the waves break before the structure, hence the front that first impacts on the cylinder is 620 

extremely turbulent inducing a longer rise time but also energy content at higher frequencies that reach up 621 

to 40 times the wave frequency (i.e. 0.66 Hz), as shown by the HHs in Figure 18.c,e. This is particularly 622 

relevant for stiff structures, like the granite masonry offshore rock lighthouses, for which the observed 623 

natural frequencies for the first two modes are in the range between 4 and 8 Hz, (Brownjohn et al., 2019; 624 

Brownjohn et al., 2018). Therefore,  a detailed description of the higher wave load harmonics is essential to 625 

describe the induced dynamic response. Moreover, a constant low frequency component with a value close 626 

to the incident wave frequency (i.e. 0.66 Hz) is visible all along the time series shows in Figure 18.c,e. For all 627 

the impact events, a sudden jump in the instantaneous frequency is detected with a concentration of 628 
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energy during the rising part of the impulsive load, particularly pronounced for the fourth event. The 629 

detected rise times range between 7% and 9% of the wave period (i.e. 1.5 s) and between 20% and 30% of 630 

the whole impulsive loading duration that lasts around 0.2 and 0.3 s. It is important to highlight this aspect 631 

because several approaches, e.g. Goda et al. (1966), (Goda et al., 1966); Wienke and Oumeraci (2005), do 632 

not consider the rise time when describing the breaking wave force time series, whereas it is indeed the 633 

part of the impulsive load where the energy is largely concentrated for the broken wave action.  634 

Figure 19 shows details of the results for the third event in Figure 18, in which the detected wave force 635 

application point is shown together with the runup in panel c. The runup measurement is obtained by the 636 

automated image processing method described in Dassanayake et al. (2019a), while the application point is 637 

the crude ratio between the moment and the force.   638 

 639 

Figure 19 Detailed results of the laboratory data analysis. a) the identified incident wave force together with a zoom on 640 
the posterior distribution for the maximum value and, b) the incident wave force Hilbert-Huang spectrum. c) the 641 

measured runup and the identified application point for the wave force and related posterior distribution.  642 

As expected, both the wave force and the induced moment are related to the runup as already highlighted 643 

by Peregrine (2003) for a vertical wall under breaking waves. The initial increase in runup (Figure 19.c: 3.0 - 644 

3.05 s) is largely due to the jet and the aerated water mass generated by the wave breaking before the 645 

cylinder, therefore little or no pressure is exerted on the structure. Subsequently, the primary front of the 646 

broken wave reaches the structure. It is projected upward by the pressure gradient due to the high 647 

pressure developed during the contact between the water mass and the cylinder (Figure 19: 3.05 - 3.15 s) 648 

until it reaches the maximum runup level (Figure 19: 3.15 s). The force application point correlates 649 

reasonably with the magnitude of the force, reaching its maximum slightly later than the maximum force, 650 

thus also inducing a different phase between the maximum force and maximum moment, then it suddenly 651 

drops as the force decreases. At the point of maximum runup, the water is in a nearly in free fall (Figure 19: 652 

3.15 - 3.25 s), exerting little pressure on the water below and resulting in the reduction of the force and 653 

moment. As it falls down, the water must be decelerated by a pressure gradient that is again supported by 654 

high pressure at the base of the cylinder and therefore by a second peak in the horizontal force and 655 

moment, (Figure 19: 3.25 - 3.30 s). As expected the application point for the second peak is quite low and 656 

more steady than the first one, highlighting the non-impulsive nature of this loading cycle. The sudden drop 657 
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of the runup around 3.3 s is mainly due to the inaccuracy of the video camera technique that failed to 658 

distinguish between the thin layer of water that was no longer continuously attached to the cylinder 659 

surface as shown in the additional video available with the paper. After the end of the impulsive loading 660 

component (Figure 19: 3.30 s) the remaining part of the water mass carried by the wave reaches the 661 

cylinder generating a secondary load cycle (Figure 19: 3.35 - 3.45 s) that is less violent than the primary one, 662 

but still shows a slightly impulsive nature. On average it was observed that the intensity of this secondary 663 

load cycle ranges between 15% and 25 % of the primary one and it lasts for a duration that ranges between 664 

5% and 12% of the wave period and between 40% and 60% of the primary impulsive load. However, 665 

despite the reduced intensity of the secondary load cycle, it consistently shows a relatively high application 666 

point that ranges between 60% and 80% of the runup levels; thus it might have important effects on the 667 

structural response. As expected and highlighted by the HHs in Figure 19.b he energy is concentrated 668 

around the first loading event with energy spread on a large range of frequencies. The presence of a force 669 

component coherent with the lower frequency identified within the IRF (i.e. 13 Hz), might signify that, 670 

despite the removal of the cylinder vibrations from the recorded signal, the original loading process was 671 

affected by the non-fully rigid nature of the experimental set-up. Hence the exerted hydrodynamic loading 672 

might not be exactly the same that would have occurred in a situation with a fully rigid structure.    673 

Although the proposed method allows the identification of most of the main features of the wave loading, 674 

the description of the application point, calculated by the crude ratio between the overturning moment 675 

and the horizontal force, is still affected by some inaccuracies that are reflected in the gaps within the time 676 

series. The main reason is the level of noise that is present in the MAP solution. Indeed, the gaps in the 677 

application point time series (black line and grey area in Figure 19.c) correspond to the lower values of the 678 

identified wave force, so that the division between the moment and small force values provides unrealistic 679 

results. Furthermore, few values of the application point fall above the detected runup. This is associated 680 

with the inaccuracy of the image processing based measurement of the runup that sometimes fails to 681 

properly detect the high turbulent or aerated water mass. In Figure 19.c, for the sake of visual rendering, all 682 

the values of the application point related to forces smaller than 2 N have been removed. Both Figure 683 

18.b,d and Figure 19.a,c show the credible interval around the MAP solution for the force, the moment and 684 

the application point; however, due to the small signal-to-noise ratio the posterior distributions are quite 685 

narrow, so that the shaded grey area is slightly obscured. Two examples of posterior distributions are 686 

presented in Figure 19.a,c for the instant related to the maximum identified force (i.e. 3.153 s) and are 687 

overlapped with the main time series within the smaller plot boxes at 3.153 s. Note how the uncertainty in 688 

the application point is quite large for small values of force, whereas it becomes relatively small for the 689 

main impulsive load, as a result of the stronger information carried by the data in the Bayesian process. 690 

Finally, Figure 19.c also shows the average least-square solution for the application point as a black 691 

horizontal dotted line with the associated uncertainty, again quite small and barely visible in the figure. 692 

From the comparison between the time varying application point and the overall least-square solution it is 693 

clear the potential of the proposed analysis method and the need for a proper post-processing procedure 694 

for the laboratory wave force time series.  695 

 696 

5. Field measurement application 697 

5.1. Field data: Wolf Rock lighthouse 698 

In order to show the capability of the proposed approach, the same methodology is applied to the field 699 

acceleration measurements recorded during Hurricane Ophelia (October 2017) on Wolf Rock lighthouse.  700 

The idea is to use the lighthouse as full-scale force transducer and reconstruct the wave load that induced 701 
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the shaking of the structure. However, the field nature of this application requires more detailed 702 

characterisation of the dynamic behaviour of the structure, so that the modal parameters must be 703 

identified by means of a dedicated field modal campaign. The same approach can be applied to more 704 

common marine structures such as: vertical wall breakwaters, crown-walls, offshore wind turbines and 705 

offshore platforms.  706 

5.2. Wolf Rock lighthouse: location, features and modal analysis 707 

Wolf Rock lighthouse (49°56.72′N - 05°48.50′W), Figure 20 left panel, is situated 13 km offshore the most 708 

south-westerly point of UK, halfway between the Isles of Scilly and Land’s End. It is one of the most 709 

exposed lighthouses in the British Isles, being surrounded by more than 35 m water depth on all sides but 710 

the south-east, Brownjohn et al. (2018); Raby et al. (2019a). The tower is composed of 70 granite courses, 711 

and extends to a height of 41 m from foundation to highest course. If the extent of the helideck is also 712 

considered (the first one constructed on top of a lighthouse, in 1973) it reaches a height of 43.1 m. Each 713 

granite course of the tower is subdivided into 16 sectors, each masonry course and sector being connected 714 

with their neighbours through vertical key and dovetail joints. The outside diameter reduces from a 715 

maximum of 12.68 m at the complete 2nd course to a minimum 5.18 m at the 68th course. The total volume 716 

of the granite is 1260 m3 having a mass of 3350 t. The lower landing platform extends north-east for about 717 

25 m and is covered by granite blocks about 0.15 m thick. More detailed descriptions of the Wolf Rock 718 

lighthouse can be found in Raby et al. (2019b) and Brownjohn et al. (2018). 719 

  

Figure 20 Wolf Rock lighthouse from the helicopter during the field campaign (courtesy of Trinity House) and the 720 
vertical cross-section of the  721 

A field campaign aimed to identify the lighthouse modal parameters such as modal masses, natural 722 

frequencies, damping ratios and mode shapes was performed in 2016 as part of the STORMLAMP project 723 

activities (Brownjohn et al. (2018)). During the two day campaign, both ambient and forced vibrations were 724 

recorded at the 8+1 floors (masonry tower and helideck) of the lighthouse. Orthogonal pairs of Honeywell 725 

QA-750 quartz-flex accelerometers were arranged at the inner wall of the masonry tower at the same 726 
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compass bearing with respect to the lighthouse vertical axis, Figure 20 right panel, while a shaker was 727 

located at the battery room and acted along both the x and y directions. The ambient vibration data were 728 

post-processed with standard Eigensystem Realisation Algorithm (ERA) (James et al., 1993) allowing the 729 

identification of natural frequencies, mode shapes and damping ratios. The forced vibrations were analysed 730 

with both Global Rational Fraction Polynomial (GRFP) (Richardson and Formenti, 1985) and circle fit (CFIT) 731 

functions (Kennedy and PANCU, 1947), additionally allowing the identification of the modal masses (Figure 732 

21Error! Reference source not found.).  733 

 

 

 

 

Figure 21 Left panel: modal parameters from GRFP with mode shapes normalised to unity at battery level (shaker 
location). M indicates the modal mass for mode shape scaled to unit at the battery level, fn is the natural frequency 

and ζt is the damping ratio. Right panel: the modal ordinates values for the two identified mode shapes. 

 734 

Modal masses are most important for relating wave loading to response, but often they can be 735 

misunderstood because of the way they are linked to mode shape scaling. Therefore we define the modal 736 

mass as the integral with respect to height of mass weighted by squared horizontal modal ordinate 737 

(Brownjohn and Pavic, 2007), while the scaling sets the mode shapes to have unitary value at the level 738 

where the shaker is located (i.e. battery room). Accordingly, the physical response at this location is 739 

obtained by considering each mode as a SDoF system with this “unity scaled” value of modal mass. Figure 740 

21Error! Reference source not found. shows the obtained results from the GRFP in which the first two 741 

identified mode shapes are presented. The mode shapes with large helideck ordinate have much larger 742 

modal mass. This is because the contribution to the modal mass calculation goes with the square of the 743 

modal ordinate. Furthermore, since the open helideck structure is practically transparent to horizontal 744 

loads due to breaking wave impacts, response of the masonry towers in these modes is expected to be 745 

relatively low. 746 

5.3. Hurricane Ophelia  747 

Hurricane Ophelia, the tenth and final consecutive hurricane of the very active 2017 Atlantic hurricane 748 
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season, was the strongest storm that affected the south-western UK and Irish coasts. Formed on 3rd 749 

October from a broad low-pressure area offshore the Azores, it began to strike the British and Irish coasts 750 

at the beginning of 12th October (Guisado-Pintado and Jackson, 2018). At the Wolf Rock nearest deep water 751 

node (49°56’4.7’’ N - 5°49’46’’ W), available within the NORGASUG model (Boudière et al., 2013), the 752 

hurricane reached its maximum intensities in term of significant wave height on 16th October during the 753 

afternoon between 13:00 and 16:00 (Hm0MAX=7.15m; TP=13.3s, TS=12.4s, Tm=11.2s and dP=222°N) and 21st 754 

October, during the morning, between 10:00 and 13:00 (Hm0MAX=7.55m; TP=14.7s, TS=13.7s, Tm=12.4s and 755 

dP=242°N), Figure 22. The following analysis will focus on the 16th October peak.  756 

 757 

Figure 22 Wave hindcast data from HOMERE model (Ifremer, Boudière et al. (2013)). Deep water wave conditions 758 
south-west of Wolf Rock lighthouse at 49°56’4.7’’ N - 5°49’46’’ W. 759 

5.4. Remote acceleration acquisition system 760 

During the same period a remote logging system, aimed to acquire the wave-induced acceleration, was 761 

installed in the lighthouse battery room, i.e. 7th floor. The system comprises a single JA-70SA triaxial servo 762 

accelerometer, therefore two horizontal (i.e. CH1 and CH2) and one vertical signals are available for the 763 

analysis. The vertical acceleration is negligible for the aim of the proposed analysis. CH1 points 282°N and 764 

CH2 is perpendicular, i.e. it points 192°N, Figure 23 upper panel. The recorded accelerations are shown in 765 

Figure 23 lower panels at different time scales, i.e. the entire day, the 6 hours of the storm and the selected 766 

acceleration time series together with their HHs.  767 
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Figure 23 Remote logging system set-up and 16
th

 October 2017 Wolf Rock lighthouse acceleration records during 768 
Hurricane Ophelia and the selected impact event 769 

The original recorded CH2 acceleration is rotated by approximately 30° from the hindcast wave direction; 770 

thus, to extract the acceleration of the lighthouse only along the wave direction the simultaneous records 771 

of both perpendicular channels are iteratively rotated (by step of 1°) from 0 to 180° clockwise. Moreover, 772 

the rotation analysis also allows the assessment of coherence between the acceleration measurements and 773 

the hindcast wave direction. The integral of the energy spectrum for both rotated signals is calculated and 774 

used as a proxy for the estimation of the impact direction. The maximum value of CH2 energy spectrum 775 

integral is obtained for a clockwise rotation equal to 34°, hence it can be argued that the wave generating 776 

the shaking of Wolf Rock lighthouse at 14:28 on 16th October was coming from 226°N in close agreement 777 

with the hindcast wave direction. Thus in the following study the 34° rotated CH2 signal is considered, i.e. 778 

the considered alignment is 226°N.  779 
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To identify the wave force generating the shaking at the battery room, the experienced inertia force should 780 

be described through the modal masses presented in Figure 21Error! Reference source not found. 781 

(Brownjohn et al., 2019; Brownjohn et al., 2018) and then used within the inverse process. In other words, 782 

we want to use the measured acceleration of an elastically linked mass to evaluate the force acting on the 783 

mass itself. In the lower panels of Figure 23 the HHs for both CH1 and CH2 show that the impulsive wave 784 

load response is mainly concentrated within the second natural mode, i.e. around 6.8 Hz. Thus, under the 785 

assumption of linear behaviour of the structure, the experienced inertial force at the battery room can be 786 

calculated as the product between the acceleration and the modal mass related to the second natural 787 

mode (i.e. 436 t) as shown Figure 24. To summarise this preliminary analysis of the acquired signal, 788 

impulsive wave load will be reconstructed by the application of the previously described inverse method 789 

considering the inertial force and the IRF related to the second natural mode.   790 

 791 

Figure 24 Experienced inertial force at the battery room during one wave impact during the Hurricane Ophelia. 792 

The process follows the same steps adopted for the laboratory data analysis; however, since it is impossible 793 

to test the lighthouse with an impact hammer, the IRF for the second natural mode is reconstructed from 794 

its theoretical expression. The process requires the deconvolution between two homogenous signals, 795 

hence the IRF expressed in term of displacement is converted in terms of force by means of the product 796 

between the second mode modal mass and the second time derivative of the displacement IRF as in eq.(3). 797 

In this case the modal parameters identified through the field modal analysis are adopted within eq.(3). In 798 

this regard, it should be mentioned that we are assuming that the dynamic parameters identified through 799 

the dry modal analysis, i.e. when no water was in contact with the lighthouse, remain valid also during the 800 

wave impact; whereas in Brownjohn et al. (2019) the results of the non-stationary modal analysis during 801 

Hurricane Ophelia show the increasing of the damping ratio together with the decreasing of the natural 802 

frequencies during the period of maximum wave agitation. In such cases, it is reasonable to argue that the 803 

water surrounding the structure during the impact exerts additional damping and contribution to the 804 

inertia of the structure through the added mass. However, the limited number of observations and the 805 

uncertainty on the added mass do not allow the systematic use of these non-stationary parameters within 806 

the inverse process.  807 
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5.5. Field (almost) uninformative prior distributions 808 

The lack of information about the individual wave that might have generated the analysed lighthouse 809 

shaking imposes the use of uninformative prior distributions about the intensity of the impulsive wave 810 

loading. Therefore, time constant normal prior distributions characterised by mean value equal to zero and 811 

relatively large standard deviation (i.e. 4 times the maximum calculated inertial force at the battery room) 812 

are adopted. Such a large value of the standard deviation makes the prior similar to a uniform distribution 813 

for the range of investigated values. In contrast, the time duration of the impulsive loading can be 814 

estimated with reasonable accuracy. We assume that the linear phase celerity is valid for the estimation of 815 

the velocity of the  water mass that hits the lighthouse, hence, knowing the water depth (i.e. 35 m) and 816 

assuming that the largest waves are associated with the significant period equal to 11.75 s (Goda (2000)), 817 

the wave phase celerity is equal to 15.40 m/s. Moreover, applying Goda et al. (1966) impulsive loading 818 

duration model and considering the diameter equal to 12.68 m (the maximum at the base of the 819 

lighthouse) it is possible to  make a preliminary estimate of the duration of the loading impulsive 820 

component of 0.41 s, hence the prior correlation function falls off with the same time scale. A detailed 821 

sensitivity analysis on the effect of the prior distributions on the final result is presented in the appendix B 822 

for sake of completeness.  823 

5.6. Field results 824 

The result of the inverse process applied to the field data is presented in Figure 25, where the overall 825 

inertia force due to the 16th October event is shown as a dotted light blue line. The reconstructed force 826 

experienced at the battery level due to the wave impact is presented with a solid black line (the credible 827 

interval is not visible due to the scale) the lower panel shows its HHs. The lower left box shows the detail of 828 

the posterior distribution related to the maximum reconstructed force value, while the upper right box is 829 

the enlargement of the reconstructed peak force.  830 

Not only for the well-controlled laboratory data, but also for the more complex field data it can be said that 831 

the inverse method works properly and a large amount of the structural dynamic effects are removed from 832 

the signal, allowing a clear description of the wave force features. Weak background oscillations remain in 833 

the final reconstructed force due to the theoretical nature of the adopted IRF that does not provide an 834 

ideal kernel for the deconvolution of complex field data. Some of the dynamic features of the lighthouse 835 

are not perfectly removed from the final solution, as shown by the oscillations characterised by a frequency 836 

slightly larger than the first natural mode between 14:28:40 and 14:28:42. However, despite this spurious 837 

less energetic component in the final result, the impulsive components are properly captured.  838 

Similar features that were previously identified in the laboratory result are also detectable for the field 839 

outcomes. The two close peaks characterising the first impulsive loading component are properly 840 

reconstructed and likely to be due to the impact of the first front and the following deceleration of the 841 

falling water mass. Although the initial impulsive component does not show the same characteristics of a 842 

fully breaking wave loading, its slightly longer character remains rather similar to a slamming force. The 843 

energy is concentrated within a few tenths of second, between the beginning of the rise time and the end 844 

of the second peak. The instantaneous frequency shows the typical feature of the impulsive load, with 845 

energy content spread over a rather large frequency band, ranging between 0.8 to 40-50 Hz. While the 846 

laboratory results showed clearer concentration of energy at the beginning of the rise time, here the 847 

maximum energy is detected at the beginning of the second peak; however, a sudden increase of the 848 

instantaneous frequency is also visible at the beginning of the overall impulsive load, highlighting again the 849 

importance of this initial part of the load.   850 
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 851 

Figure 25 Detailed example result of the field data analysis. The identified incident wave force (left axis) together with 852 
a zoom on the posterior distribution for the maximum value and the Hilbert-Huang spectrum (right axis).  853 

The first, double peak, impulsive component lasts for about 0.06 s (slightly before 14:28:39) that in turn 854 

makes the nature of the load nearly dynamic with respect to the behaviour of the structure (i.e. the ratio 855 

between the impulsive loading length and the natural period is larger than 0.25 (Chen et al., 2019; 856 

Oumeraci and Kortenhaus, 1994)). This aspect is particularly relevant for the accurate modelling of the 857 

response of the structure under wave action. Indeed, if the first mode would have been the most significant 858 

one, the structural analysis could have been carried out according to the impulse theory presented by Chen 859 

et al. (2019), whereas, in this situation, the time-varying nature of the impulsive wave load must be taken 860 

into account. Proceeding along the reconstructed incident wave loading, a third less intense peak is present 861 

and highlighted by the sudden increase of the instantaneous frequency at about 14:28:39.5. The similarity 862 

between this third peak and the identified one in the laboratory result is clear. However, a slightly different 863 

time sequence, i.e. time lag between the main impulsive component and the third peak, is also evident and 864 

likely to be due to the uncertain condition at the base of the lighthouse and the induced effects on the 865 

wave breaking process. 866 

Up to this point in the analysis, the adopted methodology has virtually assumed the application of the 867 

incident wave force at the battery level, i.e. 32.6 m above the first full course of the lighthouse or 34.7 m 868 

above the chart datum. Evidently, the wave action could not be directly applied to such a high level. One 869 

last step is therefore required to translate the application point from the battery room to a more realistic 870 

lower application point, and accordingly re-scale the wave force intensity. This final step can be achieved by 871 

knowing the modal ordinates at different elevations of the structure. Within the proposed analysis, the 872 

battery room modal ordinate was always kept equal to 1. Hence, in order to reconstruct the force at a 873 

lower level, the reconstructed force time series should be divided by the modal ordinate (in this case 874 

related to the second mode) corresponding to the estimated application point. However, since no direct 875 

measurements of the incident individual wave height are available for Wolf Rock lighthouse, a preliminary 876 

estimation of the wave force application point is carried out through the available methods in the 877 

literature. The statistical distribution proposed by Battjes and Groenendijk (2000) is adopted to describe 878 

the individual wave heights at the toe of the lighthouse (Figure 26 upper panel), while the application point 879 
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is calculated under the assumption of uniform vertical pressure distribution exerted along the upper 46% 880 

(i.e. curling factor equal to 0.46) of the asymmetric wave crest described by means of Hansen (1990) 881 

method (Figure 26 middle panel).   882 

 883 

Figure 26 Upper panel: Battjes and Groenendijk distribution at the toe of Wolf Rock lighthouse for the analysed wave 884 
state; middle panel: wave force application point; lower panel: corresponding modal ordinate (left axis) and wave force 885 

scale factor, i.e. modal ordinate inverse (right axis) 886 

Once the application point is known, the modal ordinate value is also known and can be used as the scale 887 

factor for the intensity of the reconstructed force (Figure 26 lower panel). From Figure 23 the analysed 888 

impact is the 2nd highest in 3 hours (i.e. 13:00 to 16:00) characterised by almost uniform HS around 7.15 m. 889 

Hence, considering the mean period (Tm) associated with the underlying Jonswap spectrum, 812 events can 890 

be estimated and accordingly an exceedance probability of 0.21% for the second-highest event can be 891 

calculated. Figure 27 shows the final results of the overall inverse force reconstruction process. Due to the 892 

lack of direct measurement of the incident waves, the results about which wave had generated the 893 

recorded shaking are still affected by some uncertainties, however, they lay the foundation for a process-894 

based assessment of the structure, where no empirical formulae are required to describe the incident wave 895 

loading. 896 
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 897 

Figure 27 Example results of the rescaled incident wave force H0.21% 898 

 899 

6. Discussion and conclusion 900 

This work intends to make progress in the application of the inverse method to reconstruct wave forces 901 

exerted on marine structures, providing a sound framework for a large number of field and laboratory 902 

applications. The presented methodology is based on linear theory and therefore assumes the elastic 903 

behaviour of the investigated structure, an aspect that should first be checked when the method is applied 904 

to field measurements under extreme wave actions. The paper provides a comprehensive presentation of 905 

the method by addressing three different applications: a theoretical one, where the impulsive load is 906 

reconstructed from the response of a theoretical single degree of freedom system; a laboratory application, 907 

where the force exerted by a broken wave is identified from the force measured on a vertical cylinder upon 908 

a shoal; and a field application, where a wave force exerted on Wolf Rock lighthouse is described from the 909 

accelerations measured during the Hurricane Ophelia. In the following, the main aspects of the three 910 

applications are discussed and some conclusions gathered. 911 

The theoretical example shows, in a simplified and controlled case, the main issues related to the inverse 912 

process. The effect due to the (inevitable) presence of noise within the real signal is highlighted and 913 

analysed in detail. The methodology is applied and the results compared with the Tikhonov regularisation 914 

and the truncated Fourier transform. Although the truncated Fourier transform is rather time-efficient (the 915 

computational time is way smaller than the other methods) and effective to reconstruct the unknown 916 

force, the method requires the subjective selection of the threshold to overcome the sensitivity of the 917 

results to small changes in the input records (noise) and the results show loss of resolution and some 918 

spurious oscillations. The Tikhonov method is effective for the reconstruction of the essential features of 919 

the impulsive input signal, the truncated singular values show their influence through the introduction of 920 

spurious oscillations and loss of resolution in the final solution. On the other hand, the Bayesian 921 

methodology allows a detailed reconstruction of the input signal. The improvements due to the 922 

introduction of process-based informative prior distributions are evident on both the final solution and the 923 

narrow posterior distribution; indeed the sharp nature of the impulsive wave loading is reconstructed 924 
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without the presence of substantial spurious oscillations. The theoretical example is also available as 925 

additional material in the form of MATLAB® procedures. 926 

For the laboratory data application, the use of an impact hammer aimed to define the experimental force 927 

IRF is presented. The related ill-conditioning issues are tackled through the combined use of the least-928 

squares method and QR decomposition. The identified experimental IRF is then applied to five regular 929 

waves. The main features of the load due to the broken waves are captured in detail by the method, 930 

allowing an accurate time-varying description. The load is characterised by an initial impulsive component 931 

constituted by two consecutive peaks and a delayed one. The first peak is mainly due to the impact of the 932 

first aerated front, while the second is due to the sudden deceleration of the falling water mass at the base 933 

of the structures. The third peak has a smoother shape, is less intense and is longer than the first ones. It is 934 

due to the impact of the remaining water mass carried by the individual wave. Both wave force and 935 

overturning moment are reconstructed with a good level of accuracy, allowing the identification of the 936 

point of application of the force. The application point time series is partially affected by the remaining 937 

small spurious oscillations in the final solution. The effect is particularly evident for low force intensity. In 938 

this condition, the resulting time series is overcome by the spurious oscillations making part of the 939 

application point results unreliable. However, the application points for the impulsive loading conditions 940 

are properly captured. The goodness of the final result is further corroborated by the comparison between 941 

the force, overturning moment and force application point with the detected cylinder runup. Although the 942 

overall analysis provides trustful results some uncertainties remain on the effects of the structure 943 

compliance and its movements during the interaction with the water mass, however, they are hardly 944 

quantifiable and assumed to be negligible. 945 

The application of the Bayesian method to the field vibration data is slightly more complex. An accurate 946 

dynamic characterisation of the structure is required in order to identify the main dynamic parameters and 947 

mode shapes. The data is initially pre-processed to indirectly identify the direction of the incident wave 948 

generating the recorded shaking. The identified wave direction agrees with the direction coming from the 949 

hindcast model, validating the adopted analysis procedure. For Wolf Rock lighthouse only the second 950 

identified mode seems to respond to the impulsive wave loading. Based on this finding the deconvolution 951 

process is based on the theoretical IRF of the same mode. The final result allows the identification of the 952 

time-varying nature of the wave load. The same features identified for the laboratory results are also 953 

detected for the field data. Three peaks characterise the reconstructed wave loading and can be argued 954 

that they are generated by same physical phenomena observed in the laboratory experiments. The field 955 

data do not allow the identification of the overturning moment or the direct measurement of the incident 956 

wave; accordingly also the wave force application point is not directly described. To overcome this lack of 957 

information a statistical description of the possible incident waves is performed in order to estimate the 958 

constant application point of the force and then rescale the intensity of the reconstructed force via the 959 

inverse of the modal ordinate. According to the second natural mode, the lower the wave force application 960 

point, the larger should have been the force intensity. From the recorded vibrations a preliminary 961 

estimation of the probability of exceedance of the analysed event is inferred equally to 0.21%, accordingly 962 

the generating individual wave and force application point are calculated.  963 

Overall, the proposed methodology allows the reconstruction of the wave force directly from structural 964 

dynamic measurements, laying the foundation to analyse unclear physical phenomena such as breaking 965 

and broken wave loading on rigid structures. The method can be extended to multiple degrees of freedom 966 

as well as to structures that respond to the wave loading with a combination of multiple natural modes. 967 

Here, it has been applied to a laboratory cylinder or to an offshore rock lighthouse; however, we expect 968 

that the same procedure should be effective also for more common marine structures such as caissons, 969 
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crown-walls, wind turbine monopile and offshore platforms. For future field applications, we strongly 970 

advise the planning of a measurement campaign where the simultaneous record of the structural vibration 971 

and individual incident wave heights are considered. 972 
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Appendix A: Laboratory unit-impulse response function 1108 

A theoretical unit-impulse response function (IRF) can be calculated as in eq.(17): 1109 
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∫                          
  
 

  (17) 

where t1 is the length of the available record, FFT is the fast Fourier Transform and IFFT is its inverse. 1110 
Moreover, it must be noted that the ratio in the argument of the IFFT is just the time domain deconvolution 1111 
between the system output and input that can be resolved by the matrices operation presented in eq.(16). 1112 
In the proposed laboratory application the overall signal presented in Figure 15 is divided in three parts of 1113 
the same length equal to 2.06 s that are later used to calculate three IRFs that in turn are averaged to 1114 
obtain the final IRF used in the inverse method.  1115 
In the specific case of the laboratory force measurements the IRF is calculate as in eq.(18): 1116 
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(18) 

where        ( )  is the force time series as recorded by the force transducer and       ( ) is the applied 1117 

force as recorded by the impact hammer. If the same is applied to the calculation of the moment IRF the 1118 
product of the force and its application point should be considered as in eq.(19):  1119 
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(19) 

where  ( ) is the time series of the application point of the applied force via the impact hammer, but also 1120 

the application point comprising the moment measured by the moment transducer.  ( ) is the same in both 1121 

numerator and denominator of the IFFT argument, so the value can be cancelled out and therefore 1122 
considered negligible for the calculation of the moment IRF. Obviously, the normalising integral should be 1123 
redefined as in eq.(18), however, its result is a scalar that is only needed to normalise the IRF and therefore 1124 
it only affects the amplitude of the IRF oscillations whereas the other features remain unchanged.   1125 
 1126 

 1127 
Figure 28 Laboratory time domain (upper panel) and frequency domain (lower panel) comparison between the force 1128 
and moment IRF calculated according eq.(18) and eq.(19) respectively. The assumed constant application point is equal 1129 
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to 0.525 m from the origin of the reference system shown in Figure 11.  1130 

Figure 28 shows the comparison of the two IRFs calculated by explicitly taking into account both impact 1131 
hammer test response for the force and the moment under the assumption of a distance between the 1132 
reference system origin and the impact hammer application point equal to 0.525 m. This distance was not 1133 
measured during the impact hammer tests. Indeed, despite the fact that we roughly applied the impact 1134 
hammer around the area affected by the wave action, we could not precisely measure the position and had 1135 
to estimate it afterwards, introducing an additional uncertainty in the model. Both upper and lower panels 1136 
show a high-frequency component for the force IRF that is not present for the moment IRF, approximately 1137 
around 500 Hz as highlighted in the spectrum (lower panel). This high-frequency component can only be 1138 
due to the internal transducer set-up, as both the force and moment have been measured by the same 1139 
integrated transducer. In light of this difference in the frequency contents and the uncertainty due to an 1140 
erroneous impact hammer application point, we had to make a choice about what could be considered 1141 
negligible. The choice was to proceed only with the force IRF for better control we could have on the final 1142 
solution and the reasonable theoretical background provided above.     1143 
 1144 

Appendix B: Prior distribution sensitivity analysis 1145 

Due to the limited prior process-based knowledge on the wave event generating the shaking of Wolf Rock 1146 

lighthouse on 16th October 2017 almost uninformative uniform prior distributions have been applied for 1147 

the proposed analysis. However, to investigate the effect of the different prior distributions parameters, a 1148 

sensitivity analysis on the final results has been performed. Being the impulsive load component, the most 1149 

interesting part from a structural point of view, we focused the sensitivity analysis on three features 1150 

describing this component, i.e. the maximum force, the time duration and its impulse quantity. The wave 1151 

slamming component is defined as the reconstructed wave load time series between the zero-down and –1152 

up crossing points nearest to the maximum reconstructed force, while its underlying impulse is defined by 1153 

the integral of the force-time series between these two points, Figure 29. 1154 

 1155 

Figure 29 Example of Wolf Rock lighthouse reconstructed wave force and the adopted parameters for the prior 1156 
distributions sensitivity analysis 1157 

The sensitivity analysis focused on two main parameters. The standard deviation (std) for the prior normal 1158 

distribution, expressed in term of percentage of the maximum absolute value of the recorded inertial force 1159 
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(Figure 24), with values between 10% and 600%. While the second parameter is the correlation time lag, 1160 

that has been varied from 0.026 s to a maximum of 0.78 s. The results for both parameters are presented in 1161 

Figure 30, where the right column shows the results related to the prior distribution std and the left column 1162 

the results related to the correlation time lag. It is evident that, except for small values of the std the 1163 

selection of different parameters do not largely affect the final result. Indeed, for std values larger than 2 1164 

times the maximum recorded inertial force no evident variation in the final result can be detected, while 1165 

also the correlation time lag is not a critical parameter being quite weak the trend within the results. 1166 

Therefore, we adopted middle values for both the parameters, keeping the prior std equal to 4 times the 1167 

maximum recorded inertial force and the correlation time lag around 0.41s also according to the 1168 

preliminary estimation of the impulsive component.  1169 

 1170 

Figure 30 Effects of the prior distribution on the reconstructed impulsive load component  1171 Jo
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Antonini et al.: A Bayesian inverse dynamic approach for impulsive wave 

loading reconstruction: Theory, Laboratory and Field application 

 

Highlights 

 A process-based Bayesian inverse method is developed to provide an innovative framework for the 

analysis and reconstruction of the impulsive wave force from the dynamic response of the 

investigated structure. The MATLAB
®
 procedures chain is released with the paper. 

 The inevitable dynamic response of a laboratory setup under impulsive wave loading is successfully 

removed from the measured wave force and overturning moment in order to describe the main, time 

evolving, features of the real loading. 

 The, time varying, application point of the wave force is properly identified via the ratio between the 

wave induced overturning moment and force, the results are in good agreement with the detected 

runup showing the goodness of the proposed methodology.  

 Through the application of the developed methodology to the measured accelerations on Wolf Rock 

lighthouse during the Hurricane Ophelia, a real scale impulsive wave force is reconstructed. 

 The results of the methodology applied to both the laboratory and field data show an extraordinary 

agreement, the characteristic three peaks of the broken wave loading are properly identified on both 

databases. 
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