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Lay Summary

Animals inhabit an environment that is constantly undergoing changes: weather

conditions and temperature depend on the season and the time of the day; ac-

cess to food and exposure to predators vary across places. Flexible behaviours

allow animals to quickly take into account these changes to make an appropriate

decision in a given situation. Making the right decision at the right time heav-

ily influences the ability to survive, grow, and reproduce. To ensure success in

rearing a brood, animals have evolved the ability to adjust the amount of care

they provide according to changing conditions in the surrounding environment.

In turn, the young have evolved the ability to adjust how much care they demand

from their parents according to their hunger and needs for protection. In this dis-

sertation, I examine how such adjustments in behaviour come about, and what

is their impact on growth and survival of parents and their young. My study

system was the burying beetle (Nicrophorus vespilloides), which uses the carcass

of a small bird or a rodent for breeding. In this species, parents remain with the

brood after hatching and provide elaborate care that includes feeding the larvae

with regurgitated carrion. Larvae can obtain more food by begging from a parent.

I first characterise behavioural adjustments to various aspects of the environment,

such as the energy expenditure, number of young in the brood, exposure to infec-

tion, food abundance and adult body size. I found that behavioural adjustments

oftentimes reflect a strategy to make the most of changing conditions, but that

these adjustments can also take an unexpected turn depending on prospects for

survival and future reproduction. I next focus on the consequences of adjustments

in parental and offspring behaviours. I found that the ability to adjust behaviour

has generally an impact on growth and survival. Interestingly, I also found that

behavioural adjustments commonly impact on the growth and survival of other

individuals, such as young interacting with parents and vice versa. Overall, my

findings highlight that flexibility is at the core of complex parental and offspring

behaviour, and provides a major way to take advantage of new conditions in an

environment that is constantly changing.
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Abstract

Behavioural plasticity, the environmentally induced change in behaviour, is a re-

versible response that allows a rapid switch in activity to best match the environ-

ment. Behavioural plasticity is a widespread mechanism influencing the ability to

find resources, reproduce and survive. Behavioural plasticity is particularly im-

portant in parent-offspring interactions because it allows parents and offspring to

finely tune costly behaviours, such as parental care or offspring begging, to avoid

unnecessary expenditure and obtain the highest returns from the interaction. In

this thesis, I examined the role of plasticity in parental and offspring behaviour in

response to changes in various aspects of in the intrinsic and environmental con-

ditions in the burying beetle Nicrophorus vespilloides : energetic costs, infection

status, resources availability, and parent’s body size. I first showed how females

unexpectedly increase parental care with higher energetic costs and that females

do so irrespectively of variation in brood size. Next, I showed that infected fe-

males maintain their level of care despite suffering from high mortality. I further

showed that resource availability has a positive effect on biparental cooperation

over care, as males tend to provide care for longer when resources are more abun-

dant. I also showed how larvae preferentially beg towards larger females as they

spend more time associating with larger females over smaller ones. I focused the

final part of the thesis on the consequences of behavioural plasticity and tested

whether inbreeding can alter plasticity in adult and larval behaviour, and how

parent-offspring and male-female interactions mediate the effects of inbreeding

depression. I found evidence that inbreeding can increase plasticity in offspring

behaviour. Moreover, I found that maternal inbreeding has detrimental effects

on offspring survival, and that these effects remain regardless of the presence

or the inbreeding status of the male parent. Collectively, these findings confirm

that behavioural responses oftentimes allow balancing the costs and benefits of

a behaviour, but that the direction of behavioural adjustments can also change

unexpectedly depending on prospects for survival and future reproduction. These

findings provide further evidence indicating that the intrinsic and environmental

x



conditions not only shape the behavioural responses and fitness of focal individ-

ual, but also influence the behavioural responses and fitness of social partners.

Overall, these studies provide additional support to the idea that behavioural

plasticity might be a key step in the emergence of complex behavioural pheno-

types and a major source of behavioural diversity.
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Résumé vulgarisé
1

Les animaux vivent dans un environnement qui change constamment : les con-

ditions climatiques et la température dépendent de la saison et du moment de la

journée ; l’accès à la nourriture et le risque de prédation varient en fonction de la

situation géographique, etc. La flexibilité des comportements permet de répon-

dre rapidement à ces changements et de prendre une décision adéquate dans une

situation donnée. Cette capacité à modifier son comportement est primordiale

puisque les différentes décisions ont une influence profonde sur la survie, la crois-

sance et la reproduction d’un individu. Pour assurer le succès de leurs jeunes, les

parents ajustent leur attention parentale en fonction des conditions environnantes

qui fluctuent. Les jeunes ajustent également leur demande en soin parental en

fonction de leurs besoins en nourriture et protection. On comprend encore mal

comment de tels ajustements du comportement face aux changements environ-

nementaux se produisent et quel est leur impact sur la reproduction et la survie.

Dans cette thèse, mon objectif est de clarifier la cause et les conséquences des

ajustements comportementaux des parents et des juvéniles. Mon modèle d’étude

est le scarabée nécrophore (Nicrophorus vespilloides), qui utilise le cadavre d’un

petit oiseau ou rongeur comme source de nourriture pour ses larves. Chez cette

espèce, les parents s’occupent de la portée et alimentent les larves avec de la

nourriture prédigérée, prélevée directement sur le cadavre. De leur côté, les larves

obtiennent de la nourriture en quémandant aux parents. Dans un premier temps,

je caractérise les ajustements comportementaux en réponse à différents aspects

liés à l’environnement, tels que la dépense en énergie, la taille de portée, le risque

d’infection, l’abondance en nourriture et la taille corporelle à l’âge adulte. Les

résultats montrent que les ajustements comportementaux reflètent le plus souvent

une stratégie visant à tirer profit de nouvelles conditions environnementales, mais

que la direction de ces ajustements peut aussi être inattendue suivant les perspec-

tives de survie et de reproduction. Je me focalise ensuite sur les conséquences

des ces ajustements comportementaux. Ici, mes résultats montrent que l’habilité
1This is a translation of the lay summary in French.
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à ajuster le comportement a, en général, un impact important sur la croissance

et la survie. De façon intéressante, les ajustements comportementaux ont aussi

souvent un impact sur la croissance et la survie d’autres individus, tels que les

larves interagissant avec les adultes, et vice versa. Dans l’ensemble, mes résul-

tats soulignent le rôle central de la flexibilité dans les comportements complexes,

comme les interactions parent-progéniture, et comme moyen d’exploiter au mieux

un environnement en changement constant.
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1 General Introduction

When we observe animals, we quickly notice that they display sequences of be-

haviours that vary in nature and intensity: organisms switch between resting

and activities, such as foraging, feeding, interacting with conspecifics, moving

away from a predator or towards a shelter. These activities involve one or a

set of behavioural traits that constantly change in manner. For instance, an

individual that interacts with others might vary in its level of aggressiveness,

from simple behavioural displays to physical aggression. This temporal variation

in behavioural traits is known as behavioural plasticity (West-Eberhard 1989,

Komers 1997). Behavioural plasticity is a form of phenotypic plasticity, which

corresponds to the expression of a phenotype that varies according to the envi-

ronment. Behavioural plasticity is remarkable in the sense that it is generally a

quick and a reversible change in the phenotype (Mery and Burns 2010), allowing

to rapidly switch activity to best match the environment. As such, behavioural

plasticity is an important mechanism influencing population dynamics and the

phenotype/genotype relationship, which could have a profound impact on evolu-

tion (Snell-Rood 2013). Although behavioural plasticity is well-documented, its

role in evolution remains poorly understood (Snell-Rood 2013, Foster 2013). This

is unfortunate because behavioural plasticity is widespread among animals and

tightly linked to the ability to find resources, reproduce and survive (see below).

Behavioural plasticity is a key feature of social interactions because, in addition

to environmental conditions, organisms have to adjust their response to social

partner’s behaviour, which is often unpredictable. Behavioural plasticity is thus

crucial in behavioural interactions such as courting and mating (Jennions and

Petrie 1997, Ingleby et al. 2010), intraspecific competition (e.g. Brenowitz et al.

1994, Marshall et al. 2003), and parenting (Royle et al. 2014). Furthermore, the

1



impact of a social behaviour might not be limited to the individual expressing

the behaviour, but can also impact social partners and have more widespread

consequences at the population level (Sih et al. 2004, Dingemanse et al. 2010,

Snell-Rood 2013). From a mechanistic perspective, behavioural plasticity in social

interactions is interesting because social interactions require high cognitive abili-

ties (the social complexity hypothesis, Humphrey 1976). According to the social

complexity hypothesis, social interactions are important drivers in the evolution

of cognition (Seyfarth and Cheney 2015). Yet most animals show some form of

sociality (at least during sexual reproduction) and behavioural plasticity should

be a key mechanism underlying complex traits such as those mediating social

interactions (Taborsky and Oliveira 2012). In species with overlapping genera-

tions, parents and offspring often interact repeatedly. Offspring might then seek

to stay in close proximity to parents to benefit from their protection and inter-

act by begging towards the parents to obtain food from them. Likewise, parents

might seek to remain with the brood after hatching to protect offspring against

predators or environmental hazards and supply them with food. Parent-offspring

social interactions provide an ideal system to study behavioural plasticity in the

context of social interactions for two main reasons. Traits mediating parent-

offspring interactions – typically parental care and offspring begging – often have

dramatic effects on the both parental and offspring fitnesses. Second, in species

where offspring survival and growth depend on parental care, parent-offspring

interactions tend to be repeated, stable and extended in time, making them a

readily observable form of social interactions.

Behavioural plasticity is at the core of parent-offspring social interactions. It

provides a mechanism for parents and offspring to finely tune costly behaviours,

such as parental care or offspring begging, to avoid unnecessary expenditure and

obtain the highest returns from the interaction. Offspring are selected for their

ability to obtain the maximum amount of parental care whilst keeping the costs

associated with begging as low as possible. In turn, parents are selected for

their ability to provide care to a maximum number of young whilst keeping the

2



costs associated with care as low as possible. Behavioural plasticity in parent-

offspring interactions also allows balancing investment into competing functions

of the organism. Offspring begging might take up a large amount of the energy

expenditure of developing offspring (Chappell and Bachman 2002). By adjust-

ing begging and mitigating this expenditure, offspring are able to balance their

investment in begging relative to investment in other functions, such as growth,

survival and immunity, and this under a wide range of nutritional and environ-

mental conditions. For example, starvation, extreme temperatures or infection

might suppress offspring body condition. Under these circumstances begging for

food may become more costly if, for example, offspring in poorer condition have

to make a greater effort to beg. Alternatively, begging may be more beneficial to

offspring in poorer condition if it allows to compensate for their lower state by ob-

taining more care. Flexibility begging allows accounting for such variation in the

costs and benefits of begging. Likewise, parental care is an important component

of a parent’s reproductive investment. Being able to adjust their provisioning to

offspring and balance it with allocation towards other reproductive components,

parents can compensate for changes in their ability to provide care. For example,

poor nutrition, predation risk or infection might suppress parental condition. Un-

der these circumstances, it might pay off to reduce parental care to shift resource

allocation towards somatic maintenance, or in contrast shift resources towards

reproduction and parental care, as a form of terminal investment. Hence, flexible

parental care allows behavioural adjustment to account for variation in the costs

and benefits of care.

Behavioural plasticity is thus a way to make the best of a bad situation and han-

dle a reduction in condition by, for example, mediating the impact of starvation,

infection, or ecological hazards. This is particularly the case in parent-offspring

interactions because parents and offspring not only have to deal with variation

in intrinsic and ecological conditions, but also to unpredictable variation in the

social environment that relies on other forms of interactions: siblings cooperation

and competition (Mock and Parker 1997), and biparental cooperation and conflict

3



(McNamara et al. 2000). As well as responding to variation in the ecological en-

vironment, individuals should thus also respond to social factors that depend on

the level of sibling competition (e.g. brood size, asymmetry in sibling competitive

ability) and the level of biparental cooperation (e.g. partner’s presence or con-

tribution to care). From a broader perspective, parent-offspring interactions are

closely linked to parent-offspring conflict, which can have a profound impact on

evolution. This is because parent-offspring conflict generates opposing selection

on parental provisioning (i.e. selection operating at the juvenile stage favours in-

dividuals that obtain more parental provision, whereas selection operating at the

adult stage favours individuals that reduce their provisioning per offspring), it can

have dramatic consequences on the evolutionary process. For example, Rollinson

and Rowe (2015) propose that parent-offspring conflict could explain why juve-

nile body size in birds often does not evolve despite heritability and directional

selection, thus showing evolutionary stasis. There is, however, little knowledge

about the role of behavioural plasticity in such conflict (Kilner and Hinde 2012).

The conflict resolution and the direction of the potential co-adaptation between

parental and offspring behaviour should depend whether the offspring or parents

control the supply of care (Smiseth et al. 2008, Hinde et al. 2010). Yet the pre-

dictions are complicated by the high degree of plasticity in the interacting traits

(Kilner and Hinde 2012) and a more realistic model should focus on the link be-

tween the parental and offspring behavioural reaction norm (Smiseth et al. 2008).

In this thesis, I explore the role of behavioural plasticity in parent-offspring in-

teractions. I ask how parents and offspring adjust their behaviour in response

to variation in the ecological and social environment. I further investigate how

flexible parental care relates to the broader life history strategy of an individ-

ual and how it allows parents to adjust their allocation in current versus future

reproduction, or between competing functions, such as between reproduction,

survival and immunity. Finally, I touch on the consequences of flexible decisions

for fitness-related traits.
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1.1 Plasticity in parental behaviour

Parental behaviour encompasses parental care, which can be defined as any

parental behaviour that enhances offspring fitness and negatively impacts the

parent’s ability to invest in future offspring (Smiseth et al. 2012). Parental care

is the rule in birds and mammals, but it is also common in many other species

of vertebrates, such as of fish, reptiles and amphibians (Balshine 2012) and is

present in some species of invertebrates (Trumbo 2012). Parental care is a key

component of a parent’s investment in reproduction. Furthermore, parental care

has a great impact on fitness because of its positive influence on offspring survival

and future reproduction. Caring parents incur a direct cost as care reduces the

chance to survive and reproduce again, and obtain indirect (fitness) benefits in

terms of enhanced offspring survival and growth. In order to obtain the greatest

returns from care, parents must then balance their care according to these costs

and benefits.

However, environmental conditions are likely to change the benefits and costs

of care, which forces parents to respond dynamically and continuously readjust

care to environmental variable such as temperature, resource availability, and

predation or pathogen threats. For instance, parents in Kentish plovers spend

more time incubating the clutch under higher temperatures to ensure that the

eggs are kept under a temperature suitable for embryonic development (Vincze et

al. 2013), females in the European earwig increase food provisioning when food

resources are more abundant (Wong and Kölliker 2012), and females in lizards

spend more time guarding the clutch in the presence of predators (Huang et al.

2013). These behavioural adjustments reflect that the costs and benefits of care

are not fixed but prone to variation, to which parents respond. Temporal and

spacial variation in food abundance, temperature or predation occurs within a

short timescale, driving parents to adjust their level of care between breeding sea-

sons and reproductive attempts (e.g. Ratz et al. 2016), offspring developmental

stages (e.g. Smiseth et al. 2007a), or to rapid changes in offspring nutritional

needs (e.g. Hinde and Kilner 2007). Thus, in species where parents live long
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enough to experience multiple environments, parental behaviour should evolve to

become highly flexible, reflecting that parental care is sensitive to environmental

variation (Westneat et al. 2011, Royle et al. 2014).

1.1.1 Biparental behaviour

Oftentimes parents do not care in isolation but receive help from a partner. In

this case, each parent will not only have to adjust its own care to changes in the

ecological environment, but also to its partner’s contribution to care. Because, as

I will explain below, the contribution of a partner affects the costs and benefits

of care in a different way than do other environmental variables, it is necessary

to take a different approach to understand flexible care in biparental situations.

When both parents provide care, parents have to coordinate their behaviour to

best match offspring needs and obtain the highest benefits from care. Given that

the benefits to parents are measured in terms of success in raising the common

brood, these benefits are shared between the two parents. In contrast, each caring

parent reduces it own, but not its partner’s (at least not directly), future repro-

duction and/or survival. Thus, while the benefits of care are shared between

parents, the costs are decoupled and independently paid by each individual par-

ent. As a consequence, each parent should try to minimise the costs by reducing

its own level of care, while maintaining necessary levels of care to the brood by

having the partner increasing care. This is the essence of the evolutionary sexual

conflict over care (Trivers 1972, Houston et al. 2005). How much care a focal

parent provides will thus likely depend on how much care its partner is provid-

ing. For instance, empirical work has shown that parents in some species fully

compensate for a reduction in partner’s contribution to care (Sanz et al. 2000,

Stoehr and Hill 2000), whereas in other species parents show partial compensa-

tion (Schwagmeyer et al. 2005, Lendvai et al. 2009) or even a reduction in care

(Hinde 2006). Rather than just asking what is the optimal strategy of a parent

in a given environment, theoretical studies on biparental care need to take on a

game-theoretic approach. This approach assumes strategies that depend on the
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strategy displayed by other individuals (who are breeding partners in the case of

care) in the population (Maynard Smisth 1977).

Parental behaviour in biparental care situations is relevant to the study of be-

havioural plasticity because parents tend to adjust care according to variation in

partner’s contribution, which might change between partners and across different

breeding attempts (e.g. Nakagawa et al. 2007), or even during the course of a

single breeding attempt as (e.g. Schwagmeyer et al. 2003, Westneat et al. 2011).

Each parents is thus expected to adjust its care continuously to variation in its

partner’s contribution (McNamara et al. 2000).

1.1.2 Plastic parental behaviour

From what I described above, it should become clear that phenotypic plasticity is

a fundamental feature of parental behaviour. Accordingly, we should give equal

importance to the average level of care and to variation around the average. The

average parental care or the total amount of care provided per offspring should

of course influence offspring growth and survival. Yet if parental care is not

provided at the right time, i.e. when offspring most need it, providing a large

amount of care might be a poor strategy. Therefore, in parallel to the amount of

care, parents should pay attention to changes in offspring needs and in other en-

vironmental conditions when adjusting care. As such responsiveness in parental

behaviour should often reflect adaptive phenotypic plasticity (Royle et al. 2014).

In order to study the consequences of parental behaviour plasticity on parents and

offspring, a powerful experimental approach is to manipulate the ability of par-

ents to respond plastically. Although manipulating the average amount of care is

in general straightforward, for example by using handicapping experiments (e.g.

Wright and Cuthill 1989, Harrison et al. 2009, Suzuki and Nagano 2009), ex-

perimentally altering plasticity in parental behaviour is a difficult task. This is

because rather than interfering with the ability to express the behaviour, experi-

menters have to find a way to interfere with the ability to change the behaviour
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while expressing it at similar levels. One way to alter the expression of phenotypic

plasticity is to reduce the ability to detect a change in the cues that stimulate a

plastic response and/or the ability to mount a plastic response. Suppressing the

condition or quality of experimental individuals can provide a way to alter be-

havioural plasticity, while not necessarily altering trait value of the behaviour. In

this respect, the mating between related individuals – inbreeding – could produce

a generation of individuals of lower quality. In addition to providing a potential

experimental tool to manipulate plasticity, inbreeding is an important issue in

evolutionary biology and conservation biology (Charlesworth and Charlesworth

1987, Reed et al. 2012). This is because inbreeding is associated with reduced

genetic variation and evolutionary potential (Charlesworth 2003, Charlesworth

and Willis 2009), and has crucial implications for the evolution of mating sys-

tems and reproductive strategies (Escobar et al. 2011, Liu et al. 2013, Szulkin et

al. 2013). There is thus additional interest in studying inbreeding as it can have

useful applications in other fields of biology.

1.2 Plasticity in offspring behaviour

When receiving care, offspring are generally not just passive but might try to

influence parental care by actively associating with and displaying behaviour di-

rected towards parents. Begging displays are generally striking signals through

which the offspring advertise their nutritional need, involving visual (e.g. Wey-

goldt 1980), auditory (e.g. Redondon and Castro 1992, Kilner 1997, Haskell 1999)

or tactile displays (e.g. Tretzel 1961, Milne and Milne 1976). Begging signals are

key for the offspring in many organisms to obtain food and enhanced growth

and survival. In most cases, begging is costly in terms of reduced growth (e.g.

Kilner 2001, Takata et al. 2019) or reduced survival (e.g. Haskell 1994, Redondo

and Castro 1992, Andrews and Smiseth, 2013). Offspring are thus expected to

mitigate such costs by begging only when they need food and by begging in ac-

cordance to their nutritional need. The costs and benefits of begging vary with

environmental variables such as food availability and parental food provisioning,

sibling competition, or predation risk. For example, Haskell (1994) showed that

8



experimentally increasing begging in birds nesting on the ground, where preda-

tion risk is high, is associated with increased chick mortality due to predation.

In contrast, experimentally increasing begging in birds nesting in trees, where

predation risk is low, did not change chick mortality due to predation. These

findings show that the costs of begging for a chick vary with the risk of preda-

tion. Thus, offspring should plastically adjust their behaviour to the costs and

benefits of care, which are susceptible to change constantly according to offspring

nutritional needs and environmental conditions.

To interact with parents, offspring must stay physically close to them. There are

two main reasons explaining why offspring associate with parents and why this is

a key aspect of offspring behaviour. First, to be able to beg effectively, offspring

must ensure that their begging signals reach their parents. Although parents

might perceive vocal signals from a short distance, visual displays and tactile

signals require the offspring to be in close contact with parents. Second, in species

where the juvenile stage is mobile, such as in precocial birds, offspring often

benefit from staying closely associated with parents as they benefit from receiving

other forms of care, such as protection, brooding or guiding towards a source

of food. Thus, an important part of offspring social interactions with parents

involves physical association. As for begging, this behaviour comes at some costs

and benefits to the offspring, who should adjust their behaviour accordingly.

1.2.1 Plastic offspring behaviour

As explained above with parental care, the average or total level of begging and

time spent associating reflects only one aspect of offspring behaviour. Another

key aspect is the responsiveness of offspring behaviour. In other words, how

quickly and to which degree offspring adjust begging and time spent associating

with parents in response to environmental variation. The optimal behaviour, i.e.

the behaviour that maximises the difference between the costs and benefits of

begging or time spent associating, varies according to environmental conditions

and plasticity in offspring behaviour might be crucial to understand the associa-
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tion between offspring behaviour and fitness. As such, offspring that accurately

adjust begging and association in response to nutritional needs should do bet-

ter than offspring that do not adjust their behaviour and beg or associate at a

constant level. This is because the former will always be able to beg to obtain

the necessary amount of provisioning from the parents, while keeping the costs

as low as possible. In contrast, offspring not adjusting their behaviour might on

average obtain more food, but will also pay higher costs, even when begging is

not necessary.

Again here, inbreeding could offer a useful experimental tool to alter plasticity

in offspring behaviour. This is because, in order to adjust behaviour to variation

in hunger and environmental conditions, offspring need to be able to assess these

changes and mount an appropriate plastic response. Inbreeding is often associated

with inbreeding depression, which arises from the expression of rare, recessive and

deleterious alleles in inbred individuals (Davenport 1908, East 1908). Given that

inbreeding and inbreeding depression could interfere with both pathways and

reduce the ability to detect and/or respond to this variation, inbreeding could

provide a way to manipulate the ability of expressing normal level of behaviour

plasticity.

1.3 Study System: Burying Beetle Nicrophorus vespilloides

Burying beetles (Figure 1.1a) belong to the genus Nicrophorus, which includes

over 75 species distributed in temperate areas, mainly in North America, and

Northern Europe and Asia, albeit some species live in South East Asia and Cen-

tral and South America (Portevin 1926, Peck 1982, Sikes et al. 2002). Burying

beetles are particularly suitable for investigating behavioural plasticity in parent-

offspring interactions : they have a relatively short life cycle of 6 weeks at 20�C

and are readily maintained under standard laboratory conditions, in which they

breed and provide care to the brood in a similar manner as in natural popu-

lations (Scott 1998). This allows conducting experimental manipulations and

behavioural observations under controlled, laboratory conditions. In addition,

10



laboratory-based setups facilitate repeated measures on the same individuals and

thus experiments quantifying behavioural plasticity within the same individuals.

In order to breed, a male and female burying beetle have to secure the carcass

of a small vertebrate, typically a rodent or a small bird, which will serve as the

sole food source for the larvae and breeding parents. Although burying beetles

can breed multiple times in the laboratory (e.g. Creighton et al. 2009, Cotter et

al. 2010), given intense competition for access to carcasses (Otronen 1988, Scott

1990, 1994) it seems likely that most individuals in wild populations rarely breed

more than once. In addition to resource provisioning, parents provide a number

of pre- and post-hatching forms of care. They first prepare the carcass removing

the fur (or feathers) and roll it into a ball, while burying it under the ground.

The female lays eggs in the soil around the carcass, which will develop within

three days at 20�C (Smiseth et al. 2006). Given that egg laying is asynchronous

and take place over a mean period of 27 h, there is often asymmetry in body size

of offspring in the early stages of their development (Müller 1987, Smiseth et al.

2006). Parents coat the surface of the carcass with anal and buccal antimicrobial

exudates that reduce fungal and bacterial growth (Hoback et al. 2004, Rozen et

al. 2008). To enable larvae to access inside the carcass after hatching, parents cut

an opening in the skin around the abdomen. Larvae then start feeding from the

carcass, albeit they initially receive a large part of their food from the parents (see

next section; Figure 1.1b). Larval development inside the carcass lasts for a period

of 5 days, after which larvae leave the carcass to disperse in the surrounding soil

(hereafter referred to as dispersal) and start pupation. The average brood size on

large carcasses (i.e. 20–25g) is 21 larvae (Smiseth and Moore 2002). At dispersal,

larvae stop feeding and have reached a size that largely determines their future

adult size (Lock et al. 2004). Before initiating pupation, larvae spend several

days wandering in the soil looking for a site suitable for pupation, and will then

form a pupal chamber by rolling their body and pack the soil around them to

shape an ovoid chamber. Approximately three weeks elapse between dispersal

and the emergence of newly eclosed adult beetles.
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(a) (b)

Figure 1.1: The burying beetle Nicrophorus vespilloides. The two sexes are of
similar size and show little morphological difference (a). Both parents provide care
to the brood, which includes regurgitating pre-digested carrion to begging larvae
(b). Females sometimes breed communally on large carcasses. In communal
breeding situations, females lay the eggs as a single batch and provide care to the
joint brood. Here, two co-breeding females are caring for the joint brood.

1.3.1 Parental and offspring behaviour in N. vespilloides

Both parents provide care continuously during larval development as the form

of carcass maintenance, guarding, and food provisioning to the brood. Carcass

maintenance includes the spreading of antimicrobial exudates on the surface of the

carcass and the excavation of the soil surrounding the carcass forming a depression

(hereafter referred to as the crypt). Parents provision the brood by regurgitating

pre-digested carrion via mouth-to-mouth contact with larvae. Females generally

remain at the carcass and care for the brood until larval dispersal, whereas males

tend to desert the brood several days earlier (Bartlett 1988, Scott 1998, Scott

and Traniello 1990, Trumbo 1991). When both parents are present, the female

spend on average more time than the male on food provisioning (Smiseth and

Moore 2004a, Trumbo 2007). Under laboratory conditions, male removal has no

detectable effects on larval growth or survival (Smiseth et al. 2005). However, it

seems that male parental care would be highly advantageous in the wild as two

parents might be better able to deter conspecific intruders or predators, which

can greatly reduce offspring survival (Trumbo 1991). Biparental care in burying

beetles might thus be crucial to offspring survival in the presence of competitors
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or predators.

Larvae beg for food by associating with a parent, raising their body and wav-

ing their legs at the parent’s mouth parts (Rauter and Moore 1999). Begging

in burying beetles is thus a tactile signal. Begging is costly as begging larvae

incur a growth cost (Takata et al. 2019), as well as a potential survival cost as

the female targets individuals that beg more when culling larvae (Andrews and

Smiseth 2013). Given that larvae mainly beg at early and middle stages of their

development, it seems likely that begging enables obtaining food that is otherwise

difficult to access and/or process for young larvae. Larvae also obtain parental

bacteria that are essential to constitute their microbiota from regurgitated food

(Wang and Rozen 2018). Larvae would beg towards a dead adult beetle, which

can be used as a stimulus in experiments investigating larval behaviour. Using

a dead adult as stimulus allows avoiding any potential confounding effects of

parental behaviour on offspring (Smiseth and Parker 2008, Mäenpää et al. 2015,

Paquet et al. 2017, Ratz et al. 2020c).

Females occasionally tolerate the presence of other females on larger carcasses and

breed communally (Komdeur et al. 2013, Eggert and Müller 2000, Richardson

and Smiseth 2020). Communal breeding occurs in burying beetles presumably be-

cause a single female is not able to fully defend a large carcass and because a large

amount of resources allows raising multiple broods successfully. When multiple

females lay their eggs, it is also impossible for parents to identify their own off-

spring. This is because females simply use temporal kin discrimination, whereby

they kill any larvae arriving on the carcass before their own eggs would have

hatched (Müller and Eggert 1990). In a communal breeding situations, several

females cooperate to provide care to the joint brood and larvae beg indifferently

towards all females.
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1.3.2 Behavioural plasticity in N. vespilloides

Offspring and parental behaviours in burying beetles are highly flexible in re-

sponse to variation in intrinsic, ecological and social conditions. For instance,

larvae beg more at younger ages (Smiseth et al. 2007a), under limited access to

food (Smiseth and Moore 2004b, 2007), and in smaller broods than in larger ones

(Smiseth et al. 2007a). Likewise, parents adjust their behaviour to brood size,

spending more time on food provisioning towards large broods relative to small

ones (Rauter and Moore 2004, Smiseth et al. 2007a, Ratz and Smiseth 2018).

Parents adjust their behaviour to larval age and partner’s presence, spending

more time provisioning food when larvae are about one day old compared with

younger or older larvae (Smiseth et al., 2003, Smiseth et al. 2007a) and in the ab-

sence of a partner (Smiseth et al. 2005, Suzuki and Nagano 2009). There is also

evidence that parents adjust care to variation in ecological conditions, such as

resource availability (Smiseth and Moore 2002), intraspecific competition (Hop-

wood et al. 2015) and the presence of intruders at the carcass (Georgiou Shippi

et al. 2018).

1.4 Aims

As highlighted above, behavioural plasticity plays a fundamental role in parent-

offspring interactions because individuals have to adjust behaviour to others, as

well as variation in intrinsic, social and ecological conditions. I also alluded that

parent-offspring social interactions among conspecifics can have a profound im-

pact on population dynamics and evolutionary processes. Given these two state-

ments, clarifying how interacting individuals make flexible decisions is a first step

towards integrating more realistic responses of organisms in models of ecological

and evolutionary dynamics. This step requires knowledge about the aspects of

the social and ecological environment that triggers a shift in the social behaviour,

how this shift affects the fitness of the focal individual and the fitness of non-focal

conspecifics via social interactions. The goal of this thesis is to contribute to this

task.
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My first aim is to clarify the role of behavioural plasticity in parental and off-

spring behaviour in response to a number of intrinsic, social and ecological vari-

ables. My second aim is to determine the consequences of behavioural plasticity

on the behaviour, life histories and fitness of both focal and non-focal individuals.

Chapters 2 and 3 mainly focus on the energetic costs of care. Chapters 4 and 5

focus on the effects of ecological variables on parental care: pathogenic infection

and resource availability. Chapter 6 is about offspring responses to parental body

size. In Chapter 7, I examine the potential effects of inbreeding on plasticity of

offspring and parental behaviours. Chapter 8 goes a step further by looking at

the consequences of male contribution to care and maternal inbreeding on off-

spring performance. In Chapter 9, I discuss the main findings stemming from the

different data chapters and the broader implications for ecology and evolutionary

biology. Below, I provide an overview of each of the data chapters.

Chapter 2: Parental response to increasing energetic costs

The aim of this chapter is to clarify how females adjust their care in response

to different levels of impairment caused by a handicap imposing a physical

constraint on movement. Given that providing care is often associated with

energetic expenditures, parents facing higher energetic or physiological costs

should reduce their care. Parents could also perceive such costs as a con-

straint reducing their chance to successfully reproduce in the future and

respond to handicapping by shifting their investment towards current re-

production, thus providing more care. In this chapter, I investigate how

caring females respond to different levels of handicapping. I further test

whether the effects of the handicapping procedure and the potential shift

in investment affect female life span and reproductive output.

Chapter 3: Parental responses to variation in energetic costs and

brood size

In this chapter, I test if females respond independently to an increase in

both the energetic costs of care and the indirect benefits of care. Whether
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the responses to variation in the costs and benefits of care are independent

from one another depends on the shape of the cost and benefit functions of

care. Assuming that females respond in a nonlinear manner to variation in

both the costs and the benefits of care, a large change in the costs of care

should also impact on how females respond to the benefits of care, and vice

versa. In contrast, if the change in the costs of care is relatively small, it

should have no impact on how females respond to a change in the benefits

of care. I investigated this issue here using a handicapping experiment and

a brood size manipulation to alter simultaneously the direct costs and the

indirect benefits of care.

Chapter 4: Parental responses to infection

In this chapter, I explore whether caring females change or maintain their

level of care when facing an infection by a bacterial pathogen. In general,

an infection caused by a pathogen induces a reduction in the host’s activity

and social interactions, which can reflect a response of the host to redi-

rect resources towards immunity and potentially mitigate the risk of disease

transmission to close kin. In burying beetles, however, there is evidence that

females increase their reproductive investment in response to infection as a

form of terminal investment, and could thus potentially increase their care.

Here I test these contrasting predictions by estimating female investment in

immunity, reproduction and maternal care.

Chapter 5: Biparental responses to resource availability

When two parents cooperate to provide care to the joint brood, the benefits

of care are shared between parents, whereas each parent pays its own costs

of caring. Each parent should then reduce its own contribution to care,

while expecting its partner to increase their contribution. This creates a

conflict between the two parents over care. How this conflict is resolved and

the degree to which each parents cooperate to provide care highly depends

on environmental conditions, such as resource availability, that influence
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the costs and benefits of biparental care. In this chapter I investigate how

resource availability shifts the balance between cooperation and conflict be-

tween caring parents. I also test how the abundance of resources and the

balance between cooperation and conflict affect sex differences in parental

care.

Chapter 6: Offspring responses to parental body size

The aim of this chapter is to test whether offspring adjust their begging and

association with parents based on attributes reflecting how much food the

parents are likely to provide. Whenever offspring can beg to obtain food

from multiple parents, there should be selection on offspring to maximise

the returns on costly begging and beg preferentially towards the parent that

provisions the most food. Given that larger parents are often able to pro-

vision more food than smaller ones, offspring should show a preference to

associate with and beg towards a larger parent over a smaller one. I test

this prediction here, giving experimental broods of larvae a simultaneous

choice between a smaller female and a larger one. I then test between two

potential mechanisms underpinning offspring choice for begging more to-

wards a specific parent.

Chapter 7: Effects of inbreeding on parent and offspring plastic-

ity

Here I aim at investigating whether inbreeding status alters behavioural

plasticity in traits mediating parent-offspring interactions. Inbreeding com-

monly has negative effects on performance and can reduce sensory and cog-

nitive abilities. This could ultimately reduce the ability to assess and mount

an appropriate behavioural response to environmental changes. This as-

sumption has never been tested in the context of behavioural plasticity and

it was unclear whether inbreeding could alter social interactions by inter-

fering with behavioural plasticity. I tackle this issue in this chapter and

test whether inbreeding alters behavioural plasticity in parental care and
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offspring begging and association with parents.

Chapter 8: Effects of biparental care and inbreeding on offspring

performance

After having shown the effects of inbreeding on flexible parent-offspring

interactions, I focus in this chapter on the indirect consequences of maternal

inbreeding on offspring. The poor condition of a parent, reflected in this

study by a higher degree of inbreeding, could have indirect detrimental

effects on the offspring via parent-offspring interactions. Here I confirm this

prediction and test whether the presence and inbreeding status of the other

parent could offset the adverse effects of maternal inbreeding on offspring.
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2 Parental response to increasing energetic costs

This chapter has been published as:

Ratz T, Nichol T, Smiseth PT (2020) Parental responses to increasing levels of

handicapping in a burying beetle. Behavioral Ecology 31:73–80.

Abstract

Parental care is highly variable, reflecting that parents make flexible decisions

about how much care to provide in response to variation in the cost and/or ben-

efit of care. Handicapping has traditionally been used as a tool for increasing the

energetic cost of care, thereby inducing a reduction in care by handicapped par-

ents. However, recent evidence shows that handicapped parents sometimes pro-

vide more care, suggesting that handicapping can trigger terminal investment.

Here, I investigate responses to different levels of handicapping in the burying

beetle Nicrophorus vespilloides by comparing handicapped female parents fitted

with a wide range of handicaps, as well as control females without a handicap. I

found that handicapped females spent more time provisioning food and less time

being absent from the crypt than control females, while there was no detectable

effect of the level of handicapping among handicapped females. I found no effect

of handicapping on larval begging behaviour, larval performance (mean larval

mass and brood size at dispersal), or female investment in future reproduction

(i.e., weight gain while breeding and life span after breeding). My findings provide

no support for the widely held assumption that handicapping simply increases

the cost of care. Instead, these results are consistent with the suggestion that

handicapping triggers terminal investment by suppressing the condition of par-

ents below the threshold at which terminal investment is triggered.
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2.1 Introduction

Parental care encompasses any parental trait that enhances the survival and/or

growth of a parent’s offspring, often at a cost to the parent’s ability to invest

in other current or future offspring (Clutton-Brock 1991, Royle et al. 2012).

Parental care is highly variable (Clutton-Brock 1991, Royle et al. 2012), reflect-

ing that parents make flexible decisions about how much care to provide due to

variation in the cost of care to themselves and/or the benefit to their offspring

(Royle et al. 2014, Ratz and Smiseth 2018). For example, as shown by hand-

icapping experiments on birds and insects, parents are expected to provide less

care given an increase in the cost of care (Wright and Cuthill 1989, Harrison et

al. 2009, Suzuki and Nagano 2009). Handicapping experiments are used to study

negotiation between parents in birds with biparental care (Harrison et al. 2009),

and their rationale is to increase the energetic cost of providing care at a given

level by attaching a lead weight to the base of the handicapped parent’s tail feath-

ers (Wright and Cuthill 1989) or by clipping some of its flight feathers (Slagsvold

and Lifjeld 1988, 1990). Most such experiments find that handicapped parents

provide less care than control parents (e.g., Wright and Cuthill 1989, Harrison

et al. 2009), confirming that parents plastically reduce the amount of care they

provide when the cost of care increases. However, a recent study on the burying

beetle Nicrophorus vespilloides found that handicapped females provided more

care than control females (Ratz and Smiseth 2018). This finding contradicts the

implicit assumption that handicapping simply increases the cost of care. In light

of this, there is now a need to improve our understanding of how parents respond

to handicapping given its important role in the study of parental care.

One potential explanation for why handicapped parents sometimes provide more

care than control parents is that handicapping can trigger a shift towards greater

investment in current reproduction (Ratz and Smiseth 2018), often referred to as

terminal investment (Williams 1966, Clutton-Brock 1984). Theory suggests that

terminal investment is triggered when an individual’s condition deteriorates below

a certain threshold value, thereby reducing its future survival prospects (Duffield
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et al. 2017). Handicapping could trigger terminal investment if it suppresses the

parent’s condition below this threshold value by, for example, reducing its forag-

ing ability or increasing its energy expenditure. Thus, current evidence suggests

that handicapping might influence the parent’s behaviour either by increasing

the energetic cost of care or by triggering terminal investment. I note that these

two effects are not mutually exclusive, as handicapping could both increase the

cost of care and trigger terminal investment. If so, I might expect more complex

responses to handicapping that are determined by a combination of whether or

not the handicap suppresses the parent’s condition below the threshold triggering

terminal investment and the extent to which the handicap increases the energetic

cost of care. As outlined below, in order to advance our understanding of the

effects of handicapping, we now need novel experimental designs that monitor

how caring parents respond to different levels of handicapping.

In this study, I investigated how female parents responded to different levels of

handicapping in a burying beetle. Burying beetles of the genus Nicrophorus are

ideal study systems to explore this issue because they show highly elaborate forms

of parental care, including provisioning of predigested carrion to the larvae and

depositing antimicrobial secretions to preserve the small vertebrate carcass used

for breeding as a food source throughout larval development (Scott 1998). Unlike

birds, burying beetles walk while provisioning for their current brood, whereas

they fly while searching for carcasses for use in future reproductive attempts

(Scott 1998). Furthermore, these beetles have been subject to handicapping

experiments, showing that handicapped parents either provide less care, as re-

ported in studies on Nicrophorus quadripunctatus and N. orbicollis (Suzuki and

Nagano 2009, Creighton et al. 2015, Suzuki 2016), or more care, as reported

in N. vespilloides (Ratz and Smiseth 2018). One potential explanation for why

studies have reported contrasting effects of handicapping is that these studies

used different levels of handicapping. For example, studies showing that handi-

capped parents provide less care used larger weights that were about 40–50% of

a parent’s body mass (Suzuki and Nagano 2009, Creighton et al. 2015, Suzuki
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2016), whereas the study reporting that handicapped parents provide more care

used smaller weights that were about 20–30% of a parent’s body mass (Ratz and

Smiseth 2018). Although this pattern suggests that parents provide more care in

response to a relatively small handicap but less care in response to a relatively

large handicap, there is now a need for experimental work monitoring how par-

ents respond to different levels of handicapping within a single species.

My aim was to investigate how single female parents respond to different levels of

handicapping in the burying beetle N. vespilloides. I handicapped females by at-

taching a small weight to their pronotum (Suzuki and Nagano 2009). The weights

weighed 0.037–0.242 g, corresponding to 11–103% of a female’s body mass. I also

included a control treatment, where females were not fitted with a weight but oth-

erwise were handled in the same way as handicapped females. Prior work shows

that females respond by providing more care when fitted with a 0.05 g weight

(Ratz and Smiseth 2018), suggesting that the threshold triggering terminal in-

vestment is below this level of handicapping. I then tested for subsequent effects

on the amount of care provided by females (i.e., time spent provisioning food

and maintaining the carcass) during the period where females provide direct care

for larvae, as well as on offspring performance (i.e., mean larval mass, number of

larvae at dispersal, and larval begging behaviour) and female investment in fu-

ture reproduction (i.e., weight change while breeding and life span after breeding).

If handicapping primarily increased the cost of care, I predicted that females

should provide progressively less care as the level of handicapping increased (Fig-

ure 2.1a). Furthermore, offspring performance should gradually decline as the

level of handicapping increases, and females should pay a progressively higher

cost in terms of their investment in future reproduction. Conversely, if handicap-

ping primarily triggered terminal investment, I predicted that the effects of the

level of handicapping should be discontinuous with handicapped females provid-

ing more care than control females provided that the handicap suppressed the

parent’s condition below the threshold value (Figure 2.1b). Below this thresh-
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old, handicapped parents should provide as much care as control parents. Above

the threshold, handicapped parents should provide more care than control par-

ents, but the former should provide the same level of care regardless of the level

of handicapping (Figure 2.1b). Furthermore, offspring performance should be

higher, while female investment in future reproduction should be lower, above

the threshold than below. Finally, if handicapping both elevates the cost of care

and triggers terminal investment, I predicted that the effects of the level of hand-

icapping should be discontinuous with a marked increase in care by handicapped

parents at the threshold value (Figure 2.1c). However, above this threshold,

handicapped parents should provide progressively less care as the level of hand-

icapping increases. Furthermore, offspring performance and female investment

in future reproduction should gradually decline with the level of handicapping

above the threshold.

2.2 Methods

The beetles used in this experiment came from a laboratory stock population

originating from beetles collected at Corstorphine Hill Local Nature Reserve and

Hermitage of Braid and Blackford Hill Local Nature Reserve, Edinburgh, UK.

Nonbreeding adult beetles were housed in individual transparent plastic contain-

ers (12 cm ⇥ 8 cm ⇥ 2 cm) filled with moist soil. All beetles were fed organic

beef twice a week and maintained under a constant temperature (20�C) and a

16:8 h light:dark photoperiod.

2.2.1 Experimental design

I manipulated the level of handicapping by attaching a nontoxic fishing weight

(Dinsmores, Aldridge, UK and DGT, Shirley, UK) to the pronotum of caring fe-

males (see below for further details). The weights used in my experiment weighed

0.037–0.242 g, corresponding to 11–103% of the initial body mass of females. I

used this range to ensure that the handicaps overlapped the range used in prior
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Figure 2.1: Predicted effects of the level of handicapping on the amount of care
provided by parents. If handicapping primarily elevates the cost of care, parents
should provide progressively less care as the level of handicapping increases (a).
If handicapping primarily triggers terminal investment, the effects of the level of
handicapping should be discontinuous with a marked increase in care by handi-
capped parents at the threshold value (b). Handicapped parents should provide
as much care as control parents below this threshold, while they should provide
more care than control parents above the threshold. Handicapped parents should
provide the same level of care regardless of the level of handicapping above the
threshold. If handicapping both elevates the cost of care and triggers terminal
investment, the effects of the level of handicapping should also be discontinuous
with a marked increase in care by handicapped parents at the threshold value
(c). However, in this case, handicapped parents should provide progressively less
care as the level of handicapping increases above the threshold.

work on this species (20–30%, Ratz and Smiseth 2018) and on N. quadripuncta-

tus and N. orbicollis (40–50%, Suzuki and Nagano 2009, Creighton et al. 2015,

Suzuki 2016). I also included weights that went beyond this range to ensure that
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the handicaps were large enough to induce a potential increase in the energetic

cost of care. My design included a control treatment, where females were not

fitted with a weight but were otherwise handled and treated in the same way as

handicapped females. In this experiment, I focused on the response of a single

parent to exclude potential compensatory responses by its partner. I did this

given that my aim was to establish whether handicapping increases the cost of

care, triggers terminal investment, or both. I specifically focused on single female

parents because females provide more parental care than males in this species

(Eggert et al. 1998, Rauter and Moore 2004) and because the experimental re-

moval of the male has no effect on offspring fitness under laboratory conditions

(Smiseth et al. 2005).

I began the experiment by pairing females and males at random, transferring

each pair into a larger plastic container (17 cm ⇥ 12 cm ⇥ 6 cm) filled with

1 cm of moist soil and containing a previously frozen mouse carcass (Livefoods

Direct, Sheffield, UK) of a standardized size (14.68–19.98 g). One day before

the expected date of hatching (i.e., 2 days after the beginning of egg laying),

I randomly assigned each female to the handicapping or the control treatment

(i.e., no weight; hereafter referred to as 0 g). Although the nominal mass of the

weights was categorical (0.05 g, 0.10 g, or 0.20 g), there was considerable vari-

ation in the mass of weights within each category (range, mean ± SE for 0.05

g, 0.10 g, and 0.20 g weights, respectively: 0.0370±0.0757 g, 0.0544 ± 0.0017 g;

0.0716–0.1241 g, 0.0959 ± 0.0019; 0.1702–0.2423 g, 0.1988 ± 0.0026). I weighed

all females before and after subjecting them to the handicapping treatment, using

the difference in mass as a measure of the mass of the handicap provided to each

female. I attached the weight to the pronotum of each handicapped female using

instant-adhesive glue (Suzuki and Nagano 2009, Creighton et al. 2015, Suzuki

2016, Ratz and Smiseth 2018). Before attaching the weight, I gently scraped the

surface of the apex of the pronotum using fine sandpaper (P600). I did so to

remove impurities, thereby improving adhesion of the weight. I treated females

assigned to the control treatment in the same way as handicapped females (i.e., I
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weighed them before and after handling, handled them, and scraped the surface

of, and applied glue to, their pronotum), except that no weight was attached to

their pronotum. For further details on the handicapping procedure, I refer to

Ratz and Smiseth (2018).

Once handicapped females had been fitted with a weight and control females had

been handled, I moved them together with their mouse carcass to a fresh con-

tainer filled with moist soil. I did this to separate females from their eggs, thereby

allowing me to provide them with standardized experimental broods. Once the

larvae started hatching, I collected them in a temporary holding container, us-

ing them to generate experimental broods comprised of 10 same-aged larvae of

mixed maternal origin (Smiseth et al. 2007a). For practical reasons, I allocated

females broods comprising some larvae that were their own and some that were

foreign. It is unlikely that this would influence my results as there is no evidence

that females differentiate between their own and foreign larvae in this species.

Instead, females have a temporal kin discrimination mechanism whereby they

kill any larvae arriving on the carcass before their own eggs would have hatched

(Müller and Eggert 1990). Thus, to avoid infanticide, I ensured that I only pro-

vided females with an experimental brood once their own eggs had hatched. I

used experimental rather than natural broods in this experiment to control for

potential confounding effects due to variation in the number of larvae in the brood

and the age of the brood, both of which are known to influence the amount of

care provided by females in N. vespilloides (Smiseth et al. 2003, Smiseth et al.

2007a, Smiseth et al. 2007b). Note that with this brood size and given the range

of carcass size, I expected that there would be ample resources available for the

larvae and thus little filial cannibalism from females. I removed male parents at

the same time as I moved females to a fresh container.

I recorded data on the amount of care provided by handicapped and control fe-

males 24 h (±15 min) after I placed the larvae on the carcass. This time point

corresponds to the peak in time spent providing care towards larvae in this species
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(Smiseth et al. 2003). I collected behavioural data using instantaneous sampling

every 1 min for 30 min under red light, in accordance with established protocols

(e.g., Smiseth and Moore 2002, 2004b, Ratz and Smiseth 2018). Although the

30 min sampling period is a relatively small part of the period when females

provide direct care for the larvae (larvae become nutritionally independent 72

h after hatching), there are positive correlations between different measures of

parental care in N. vespilloides (Andrews et al. 2017), and the amount of time

spent providing care 24 h after hatching is positively correlated with the time at

which the parents desert the brood (Pilakouta N, Hanlon B, Smiseth PT personal

communication). Thus, this sampling period is representative of the total amount

of care provided by females. At each scan, I recorded whether the female was

engaged in the following behaviours: provisioning food, defined as when there was

mouth-to-mouth contact between the female and at least one larva, maintaining

the carcass, defined as when the female was excavating the soil around the carcass

or coating the carcass with secretions or absent from the crypt, defined as when

the female was away from the crypt (i.e., the depression surrounding the carcass).

I conducted the behavioural observations blind with respect to treatments as far

as this was practically possible. The observations were blind for the different

levels of handicapping, as it was not possible for the observer to identify the size

of the handicap in the dim light conditions under which the observations were

conducted. However, it was not possible to keep the control treatment (i.e., 0 g)

blind, as the observer could tell whether females had been provided with a weight

or not.

At the same time as I recorded data on the amount of care provided by females, I

also recorded data on larval begging to test for potential effects of handicapping

on larval behaviour. In burying beetles, larval begging is tactile and begging

larvae raise their bodies towards the female and touch the female with their legs

(Smiseth and Moore 2002). Larval begging only occurs when the parent is in

close contact with the larvae, defined as a distance less than or equal to the

width of the female’s pronotum (Rauter and Moore 1999, Smiseth and Moore
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2002). At each scan, I counted the number of larvae that were begging. I cal-

culated the average proportion of time spent begging per larva in the brood as

B = (⌃b/n)/p, where ⌃b is the cumulative number of begging events during the

30-min observation period, n is the brood size at the time of observation, and p

is the number of scans during which the female was near the larvae. This metric

provides a measure of larval begging that is largely independent of variation in

female behaviour towards the larvae (Smiseth and Moore 2004a).

At the time of larval dispersal from the carcass, which normally takes place about

5 days after hatching, I recorded the number of surviving larvae in the brood and

weighed the brood. I did this to test for potential effects of handicapping on

offspring performance. I calculated mean larval mass by dividing the total brood

mass by the number of surviving larvae in the brood. In this species, body size is

a key determinant of an individual’s reproductive success and adult body size is

highly correlated with larval mass at dispersal (Otronen 1988, Safryn and Scott

2000). At the time of larval dispersal, I also removed the weights from the fe-

male’s pronotum by gently twisting the weight or lifting it off using soft forceps.

I removed the weights at this time to obtain information on the potential fitness

cost of handicapping during the period when females provided care for their lar-

vae. I then recorded the postbreeding body mass of each female, which I used

to calculate the female’s weight change while breeding as the difference between

post- and prebreeding body mass. Finally, I recorded female life span after breed-

ing. To this end, I moved all females into individual containers and I then checked

each container twice a week and recorded the date of death for each female.

I set up 137 pairs in total in the course of this experiment. I excluded 3 females

that did not lay any eggs, 11 females whose eggs did not hatch, and 3 females for

which the weight of the handicap was recorded incorrectly, yielding the following

final sample sizes for female parental behaviour, larval begging, mean larval mass

at dispersal, and female weight change: control females (0 g weight: N = 30), and

handicapped females (0.037–0.242 g: N = 90). I further excluded two females
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from my analyses on brood size at dispersal because the number of larvae was

uncertain, yielding the following final sample sizes for brood size: control females

(N = 29), and handicapped females (N = 89). For female life span, I excluded

35 females for the reasons stated above and because I could not remove their

weights, yielding the following final sample sizes for this trait: control females (N

= 28), and handicapped females (N = 67).

2.2.2 Data analysis

All statistical analyses were conducted using R version 3.6.0 (R Development

Core Team 2019). Behavioural traits were recorded as the total number of scans

out of a maximum of 30 scans and were therefore analysed assuming a binomial

error structure. Given that the data on time spent provisioning food, maintain-

ing the carcass and absent from the crypt by females showed over-dispersion and

minor zero-inflation, I analysed these data using a Bayesian approach with the

MCMCGLMM R package (Hadfield 2010), fitting the models with a binomial er-

ror structure using "multinomial2" and a flat improper prior. I analysed data

on offspring performance and female investment in current and future reproduc-

tion using general linear models with a Gaussian error structure for normally

distributed traits (mean larval mass at dispersal and female weight change), and

using generalized linear models with a binomial error structure for larval begging

and a Poisson error structure for other traits representing count data (female life

span and brood size at dispersal).

Given that my main aim was to test for an overall effect of the level of hand-

icapping on the traits of interest and given the considerable variation in mass

of fishing weights (see above for further details), I treated handicapping as a

continuous linear predictor, including a quadratic term to test for possible non-

linear effects of handicapping. Whenever handicapping had significant linear and

quadratic effects, I presented the data with a polynomial regression ± 95% CIs

(see Results section below). I included the initial weight of the female at the
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time of treatment as a predictor in the models to account for potential variation

among different-sized females in their response to the level of handicapping. I

also included brood size at the time of observation as a covariate in the model on

female parental behaviour, and I included brood size at dispersal in the model

on female weight change because brood size influences food provisioning in this

species (e.g., Smiseth et al. 2007a, Ratz and Smiseth 2018). Finally, I included

female weight change as a covariate in the model on female lifespan given that

prior work shows that life span is positively correlated with weight change (Gray

et al. 2018). Parameter estimates for the Bayesian model are given as posterior

means ± 95% CIs of 1499 samples ran for 1.5 ⇥ 106 iterations with a thinning

interval of 1.0 ⇥ 103 and a burn-in of 1.0 ⇥ 103.

2.3 Results

2.3.1 Female parental behaviour

Handicapping had a positive linear effect on the amount of time females spent

provisioning food to the brood, while there was a negative effect of the quadratic

term of handicapping (Figure 2.2a; Table 2.1). Visual inspection of confidence

intervals suggests that handicapped females spent more time provisioning food

than control females, but that there was no effect of the level of handicapping

among handicapped females (Figure 2.2a). This interpretation is supported by

posthoc tests, showing that handicapped females spent more time provisioning

food than control females (estimate = 1.129, lower 95% = 0.416, upper 95% =

1.940, PMCMC = 0.001) and that there was no effect of the level of handicapping

when restricting the analysis to handicapped females (estimate = 18.4, lower

95% = 15.07, upper 95% = 50.9, PMCMC = 0.278). Handicapping had a negative

linear effect on the amount time females were absent from the crypt (thus near

the brood), and there was a positive effect of the quadratic term of handicap-

ping (Figure 2.2b, Table 2.1). Visual inspection suggests that control females

were more likely to abandon the brood temporarily than handicapped females,
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while there was no effect of the level of handicapping among handicapped females

(Figure 2.2b). This interpretation is supported by posthoc tests, showing that

handicapped females spent less time being absent than control females (estimate

= �6.510, lower 95% = �10.6, upper 95% = 2.000, PMCMC = 0.001) and that

there was no effect of the level of handicapping when restricting the analysis to

handicapped females (estimate = �184.7, lower 95% = �451.1, upper 95% =

65.1929, PMCMC = 0.108). There was no linear effect of handicapping and no

effect of the quadratic term on time spent maintaining the carcass (Table 2.1).

There was no effect of brood size at the time of observation on time spent pro-

visioning food (estimate = 0.136, lower 95% = �0.026, upper 95% = 0.288,

PMCMC = 0.092), time spent absent from the crypt (estimate = 0.036, lower 95%

= �0.882, upper 95% = 0.973, PMCMC = 0.925), or time spent maintaining the

carcass (estimate = 0.108, lower 95% = �0.070, upper 95% = 0.282, PMCMC

= 0.235). Likewise, there was no effect of the initial weight of females on time

spent provisioning food (estimate = �4.63, lower 95% = �10.4, upper 95% =

1.84, PMCMC = 0.111), time spent absent from the crypt (estimate = 22.6, lower

95% = �18.8, upper 95% = 65.3, PMCMC = 0.273), or time spent maintaining

the carcass (estimate = 4.25, lower 95% = �2.69, upper 95% = 11.0, PMCMC =

0.272).

2.3.2 Offspring performance

There were no effects of either the linear or the quadratic terms of handicapping

on larval begging (Table 2.2). Likewise, there were no effects of the linear or the

quadratic terms of handicapping on mean larval mass at dispersal (Table 2.2)

or brood size at dispersal (Table 2.2). Thus, there was no evidence that larvae

spent less time begging in response to handicapping of their female parent even

though handicapped females spent more time provisioning food, and there was no

evidence that handicapping of the female affected offspring performance. There

was no effect of the initial weight of females on larval begging (estimate = �4.40,
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SE = 7.49, z = �0.588, P = 0.557), mean larval mass (estimate = �0.070, SE =

0.051, t = �1.38, P = 0.171), or brood size (estimate = �0.340, SE = 2.28, t =

�0.149, P = 0.882).

2.3.3 Female investment in current and future reproduction

There were no effects of the linear or quadratic terms of handicapping on fe-

male weight change while breeding (Table 2.2) or female life span after breeding

(Table 2.2). Likewise, brood size at dispersal had no effect on female relative

weight change (estimate = �0.412, SE = 0.519, t = �0.795, P = 0.429). The

initial weight of females had no effect on female relative weight change (estimate

= 25.4, SE = 28.7, t = 0.886, P = 0.378), but it had a significant positive effect

on female life span with heavier females living for longer (estimate = 0.823, SE

= 0.240, z = 3.43, P = 0.001). Finally, female weight change had no effect on

female life span (estimate = �0.0003, SE = 0.0009, z = �0.300, P = 0.764).
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2.4 Discussion

Here, I tested the effects of different levels of handicapping on the amount of

care provided by female parents, the performance of their offspring and female

investment towards current reproduction in the burying beetle N. vespilloides.

At the time point in larval development corresponding to the peak in parental

care, handicapped females spent more time provisioning food to the brood and

less time being away from the crypt than control females. This finding confirms

evidence from a recent study on N. vespilloides reporting that handicapped fe-

males provide more care than control females (Ratz and Smiseth 2018). I found

no evidence of females providing less care as the level of handicapping increased.

Furthermore, there was no evidence that handicapping influenced time spent

maintaining the carcass by females, larval begging behaviour, larval performance

(i.e., mean larvae size at dispersal and larval survival until dispersal), or female

investment in current and future reproduction (i.e., weight change over the re-

productive attempt or female life span after breeding). Below, I provide a more

detailed discussion of these results and their implications for our understanding

of how handicapping affects parental care decisions.

My main finding was that handicapped females spent more time provisioning food

than control females, but that there was no effect of the level of handicapping

among handicapped females. The first finding is consistent with prior work on

this species showing that handicapped females spend more time provisioning food

(Ratz and Smiseth 2018). Handicapped females are predicted to provide more

care than control females if handicapping suppresses the female’s condition below

the threshold value triggering terminal investment (Duffield et al. 2017). Thus,

these results provide further evidence that handicapping can trigger terminal in-

vestment and suggest that even the smaller handicaps used in my experiment

were sufficient to suppress the female’s condition below the threshold value. The

second finding (i.e., that there was no effect of the level of handicapping among

handicapped females) is consistent with what I predicted if handicapping primar-

ily induced a shift towards greater investment in current reproduction (Figure
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2.1b). In contrast, if handicapping both induced such a shift and increased the

energetic cost of care, I predicted that handicapped females should provide pro-

gressively less care as the level of handicapping increased (Figure 2.1c). One

potential explanation for why I found no evidence that handicapped females pro-

vided less care as the level of handicapping increased is that the handicaps were

too small to increase the energetic cost of care. This explanation seems unlikely

given that my experiment included handicaps that were substantially larger than

those used in prior studies on burying beetles reporting that handicapped females

provided less care than control females (Suzuki and Nagano 2009, Creighton et al.

2015, Suzuki 2016), Thus, these results have important implications for our un-

derstanding of handicapping by confirming that its effects on parental behaviour

cannot be explained simply as a consequence of an increase in the energetic cost

of providing a given level care, as implicitly assumed in prior handicapping ex-

periments (Ratz and Smiseth 2018).

An alternative explanation for why handicapped females provide more care than

control females is that handicapping might have a differential effect on activities

associated with different modes of locomotion. For example, in burying beetles,

females walk while caring for their current brood, while they fly while searching

for carcasses for use in future reproductive attempts (Scott 1998). Increasing the

level of handicapping might trigger a shift towards greater investment in current

reproduction if handicapping has a greater impact on the energetic cost of flight

than on the energetic cost of walking. There is some support for this suggestion

from prior work on the burying beetle N. quadripunctatus indicating that hand-

icapped females cease flying but continue walking (Suzuki and Nagano 2009).

Handicapping may have limited impact on walking in these beetles given that

females have been reported to move vertebrate carcasses weighing up to 30 g

(i.e., objects weighing over 100 times more than the largest handicaps used in

my experiment) for several meters (Scott 1998). Thus, my results may reflect

that handicapping in burying beetles may have a greater impact on the cost of

locating a new carcass required for initiating a future reproductive attempt than
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on the cost of providing care in the current reproductive attempt.

My finding that handicapped females spent more time providing care than con-

trol females contrasts with prior handicapping experiments on birds (e.g., Wright

and Cuthill 1989, Harrison et al. 2009) and other species of burying beetles (N.

quadripunctatus: Suzuki and Nagano 2009, Suzuki 2016, N. orbicollis : Creighton

et al. 2015) reporting that handicapped parents provide less care than controls.

One potential explanation for why my results differ from those of prior studies is

that handicapping primarily increases the cost of care in birds and other species

of burying beetles, while it primarily triggers a shift towards greater investment

in current reproduction in my study species. For example, in altricial birds, par-

ents fly continuously between the nest and the foraging sites in the surrounding

environment to provision their nestlings with arthropods or other sources of food.

Thus, we might expect handicapping to have greater impact on the energetic cost

of care in birds than in my study species. Although this suggestion might ex-

plain why my results differ from prior studies on birds, it seems unlikely that it

accounts for the difference between my study species and other species of burying

beetles. The reason for this is that all burying beetles breed on carcasses of small

vertebrates and that, in all species, parents walk rather than fly while caring

for their larvae. Instead, the different results from studies on different species

of burying beetles might reflect differences in their life histories. For example, a

recent study shows that larval survival is more dependent on parental care in N.

orbicollis than in N. vespilloides (Capodeanu-Nägler et al. 2016). Thus, there

may be differences between species of burying beetles with respect to the returns

on investment in current reproduction. Alternatively, there might be differences

in the availability of resources for investment in future reproduction between dif-

ferent species. If so, this might lead to interspecific variation in the trade-off

between current and future reproduction. Currently, relatively little is known

about differences between species of burying beetles with respect to availability

of resources and the trade-off between current and future reproduction. Thus, ob-

taining such information should now be a priority to help explaining why studies
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on different species of burying beetles sometimes find somewhat different results.

One potential explanation for why my results differ from those of prior studies

on burying beetles is that females may respond differentially to handicapping de-

pending on whether they are assisted by a male partner or not. In my study, as

well as in the prior study reporting that handicapped females provided more care

than controls (Ratz and Smiseth 2018), handicapped and control females reared

their brood on their own without assistance from a male partner. In contrast,

handicapped and control females reared their brood with the assistance from a

male partner in studies reporting that handicapped females provided less care

than controls and that their male partners partially compensated for the reduc-

tion in female care (Suzuki and Nagano 2009, Creighton et al. 2015, Suzuki 2016).

Thus, handicapped females might provide less care when assisted by a male part-

ner, while they provide more care when rearing the brood on their own. Such a

differential response to handicapping might be expected if the presence of a male

partner buffers against any negative effects on offspring should females provide

less care. If so, handicapped females could reduce their contribution towards care

without harming their offspring’s fitness when assisted by a male partner, while

this would not be the case when rearing the brood on their own. Thus, there is

now a need for studies that investigate whether female burying beetles respond

differentially to handicapping depending on whether they are assisted by a male

partner or not.

I found that handicapped females spent less time being absent from the crypt

than control females. Currently, little is known about why breeding females

temporarily leave the crypt in this species, but potential explanations are that

females do so to explore the surrounding area for signs of conspecific intruders

and/or predators. Thus, my results suggest that handicapped females are less

inclined to explore the surrounding area than control females. An alternative

explanation is that handicapped females remained within the crypt simply as a

consequence of reduced mobility. However, if this was the case, we should also
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expect handicapped females to spend less time provisioning food than control

females given that this behaviour also requires mobility. Thus, given that I found

that handicapped females spent more time provisioning food, this explanation

seems unlikely (Figure 2.2). My study highlights that there is a need to investi-

gate why breeding females temporarily leave the carcass.

I found no evidence that handicapping affected larval begging behaviour, larval

performance (i.e., mean larval mass or larval survival until dispersal), or female

investment in current and future reproduction (i.e., weight change over reproduc-

tion and life span after reproduction). These findings are surprising given that

handicapped females spent more time provisioning food towards larvae than con-

trol females. Prior work shows that larval begging in N. vespilloides reflects larval

hunger state (Smiseth and Moore 2004b) and that larvae grow to a larger size

when receiving more care from female parents (Andrews et al. 2017). Thus, we

might expect larvae reared by handicapped females to be less hungry, therefore

spending less time begging, and to grow to be a larger size than larvae reared by

control females. One potential explanation for why I found no such effects is that

the quality of care (e.g., nutritional quality of predigested carrion transferred to

larvae via mouth-to-mouth contact) was lower in handicapped females than in

control females. If so, larvae might receive a similar amount of care regardless

of whether they are reared by handicapped or control females. An alternative

explanation is that handicapping had a differential effect at different times of

the larvae’s development. My results show that handicapped females spent more

time providing care at the time point in larval development corresponding to the

peak in parental care (i.e., 24 h after hatching) than control females. Given that

I recorded effects on female parental behaviour at a single time point, I cannot

rule out the possibility that handicapped females provided less care either earlier

or later in development. Finally, I found that handicapping had no effect on

female weight change during breeding or female life span. These results contrast

with those of most studies on birds, showing that handicapped females lose more

weight than control females (e.g., Slagsvold and Lifjeld 1990, Markman et al.
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1995, Sanz et al. 2000). As discussed above, the energetic cost of care might be

relatively high in birds, in which case we might expect handicapped females to

lose more weight than controls. In contrast, the energetic cost of care might be

relatively low in burying beetles. There is also evidence that parents forage from

the carcass while breeding (Pilakouta et al. 2016), which may allow handicapped

females to compensate for the energetic cost of handicapping by consuming more

food from the carcass (Ratz and Smiseth 2018).

This study adds to our understanding of the terminal investment hypothesis, that

is, the suggestion that parents should increase their investment in reproduction

during their final reproductive attempt (Williams 1966, Hirshfield and Tinkle

1975, Clutton-Brock 1984). Traditionally, the terminal investment hypothesis

has focused on increases in investment in reproduction with age (Clutton-Brock

1984), but its rationale applies to any factor that suppresses the condition of

parents below a certain threshold that reduces their prospects for future repro-

duction. Indeed, there is mounting evidence that terminal investment is triggered

by a range of factors other than age, including immune challenges (e.g., Podmokła

et al. 2014), intraspecific competition (e.g., Rebar and Greenfield 2017) and pre-

dation risk (e.g., Knight and Temple 1986). Thus, my results suggest that hand-

icapping can be added to the list of factors that can induce terminal investment

by suppressing the parent’s condition. I suggest that handicapping would provide

a useful tool for studying terminal investment as it provides a simple experimen-

tal tool for suppressing an individual’s condition. Given that handicaps can be

removed, such experiments could be used to establish whether individuals reverse

their decisions to invest more in current reproduction should their condition im-

prove at a later stage.

In conclusion, I found that handicapped females spent more time providing care

than control females, possibly reflecting that handicapping suppresses the con-

dition of females below the threshold triggering terminal investment (Duffield et

al. 2017). My results have important implications for our understanding of the

40



effects of handicapping, which is a key experimental tool used by behavioural

ecologists to study negotiation between parents in species with biparental care

(Harrison et al. 2009). Such studies are based on the assumption that handi-

capping primarily increases the energetic cost of care, and my results show that

this is not necessarily the case. This conclusion emphasizes that handicapping

experiments can lead to different outcomes in different species, presumably re-

flecting differences in the modes of locomotion of caring parents, differences in life

histories, and/or differential responses depending on the presence or absence of a

partner. Thus, I encourage further handicapping experiments across a variety of

different taxa and social contexts.
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3 Parental response to variation in energetic costs

and brood size

This chapter has been published as:

Ratz T, Smiseth PT (2018) Flexible parents: joint effects of handicapping and

brood size manipulation on female parental care in Nicrophorus vespilloides.

Journal of Evolutionary Biology 29:1142–1149.

Abstract

Parental care is highly variable, reflecting that parents make flexible decisions in

response to variation in the cost of care to themselves and the benefit to their

offspring. Much of the evidence that parents respond to such variation derives

from handicapping and brood size manipulations, the separate effects of which

are well understood. However, little is known about their joint effects. Here, I

fill this gap by conducting a joint handicapping and brood size manipulation in

the burying beetle Nicrophorus vespilloides. I handicapped half of the females

by attaching a lead weight to their pronotum, leaving the remaining females as

controls. I also manipulated brood size by providing each female with 5, 20 or

40 larvae. In contrast to what I predicted, handicapped females spent more time

provisioning food than controls. I also found that handicapped females spent

more time consuming carrion. Furthermore, handicapped females spent a simi-

lar amount of time consuming carrion regardless of brood size, whereas controls

spent more time consuming carrion as brood increased. Females spent more time

provisioning food towards larger broods, and females were more likely to engage

in carrion consumption when caring for larger broods. I conclude that females

respond to both handicapping and brood size manipulations, but these responses

are largely independent of each other. Overall, my results suggest that handi-

capping might lead to a higher investment into current reproduction and that

it might be associated with compensatory responses that negate the detrimental
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impact of higher cost of care in handicapped parents.

3.1 Introduction

Parental care is defined as any parental trait that has evolved to enhance the

survival and/or growth of the parent’s offspring, often at cost to the parent’s own

fitness (Royle et al. 2012). Typical forms of care include protection against preda-

tors and other environmental hazards, and provisioning of food or other resources

after hatching or birth (Smiseth et al. 2012). In many species, parental care is

highly variable, reflecting that parents make flexible decisions about how much

care to provide in response to variation in the cost of care to themselves and the

benefit of care to their offspring (Alonso-alvarez and Velando 2012, Royle et al.

2014). In general, parents are expected to provide less care when the cost of care

is higher and provide more care when the benefit of care is higher (Grodzinski

and Johnstone 2012). Much of the experimental evidence for these two predic-

tions derives from handicapping and brood size manipulations, respectively. For

example, handicapping experiments in birds and insects (based on attachments

of weights or feather clipping) show that handicapped parents decrease their care,

presumably because handicapping elevates the cost of care to parents (Wright and

Cuthill 1989, Harrison et al. 2009, Suzuki and Nagano 2009). Likewise, brood

size manipulations in birds, fishes and insects show that parents usually provide

more care towards enlarged broods, presumably because the benefit of care is

higher, while parents provide less care towards reduced broods, presumably be-

cause the benefit of care decreases (in a non-linear manner; Trivers 1974) with

decreasing brood size (e.g. Ridgway 1989, Sanz 1997, Rauter and Moore 2004,

Smiseth et al. 2007a). Thus, handicapping and brood size manipulations have

been instrumental in providing experimental evidence showing that variation in

the cost and benefit of care are key determinants of how parents make flexible

decisions regarding how much care to provide for their offspring.

Although we have a good understanding of the separate effects of handicapping

43



and brood size manipulations on the amount of care provided by parents, little is

known about their joint effects. Despite the lack of formal theory, we can derive

predictions from simple graphical models based on assumptions about how hand-

icapping and brood size manipulations influence the cost and benefit functions

of care (Figure 3.1). These functions describe the effect that specific levels of

parental care have on parental and offspring fitness, respectively (Smiseth 2017).

The cost function is assumed either to increase at an accelerating rate or to be

linear. In either case, if handicapping increases the cost of care, handicapped

parents are predicted to reduce their level of care (Figure 3.1), as reported for

birds (Wright and Cuthill 1989, Harrison et al. 2009) and insects (Suzuki and

Nagano 2009). Meanwhile, the benefit function is assumed to increase at a de-

celerating rate to reach an asymptote above which any further increase in care

has no effect on offspring fitness (Trivers 1974, Royle et al. 2012). The benefit

function describes the fitness effect on an individual offspring. Thus, in order to

derive the indirect benefit function to the parent, we need to account for both

the coefficient of relatedness between the parent and its offspring and the number

of offspring in the brood (Figure 3.1). If brood size enlargement increases the

benefit of care, parents should increase their care towards enlarged broods in a

non-linear way (Figure 3.1; Trivers 1974), as reported for fishes (e.g. Ridgway

1989), birds (Sanz 1997) and insects (e.g. Rauter and Moore 2004, Smiseth et

al. 2007a). Furthermore, this model predicts no interaction effect (or one that

is too small to be detected) if handicapping leads to only minor divergence in

the cost function at higher levels of care (Figure 3.1a,b). On the other hand,

it predicts an interaction effect if handicapping leads to a greater divergence in

the cost function at higher levels of care (Figure 3.1c,d). These predictions have

never before been tested empirically, and here, I address this gap by conducting a

joint handicapping and brood size manipulation experiment in the burying beetle

Nicrophorus vespilloides.

Burying beetles of the genus Nicrophorus are ideal for studying the joint effects

of handicapping and brood size as prior studies show that parents respond to
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sole food source for the brood during larval development (Eggert et al. 1998,

Scott 1998). Larvae can obtain resources by either feeding directly from the

carcass or begging for predigested carrion from the parents (Smiseth and Moore

2002, Smiseth et al. 2003). In N. vespilloides, begging reflects the offspring’s

nutritional need (Smiseth and Moore 2004b) and is costly to the offspring in

terms of increased risk of filial cannibalism (Andrews and Smiseth 2013). Prior

work on N. vespilloides and Nicrophorus orbicollis shows that parents respond to

brood size manipulations by increasing their food provisioning rate towards larger

broods (Rauter and Moore 2004, Smiseth et al. 2007a). Moreover, prior work on

Nicrophorus quadripunctatus and N. orbicollis shows that handicapped parents

provide less care than control parents (Suzuki and Nagano 2009, Creighton et

al. 2015, Suzuki 2016). Although the reduction in parental care by handicapped

parents is generally attributed to an increase in the cost of care, this response may

also be caused by deteriorating condition of handicapped parents (Pilakouta et

al. 2015b) or by stress induced by handicapping. Regardless of how handicapping

leads to a reduction in parental care, there is no information on the joint effects

of handicapping and brood size manipulations on the amount of care provided by

parents.

My main aim was to examine joint effects of handicapping and brood size on

the overall level of care provided by females and on female weight change during

breeding. The latter is used as a proxy for how much females consume from the

carcass to invest into their future reproduction (Creighton et al. 2009, Billman

et al. 2014). I expect an effect of the interaction between handicapping and

brood size only if handicapping leads to a greater divergence in the cost func-

tion at higher levels of care (Figure 3.1d). I predict main effects of handicapping

and brood size, reflecting that weighted females provide less care to the brood

than control females and that females provide more care to larger broods than

to smaller ones. I predict an effect of the interaction between handicapping and

brood size and main effects of handicapping and brood size on the amount of

time spent provisioning food by parents. The reason for this is that this form
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of parental care is directed towards individual offspring within the brood (unlike

other forms of care, such as carcass maintenance). I also predict that handi-

capping and an increase in brood size would be associated with a greater loss

in weight of females, reflecting that weighted females pay a greater cost from

their investment into the current brood and that larger broods require more care.

My second main aim was to test for subsequent consequences of handicapping

and brood size on offspring begging and offspring performance. I predict that

handicapping of females would lead to an increase in larval begging and have a

detrimental impact on larval fitness given that weighted females would spend less

time provisioning food to the brood. Similarly, I predict that an increase in brood

size would lead to an increase in larval begging and have a detrimental impact

on larval performance given that larger broods should be associated with more

intense sibling competition (Smiseth et al. 2007b).

3.2 Methods

I used the second to the fifth generation of beetles from a laboratory population

of outbred beetles descending from a population collected in Corstorphine Hill,

Edinburgh, UK. Adult beetles were kept individually in transparent plastic con-

tainers (12 ⇥ 8 ⇥ 2 cm) filled with moist soil. The laboratory conditions were

kept constant throughout the experiment; that is, the beetles were kept at 20 C

and under a 16:8 h light:dark photoperiod. Nonbreeding beetles were fed small

pieces of beef twice a week.

3.2.1 Experimental design

I used a 2 ⇥ 3 factorial design to examine effects of handicapping of the female

parent (weighted or control females) as one factor and brood size (5, 20 or 40

larvae) as the other factor. Previous work has found that weighted (i.e. hand-

icapped) parents reduce their amount of parental care in the closely related N.

quadripunctatus (Suzuki and Nagano 2009) and N. orbicollis (Creighton et al.
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2015). Meanwhile, brood size manipulations on N. vespilloides and N. orbicollis

show that parents provide more care towards larger broods (Rauter and Moore

2004, Smiseth et al. 2007a). In this experiment, I chose brood sizes of 5, 20 and

40 larvae as treatment levels reflecting that broods range in size from 2 to 47

larvae under laboratory conditions with a mean brood size of 21 larvae (Smiseth

and Moore 2002).

I selected an initial number of 231 virgin females for use in the experiment. At

the start of the experiment, each female was paired with an unrelated virgin male.

The pair was placed in a larger plastic container (17⇥12⇥6cm) filled with 1cm of

moist soil and containing a previously frozen mouse carcass of a standardized size

(22.31 ± 0.002 g; range: 20.45–23.51 g; Livefoods Direct, Sheffield, UK). Contain-

ers were checked for the presence of eggs the following days, and egg-laying date

was recorded as the day where the first eggs were laid. Females were randomly

assigned to a handicapping treatment (weighted or control) 1 day before the ex-

pected hatching date. At this stage, I moved females and their mouse carcasses

into new boxes filled with fresh soil. I did this to separate females from their eggs,

such that the larvae hatching from the eggs could be used to generate experimen-

tal broods of different sizes (Smiseth et al. 2007a). At this time, I also removed

males because males often desert the brood before hatching and the presence or

absence of males in N. vespilloides has no detectable impact on offspring fitness

under laboratory conditions (Smiseth et al. 2005). As soon as the eggs hatched,

I randomly allocated each female a brood of newly hatched unrelated offspring

made up of either 5, 20 or 40 larvae. I only allocated a female with an experimen-

tal brood once her own eggs had hatched given that parents will kill any larvae

that emerge on the carcass before their own eggs have hatched (Bartlett 1987,

Müller and Eggert 1990). This is because burying beetles use temporal kin dis-

crimination, which is plausibly controlled by physiological mechanisms involving

hormonal change during reproduction (e.g. Trumbo and Robinson 2008, Steiger

and Stökl 2018)
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In parallel with the experimental females used in the experiments, I set up a total

of 485 pairs of nonexperimental parents. These parents produced foster larvae

that were used to generate the experimental foster broods. The foster broods

were always of mixed maternity, which allowed me to eliminate any potential

prenatal maternal effects associated with the handicapping treatments that can

have had confounding effects on offspring and parental behaviours (Paquet et al.

2015, Paquet et al. 2020).

3.2.2 Handicapping procedure

To test the effects of handicapping on parental care, I weighted breeding females

in the gap between the end of egg laying and the beginning of hatching. In this

species, this gap occurs during the 2 days following the beginning of egg laying

(Müller and Eggert 1990). For weighted (handicapped) females, I attached a

small lead weight to the pronotum of the female using instant-adhesive glue, as

described in previous studies on the closely related N. quadripunctatus (Suzuki

and Nagano 2009, Suzuki 2016) and N. orbicollis (Creighton et al. 2015). In both

species, handicapping reduced mobility of adult beetles and affected parental care

behaviours by reducing the frequency of direct and indirect care (Suzuki and

Nagano 2009, Creighton et al. 2015, Suzuki 2016). In my study, the mass of

the weight together with the glue (0.06 ± 0.0008 g) represented approximately

20% of the initial female body mass (n = 116, 0.30 ± 0.004 g) measured shortly

before handicapping. During the course of the experiment, I noticed that size-

able amounts of dirt were accumulating around the weight due to the digging

behaviour of the burying beetles. This formed a lump on the pronotum and

induced handicapped females to carry a total mass (i.e. lead weight + dirt) of

approximately 30% their initial body mass (mean ± SE mass of dirt: 0.014 ±

0.0013 g). I had a control treatment of females that were of a similar body mass

to the experimental females (n = 101, 0.30 ± 0.005 g). The control females were

treated in the same way as the experimental females (i.e. these beetles were han-

dled and disturbed), except that they had no weight attached to them.
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Among the initial 231 experimental broods, 41 were excluded from the analysis

for the following reasons: females lost their weights (n = 12) or died (n = 3) be-

fore the behavioural observations, females could not be allocated a foster brood

(n = 4), females failed to produce eggs (n = 6), no eggs hatched from the clutch

(n = 9), or eggs hatched before females were handicapped (n = 7). In addition

to this, 11 broods were included in the behavioural analysis but excluded from

analyses on fitness-related traits because the females had lost their weights or

died between the time of observation and the time of larval dispersal. The final

sample sizes for the different treatment groups were as follows for the behavioural

traits measured 1 day after hatching (nd1) and the fitness traits measured at lar-

val dispersal (ndisp): control females with brood size of five larvae: nd1 = ndisp

= 29; control females with a brood size of 20 larvae: nd1 = ndisp = 29; control

females with a brood size of 40 larvae: nd1 = ndisp = 34; weighted females with a

brood size of five larvae: nd1 = 33 and ndisp = 29; weighted females with a brood

size of 20 larvae: nd1 = 35 and ndisp = 31; and weighted females with a brood

size of 40 larvae: nd1 = 30 and ndisp = 27.

3.2.3 Female and offspring behaviours

I recorded parental and larval behaviours 24 h (±15 min) after the larvae were

placed on the carcass, as this stage corresponds to the period when there is a peak

in female food provisioning (Smiseth et al. 2003, 2007a). Behavioural observa-

tions were performed under red light using instantaneous sampling every 1 min for

30 min. Both parental and larval behaviours were simultaneously observed and

scored following methods described in previous studies (e.g. Smiseth and Moore

2002, 2004a,b). To summarize briefly, I recorded the occurrence of parental food

provisioning as the number of scans where there was mouth-to-mouth contacts

with larvae, carcass maintenance as the number of scans where the female was

spreading secretions on the surface of the carcass or excavating the crypt (i.e. the

depression in the soil surrounding the carcass), and carrion consumption as the
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number of scans where female was feeding within the crater (i.e. the opening on

the top of the carcass).

At each scan, I also recorded the number of larvae that were begging within the

brood. I considered a larva to be begging when it raised its head towards the

female while waving its legs or when it touched the female with its legs (Smiseth

and Moore 2002). I then calculated the average proportion time spent begging

per larva in the brood as B = (⌃b/n)/l, where ⌃b is the total number of begging

events during an observation session, n is the number of larvae in the brood at

the time of observation, and l is the number of scans for which the female was

near the larvae (Smiseth et al. 2003). I included the latter because larvae only

beg when the parent is in close vicinity (i.e. less than or equal to the female’s

pronotum width; Rauter and Moore 1999, Smiseth and Moore 2002, Smiseth et

al. 2007a). Thus, this measure of begging is largely independent of the female’s

behaviour towards the larvae (Smiseth and Moore 2004a).

3.2.4 Female weight change and offspring performance

To assess the consequences of handicapping and brood size on how much females

consume from the carcass to invest in future reproduction, I measured the relative

change in mass of females over the reproductive period. I estimated female weight

change as the difference between the female’s initial weight on the day preceding

the hatching of her eggs and her final weight at the time of larval dispersal. I also

tested for effects of handicapping and brood size on two measures of offspring

performance: larval survival until dispersal and mean larval mass at dispersal.

I measured effects on larval mass at dispersal because it determines adult body

size, which in turn is known to be a major determinant of competitive ability

and breeding success as adult in Nicrophorus species (Otronen 1988, Safryn and

Scott 2000).
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3.2.5 Data analysis

All statistical analyses were conducted using R v 3.3.3 (R Development Core Team

2019) loaded with the packages car (Fox and Weisberg 2017), MASS (Ripley et

al. 2017), aod (Lesnoff and Lancelot, 2012) and MCMCGLMM (Hadfield 2010).

Given that the behavioural traits in my experiment were count data bounded be-

tween 0 and 30 scans, I analysed the data using a binomial error distribution. I

used general linear models for traits with a Gaussian distribution (female relative

mass change and larval body mass at dispersal) and generalized linear models

with a quasi-binomial distribution for traits that represent binary or count data

with an upper limit (larval survival rate and larval begging). I used Bayesian gen-

eralized linear models fitted with a binomial error distribution to analyse food

provisioning to the brood and carcass maintenance, whereas I used a Bayesian

zero-inflated binomial model for carrion consumption to control for overdisper-

sion and zero inflation. All Bayesian models were run using flat improper priors.

I present parameter estimates for the Bayesian models as posterior means with

95% credible intervals of 2600 samples ran for 5.2 ⇥105 iterations with a thinning

interval of 200 and a burn-in of 6 ⇥ 104. Outputs from the Bayesian zero-inflated

binomial model allow me to test both the probability that females engaged in

carrion consumption and, when consuming carrion at least once, how much time

(i.e. number of scans) females spent consuming carrion during the observation

period. All models included female handicapping treatment (control or weighted)

and brood size (5, 20 or 40 larvae) and the interaction between them as fixed ef-

fects. Brood size was treated as a categorical predictor in the general linear and

generalized linear models, whereas it had to be treated as a continuous predictor

in the Bayesian models. In the general linear and generalized linear models, I used

post hoc contrasts whenever handicapping and/ or brood size had a significant

effect on the variable of interest to test for differences between each treatment

group or brood size category. In these tests, I used the Bonferroni correction for

multiple testing.
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(Table 3.1, Figure 3.2c). There was no evidence that handicapping had an ef-

fect on carcass maintenance or female weight change (Tables 3.1 and 3.2, Figure

3.2b,d).

Brood size had a significant effect on the amount of time spent provisioning food

to the brood, the probability that females engaged in carrion consumption, as well

as on female weight change (Tables 3.1 and 3.2; Figure 3.2). Females spent more

time provisioning food towards larger broods (Table 3.1, Figure 3.2a). Likewise,

females were more likely to engage in carrion consumption when caring for larger

brood (Binary model, Table 3.1). Finally, females lost more weight when caring

for broods of 20 than for broods of five larvae (Contrast 20 vs. 5 larvae: Estimate

= �0.024, SE = 0.009, z = �2.67, P = 0.02), but lost a similar amount of weight

when caring for broods of 20 and 40 larvae (Contrast 40 vs. 20 larvae: Esti-

mate = �0.018, SE = 0.009, z = �1.98, P = 0.14). There was no effect of brood

size on the amount of time spent maintaining the carcass (Table 3.1, Figure 3.2b).

3.3.2 Offspring begging and performance

There was no effect of the interaction between handicapping and brood size on

the average amount of time spent begging by the larvae, larval survival or mean

larval mass at the time of dispersal (Table 3.2, Figure 3.3). Likewise, there were

no effects of handicapping on larval begging, larval survival or mean larval mass

(Table 3.2). However, there was an effect of brood size on larval begging, larval

survival and mean larval mass (Table 3.2, Figure 3a-c). Larvae spent more time

begging in broods of 20 or 40 larvae than in broods of five larvae (Contrast 20 vs.

5 larvae: Estimate = 0.778, SE = 0.183, z = 4.25, P < 0.0001; Contrast 40 vs.

5 larvae: Estimate = 0.471, SE = 0.191, z = 2.47, P = 0.041). Likewise, larval

survival and mean larval mass were higher in broods of 20 compared to broods of

five larvae (Contrast 20 vs. 5 larvae: Estimate = 0.579, SE = 0.232, z = 2.50, P

= 0.038 and Estimate = 0.012, SE = 0.004, z = 2.70, P = 0.02, respectively) or 40

larvae (Contrast 40 vs. 20 larvae: Estimate = �0.757, SE = 0.224, z = �3.38, P =
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3.4 Discussion

The main aim of my study was to investigate effects of the interaction between

handicapping and brood size on parental care and offspring performance in the

burying beetle N. vespilloides. Assuming that handicapping increases the cost of

care whereas brood size enlargement increases the benefit of care, I expected such

interaction effects if handicapping leads to a greater divergence in the cost func-

tion at higher levels of care (Figure 3.1d). I found no evidence for the presence

of such an interaction effect on female parental behaviours (food provisioning

and carcass maintenance), suggesting that these assumptions were not met in

my study. Currently, we have little empirical information on the shape of the

cost and benefit functions, and obtaining empirical estimates of these functions

should now be a priority to guide future theoretical and empirical work in this

field (Smiseth 2017). However, there was an effect of this interaction on female

carrion consumption, reflecting that control females consumed more carrion as

brood size increased, whereas weighted females consumed a similar amount of

carrion regardless of brood size. This finding suggests that weighted females may

compensate for the negative effects of handicapping by consuming more food.

Moreover, brood size had an effect on most traits; that is, increasing female food

provisioning and female probability to engage in carrion consumption, reducing

female weight change during breeding, increasing larval begging and decreasing

larval performance (larval survival and mean larval mass). In contrast, I found

that handicapping had an effect on two female parental behaviours only; that is,

increased carrion consumption and, contrary to what I predicted, increased time

provisioning food to the brood. These results imply that handicapping can lead

to an increase in parental care, suggesting that the effects of handicapping on

parental care may be more complex than has been assumed in prior work using

such experimental designs. Below, I provide a more in-depth discussion of my

results and their implications for our understanding of flexible parental care.

A surprising finding of my study was that weighted females spent more time

provisioning food than control females. This finding contradicts the widely held
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assumption that handicapping causes a reduction in parental care by increasing

the cost of care. Handicapping experiments are traditionally used to study ne-

gotiation between parents in birds with biparental care, and their rationale is to

increase the flight cost of care to the handicapped parent, thereby forcing it to

reduce its contribution towards care (Harrison et al. 2009). Such experiments are

based on several types of handicapping treatments, including attachment of lead

weights (e.g. Wright and Cuthill 1989), clipping of flight feathers (Slagsvold and

Lifjeld 1988) and hormone manipulation (Hegner and Wingfield 1987b). There is

good evidence that handicapped parents provide less care than control parents re-

gardless of which handicapping treatment is used (Harrison et al. 2009). More re-

cently, handicapping based on attachment of lead weights has been used to study

negotiation between parents in two species of burying beetle, N. quadripuncta-

tus and N. orbicollis, and these studies show that, as in birds, weighted females

provide less care than control females (Suzuki and Nagano 2009, Creighton et

al. 2015, Suzuki 2016). The opposite effects of handicapping on parental care

reported in studies on Nicrophorus species might reflect differences in the level of

handicapping as the weights were of 20–30% relative to body mass of the beetles,

whereas studies in N. quadripunctatus (Suzuki and Nagano 2009, Suzuki 2016)

and N. orbicollis (Creighton et al. 2015) used weights of 40% and about 50%,

respectively. As I discuss in greater detail below, handicapping may not only in-

crease the cost of care, but also impact upon parental decisions through its effect

on the parent’s state (Pilakouta et al. 2015b). For example, the relatively minor

handicaps used in my study might have a greater impact on the parent’s state

than its costs of care, whereas the relatively major handicaps used in previous

work might have greater impact on the cost of care. This is unlikely given that ev-

idence that greater handicaps have similar effects on maternal care and no effect

on life span in our study system (Ratz et al. 2020a). An alternative explanation

is that these differences reflect species-specific response to handicapping due to

divergent life-histories.

As hinted at above, handicapping may alter parental decisions about how much

59



care to provide if it causes a decline in the parent’s state (i.e. its condition, en-

ergy reserves or stress level; Pilakouta et al. 2015b). This in turn may lead to

a reduction in parental care by weighted parents given that a decline in the par-

ent’s state should be associated with lower resources for investment in parental

care and other priorities. Why then did I find that weighted females provided

more care? One potential explanation for this finding is that weighted females

responded to a decline in their state by shifting their investment towards their

current brood at the expense of future reproduction. The terminal investment

hypothesis predicts that parents should increase their investment into current re-

production when their prospects of future reproduction are lower (Clutton-Brock

1984).

I would expect an increase in care by weighted females if this shift towards current

investment more than outweighs the impact of the higher cost of care. There is

some evidence for terminal investment from prior studies on species within the

genus Nicrophorus. For example, in N. vespilloides, immune-challenged parents,

which face higher risks of death from pathogens, increase their investment into

current reproduction (Cotter et al. 2010, Reavey et al. 2015). Likewise, inbred

males, which have a shortened lifespan, invest more into current reproduction and

are more likely to risk injury in fights with conspecific competitors (Richardson

and Smiseth 2017). Finally, there is evidence that investment into current repro-

duction increases with the age of the female parent in N. orbicollis as predicted

by the terminal investment hypothesis (Creighton et al. 2009). Thus, if handi-

capping leads to terminal investment, we might have expected weighted females

to gain less weight during breeding, as this trait is used as a proxy for investment

in future reproduction (Creighton et al. 2009, Billman et al. 2014). I found no

evidence that weighted females lost more weight during the breeding period than

control females, suggesting that my results provide no overall support for termi-

nal investment triggered by handicapping. However, as argued below, the lack

of evidence for terminal investment based on data on female weight gain might

reflect that handicapping also causes an increase in female food consumption.
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I found that weighted females consumed a similar amount of carrion regardless

of brood size, whereas control females consumed more carrion as brood size in-

creased. In N. vespilloides, parents consume carrion partly to provision food in

the form of predigested carrion to their larvae and partly to replenish their own

energy reserves (Mattey and Smiseth 2015). Thus, my results suggest that con-

trol females increased their carrion consumption with brood size (Figure 3.2c) to

match the increase in food provisioning towards larger broods (Figure 3.2a). In

contrast, weighted females consumed a similar amount of carrion regardless of the

brood size (Figure 3.2c), presumably reflecting that these females adjusted their

carrion consumption based on their own state rather than the brood size. Thus,

control females consumed more carrion when they spent more time provisioning

food to the brood, while there was no association between carrion consump-

tion and food provisioning for weighted females. This finding also indicates that

handicapping might trigger a compensatory response, whereby weighted females

attempt to counteract the detrimental effects of handicapping due to an increase

in the cost of care by increasing their energy reserves. For example, if handi-

capping increases the energetic cost of care, females might reduce this cost by

building greater energy reserves. In N. vespilloides, it is relatively straightfor-

ward for females to increase their energy reserves as they can simply consume

more from the carcass that is used for breeding (Boncoraglio and Kilner 2012,

Pilakouta et al. 2016). If females increase their energy reserves to reduce the

energetic cost of care, this may mask the expected effect of terminal investment

on female mass gain.

As predicted, females provided more care and lost more weight when caring for

larger broods. Meanwhile, I found that larvae in medium-sized broods spent more

time begging, gained more weight and had higher survival than larvae in either

small or large broods. These results are consistent with findings from previous

work showing that parents tend to provide more care as brood size increases in

insects, including N. vespilloides (e.g. Rauter and Moore 2004, Smiseth et al.

61



2007a), fishes (e.g. Ridgway 1989) and birds (e.g. Hegner and Wingfield 1987a,

Sanz 1997). Thus, my results are in line with the prediction that females pro-

vide more care when the indirect benefit of care is higher due to an increase in

the number of offspring in the brood (Figure 3.1). The finding that females lost

more weight when caring for larger broods is likely to reflect that larger broods

require more care from females and that it is more costly for parents to care for

such broods. Finally, the fact that larvae performed best in broods of interme-

diate size suggests that larval growth and survival are higher in broods closer to

the average size in this species (i.e. 21 larvae, Smiseth and Moore 2002). This

finding may reflect a balance between sibling competition and sibling coopera-

tion (Forbes 2007, Falk et al. 2014, Schrader et al. 2015), whereby individual

offspring in small broods benefit from the presence of other siblings through co-

operative begging whereas individual offspring in large broods pay a cost in terms

of increased competition (Johnstone 2004). To sum up, my results confirm that

variation in the benefit of care influences female decisions about how much care

to provide to the current brood and how much resources to invest into current

vs. future reproduction.

Parental care is a highly variable trait (Royle et al. 2012), and this variation

reflects that parents make flexible decisions about how much care to provide in

response to variation in the cost and benefit of care. Here, I show that parents

respond to both handicapping and brood size and that these responses are largely

independent of each other. In my experiment, females appear to respond more

strongly to variation in brood size than to handicapping, which might reflect that

brood size manipulations have a greater impact on the benefit of care compared

to the impact of handicapping on the cost of care. Furthermore, weighted fe-

males spent more time provisioning food to the brood and consuming carrion

than control females. This finding supports the view that parents may respond

to handicapping by increasing their investment into the current brood at the

expense of investment in future reproduction and/or by increasing their energy

reserves to compensate for the increased energetic cost of care. I suggest that
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future work on parental care based on handicapping should consider that this

treatment may not only affect the cost of care, but that it may also lead to an in-

crease in investment into current reproduction and compensatory responses that

counteract the increased cost of care.
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4 Parental response to infection

Abstract

Parental care is a key component of an organism’s reproductive strategy that

is thought to trade-off with allocation towards immunity. Yet it is unclear how

caring parents respond to pathogens: do infected parents reduce care as a sick-

ness behaviour or simply from being ill, or do they prioritise their offspring by

maintaining high levels of care? Here I explored the consequences of infection

by the pathogen Serratia marcescens on mortality, time spent providing care,

reproductive output, and expression of immune genes of female parents in the

burying beetle Nicrophorus vespilloides. I compared untreated control females

with infected females that were inoculated with live bacteria, immune-challenged

females that were inoculated with heat-killed bacteria, and injured females that

were injected with buffer. I found that infected and immune-challenged females

mounted an immune response and that infected females suffered increased mor-

tality. Nevertheless, infected and immune-challenged females maintained their

normal level of care and reproductive output. There was thus no evidence that

infection led to either a decrease or an increase in parental care or reproductive

output. My results show that parental care, which is generally highly flexible, can

remain remarkably robust and consistent despite the elevated mortality caused

by infection by pathogens. Overall, these findings suggest that infected females

maintain a high level of parental care; a strategy that may ensure that offspring

receive the necessary amount of care but that might be detrimental to the par-

ents’ own survival or that may even facilitate disease transmission to offspring.

4.1 Introduction

When infected by a pathogen, animals often alter their behaviours and social

interactions (Hart 1988, Kelley et al. 2003, Adelman and Martin 2009, Vale et al.
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2018). This change in behaviour may occur as a side effect of lethargy (Adelman

and Martin 2009) or it may represent what is known as sickness behaviour; a

strategic decision to adaptively shift resources towards immune defence by re-

ducing activity levels (Lopes et al. 2016, van Kerckhove et al. 2013) and costly

social interactions (Bos et al. 2012). Lethargy may be a consequence of the

pathogen negatively impacting on the host’s ability to remain active, thus lead-

ing to reduced mobility (e.g. Bradley et al. 2005, Cameron et al. 1993), foraging

(e.g. Levri and Lively 1996, Venesky et al. 2009) and social activity (Lopes et

al. 2016). Lethargy may also be associated with sickness behaviour, an adaptive

adjustment to fight the infection that allows the host to diverge resources from

non-essential activities, such as social interactions, to the immune system (Hart

1988, Exton 1997, Johnson 2002). When individuals interact with family mem-

bers, sickness behaviour may also help reduce the risk of disease transmission to

close kin (Heinze a,d, Walter 2010, Stroeymeyt et al. 2018) as a possible kin-

selected behaviour (Shakhar and Shakhar 2015, Shakhar 2019). However, recent

empirical evidence shows that sick individuals often maintain their social inter-

actions with close kin (Lopes et al. 2018, Stockmaier et al. 2020). Yet empirical

studies testing the effects of infection on social behaviour towards close kin, such

as offspring, are still scarce. In addition, most studies investigating the effects

of infection on parent-offspring interactions are based on immune challenges (in-

jecting with heat-killed pathogens or products from pathogens; e.g. Aubert et

al. 1997, Bonneaud et al. 2003, Stockmaier et al. 2020) that exclude potential

effects of the pathogen on host’s behaviour.

Parental care is a key component of an organism’s reproductive strategy in many

birds, mammals, and insects (Royle et al. 2012) that is thought to trade-off with

allocation of resources towards immunity (Richner et al. 1995). Caring parents

incur costs of care in terms of increased energy expenditure, reduced opportuni-

ties for additional reproductive attempts, reduced survival, and/or reduced future

reproductive success (Williams 1966). Parental care enhances offspring growth

and/or survival by neutralising environmental hazards to offspring, including risks
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associated with starvation, predation, parasitism, and competition (Royle et al.

2012). Thus, when infected by a pathogen, parents face the dilemma of whether

to shift allocation towards immunity at the expense of maintaining their level of

parental care, or maintain the level of parental care at the expense of increas-

ing their allocation towards immunity. Parents that reduce their level of care

to increase their immune response would risk impairing their offspring’s growth

and survival, whereas parents that maintain their level of care would risk falling

ill by not mounting an adequate immune response. Experimental studies using

immune-challenges found that female laboratory mice tend to maintain their level

of care and maintain normal offspring growth and survival (Aubert et al. 1997),

while house sparrows drastically reduce their food provisioning at the cost of re-

duced offspring survival (Bonneaud et al. 2003). Such contrasting findings might

reflect differences in how caring parents balance allocation towards parental care

and immunity in response to infection. Thus, it is unclear how caring parents

should respond to infection: do infected parents reduce or maintain their level

of care, and is there a trade-off between the magnitude of the immune responses

and the level of parental care?

Here, I investigated how parents balance their allocation towards parental care

and immunity in response to infection in the burying beetle Nicrophorus vespilloides.

This is an ideal system to investigate this issue because it is one of the few insects

with extensive parental care. Parental care includes provisioning of food to larvae,

defence against predators and infanticidal conspecific intruders and production

of antimicrobials and enhances the offspring’s growth and survival (Scott 1998,

Eggert et al. 1998, Smiseth et al. 2003, Rozen et al. 2008). Burying beetles show

changes in immunity during parental care (Steiger et al. 2011), which include

differential expression of antimicrobial peptides (Jacobs et al. 2016, Ziadie et al.

2019). Parents may mount a personal immune response that helps them deal

with pathogens. However, there is also evidence that parents invest in social im-

munity that benefits the offspring but is costly to the parents (Cotter and Kilner

2010b, Ziadie et al. 2019). In contrast to personal immunity that benefits the
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challenged individual, social immunity is associated with fitness benefits to others

individuals (Cotter and Kilner 2010b). Social immunity in burying beetles oc-

curs as parents coat the carcass with exudates with potent antibacterial activity

(Cotter and Kilner 2010b), which reduces microbial competition and improves

the offspring’s survival (Rozen et al. 2008).

To test for a causal effect of infection on parental care and immunity, I monitored

the amount of care provided by infected females that were inoculated with live

bacteria, immune-challenged females that were inoculated with heat-killed bacte-

ria, injured females that were injected with buffer, and untreated control females.

I also monitored their life span and overall reproductive output. In parallel, I

quantified the personal and social immune responses of females in each treatment

by measuring the expression of genes encoding antimicrobial peptides, namely

attacin-4, cecropin-1, coleoptericin-1 and PGRP-SC2. I included a three genes

involved in personal immunity (i.e. attacin-4, cecropin-1, and coleoptericin-1 ) be-

cause their is some knowledge about their function in the study system (Jacobs et

al. 2016). I included PGRP-SC2 because there is good evidence that it has a role

in social immunity in the study system (Parker et al. 2015, Ziadie et al. 2019).

If females respond to infection by shifting their allocation towards immunity, I

would expect infected and/or immune-challenged females to show a reduction in

their reproductive output and parental care, and an increase in the overall expres-

sion of immune genes. This is because, given a trade-off between reproduction

and immunity, females would have to reduce reproduction investment (including

parental care) in order to increase their investment in immunity. Alternatively,

if females respond to infection and/or immune-challenges by shifting allocation

towards current reproduction, I would expect infected and/or immune-challenged

females to maintain their level of parental care and show a reduction the overall

expression of immune genes. Assuming there is a trade-off between personal and

social immunity and that females are limited in their investment in personal and

social immunity (Cotter and Kilner 2010a), I expect an increase in the expression

of genes involved in personal immunity relative to the expression of genes involved
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in social immunity if infected and/or immune-challenged females shift allocation

towards their own immunity. Alternatively, I would expect a reduction in the

expression of genes involved in personal immunity relative to the expression of

genes involved in social immunity if infected and/or immune-challenged females

shift allocation towards current reproduction.

4.2 Methods

Experimental beetles originated from wild individuals collected in the Hermitage

of Braid and Blackford Hill Local Nature Reserve, Edinburgh, U.K. The beetles

had been maintained in a large outbred population (200–300 individuals were

bred per generation) under laboratory conditions for at least 5 generations before

the start of the experiment. Non-breeding adult beetles were housed in individual

transparent plastic containers (12 cm ⇥ 8 cm ⇥ 2 cm) filled with moist soil, un-

der constant temperature at 20�C, 16:8h light:dark photoperiod and ad libitum

access to organic beef as food supply.

4.2.1 Experimental design

To investigate the effects of infection on parental care, reproductive output and

immunity, I used a group of untreated control females (NControl = 61) and three

groups of experimental females: infected females that were inoculated with the

pathogenic bacteria Serratia marcescens (NInfected = 58) which is known to be

pathogenic in burying beetles (Ratz et al. unpublished data), immune-challenged

females that were inoculated with heat-killed bacteria (NChallenged = 70), and in-

jured females that were injected with buffer (NInjured = 56). These four treat-

ments allows to separate potential effects caused by the infection, activation of

the immune system or the injury. At the beginning of the experiment, each

individual virgin female was randomly assigned an unrelated male partner and

transferred to a larger plastic container (17 cm ⇥ 12 cm ⇥ 6 cm) lined with moist

soil and containing a freshly thawed mouse carcass of a standardized size (19.97–
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23.68g) (Livefoods Direct, Sheffield). I weighed each female on the day before the

anticipated hatching date (i.e. two days after the onset of egg-laying; Smiseth

et al. 2006). I then placed females in an individual plastic vial plugged with

cotton. Females remained in this vial until I applied the treatment (see details

below), after which they were transferred into a new large container containing

fresh soil and supplied with their original carcass. I left the eggs to develop in the

old container, while males were discarded. I separated the females from the eggs

so that I could allocate each female with an experimental brood of 15 same-aged

larvae of mixed maternal origin. I removed the male to avoid any potential effects

of male parental care buffering against effects of the experimental treatment on

the female. Male removal has no effect on the developing brood under laboratory

conditions (Smiseth et al. 2005). I next set up experimental broods of 15 larvae

by collecting newly hatched larvae emerging in the soil, starting the day following

the separation of females and eggs. I generated experimental broods by pooling

larvae that had hatched from eggs laid by multiple females (Smiseth et al. 2007a).

I used a standardized brood size that was comprised of 15 larvae of a known age

to avoid any potential confounding effects of variation in the number and age of

the larvae on maternal behaviour (Smiseth et al. 2003, Ratz and Smiseth 2018).

Given that parents will kill any larvae that emerge on the carcass before their

own eggs have hatched (Müller and Eggert 1990), I only allocated an experimen-

tal brood to a female once her own eggs had hatched.

4.2.2 Bacterial preparation

I chose Serratia marcescens (strain DB11) as an appropriate natural bacterial

pathogen for N.vespillodies. Serratia marcescens is a gram-negative bacterium

commonly found in the soil and on decomposing carrion (Hejazi and Falkiner

1997, El Sanousi et al. 1987). It has been shown to infect several insect species

and is known to cause mortality in both eggs and larva of N. vespilloides (Wang

and Rozen 2018, Jacobs et al. 2014). Pilot tests confirmed that S. marcescens

increased female mortality (Ratz et al. unpublished data), but only when in-
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jected above a certain concentration and volume (see below). I also note that my

pilot tests showed that stabbing with Pectobacterium carotovorum, Pseudomonas

aeruginosa, and injections with Pseudomonas entomophila had no detectable ef-

fect on female mortality as stabbed females showed similar life span as control

females.

To grow the S. marcescens culture, I inoculated 10 mL of Luria-Bertani (LB)

broth (Fisher Scientific) with 200 µL of a frozen 25% glycerol suspension from

a single isolated S. marcescens colony. The culture was aerobically incubated

overnight in an orbital shaker at 140 rpm and 30�C. On the day of infection, the

overnight culture was diluted 1:10 into fresh LB broth and incubated under the

same conditions until the culture had reached the mid-log growth phase (OD600

0.6–0.8). Optical density was checked using a microplate absorbance reader at

an absorbance of 600 nm. The mid-log phase culture was pelleted by centrifu-

gation (15 min, 4�C, 2500 rpm) and the supernatant removed. The pellet was

then re-suspended in sterile Phosphate Buffer Saline (PBS, pH 7.4) and adjusted

to OD600 1. The final inoculum OD600 was calculated as described in Siva-Jothy

et al. (2018). The final inoculum was split into two tubes; one tube was heated

to 70�C for 45 min killing the bacteria and allowing for an immune-challenged

treatment group while the other tube was kept as a live culture for the infected

treatment group.

4.2.3 Infection procedure

On the day preceding the expected date of hatching, I randomly allocated each

female to an experimental treatment group. Females from all treatment groups

were first anesthetised by releasing CO2 into their individual tube for 40 s. Control

females were then returned to their vials to recover for 30 min, while experimen-

tal females were placed on a CO2 pad under a dissecting microscope. I used a

glass needle attached to a microinjector (Nanoject II, Drummond Scientific Co)

to inject injured females with 0.552 µL of sterile PBS buffer, immune-challenged
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females with 0.552 µL of heat-killed S. marcescens solution, and infected females

with 0.552 µL of OD600 1 live S. marcescens solution (⇠1.3 million colony form-

ing units). I performed the injection by introducing the needle through the soft

cuticle that joins the thorax and the abdomen on the ventral side (Reavey et al.

2014). Once injected, experimental females were returned to their vials to recover

for 30 min. Following recovery, I next moved control and injected females back

to the large containers containing their carcasses.

4.2.4 Maternal care, female weight change, female mortality, and off-

spring performance

I recorded the amount of care provided by each female 24 h (±15 min) after I

placed the larvae on the carcass, which corresponded to 48 h (±4 h) after fe-

males were handled and/or injected. I performed direct observations under red

light for 30 min, recording maternal behaviour every 1 min in accordance with

established protocols (e.g., Smiseth and Moore 2002, 2004b, Ratz and Smiseth

2018). I recorded maternal care as food provisioning, defined as when there was

mouth-to-mouth contact between the female and at least one larva, and car-

cass maintenance, defined as when the female was excavating the soil around the

carcass or coating the carcass with antimicrobial secretions. I conducted the be-

havioural observations blindly with respect to treatment, as it was not possible

for the observer to identify the experimental treatments.

Females and their broods were then left undisturbed until larvae completed their

development, at which stage they left the mouse carcass to disperse into the soil.

At dispersal, I weighed the female, counted the number of larvae and weighed the

brood. I estimated weight gain over the reproductive attempts by the female as

the difference in body mass between egg-laying and larval dispersal. I estimated

larval survival as the difference between the final brood size at dispersal and the

initial brood size at hatching (i.e. 15 larvae), and mean larval mass as the total

brood mass divided by brood size.
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4.2.5 Hemolymph sampling, RNA extraction, and RT-qPCR

To examine the effects of the treatment on the female’s immune response, I quanti-

fied the expression of genes coding for antimicrobial peptides (AMPs) by quantita-

tive real-time polymerase chain reaction (qRT-PCR). I focused on the expression

of the four following genes: attacin-4, cecropin-1, coleoptericin-1 and PGRP-SC2.

I focused on these genes because they are known to have a role in the immune

response against gram-negative bacteria, such as S. marcescens (Imler and Bulet

2005, Vilcinskas et al. 2013a,b) and there is some knowledge about their function

in personal or social immunity in this species (Jacobs et al. 2016, Parker et al.

2015, Ziadie et al. 2019): attacin-4, cecropin-1, and coleoptericin-1 seem to play

a role mainly in personal immunity (Jacobs et al. 2016), while PGRP-SC2 plays

a role in social immunity (Parker et al. 2015, Ziadie et al. 2019). The expression

of the PGRP-SC2 is higher in female during parental care (Parker et al. 2015)

and lower in larvae in the presence of parents (Ziadie et al. 2019).

In parallel with the behavioural observation, I randomly selected a subset of

females for RNA extraction, which included 13 control, 14 injured, 17 immune-

challenged, and 14 infected females. I removed each of these females from their

containers 48 h (±4 h) after infection, and placed them in an individual plastic

vial plugged with cotton. I then anesthetised each female with CO2 as described

above. Once anesthetised, I extracted hemolymph from each female placed on a

CO2 pad by puncturing the soft cuticle behind the thorax with a micro-pine and

then drawing hemolymph with a 10 µL-glass capillary. I sampled 2 muL to 10

µL of hemolymph per female and transferred it into 1.5µl-micro-tubes containing

100 L of TRIzol reagent (Invitrogen, Life Technologies). All hemolymph samples

were then stored at �70�C until RNA extraction.

RNA extractions were performed using the standard phenol-chloroform method

and included a DNase treatment (Ambion, Life Technologies). The RNA purity
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of eluted samples was confirmed using a Nanodrop 1000 Spectrophotometer (ver-

sion 3.8.1). cDNA was synthesized from 2 µL of the eluted RNA using M-MLV

reverse transcriptase (Promega) and random hexamer primers, and then diluted

1:1 in nuclease free water. I performed quantitative RT-PCR on an Applied

Biosystems StepOnePlus machine using Fast SYBR Green Master Mix (Applied

Biosystems). I used a 10 µL reaction containing 1.5 µL of 1:1 diluted cDNA, 5

µL of Fast SYBR Green Master Mix and and 3.5 µL of a primer stock contain-

ing both forward and reverse primers at 1 µM suspended in nuclease free water

(final reaction concentration of each primer 0.35 µM). For each cDNA sample,

two technical replicates were performed for each set of primers and the average

threshold cycle (Ct) was used for analysis.

Primers were designed based on amino acid sequences provided on Kyoto En-

cyclopedia of Genes and Genomics (KEGG) or supplementary information pro-

vided by Jacobs et al. (2016) (KEGG: PGRP-SC2, Rlp7 ; Jacobs et al. 2016:

Attacin-4, Coleoptericin-1, Cecropin-1 ). Briefly, the amino acid sequence was

entered into the Basic Local Alignment Search Tool (BLAST) on NCBI.gov, the

accession number producing the most similar alignments within N. vespilloidies

was selected and the corresponding nucleotide sequence used for primer design in

Primer3 (version 4.1.0) and Beacon Designer (Premier Biosoft International). All

primers were obtained from Sigma-Aldrich Ltd; Attacin-4_Forward: 5’ GCATT-

TACACGCACAGACCT 3’, Attacin-4_Reverse 5’ CGGCAACTTTACTTCCTCCG

3’; Cecropin-1_Forward 5’ CGAGCACACAACAGTTCCTT 3’, Cecropin-1_Reverse

5’ ATCAAAGCTGCGATGACCAC 3’; Coleoptericin-1_Forward 5’ GAAACG-

GTGGTGAACAGGTG 3’, Coleoptericin-1_Reverse 5’ GAGTCTTGGGGAACGGGAA

3’; PGRP-SC2_Forward 5’ CGAAGGTCAAGGTTGGGGTA 3’, PGRP-SC2_Reverse

5’ GTTCCGATGACACAGATGCC 3’. I used Rpl7 as an endogenous refer-

ence gene, following Jacobs et al. (2014, 2016) and Cunningham et al. (2014);

Rpl7_Forward 5’ GTCGGCAAGAACTTCAAGCA 3’, Rpl7_Reverse 5’ TCC-

CTGTTACCGAAGTCACC 3’. For each pair of primers the annealing temper-

ature (Ta) was optimised and the efficiency (Eff) of each primer pair calculated
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by 10-fold serial dilution of a target template (each dilution was assayed in du-

plicate); Attacin-4 : Ta= 59�C Eff= 102.21%, Cecropin-1 : Ta= 59.5�C Eff=

102.26%, Coleoptericin-1 : Ta= 61.6�C Eff= 101.86%, PGRP-SC2 : Ta= 60.2�C

Eff= 99.84%, Rpl7 : Ta= 60�C Eff= 98.25%.

4.2.6 Data analysis

All statistical analyses were conducted using R version 3.6.0 (R Development Core

Team, 2019) loaded with the packages car (Fox et al. 2016), MASS (Ripley et

al. 2017), and glmmTMB (Brooks et al. 2017). I analysed data on parental care

using a zero-inflated binomial model. I used ANOVA models to analyse normally

distributed data; that is, female weight change over breeding and mean larval

mass at dispersal. I used a quasi-Poisson model to analyse data on female life

span and a binomial model to analyse data on larval survival. Note that I did

not use a Cox Proportional-Hazards model to analyse female survival as this was

not necessary given that I had data on life span of all females, allowing me to

compare the life spans of females in the different treatment groups, and because

the data did not satisfy the assumption of proportional hazards (Therneau 2015;

�2 = 12.0, P = 0.007). All models included the treatment as a fixed effect with

four levels (i.e. infected, immune-challenged, injured and control females). To

account for potential effects of brood size on maternal care (Smiseth et al. 2003,

Ratz and Smiseth 2018), I also included brood size at the time of observation

as covariate in the model analysing maternal care. I ran pairwise comparisons

using a Tukey’s test with the Bonferroni correction whenever the treatment had

a significant effect.

To analyse data on gene expression, I first calculated the expression of a gene

of interest relative to the reference gene Rpl7 to obtain �CT values (Livak and

Schmittgen 2001). I then used ANOVA models to for effects of the experimen-

tal treatment on the �CT values of each gene. Whenever the treatment had a

significant effect on gene expression, I ran pairwise comparisons using a Tukey’s
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test with the Bonferroni correction.

Among the 245 females, I sacrificed a subset of 59 females to sample hemolymph,

of which one was excluded because not enough hemolymph was obtained. Among

the remaining females, I excluded 55 additional females from my analysis on ma-

ternal care, life span and larval survival because their eggs fail to hatch (N = 10),

there were not enough larvae to allocate them a brood (N = 25), the female or the

whole brood died before the observation (N = 12), no behavioural data were col-

lected (N = 1), or the heat-kill treatment failed (N = 7). The final sample of the

behavioural and life history data included 33 control females, 32 injured females,

33 immune-challenged females, and 33 infected females. Likewise, I excluded 9

broods (control females: N = 4; injured females: N = 3; immune-challenged fe-

males: N = 2) from my analysis on mean larval mass at dispersal because no

larvae survived to dispersal.

4.3 Results

There was a significant effect of treatment on female life span (Figure 4.1a; �2 =

52.1, df = 3, P < 0.001), which reflected that infected females had an average life

span that was 75% shorter than females from any other treatment group (Table

4.1). There was no significant effect of treatment on the amount of care provided

by females (Figure 4.1b; �2 = 6.63, df = 3, P = 0.085), showing that females

maintained a similar level of care to control females regardless of whether they

were infected, immune-challenged or injured. There was no effect of brood size at

the time of observation on maternal care (�2 = 2.62, df = 1, P = 0.105). There

was no effect of treatment on mean larval mass at dispersal (Sum Sq = 0.003, df

= 3, F = 0.613, P = 0.608) or survival of the larvae until dispersal (�2 = 5.66, df

= 3, P = 0.129), suggesting that infected, immune-challenged or injured females

maintained a similar level reproductive output to control females. There was no

difference in weight change between females in the different treatments (Sum Sq

= 174.7, df = 3, F = 1.42, P = 0.239).
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Table 4.1: Pairwise comparisons between treatments for the post-infection life
span. P-values were obtained using Tukey’s HSD test and adjusted using the
Bonferroni correction.

Post-infection life span

Estimate SE z P

Injured � Control �0.035 0.117 �0.299 0.991
Challenged � Control 0.014 0.115 0.123 0.999
Infected � Control �0.866 0.148 �5.83 <0.001

Injured � Challenged �0.049 0.116 �0.424 0.974
Infected � Injured �0.831 0.149 � 5.57 <0.001

Infected � Challenged �0.880 0.147 �5.97 <0.001

4.2d; Sum Sq = 21.1, df = 3, F = 1.57, P = 0.206).
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4.4 Discussion

Here I show that infected and immune-challenged females altered their expression

of immune genes, and that infected females had a shortened life span compared

to other females. Despite the heightened mortality of infected females, I found

no evidence for a difference between infected, immune-challenged, injured and

control females in their level of care or their reproductive output. Altogether,

my findings indicate that infected females maintained their level of care despite

indication that they mounted an immune response against the pathogen and clear

evidence that the pathogen shortened their life span. This strategy may allow

infected females to provide the necessary amount of care to ensure the growth

and survival of their offspring but might be detrimental to the parents by in-

creasing their mortality and may potentially even facilitate disease transmission

to offspring. Below I discuss the broader implications of these findings to our

understanding of the effects of infection on parental behaviour and social inter-

actions between caring parents and their dependent offspring.

As expected, I found that infected females altered their expression of immune

genes and had a considerably shortened life span, confirming that infection with

Serratia marcescens had the intended effect of triggering a change in immunity

and making infected females sick. Immune-challenged females showed a similar

change in the expression of immune genes as infected females, but suffered no

corresponding reduction in their life span. Thus, my results confirm that the

shortened life span of infected females was caused by the pathogen rather than

being a by-product of females mounting an immune response. Taken together, my

results confirm that Serratia marcescens is a potent pathogen in N. vespilloides. I

am not aware of any prior studies on N. vespilloides reporting elevated mortality

as a result of an infection, which may reflect the difficulty in establishing exper-

imental infections in this species. This may reflect that this species breeds on

decomposing carcasses, which means they regularly are in close contact with po-

tential pathogens (Jacobs et al. 2014, Wang and Rozen 2018). My study species

might thus be resistant to a wide variety of bacterial strains, such as Bacillus
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subtilis (Reavey et al. 2015), Pectobacterium carotovorum, Pseudomonas aerug-

inosa, P. entomophila, or S. marcescens at low doses and concentrations (Ratz

et al. unpublished data) that are pathogenic in many others insect species. My

results show that, as long as S. marcescens is injected in relatively high dose and

concentration based on prior knowledge of the pathogen (Ratz et al. unpublished

data), it can successfully establish an infection in N. vespilloides, activate the

immune system, and greatly increase mortality.

My main finding was that infected females maintained their level of care and their

reproductive output, despite showing changes in immune gene expression and suf-

fering negative fitness consequences of infection as indicated by their shortened

life span. My results suggest that infected females maintained their level of care

at the expense of allocating more resources towards immunity. My results are

similar to those of a recent study on the amphipods Crangonyx pseudogracilis

and Gammarus duebeni (Arundell et al. 2014). In this study, infection by a mi-

crosporidian did not affect brood care behaviour or the duration of brooding of

females. By maintaining their level of care, infected females may ensure that off-

spring receive the necessary amount of care and produce offspring with a similar

survival and body size as offspring of uninfected females. This strategy might al-

low infected females to maintain their reproductive output (Arundell et al. 2014),

but might come at a cost in terms of reduced survival and future reproductive

success. Burying beetles can produce multiple broods (Creighton et al. 2009)

and tend to gain mass during first reproduction, which is positively correlated

with life span (Gray et al. 2018). My results suggest that infected females would

have lower fitness because it seems unlikely that the infected females in my study

could reproduce again. The reason for this is that approximately 60% of infected

females had died by 17 days after the infection (compared with 0% of control

females; Figure 4.1a). Thus, many infected females had died before they would

have been able to produce an additional brood. In order to breed again, females

must first remain with the current brood until larvae complete their development,

which would take about 7 days (Smiseth et al. 2003, 2005). They then need to
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search for and secure a new carcass, which are thought to be rare (Scott 1998),

and produce eggs and care for the new brood, which would take another 10 days

(Ford and Smiseth 2017). An alternative explanation for my results is that in-

fected females perceived their chance to survive and reproduce again to be very

low, and that they therefore maintained a high level of care as a terminal invest-

ment response (Williams 1966). This is suggested by other studies in the species

reporting high reproductive output in response to immune-challenges (e.g. Cotter

et al 2010, Reavey et al. 2014, Reavey et al. 2015, Farchmin et al. 2020). I found

no evidence for an increase in reproductive investment as would be expected under

terminal investment. However, this may reflect that infected females were simply

not able to increase their level of care. I would have expected immune-challenged

females, exposed to pathogen cues but not infected, to be able to increase care

given that they did not show any evidence of shortened life span. I did not find

such a response in immune-challenge females. Thus, I suggest that, rather than

mounting a terminal investment response, infected females maintained their level

of care to provide the necessary amount of care to ensure offspring growth and

survival, which might come at a cost to females in terms of reduced survival.

My finding that infected females maintained their level of care also shows that

infections do not necessarily induce sickness behaviour. Infections are often asso-

ciated with a reduction in the host’s social interactions (Hart 1988, Kelley et al.

2003), which was not the case in my study as there was no evidence for a reduc-

tion in maternal care. Infected hosts often show reduced social interactions (Vale

et al., 2018), which may be the result of lethargy (i.e., reduced activity levels) of

the host associated with sickness (Adelman and Martin 2009), the host actively

avoiding costly social interactions (Sah et al. 2018, Lopes et al. 2016), uninfected

individuals avoiding an infected host (Curtis 2014), or the pathogen manipulat-

ing the host’s behaviour (Moore 2002, Hughes et al. 2012). Yet this reduction in

social behaviour is not always observed, depending on the social context (Lopes

et al. 2012, Adamo et al. 2015), and parents that are sick might maintain their

level of care and interactions with offspring (Stockmaier et al. 2020). Because
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parental care and parent-offspring interactions can have a large impact on the re-

productive output of organisms, I propose that infected parents might prioritise

their allocation in reproduction by maintaining necessary care and social interac-

tions with their offspring. In species with biparental care, infected females might

be able to reduce their level of care (and thereby increase their immune response)

without harming their offspring if the male parent compensate for the reduction

in female care. If so, male compensation could temper the negative effect of

infection on female life span. Thus, I encourage future studies to compare the re-

sponses of infected females in the contexts of biparental care and uniparental care.

My last finding was that females from the different treatment groups showed dif-

ferent levels of expression in two immune genes (i.e. coleoptericin-1 and PGRP-

SC2 ), while there was no difference in the expression of other immune genes (i.e.

attacin-4 and cecropin-1 ). The expression of coleoptericin-1, a gene seemingly

having a systemic role inhibiting cell division and bacterial growth in insects

(Sagisaka et al. 2001, Login et al. 2011) and involved in personal immunity in

burying beetles involved in personal immunity (Jacobs et al. 2016; Parker et al.

2015), was lower in immune-challenged and infected females than in injured and

control females. This was opposite to my prediction and surprising given prior ev-

idence showing that immune-challenged and infected females upregulate personal

immunity genes, such as defensin (Ziadie et al. 2019), in response to immune-

challenges (Reavey et al. 2014). In contrast, the expression of PGRP-SC2, a gene

active in the gut and providing protection against overactivation of the immune

system in insects (Broderick et al. 2009, Paredes et al. 2011, Guo et al. 2014),

which has a role in social immunity gene in burying beetles as it provides offspring

with antimicrobial protection (Parker et al. 2015, Ziadie et al. 2019), was higher

in infected females than in injured females. Given that there was no difference

in immune gene expression between immune-challenged and infected females, it

seems unlikely that the pathogen suppressed the immune system in the study

species. Instead, these results might reflect immune responses to the presence of

a pathogen or, in the case of immune-challenged females, to the presence of cues
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from a potential pathogen. Thus, my finding that infected females had lower per-

sonal immunity and maintained normal levels of social immunity points towards

a shift in investment towards current reproduction. This suggests that infected

and immune-challenged females maintained their investment in social immunity

that benefits larval survival, which would support the idea that infected females

overall sought to maintain their allocation towards current reproduction.

My findings have important implications for our understanding of parental be-

haviour under the risk of infection by showing that infected females maintained

a high level of care despite the fact that infections could expose their offspring

to the pathogen. Thus, my results show that the level of care is remarkably sta-

ble in response to infection, notwithstanding evidence that parents often show

a great amount of plasticity in response to other environmental factors, such as

resource abundance and the presence of competitors and infanticidal conspecifics

(Smiseth and Moore 2002, Hopwood et al. 2015, Georgiou Shippi et al. 2018).

Furthermore, behavioural plasticity represents the first mechanism of immunity

(Schaller 2006, Schaller and Park 2011, Kiesecker et al. 1999) and might allow

infected individuals to reduce the risk of transmission to close kin, including off-

spring (Shakhar and Shakhar 2015, Shakhar 2019). My study found no evidence

that females transmitted the pathogen to their offspring given that we found

no indication that larvae of infected females had higher mortality than larvae of

other females. Nevertheless, we urge future studies to consider the potential con-

sequences of disease transmission by caring parents to their offspring (Chakarov

et al. 2015). For example, infected parents might be expected to maintain their

level of care in situations where the risk of females passing on the pathogen to

their offspring is low. In contrast, infected parents might reduce their level of care

in situations where the risk of females passing on the pathogen to their offspring

is high and where the offspring are not completely dependent on their parents.

In summary, my study shows that infected females maintained their level of

parental care and reproductive output despite showing changes in immune gene
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expression and suffering from greater mortality. My results demonstrate that

parental care, which is generally highly flexible, can remain robust and stable in

response to pathogenic infections. The results also suggest that infected females

maintain their current reproductive success over survival, which could ensure that

offspring receive the necessary amount of care. My findings stress the need for

more studies on infection in species where parents care for and interact with their

offspring, as parental care is a fundamental social interaction in all birds and

mammals as well as some amphibians, fishes and arthropods and as it can have

contradicting effects by buffering against environmental hazards on the one hand

and providing a potential route for disease transmission on the other hand.
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5 Biparental responses to resource availability

Abstract

In species where both sexes provide care, each parent has to coordinate its be-

haviour with its partner to best respond to offspring needs. Given that the costs

of care are shared between the two parents, whereas parents receive equal indi-

rect benefits of care, each individual parent is expected to reduce its own care

at the expense of the other parent. In addition, parents should adjust their care

to environmental changes that affect the costs and benefits of care. One key

environmental variable is resource availability as it influences both investment

in the current brood and in future reproduction and survival. I investigated

the impact of resource availability on biparental care using the burying beetle

Nicrophorus vespilloides as a study species. Burying beetles breed on the carcass

of a small vertebrate, which is also the sole food source for parents and offspring

during breeding and can easily be manipulated. I provided breeding pairs with

mouse carcasses from a broad range of different sizes and subsequently monitored

parental care, parental food consumption, weight change over breeding, and larval

traits related to offspring performance. I found that the duration of biparental

care increased with carcass size, which was mainly the result of males adjusting

care to carcass size, while females showed little response. Further, lower resource

availability led to more pronounced sex differences in parental care. I also found

that parents gained more weight and produced more offspring on larger carcasses.

These findings highlight that resource availability may have contrasting effects on

the balance between cooperation and conflict depending on whether it reduces or

increases the benefits of biparental cooperation.
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5.1 Introduction

Biparental care occurs when male and female parents cooperate to care for their

joint offspring. It is the predominant pattern of care in birds (Cockburn 2006)

but has also evolved in a small number of mammals, amphibians, fishes, and

arthropods (Balshine 2012, Trumbo 2012). The evolution of biparental care has

attracted much interest because it is associated with sexual conflict, arising be-

cause the benefits in terms of enhanced offspring fitness result from the combined

effort of the two parents, whilst the costs in terms of reduced future survival

and reproduction depend on each parent’s personal effort (Trivers 1972, Chase

1980, Lessells 2012). Thus, biparental care involves a balance between cooper-

ation and conflict, and any shift in this balance could be detected as a change

in the frequency and/or duration of biparental care relative to uniparental care

(Westneat and Sargent 1996, Lessells and McNamara 2012, Johnstone and Sav-

age 2019). Such shifts between biparental and untiparental care are likely to be

driven by changes in environmental conditions that alter the costs and/or bene-

fits of care, including ambient temperature (e.g. Vincze et al. 2013), predation

risk (Expósito Granados et al. 2016), density of interspecific competitors (Bur-

dick and Siefferman 2020), or habitat structure and altitude (Lejeune et al. 2019).

Variation in resource availability is likely to be an important environmental condi-

tion in this respect. Greater availability of resources may have contrasting effects

on the balance between conflict and cooperation between parents depending on

whether it reduces or increases the benefits of biparental cooperation. The ra-

tionale for why this is the case can be explored in light of evolutionary game

theoretic models for the evolution of male and female parental care (e.g., May-

nard Smith 1977). On the one hand, greater availability of food may reduce

the benefits of biparental cooperation in species where parents provision food to

the offspring. When food is abundant, the female can provision more food to

the brood on her own, thereby reducing the benefits to the male from assisting

the female. In support of this argument, a comparative study on weaverbirds

found that uniparental female care is more common in species that breed in en-
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vironments where food is abundant (Crook 1963). On the other hand, greater

availability of food may increase the benefits of biparental cooperation in species

where parents protect the offspring from predators or conspecific intruders and

where the risk of predation is correlated with food availability, amongst other

environmental variables. For example, if greater availability of food increases the

risk of nest predation or infanticide by conspecific intruders (e.g., Wilson and

Fudge 1984, Robertson 1993), there may be an increase in the benefits to the

male from assisting the female when food is more abundant. In order to advance

our understanding of the effects of variation in resource availability, there is now a

need for experiments that manipulate the amount of resources and then monitor

effects on the frequency and/or duration of biparental care relative to uniparental

care.

The way in which variation in resource availability shifts the balance between

cooperation and conflict may depend critically on potential differences in the re-

sponses of male and female parents. For example, in Palestine sunbirds, females

respond to food-supplementation by provisioning more food to the nestlings,

whilst males increase their mobbing effort (Markman et al. 2002). Such sex-

specific responses may reflect that biparental care often involves sex differences

in the level of care with females usually making greater contributions than males

(Kokko and Jennions 2012, West and Capellini 2016). For example, females pro-

vide more care than males in red-winged blackbirds (Whittingham 1989), house

sparrows (Schwagmeyer et al. 2008), oldfield mice (Margulis 1998), convict cich-

lids (Lavery and Keenleyside 1990) and burying beetles of the genus Nicrophorus

(Smiseth and Moore, 2004a, Trumbo 2007). Such sex differences in care may re-

flect sex differences in the costs and/or benefits of care. For example, in Kentish

plovers, where females desert the brood earlier than males, females incur higher

costs of care because they find a new partner quicker and thus lose more mating

opportunities than males when not deserting (Székely and Williams 1995, Székely

et al. 1999). Thus, variation in resource availability, by altering the costs and

benefit of care, may lead to changes in the magnitude of any sex differences in
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care, and such sex differences may in turn impact on the balance between coop-

eration and conflict if parents of one sex are more likely to desert the brood.

I used the burying beetle Nicrophorus vespilloides to investigate how availability

of resources shifts the balance between cooperation and conflict and alters the

magnitude of sex differences in care. Burying beetles of the genus Nicrophorus

are ideal to address these issues because they breed on carcasses of small verte-

brates that vary considerably in mass (Müller et al. 1990, Smiseth and Moore

2002). The vertebrate carcass used for breeding provides the sole source of food

for both developing larvae and caring parents (Scott and Traniello 1990, Scott

1998, Pilakouta et al. 2016). Thus, it is straightforward to manipulate the avail-

ability of resources by simply providing parents with carcasses of variable masses

(Smiseth et al. 2014). Furthermore, these species show facultative biparental

care, whereby male and female parents cooperate to varying degrees by providing

extended care to the developing larvae (Eggert et al. 1998, Scott 1998). Thus,

a shift in the balance between cooperation and conflict could be detected as a

change in the duration of biparental care relative to uniparental care. Both female

and male parents provide care by provisioning pre-digested carrion to the larvae

and by defending the carcass and the brood from conspecific intruders (Eggert

et al. 1998, Scott 1998). Prior work on N. vespilloides shows that there are syn-

ergistic effects of biparental cooperation, and that that these often outweigh the

detrimental effects of sexual conflict on offspring growth and survival (Pilakouta

et al. 2018). However, it is unclear how variation in carcass mass would impact

on the balance between cooperation and conflict. Females spend more time on

parental care (e.g. Smiseth et al. 2005, Georgiou-Shippi et al. 2018) and care for

longer than males (Bartlett 1988, Ford and Smiseth 2016), yet it is unclear what

impact variation in carcass mass would have on the magnitude of sex differences

in care. Although there is good evidence that parents produce larger broods on

heavier carcasses (e.g. Müller et al. 1990) and that both males and females pro-

vide more care towards larger broods relative to small ones (e.g. Smiseth et al.

2007a,b, Ratz et al. 2020b), there is little understanding about how variation in
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carcass mass might directly impact on parental care.

My aim was to test for effects of variation in carcass mass on the balance between

cooperation (i.e. the amount and duration of care) and conflict (i.e. consump-

tion of shared food resource, brood abandonment) and on sex differences in care.

I provided breeding pairs with mouse carcasses of variable mass (3.65–26.15g)

and monitored subsequent effects on the duration of biparental care relative to

uniparental care. I also monitored effects on sex differences in the duration of

male and female care and the amount of time spent providing care by males and

females. I also monitored effects on resource consumption and weight change by

males and females during breeding, as well as effects on brood size and mean

larval mass at the time of larval dispersal. As argued above, an increase in car-

cass mass may lead to a shift towards either more conflict or more cooperation

between parents. The latter prediction seems more likely in N. vespilloides given

that larger carcasses are more valuable to conspecific intruders, and that two

parents are more efficient at protecting their brood against intruders than single

ones (Trumbo 1991). Meanwhile, I predicted that sex differences in parental care

would be more pronounced as carcass mass decreased. The reason is that male

contribution to parental care should be less necessary as carcass size decreases

given than smaller carcasses are less valuable to conspecific intruders. I also pre-

dicted that females would respond less to an increase in carcass mass than males

in terms of carrion consumption and weight gain given that caring parents have

greater access to the carcass as food source for themselves because they spend

more time at the carcass than non-caring parents (Pilakouta et al. 2016). This

is because females are predicted to remain at the carcass for a similar amount of

time regardless of carcass size, whereas males are predicted to provide care for

longer on larger carcasses, thereby giving them more opportunities to consume

from the carcass (Keppner et al. 2018).
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5.2 Methods

I used virgin beetles from an outbred laboratory population maintained for at

least four generations at the University of Edinburgh. The laboratory population

descended from beetles that originally were collected in Hermitage of Braid and

Blackford Hill Local Nature Reserve, Edinburgh, U.K. Non-breeding adult bee-

tles were maintained in individual transparent plastic containers (12 cm ⇥ 8 cm

⇥ 2 cm) filled with moist soil, under a constant temperature (20�C) and a 16:8h

light:dark photoperiod, and fed a small piece organic beef twice a week.

5.2.1 Experimental design

To test for effects of variation in carcass mass on the balance between cooperation

and conflict and the magnitude of sex differences in care, I designed a laboratory

experiment where I manipulated the mass of the carcass that pairs were provided

with at the start of breeding. I started the experiment by paring virgin females

with a randomly assigned, unrelated, virgin male partner (270 pairs in total). I

weighed all males and females at this stage to record their pre-breeding mass. To

initiate breeding, each pair was moved into a larger, transparent container (17

cm ⇥ 12 cm ⇥ 6 cm) filled with 1 cm of moist soil and provided with a previously

frozen mouse carcass (Livefoods Direct, Sheffield). I randomly assigned each pair

with a mouse carcass that weighed between 3.65g and 26.15g (mean ± SE =

13.41g ± 0.396g). This mass range matches that used by my study species under

natural (2–30g; Müller et al. 1990) and laboratory conditions (2–40g; Smiseth

and Moore 2002).

From the day of mating onwards, I checked each container daily for the presence

of eggs. I did this to record the day on which the first eggs were laid. Females

lay their eggs in the soil surrounding the carcass, and most eggs are visible from

the bottom of the transparent container in a thin layer of soil (Monteith et al.

2012), as used in my experiment. I counted the eggs two days after the onset

of egg-laying (i.e. the day preceding the time of hatching of the first eggs in the
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clutch) and used the number of eggs as a measure of clutch size. On the follow-

ing day, when the eggs started to hatch, I counted the number of newly hatched

larvae, using this as a measure of brood size on the day of hatching. Given that

females lay their eggs asynchronously over a mean period of 27 h (Müller 1987,

Smiseth et al. 2006), the final brood size may be larger than brood size on the

day of hatching.

I recorded shifts in the balance between cooperation and conflict by monitoring

the duration of biparental care relative to uniparental care. I checked the contain-

ers daily from the time of mating until the time of dispersal, recording whether

the male and the female were still present on the carcass or whether either of them

had deserted the brood. I scored the male and the female as having deserted the

brood if absent from the crypt (i.e., the depression in the soil surrounding the

carcass) on two consecutive days. I removed any parent that had deserted the

brood from the breeding container to prevent the deserting parent from posing a

risk to the brood. Removing a deserting parent matches natural conditions given

deserting parents leaves the carcass permanently (Scott and Traniello 1990) and

tend kill larvae when artificially constrained to remain with the brood as the re-

sult of laboratory experiment (Ratz et al. personal observation). I weighed any

deserting parent to record information on weight change during breeding (see

below). I recorded the duration of biparental care as the number of days from

mating until one of the parents deserted the brood. If both parents cared for

the brood until the larvae dispersed from the carcass, I recorded the duration

of biparental care as the number of days from mating until the larvae dispersed

from the carcass (normally 7 days; Scott 1998, Grew et al. 2019).

To estimate the amount of time that each parent spent providing care and con-

suming resources, I monitored the behaviour of parents on the day after the first

eggs had hatched. This time point corresponds to the peak of parental food pro-

visioning towards the larvae in this species (Smiseth et al. 2003). I conducted

behavioural observations for 30 min under red light, recording the behaviour of
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both parents at 60 s intervals in line with established protocols (e.g. Smiseth

and Moore 2002, 2004a, Pilakouta et al. 2018). I recorded whether each parent

was provisioning food, defined as any mouth-to-mouth contact between a parent

and at least one larva, maintaining the carcass, defined as excavation of the soil

around the carcass or coating the carcass with exudates, or in near proximity

to the brood, defined as whenever a parent was at a distance from larvae that

was equal to or shorter than its pronotom length (e.g., Smiseth and Moore 2002,

2004a). I recorded time spent consuming carrion as any instances where a parent

was feeding within the crater (i.e. the opening on the top of the carcass; e.g.

Pilakouta et al. 2016). I also recorded the number of larvae that were begging

to a parent at each scan. I then calculated the average proportion of time spent

begging per larva in the brood as B = (⌃b/n)/p, where ⌃b is the cumulative

number of begging events during the 30-min observation period, n is the brood

size at the time of observation, and p is the number of scans during which a

parent was in near proximity to the brood.

I then left experimental broods undisturbed until the larvae dispersed from the

carcass. At the time of dispersal, I counted the number of larvae and weighed

the whole brood to calculate mean larval mass as total brood mass divided by

brood size. I also weighed each parent again at dispersal and calculated relative

weight change during breeding as the difference in body mass measured at dis-

persal (or removal) and pre-breeding mass, divided by pre-breeding mass. In this

species, parents feed from the carcass during breeding (Pilakouta et al. 2016),

and parental weight change is used a proxy for investment in future reproduction

(Creighton et al. 2009, Billman et al. 2014, Gray et al. 2018).

5.2.2 Data analysis

All statistical analyses were conducted using R version 3.6.0 (R Development

Core Team 2019) loaded with the packages car (Fox et al. 2016), MASS (Rip-

ley et al. 2017), and glmmTMB (Brooks et al. 2017). We analysed data on

the shift between cooperation and conflict between the two parents as a number
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of days of biparental care relative to uniparental care using a generalised linear

models (GLM) assuming a Poisson error structure and including carcass mass as

the only fixed effect. We analysed data on sex differences in the duration of care

using GLMs assuming Poisson error structures. We verified the good fit of the

models and the absence of over-dispersion using the âtestResidualsâ function of

the DHARMa package in R (Hartig 2017). To analyse data on sex differences in

parental behaviour on the day after hatching (i.e., the amount of time spent pro-

visioning food to the brood, maintaining the carcass, and consuming carrion), we

used GLMs with zero-adjusted binomial distributions to account for zero-inflation

and over-dispersion. We used linear models to analyse data on parental weight

change over breeding. In all other models, we included carcass mass, the sex of

the focal parent and, to test for potential sex-specific response to resource avail-

ability, the interaction between carcass mass and sex. We also tested whether

potential effects of carcass mass on parental behaviours on the day of hatching

were fully or partially driven by clutch size or brood size. The reason for this

is that parents adjust the amount of care that they provide to the number of

offspring in the brood (Ratz and Smiseth 2018), and that brood size covaries

with carcass size (Bartlett and Ashworth 1988, Smiseth et al. 2014). To deter-

mine whether any overall effect of carcass size was causally linked to variation

in carcass mass or brood size, we first ran each model excluding clutch size and

then compared this model to a full model that included clutch size as a fixed effect.

For our analyses on offspring behaviour and performance, we used a GLM assum-

ing a binomial error structure to analyse data on the average time spent begging

by individual larvae, a GLM assuming a negative binomial error structure to

analyse data on brood size at dispersal, and a linear model to analyse data on

mean larval mass at dispersal. All models included carcass mass as a fixed effect.

We also tested the effect of biparental cooperation on offspring performance by

including the duration of biparental care as a covariate in the models on brood

size and mean larval mass at dispersal. As described above, we first excluded

clutch size or brood size at the time of observation from the models and then ran
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each model again including clutch size or brood size at the time of observation

as an additional fixed effect.

5.3 Results

5.3.1 Duration of biparental care

The duration of biparental care increased by approximately 0.6 days for each ad-

ditional 10g of carcass (Figure 5.1; estimate = 0.016, SE = 0.005, z = 3.27, P =

0.001), supporting the prediction that an increase in carcass mass was associated

with a shift towards more cooperation between parents. Clutch size had a sig-

nificant positive effect on the duration of biparental care (estimate = 0.007, SE

= 0.003, z = 2.09, P = 0.037). Including clutch size in the model, however, did

not change the direction and significance of the effect carcass mass on duration

of biparental care.

5.3.2 Sex differences in duration of care

There was a significant effect of the interaction between the sex of the focal

parent and carcass mass on the duration of care (Table 5.1). This interaction

effect reflected that males provided care for longer as carcass mass increased,

whilst females tended to provide care until the time of larval dispersal regardless

of carcass mass (Figure 5.2a; sex ⇥ carcass mass: estimate = 0.016, SE = 0.006,

z = 2.59, P = 0.010). Thus, as predicted, sex differences in parental care became

more pronounced as carcass mass decreased. There was no significant main effect

of carcass mass on the duration of female care (Table 5.1). However, males

deserted the brood earlier, and thus provided care for a shorter period of time,

than females (Table 5.1; mean ± SE duration of care from the day of mating:

male = 4 days ± 0.15 day, female = 7 days ± 0.13 day; estimate (male versus

female) = �0.61, SE = 0.103, z = �6.21, P <0.001).
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5.3.3 Sex differences in amount of care

There was no effect of the interaction between the sex of the focal parent and

carcass mass on the amount of time parents spent provisioning food to the brood

on the day after hatching (Table 5.1). There was no significant main effect of car-

cass mass on the amount of time spent provisioning food the brood (Table 5.1).

Males spent significantly less time, on average, provisioning food to the larvae

than females (mean ± SE time spent provisioning food out of 30 min: male =

0.74 min ± 0.18 min, Female = 4.4 min ± 0.3 min; estimate (male versus female)

= �4.59, SE = 0.732, z = �6.27, P <0.001).

The interaction between the sex of the focal parent and carcass mass had a sig-

nificant effect on the time spent maintaining the carcass (Table 5.1, Figure 5.2b),

reflecting that males spent more time maintaining the carcass as carcass mass

increased whereas carcass mass had no noticeable effect on the amount of time

spent maintaining the carcass by females (sex ⇥ carcass mass: estimate = 0.148,

SE = 0.046, z = 3.17, P = 0.001). There was no main effect of carcass mass on

time spent maintaining the carcass (estimate = �0.031, SE = 0.028, z = �1.09,

P = 0.275). However, females spent significantly more time maintaining the car-

cass than males (mean ± SE time spent on carcass maintenance out of 30 min:

male = 1.4 min ± 0.23 min, female = 5.6 min ± 0.38 min; estimate (male versus

female) = �5.34, SE = 0.764, z = �6.98, P <0.001).

To disentangle the causal effects of carcass mass and the number of offspring in

the brood, which is positively correlated with carcass mass (r = 0.20, t = 3.0365,

df = 204, P = 0.002), on parental behaviour, I compared models where I excluded

and included clutch size (or brood size at hatching in models on the amount of

care) at the time of observation as fixed effects. Excluding or including clutch size

or brood size at the time of observation did not change the effect of carcass mass

(Table 5.1), suggesting that the effects of carcass mass on the parents’ behaviour

were independent of any potential effects due to the number of offspring in the

brood.
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5.3.4 Sex differences in carrion consumption and weight change

There were no significant effects of the interaction between the sex of the focal

parent and carcass mass and no significant main effects of carcass mass on the

amount of time spent consuming carrion by the female or male parent measured

on the day after hatching (Table 5.1). However, females spent significantly more

time consuming carrion than males (mean ± SE time spent consuming out of 30

min: male = 0.87 min ± 0.21 min, female = 3.6 min ± 0.33 min; estimate (male

versus female) = �3.69, SE = 0.825, z = �4.47, P <0.001).

There was a significant effect of the interaction between the sex of the focal parent

and carcass mass on weight change over the breeding attempt (F1,368 = 0.046, P =

0.027), reflecting that carcass mass had a stronger positive effect on female weight

change than on male weight change (Figure 5.3a; mean ± SE weight change: male

= 0.027g ± 0.006g, female = 0.068g ± 0.007g; sex ⇥ carcass mass: estimate =

�0.004, SE = 0.002, t = �2.36, P = 0.019). Parents gained more mass as carcass

mass increased (estimate = 0.005, SE = 0.001, t = 4.52, P <0.001). There was

no significant difference between male and female parents in the average weight

change (F1,368 = 0.0009, P = 0.754). Excluding or including clutch size at the

time of observation did not change the effect of carcass mass, suggesting that

any effect of carcass mass on the parents’ weight gain was independent of any

potential effects due to the number of offspring in the brood.

5.3.5 Offspring behaviour and performance

There was no significant effect of carcass mass on the average time spent begging

by individual larvae (Table 5.2). However, brood size at dispersal increased by

approximately 2 larvae for each additional 10g of carcass (Table 5.2, Figure 5.3b;

estimate = 0.016, SE = 0.006, z = 2.51, P = 0.012) and, when carcass mass is

close to zero, mean larval mass at dispersal increased by approximately 0.026g
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for each additional 10g of carcass (Table 5.2, Figure 5.3c; estimate = 0.025, SE =

0.006, t = 4.00, P <0.001). There were significant effects of both the quadratic

(�2 = 8.89, df = 1, P = 0.0028) and the cubic (�2 = 5.52, df = 1, P = 0.018)

terms of carcass mass on mean larval mass at dispersal. Thus, mean larval mass

increased with carcass mass when carcasses were relatively small and plateaued

as carcass mass approached the upper end of the range of carcasses used in our

experiment (Figure 5.3c). In addition, the duration of biparental care had a pos-

itive effect on brood size at dispersal (�2 = 5.91, df = 1, P = 0.015), increasing

by approximately 0.8 larvae for each additional day of biparental care. The du-

ration of biparental care had no effect on mean larval mass at dispersal (�2 =

0.324, df = 1, P = 0.568). Including clutch size in the model of brood size at

dispersal removed the significant effect of carcass mass (Table 2), suggesting that

the effect of carcass mass on brood size at dispersal was driven by differences in

the number of eggs laid on carcasses of different masses. Including or excluding

clutch size in the model on mean larval mass did not change the effect of carcass

mass (Table 5.2), suggesting that the effects of carcass mass on mean larval mass

was independent of any potential effects due to the number of offspring in the

brood.

Table 5.2: Effects of carcass size (and clutch size) on larval begging, brood size
at dispersal and mean larval mass at dispersal when clutch size is excluded (a)
and included (b) in the model. Values are obtained from GLMs.

Carcass size Clutch size

�2 df P �2 df P

Begging
(a) 0.082 1 0.774
(b) 0.187 1 0.665 0.666 1 0.414

Brood size at dispersal
(a) 6.08 1 0.014

(b) 3.42 1 0.064 5.07 1 0.024

Mean larval mass
(a) 16.0 1 <0.001

(b) 14.65 1 <0.001 16.4 1 <0.001
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5.4 Discussion

Here I show that variation in food availability shifted the balance between coop-

eration and conflict, and altered the magnitude of sex differences in the duration

of care, the amount of time spent providing care on the day after hatching, and

parental weight change during breeding. I found that an increase in carcass mass

was associated with an increase in the duration of biparental care, indicating a

shift towards more cooperation between male and female parents. Meanwhile, a

decrease in carcass mass was associated with more pronounced sex differences in

both the duration of care and the time spent providing care, reflecting that males

deserted the brood earlier and spent less time maintaining the carcass as carcass

mass decreased. In contrast, females nearly always provided care until the larvae

dispersed and spent a similar amount of time maintaining the carcass regardless

of carcass mass. Furthermore, an increase in carcass mass was associated with

a greater increase in weight gain by females than by males. Below I discuss the

wider implications of my results for our understanding of how environmental con-

ditions may drive the origin and maintenance of biparental care.

My first main result was that the duration of biparental care increased with car-

cass mass, supporting my prediction that there was a shift towards more cooper-

ation when parents bred on larger carcasses. The rationale for this prediction was

that the benefits of biparental cooperation would be greater on larger carcasses

given that such carcasses are more valuable as a breeding resource to conspecific

intruders, which may attempt to take over the carcass from the resident parents

(Trumbo 1991). If successful, such intruders would eliminate the original brood

and use what is left of the carcass as a resource to rear their own brood. Fur-

thermore, a study on the closely related N. orbicollis found that two parents are

better able to protect the brood against conspecific intruders than single parents

(Trumbo 1991). Given that larger carcasses are subject to more intense compe-

tition than small ones (Wilson and Fudge 1984, Robertson 1993), it seems likely

that the benefits to the male from assisting the female (and to the female from

accepting assistance from the male) in terms of to offspring survival would be
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greater as carcass mass increases. My results contrast with a comparative study

on weaverbirds, which found that biparental cooperation was less common in

species that breed in environments where there is greater availability of resources

(Crook 1963). In altricial birds, greater availability of food may reduce the ben-

efits of biparental cooperation given that the female is more likely to be able to

provision sufficient food for the brood on her own when food is plentiful as com-

pared to when it is scarce. Biparental cooperation over food provisioning may be

particularly important in altricial birds because parents must provide a constant

supply of food from the surrounding environment. Thus, in altricial birds, the

benefits of the male assisting the female may be greater when food is scarce. In

contrast, biparental cooperation over food provisioning may be less important in

burying beetles of the genus Nicrophorus. The reason for this is that these beetles

breed on a fixed resource (i.e., a vertebrate carcass), which means that the supply

of food will be limited by the size of the carcass rather than by the number of

caring parents.

My second main result was that there was a significant effect of the interaction

between the sex of the focal parent and carcass mass on the duration of care

and the amount of time spent maintaining the carcass on the day after hatching.

These interaction effects reflected that males provided care for longer and spent

more time maintaining the carcass as carcass mass increased, while carcass mass

had no effect on the duration of care or time spent maintaining the carcass by

females. These results chime with the findings on a related species of burying

beetle (Kishida and Suzuki 2010) and support my prediction that sex differences

in parental care would be more pronounced as carcass mass decreased, reflecting

that males often adjust the amount of care they provide in response to variation

in environmental conditions, whilst females tend to provide a similar amount of

care regardless of such variation (Royle et al. 2014, Smiseth et al. 2015, Walling

et al. 2008). In N. vespilloides, females spend more time provisioning food to

the brood (e.g. Smiseth et al. 2005, Georgiou-Shippi et al. 2018) and care for

longer than males (Bartlett 1988, Ford and Smiseth 2016). These sex differences
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in parental care are thought to reflect that males can gain some reproductive

success by mating away from a carcass whilst female require access to a carcass

in order to reproduce (Müller et al. 2007). This is because males can simply

mate with females away from a carcass. In contrast, females necessarily require

the presence of a carcass in order to lay eggs. Thus, variation in the availability

of resources may have a greater impact on the duration of male care because it

increases their benefits of providing care relative to their benefits of deserting to

mate with females away from a carcass (Ward et al. 2009).

I found that carcass mass had a greater positive effect on female weight gain than

on male weight gain. This finding contrasts with my prediction that carcass mass

would have a stronger impact on male weight change. This prediction was based

on the assumption that, if males provided care for longer on larger carcasses, this

would give them more opportunities to consume from the carcass. Thus, these re-

sults contradict my initial assumption that sex differences in weight change would

be linked to sex differences in parental care. This assumption is also contradicted

by the finding that females gained more weight as carcass mass increased, even

though females nearly always provided care until the larvae dispersed. Females

gaining more weight as carcass mass increased suggests that females balance the

personal benefits of consuming food from the carcass in terms of enhancing their

own condition at the end of breeding against the costs of consuming food to the

larvae (Gray et al. 2018, Keppner et al. 2020). In this species, both the parents

and the larvae feed from the carcass, and any increase in food consumption by a

parent would therefore reduce the amount of food available to the other parent

and the brood. In addition, food-deprived females consume more food resources

during breeding, which seems is can have a negative impact on the brood (Kepp-

ner et al. 2018, but see Gray et al. 2018). Thus, females might restrict their

own food consumption when breeding on smaller carcasses to avoid inflicting a

cost to the larvae. On larger carcasses, where food is more plentiful, females may

consume more food and put on more weight without inflicting such a cost to the

larvae. However, it is unclear why this argument would only apply to female
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weight change. One potential explanation for why males seem to gain a similar

amount of weight regardless of carcass mass is that males have a lower optimal

body weight compared to females. Females may have a higher optimal body

weight than males given that females must secure a carcass to reproduce, which

means that they must fly in search of a carcass and compete with rival females.

Gaining more weight might be beneficial given that flight is energetically costly

and that heavier females tend to win more fights than lighter ones (Richard-

son et al. 2020). In contrast, males can mate females at a carcass or attract and

mate with females away from a carcass by emitting pheromones (Pukowski 1933).

Thus, males might benefit less from putting on more weight than females. I en-

courage future research to investigate potential sex differences in optimal body

mass and the potential reasons for such sex differences.

My final results were that parents produced larvae with a greater mean mass

when breeding on larger carcasses, whilst carcass mass had no effect on larval

begging or brood size when controlling for clutch size. This is consistent with

previous findings reporting positive effects of carcass size on offspring growth and

mass at dispersal (e.g. Xu and Suzuki 2001, Andrews et al. 2017, Gray et al.

2018) but no effect on larval begging (Smiseth and Moore 2002, Sieber et al.

2017). Such positive effects on offspring performance are likely to reflect that

larvae simply have access to more food when self-feeding from the carcass, rather

than an increase in the amount of care provided by the male. This is because

the carcass represents the sole source of food for the larvae, and larvae may run

out of food earlier on a smaller carcass than on a larger one. Moreover, prior

work suggests that male care has no detectable effects on offspring growth and

survival under laboratory conditions (Smiseth et al. 2005, Ratz et al. 2018), and

may even have detrimental effects on females (Boncoraglio and Kilner 2012). We

note that, however, male’s presence in the wild is likely to be critical to deter

potential conspecific intruders or predators that represent a risk to the larvae

(Trumbo 1991).
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In summary, I found that greater food availability shifted the balance towards

more cooperation between parents and reduced sex differences in parental care.

Overall, these findings stress the importance that environmental conditions, such

as resource availability, play in determining the balance between cooperation and

conflict over care, as well as determining the magnitude of any sex differences in

parental behaviour. This is perhaps not surprising given that resource availability

has long been recognised as a crucial environmental condition driving the emer-

gence and maintenance of parental care in general (Tallamy and Wood 1986, Klug

et al. 2012). However, less consideration has been given to the role that resource

availability plays as an environmental driver of the evolution of biparental care.

I highlight that resource availability may have contrasting effects on the balance

between cooperation and conflict depending on whether it reduces or increases

the benefits of biparental cooperation.
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6 Offspring response to parental body size

This chapter has been published as:

Ratz T, Stenson S, Smiseth PT (2020) Offspring preferentially beg towards and

associate with larger parents in the burying beetle Nicrophorus vespilloides. Be-

havioral Ecology 31:1250–1256.

Abstract

Offspring begging behaviours have evolved in many birds and mammals, as well

as in some amphibians and insects, as a potential behavioural mechanism for re-

solving parent-offspring conflict by enabling offspring to communicate their needs

and influence parental care. When begging is costly, offspring will be under selec-

tion to reduce such costs and maximise their returns on begging. For example, in

species where multiple parents provide care (e.g., species with communal breeding

or biparental care), offspring should beg towards the parent that provisions more

food than the others. Here, I investigated whether larvae spend more time beg-

ging towards larger females in the burying beetle Nicrophorus vespilloides. Prior

work on this species shows that larger females provision more food than smaller

ones, suggesting that larvae would benefit by preferentially begging towards larger

parents. To test for such a preference, I provided experimental broods of 10 larvae

with a simultaneous choice between a smaller and a larger dead female parent.

Larvae spent more time begging towards larger females. I next examined the

behavioural mechanism for why larvae begged towards larger females. Larvae

spent more time associating with larger females over smaller ones, whilst there

no was no evidence that larvae begged more when associating with larger females.

Thus, larvae begged more towards the larger female simply as a consequence of

associating more with such females. My findings have important implications for

our understanding of parent-offspring communication by showing that offspring

can choose between parents based on parental attributes, such as body size, that
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may reflect how much food parents are likely to provision.

6.1 Introduction

Offspring beg for food from their parents across many animal taxa, including birds

(e.g. Budden and Wright 2001), mammals (e.g. Smiseth and Lorentsen 2001),

amphibians (e.g. Yoshioka et al. 2016) and insects (e.g. Rauter and Moore 1999).

Theoretical models propose that costly offspring begging behaviours evolved as a

behavioural mechanism for resolving parent-offspring conflict over parental care

(Godfray 1991, Parker et al. 2002). The reason for this is that costs of begging

ensure that parents benefit by adjusting their food provisioning in response to

begging because parents obtain honest information on the nutritional need of their

offspring. There is empirical evidence that begging often incurs costs to offspring

in terms of reduced growth (e.g. Kilner 2001, Takata et al. 2019), increased risk

of predation (e.g., Haskell 1994, Redondo and Castro 1992), or increased mor-

tality due to filial infanticide (e.g., Andrews and Smiseth 2013). When begging

is costly, offspring should be under selection to reduce such costs to maximise

their returns on begging (Bell 2008, Madden et al. 2009). For instance, in species

where both parents provision food for the offspring, and where parents of one

sex provision more food than the other, offspring may maximise their returns

on begging by begging more towards parents of the sex that provisions the most

food, as reported in studies on birds (e.g. Kölliker et al. 1998, Roulin and Bersier

2007, Dickens et al. 2008) and insects (Suzuki 2015, Paquet et al. 2018).

Although there is good evidence that offspring beg more towards parents of the

sex that provisions the most food, it is currently unclear whether begging off-

spring also respond to other attributes of their parents that might reflect how

much food parents are likely to provision, such as the body size, nutritional state,

or age of parents (Paquet et al. 2018). For example, offspring may beg more

towards larger parents if larger parents provision more food than smaller ones.

Larger parents have been found to produce more milk than smaller parents in
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mammals (Landete-Castillejos et al. 2003), provision food more often to the nest

in insects (Bosch and Vicens 2006), and provision larger loads of food in birds

(Tveera et al. 1998). Thus, in species where more than one parent provides care,

such as in species with biparental care or where females breed communally, off-

spring might maximise their returns on begging by begging more towards larger

parents. To my knowledge, no prior studies have investigated this issue and it

remains unknown whether offspring beg more towards larger parents.

Here, I conducted an experiment on the burying beetle Nicrophorus vespilloides

in which I tested whether larvae begged more towards larger parents than towards

smaller ones. Burying beetles are an ideal study system to explore this issue be-

cause multiple parents provision their larvae with pre-digested regurgitated food

in the contexts of communal breeding (Trumbo 1992, Eggert and Müller 1992)

and biparental care (Smiseth and Moore 2002, Smiseth et al. 2003). Females can

tolerate the presence of other females and breed communally on large carcasses

(Eggert and Müller 1992, Komdeur et al. 2013, Richardson and Smiseth 2020).

Females breeding communally provide care indiscriminately to a joint brood as

they cannot recognise their own larvae. This is because females have a temporal

kin discrimination mechanism and would accept any larvae that hatch at the ex-

pected time of hatching of their own larvae (MuÌller and Eggert 1990, Oldekop

et al. 2007). In contrast to most birds, larvae show partial begging, whereby

they obtain some food by begging from the parents and some by self-feeding di-

rectly from the carcass used for breeding (Smiseth et al. 2003). There is evidence

that begging incurs costs to larvae in terms of increased mortality and reduced

growth (Andrews and Smiseth 2013, Takata et al. 2019). Female parents pro-

vision more food than males (Eggert et al. 1998, Smiseth and Moore 2004a),

and larvae spend more time begging towards females (Paquet et al. 2018). Prior

work shows that larger females spend more time provisioning food to the brood

than smaller females (Steiger 2013), and larger females may also process food

more efficiently than smaller ones (Pilakouta et al. 2015b). Thus, larvae might

maximise their returns on begging by begging more towards larger parents. Fi-
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nally, prior work shows that larvae beg towards dead parents, thereby allowing

for experimental designs that exclude any potential effects of parental behaviour

on larval behaviour (Smiseth and Parker 2008, Mäenpää et al. 2015, Paquet et

al. 2018).

The first aim of this study was to test whether larvae in N. vespilloides spend

more time begging towards larger females than towards smaller ones. Given that

larvae behave differently towards female and male parents, I focused on begging

towards females only to ensure that my design specifically focused on how begging

larvae respond to the body size of parents. I used a simultaneous choice design

similar to that used in prior studied where larvae could choose between one larger

and one smaller female (Paquet et al. 2018). I used simultaneous choice designs

because such designs are better suited for detecting preferences than sequential

choice designs (Dougherty and Shuker 2014). My second main aim was to test

between two potential behavioural mechanisms for why larvae might beg towards

the larger female: (1) larvae may spend more time associating with larger females

and beg more towards larger females simply as a consequence of associating more

with them, and (2) larvae may spend more time begging when they associate

with larger females. Given that these two mechanisms are not mutually exclu-

sive, larvae might beg more towards larger females by both associating more with

them and begging more when associating with them.

6.2 Methods

The beetles used in the experiments descended from individuals collected in the

wild in the Hermitage of Braid and Blackford Hill Local Nature Reserves, Edin-

burgh, UK. The beetles had been kept under laboratory conditions for at least

three generations. Beetles were housed in individual transparent plastic contain-

ers (12 cm ⇥ 8 cm ⇥ 2 cm) filled with moist soil, and kept at (20�C) and under

a 16:8h light:dark photoperiod. Non-breeding adults were fed small pieces of or-

ganic beef twice a week.
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6.2.1 Experimental design

At the start of the experiment, I generated the smaller and larger females that I

later used as stimuli when investigating larval begging towards larger and smaller

females. I generated these females following established protocols (Steiger 2013,

Pilakouta et al. 2015b). To this end, I paired up 34 pairs of unrelated males

and females from the stock population by provided them with a mouse carcass

to initiate breeding. From each of these 34 broods, I removed some larvae from

the carcass when they had reached a mass of 100–150 mg (mean mass ± SE mea-

sured at dispersal: 0.130 g ± 0.004), and some when they had reached a mass

of 200–250 mg (mean ± SE mass measured at dispersal: 0.222 g ± 0.003). The

former larvae were destined to become smaller females, whilst the latter were

destined to become larger females. These treatments are effective in generating

different-sized females in the study species because larvae obtain all the resources

they put into growth from the carcass on which they are reared such that larval

mass at the time of leaving the carcass determines adult body size (Lock et al.

2004).

Once removed from the carcass, larvae destined to become smaller or larger fe-

males were placed in individual containers (12 cm ⇥ 8 cm ⇥ 2 cm) filled with

moist soil until eclosion. After eclosion, I sexed all individuals, keeping females

only for use in my experiment. I kept all smaller and larger females in their indi-

vidual containers for a minimum of 10 days after eclosion to allow them sufficient

time to undergo sexual maturation. During this period, I fed all females small

pieces of organic beef twice a week until they were used in my experiment.

Once the females reached sexual maturity, I selected 32 larger and 32 smaller

females for use in my experiments. These females were used to produce the ex-

perimental broods of larvae that I later used to test whether larvae begged more

towards larger or smaller females. To initiate breeding, I paired each female with
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an unrelated male from the stock population, placed each pair in a larger con-

tainer (17 cm ⇥ 12 cm ⇥ 6 cm) with 2 cm of moist soil, and provided them with a

previously frozen mouse carcass of a standardized size (20.01–23.64 g) (Livefoods

Direct, Sheffield). I checked the containers daily for the presence of eggs, defining

the day on which the first eggs were laid as the onset of egg-laying. Two days

after the outset of egg-laying (corresponding to the day preceding the expected

time of hatching; Smiseth et al. 2006), I separated each female from her eggs by

transferring females and their carcasses into fresh containers lined with moist soil.

I did this to ensure that no larvae were present when I later allocated females

with an experimental donor brood (see below). At this time, I also removed the

male to exclude any potential effects of the presence of males on the preferences

of begging larvae. There is no evidence that the removal of the male has any

detrimental effects on offspring growth or survival under laboratory conditions

(Smiseth et al. 2005).

I generated experimental donor broods by pooling newly hatched larvae from

across multiple broods. All such broods were comprised of 10 same-aged larvae

of mixed maternity. Once assembled, experimental donor broods were allocated

at random to a smaller or a larger female foster parent. Given that experi-

mental donor broods were composed of larvae of mixed maternity, most larvae

would be genetically unrelated to their foster female. I used experimental broods

in my experiment to exclude any potential confounding effects due to variation

in brood size (Ratz and Smiseth 2018), larval age (Smiseth et al. 2007a,b), or

age composition within the brood (Smiseth and Moore 2007) on larval behaviour.

6.2.2 Larval behaviour

To test whether larvae begged more towards larger females, I conducted be-

havioural observations in which larvae were given a simultaneous choice between

one larger and one smaller female. I used a simultaneous choice design to test

whether larvae showed a preference between two different-sized females (Paquet
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et al. 2018). This design is biologically realistic given that females will breed

communally on large carcasses (Eggert and Müller 1992, Komdeur et al. 2013,

Richardson and Smiseth 2020). Females have a temporal kin discrimination mech-

anism, selectively culling any larvae that hatch earlier than the expected time of

hatching of their own larvae. However, females cannot recognise their own larvae

after hatching (Müller and Eggert 1990, Oldekop et al. 2007), and cobreeding

females provide care indiscriminately to any larva in a joint brood. Cobreeding

females may differ in size when breeding on a larger carcass (Eggert and Müller

2000), in which case larvae would be in a position to choose between different-

sized females. To beg, larvae move near a parent, raise their body towards the

parent and wave their legs at the parent’s mouthparts (Rauter and Moore 1999,

Smiseth and Moore 2002).

I conducted the behavioural observations 24 h (± 15 min) after I had allocated

an experimental donor brood to a foster female. Approximately 1 h before the

start of each behavioural observation session, I killed the larger and smaller fe-

males used as stimuli to trigger larval begging by freezing them at �20�C for 30

min. I then thawed the females at ambient temperature for a minimum of 10 min

to ensure that I could position their body and legs (see below). To ensure that

there was no difference between broods in whether larvae had prior experience

with a female of a particular size, I ensured that all experimental broods used in

the trials comprised of 5 larvae derived from a brood that had been reared by a

larger female and 5 larvae derived from a brood that had been reared by a smaller

female. I placed the 10 larvae in a small container (11 cm ⇥ 11 cm ⇥ 3 cm) lined

with moist paper towel 30 min prior observation to ensure that the larvae were

not fully satiated and therefore motivated to beg at the start of the observation.

Just before the start of the observation sessions, I pinned the larger and smaller

females in the centre of the box (Figure 6.1a), and positioned them such that

they mimicked a parent provisioning food (Mäenpää et al. 2015, Paquet et al.

2018; Figure 6.1b). I then placed all larvae in front of the two females such that

they were equidistant from them (Figure 6.1a). Larvae can presumably detect an
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adult pronotom length; Figure 6.1b). Given that the proportion of larvae that

were close to the larger female is inversely related to the proportion of larvae

that were close to the smaller one, I focused on larvae associating with the larger

female only. I calculated the proportion of larvae associating with the larger

female (A) as the number of larvae near the larger female across the 15 scans

(⌃a) divided by the total number of larvae that associated with either female

(n), as A = ⌃a/n. Second, larvae might beg more towards larger females by

begging more when associating with them. I therefore calculated the proportion

of time spent begging per larva when larvae were associating with each female. I

calculated this metric (B0) as the number of begging events towards each female

across the 15 scans (⌃b) divided by the total number of larvae associating with

the female in question (n0), as B = ⌃b/n0.

6.2.3 Data analysis

All statistical analyses were conducted using R version 3.6.0 (R Development Core

Team 2019) loaded with the packages car (Fox et al. 2016), MASS (Ripley et al.

2017), and lme4 (Bates et al. 2014). I first investigated whether larvae begged

more towards the larger female. To do so, I tested whether there was a difference

in proportion of time spent begging per larva between larger and smaller females.

I used generalized linear mixed models with a Poisson distribution, including the

brood ID and female ID as random effects to account for the fact that larvae

from a single brood could beg towards both females at the same time. I then

tested whether larvae spent more time associating with the larger female. To this

end, I used a Wilcoxon signed-rank test comparing the observed proportion of

larvae associating with the larger female against the null expectation of 0.5 as

expected if larvae associated equally with both females (Crawley 2005). Finally,

I tested whether larvae begged more when associating with the larger female. I

used generalized linear mixed models with a binomial distribution and including

the brood ID and female ID as random effects for the same reasons as detailed

above.
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I excluded 10 broods from my analyses because at least one of the two females was

not observed at the carcass at the time females were removed from their original

container. I did this because such females might have deserted their brood and

because prior work shows that larvae behave differently towards breeding and

non-breeding females (Smiseth et al. 2010). The final sample size in my study

was 22 broods.

6.3 Results

Larvae begged around three times more towards the larger female as towards the

smaller one (�2 = 12.7, df = 1, P < 0.001; Figure 6.2a), confirming that begging

larvae discriminate between larger and smaller females. I next tested between two

potential behavioural mechanisms underpinning this preference; that is, whether

larvae associated more with the larger female or whether larvae begging more

when associating with the larger female. I found that a larger proportion of

larvae associated with the larger female than expected due to chance (Wilcoxon

signed-rank test: V = 180, P = 0.04; Figure 6.2b), whilst there was no evidence

that larvae begged more when associating with the larger female (�2 = 0.01, df

= 1, P = 0.942; Figure 6.2c). Thus, my results show that larvae begged more

towards the larger female because they associated more with this female.

6.4 Discussion

Here I show that larvae in the burying beetle Nicrophorus vespilloides begged

more towards the larger female when given a choice between a larger and a smaller

female. This finding provides support for the prediction that larvae beg more to-

wards the parent that is likely to provision more food, thereby allowing larvae to

maximise their returns on begging. I also show that larvae begged more towards

the larger female by associating more with the larger female, whilst there was no
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evidence that larvae begged more when associating with the larger female. This

finding provides insights into the behavioural mechanisms of larval preferences

for begging towards larger females. My results have important implications for

our understanding of offspring begging behaviour by showing that offspring ad-

just their begging behaviour not just in response to their own nutritional needs,

as shown in prior work (Kilner and Johnstone 1997), but also in response to at-

tributes of their parents, in this case parental body size, that reflect the amount

of food that parents are likely to provision to offspring. Below, I first discuss the

wider implications of my results to our understanding of the evolution of offspring

begging behaviour.

My main finding was that larvae spent more time begging towards the larger

female when given a simultaneous choice between a larger and a smaller female.

I predicted that begging larvae should have such a preference given that beg-

ging incurs costs to larvae (Andrews and Smiseth 2013, Takata et al. 2019) and

that larger females provision more food than smaller females (Steiger 2013). My

results are consistent with prior work showing that offspring beg more towards

parents of the sex that provisions the most food in species with biparental care

(Kölliker et al. 1998, Roulin and Bersier 2007, Dickens et al. 2008, Suzuki 2015,

Paquet et al. 2018). My study adds to this work by showing that offspring have

preferences based on other attributes of their parents, in this case body size, that

also reflect the amount of food that parents are likely to provision to offspring.

I note that I used a simultaneous choice design because such designs are more

likely to detect preferences than sequential choice designs (Dougherty and Shuker

2014). Prior work on my study species have reported a preference for begging

towards female parents only when using a simultaneous choice design (Paquet et

al. 2018), and no such preferences were found when using a sequential choice

design (Mäenpää et al. 2015). In light of this, I urge caution in extrapolating the

evidence for larval preferences for larger parents to contexts where larvae cannot

compare two different-sized parents, such as when larvae are cared for by a single

parent.
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My study provides valuable insights into the behavioural mechanisms for why lar-

vae beg more towards the larger female. I found that larvae associated more with

the larger female, whilst there was no evidence that larvae begged more when

associating with the larger female. Thus, larvae begged more towards the larger

female simply by associating more with this female. As argued above, larvae may

associate more with the larger female because larger females provision more food

in this species (Steiger 2013). However, there are alternative explanations for this

finding. For example, larvae might associate more with the larger female if more

larvae can fit under the body of larger females. This explanation seems unlikely

given that the brood sizes used in my experiment were small enough for all larvae

to fit under the smaller female. Alternatively, larvae might associate more with

the larger female if larger females are better at protecting larvae from potential

threats. I cannot rule out this explanation. For example, in this study species,

conspecific intruders pose a threat to the larvae as they may commit infanticide

in order to attempt to takeover the carcass (Trumbo 2007, Trumbo and Valetta

2007, Georgiou Shippi et al. 2018). Prior work shows that larger females are

stronger competitors than smaller females (Otronen 1988, Trumbo 2007). Thus,

a potential alternative explanation for my results is that larvae preferentially as-

sociate with the larger female for protection, and that larvae spend more time

begging towards larger females as a consequence of this preference.

My finding that larvae begged more towards larger females, and associated more

with them, implies that larvae somehow assessed the body size of the two females.

As my study species normally breeds underground in complete darkness (Scott

1998), it is unlikely that larvae did so based on visual cues. Instead, larvae might

assess differences in parent’s body size based on behavioural, acoustic, tactile or

vibrational cues that might reflect the body size of a parent. Although I can-

not rule out that such cues play a role when larvae interact with live parents, it

seems unlikely that they could explain my results given that I used dead females

as stimuli to trigger larval begging. Potentially, the preference to associate more
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with larger parents could simply reflect that larger females carried a stronger

scent of carcass due to their larger surface area. However, it seems unlikely that

larvae would use such a cue to discriminate between females, given that larvae

would not be able to identify the females from the carcass based on such scents.

Instead, I suggest that larvae may assess the body size of parents based on chem-

ical cues that reflect the body size of a parent. A recent study on the closely

related Nicrophorus quadripunctatus shows that begging larvae respond to a pro-

visioning pheromone (2-phenoxyethanol) produced by caring parents (Takata et

al. 2019). This pheromone provides larvae with a reliable signal that the par-

ent is about to provision food to the brood, thereby reducing the cost of larval

begging and enhancing the efficiency of parental food provisioning (Takata et

al. 2019). However, it does not seem plausible that this pheromone can explain

my results given the dead females used in my experiment could not produce this

pheromone. Alternatively, larvae might assess the body size of parents based on

more persistent chemicals, such as cuticular hydrocarbons and methyl geranate

(Steiger et al. 2007, Smiseth et al. 2010, Steiger et al. 2011, Engel et al. 2016).

Thus, there is now a need for studies that compare cuticular chemical profiles of

different-sized parents.

My study adds to our understanding of begging behaviour by showing that beg-

ging offspring respond to cues from their parents that are likely to provide infor-

mation on the expected returns on begging. Prior work on my study species and

birds shows that offspring adjust their behaviour in response to changes in their

own state, such as their hunger state (Kilner and Johnstone 1997, Smiseth and

Moore 2004a, 2007), their long-term need (Price et al. 1996) or their inbreeding

status (Mattey et al. 2018). My results show that offspring are sensitive not just

to their own needs but also to attributes of their parents. Furthermore, my results

shed new light on findings from prior work showing that larger parents provision

more food to their offspring in insects (e.g. Bosch and Vicens 2006), birds (e.g.

Tveera et al. 1998), and mammals (Landete-Castillejos et al. 2003). These find-

ings are thought to reflect that larger parents are better able to forage, carry and

120



deliver food resources to the offspring than smaller ones (Creighton et al. 2009).

My finding that offspring begged more towards larger parents suggests that a pos-

itive correlation between a parent’s body size and parental food provisioning may

be reinforced by parental responses to the offspring’s begging behaviour (Kilner

and Johnstone 1997). Traditionally, parent-offspring communication is described

as a process where begging offspring signal their needs, thereby playing the role

as senders, and parents respond to the offspring’s signals, thereby playing the

role as receivers. My results suggest that parent-offspring communication is more

complex as begging offspring also act as receivers by responding to cues from their

parents. Thus, it seems more appropriate to describe parent-offspring communi-

cation as a two-way process where both parents and offspring act as senders and

receivers, adjusting their behaviour based on signals or cues produced by each

other.

To conclude, this study adds to our understanding of offspring behaviour by

showing that offspring adjust their begging behaviour both to their own state

(e.g. hunger, long-term conditions) and to cues from their parents that pro-

vide offspring with information about their likely returns on begging. My study

demonstrates that offspring show a preference for larger females, reflecting that

larger females provision more food than smaller ones. There is now a need for fu-

ture work investigating whether begging offspring also respond to other parental

attributes that might indicate the offspring’s likely returns on begging, such as

the age, nutritional state, inbreeding state, or infection status of the parent.
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7 Effects of inbreeding on parent and offspring

plasticity

This chapter has been published as:

Ratz T, Perodaskalaki A, Moorad J, Smiseth PT (2020) Effects of inbreeding on

behavioural plasticity of parent-offspring interactions in a burying beetle. Jour-

nal of Evolutionary Biology 33:1006–1016.

Abstract

Inbreeding depression is defined as a fitness decline in progeny resulting from

mating between related individuals, the severity of which may vary across envi-

ronmental conditions. Such inbreeding-by-environment interactions might reflect

that inbred individuals have a lower capacity for adjusting their phenotype to

match different environmental conditions better, as shown in prior studies on de-

velopmental plasticity. Behavioural plasticity is more flexible than developmental

plasticity because it is reversible and relatively quick, but little is known about its

sensitivity to inbreeding. Here I investigate effects of inbreeding on behavioural

plasticity in the context of parent-offspring interactions in the burying beetle

Nicrophorus vespilloides. Larvae increase begging with the level of hunger, and

parents increase their level of care when brood sizes increase. Here I find that

inbreeding increased behavioural plasticity in larvae: inbred larvae reduced their

time spent associating with a parent in response to the length of food-deprivation

more than outbred larvae. However, inbreeding had no effect on the behavioural

plasticity of offspring begging or any parental behaviour. Overall, my results show

that inbreeding can increase behavioural plasticity. I suggest that inbreeding-by-

environment interactions might arise when inbreeding is associated with too little

or too much plasticity in response to changing environmental conditions. In this

case, the plastic response would no longer be adaptive and the extent to which

inbred individuals suffer from reduced fitness would depend on the environment.
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7.1 Introduction

Inbreeding, or mating between related individuals, is a key issue in ecology and

evolution because of its impact on the persistence of populations and their abil-

ity to evolve in response to changing environments (Keller and Waller 2002,

Charlesworth 2003). Inbreeding is often associated with a decline in fitness of

any resulting progeny, a phenomenon known as inbreeding depression (Daven-

port 1908, East 1908). Inbreeding depression is caused by greater homozygosity

associated with inbreeding, which reduces fitness by increasing the risk that rare,

deleterious and recessive alleles are expressed and exposed to selection (domi-

nance hypothesis; Davenport 1908) or by reducing any potential benefits due to

heterozygote advantage (overdominance hypothesis; East 1908). The severity of

inbreeding depression can vary across environments (Armbruster and Reed 2005,

Cheptou and Donohue 2011, Fox and Reed 2011), and sources of environmental

stress, such as intense intraspecific competition (Meagher et al. 2000, Haag et

al. 2002), extreme temperatures (Bijlsma et al. 1999, Fox et al. 2011), parasitic

infection (Haag et al. 2003) and nutrient deprivation (Auld and Henkel 2014,

Schou et al. 2015), are known to exacerbate inbreeding depression. However, lit-

tle is known about the mechanisms for these inbreeding-by-environmental stress

interactions (Reed et al. 2012). Potentially, environmental stress might exacer-

bate inbreeding depression by increasing the intensity of selection acting against

deleterious alleles (Laffafian et al. 2010) or by increasing the amount of pheno-

typic variation induced by stress, and thereby fitness differences, between inbred

and outbred individuals (Waller et al. 2008). A plausible underlying mecha-

nism is that inbreeding is associated with reduced phenotypic plasticity (Fowler

and Whitlock 1999, Reed et al. 2003, Reed et al. 2012, Bijlsma and Loeschcke

2012). This mechanism requires that inbred individuals have a lower capacity

for adjusting their phenotype to match different environmental conditions than

outbred ones.
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There is good empirical evidence that inbreeding alters developmental plasticity.

For example, inbreeding reduces the duration of developmental growth in re-

sponse to changing temperatures in Drosophila subobscura (e.g. Maynard Smith

et al. 1955) and the development of morphological defences in response to the

presence of predators in the freshwater snail Physa acuta (e.g. Auld and Re-

lyea 2010). Inbreeding also reduces plasticity in life history traits, such as laying

date in response to advancing spring temperatures in red-cockaded woodpeckers

(Schiegg et al. 2002) and brood size in response to changes in resource avail-

ability in the burying beetle Nicrophorus vespilloides (Richardson et al. 2018).

On the other hand, inbreeding increases plasticity in the development of wing

shape in response to changing temperatures in Drosophila melanogaster (Schou

et al. 2015), which is likely associated with negative effects (Frazier et al. 2008).

However, little is known about the effects of inbreeding on behavioural plasticity;

that is, how an individual adjusts its behaviour in response to changing environ-

mental conditions. Unlike developmental traits, behaviours can change relatively

quickly in response to variation in the social and physical environment. These

changes are also reversible, allowing an individual to match its behavioural phe-

notype rapidly to environmental changes that occur within its lifetimes (Candolin

and Wong 2012, Snell-Rood 2013, Piersma and Drent 2003). Behavioural plas-

ticity is likely to be linked to an individual’s reproductive success and survival

given that many behaviours play a key role during mating (e.g., Rodríguez et

al. 2013), parenting (e.g., Royle et al. 2014), foraging (e.g., Sol et al. 2002)

and avoidance of predators or pathogens (e.g., Benard 2004). Understanding

the interplay between behavioural plasticity and inbreeding is now an important

challenge given that anthropogenic environmental change is expected to cause a

reduction in population sizes, thereby increasing the risk of inbreeding, and in-

duce changes in environmental conditions, such as resources required for breeding

due to advancing spring temperatures (Schiegg et al. 2002). Thus, there is now a

need for studies that investigate the effects of inbreeding on behavioural plasticity.

I investigate the effects of inbreeding on behavioural plasticity, focusing on be-
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haviours expressed in social interactions between individuals. I examine these

behaviours because the social environment is usually highly variable and social

interactions often involve highly plastic behaviours (Foster 2013). This is be-

cause individuals often adjust their behaviour in response to characteristics of

the conspecifics with which they interact, such as their behaviour, body size or

state, as well as the number of individuals in the group or the population. For

instance, individuals often adjust aggression to the competitive ability of competi-

tors (Simmons 1986), mating behaviour to the availability or quality of mating

partners (Kokko and Rankin 2006, Kvarnemo and Ahnesjo 1996), and parental

behaviour to the presence of and/or the amount of care provided by their part-

ner (Johnstone and Hinde 2006) or the offspring’s begging behaviour (Kacelnik

et al. 1995). Furthermore, there is evidence that inbreeding affects social in-

teractions (e.g. Richardson and Smiseth 2017, Mattey et al. 2018), suggesting

that inbreeding impacts how individuals respond to variation in their social en-

vironment. Inbreeding might alter behavioural plasticity in social interactions

if inbred individuals invest less in costly mechanisms required for adaptive be-

havioural plasticity (Dingemanse and Wolf 2013, Snell-Rood 2013). These might

include the necessary sensory and cognitive systems to perceive variation in the

social environment, process the relevant information, and mount a plastic be-

havioural response (DeWitt et al. 1998, Auld et al. 2010, Coppens et al. 2010,

Mathot et al. 2012). If so, I expect inbred individuals to adjust their behaviour

to the social context (requiring high cognitive abilities; Humphrey, 1976) less well

than outbred ones. Altogether, we might expect behaviours expressed in social

interactions to be particularly sensitive to the effects of inbreeding due to the key

role of behavioural plasticity in social interactions and the potential impact of

inbreeding on the necessary sensory and cognitive systems of such behaviours.

In this study, I investigate whether inbreeding alters the behavioural plasticity of

offspring and parental behaviours expressed in parent-offspring interactions in the

burying beetle Nicrophorus vespilloides. I focus specifically on parent-offspring

interactions because both offspring and parental behaviours are highly flexible
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(Kilner and Johnstone 1997, Smiseth et al. 2008, Royle et al. 2014). Larvae

beg to obtain food from their parents, and parents provision pre-digested food to

larvae (Eggert et al. 1998, Smiseth et al. 2003). Larvae adjust begging behaviour

to their hunger state, (which reflects the amount of food provisioned by parents

in the recent past), spending more time begging when subject to food-deprivation

(Smiseth and Moore 2004b, 2007). This plasticity in larval begging behaviour is

likely to be adaptive given that begging is associated with both fitness benefits

and fitness costs (Andrews and Smiseth 2016, Takata et al. 2019). Likewise,

parents adjust their parental behaviour in response to brood size, providing more

care towards larger broods (Smiseth et al. 2007a, Ratz and Smiseth 2018). This

plasticity in parental behaviour is also likely to be adaptive given that parents

caring for larger broods incur a fitness cost from providing more care (Ratz and

Smiseth 2018). Thus, assuming that larval and parental responses are adaptive,

any changes in plasticity in larval behaviour in response to food-deprivation and

parental behaviour in response to brood size are likely to have detrimental fit-

ness consequences. This change in plastic responses should remain irrespective of

changes in the average behaviour due to inbreeding. For example, inbred larvae

may be needier and overall beg more than outbred larvae. Such a difference be-

tween inbred and outbred larvae would be consistent regardless of their level of

food deprivation. In addition, previous work shows that inbreeding affects larval

begging behaviour (Mattey and Smiseth 2015, Mattey et al. 2018), and offspring

inbreeding affects the amount of care provided by outbred parents (Mattey et al.

2013, Mattey et al. 2018, Ratz et al. 2018). Thus, inbreeding alters trait values

of behaviours involved in parent-offspring interactions.

My aim was to test for effects of inbreeding on behavioural plasticity by focusing

on the interactions between inbreeding status and larval and parental behaviours

across two environmental gradients. In the first experiment, I manipulated the

inbreeding status of larvae (inbred or outbred) and monitored larval responses to

variable lengths of food deprivation. In the second experiment, I manipulated the

inbreeding status of parents (inbred or outbred) and monitored parental responses
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to variable brood sizes. If inbreeding reduced the ability of individuals to respond

to variation in their environment, I predicted an effect of the interaction between

the inbreeding status of larvae and food-deprivation on the amount of time spent

begging and/or associating with the parent by larvae. Likewise, I predicted an

effect of the interaction between the inbreeding status of the parent and brood

size on time spent provisioning food and/or associating with the brood by parents.

7.2 Methods

I used beetles from the 7–9th generations of an outbred laboratory population

descending from individuals collected in Corstorphine Hill, Edinburgh, UK. The

population was maintained under 20�C and a 16:8h light:dark photoperiod. Non-

breeding adult beetles were kept in individual transparent plastic containers (12

cm ⇥ 8 cm ⇥ 2 cm) filled with moist soil and fed organic beef twice a week.

Inbreeding was minimized in the stock population by avoiding breeding between

closely-related individuals (defined as individuals sharing at least one common

grandparent), by maintaining a large stock population comprised of 100–150

breeding pairs per generation (Mattey et al. 2018), and by supplementing the

stock population annually with wild-caught beetles from the collection site in

Blackford Hill, Edinburgh, UK. I produced inbred individuals by pairing full-

sibling beetles from the stock population in the previous generation (Mattey et

al. 2018). Given the negligible level of inbreeding in the stock population (see

Mattey et al. 2018), inbred and outbred individuals had a coefficient of inbreed-

ing of F ⇡ 0.25 and 0, respectively, when referenced to the local wild population

from the collection site.

7.2.1 Larval behaviour

In my first experiment, I manipulated the inbreeding status of larvae and moni-

tored their response to three different levels of food deprivation. I manipulated

the inbreeding status of larvae by assembling experimental broods where all lar-
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vae in the brood were either outbred (N = 26) or inbred (N = 28). To this end,

I set up pairs of virgin outbred parents at the start of the experiment by placing

a male and a female in a large plastic container (17 cm ⇥ 12 cm ⇥ 6 cm) filled

with 1 cm of moist soil and containing a previously frozen mouse carcass weighing

20.1–25.0g. I generated inbred offspring by mating females to their full sibling

brothers and I produced outbred offspring by mating other females to unrelated

males. On the day before I anticipated the eggs to hatch (i.e. two days after the

onset of egg-laying; Smiseth et al. 2006), I moved females and their carcasses

to new containers lined with fresh soil (the males were discarded; Figure 7.1a)

while leaving their eggs behind in the old container. These separations were done

so that I could allocate an experimental brood made up of 15 same-aged larvae

of mixed maternal origin to each female (Smiseth et al. 2007a). I standardized

brood sizes in order to avoid potential confounding effects due to variation in

brood size and larval age on larval behaviour (Smiseth et al. 2003, Smiseth et al.

2007a, Paquet and Smiseth 2017). I only allocated experimental broods to each

female once her own eggs had hatched because parents will kill any larvae that

emerge on the carcass before their own eggs have hatched (Müller and Eggert

1990).

For each brood, I collected data on larval behaviour at three different lengths of

food-deprivation: 0 min, 90 min, and 180 min. I selected these durations based

on information from preliminary tests confirming that these treatment were sig-

nificantly increasing food deprivation without being lethal to larvae (Ratz et al.

unpublished data). To this end, I performed three consecutive 15-min observa-

tion sessions on each brood over a 195-min period, starting 24h (±15 min) after

a given brood was placed on a carcass. I recorded larval behaviour away from

the mouse carcasses using a dead female parent as a stimulus. I did so to ensure

that larvae had no access to food during the experiment, which otherwise would

have interfered with the food-deprivation treatment. Using a dead female as a

stimulus also allowed me to exclude any potential effect of variation in female

behaviour on larval behaviour (Smiseth and Parker 2008, Smiseth et al. 2010),
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experimental brood away from the female and left the larvae to acclimatise for

5 min before starting the first observation (see details below). Thus, in order to

beg for food from the female, larvae first had to move towards the female to asso-

ciate with her. Larvae might later move away from the female to search for other

sources of food given that the female was dead and that larvae would receive no

returns on their begging effort. Larvae were often observed to remain cohesive

as a group, regardless of whether they were associating with the female or away

from her. When away from the female, larvae would sometimes split into multiple

groups and move around the container at a slow pace either individually or as a

group. Note that each brood was placed with its caring female, and that larvae

therefore always were exposed to a familiar female during the observation. After

the first observation, the female was removed, and the larvae were kept in the

container for another 75 min to give a total of 90 min of food deprivation. For the

second observation, I again pinned the female in the centre of the container and

returned the experimental brood to where it was placed at the start of the first

observation. I repeated this procedure once more by removing the female at the

end of the second observation and keeping the larvae in the container for another

75 min for a total of 180 min of food deprivation. Although larvae may not ex-

perience this level of food deprivation in natural situations, there will be natural

variation in hunger level due to the time elapsed since they were last provisioned

food by a parent (Smiseth et al. 2003). Larvae beg more and are hungrier when

they cannot receive food from a parent, suggesting that larvae are less efficient at

obtaining food by self-feeding and have greater benefits when they obtain food

from their parents (Smiseth and Moore 2004b). Furthermore, larvae may have

limited access to those parts of the carcass that are most easily processed, espe-

cially when larvae are young and have relatively small mandibles (Eggert et al.

1998, Jarrett et al. 2018). I used these food-deprivation treatments for pragmatic

reasons, because it provides a straightforward procedure for generating variation

in larval hunger levels (Smiseth and Moore 2004b, 2007).

During each observation session, I monitored larval behaviour every 60 s over
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a 15-min period. I recorded larval begging as the number of larvae that were

touching any part of the female’s body with their legs (Smiseth et al. 2003). I

also recorded larval association with the female as the number of larvae that were

within reaching distance from the female (i.e., a distance equal to or less than

the pronotom length of the female). Based on these measures, I calculated the

average time spent begging per larva in the brood (B) as the number of begging

events cumulated across the 15 scans (⌃b) divided by the cumulated number of

larvae near the female (n), or B = ⌃b/n. I also calculated the average time per

larva in the brood spent associating with the female (A) as the number of larvae

that were near the female across the 15 scans (⌃a) divided by the total number

of larvae in the brood (n), or A = ⌃a/n.

7.2.2 Parental behaviour

In my second experiment, I manipulated the inbreeding status of parents and

monitored their response to small and large broods. In the previous generation, I

generated inbred parents by mating their mother to her full sibling brother, and

I generated outbred parents by mating their mother to an unrelated male. I used

both male and female parents in this experiment, allowing me to detect potential

sex differences in behavioural plasticity of parents (Royle et al. 2014, Royle and

Hopwood 2017). Thus, I used a 2 ⇥ 2 factorial design in which I recorded the

behaviour of 313 adult beetles. As I was interested in how parents adjust care in

response to brood size, I excluded 175 individuals that were not observed provid-

ing care at least once to any one of the two broods. The final sample included

36 inbred males, 31 outbred males, 36 inbred females and 35 outbred females.

To initiate breeding, I paired each experimental parent to an unrelated outbred

partner. I placed the breeding pair into a larger plastic container (17 cm ⇥ 12 cm

⇥ 6 cm) filled with 1 cm of moist soil and containing a previously frozen mouse

carcass of a standardized size (20.3–23.9 g) (Livefoods Direct, Sheffield). I sepa-

rated the parents from their eggs two days after the first egg was laid by moving

the parents and their carcass to a new container containing fresh soil (Figure
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7.1b). I discarded the partner at the same time to ensure that any effect of brood

size on parental behaviour was not confounded by the presence of the partner.

Once the eggs had started hatching, each experimental parent was allocated a

brood of ten larvae (hereafter referred to as the baseline brood) to whom they

provided care until being allocated the first experimental broods 24h later (see

below). To avoid filial cannibalism, I allocated baseline broods to parents only

once their own larvae had hatched.

In parallel with setting up the experimental parents, I set up additional pairs of

unrelated males and females. I did this to produce additional larvae that were

used to generate both baseline and experimental broods. The additional pairs

also functioned as foster parents for the small and large experimental broods un-

til they were allocated to an experimental parent 24h after it had been allocated

its initial baseline brood. As described for the experimental parents above, I

separated foster parents from their eggs two days after the first egg was laid by

moving the parents and their carcass to a new container containing fresh soil.

However, I left both foster parents with the broods to ensure that all experimen-

tal broods had encountered both a male and a female parent. Once eggs had

started hatching, I allocated each foster pair either a small brood of 5 larvae or

a large brood of 20 larvae, which fall well within the range of natural brood sizes

for this species (Smiseth and Moore 2002). I used these brood sizes because prior

studies have shown that parents provide double the amount of time spent caring

towards a brood of 20 compared to a brood of 5 larvae (Smiseth et al. 2007a,

Ratz and Smiseth 2018).

For each parent, I collected data on their parental behaviour towards two different

brood sizes: 5 and 20 larvae. I performed two consecutive 30-min observation ses-

sions for each parent, starting 24h (±15 min) after the parent had been provided

with the initial baseline brood. I randomised the order in which experimental

parents were provided with broods of different sizes. I first removed the origi-

nal mouse carcass containing the baseline brood of 10 larvae and immediately
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replaced it with a carcass from a foster pair containing an experimental brood

of either 5 or 20 larvae. I allowed the larvae to settle for 30 min before starting

the first observation. Immediately after the first observation was completed, I

replaced this carcass with a carcass from a different foster pair containing an

experimental brood of the opposite treatment (5 larvae if the first experimental

brood had 20 larvae and vice versa). I again allowed the larvae to settle 30 min

before starting the second observation.

During each observation session, I monitored the behaviour of experimental par-

ents every 60 s over a 30-min period. I recorded parental provisioning of food

to the brood as a mouth-to-mouth contact between the parent and at least one

larva. I also recorded parental association with the brood as the parent being

present on the carcass or within the crypt (the depression in the soil immediately

surrounding the carcass). I calculated the percentage of time spent provisioning

food to the brood and associating with the brood as the total number of scans

the parents was performing the behaviour of interest (i.e., 0–30) divided by the

number of scans in the observation session (i.e., 30).

7.2.3 Data analysis

All statistical analyses were conducted using R version 3.6.0 (R Development

Core Team, 2019) with the packages car (Fox et al., 2016) and lme4 (Bates et

al. 2014). I quantified differences in behavioural plasticity between inbred and

outbred larvae by estimating the effect of the interaction between the inbreeding

status of larvae and the length of food deprivation on larval behaviour. I used

general linear mixed models that assumed a binomial error structure to analyse

larval behaviours (i.e., time spent begging towards and associating with the fe-

male). These models included the length of food-deprivation (0 min, 90 min and

180 min) as a continuous fixed effect and inbreeding status of larvae (inbred or

outbred) as a categorical fixed effect, as well as the interaction between the two.

I included brood size at the time of observation as covariate in the models to ac-
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count for potential effects of brood size on larval behaviour. I also included brood

ID and observation level as random effects to account for repeated observations

on each brood and overdispersion of the data (Harrison 2015), respectively.

To quantify differences in behavioural plasticity between inbred and outbred par-

ents, I estimated the effect of the interaction between the inbreeding status of

parents and brood size on parental behaviour. I used generalised linear mixed

models that assumed a binomial error structure to analyse parental behaviours

(i.e., time spent provisioning food and associating with the brood). These models

included brood size (5 and 20 larvae) as a continuous fixed effect, inbreeding status

of the parent (inbred or outbred) as a categorical fixed effect, and an effect of the

interaction between the two. I also included sex of the parent as covariate to test

for potential sex differences in the behavioural plasticity of parental behaviour.

To account for repeated observations on the same focal individuals, I included

parental ID as random effects in both models. To account for overdispersion, I

also included observation level as additional random effects in the model testing

for effects on time spent associating with the brood.

7.3 Results

7.3.1 Larval behaviour

My main aim was to test for differences in behavioural plasticity between inbred

and outbred individuals, and I therefore focused first on the interaction between

the inbreeding status of larvae and the length of food-deprivation on larval be-

haviour. There was no effect of this interaction on time spent begging (Table 7.1).

Thus, for larval begging, there was no difference between inbred and outbred lar-

vae with respect to behavioural plasticity in response to a change in hunger state

(Figure 7.2a). However, there was a significant effect of this interaction on the

amount of time spent associating with the female (Table 7.1), indicating that

inbred larvae spent less time associating with the female as they became hungrier
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7.4 Discussion

I show that inbreeding in larvae of N. vespilloides was associated with increased

behavioural plasticity for time spent associating with the female parent, as in-

bred larvae showed a greater response to food deprivation than outbred ones.

However, inbreeding was not associated with a change in behavioural plasticity

in time spent begging or in the time that parents of either sex spent provisioning

food or associating with the larvae. My results derive from two experiments, in

which I monitored behavioural plasticity in larvae in response to experimental

variation in the length of food deprivation and behavioural plasticity in parents

in response to experimental variation in brood size. I generated variation across

two environmental stress gradients experimentally in order to remove confound-

ing effects on plasticity in larval and parental behaviours. Furthermore, my study

focused on behavioural plasticity in environmental gradients that larvae and par-

ents are exposed to and respond to under natural conditions. Below, I discuss the

wider implications of my results for our understanding of the effects of inbreed-

ing on behavioural plasticity and how such effects may provide a mechanism for

inbreeding-by-environment interactions affecting fitness.

My study shows that larvae spent less time associating with the female as they

became hungrier and that this decline was more pronounced in inbred larvae than

in outbred ones. Currently, little is known about the potential adaptive value of

behavioural plasticity in larval association with the female. Larvae associate with

parents because they need to be in close proximity to them in order to beg for

food (Smiseth and Moore 2002). In my experimental design, larvae had to move

towards the female in order to be in close proximity to her. Larvae may later

move away from the female because they would receive no returns on their begging

given that I used a dead female as a standardised stimulus. My results suggest

that inbred and outbred larvae spent a similar amount of time associating with

the female at the start of the experiment, but inbred larvae spent more time away

from the female as the length of food deprivation increased (Figure 7.2b). Thus,

my results show that inbred larvae had a greater degree of behavioural plasticity
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than outbred ones. Nevertheless, I urge caution when interpreting my results

given that I monitored larval behaviour towards a dead parent in the absence

of a carcass. I used a dead parent as a stimulus to ensure that larvae had no

access to food during the experiment (which would otherwise interfere with my

experimental treatment) and to control for confounding effects caused by parental

behaviour (e.g., Smiseth and Parker 2008, Smiseth et al. 2010). Prior work shows

that the presence of a dead parent stimulates high levels of larval begging for at

least 180 min (Smiseth and Parker 2008). Yet, a consequence of this design is

that larvae were exposed to an unresponsive parent for a considerable amount of

time, which might explain why hungrier larvae spent less time associating with

the female. In natural situations, where larvae interact with a live female on a

carcass, I would expect hungrier larvae to spend more time associating with the

female because larvae must stay in close proximity to her in order to have the

opportunity to beg for food (Smiseth and Moore 2002). In such situations, larvae

face a choice between self-feeding from within the crater of the carcass (i.e. the

cavity prepared by the parents) and leaving the crater to associate with a caring

parent (Smiseth et al. 2003). Given that the larvae in my experiment could not

get access to food from the dead female, and that there was no carcass from which

to self-feed, larvae may have responded to food deprivation by associating less

with the female and by searching for opportunities to obtain food by self-feeding

(Smiseth et al. 2003). In light of this, I would not necessarily expect larvae to

respond in a similar way to food deprivation when interacting with a live parent

(Smiseth et al. 2003).

One potential explanation for my finding that inbreeding was associated with

increased behavioural plasticity in larvae is that inbred larvae have higher nu-

tritional needs than outbred ones. Offspring begging is thought to be an honest

signal that reliably reflects the offspring’s nutritional needs (Godfray 1995), and

there is good evidence that begging reflects larval hunger in my study species

(Smiseth and Moore 2004b). Thus, if inbred larvae did have higher nutritional

needs than outbred ones, I would expect inbred larvae to spend more time begging
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and to show greater plasticity in this behaviour. However, I found no evidence

that this was the case as there was no effect of the interaction between larval

inbreeding status and length of food-deprivation on time spent begging. Further-

more, prior work on this species shows that inbred larvae spend less time begging

to a live parent than outbred ones (Mattey et al. 2018). An alternative expla-

nation is that inbred larvae were less able to sustain the costs of begging with

an increase in the length of food deprivation than outbred ones. This explana-

tion, however, seems unlikely given that I found that inbred and outbred larvae

increased their level of begging to similar degrees in response to an increase in

the length of food deprivation. Thus, there is no evidence that my results can

be explained as a consequence of inbred larvae having higher nutritional needs

or greater costs of begging. A final explanation is that inbreeding constrains

an individual’s ability to invest in costly cognitive and/or sensory mechanisms

required for adaptive behavioural plasticity (Dingemanse and Wolf 2013, Snell-

Rood 2013). In this case, inbred individuals may not be able to adjust their

behaviour as effectively to match changing conditions (e.g. Schiegg et al. 2002).

For example, a recent study on my study species found that inbred females are

less able than outbred females to adjust brood size when the size of the carcass

is changed experimentally just prior to hatching (Richardson et al. 2018). Thus,

inbreeding undermines the ability of burying beetles to make sensible life deci-

sions, suggesting that my results may reflect that inbred larvae were less able to

make an appropriate decision between staying near the female and searching for

opportunities to self-feed.

My finding that inbred larvae showed greater behavioural plasticity has impor-

tant implications for our understanding of the mechanism for inbreeding-by-

environment interactions. Inbreeding is often associated with an increased sensi-

tivity to environmental stress (Armbruster and Reed 2005, Cheptou and Dono-

hue 2011, Fox and Reed 2011), and prior work suggests that such inbreeding-

by-environment interactions may arise if inbreeding is associated with reduced

phenotypic plasticity (Fowler and Whitlock 1999, Reed et al. 2003, Reed et al.
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2012, Bijlsma and Loeschcke 2012). The rationale for this explanation is that

inbred individuals are less able to adjust their phenotype to cope with stressful

environmental conditions than outbred individuals. However, my results show

that inbreeding can be associated with increased phenotypic plasticity. Increased

behavioural plasticity may cause inbreeding-by-environment interactions for traits

that are canalised because, for some traits, there may be selection that favours

resistance to phenotypic plasticity (Schou et al. 2015). For example, Schou et al.

(2015) found that inbred lines of Drosophila melanogaster had higher plasticity in

the developmental response of wing size in response to high temperatures. This

may come at a fitness cost as small wings may reduce flight performance in warmer

environments more in inbred individuals (Frazier et al. 2008). Just as there can

be detrimental effects from too much developmental plasticity, stabilizing selec-

tion may also favour the evolution of intermediate levels of behavioural plasticity.

Thus, if there is an optimal behavioural response, we might expect inbreeding-

by-environment interactions if inbred individuals show either too much or too lit-

tle behavioural plasticity. Furthermore, inbreeding-by-environment interactions

could occur under stabilizing selection if inbred individuals show greater variance

in behavioural plasticity, even if there is no difference in mean plasticity between

inbred and outbred individuals. This would be the case if some inbred individu-

als show reduced behavioural plasticity whilst others show increased behavioural

plasticity compared to outbred individuals. Thus, there is a need for further work

focusing on how selection works on behavioural plasticity.

In summary, I found that inbreeding affects behavioural plasticity of some larval

behaviours (time spent associating with a parent), whereas inbreeding had no

effect on behavioural plasticity of other larval behaviours (time spent begging) or

any parental behaviours (time spent provisioning food and associating with the

brood). To my knowledge, this is the first study investigating how inbreeding

affects plasticity of social behaviours. My findings suggest that effects of inbreed-

ing on behavioural plasticity may be one of the potential mechanisms underlying

the effects of inbreeding on social interactions among individuals (e.g. Richard-
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son and Smiseth 2017, Mattey et al. 2018). More generally, my findings have

important implications for our knowledge about inbreeding depression by show-

ing that inbred individuals can show greater behavioural plasticity in response to

environmental variation than outbred ones. I suggest that effects of inbreeding

on behavioural plasticity may cause inbreeding-by-environment interactions for

traits where there are negative fitness consequences of showing either too much

or too little plasticity in response to changing environmental conditions. I en-

courage more work on the interplay between inbreeding and adaptive behavioural

plasticity given that inbreeding and stress due to environmental change are grow-

ing conservation concerns in many natural populations (e.g. Reed et al. 2012,

Hamilton and Miller 2015). Understanding the interplay between them will now

be critical in our understanding of how natural populations respond to environ-

mental change, such as climate change and population decline.
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8 Effects of biparental care and inbreeding on off-

spring performance

This chapter has been published as:

Ratz T, Castel E, Smiseth PT (2018) Male assistance in parental care does not

buffer against detrimental effects of maternal inbreeding on offspring. Frontiers

in Ecology and Evolution 6:196.

Abstract

The severity of inbreeding depression often varies across environments and re-

cent work suggests that social interactions can aggravate or reduce inbreeding

depression. For example, stressful interactions such as competition can exacer-

bate inbreeding depression, whereas benign interactions such as parental care can

buffer against inbreeding depression in offspring. Here, I test whether male as-

sistance in parental care can buffer against the detrimental effects of maternal

inbreeding on offspring fitness in the burying beetle Nicrophorus vespilloides. My

results confirm that maternal inbreeding had detrimental effects on offspring sur-

vival. However, I found no evidence that male assistance in parental care buffered

against those effects on offspring fitness. Outbred females benefited from male as-

sistance, gaining more weight over the breeding attempt when assisted by a male.

In contrast, inbred females did not benefit from male assistance, gaining as much

weight regardless of whether they were assisted by a male or not. Surprisingly,

I find that males gained more weight during the breeding attempt when mated

to an inbred female, suggesting that males benefited from assisting an inbred

female partner in terms of their weight gain. Overall, my findings suggest that

parental care or other benign social interactions may not always reduce indirect

detrimental effects of inbreeding depression.
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8.1 Introduction

Inbreeding depression, defined as the reduction in fitness of progeny produced as

a consequence of mating between relatives, has been reported in a broad diversity

of animals and plants (reviewed in Charlesworth and Charlesworth 1987, Keller

and Waller 2002, Charlesworth and Willis 2009). There is ample evidence for in-

breeding depression in fitness-related traits, including fecundity, offspring growth

and survival, and longevity from studies conducted under both laboratory and

natural conditions (Keller 1998, Slate et al. 2000, Keller and Waller 2002). There

is growing awareness that the magnitude of inbreeding depression often varies be-

tween species or studies on the same species (e.g. Fox and Scheibly 2006). This

may reflect that inbreeding depression is often more severe under more stressful

environmental conditions (Hoffmann and Parsons 1991, Armbruster and Reed

2005, Cheptou and Donohue 2011). The social environment may play an im-

portant role in this context because social interactions can amplify or alleviate

stress, thereby exacerbating or buffering against inbreeding depression. For exam-

ple, direct competition between inbred and outbred males exacerbates inbreeding

depression in house mice (Mus domesticus) (Meagher et al. 2000). Meanwhile,

parental care buffers against inbreeding depression in offspring in the burying

beetle Nicrophorus vespilloides (Pilakouta et al. 2015a).

The examples provided above illustrate that social interactions with other indi-

viduals can have an important impact on the fitness of those individuals that are

themselves inbred (e.g., Meagher et al. 2000, Pilakouta et al. 2015a). However,

there is mounting evidence for indirect genetic effects associated with inbreeding

whereby outbred individuals suffer fitness costs as a result of interacting with

or depending upon inbred ones (Mattey et al. 2013, Richardson and Smiseth

2017). For example, in species where parents care for their offspring, parental in-

breeding can have detrimental effects on the offspring’s fitness. Recent studies on

the burying beetle Nicrophorus vespilloides and red deer (Cervus elaphus) show

that maternal inbreeding is associated with lower offspring survival (Mattey et

al. 2013, Huisman et al. 2016). Such effects of maternal inbreeding on offspring
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fitness may result from inbred females providing less or lower-quality care than

outbred ones (Mattey et al. 2013). Currently, it is unclear whether interactions

with third-party individuals may buffer against the detrimental effects of maternal

inbreeding on offspring fitness. For example, in species with biparental care, the

presence of a male partner may offset some of the detrimental effects of maternal

inbreeding on offspring. In support for this hypothesis, a study on zebra finches

(Taeniopygia guttata) found that maternal inbreeding had no detectable effect

on offspring fitness, independently of male care and even though inbred mothers

spent less time incubating their eggs (Pooley et al. 2014). In this study, males

always assisted with parental care. Thus, there is now a need for studies that

examine whether male assistance in parental care buffers against the detrimental

effects of maternal inbreeding on offspring fitness by manipulating the presence

and absence of male assistance.

The burying beetle Nicrophorus vespilloides is well suited to test whether male

assistance in care buffers against the detrimental effects of maternal inbreeding

on offspring fitness. In this species, both parents cooperate to bury, maintain and

guard the vertebrate carcass, which serves as the sole food source for both larvae

and parents during breeding. Both parents also care for the larvae after hatch-

ing, though females spend more time provisioning food than males and males

desert the brood earlier than females (Bartlett and Ashworth 1988, Smiseth et

al. 2005). Males respond to the removal or desertion of the female or the re-

duced amount of care of handicapped females by increasing their time spent on

paternal care (Smiseth et al. 2005, Royle et al. 2014, Creighton et al. 2015).

Furthermore, males spend more time providing care when paired with an inbred

female, suggesting that males respond to inbreeding status of their female partner

(Mattey and Smiseth 2014). There is good evidence that maternal inbreeding has

a detrimental impact on the fitness of outbred offspring, reducing larval survival

(Mattey et al. 2013, 2018, Ford et al. 2018; but see Mattey and Smiseth 2014).

However, there is no information as to whether male assistance in parental care

buffers against the detrimental effects of maternal inbreeding on offspring fitness.
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Here, I use a 2⇥3 factorial design to test whether male assistance in parental

care buffers against the detrimental effects of maternal inbreeding on offspring

fitness in the burying beetle Nicrophorus vespilloides. I paired an inbred or out-

bred female with an unrelated inbred or outbred male that assisted the female

with parental care during larval development. I also added additional treatments

where the male was experimentally removed before larval hatching such that the

inbred or outbred female received no assistance in parental care. My first aim was

to test whether male assistance in parental care buffers against the detrimental

effects of maternal inbreeding on offspring fitness. If so, I predicted effects of

the interaction between maternal inbreeding (inbred or outbred) and male sta-

tus (inbred, outbred or absent) on offspring fitness (i.e., mean offspring survival

and/or weight), reflecting that maternal inbreeding had a greater negative im-

pact on offspring fitness when the male is absent than when the female receives

assistance from a male. Furthermore, if inbred males have a reduced capacity

to buffer against the detrimental effects of maternal inbreeding, I predicted that

maternal inbreeding would have a greater negative impact on offspring fitness

when the female was assisted by an inbred male rather than an outbred male.

I next tested whether male assistance in parental care had an impact on female

and male weight change whilst providing care. In this species, the amount of

carrion consumed by a parent reflects parental allocation towards future repro-

duction (Creighton et al. 2009). Thus, if male assistance in parental care buffers

against the detrimental effects of maternal inbreeding, thereby allowing females

to save more resources for investment in future reproduction, I predicted females

to gain more weight when assisted by a male than when the male was absent.

If outbred males were better able to buffer for the effects of maternal inbreeding

than inbred ones, I predicted that females assisted by an outbred male would gain

more weight than those assisted by an inbred male. Finally, as inbred females are

expected to provide lower quality care than outbred ones, I predicted that males

paired with an inbred female would gain less weight than males paired with an

outbred female, reflecting that the former increase their investment in current
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reproduction (Mattey and Smiseth 2014).

8.2 Methods

The beetles used in these experiments originated from wild beetles originally

collected in Corstorphine Hill, Edinburgh, U.K. In order to avoid unintended in-

breeding, a large outbred laboratory population was maintained (Mattey et al.

2018). To this end, 200–300 individuals each generation were bred, while three

offspring from each brood were recruited to the next generation. Non-breeding

adult beetles were kept in individual transparent plastic containers (12 cm ⇥ 8

cm ⇥ 2 cm) filled with moist soil, and fed small pieces of organic beef twice a

week. The beetles were kept under constant temperature (20�C) and photoperiod

(16:8 hours light:dark).

8.2.1 Experimental design

To test whether male assistance in parental care buffers against the detrimental

effects of maternal inbreeding on offspring fitness, I used a 2⇥3 factorial design

in which an inbred or an outbred female was mated with an inbred or outbred

male that later assisted the female in parental care (inbred female mated to an

inbred male: N = 51; inbred female mated to an outbred male: N = 36; outbred

female mated to an inbred male: N = 48; outbred female mated to an outbred

male: N = 35). This design also included two additional treatments where an

inbred or an outbred female was mated with a male that was removed before the

larvae hatched (N = 40 and N = 38 for inbred and outbred females, respectively).

I generated inbred females and males for use as parents in this experiment by par-

ing their mother with her full-sibling brother in the previous generation (Mattey

et al. 2018). Meanwhile, I generated outbred females and males by paring their

mother with an unrelated male (i.e., a male with which the mother did not share

an ancestor for at least two generations; Mattey et al. 2018). Once the inbred
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and outbred females and males had reached sexual maturity, I randomly assigned

each individual to one of the six treatments. At the start of the experiment, I

weighed each female and male. I then paired inbred and outbred females with an

unrelated inbred or outbred male partner depending on the treatment to which

they had been assigned, and transferred them into a larger transparent plastic

container (17 cm ⇥ 12 cm ⇥ 6 cm) filled with 1 cm of moist soil. I provided each

pair with a previously frozen mouse carcass of a standardized size (22.33–26.89

g) (supplied by Livefoods Direct, Sheffield, UK) to initiate breeding. I checked

each container for the presence of eggs daily and recorded the date at which the

first eggs appeared as the start of egg laying. Two days after the start of egg

laying, I recorded clutch size as the number of eggs that were visible through

the bottom of the transparent containers (Monteith et al. 2012). In the lim-

ited amount of soil that I used, the number of eggs visible at the bottom of the

container is strongly correlated with the actual clutch size (Monteith et al. 2012).

In those treatments where the male was absent during larval development, I re-

moved the male from the container two days after the outset of egg laying as this

corresponds to the day before hatching (Smiseth et al. 2006). In the remaining

treatments, I left the inbred or outbred male within the container thereby allow-

ing him to assist the female in providing parental care until the larvae completed

development and dispersed from the mouse carcass (hereafter referred to as larval

dispersal). At larval dispersal, I recorded brood size by counting the number of

larvae in the brood and weighed the total mass of the brood. I estimated the

proportion of offspring surviving until dispersal as the brood size at dispersal

divided by the clutch size. I calculated mean larval mass as the total mass of the

brood divided by the brood size. At larval dispersal, I also weighed each female

and male parent. I then estimated the percentage of weight gain of females and

males during breeding as the relative difference in body mass measured at mating

(Wm) and the body mass at larval dispersal (Wd): Wd�Wm

Wm
⇥100. I used informa-

tion on the relative weight gain rather than the absolute weight gain in females

in order to control for potential differences in body size across individuals given
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that inbred females were significantly lighter than outbred females at the start of

the experiment (LR�2 = 4.43, df = 1, P = 0.035).

8.2.2 Data analysis

All statistical analyses were conducted using R v 3.3.3 (R Development Core

Team, 2019) loaded with the package car (Fox et al., 2016). To analyse data

on offspring survival until dispersal, I used a Poisson generalized linear model. I

analysed data on mean larval mass at dispersal and weight gains by females and

males using general linear models fitted with a Gaussian error structure. These

models always included maternal inbreeding (inbred or outbred) and male status

(inbred, outbred or absent) as fixed factors. I included female relative weight gain

as an additional fixed factor in the model on male relative weight gain as male

carrion consumption and weight change has been shown to depend on female

carrion consumption and weight gain (Pilakouta et al. 2016). I also controlled

for potential differences in body size by including mating weight as a fixed factor

in the model on female absolute weight gain. I excluded carcass size from the

analyses given that I used mouse carcasses of a narrow, standardized size in my

experiment (22.33–26.89 g). Furthermore, there was no significant effect of car-

cass size in any of my analyses when I included it as a fixed factor. I assessed

and evaluated whether the structure of all models was appropriate for each vari-

able by plotting the residuals from the models. Whenever there was a significant

effect of male status (inbred, outbred or absent), I tested for differences between

each treatment using Tukey contrasts reporting p-values based on the Bonferroni

correction for multiple testing.
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8.3 Results

8.3.1 Offspring fitness

There was no significant effect of the interaction between maternal inbreeding (in-

bred or outbred) and male status (inbred, outbred or absent) on the proportion

of offspring surviving until dispersal (Maternal inbreeding:Male status, Table 8.1,

Figure 8.1a). Thus, there was no evidence that male assistance in parental care

buffered against the detrimental effects of maternal inbreeding on offspring fitness.

I next explored potential main effects of maternal inbreeding and male status on

offspring fitness. As expected, broods reared by outbred females had a larger

proportion of offspring surviving until dispersal than broods reared by inbred

females (Table 8.1, Figure 8.1a), thus confirming that maternal inbreeding had

detrimental effects on offspring survival. There was no difference in the proportion

of offspring surviving until dispersal depending on whether the male was inbred,

outbred or absent (Table 8.1, Figure 8.1a). There was no difference in mean larval

mass at dispersal between inbred and outbred females (Table 8.1, Figure 8.1b).

Likewise, there were no significant main effects of male status mean larval mass

at dispersal (Table 8.1, Figure 8.b). These findings suggest that there was no

detrimental effect of maternal or paternal inbreeding on mean offspring weight

and that male assistance had no positive main effects on mean offspring weight.

Table 8.1: Effects of maternal inbreeding (inbred or outbred) and male status
(inbred, outbred or absent) on offspring survival until dispersal and mean larval
mass at larval dispersal. Values are obtained from GLMs.

Offspring survival Mean larval mass

LR�2 df P LR�2 df P

Maternal inbreeding:Male status 0.275 2 0.871 2.85 2 0.239
Maternal inbreeding 9.55 1 0.002 1.21 1 0.270
Male status 0.711 2 0.700 3.52 2 0.172
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8.4 Discussion

Here, I tested whether male assistance in parental care buffers against the detri-

mental effects of maternal inbreeding on offspring fitness in N. vespilloides. I

found that maternal inbreeding had detrimental effects on offspring fitness in

terms of reduced offspring survival, indicating that inbred females provide a less

favourable environment compared with outbred females. This confirms the re-

sults of prior work on this species (Mattey et al. 2013, Ford et al. 2018; but

see Mattey and Smiseth 2014) and evidence from studies on vertebrate systems

(Keller 1998, Huisman et al. 2016, Bérénos et al. 2016). However, I found no

evidence that male assistance in parental care buffered against these detrimen-

tal effects. Male assistance in care had a positive effect on female weight gain

during breeding, showing that male assistance in parental care was beneficial to

females. However, this was only the case when females were outbred, suggesting

that outbred females benefitted more from male assistance than inbred ones. Fi-

nally, males paired with an inbred female gained more weight than those paired

with an outbred female. This finding is opposite to what I predicted if males

paired with an inbred female increased their investment in current reproduction.

Instead, this result may reflect that males paired with an inbred female spent

more time provisioning food to the larvae, thereby gaining better access to con-

sume food from the carcass (Pilakouta et al. 2016). Overall, my results provide

no support that male assistance in parental care buffers against the detrimental

effects of maternal inbreeding on offspring fitness. Below, I provide a more de-

tailed discussion of my results and their implications for our understanding of the

consequences of inbreeding in populations where social interactions are prevalent.

My first key finding was that maternal inbreeding had detrimental effects on off-

spring fitness in terms of reduced larval survival from egg laying until dispersal,

but this effect was independent of whether the male was absent or present, and

when the male was present, whether the male was inbred or outbred. Thus, my

results provide no evidence that male assistance in parental care buffered against

the detrimental effects of maternal inbreeding on offspring fitness. This finding

154



contrasts with experimental evidence from a recent study on zebra finches, sug-

gesting that male assistance in parental care buffers against the detrimental effects

of maternal inbreeding. In zebra finches, inbred females spend less time incubat-

ing eggs, and buffering is thought to reflect that males compensate for the reduced

incubation by inbred females (Pooley et al. 2014). Prior work on N. vespilloides

shows that maternal inbreeding can reduce both offspring hatching (i.e., at the

egg stage; Ford et al. 2018, Mattey and Smiseth 2014) and offspring survival

after hatching (i.e., at the larval stage; Mattey et al. 2013, Ford et al. 2018).

Thus, one potential explanation for why male assistance did not buffer against

the detrimental effects of maternal inbreeding on offspring is that post-hatching

male care cannot buffer against effects on hatching success. This explanation

may also apply to other systems as detrimental effects of maternal inbreeding on

hatching success have also been reported for example in song sparrows (Keller

1998). An alternative explanation for why male assistance in parental care did

not buffer against the detrimental effects of maternal inbreeding is that male as-

sistance in care in this species does not increase larval survival from hatching

until dispersal under laboratory conditions (Smiseth et al. 2005). This presum-

ably reflects that males contribute far less towards parental care than females in

this species (Smiseth et al. 2005). This sex difference in parental care may also

explain why there were detrimental effects of maternal inbreeding on offspring fit-

ness, whilst there were no such detrimental effects of paternal inbreeding. I note

that male assistance in guarding and defending the brood against predators or

conspecific intruders plays an important role under natural conditions in burying

beetles (Scott 1990). Thus, it is possible that male assistance in parental care

could buffer against detrimental effects of maternal inbreeding on offspring fitness

under natural conditions where competitors or conspecific intruders may reduce

offspring survival. Further studies are now needed to investigate whether male

assistance in care might buffer against detrimental effects of maternal inbreeding

when there is a risk of predation or takeovers by conspecific intruders.

My second main finding was that there was an effect of the interaction between
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maternal inbreeding and male status on female weight gain with male assistance

in parental care having a positive effect on relative mass gain of outbred females

only. I anticipated that females would benefit from male assistance leading to an

increase in their mass gain, which indicates a shift towards investment in future

reproduction (Creighton et al. 2009), regardless of their own inbreeding status.

Thus, this finding suggests that outbred females benefitted more from male as-

sistance than inbred ones. One potential explanation for why this might be the

case is that inbreeding is associated with terminal investment and that inbred

females therefore always invest more effort into current reproduction. There is

some evidence from previous studies on N. vespilloides suggesting that inbreed-

ing is associated with terminal investment (Mattey and Smiseth 2014, Richardson

and Smiseth 2017, Mattey et al. 2018). In light of the finding that the presence

of a male had a positive effect on the weight gain of outbred females only, future

work should now test for a differential effect of male assistance in care on the

subsequence breeding performance by outbred and inbred females. Presumably,

outbred females would perform better in subsequent breeding attempts when as-

sisted by a male during a first breeding attempt, while inbred females would

perform equally well regardless of whether they were assisted by a male or not.

I found no evidence that females gained more mass when assisted by an outbred

male, suggesting that females did not benefit more from assistance by outbred

males as compared to inbred ones. I predicted that females would gain more

mass when assisted by an outbred male if outbred males are better parents than

inbred ones. My results show that that this was not case, which might explain

why outbred males were not more able to buffer against the detrimental effects

of maternal inbreeding on offspring fitness. My finding echoes previous work in

this species showing that male weight gain has little influence on carrion con-

sumption or weight gain of the female, whereas females adjust their consumption

and weight gain to match their male partner’s own weight gain (Pilakouta et al.

2016). In light of this evidence, and keeping in mind that there was no difference

in weight gain by inbred and outbred males in my experiment (see discussion be-
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low), it seems unlikely that females based their carrion consumption and weight

change according to male status.

The final main result of my study was that males paired with inbred females

gained more weight over the breeding attempt than males paired with outbred

females. I predicted that males paired with inbred females would gain less weight

over the breeding attempt. The reason for this is that males paired with inbred

females should be expected to increase their allocation to current reproduction to

compensate for the detrimental effects of maternal inbreeding. Thus, my finding

suggests that males instead might increase their investment into future repro-

duction when their partner is inbred. However, this seems unlikely given that,

a previous study on N. vespilloides found that males paired with inbred females

provided more care than males paired with outbred females (Mattey and Smiseth

2014). An alternative explanation is that males paired with an inbred female

gained more weight over the breeding attempt because they provided more care

than males paired with an outbred female. In this species, parents feed from

the carcass whilst breeding and males might gain better access to the carcass if

they provide more care (Pilakouta et al. 2016). If so, we might expect a positive

correlation between male food provisioning and male weight gain in this species.

Altogether my findings suggest that males benefitted in terms of gaining more

weight during the breeding attempt when assisting an inbred partner. Given

that male weight gain serves as a proxy for investment in future reproduction

(Creighton et al. 2009), one avenue for future work is to compare the subsequent

reproductive performance of males paired with an outbred or inbred female dur-

ing a previous breeding attempt.

These results have broader implications for understanding how social interactions

shape the severity of inbreeding depression. There is increasing evidence that so-

cial interactions can alter the severity of inbreeding depression, with stressful

interactions aggravating the severity of inbreeding depression (e.g. Meagher et

al. 2000) and benign interactions buffering against inbreeding depression (e.g.
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Pilakouta et al. 2015a). It is well documented that maternal care enhances larval

survival and growth in burying beetle (e.g. Eggert et al. 1998, Trumbo 2007,

Arce et al. 2012). Thus, maternal care may buffer against inbreeding depression

in offspring by reducing environmental stresses to offspring, such as the risk of

death due to starvation, infanticide by conspecific intruders and predation. In

contrast, as discussed above, there is mixed evidence as to whether male assis-

tance in care enhances offspring fitness (Pooley et al. 2014, this study). Thus,

my results suggest that parental care or other benign social interactions will not

always reduce the severity of inbreeding depression. There is now a need for fur-

ther work on the buffering effects of male assistance in parental care against the

detrimental effects of maternal inbreeding on offspring fitness in systems where

males contribute more towards care. For example, such experiments could be

conducted on bird species where males and females contribute more equally to-

wards parental care (Clutton-Brock 1991).
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9 General Discussion

I first presented evidence that behavioural plasticity plays an important role in

parental and offspring responses to environmental variation in the burying beetle

Nicrophorus vespilloides (Chapters 2–6). In Chapter 2, I showed that females

increase their time spent caring for the brood in response to increasing energetic

costs. This suggests that females do not only adjust their level of care to the direct

energetic costs, but also to their perceived chance to survive and reproduce again.

In Chapter 3, I furthered showed that females respond independently to varia-

tion in the energetic costs and in brood size. In Chapter 4, I found that infected

females maintain their level of care and reproductive output, which suggests that

females facing infection prioritise their current reproductive success over survival

and future reproduction. I then showed in Chapter 5 that males provide care

for longer with increasing resource availability, whereas females tend to always

provide care for the same duration irrespective of resource availability. This

finding supports the idea that initial differences in parental care between males

and females shape plastic responses to variation in resource availability, and that

overall more abundant resources favour more parental cooperation over care. I

next focused on offspring behaviour and tested whether larvae preferentially beg

towards larger females (Chapter 6). I found that larvae beg more towards larger

females over smaller ones as a result of spending more time in close contact with

larger females. This suggests that larvae might seek to maximise their returns

on begging by associating with the parent that is susceptible to provide more care.

I next investigated the consequences of inbreeding on behavioural plasticity in

parent-offspring interactions (Chapter 7) and whether male parental care can

buffer against indirect effects of maternal inbreeding on offspring (Chapter 8).

In Chapter 7, I showed that inbreeding increases plasticity in offspring associa-

tion with a parent, while inbreeding had no effect on behavioural plasticity in

parental care or offspring begging. This provides some evidence that inbreeding
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can cause too much plasticity, which could have negative fitness consequences on

canalised behaviours. In Chapter 8, I first showed that maternal inbreeding has

detrimental effects on offspring fitness, reducing larval survival. I then showed

that these negative effects of maternal inbreeding on offspring remain regardless

of male presence or inbreeding status. Overall, these findings indicate that the

consequences of inbreeding are not limited to inbred individuals, but can be more

widespread in a population and affect outbred individuals via parent-offspring

interactions. They also highlight the importance of considering the type of social

interactions (i.e. mother-offspring versus father-offspring) in mediating indirect

effects of inbreeding between interacting individuals.

9.1 Behavioural plasticity and parent-offspring interactions

Behavioural plasticity allows quick and reversible responses to environmental vari-

ation (Gabriel et al. 2005, Mery and Burns 2010). As such, behavioural plasticity

is a widespread mechanism that allows balancing the costs and benefits of be-

haviours. In the case of parent-offspring interactions, parents are expected to

adjust their behaviour to obtain the highest benefits from caring at the lowest

costs, while offspring are expected to adjust their behaviour to obtain the highest

amount of care from associating with and begging towards parents at the lowest

costs. Behavioural adjustments during parent-offspring interactions should thus

reflect that individuals are trying to maximise their returns from the interaction.

Behavioural plasticity is particularly important in this context because the costs

and benefits of parental and offspring behaviour are likely to vary with changes

in the environment. For example, a given amount of food provisioned by parents

might be more beneficial to offspring in poor nutritional state compared with

well-fed offspring. The benefits of begging to the offspring would then increase

with diminishing nutritional state. Similarly, a given amount of care might be

more costly to parents that incur higher risk of predation or infection when car-

ing than parents in a safer environment. The costs of care to parents would then

increase with increasing environmental threat.
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In this thesis, I first explored how parents and offspring adjust plastically their

behaviour to maximize their returns from parent-offspring interactions (Chapters

2–6). When parents perceive their chance to survive and reproduce again to be

very low, they often shift their reproductive investment towards current repro-

duction as a terminal investment response, and provide more care towards the

current brood. In Chapters 2 and 3, I presented evidence that handicapping, by

increasing the energetic costs, can trigger such terminal investment response in

burying beetles. Shifting reproductive investment and increasing care towards

the current brood should be advantageous when the prospects for future repro-

duction are low. This is because, in such situation, the current brood is likely

to be the last (or only) progenies parents will successfully produce and hence

parents expect more benefits by producing more and/or larger offspring without

additional costs. In Chapter 3, I also provided additional evidence showing that

females spend more time providing care towards larger broods. Taken together,

the two studies demonstrate that parents adjust their level of care to variation

in the costs and benefits of care, which occurs for instance with changes in the

energetic costs or brood size.

Environmental conditions, such as pathogen exposure and resource availability,

are likely to alter the costs and/or benefits associated with parental and offspring

behaviour. Yet in Chapter 4 I found that infected females maintain their level of

care and reproductive output, despite incurring high mortality. This result shows

that understanding how an environmental variable should in theory alter the costs

and benefits of care is not enough to predict how parents will adjust care. In fact,

it strongly suggests that parents also base their decision to provide care on other

factors, such as the probability of survival and future reproduction (see discus-

sion below). In Chapter 5, I show that the degree of behavioural plasticity in the

duration of parental care in response to variation in resource availability differs

between sexes. This suggests that behavioural plasticity provides a mechanism

to resolve sexual conflict over care when environmental variation affects the costs
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and benefits of care to each sex differently. Behavioural plasticity might thus

be a key mechanism that allows balancing biparental cooperation and conflict

over care. Behavioural plasticity might also allow transitions between different

forms of care, such as between uniparental and biparental care (e.g. Ringler et

al. 2015). Furthermore, in Chapter 6 I showed that behavioural plasticity pro-

vides a mechanism enabling larvae to beg towards larger females. When larvae

are in presence of multiple parents, such as in biparental or communal breeding

situations, behavioural plasticity would allow larvae to target the parents that

are more likely to provision food and obtain higher returns from a given time or

effort spent on begging. Behavioural plasticity should thus be a key mechanism

that allows balancing the costs and benefits of offspring behaviour.

9.2 Implications for parental and offspring behaviour

The findings of Chapters 2–6 have important implications for our understanding

of how parents and offspring base their flexible decisions regarding how much care

or begging they engage in when interacting with one another. The first implica-

tion is that parents do not only respond to changes in the costs/benefits of care,

but also to other key components that also depend on parental investment in

care: the probability of survival and the expected success at future reproduction.

Indeed, parental care is one aspect of a parent’s reproductive investment. In

turn, current reproduction is one component among multiple functions in which

individuals allocate limited resources. In addition to current reproduction and

parental care, parents are expected to allocate resources to somatic maintenance,

immunity, and future reproduction. Thus, when there is a change in the envi-

ronment, parents should balance their allocation to parental care as well as other

functions to maximise their overall fitness. Parental decision might ultimately

not maximise the cost/benefit of parental care, but would rather reflect the best

strategy when considering balancing allocation across different functions (Figure

9.1). This is the case for example in the studies presented in Chapters 2 and 3,

where I initially predicted females to reduce care in response to higher energetic
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costs, whereas I found the opposite results. This finding would have appeared

surprising if only considering the costs and benefits of providing care. It is, how-

ever, obvious that altering energetic costs can affect how parents perceive their

future reproductive success and survival, and that parents should also base their

parental care decision on these aspects.

The fact that parental care reflects a strategy to balance multiple aspects of an in-

dividual’s resource allocation implies that different individuals are likely to show

contrasting parental care responses. In other words, although environmental con-

ditions influence the costs and benefits of care, and thus the optimal level of care,

genetic and life-history differences across individuals should influence the realised

level of care (Figure 9.1). Hence, initial differences in intrinsic conditions (e.g.

age, sex, permanent environment) and micro-environmental conditions (e.g. nest

of development, individual niche), combined with differences in how individuals

balance their resource allocations between functions, should contribute to indi-

vidual differences in parental behaviour plasticity. I suggest that these complex

responses, involving a decision based on multiple functions to which individuals

allocate resources, are a major cause of individual differences in parental care

(e.g. Nakagawa et al. 2007, Westneat et al. 2011). More generally, we should

expect individual differences in behavioural plasticity to be an important, yet un-

derstudied, source of phenotypic variation and raw material for natural selection

to act upon (Dingemanse et al. 2010). This is because the process of natural se-

lection relies on (genetically determined) individual differences in the phenotype

and that these differences, rather than being between average trait values, would

also exist in trait responsiveness to environmental change.

The second implication is that maintaining parental care, regardless of environ-

mental variation, might sometimes be essential for offspring survival and growth.

This ought to be the case when, for example, parental care is required for the sur-

vival of the brood and when variation in the environment would only have minor

effects on offspring growth and survival. In such a situation, parents are better off
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more likely to reduce its own care if its condition deteriorates. This is because

the other parent would still provide a minimum level of care or even compensate

for a reduction in care by its partner.

A third important implication is that parental and offspring responses and inter-

actions can have a more widespread impact in a population by spreading potential

effects of a focal individual’s conditions on social partners. In Chapter 8, I show

that maternal inbreeding has detrimental effects on offspring survival. In burying

beetles, it is well established that inbreeding has strong negative effects on hatch-

ing success, larval and adult survival (Mattey et al. 2013, Pilakouta et al. 2015a).

There is now evidence that the inbreeding status of a female can impact indirectly

on her offspring via parental care, regardless of the offspring inbreeding status

(Mattey et al. 2013, Mattey et al. 2018, Ratz et al. 2018). Furthermore, al-

though maternal care can buffer against inbreeding depression on offspring, male

parental care does not seem to buffer against the negative effects of maternal

inbreeding on offspring survival (Ratz et al. 2018, Chapter 8). Altogether, these

studies suggest that inbreeding can affect outbred individuals via parental care

and parent-offspring interactions. This idea is fundamental to our understanding

of the role of parent-offspring interactions at a broader scale as it suggests that

the effects of inbreeding are not confined to inbred individuals, but can be spread

out in the population via social interactions. The effects of inbreeding might thus

often be greater than expected. Moreover, the role of social interactions as a

mechanism to spread an individual’s condition to social partners might not be

limited to inbreeding and we should expect similar patterns occurring with other

attributes that can affect how animals interact with each other, such as age, nu-

tritional state and infection status. This issue has received little attention and

would deserve more detailed scrutiny, as it would greatly contribute to our under-

standing of the consequences of social interactions at the population level. Social

interactions can have an impact on evolutionary responses as they might accel-

erate, slow down or reverse the response to selection (Moore et al. 1997, Wolf et

al. 1998, Bijma and Wade 2008, McGlothlin et al. 2010). For example, McAdam
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and Boutin (2004) found that maternal genetic effects, presumably resulting from

maternal care, increase the evolutionary response to current selection on offspring

growth rate in red squirrels. As a result of mother-offspring interactions, offspring

growth rate is expected to change more rapidly across generations than expected

when only considering selection operating on offspring. Parent-offspring conflict

over resource allocation to the offspring can limit the evolution of offspring body

size in other systems, such as in fruit flies (Rollinson and Rowe 2015) and blue tits

(Thomson et al. 2017). Parent-offspring interactions, and more generally social

interactions, can thus have major impacts on the ecological and evolutionary pro-

cesses via their expected consequences on population dynamics and evolutionary

responses to selection.

9.3 Implication for the study of behavioural plasticity

The findings presented in Chapter 5 and 7 have important implications for our

understanding of factors promoting and limiting behavioural plasticity. In Chap-

ter 5, I showed that males adjust the duration of their care to resource availability,

providing care for longer on larger carcasses, whereas females always provide care

for a similar duration irrespective of carcass size. Given that on average females

provide care for longer than males (e.g. Smiseth et al. 2005), this finding suggests

that initial sex differences in parental care influence plasticity in parental care.

In general, the average degree to which organisms express a behaviour might, in

part, determine the degree of plasticity in the behaviour. Thus, sex differences in

behavioural plasticity might be linked to sexual dimorphism in parental care (i.e.

females providing on average more care than males), as it is the case for mor-

phological sexual dimorphism in developmental plasticity (Stillwell et al. 2010).

Overall, these findings provide further support to the idea that behavioural plas-

ticity is an important mechanism for the resolution of sexual conflict by allowing

organisms to adjust their behaviour to match the variable social and ecological

context (McLeod and Day 2017).
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In Chapter 7, I showed that inbreeding increases behavioural plasticity in the

time larvae spend associating with a parent in response to food deprivation. Al-

though in this study I did not assess the potential fitness consequences of the

greater plastic response, this result suggests that negative effects of inbreeding

could arise from too much behavioural plasticity if canalisation in the behaviour

is adaptive. This finding is particularly intriguing in the context of behavioural

plasticity because it indicates that, whilst behavioural traits mediating parental

and offspring behaviour are highly plastic, these traits might well be canalised

to some degree. Therefore, over-responding to a change in the environment (i.e.

showing too much plasticity) is likely to be a bad strategy. Limited plasticity

in a trait, i.e. phenotypic canalisation, is thought to be a fundamental aspect

of most developmental traits (reviewed in Flatt 2005). There is currently little

knowledge about the role of canalisation in behavioural traits, the extent to which

canalisation limits behavioural responses and how overly plastic behaviour might

impact fitness. Yet this is an interesting perspective given the prominence of

plasticity in behavioural traits (which are in essence flexible) and the importance

of behaviours to fitness via their role in key life history processes such as foraging,

mating, or parenting.

Some authors have proposed that phenotypic plasticity works as a mechanism

allowing the emergence of new adaptations, under the "plasticity first" hypoth-

esis (Levis and Pfennig 2016). This hypothesis states that phenotypic plasticity

allows organisms to adjust their phenotype to new environments, whereby facili-

tating genetic accommodation and adaptation to new environmental conditions.

I would argue that behavioural plasticity could also be a key mechanism allow-

ing the emergence and evolution of complex behavioural traits, such as parent-

offspring interactions (e.g. Stein and Bell 2019). It is tempting to speculate,

for instance, that plasticity in feeding behaviour represents a first step in the

evolution of both parental provisioning and offspring begging. This is because

parental food regurgitation and offspring begging signals might involve pathways

close to the feeding pathways (Fischer and O’Connell 2017). Parental feeding
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and offspring begging behaviours could possibly derive from pathways that are

involved in feeding behaviour. Nevertheless, this remains speculative and I would

encourage future studies in the field to explore the role of behavioural plasticity

as a potential driver of behavioural interactions.

9.4 Concluding remarks

Here, I present evidence that behavioural plasticity is a fundamental determinant

of parent-offspring social interactions in N. vespilloides. Adults and larvae ad-

just their behaviour to variation in the social and ecological environment, such

as offspring number, partner’s presence, parental body size, resource availability,

and own or social partner’s inbreeding status. The different studies constituting

this thesis highlight the fact that these behavioural adjustments are not made in

isolation from other key aspects of an individual’s life histories, but should rather

reflect a general strategy balancing investment towards reproduction, growth and

survival. The evidence reported in this thesis contributes to our understanding of

the role of behavioural plasticity in parental and offspring behaviour by showing

that behavioural plasticity is a mechanism that allows balancing the costs and

benefits of a behaviour, and adjusting investment in current reproduction versus

survival and future reproduction. The findings of this thesis also suggest that an

individual behaviour can have a widespread impact in a population via parent-

offspring interactions. Moreover, my findings suggest that initial differences and

constraints on behaviours might be a source of variation in behavioural plasticity

across individuals. Finally, these findings highlight the fact that behavioural re-

sponses, even if they are adaptive, might have negative consequences if they are

overexpressed and that plastic behaviours should be canalised to some degree.

In general, behavioural plasticity might be a mechanism allowing transitions be-

tween different forms of care and a source of behavioural diversity within species

and across individuals, and a potential driver of evolution.
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exclusive, as handicapping could both increase the cost of  care and 
trigger terminal investment. If  so, we might expect more complex 
responses to handicapping that are determined by a combination 
of  whether or not the handicap suppresses the parent’s condition 
below the threshold triggering terminal investment and the extent 
to which the handicap increases the energetic cost of  care. As out-
lined below, in order to advance our understanding of  the effects of  
handicapping, we now need novel experimental designs that mon-
itor how caring parents respond to different levels of  handicapping.

In this study, we investigated how female parents responded to 
different levels of  handicapping in a burying beetle. Burying bee-
tles of  the genus Nicrophorus are ideal study systems to explore this 
issue because they show highly elaborate forms of  parental care, 
including provisioning of  predigested carrion to the larvae and 
depositing antimicrobial secretions to preserve the small vertebrate 
carcass used for breeding as a food source throughout larval de-
velopment (Scott 1998). Furthermore, these beetles have been 
subject to handicapping experiments, showing that handicapped 
parents either provide less care, as reported in studies on Nicrophorus 
quadripunctatus and N. orbicollis (Suzuki and Nagano 2009; Creighton 
et al. 2015; Suzuki 2016), or more care, as reported in N. vespilloides 
(Ratz and Smiseth 2018). One potential explanation for why studies 
have reported contrasting effects of  handicapping is that these 
studies used different levels of  handicapping. For example, studies 
showing that handicapped parents provide less care used larger 
weights that were about 40–50% of  a parent’s body mass (Suzuki 
and Nagano 2009; Creighton et  al. 2015; Suzuki 2016), whereas 
the study reporting that handicapped parents provide more care 
used smaller weights that were about 20–30% of  a parent’s body 
mass (Ratz and Smiseth 2018). Although this pattern suggests that 
parents provide more care in response to a relatively small hand-
icap but less care in response to a relatively large handicap, there is 
now a need for experimental work monitoring how parents respond 
to different levels of  handicapping within a single species.

Our aim was to investigate how single female parents respond to 
different levels of  handicapping in the burying beetle N. vespilloides. 
We handicapped females by attaching a small weight to their 
pronotum (Suzuki and Nagano 2009). The weights weighed 0.037–
0.242 g, corresponding to 11–103% of  a female’s body mass. We 
also included a control treatment, where females were not fitted 
with a weight but otherwise were handled in the same way as 
handicapped females. Prior work shows that females respond by 
providing more care when fitted with a 0.05  g weight (Ratz and 
Smiseth 2018), suggesting that the threshold triggering terminal 
investment is below this level of  handicapping. We then tested for 
subsequent effects on the amount of  care provided by females (i.e., 
time spent provisioning food and maintaining the carcass) during 
the period where females provide direct care for larvae, as well as 
on offspring performance (i.e., mean larval mass, number of  larvae 
at dispersal, and larval begging behavior) and female investment 
in future reproduction (i.e., weight change while breeding and life 
span after breeding).

If  handicapping primarily increased the cost of  care, we pre-
dicted that females should provide progressively less care as the 
level of  handicapping increased (Figure 1a). Furthermore, offspring 
performance should gradually decline as the level of  handicapping 
increases, and females should pay a progressively higher cost in 
terms of  their investment in future reproduction. Conversely, if  
handicapping primarily triggered terminal investment, we predicted 
that the effects of  the level of  handicapping should be discontin-
uous with handicapped females providing more care than control 

females provided that the handicap suppressed the parent’s con-
dition below the threshold value (Figure 1b). Below this threshold, 
handicapped parents should provide as much care as control 
parents. Above the threshold, handicapped parents should provide 
more care than control parents, but the former should provide the 
same level of  care regardless of  the level of  handicapping (Figure 
1b). Furthermore, offspring performance should be higher, while fe-
male investment in future reproduction should be lower, above the 
threshold than below. Finally, if  handicapping both elevates the cost 
of  care and triggers terminal investment, we predicted that the ef-
fects of  the level of  handicapping should be discontinuous with a 
marked increase in care by handicapped parents at the threshold 
value (Figure 1c). However, above this threshold, handicapped 
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Figure 1
Predicted effects of  the level of  handicapping on the amount of  care 
provided by parents. If  handicapping primarily elevates the cost of  care, 
parents should provide progressively less care as the level of  handicapping 
increases (a). If  handicapping primarily triggers terminal investment, 
the effects of  the level of  handicapping should be discontinuous with a 
marked increase in care by handicapped parents at the threshold value 
(b). Handicapped parents should provide as much care as control parents 
below this threshold, while they should provide more care than control 
parents above the threshold. Handicapped parents should provide the 
same level of  care regardless of  the level of  handicapping above the 
threshold. If  handicapping both elevates the cost of  care and triggers 
terminal investment, the effects of  the level of  handicapping should also 
be discontinuous with a marked increase in care by handicapped parents at 
the threshold value (c). However, in this case, handicapped parents should 
provide progressively less care as the level of  handicapping increases above 
the threshold.
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parents should provide progressively less care as the level of  
handicapping increases. Furthermore, offspring performance and 
female investment in future reproduction should gradually decline 
with the level of  handicapping above the threshold.

MATERIALS AND METHODS
Source and rearing of experimental beetles

The beetles used in this experiment came from a laboratory stock 
population originating from beetles collected at Corstorphine Hill 
Local Nature Reserve and Hermitage of  Braid and Blackford Hill 
Local Nature Reserve, Edinburgh, UK. Nonbreeding adult beetles 
were housed in individual transparent plastic containers (12 cm × 
8  cm × 2  cm) filled with moist soil. All beetles were fed organic 
beef  twice a week and maintained under a constant temperature 
(20 °C) and a 16:8 h light:dark photoperiod.

Experimental design and procedures
We manipulated the level of  handicapping by attaching a nontoxic 
fishing weight (Dinsmores, Aldridge, UK and DGT, Shirley, UK) 
to the pronotum of  caring females (see below for further details). 
The weights used in our experiment weighed 0.037–0.242 g, corre-
sponding to 11–103% of  the initial body mass of  females. We used 
this range to ensure that our handicaps overlapped the range used 
in prior work on this species (20–30%; Ratz and Smiseth 2018) and 
on N. quadripunctatus and N. orbicollis (40–50%; Suzuki and Nagano 
2009; Creighton et  al. 2015; Suzuki 2016). We also included 
weights that went beyond this range to ensure that our handicaps 
were large enough to induce a potential increase in the energetic 
cost of  care. Our design included a control treatment, where fe-
males were not fitted with a weight but were otherwise handled 
and treated in the same way as handicapped females. In this ex-
periment, we focused on the response of  a single parent to exclude 
potential compensatory responses by its partner. We did this given 
that our aim was to establish whether handicapping increases the 
cost of  care, triggers terminal investment, or both. We specifically 
focused on single female parents because females provide more pa-
rental care than males in this species (Eggert et  al. 1998; Rauter 
and Moore 2004) and because the experimental removal of  the 
male has no effect on offspring fitness under laboratory conditions 
(Smiseth et al. 2005).

We began the experiment by pairing females and males at 
random, transferring each pair into a larger plastic container 
(17 cm × 12 cm × 6 cm) filled with 1 cm of  moist soil and con-
taining a previously frozen mouse carcass (Livefoods Direct, 
Sheffield, UK) of  a standardized size (14.68–19.98  g). One day 
before the expected date of  hatching (i.e., 2  days after the be-
ginning of  egg laying), we randomly assigned each female to the 
handicapping or the control treatment (i.e., no weight; hereafter 
referred to as 0g). Although the nominal mass of  the weights was 
categorical (0.05 g, 0.10 g, or 0.20 g), there was considerable var-
iation in the mass of  weights within each category (range, mean 
± SE for 0.05 g, 0.10 g, and 0.20 g weights, respectively: 0.0370–
0.0757 g, 0.0544 ± 0.0017 g; 0.0716–0.1241 g, 0.0959 ± 0.0019; 
0.1702–0.2423 g, 0.1988 ± 0.0026). We weighed all females before 
and after subjecting them to the handicapping treatment, using 
the difference in mass as a measure of  the mass of  the handicap 
provided to each female. We attached the weight to the pronotum 
of  each handicapped female using instant-adhesive glue (Suzuki 
and Nagano 2009; Creighton et al. 2015; Suzuki 2016; Ratz and 

Smiseth 2018). Before attaching the weight, we gently scraped the 
surface of  the apex of  the pronotum using fine sandpaper (P600). 
We did so to remove impurities, thereby improving adhesion of  
the weight. We treated females assigned to the control treatment 
in the same way as handicapped females (i.e., we weighed them be-
fore and after handling, handled them, and scraped the surface of, 
and applied glue to, their pronotum), except that no weight was 
attached to their pronotum. For further details on the handicapping 
procedure, we refer to Ratz and Smiseth (2018).

Once handicapped females had been fitted with a weight and 
control females had been handled, we moved them together with 
their mouse carcass to a fresh container filled with moist soil. We 
did this to separate females from their eggs, thereby allowing us to 
provide them with standardized experimental broods. Once the 
larvae started hatching, we collected them in a temporary holding 
container, using them to generate experimental broods comprised 
of  10 same-aged larvae of  mixed maternal origin (Smiseth, Lennox, 
et  al. 2007). For practical reasons, we allocated females broods 
comprising some larvae that were their own and some that were 
foreign. It is unlikely that this would influence our results as there 
is no evidence that females differentiate between their own and 
foreign larvae in this species. Instead, females have a temporal kin 
discrimination mechanism whereby they kill any larvae arriving on 
the carcass before their own eggs would have hatched (Müller and 
Eggert 1990). Thus, to avoid infanticide, we ensured that we only 
provided females with an experimental brood once their own eggs 
had hatched. We used experimental rather than natural broods in 
this experiment to control for potential confounding effects due to 
variation in the number of  larvae in the brood and the age of  the 
brood, both of  which are known to influence the amount of  care 
provided by females in N. vespilloides (Smiseth et al. 2003; Smiseth, 
Lennox, et al. 2007; Smiseth, Ward, et al. 2007). We removed male 
parents at the same time as we moved females to a fresh container.

We recorded data on the amount of  care provided by hand-
icapped and control females 24  h (±15  min) after we placed the 
larvae on the carcass. This time point corresponds to the peak in 
time spent providing care towards larvae in this species (Smiseth 
et  al. 2003). We collected behavioral data using instantaneous 
sampling every 1  min for 30  min under red light, in accordance 
with established protocols (e.g., Smiseth and Moore 2002, 2004a; 
Ratz and Smiseth 2018). Although the 30 min sampling period is 
a relatively small part of  the period when females provide direct 
care for the larvae (larvae become nutritionally independent 72 h 
after hatching), there are positive correlations between different 
measures of  parental care in N.  vespilloides (Andrews et  al. 2017), 
and the amount of  time spent providing care 24 h after hatching 
is positively correlated with the time at which the parents desert 
the brood (Pilakouta, N., Hanlon, B., and Smiseth, P.T., personal 
communication). Thus, our sampling period is representative of  
the total amount of  care provided by females. At each scan, we 
recorded whether the female was engaged in the following behav-
iors: provisioning food, defined as when there was mouth-to-mouth 
contact between the female and at least one larva, maintaining the 
carcass, defined as when the female was excavating the soil around 
the carcass or coating the carcass with secretions or absent from the 
crypt, defined as when the female was away from the crypt (i.e., the 
depression surrounding the carcass). We conducted the behavioral 
observations blind with respect to treatments as far as this was prac-
tically possible. The observations were blind for the different levels 
of  handicapping, as it was not possible for the observer to identify 
the size of  the handicap in the dim light conditions of  under which 
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the observations were conducted. However, it was not possible to 
keep the control treatment (i.e., 0 g) blind, as the observer could tell 
whether females had been provided with a weight or not.

At the same time as we recorded data on the amount of  care pro-
vided by females, we also recorded data on larval begging to test for 
potential effects of  handicapping on larval behavior. In burying bee-
tles, larval begging is tactile and begging larvae raise their bodies to-
wards the female and touch the female with their legs (Smiseth and 
Moore 2002). Larval begging only occurs when the parent is in close 
contact with the larvae, defined as a distance less than or equal to the 
width of  the female’s pronotum (Rauter and Moore 1999; Smiseth 
and Moore 2002). At each scan, we counted the number of  larvae 
that were begging. We calculated the average proportion of  time 
spent begging per larva in the brood as B=(Σb/n)/p, where Σb is 
the cumulative number of  begging events during the 30-min obser-
vation period, n is the brood size at the time of  observation, and p 
is the number of  scans during which the female was near the larvae. 
This metric provides a measure of  larval begging that is largely inde-
pendent of  variation in female behavior towards the larvae (Smiseth 
and Moore 2004b).

At the time of  larval dispersal from the carcass, which normally 
takes place about 5 days after hatching, we recorded the number of  
surviving larvae in the brood and weighed the brood. We did this to 
test for potential effects of  handicapping on offspring performance. 
We calculated mean larval mass by dividing the total brood mass by 
the number of  surviving larvae in the brood. In this species, body 
size is a key determinant of  an individual’s reproductive success 
and adult body size is highly correlated with larval mass at dispersal 
(Otronen 1988; Safryn and Scott 2000). At the time of  larval dis-
persal, we also removed the weights from the female’s pronotum 
by gently twisting the weight or lifting it off using soft forceps. We 
removed the weights at this time to obtain information on the po-
tential fitness cost of  handicapping during the period when females 
provided care for their larvae. We then recorded the postbreeding 
body mass of  each female, which we used to calculate the female’s 
weight change while breeding as the difference between post- and 
prebreeding body mass. Finally, we recorded female life span after 
breeding. To this end, we moved all females into individual con-
tainers and we then checked each container twice a week and re-
corded the date of  death for each female.

We set up 137 pairs in total in the course of  this experiment. We 
excluded 3 females that did not lay any eggs, 11 females whose eggs 
did not hatch, and 3 females for which the weight of  the handicap 
was recorded incorrectly, yielding the following final sample sizes 
for female parental behavior, larval begging, mean larval mass at 
dispersal, and female weight change: control females (0  g weight: 
N  =  30), and handicapped females (0.037–0.242 g: N  =  90). We 
further excluded two females from our analyses on brood size at 
dispersal because the number of  larvae was uncertain, yielding the 
following final sample sizes for brood size: control females (N = 29), 
and handicapped females (N  =  89). For female life span, we ex-
cluded 35 females for the reasons stated above and because we 
could not remove their weights, yielding the following final sample 
sizes for this trait: control females (N  =  28), and handicapped fe-
males (N = 67).

Statistical analysis
All statistical analyses were conducted using R version 3.6.0  
(R Development Core Team 2019). Behavioral traits were recorded 
as the total number of  scans out of  a maximum of  30 scans and 

were therefore analyzed assuming a binomial error structure. Given 
that our data on time spent provisioning food, maintaining the car-
cass and absent from the crypt by females showed over-dispersion 
and minor zero-inflation, we analyzed these data using a Bayesian 
approach with the MCMCGLMM R package (Hadfield 2010), fitting 
the models with a binomial error structure using “multinomial2” 
and a flat improper prior. We analyzed data on offspring perfor-
mance and female investment in current and future reproduction 
using general linear models with a Gaussian error structure for nor-
mally distributed traits (mean larval mass at dispersal and female 
weight change), and using generalized linear models with a bino-
mial error structure for larval begging and a Poisson error structure 
for other traits representing count data (female life span and brood 
size at dispersal).

Given that our main aim was to test for an overall effect of  the 
level of  handicapping on our traits of  interest and given the con-
siderable variation in mass of  fishing weights (see above for further 
details), we treated handicapping as a continuous linear predictor, 
including a quadratic term to test for possible nonlinear effects of  
handicapping. Whenever handicapping had significant linear and 
quadratic effects, we presented the data with a polynomial regres-
sion ± 95% CIs (see Results section below). We included the in-
itial weight of  the female at the time of  treatment as a predictor 
in the models to account for potential variation among different-
sized females in their response to the level of  handicapping. We 
also included brood size at the time of  observation as a covariate 
in the model on female parental behavior, and we included brood 
size at dispersal in the model on female weight change because 
brood size influences food provisioning in this species (e.g., Smiseth, 
Lennox, et al. 2007; Ratz and Smiseth 2018). Finally, we included 
female weight change as a covariate in the model on female life-
span given that prior work shows that life span is positively cor-
related with weight change (Gray et al. 2018). Parameter estimates 
for the Bayesian model are given as posterior means ± 95% CIs of  
1499 samples ran for 1.5 × 106 iterations with a thinning interval 
of  1.0 × 103 and a burn-in of  1.0 × 103.

RESULTS
Female parental behavior

Handicapping had a positive linear effect on the amount of  
time females spent provisioning food to the brood, while there 
was a negative effect of  the quadratic term of  handicapping 
(Figure  2a; Table  1). Visual inspection of  confidence intervals 
suggests that handicapped females spent more time provisioning 
food than control females, but that there was no effect of  the 
level of  handicapping among handicapped females (Figure 2a). 
This interpretation is supported by posthoc tests, showing that 
handicapped females spent more time provisioning food than 
control females (estimate  =  1.129, lower 95%  =  0.416, upper 
95%  =  1.940, PMCMC  =  0.001) and that there was no effect of  
the level of  handicapping when restricting the analysis to hand-
icapped females (estimate  =  18.4, lower 95%  =  –15.07, upper 
95%  =  50.9, PMCMC  =  0.278). Handicapping had a negative 
linear effect on the amount time females were absent from the 
crypt, and there was a positive effect of  the quadratic term of  
handicapping (Figure 2b, Table 1). Visual inspection suggests that 
control females were more likely to abandon the brood tempo-
rarily than handicapped females, while there was no effect of  the 
level of  handicapping among handicapped females (Figure  2b). 

76

D
ow

nloaded from
 https://academ

ic.oup.com
/beheco/article-abstract/31/1/73/5574724 by Edinburgh U

niversity user on 06 February 2020





Behavioral Ecology

Finally, female weight change had no effect on female life span (esti-
mate = −0.0003, SE = 0.0009, z = −0.300, P = 0.764).

DISCUSSION
Here, we tested for effects of  different levels of  handicapping on 
the amount of  care provided by female parents, the performance 
of  their offspring and female investment towards current reproduc-
tion in the burying beetle N. vespilloides. At the time point in larval 
development corresponding to the peak in parental care, hand-
icapped females spent more time provisioning food to the brood 
and less time being away from the crypt than control females. This 
finding confirms evidence from a recent study on N.  vespilloides re-
porting that handicapped females provide more care than control 
females (Ratz and Smiseth 2018). We found no evidence of  fe-
males providing less care as the level of  handicapping increased. 
Furthermore, there was no evidence that handicapping influenced 
time spent maintaining the carcass by females, larval begging be-
havior, larval performance (i.e., mean larvae size at dispersal and 
larval survival until dispersal), or female investment in current and 
future reproduction (i.e., weight change over the reproductive at-
tempt or female life span after breeding). Below, we provide a more 
detailed discussion of  our results and their implications for our un-
derstanding of  how handicapping affects parental care decisions.

Our main finding was that handicapped females spent more time 
provisioning food than control females, but that there was no effect 
of  the level of  handicapping among handicapped females. The first 
finding is consistent with prior work on this species showing that 
handicapped females spend more time provisioning food (Ratz and 
Smiseth 2018). Handicapped females are predicted to provide more 
care than control females if  handicapping suppresses the female’s 
condition below the threshold value triggering terminal investment 
(Duffield et  al. 2017). Thus, our results provide further evidence 
that handicapping can trigger terminal investment and suggest 
that even the smaller handicaps used in our experiment were suffi-
cient to suppress the female’s condition below the threshold value. 
The second finding (i.e., that there was no effect of  the level of  
handicapping among handicapped females) is consistent with what 
we predicted if  handicapping primarily induced a shift towards 
greater investment in current reproduction (Figure 1b). In contrast, 
if  handicapping both induced such a shift and increased the ener-
getic cost of  care, we predicted that handicapped females should 
provide progressively less care as the level of  handicapping in-
creased (Figure 1c). One potential explanation for why we found no 
evidence that handicapped females provided less care as the level 

of  handicapping increased is that our handicaps were too small to 
increase the energetic cost of  care. This explanation seems unlikely 
given that our experiment included handicaps that were substan-
tially larger than those used in prior studies on burying beetles re-
porting that handicapped females provided less care than control 
females (Suzuki and Nagano 2009; Creighton et  al. 2015; Suzuki 
2016), Thus, our results have important implications for our un-
derstanding of  handicapping by confirming that its effects on pa-
rental behavior cannot be explained simply as a consequence of  
an increase in the energetic cost of  providing a given level care, 
as implicitly assumed in prior handicapping experiments (Ratz and 
Smiseth 2018).

An alternative explanation for why handicapped females provide 
more care than control females is that handicapping might have 
a differential effect on activities associated with different modes of  
locomotion. For example, in burying beetles, females walk while 
caring for their current brood, while they fly while searching for 
carcasses for use in future reproductive attempts (Scott 1998). 
Increasing the level of  handicapping might trigger a shift towards 
greater investment in current reproduction if  handicapping has a 
greater impact on the energetic cost of  flight than on the energetic 
cost of  walking. There is some support for this suggestion from 
prior work on the burying beetle N.  quadripunctatus indicating that 
handicapped females cease flying but continue walking (Suzuki and 
Nagano 2009). Handicapping may have limited impact on walking 
in these beetles given that females have been reported to move ver-
tebrate carcasses weighing up to 30  g (i.e., objects weighing over 
100 times more than the largest handicaps used in our experiment) 
for several meters (Scott 1998). Thus, our results may reflect that 
handicapping in burying beetles may have a greater impact on the 
cost of  locating a new carcass required for initiating a future repro-
ductive attempt than on the cost of  providing care in the current 
reproductive attempt.

Our finding that handicapped females provided more care than 
control females contrasts with prior handicapping experiments on 
birds (e.g., Wright and Cuthill 1989; Harrison et al. 2009) and other 
species of  burying beetles (N.  quadripunctatus: Suzuki and Nagano 
2009; Suzuki 2016; N. orbicollis: Creighton et al. 2015) reporting that 
handicapped parents provide less care than controls. One potential 
explanation for why our results differ from those of  prior studies is 
that handicapping primarily increases the cost of  care in birds and 
other species of  burying beetles, while it primarily triggers a shift 
towards greater investment in current reproduction in our study spe-
cies. For example, in altricial birds, parents fly continuously between 
the nest and the foraging sites in the surrounding environment to 

Table 2
Effects of  handicapping (linear and quadratic terms) on larval begging behavior, larval performance (mean larval mass and brood 
size), and female investment in current and future reproduction (female weight change and female life span)

Handicapping Handicapping2

 Estimate SE t/z-value P-value Estimate SE t/z-value P-value

Larval begging 2.17 18.1 0.120 0.904 −3.70 79.5 −0.047 0.963
Mean larval mass 0.051 0.116 0.444 0.658 −0.235 0.519 −0.454 0.651
Brood size 8.94 4.89 1.827 0.070 −35.4 22.3 −1.59 0.115
Female weight change 11.6 63.5 0.182 0.856 132.9 292.3 0.454 0.651
Female life span 0.334 0.526 0.635 0.526 −2.01 2.42 −0.830 0.406

Values were obtained from General and Generalized Linear Models. The sample sizes for larval begging, mean larval mass and female weight change were 30 
for control females (i.e., 0 g weight) and 90 for handicapped females (i.e., 0.037–0.242 g weight), respectively. The sample sizes for brood size were 29 for control 
and 118 for handicapped females, and the sample sizes for female life span were 28 for control and 67 for handicapped females.
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provision their nestlings with arthropods or other sources of  food. 
Thus, we might expect handicapping to have greater impact on the 
energetic cost of  care in birds than in our study species. Although 
this suggestion might explain why our results differ from prior 
studies on birds, it seems unlikely that it accounts for the difference 
between our study species and other species of  burying beetles. The 
reason for this is that all burying beetles breed on carcasses of  small 
vertebrates and that, in all species, parents walk rather than fly while 
caring for their larvae. Instead, the different results from studies 
on different species of  burying beetles might reflect differences in 
their life histories. For example, a recent study shows that larval 
survival is more dependent on parental care in N.  orbicollis than in 
N.  vespilloides (Capodeanu-Nägler et  al. 2016). Thus, there may be 
differences between species of  burying beetles with respect to the 
returns on investment in current reproduction. Alternatively, there 
might be differences in the availability of  resources for investment in 
future reproduction between different species. If  so, this might lead 
to interspecific variation in the trade-off between current and future 
reproduction. Currently, relatively little is known about differences 
between species of  burying beetles with respect to availability of  re-
sources and the trade-off between current and future reproduction. 
Thus, obtaining such information should now be a priority to help 
explaining why studies on different species of  burying beetles some-
times find somewhat different results.

One potential explanation for why our results differ from those of  
prior studies on burying beetles is that females may respond differ-
entially to handicapping depending on whether they are assisted by 
a male partner or not. In our study, as well as in the prior study re-
porting that handicapped females provided more care than controls 
(Ratz and Smiseth 2018), handicapped and control females reared 
their brood on their own without assistance from a male partner. In 
contrast, handicapped and control females reared their brood with 
the assistance from a male partner in studies reporting that handi-
capped females provided less care than controls (Suzuki and Nagano 
2009; Creighton et al. 2015; Suzuki 2016). Thus, handicapped fe-
males might provide less care when assisted by a male partner, while 
they provide more care when rearing the brood on their own. Such 
a differential response to handicapping might be expected if  the 
presence of  a male partner buffers against any negative effects on 
offspring should females provide less care. If  so, handicapped fe-
males could reduce their contribution towards care without harming 
their offspring’s fitness when assisted by a male partner, while this 
would not be the case when rearing the brood on their own. Thus, 
there is now a need for studies that investigate whether female bur-
ying beetles respond differentially to handicapping depending on 
whether they are assisted by a male partner or not.

We found that handicapped females spent less time being absent 
from the crypt than control females. Currently, little is known about 
why breeding females temporarily leave the crypt in this species, 
but potential explanations are that females do so to explore the sur-
rounding area for signs of  conspecific intruders and/or predators. 
Thus, our results suggest that handicapped females are less inclined 
to explore the surrounding area than control females. An alterna-
tive explanation is that handicapped females remained within the 
crypt simply as a consequence of  reduced mobility. However, if  this 
was the case, we should also expect handicapped females to spend 
less time provisioning food than control females given that this be-
havior also requires mobility. Thus, given that we found that handi-
capped females spent more time provisioning food, this explanation 
seems unlikely (Figure 2). Our study highlights that there is a need 
to investigate why breeding females temporarily leave the crypt.

We found no evidence that handicapping affected larval beg-
ging behavior, larval performance (i.e., mean larval mass or larval 
survival until dispersal), or female investment in current and fu-
ture reproduction (i.e., weight change over reproduction and 
life span after reproduction). These findings are surprising given 
that handicapped females spent more time provisioning food to-
wards larvae than control females. Prior work shows that larval 
begging in N.  vespilloides reflects larval hunger state (Smiseth and 
Moore 2004a) and that larvae grow to a larger size when re-
ceiving more care from female parents (Andrews et  al. 2017). 
Thus, we might expect larvae reared by handicapped females to 
be less hungry, therefore spending less time begging, and to grow 
to be a larger size than larvae reared by control females. One po-
tential explanation for why we found no such effects is that the 
quality of  care (e.g., nutritional quality of  predigested carrion 
transferred to larvae via mouth-to-mouth contact) was lower in 
handicapped females than in control females. If  so, larvae might 
receive a similar amount of  care regardless of  whether they are 
reared by handicapped or control females. An alternative expla-
nation is that handicapping had a differential effect at different 
times of  the larvae’s development. Our results show that handi-
capped females spent more time providing care at the time point 
in larval development corresponding to the peak in parental care 
(i.e., 24 h after hatching) than control females. Given that we re-
corded effects on female parental behavior at a single time point, 
we cannot rule out the possibility that handicapped females pro-
vided less care either earlier or later in development. Finally, we 
found that handicapping had no effect on female weight change 
during breeding or female life span. These results contrast with 
those of  most studies on birds, showing that handicapped females 
lose more weight than control females (e.g., Slagsvold and Lifjeld 
1990; Markman et al. 1995; Sanz et al. 2000). As discussed above, 
the energetic cost of  care might be relatively high in birds, in 
which case we might expect handicapped females to lose more 
weight than controls. In contrast, the energetic cost of  care might 
be relatively low in burying beetles. There is also evidence that 
parents forage from the carcass while breeding (Pilakouta et  al. 
2016), which may allow handicapped females to compensate for 
the energetic cost of  handicapping by consuming more food from 
the carcass (Ratz and Smiseth 2018).

Our study adds to our understanding of  the terminal investment 
hypothesis, that is, the suggestion that parents should increase their 
investment in reproduction during their final reproductive attempt 
(Williams 1966; Hirshfield and Tinkle 1975; Clutton-Brock 1984). 
Traditionally, the terminal investment hypothesis has focused on 
increases in investment in reproduction with age (Clutton-Brock 
1984), but its rationale applies to any factor that suppresses the con-
dition of  parents below a certain threshold that reduces their pro-
spects for future reproduction. Indeed, there is mounting evidence 
that terminal investment is triggered by a range of  factors other 
than age, including immune challenges (e.g., Podmokła et al. 2014), 
intraspecific competition (e.g., Rebar and Greenfield 2017) and 
predation risk (e.g., Knight and Temple 1986). Thus, our results 
suggest that handicapping can be added to the list of  factors that 
can induce terminal investment by suppressing the parent’s condi-
tion. We suggest that handicapping would provide a useful tool for 
studying terminal investment as it provides a simple experimental 
tool for suppressing an individual’s condition. Given that handi-
caps can be removed, such experiments could be used to establish 
whether individuals reverse their decisions to invest more in current 
reproduction should their condition improve at a later stage.
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In conclusion, we found that handicapped females spent 
more time providing care than control females, possibly re-
flecting that handicapping suppresses the condition of  females 
below the threshold triggering terminal investment (Duffield 
et  al. 2017). Our results have important implications for our 
understanding of  the effects of  handicapping, which is a key 
experimental tool used by behavioral ecologists to study negoti-
ation between parents in species with biparental care (Harrison 
et  al. 2009). Such studies are based on the assumption that 
handicapping primarily increases the energetic cost of  care, 
and our results show that this is not necessarily the case. This 
conclusion emphasizes that handicapping experiments can lead 
to different outcomes in different species, presumably reflecting 
differences in the modes of  locomotion of  caring parents, differ-
ences in life histories, and/or differential responses depending 
on the presence or absence of  a partner. Thus, we encourage 
further handicapping experiments across a variety of  different 
taxa and social contexts.
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presumably because the benefit of care is lower (e.g.
Ridgway, 1989; Sanz, 1997; Rauter & Moore, 2004;
Smiseth et al., 2007). Thus, handicapping and brood
size manipulations have been instrumental in providing
experimental evidence showing that variation in the
cost and benefit of care are key determinants of how
parents make flexible decisions regarding how much
care to provide for their offspring.
Although we have a good understanding of the sepa

rate effects of handicapping and brood size manipula
tions on the amount of care provided by parents, little
is known about their joint effects. Despite the lack of
formal theory, we can derive predictions from simple
graphical models based on assumptions about how
handicapping and brood size manipulations influence
the cost and benefit functions of care (Fig. 1). These
functions describe the effect that specific levels of par
ental care have on parental and offspring fitness,
respectively (Smiseth, 2017). The cost function is
assumed either to increase at an accelerating rate or to
be linear. In either case, if handicapping increases the
cost of care, handicapped parents are predicted to
reduce their level of care (Fig. 1), as reported for birds
(Wright & Cuthill, 1989; Harrison et al., 2009) and
insects (Suzuki & Nagano, 2009). Meanwhile, the bene
fit function is assumed to increase at a decelerating rate
to reach an asymptote above which any further
increase in care has no effect on offspring fitness (Tri
vers, 1974; Royle et al., 2012). The benefit function
describes the fitness effect on an individual offspring.
Thus, in order to derive the indirect benefit function to
the parent, we need to account for both the coefficient
of relatedness between the parent and its offspring and
the number of offspring in the brood (Fig. 1). If brood
size enlargement increases the benefit of care, parents
should increase their care towards enlarged broods
(Fig. 1), as reported for fishes (e.g. Ridgway, 1989),
birds (Sanz, 1997) and insects (e.g. Rauter & Moore,
2004; Smiseth et al., 2007). Furthermore, this model
predicts no interaction effect (or one that is too small to
be detected) if handicapping leads to only minor diver
gence in the cost function at higher levels of care
(Fig. 1a,b). On the other hand, it predicts an interaction
effect if handicapping leads to a greater divergence in
the cost function at higher levels of care (Fig. 1c,d).
These predictions have never before been tested empiri
cally, and here, we address this gap by conducting a
joint handicapping and brood size manipulation experi
ment in the burying beetle Nicrophorus vespilloides.
Burying beetles of the genus Nicrophorus are ideal for

studying the joint effects of handicapping and brood
size as prior studies show that parents respond to both
treatments (handicapping: Suzuki & Nagano, 2009;
Creighton et al., 2015; Suzuki, 2016; brood size manip
ulations: Rauter & Moore, 2004; Smiseth et al., 2007).
These beetles breed on carcasses of small vertebrates
that serve as the sole food source for the brood during

larval development (Eggert et al., 1998; Scott, 1998).
Larvae can obtain resources by either feeding directly
from the carcass or begging for predigested carrion from
the parents (Smiseth & Moore, 2002; Smiseth et al.,
2003). In N. vespilloides, begging reflects the offspring’s
nutritional need (Smiseth & Moore, 2004b) and is
costly to the offspring in terms of increased risk of filial
cannibalism (Andrews & Smiseth, 2013). Prior work on
N. vespilloides and Nicrophorus orbicollis shows that par
ents respond to brood size manipulations by increasing
their food provisioning rate towards larger broods (Rau
ter & Moore, 2004; Smiseth et al., 2007). Moreover,
prior work on Nicrophorus quadripunctatus and N. orbicol
lis shows that handicapped parents provide less care
than control parents (Suzuki & Nagano, 2009;
Creighton et al., 2015; Suzuki, 2016). Although the
reduction in parental care by handicapped parents is
generally attributed to an increase in the cost of care,
this response may also be caused by deteriorating con
dition of handicapped parents (Pilakouta et al., 2015) or
by stress induced by handicapping. Regardless of how
handicapping leads to a reduction in parental care,
there is no information on the joint effects of handicap
ping and brood size manipulations on the amount of
care provided by parents.
Our main aim was to examine joint effects of handi

capping and brood size on the overall level of care pro
vided by females and on female weight change during
breeding. The latter is used as a proxy for how much
females consume from the carcass to invest into their
future reproduction (Creighton et al., 2009; Billman
et al., 2014). We expect an effect of the interaction
between handicapping and brood size only if handicap
ping leads to a greater divergence in the cost function
at higher levels of care (Fig. 1d). We predict main
effects of handicapping and brood size, reflecting that
weighted females provide less care to the brood than
control females and that females provide more care to
larger broods than to smaller ones. We predict an effect
of the interaction between handicapping and brood size
and main effects of handicapping and brood size on the
amount of time spent provisioning food by parents. The
reason for this is that this form of parental care is direc
ted towards individual offspring within the brood (un
like other forms of care, such as carcass maintenance).
We also predict that handicapping and an increase in
brood size would be associated with a greater loss in
weight of females, reflecting that weighted females pay
a greater cost from their investment into the current
brood and that larger broods require more care. Our
second main aim was to test for subsequent conse
quences of handicapping and brood size on offspring
begging and offspring performance. We predict that
handicapping of females would lead to an increase in
larval begging and have a detrimental impact on larval
fitness given that weighted females would spend less
time provisioning food to the brood. Similarly, we
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N. orbicollis (Creighton et al., 2015). Meanwhile, brood
size manipulations on N. vespilloides and N. orbicollis
show that parents provide more care towards larger
broods (Rauter & Moore, 2004; Smiseth et al., 2007). In
this experiment, we chose brood sizes of 5, 20 and 40
larvae as treatment levels reflecting that broods range
in size from 2 to 47 larvae under laboratory conditions
with a mean brood size of 21 larvae (Smiseth & Moore,
2002).
We selected an initial number of 231 virgin females

for use in the experiment. At the start of the experi
ment, each female was paired with an unrelated virgin
male. The pair was placed in a larger plastic container
(17 9 12 9 6 cm) filled with 1 cm of moist soil and
containing a previously frozen mouse carcass of a stan
dardized size (22.31 ! 0.002 g; range: 20.45 23.51 g;
Livefoods Direct, Sheffield, UK). Containers were
checked for the presence of eggs the following days,
and egg laying date was recorded as the day where the
first eggs were laid. Females were randomly assigned to
a handicapping treatment (weighted or control) 1 day
before the expected hatching date. At this stage, we
moved females and their mouse carcasses into new
boxes filled with fresh soil. We did this to separate
females from their eggs, such that the larvae hatching
from the eggs could be used to generate experimental
broods of different sizes (Smiseth et al., 2007). At this
time, we also removed males because males often
desert the brood before hatching and the presence or
absence of males in N. vespilloides has no detectable
impact on offspring fitness under laboratory conditions
(Smiseth et al., 2005). As soon as the eggs hatched, we
randomly allocated each female a brood of newly
hatched unrelated offspring made up of either 5, 20 or
40 larvae. We only allocated a female with an experi
mental brood once her own eggs had hatched given
that parents will kill any larvae that emerge on the car
cass before their own eggs have hatched (M€uller &
Eggert, 1990).
In parallel with the experimental females used in the

experiments, we set up a total of 485 pairs of nonex
perimental parents. These parents produced foster lar
vae that were used to generate the experimental foster
broods. The foster broods were always of mixed mater
nity, which allowed us to eliminate any potential pre
natal maternal effects associated with our handicapping
treatments that can have had confounding effects on
offspring and parental behaviours (Paquet et al., 2015).

Handicapping procedure

To test the effects of handicapping on parental care, we
weighted breeding females in the gap between the end
of egg laying and the beginning of hatching. In this
species, this gap occurs during the 2 days following the
beginning of egg laying (M€uller & Eggert, 1990). For
weighted (handicapped) females, we attached a small

lead weight to the pronotum of the female using
instant adhesive glue, as described in previous studies
on the closely related N. quadripunctatus (Suzuki &
Nagano, 2009; Suzuki, 2016) and N. orbicollis
(Creighton et al., 2015). In both species, handicapping
reduced mobility of adult beetles and affected parental
care behaviours by reducing the frequency of direct
and indirect care (Suzuki & Nagano, 2009; Creighton
et al., 2015; Suzuki, 2016). In our study, the mass of
the weight together with the glue (0.06 ! 0.0008 g)
represented approximately 20% of the initial female
body mass (n 116, 0.30 ! 0.004 g) measured shortly
before handicapping. During the course of the experi
ment, we noticed that sizeable amounts of dirt were
accumulating around the weight due to the digging
behaviour of the burying beetles. This formed a lump
on the pronotum and induced handicapped females to
carry a total mass (i.e. lead weight + dirt) of approxi
mately 30% their initial body mass (mean ! SE mass
of dirt: 0.014 ! 0.0013 g). We had a control treatment
of females that were of a similar body mass to the
experimental females (n 101, 0.30 ! 0.005 g). The
control females were treated in the same way as the
experimental females (i.e. these beetles were handled
and disturbed), except that they had no weight
attached to them.
Among the initial 231 experimental broods, 41 were

excluded from the analysis for the following reasons:
females lost their weights (n 12) or died (n 3)
before the behavioural observations, females could not
be allocated a foster brood (n 4), females failed to
produce eggs (n 6), no eggs hatched from the clutch
(n 9), or eggs hatched before females were handi
capped (n 7). In addition to this, 11 broods were
included in the behavioural analysis but excluded from
analyses on fitness related traits because the females
had lost their weights or died between the time of
observation and the time of larval dispersal. The final
sample sizes for the different treatment groups were as
follows for the behavioural traits measured 1 day after
hatching (nd1) and the fitness traits measured at larval
dispersal (ndisp): control females with brood size of five
larvae: nd1 ndisp 29; control females with a brood
size of 20 larvae: nd1 ndisp 29; control females with
a brood size of 40 larvae: nd1 ndisp 34; weighted
females with a brood size of five larvae: nd1 33 and
ndisp 29; weighted females with a brood size of 20 lar
vae: nd1 35 and ndisp 31; and weighted females with
a brood size of 40 larvae: nd1 30 and ndisp 27.

Female and offspring behaviours

We recorded parental and larval behaviours 24 h
(!15 min) after the larvae were placed on the carcass,
as this stage corresponds to the period when there is a
peak in female food provisioning (Smiseth et al., 2003,
2007). Behavioural observations were performed under
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red light using instantaneous sampling every 1 min for
30 min. Both parental and larval behaviours were
simultaneously observed and scored following methods
described in previous studies (e.g. Smiseth & Moore,
2002, 2004a, b). To summarize briefly, we recorded the
occurrence of parental food provisioning as the number
of scans where there was mouth to mouth contacts
with larvae, carcass maintenance as the number of
scans where the female was spreading secretions on the
surface of the carcass or excavating the crypt (i.e. the
depression in the soil surrounding the carcass), and car
rion consumption as the number of scans where female
was feeding within the crater (i.e. the opening on the
top of the carcass).
At each scan, we also recorded the number of larvae

that were begging. We considered a larva to be begging
when it raised its head towards the female while wav
ing its legs or when it touched the female with its legs
(Smiseth & Moore, 2002). We then calculated the aver
age proportion time spent begging per larva in the
brood as B (Σb/n)/l, where Σb is the total number of
begging events during an observation session, n is the
number of larvae in the brood at the time of observa
tion, and l is the number of scans for which the female
was near the larvae (Smiseth et al., 2003). We included
the latter because larvae only beg when the parent is in
close vicinity (i.e. less than or equal to the female’s
pronotum width; Rauter & Moore, 1999; Smiseth &
Moore, 2002; Smiseth et al., 2007). Thus, this measure
of begging is largely independent of the female’s beha
viour towards the larvae (Smiseth & Moore, 2004a).

Female weight change and offspring performance

To assess the consequences of handicapping and brood
size on how much females consume from the carcass to
invest in future reproduction, we measured the relative
change in mass of females over the reproductive period.
We estimated female weight change as the difference
between the female’s initial weight on the day preced
ing the hatching of her eggs and her final weight at the
time of larval dispersal. We also tested for effects of
handicapping and brood size on two measures of off
spring performance: larval survival until dispersal and
mean larval mass at dispersal. We measured effects on
larval mass at dispersal because it determines adult
body size, which in turn is known to be a major deter
minant of competitive ability and breeding success as
adult in Nicrophorus species (Otronen, 1988; Safryn &
Scott, 2000).

Statistical analyses

All statistical analyses were conducted using R v 3.3.3
(R Development Core Team, 2011) loaded with the
packages car (Fox & Weisberg, 2017), MASS (Ripley
et al., 2017), aod (Lesnoff & Lancelot, 2012) and

MCMCglmm (Hadfield, 2010). Given that the beha
vioural traits in our experiment were count data
bounded between 0 and 30 scans, we analysed the data
using a binomial error distribution. We used general
linear models for traits with a Gaussian distribution
(female relative mass change and larval body mass at
dispersal) and generalized linear models with a quasi
binomial distribution for traits that represent binary or
count data with an upper limit (larval survival rate and
larval begging). We used Bayesian generalized linear
models fitted with a binomial error distribution to anal
yse food provisioning to the brood and carcass mainte
nance, whereas we used a Bayesian zero inflated
binomial model for carrion consumption to control for
overdispersion and zero inflation. All Bayesian models
were run using flat improper priors. We present param
eter estimates for the Bayesian models as posterior
means with 95% credible intervals of 2600 samples ran
for 5.2 9 105 iterations with a thinning interval of 200
and a burn in of 6 9 104. Outputs from the Bayesian
zero inflated binomial model allow us to test both the
probability that females engaged into carrion consump
tion and, when consuming carrion at least once, how
much time (i.e. number of scans) females spent con
suming carrion during the observation period. All mod
els included female handicapping treatment (control or
weighted) and brood size (5, 20 or 40 larvae) and the
interaction between them as fixed effects. Brood size
was treated as a categorical predictor in the general lin
ear and generalized linear models, whereas it had to be
treated as a continuous predictor in the Bayesian mod
els. In the general linear and generalized linear models,
we used post hoc contrasts whenever handicapping and/
or brood size had a significant effect on the variable of
interest to test for differences between each treatment
group or brood size category. In these tests, we used
the Bonferroni correction for multiple testing.

Results

Female parental behaviour and weight change

There was no evidence of an effect of the interaction
between handicapping and brood size on any of the
two female parental behaviours (i.e. food provisioning
and carcass maintenance) (Table 1; Fig. 2a,b) or on
female weight change during the breeding attempt
(Table 2; Fig. 2d). However, there was an effect of this
interaction on the amount of time spent consuming
carrion by females (Count model; Table 1). This inter
action effect reflected that control females spent more
time consuming carrion as brood increased, whereas
weighted females spent a similar amount of time at this
behaviour regardless of brood size (Fig. 2c).
Handicapping had a significant effect on the amount

of time spent provisioning food to the brood and con
suming carrion (Table 1). Contrary to what we
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females consumed a similar amount of carrion regard
less of brood size. This finding suggests that weighted
females may compensate for the negative effects of
handicapping by consuming more food. Moreover,
brood size had an effect on most traits; that is, increas
ing female food provisioning and female probability to
engage in carrion consumption, reducing female weight
change during breeding, increasing larval begging and
decreasing larval performance (larval survival and
mean larval mass). In contrast, we found that handi
capping had an effect on two female parental beha
viours only; that is, increased carrion consumption and,
contrary to what we predicted, increased time provision
ing food to the brood. These results imply that handi
capping can lead to an increase in parental care,
suggesting that the effects of handicapping on parental
care may be more complex than has been assumed in
prior work using such experimental designs. Below, we
provide a more in depth discussion of our results and
their implications for our understanding of flexible par
ental care.
A surprising finding of our study was that weighted

females spent more time provisioning food than control
females. This finding contradicts the widely held
assumption that handicapping causes a reduction in
parental care by increasing the cost of care. Handicap
ping experiments are traditionally used to study negoti
ation between parents in birds with biparental care,
and their rationale is to increase the flight cost of care
to the handicapped parent, thereby forcing it to reduce
its contribution towards care (Harrison et al., 2009).
Such experiments are based on several types of handi
capping treatments, including attachment of lead
weights (e.g. Wright & Cuthill, 1989), clipping of flight
feathers (Slagsvold & Lifjeld, 1988) and hormone
manipulation (Hegner & Wingfield, 1987b). There is
good evidence that handicapped parents provide less
care than control parents regardless of which handicap
ping treatment is used (Harrison et al., 2009). More
recently, handicapping based on attachment of lead
weights has been used to study negotiation between
parents in two species of burying beetle, N. quadripunc
tatus and N. orbicollis, and these studies show that, as in
birds, weighted females provide less care than control
females (Suzuki & Nagano, 2009; Creighton et al.,
2015; Suzuki, 2016). The opposite effects of handicap
ping on parental care reported in studies on Nicrophorus
species might reflect differences in the level of handi
capping as our weights were of 20 30% relative to
body mass of the beetles, whereas studies in
N. quadripunctatus (Suzuki & Nagano, 2009; Suzuki,
2016) and N. orbicollis (Creighton et al., 2015) used
weights of 40% and about 50%, respectively. As we
discuss in greater detail below, handicapping may not
only increase the cost of care, but also impact upon
parental decisions through its effect on the parent’s
state (Pilakouta et al., 2015). For example, the relatively

minor handicaps used in our study might have a
greater impact on the parent’s state than its costs of
care, whereas the relatively major handicaps used in
previous work might have greater impact on the cost of
care. An alternative explanation is that these differ
ences reflect species specific response to handicapping
due to divergent life histories.
As hinted at above, handicapping may alter parental

decisions about how much care to provide if it causes a
decline in the parent’s state (i.e. its condition, energy
reserves or stress level; Pilakouta et al., 2015). This in
turn may lead to a reduction in parental care by
weighted parents given that a decline in the parent’s
state should be associated with lower resources for
investment in parental care and other priorities. Why
then did we find that weighted females provided more
care? One potential explanation for this finding is that
weighted females responded to a decline in their state
by shifting their investment towards their current brood
at the expense of future reproduction. The terminal
investment hypothesis predicts that parents should
increase their investment into current reproduction
when their prospects of future reproduction are lower
(Clutton Brock, 1984).
We would expect an increase in care by weighted

females if this shift towards current investment more
than outweighs the impact of the higher cost of care.
There is some evidence for terminal investment from
prior studies on species within the genus Nicrophorus.
For example, in N. vespilloides, immune challenged par
ents, which face higher risks of death from pathogens,
increase their investment into current reproduction
(Cotter et al., 2010; Reavey et al., 2015). Likewise,
inbred males, which have a shortened lifespan, invest
more into current reproduction and are more likely to
risk injury in fights with conspecific competitors
(Richardson & Smiseth, 2017). Finally, there is evi
dence that investment into current reproduction
increases with the age of the female parent in N. or
bicollis as predicted by the terminal investment hypoth
esis (Creighton et al., 2009). Thus, if handicapping leads
to terminal investment, we might have expected
weighted females to gain less weight during breeding,
as this trait is used as a proxy for investment in future
reproduction (Creighton et al., 2009; Billman et al.,
2014). We found no evidence that weighted females
lost more weight during the breeding period than con
trol females, suggesting that our results provide no
overall support for terminal investment triggered by
handicapping. However, as argued below, the lack of
evidence for terminal investment based on data on
female weight gain might reflect that handicapping also
causes an increase in female food consumption.
We found that weighted females consumed a similar

amount of carrion regardless of brood size, whereas
control females consumed more carrion as brood size
increased. In N. vespilloides, parents consume carrion
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partly to provision food in the form of predigested car
rion to their larvae and partly to replenish their own
energy reserves (Mattey & Smiseth, 2015). Thus, our
results suggest that control females increased their car
rion consumption with brood size (Fig. 2c) to match
the increase in food provisioning towards larger broods
(Fig. 2a). In contrast, weighted females consumed a
similar amount of carrion regardless of the brood size
(Fig. 2c), presumably reflecting that these females
adjusted their carrion consumption based on their own
state rather than the brood size. Thus, control females
consumed more carrion when they spent more time
provisioning food to the brood, while there was no
association between carrion consumption and food pro
visioning for weighted females. This finding also indi
cates that handicapping might trigger a compensatory
response, whereby weighted females attempt to coun
teract the detrimental effects of handicapping due to an
increase in the cost of care by increasing their energy
reserves. For example, if handicapping increases the
energetic cost of care, females might reduce this cost by
building greater energy reserves. In N. vespilloides, it is
relatively straightforward for females to increase their
energy reserves as they can simply consume more from
the carcass that is used for breeding (Boncoraglio & Kil
ner, 2012; Pilakouta et al., 2016). If females increase
their energy reserves to reduce the energetic cost of
care, this may mask the expected effect of terminal
investment on female mass gain.
As predicted, females provided more care and lost

more weight when caring for larger broods. Meanwhile,
we found that larvae in medium sized broods spent
more time begging, gained more weight and had higher
survival than larvae in either small or large broods.
These results are consistent with findings from previous
work showing that parents tend to provide more care
as brood size increases in insects, including
N. vespilloides (e.g. Rauter & Moore, 2004; Smiseth
et al., 2007), fishes (e.g. Ridgway, 1989) and birds (e.g.
Hegner & Wingfield, 1987a; Sanz, 1997). Thus, our
results are in line with the prediction that females pro
vide more care when the indirect benefit of care is
higher due to an increase in the number of offspring in
the brood (Fig. 1). The finding that females lost more
weight when caring for larger broods is likely to reflect
that larger broods require more care from females and
that it is more costly for parents to care for such broods.
Finally, the fact that larvae performed best in broods of
intermediate size suggests that larval growth and sur
vival are higher in broods closer to the average size in
this species (i.e. 21 larvae; Smiseth & Moore, 2002).
This finding may reflect a balance between sibling com
petition and sibling cooperation (Forbes, 2007; Falk
et al., 2014; Schrader et al., 2015), whereby individual
offspring in small broods benefit from the presence of
other siblings through cooperative begging whereas
individual offspring in large broods pay a cost in terms

of increased competition (Johnstone, 2004). To sum up,
our results confirm that variation in the benefit of care
influences female decisions about how much care to
provide to the current brood and how much resources
to invest into current vs. future reproduction.
Parental care is a highly variable trait (Royle et al.,

2012), and this variation reflects that parents make
flexible decisions about how much care to provide in
response to variation in the cost and benefit of care.
Here, we show that parents respond to both handicap
ping and brood size and that these responses are largely
independent of each other. In our experiment, females
appear to respond more strongly to variation in brood
size than to handicapping, which might reflect that
brood size manipulations have a greater impact on the
benefit of care compared to the impact of handicapping
on the cost of care. Furthermore, weighted females
spent more time provisioning food to the brood and
consuming carrion than control females. This finding
supports the view that parents may respond to handi
capping by increasing their investment into the current
brood at the expense of investment in future reproduc
tion and/or by increasing their energy reserves to com
pensate for the increased energetic cost of care. We
suggest that future work on parental care based on
handicapping should consider that this treatment may
not only affect the cost of care, but that it may also lead
to an increase in investment into current reproduction
and compensatory responses that counteract the
increased cost of care.
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(i.e., parent vs. helpers) in the contexts of  biparental care and 
cooperative breeding, respectively, in which case there may be 
confounding effects due to the sex and breeding status of adults.

Here, we conducted an experiment on the burying beetle 
Nicrophorus vespilloides in which we tested whether larvae begged 
more toward larger females than toward smaller ones. Burying 
beetles of  the genus Nicrophorus are ideal study species to explore 
this issue because multiple females sometimes breed communally 
on a shared resource: the carcass of  a small vertebrate (Eggert and 
Müller 1992; Trumbo 1992). Communally breeding females pro-
vide care indiscriminately to any larva in the joint brood (Komdeur 
et al. 2013; Richardson and Smiseth 2020). Communally breeding 
females may differ in body size when breeding on large carcasses 
(Eggert and Müller 2000), suggesting that larvae sometimes are in 
a position to choose between different-sized females. Larger females 
spend more time provisioning food to the brood than smaller fe-
males (Steiger 2013) and may process food more efficiently than 
smaller ones (Pilakouta et al. 2015). Thus, given that begging incurs 
costs to larvae in terms of  increased mortality and reduced growth 
(Andrews and Smiseth 2013; Takata et  al. 2019), larvae might 
maximize their returns on begging by begging more toward larger 
females.

Our first aim was to test the hypothesis that larvae maximize 
their returns on begging by begging more toward larger females. 
We used a simultaneous choice design, in which larvae could 
choose between one larger and one smaller female. The hypothesis 
predicts that larvae would beg more toward the larger female. Our 
second aim was to test two potential behavioral mechanisms for 
why larvae begged more toward the larger female. First, larvae may 
respond directly to female body size by begging more when they 
are in close contact with the larger female. Second, larvae may re-
spond indirectly by spending more time in close contact with the 
larger female, thereby having more opportunities to beg toward the 
larger female. The first mechanism predicts that larvae would beg 
more when they were in close contact with the larger female as op-
posed to when they were in close contact with the smaller one but 
that there would be no difference in the amount of  time that larvae 
spend in close contact with the larger or the smaller females. The 
second mechanism predicts that larvae would spend more time in 
close contact with the larger female than with the smaller female 
but that larvae would not beg more when they were in close contact 
with the larger female. These two mechanisms are not mutually 
exclusive, and it is, therefore, possible that larvae would beg more 
when they were in close contact with the larger female and spend 
more time in close contact with the larger female.

MATERIALS AND METHODS
Origin and rearing of experimental beetles

The beetles used in the experiments descended from individuals 
collected in the wild in the Hermitage of  Braid and Blackford Hill 
Local Nature Reserves, Edinburgh, UK. The beetles had been kept 
under laboratory conditions for at least three generations. We kept 
the stock population outbred by breeding a large number of  indi-
viduals each generation, recruiting only three individuals from each 
family to the next generation, outcrossing our stock population with 
wild-caught beetles each summer, and avoiding breeding between 
close relatives (see Mattey et al. 2018). We maintained our labora-
tory population at constant temperature (20 °C) and under a 16:8 h 
light:dark photoperiod. Nonbreeding adult beetles were housed in 

individual transparent plastic containers (12 × 8 × 2 cm) filled with 
moist soil and were fed small pieces of  organic beef  twice a week.

Experimental design
We used a simultaneous choice design, in which larvae could 
choose between two dead females—one larger and one smaller 
(Paquet et al. 2018)—because such designs are better at detecting 
preferences than alternative sequential choice designs (Dougherty 
and Shuker 2014). This design is biologically realistic for our spe-
cies given that females will breed communally on large carcasses 
(Eggert and Müller 1992; Komdeur et  al. 2013; Richardson and 
Smiseth 2020). We used dead females as stimuli to exclude any po-
tential effects of  differences in the behavior of  larger and smaller 
females that might affect larval behavior. Prior work shows that 
larvae beg toward dead parents in a similar way as they do toward 
live ones (Smiseth and Parker 2008; Mäenpää et al. 2015; Paquet 
et al. 2018).

Experimental procedures
At the start of  the experiment, we generated the smaller and larger 
females that we later used as stimuli when investigating larval beg-
ging toward larger and smaller females. We generated these females 
following established protocols (Steiger 2013; Pilakouta et al. 2015). 
To this end, we mated 34 pairs of  unrelated males and females 
from our stock population by providing them with a mouse carcass 
to initiate breeding. To manipulate female body size, we removed 
larvae from each of  these 34 the carcasses at two different stages in 
their development: when they had reached a mass of  100–150 mg 
(mean mass ± standard error [SE] at dispersal: 0.130  g ± 0.004) 
and when they had reached a mass of  200–250  mg (mean ± SE 
mass at dispersal: 0.222  g ± 0.003). The former larvae were des-
tined to become smaller adults, whereas the latter were destined to 
become larger adults. From each brood, we aimed to remove a sim-
ilar number of  larvae that had reached a mass of  100–150 mg and 
that had reached a mass of  200–250 mg. Given that larval mass at 
the time of  dispersal from the carcass determines adult body size 
(Lock et al. 2004), these treatments allowed us to generate a differ-
ence in size between females. The treatment was effective as larger 
females had a pronotum width (mean ± SE: 5.08 ± 0.03 mm) that 
was on average 23% larger than that of  the smaller females (mean 
± SE: 4.10 ± 0.02 mm).

Once removed from the carcass, larvae destined to become 
smaller or larger adults were placed in individual containers (12 × 
8 × 2 cm) filled with moist soil until they eclosed as adults. After 
eclosion, we sexed all adults, keeping females only for use in our 
experiment. We kept all smaller and larger females in individual 
containers for a minimum of  10 days after eclosion to allow them 
sufficient time to undergo sexual maturation. During this period, 
we fed all females small pieces of  organic beef  twice a week until 
they were used in our experiment. Insect species that undergo com-
plete metamorphosis cease growing once they reach adulthood. 
Thus, feeding adult females will have no effect on their body size, 
although it will have an impact on their adult body mass.

Once the females reached sexual maturity, we randomly selected 
32 larger and 32 smaller females for use in our experiments. These 
females were first used to produce larvae for the experimental 
broods and, later, as foster parents and stimuli during our behav-
ioral observations (see below). To initiate breeding, we paired each 
female with an unrelated male from our stock population, placed 
each pair in a larger container (17  × 12  × 6  cm) with 2  cm of  

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/b
e

h
e

c
o

/a
rtic

le
/3

1
/5

/1
2

5
0

/5
9

0
4

0
5

7
 b

y
 U

n
iv

e
rs

ity
 o

f E
d

in
b

u
rg

h
 u

s
e

r o
n

 1
3

 O
c
to

b
e

r 2
0

2
0



Behavioral Ecology1252

moist soil, and provided them with a defrosted mouse carcass of  a 
standardized size (20.01–23.64 g; Livefoods Direct, Sheffield, UK). 
We checked the containers daily for the presence of  eggs, defining 
the onset of  egg-laying as the day on which the first eggs were laid. 
Two days after the outset of  egg-laying (corresponding to the day 
preceding the expected time of  hatching; Smiseth et al. 2006), we 
separated each female from her eggs by transferring females and 
their carcasses into fresh containers lined with moist soil. We did 
this to ensure that no other larvae were present when we later al-
located females with a donor brood (see below). Females lay their 
eggs asynchronously (Smiseth et al. 2006). We, therefore, separated 
females from the eggs 2 days after the start of  egg-laying because 
this coincides with a time in the breeding cycle where females had 
ceased egg-laying but where the first egg had yet to hatch. At this 
time, we removed the male to exclude any potential effects of  male 
presence on larval begging. There is no evidence that the removal 
of  the male has any detrimental effects on offspring growth or sur-
vival under laboratory conditions (Smiseth et al. 2005).

We generated 32 donor broods by pooling newly hatched larvae 
from across multiple broods. All such broods were comprised of  
10 same-aged larvae of  mixed maternity. Once assembled, donor 
broods were allocated at random to a smaller or a larger female 
foster parent. Females have a temporal kin discrimination mech-
anism, culling any larvae that hatch earlier than the expected time 
of  hatching of  their own eggs (Müller and Eggert 1990). We, there-
fore, provided females with a donor brood only after her own eggs 
had started hatching. Given that donor broods were composed of  
larvae of  mixed maternity, most larvae would be genetically unre-
lated to their foster female. We used donor brood to generate ex-
perimental broods of  10 larvae immediately before the start of  our 
behavioral observations (see below). We used experimental broods 
to exclude any potential confounding effects due to natural vari-
ation in brood size (Ratz and Smiseth 2018), larval age (Smiseth, 
Lennox, et al. 2007; Smiseth, Ward, et al. 2007), or age composi-
tion within the brood (Smiseth and Moore 2007) on larval behavior.

Larval begging
We conducted the behavioral observations 24  h (±15  min) after 
we had allocated an experimental donor brood to a foster female 
when larvae had reached their second instar (Smiseth and Moore 
2002). We did our observations at this stage in larval development 

because it coincides with a peak in the amount of  time that larvae 
spend for food from their parents (Smiseth et  al. 2003; Smiseth, 
Lennox, et  al. 2007). Approximately 1  h before the start of  each 
behavioral observation session, we sacrificed the females to be used 
as stimuli by freezing them at −20  °C for 30 min. These females 
had previously produced larvae for our experimental broods and 
had, therefore, been caring for larvae during the 24  h preceding 
the observation. We used breeding females as stimuli because larvae 
beg more toward breeding females than toward nonbreeding ones 
(Smiseth et al. 2010). We then thawed the females at ambient tem-
perature for a minimum of  10 min to ensure that we could position 
their body and legs (see below).

We generated experimental broods comprised of  10 larvae 
from the donor broods. We always assigned experimental broods 
to a pair of  unfamiliar dead females to exclude any potential con-
founding effects should larvae behave differently toward familiar 
and unfamiliar females (Mäenpää et  al. 2015). All experimental 
broods were comprised of  five larvae that had been reared by a 
larger female and five that had been reared by a smaller female. 
This procedure ensured that all experimental broods comprised an 
equal number of  larvae that had prior exposure to a larger and a 
smaller female. Thus, if  larvae learned a preference for larger or 
smaller females depending on their prior exposure to a larger and a 
smaller female, this would be detected as five larvae being in close 
contact with each of  the two females. We confirm that this was not 
the case as, on average, eight larvae were in close contact with one 
female and one with the other. We placed the 10 larvae in a small 
container (11 × 11 × 3 cm) lined with moist paper towel 30 min 
prior to observation to ensure that the larvae were not fully sati-
ated and, therefore, motivated to beg at the start of  the observa-
tion. Just before the start of  the observation sessions, we pinned the 
larger and smaller females near the center of  the box (Figure 1a) 
and positioned them such that they mimicked a parent provisioning 
food (Mäenpää et al. 2015; Paquet et al. 2018; Figure 1b). We then 
placed all larvae in front of  the two females such that they were 
equidistant from them (Figure 1a). We allowed a 5-min acclimation 
period before we started the observation session.

We observed larval behavior using instantaneous recording, 
noting the number of  larvae that were begging toward each fe-
male and the number of  larvae that were in close contact with 
each female every 60 s for 15 min. We defined larval begging as 
when larvae touched any body part of  a female with their legs 

1. In close contact
with female 2. In close contact and

begging

(a) (b)

Figure 1
Experimental design used to test whether larvae spend more time begging toward a larger female over a smaller female. (a) At the beginning of  the behavioral 
observation, we placed the brood of  10 larvae equidistant from the two females. (b) We then recorded the amount of  time that larvae spent begging toward 
each female and the amount of  time that larvae spent in close contact with each female (i.e., at a distance less than or equal to the female’s pronotum length).
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(Smiseth et  al. 2003; Figure  1b). We defined larvae as being in 
close contact with a female as the larvae being closer to the fe-
male than the width of  her pronotum (Rauter and Moore 1999). 
We first calculated the mean proportion of  time spent begging 
per larva in the brood toward each female (B ) as the number of  
begging events toward each female across the 15 scans (Σb ) di-
vided by the number of  sampling scans (15) and the number of  
larvae in the brood (10) as B = ( Σ b/15)/10. This metric used 
information of  larval begging only and represents the overall 
mean time spent begging per larva in the brood toward each 
female.

Behavioral mechanisms
We next investigated two potential behavioral mechanisms for why 
larvae might beg more toward the larger female. First, larvae may 
respond directly to female body size by begging more when they 
were in close contact with the larger female. We calculated the 
mean proportion of  time spent begging per larva when larvae were 
in close contact with either the larger or the smaller female (B ) as 
the number of  begging events toward each female across the 15 
scans (Σb) divided by the total number of  counts of  larvae being in 
close contact with the female in question across the 15 scans (n) as 
B = Σ b/n. This metric differs from the one above because it takes 
into account potential differences in the amount of  time that larvae 
spent in close contact with each female.

Second, larvae may respond indirectly to female body size by 
spending more time in close contact with the larger female, thereby 
having more opportunities to beg toward her. We recorded the 
total number of  counts of  larvae being in close contact with the 
female in question across the 15 scans. Given that the number of  
larvae that were close to the larger female is inversely related to the 
number of  larvae that were close to the smaller one, we focused 
on the proportion of  larvae in the brood that associated with the 
larger female. We calculated the proportion of  larvae that were in 
close contact with the larger female (C) as the number of  counts of  
larvae being close to the larger female across the 15 scans (Σ c ) di-
vided by the number counts of  larvae being close to either one of  
the two females across the 15 scans (n) as C = Σ c/n.

Statistical analysis
All statistical analyses were conducted using R version 3.6.0 (R 
Development Core Team 2011) loaded with the packages car (Fox 
et al. 2016), MASS (Ripley et al. 2017), and lme4 (Bates et al. 2014). 
We first investigated whether larvae begged more toward the larger 

female. To do so, we tested whether there was a difference in mean 
proportion of  time spent begging per larva toward larger and 
smaller females. Given that these data represented the proportion 
of  time that larvae spent begging, we used generalized linear mixed 
models (GLMMs) with a binomial distribution. We included female 
body size (larger or smaller) as a fixed effect and brood ID and ob-
servation level as random effects to account for repeated measures 
on the same broods and to handle overdispersion (Harrison 2015). 
We then tested whether larvae begged more when they were in 
close contact with the larger female using a GLMM with a bino-
mial distribution. We included female body size (larger or smaller) 
as a fixed effect and brood ID and observation level as random 
effects. Finally, we tested whether larvae spent more time in close 
contact with the larger female. To this end, we used a Wilcoxon 
signed-rank test comparing the observed proportion of  larvae that 
were in close contact with the larger female against the null expec-
tation of  0.5 as expected if  larvae spent an equal amount of  time in 
close contact with the two females (Crawley 2005).

We excluded 10 broods out of  32 broods from our analyses be-
cause at least one of  the two females later used as stimuli during 
our experiments had not been observed at the carcass at the time 
we removed the females from their original container. We excluded 
these females because such females had deserted their brood. We 
did this because prior work shows that breeding and nonbreeding 
females have different cuticular chemical profiles (Müller et  al. 
2003; Steiger et  al. 2007) and that larvae have a strong prefer-
ence for begging toward breeding females over nonbreeding ones 
(Smiseth et  al. 2010). Thus, we excluded cases where one of  the 
females had deserted the brood prior to the observation to exclude 
potential confounding effects due to another factor that is likely to 
influence larvae begging behavior (i.e., female breeding status). The 
final sample size in our study was, thus, 22 broods.

RESULTS
We first tested for a difference in the overall time spent begging 
toward the larger and smaller females. Larvae spent on average 
about three times as much time begging toward the larger female 
as they did toward the smaller one (Table 1; Figure 2a), confirming 
that larvae begged more toward the large female. We next tested 
between two potential behavioral mechanisms underpinning this 
preference; that is, whether larvae begged more when they were 
in close contact with the larger female or whether larvae spent 
more time in close contact with the larger female. We found that 
larvae spent more time in close contact with the larger female 

Table 1
Summary of  our statistical approach and our results concerning whether larvae beg more toward larger females and whether this 
was because larvae begged more toward larger females when in close contact with them or because larvae spent more time in close 
contact with larger females

Model Results

GLMM χ 2 df P

Overall time spent begging per larva in the brood Fixed effect: female status  
(larger/smaller)

Random effects: brood  
ID, observation level

12.7 1 <0.001

Time spent begging per larva in the brood  
when in close contact with the larger or smaller female

Fixed effect: female status  
(larger/smaller)

Random effects: brood  
ID, observation level

0.005 1 0.942

Statistically significant P-values (<0.05) are shown in boldface.
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than expected due to chance (Wilcoxon signed-rank test: V = 180, 
P = 0.04; Figure 2b). However, there was no evidence that larvae 
begged more when they were in close contact with the larger fe-
male as opposed to when they were in close contact with the 
smaller one (Table 1; Figure 2c). Thus, our results show that larvae 
begged more toward the larger female simply because they spent 
more time in close contact with her.

DISCUSSION
Here, we show that larvae in the burying beetle N. vespilloides begged 
more toward the larger female when given a simultaneous choice 
between two dead females: one larger and one smaller. We pre-
dicted that larvae would beg more toward the larger female given 
that larger females provision more food than smaller ones (Steiger 
2013) and that begging incurs costs to larvae (Andrews and Smiseth 
2013; Takata et al. 2019). Thus, our results support the hypothesis 
that offspring beg more toward the adult that is likely to provision 
them with more food, thereby maximizing the offspring’s returns 
on begging. There is support for this hypothesis from prior work 
on species with biparental care showing that offspring beg more 
toward parents of  the sex that provisions the most food (Kölliker 
et al. 1998; Roulin and Bersier 2007; Dickens et al. 2008; Suzuki 
2015; Paquet et al. 2018). Our study adds to this work by showing 
that offspring have preferences based on parental attributes other 
than sex, such as body size.

We also show that larvae spent more time in close contact with 
the larger female than with the smaller one (Table  1; Figure  2a), 
whereas there was no evidence that larvae begged more when they 
were in close contact with the larger female (Table  1; Figure  2c). 
These results provide valuable insights into the behavioral mechan-
isms for why larvae beg more toward the larger female by showing 
that larvae do so simply as a consequence of  spending more time 
in close contact with her (Figure 2b). Larvae may spend more time 
in close contact with the larger female because larger females provi-
sion more food, as shown by a prior study on N. vespilloides (Steiger 
2013). However, there are alternative explanations for why larvae 
spent more time in close contact with the larger female. First, if  
larvae move randomly within the container, they may end up more 
often underneath the larger female simply by chance. This expla-
nation seems unlikely given that there was no evidence that larvae 
moved randomly within the container. The larvae spent on average 
92% of  their time underneath one of  the two females. Yet, the sur-
face area covered by the two females (including the width of  their 
pronotum around the females to match our criteria for determining 
whether larvae were in close contact with a given female) made up 
only 5.5% of  the area of  the container. We also note that the larvae 
were already underneath the two females by the time we started 
our observation session, only 5 min after we had placed the larvae 
in the container. Keeping in mind that we placed the larvae away 
from the two females at the start of  the experiment, this suggests 
that the larvae moved quickly in the direction of  the two females. 
Second, larvae might approach females for protection and shelter, 
spending more time in close contact with the larger female if  larger 
females are better at protecting larvae from potential threats. For 
example, in our study species, conspecific intruders pose a threat 
to the larvae as they may commit infanticide in order to attempt 
to take over the carcass (Trumbo 2007; Trumbo and Valetta 2007, 
Georgiou Shippi et al. 2018). There is also evidence that larger fe-
males are stronger competitors against conspecifics than smaller fe-
males (Otronen 1988; Trumbo 2007). Thus, we cannot rule out the 
potential explanation that larvae may beg more toward the larger 
female as a consequence of  being close to her for protection.

Our results imply that larvae somehow assessed the body size of  
the two females. As our study species normally breeds underground 
in complete darkness (Scott 1998), it is unlikely that larvae did so 
based on visual cues. Instead, larvae might assess differences be-
tween females based on behavioral, acoustic, and vibrational cues 
that reflect body size. Although we cannot rule out that such cues 
play a role when larvae interact with live females, it seems unlikely 
that they could explain our results given that we used dead females 
as stimuli to trigger larval begging. Potentially, larvae may use tac-
tile cues to assess female size once they had approached the two 
females. There was some indication that larvae moved between the 
two females (on average, one larva moved between each scan), but 
there was no evidence that larvae moved in a specific direction, that 
is, from the smaller toward the larger female. Alternatively, larvae 
may assess differences in body size between females at a distance 
based on chemical cues, such as cuticular hydrocarbons (CHCs) 
and methyl geranate (Steiger et  al. 2007; Smiseth et  al. 2010; 
Steiger et al. 2011; Engel et al. 2016). Such chemical cues are pre-
sent on dead parents and stimulate larval begging (Smiseth et  al. 
2010), and, although CHCs are not volatile, they break down into 
volatile organic compounds when exposed to air and water vapor 
(Hatano et  al. 2020). Thus, there is now a need for studies that 
compare CHC profiles of  different-sized females.

We investigated whether offspring beg more toward larger 
adults in the context of  communal breeding for practical 
reasons because it allowed us to exclude potential confounding 
effects due to other attributes of  adults, such as their sex or 
breeding status. Nevertheless, we suggest that offspring prefer-
ences for larger adults may also be found in other contexts, such 
as biparental care, cooperative breeding, and uniparental care 
(Table  1). In the context of  biparental care, there is evidence 
that offspring beg more toward the parent of  the sex that pro-
visions the most food (Kölliker et  al. 1998; Roulin and Bersier 
2007; Dickens et  al. 2008; Suzuki 2015; Paquet et  al. 2018). 
Thus, demonstrating that offspring beg more toward the larger 
parent will require designs that can separate between offspring 
responses to parental body size and sex. Furthermore, in spe-
cies where there are sex differences in body size, offspring pref-
erences for larger adults may potentially explain why offspring 
beg toward parents of  a particular sex. This is unlikely to be 
the case in our species because there are no sex differences in 
body size in N. vespilloides (Paquet et al. 2018). Similarly, offspring 
may beg more toward larger adults in the context of  coopera-
tive breeding, where offspring are provisioned food by parents 
that are assisted by nonbreeding helpers (Vehrencamp 2000; 
Koenig and Dickinson 2004). In this context, there is some evi-
dence that offspring beg more toward their parents than toward 
the helpers (Fortuna 2016), and such preferences may be based 
on adults’ breeding status (breeders or helpers) or body size if  
there are differences in body size between parents and helpers. 
Finally, there may be offspring preferences for larger adults in 
the context of  uniparental care, although it is less obvious that 
this would be the case given that offspring would have no op-
portunity to choose between different adults. Nevertheless, we 
suggest that offspring might have such preferences even in this 
context provided that offspring can choose between obtaining 
food by begging from their parent or finding food for themselves 
(Smiseth et  al. 2003) and that begging incurs costs to offspring 
(Redondo and Castro 1992; Haskell 1994; Kilner 2001; Andrews 
and Smiseth 2013). Thus, offspring preferences for larger adults 
may occur in the context of  uniparental care where offspring 
are only partially dependent on their parents, as in N. vespilloides 
(Smiseth et al. 2003), or where there is a transition period from 
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complete dependence on parents for food toward full indepen-
dence, as in many birds and mammals.

Our study has important implications for our understanding 
of  parent–offspring communication. It is well established that 

offspring adjust their begging behavior in response to changes in 
their own state, such as their hunger state (Kilner and Johnstone 
1997; Smiseth and Moore 2004, 2007), their long-term need 
(Price et al. 1996), or their inbreeding status (Mattey et al. 2018). 
Here, we show that offspring also adjust their begging behavior 
in response to female body size, an attribute that predicts the 
ability of  female parents to provision their offspring with food 
(e.g., Tveera et  al. 1998; Landete-Castillejos et  al. 2003; Bosch 
and Vicens 2006; Steiger 2013). Traditionally, parent–offspring 
communication is described as a process where begging off-
spring signal their needs, thereby playing the role as senders, and 
parents respond to the offspring’s signals, thereby playing the 
role as receivers. Our study suggests that parent–offspring com-
munication is more complex as begging offspring also act as re-
ceivers by responding to cues from their parents. Thus, it seems 
more appropriate to describe parent–offspring communication 
as a two-way process where both parents and offspring act as 
senders and receivers, adjusting their behavior based on signals 
or cues produced by each other.

We thank the City of  Edinburgh Natural Heritage Service for permission to 
collect beetles in their reserve at the Hermitage of  Braid and Blackford Hill 
Local Nature Reserve. We thank Emilie Snell-Rood and three anonymous 
reviewers for helpful comments on a previous version that greatly contrib-
uted to improving the quality of  the paper. We also thank Jon Richardson, 
Ellie Riley, and Kynan Delaney for assistance with maintaining the labora-
tory population and measuring beetles. T.R. was supported by the Darwin 
Trust of  Edinburgh.

Data availability: Analyses reported in this article can be reproduced using 
the data provided by Ratz et al. (2020).

Handling editor: Emilie Snell-Rood

REFERENCES
Andrews  CP, Smiseth  PT. 2013. Differentiating among alternative models 

for the resolution of  parent-offspring conflict. Behav Ecol. 24:1185–1191.
Bates  D, Mächler  M, Bolker  B. 2014. Fitting linear mixed-effects models 

using lme4. J Stat Softw. 67:1–48.
Bell MB. 2008. Strategic adjustment of  begging effort by banded mongoose 

pups. Proc Biol Sci. 275:1313–1319.
Bosch J, Vicens N. 2006. Relationship between body size, provisioning rate, 

longevity and reproductive success in females of  the solitary bee Osmia 
cornuta. Behav Ecol Sociobiol. 60:26–33.

Budden  AE, Wright  J. 2001. Begging in nestling birds. In: Nolan V Jr, 
Thompson CF, editors. Current ornithology. Boston (MA): Springer. p. 
83–118.

Crawley MJ. 2005. Statistics: an introduction using R. Chichester (UK): Wiley.
Dickens  M, Berridge  D, Hartley  IR. 2008. Biparental care and offspring 

begging strategies: hungry nestling blue tits move towards the father. 
Anim Behav. 75:167–174.

Dougherty LR, Shuker DM. 2014. The effect of  experimental design on the 
measurement of  mate choice: a meta-analysis. Behav Ecol. 26:311–319.

Eggert  A-K, Müller  JK. 1992. Joint breeding in female burying beetles. 
Behav Ecol Sociobiol. 31:237–242.

Eggert A-K, Müller JK. 2000. Timing of  oviposition and reproductive skew 
in cobreeding female burying beetles (Nicrophorus vespilloides). Behav Ecol. 
11:357–366.

Engel KC, Stökl  J, Schweizer R, Vogel H, Ayasse M, Ruther  J, Steiger S. 
2016. A hormone-related female anti-aphrodisiac signals temporary in-
fertility and causes sexual abstinence to synchronize parental care. Nat 
Commun. 7:11035.

Fortuna  RAFG. 2016. Begging for answers: how do parents and helpers 
respond to offspring begging in a cooperatively breeding system? [MSc 
thesis]. [Porto (Portugal)]: University of  Porto.

Fox  J, Weisberg  S, Adler  D, Bates  D, Baud-bovy  G, Ellison  S, Firth  D, 
Friendly  M, Gorjanc  G, Graves  S, et  al. 2016. Package “car.” CRAN 
Repository 171. [cited 2020 March 9]. Available from: https://cran.r-
project.org/web/packages/car/car.pdf.

0.3

0.2

P
ro

po
rt

io
n 

of
 ti

m
e 

be
gg

in
g

pe
r 

la
rv

a

P
ro

po
rt

io
n 

of
 la

rv
ae

in
 c

lo
se

 c
on

ta
ct

 w
ith

 la
rg

er
 fe

m
al

e
P

ro
po

r t
io

n 
of

 ti
m

e 
be

gg
in

g 
pe

r 
la

rv
a

w
he

n 
in

 c
lo

se
 c

on
ta

ct
 w

ith
 a

 g
iv

en
 fe

m
al

e

0.1

0.0

1.00

0.75

0.50

0.25

0.00

0.8

0.6

0.4

0.2

0.0

Smaller Larger

Female

Smaller Larger

Female

(a)

(b)

(c)

Figure 2
(a) Mean overall proportion of  time spent begging per larva in the brood 
toward the larger and smaller female, (b) mean proportion of  time spent in 
close contact with the larger female relative to time spent in close contact 
with the smaller female, and (c) mean proportion of  time spent begging 
per larva when in close contact with either the larger female or the smaller 
female. The dash line in (b) represents the null expectation when larvae 
associated as much with the larger female as with the smaller one. Black 
dots and error bars represent means ± SE.
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important role in this context because social interactions can
amplify or alleviate stress, thereby exacerbating or buffering
against inbreeding depression. For example, direct competition
between inbred and outbred males exacerbates inbreeding
depression in house mice (Mus domesticus) (Meagher et al.,
2000). Meanwhile, parental care buffers against inbreeding
depression in offspring in the burying beetle Nicrophorus
vespilloides (Pilakouta et al., 2015).

The examples provided above illustrate that social interactions
with other individuals can have an important impact on the
fitness of those individuals that are themselves inbred (e.g.,
Meagher et al., 2000; Pilakouta et al., 2015). However, there is
mounting evidence for indirect genetic effects associated with
inbreeding whereby outbred individuals suffer fitness costs as a
result of interacting with or depending upon inbred ones (Mattey
et al., 2013; Richardson and Smiseth, 2017). For example, in
species where parents care for their offspring, parental inbreeding
can have detrimental effects on the offspring’s fitness. Recent
studies on the burying beetle Nicrophorus vespilloides and red
deer (Cervus elaphus) show thatmaternal inbreeding is associated
with lower offspring survival (Mattey et al., 2013; Huisman et al.,
2016). Such effects of maternal inbreeding on offspring fitness
may result from inbred females providing less or lower-quality
care than outbred ones (Mattey et al., 2013). Currently, it is
unclear whether interactions with third-party individuals may
buffer against the detrimental effects of maternal inbreeding on
offspring fitness. For example, in species with biparental care, the
presence of a male partner may offset some of the detrimental
effects of maternal inbreeding on offspring. In support for this
hypothesis, a study on zebra finches (Taeniopygia guttata) found
that maternal inbreeding had no detectable effect on offspring
fitness even though inbred mothers spent less time incubating
their eggs (Pooley et al., 2014). In this study, males always assisted
with parental care. Thus, there is now a need for studies that
examine whether male assistance in parental care buffers against
the detrimental effects of maternal inbreeding on offspring fitness
by manipulating the presence and absence of male assistance.

The burying beetle Nicrophorus vespilloides is well-suited
to test whether male assistance in care buffers against the
detrimental effects of maternal inbreeding on offspring fitness.
In this species, both parents cooperate to bury, maintain and
guard the vertebrate carcass, which serves as the sole food source
for both larvae and parents during breeding. Both parents also
care for the larvae after hatching, though females spend more
time provisioning food than males and males desert the brood
earlier than females (Bartlett and Ashworth, 1988; Smiseth et al.,
2005). Males respond to the removal or desertion of the female,
and to the reduced amount of care of handicapped females, by
increasing their time spent on paternal care (Smiseth et al., 2005;
Royle et al., 2014; Creighton et al., 2015). Furthermore, males
spend more time providing care when paired with an inbred
female, suggesting that males respond to the inbreeding status of
their female partner (Mattey and Smiseth, 2015). There is good
evidence that maternal inbreeding has a detrimental impact on
the survival of outbred offspring (Mattey et al., 2013, 2018; but
see Mattey and Smiseth, 2015; Ford et al., 2018). However, there
is no information as to whether male assistance in parental care

buffers against the detrimental effects of maternal inbreeding on
offspring fitness.

Here, we use a 2 × 3 factorial design to test whether
male assistance in parental care buffers against the detrimental
effects of maternal inbreeding on offspring fitness in the burying
beetle N. vespilloides. We paired an inbred or outbred female
with an unrelated inbred or outbred male that assisted the
female with parental care during larval development. We also
added additional treatments where the male was experimentally
removed before larval hatching such that the inbred or outbred
female received no assistance in parental care. Our first aim was
to test whether male assistance in parental care buffers against
the detrimental effects of maternal inbreeding on offspring
fitness. If so, we predicted effects of the interaction between
maternal inbreeding (inbred or outbred) andmale status (inbred,
outbred, or absent) on offspring fitness (i.e., mean offspring
survival and/or weight), reflecting that maternal inbreeding had
a greater negative impact on offspring fitness when the male
was absent than when the female received assistance from a
male. Furthermore, if inbred males have a reduced capacity to
buffer against the detrimental effects of maternal inbreeding,
we predicted that maternal inbreeding would have a greater
negative impact on offspring fitness when the female was assisted
by an inbred male rather than an outbred male. We next
tested whether male assistance in parental care had an impact
on female and male weight change whilst providing care. In
this species, the amount of carrion consumed by a parent
reflects parental investment in future reproduction (Creighton
et al., 2009). Thus, if male assistance in parental care buffered
against the detrimental effects of maternal inbreeding, thereby
allowing females to save more resources for investment in future
reproduction, we predicted females to gain more weight when
assisted by a male than when the male was absent. If outbred
males were better able to buffer for the effects of maternal
inbreeding than inbred ones, we predicted that females assisted
by an outbred male would gain more weight than those assisted
by an inbred male. Finally, as inbred females are expected to
provide lower quality care than outbred ones, we predicted that
males paired with an inbred female would gain less weight than
males paired with an outbred female, reflecting that the former
increase their investment in current reproduction (Mattey and
Smiseth, 2015).

MATERIALS AND METHODS

Origin and Rearing of Experimental Beetles
The beetles used in these experiments originated from wild
beetles originally collected in Corstorphine Hill, Edinburgh, U.K.
In order to avoid unintended inbreeding, we maintained a large
outbred laboratory population (Mattey et al., 2018). To this
end, we bred 200–300 individuals each generation, recruiting
three offspring from each brood to the next generation. Non-
breeding adult beetles were kept in individual transparent plastic
containers (12 × 8 × 2 cm) filled with moist soil, and fed
small pieces of organic beef twice a week. The beetles were kept
under constant temperature (20–22◦C) and photoperiod (16:8 h
light:dark).
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Experimental Design
To test whether male assistance in parental care buffers against
the detrimental effects of maternal inbreeding on offspring
fitness, we used a 2 × 3 factorial design in which an inbred or an
outbred female was mated with an inbred or outbred male that
later assisted the female in parental care (inbred female mated
to an inbred male: N = 51; inbred female mated to an outbred
male: N = 36; outbred female mated to an inbred male: N = 48;
outbred female mated to an outbred male: N = 35). Our design
also included two additional treatments where an inbred or an
outbred female was mated with a male that was removed before
the larvae hatched (N = 40 and N = 38 for inbred and outbred
females, respectively).

We generated inbred females and males for use as parents
in this experiment by paring their mother with her full-
sibling brother in the previous generation (Mattey et al., 2018).
Meanwhile, we generated outbred females and males by paring
their mother with an unrelated male (i.e., a male with which the
mother did not share an ancestor for at least two generations;
Mattey et al., 2018). Once the inbred and outbred females and
males had reached sexual maturity, we randomly assigned each
individual to one of the six treatments. At the start of the
experiment, we weighed each female and male. We then paired
inbred and outbred females with an unrelated inbred or outbred
male partner depending on the treatment to which they had been
assigned, and transferred them into a larger transparent plastic
container (17 × 12 × 6 cm) filled with 1 cm of moist soil. We
provided each pair with a previously frozen mouse carcass of a
standardized size (22.33–26.89 g) (supplied by Livefoods Direct,
Sheffield, UK) to initiate breeding. We checked each container
for the presence of eggs daily and recorded the date at which
the first eggs appeared as the start of egg laying. Two days after
the start of egg laying, we recorded clutch size as the number
of eggs visible through the bottom of the transparent containers
(Monteith et al., 2012). In the limited amount of soil that we
used, the number of eggs visible at the bottom of the container
is strongly correlated with the actual clutch size (Monteith et al.,
2012).

In those treatments where the male was absent during
larval development, we removed the male from the container
2 days after the outset of egg laying as this corresponds to the
day before hatching (Smiseth et al., 2006). In the remaining
treatments, we left the inbred or outbred male within the
container thereby allowing him to assist the female in providing
parental care until the larvae completed development and
dispersed from the mouse carcass (hereafter referred to as
larval dispersal). At larval dispersal, we recorded brood size
by counting the number of larvae in the brood and weighed
the total mass of the brood. We estimated the proportion of
offspring surviving until dispersal as the brood size at dispersal
divided by the clutch size. We calculated mean larval mass as
the total mass of the brood divided by the brood size. At larval
dispersal, we also weighed each female and male parent. We
then estimated the percentage of weight gain of females and
males during breeding as the relative difference in body mass
measured at mating (Wm) and the body mass at larval dispersal

(Wd) using the following equation: Wd−Wm
Wm

× 100. We also

calculated the absolute weight gain in females and males (i.e.,
Wd −Wm).

Statistical Analysis
All statistical analyses were conducted using R v 3.3.3 (R
Development Core Team, 2011) loaded with the package car
(Fox et al., 2016). To analyze our data on offspring survival
until dispersal, we used a Poisson generalized linear model.
We analyzed our data on mean larval mass at dispersal and
weight gain by females and males using general linear models
fitted with a Gaussian error structure. These models always
included maternal inbreeding (inbred or outbred) and male
status (inbred, outbred, or absent) as fixed factors. We included
female relative weight gain as an additional fixed factor in the
model on male relative weight gain as male carrion consumption
and weight change has been shown to depend on female carrion
consumption and weight gain (Pilakouta et al., 2016). In the
models on absolute weight gain by females and males, we also
included the parent’s initial mass as a fixed factor to control for
potential differences in body size across individuals given that
inbred females were significantly lighter than outbred females at
the start of the experiment (LRχ

2 = 4.43, df = 1, P = 0.035).
We excluded carcass size from our analyses given that we used
mouse carcasses within a narrow, standardized size range (22.33–
26.89 g) in our experiment. Furthermore, there was no significant
effect of carcass size in any of our analyses when we included
it as a fixed factor. We assessed and evaluated whether the
structure of all models was appropriate for each variable by
plotting the residuals from the models. Whenever there was
a significant effect of male status (inbred, outbred or, absent),
we tested for differences between each treatment using Tukey
contrasts reporting p-values based on the Bonferroni correction
for multiple testing. The complete dataset and R code used
for the analyses are provided in Data Sheet 1 and Data Sheet 2
(Supplementary Material).

RESULTS

Offspring Fitness
There was no significant effect of the interaction between
maternal inbreeding (inbred or outbred) andmale status (inbred,
outbred, or absent) on the proportion of offspring surviving until
dispersal (Maternal inbreeding:Male status, Table 1, Figure 1A).
Thus, there was no evidence that male assistance in parental care
buffered against the detrimental effects of maternal inbreeding on
offspring fitness.

We next explored potential main effects of maternal
inbreeding and male status on offspring fitness. As expected,
broods reared by outbred females had a larger proportion of
offspring surviving until dispersal than broods reared by inbred
females (Table 1 and Figure 1A), thus confirming that there
were detrimental effects of maternal inbreeding on offspring
survival. There was no difference in the proportion of offspring
surviving until dispersal depending on whether the male was
inbred, outbred or absent (Table 1, Figure 1A). There was no
difference in mean larval mass at dispersal between inbred and
outbred females (Table 1 and Figure 1B). Likewise, there were
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TABLE 1 | Effects of maternal inbreeding (inbred or outbred) and male status

(inbred, outbred or absent) on offspring survival until dispersal and mean larval

mass at larval dispersal.

Offspring survival Mean larval mass

LRχ
2 df P LRχ

2 df P

Maternal inbreeding:Male status 0.275 2 0.871 2.85 2 0.239

Maternal inbreeding 9.55 1 0.002 1.21 1 0.270

Male status 0.711 2 0.700 3.52 2 0.172

Values are obtained from GLMs.

LR, likelihood ratio. Statistically significant P values (<0.05) are shown in boldface.

FIGURE 1 | Effects of maternal inbreeding (inbred or outbred) and male status

(inbred, outbred, or absent) on the proportion of offspring surviving until

dispersal (A), and on mean larval mass at dispersal (B). Mean ± SE.

no significant main effects of male status on mean larval mass
at dispersal (Table 1 and Figure 1B). These findings suggest
that there was no detrimental effect of maternal or paternal
inbreeding on mean offspring weight and that male assistance
had no positive main effects on mean offspring weight.

Female and Male Weight Gain
There was a significant effect of the interaction between maternal
inbreeding and male status on both relative and absolute weight
gain of females (Table 2). This interaction effect reflected that
outbred females gained more weight when a male assisted in
parental care than when the male was removed (Figure 2A),
while inbred females gained a similar amount of mass regardless
of whether the male assisted with parental care or not. There was
no difference in either relative or absolute weight gain of females
depending on whether the male was inbred or outbred (Female
inbred; Male outbred vs. Male inbred: Estimate = −0.010 ±

0.007, Z = −1.34, P > 0.999; Female outbred; Male outbred vs.
Male inbred: Estimate = 0.007 ± 0.008, Z = 0.891, P > 0.999).
Thus, there was no evidence that females gained more weight
when assisted by an outbred rather than an inbred male.

There was no significant effect of the interaction between
maternal inbreeding andmale status on either relative or absolute
weight gain of males (Table 2 and Figure 2B). There were no
significant differences in either relative or absolute weight gain
between inbred and outbred males (Table 2 and Figure 2A).
However, males gained less relative and less absolute weight when
paired with an outbred female than when paired with an inbred
female (Figure 2A), suggesting that males benefitted from having
an inbred partner.

DISCUSSION

Here, we tested whether male assistance in parental care
buffers against the detrimental effects of maternal inbreeding
on offspring fitness in N. vespilloides. We found that maternal
inbreeding had detrimental effects on offspring fitness in terms of
reduced offspring survival, confirming the results of prior work
on this species (Mattey et al., 2013, 2018; but see Mattey and
Smiseth, 2015; Ford et al., 2018) and consistent with evidence
from studies on vertebrate systems (Keller, 1998; Bérénos et al.,
2016; Huisman et al., 2016). However, we found no evidence
that male assistance in parental care buffered against these
detrimental effects. Male assistance in care had a positive effect on
female weight gain during breeding, showing that male assistance
was beneficial to females. However, this was only the case when
females were outbred, suggesting that outbred females benefitted
more from male assistance than inbred ones. Finally, males
paired with an inbred female gained more weight than those
paired with an outbred female. This finding is opposite to what
we predicted if males paired with an inbred female increased
their investment in current reproduction. Instead, this result may
reflect that males paired with an inbred female spent more time
provisioning food to the larvae, thereby gaining better access to
consume food from the carcass (Pilakouta et al., 2016). Overall,
our results provide no evidence that male assistance in parental
care buffers against the detrimental effects of maternal inbreeding
on offspring fitness. Below, we provide amore detailed discussion
of our results and their implications for our understanding
of the consequences of inbreeding in populations where social
interactions are prevalent.

Our first key finding was that maternal inbreeding had
detrimental effects on offspring fitness in terms of reduced larval
survival from egg laying until dispersal, but that this effect
was independent of whether the male was absent or present,
and when the male was present, whether the male was inbred
or outbred. Thus, our results provide no evidence that male
assistance in parental care buffered against the detrimental effects
ofmaternal inbreeding on offspring fitness. This finding contrasts
with experimental evidence from a recent study on zebra finches,
suggesting that male assistance in parental care buffers against
the detrimental effects of maternal inbreeding. In zebra finches,
inbred females spend less time incubating eggs, and buffering
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TABLE 2 | Effects of maternal inbreeding (inbred or outbred) and male status (inbred, outbred or absent) on female and male relative and absolute weight gains over the

breeding attempt.

Female relative weight gain Female absolute weight

gain

Male relative weight gain Male absolute weight gain

LRχ
2 df P LRχ

2 df P LRχ
2 df P LRχ

2 df P

Maternal inbreeding:Male status 6.59 2 0.037 7.80 2 0.020 0.067 1 0.795 0.064 1 0.799

Maternal inbreeding 0.737 1 0.390 1.61 1 0.203 5.11 1 0.023 3.91 1 0.047

Male status 2.16 2 0.339 3.46 2 0.176 0.131 1 0.717 0.039 1 0.842

Parent’s initial weight – – – 0.006 1 0.938 – – – 1.26 1 0.261

Female relative weight gain – – – – – – 2.31 1 0.127 – – –

Female absolute weight gain – – – – – – – – – 2.31 1 0.127

Values are obtained from GLMs.

LR, likelihood ratio. Statistically significant P values (<0.05) are shown in boldface. For male relative weight gain, male status had only two level (Inbred or outbred) because the weight

was not recorded for males of the “absent” treatment group.

FIGURE 2 | Effects of maternal inbreeding (inbred or outbred) and male status

(inbred, outbred, or absent) on female relative weight gain (A), and male

relative weight gain (B) over the breeding attempt. Mean ± SE.

is thought to reflect that males compensate for the reduced
incubation by inbred females (Pooley et al., 2014). Prior work
on N. vespilloides shows that maternal inbreeding can reduce
offspring fitness both before hatching (i.e., hatching success of
eggs; Mattey and Smiseth, 2015; Ford et al., 2018) and after
(i.e., survival at the larval stage; Mattey et al., 2013, 2018).
Thus, one potential explanation for why male assistance did
not buffer against the detrimental effects of maternal inbreeding
on offspring is that post-hatching male care cannot buffer
against effects on hatching success of eggs. This explanation

may also apply to other systems as detrimental effects of
maternal inbreeding on hatching success have also been reported
for example in song sparrows (Keller, 1998). An alternative
explanation for why male assistance in parental care did not
buffer against the detrimental effects of maternal inbreeding is
that male assistance in care in this species does not increase
larval survival from hatching until dispersal under laboratory
conditions (Smiseth et al., 2005). This presumably reflects that
males contribute far less toward parental care than females
in this species (Smiseth et al., 2005). This sex difference in
parental care may also explain why there were detrimental effects
of maternal inbreeding on offspring fitness, whilst there were
no detrimental effects of paternal inbreeding. We note that
male assistance in guarding and defending the brood against
predators or conspecific intruders plays an important role under
natural conditions in burying beetles (Scott, 1990). Thus, it
is possible that male assistance in parental care could buffer
against detrimental effects of maternal inbreeding on offspring
fitness under natural conditions where competitors or conspecific
intruders may reduce offspring survival. Further studies are
now needed to investigate whether male assistance in care
might buffer against detrimental effects of maternal inbreeding
when there is a risk of predation or takeovers by conspecific
intruders.

Our second main finding was that there was an effect of
the interaction between maternal inbreeding and male status on
female weight gain with male assistance in parental care having
a positive effect on relative mass gain of outbred females only.
We anticipated that females would benefit from male assistance
regardless of their own inbreeding status, and that this would
lead to an increase in their mass gain indicative of a shift toward
investment in future reproduction (Creighton et al., 2009). Thus,
this finding suggests that outbred females benefitted more from
male assistance than inbred ones. One potential explanation for
why this might be the case is that inbreeding is associated with
terminal investment and that inbred females therefore always
invest more effort into current reproduction. There is some
evidence that inbreeding is associated with terminal investment
from previous studies on N. vespilloides (Mattey and Smiseth,
2015; Richardson and Smiseth, 2017; Mattey et al., 2018). In light

Frontiers in Ecology and Evolution | www.frontiersin.org 5 November 2018 | Volume 6 | Article 196



Ratz et al. Maternal Inbreeding and Biparental Care

of our finding that the presence of a male had a positive effect
on the weight gain of outbred females only, future work should
now test for a differential effect of male assistance in care on
the subsequence breeding performance by outbred and inbred
females. Presumably, outbred females would perform better in
subsequent breeding attempts when assisted by a male during
a first breeding attempt, while inbred females would perform
equally well regardless of whether they were assisted by a male
or not.

We found no evidence that females gained more mass when
assisted by an outbred male, suggesting that females did not
benefit more from assistance by outbred males as compared
to inbred ones. We predicted that females would gain more
mass when assisted by an outbred male if outbred males are
better parents than inbred ones. Our results show that that
this was not case, which might explain why outbred males
were not better able to buffer against the detrimental effects
of maternal inbreeding on offspring fitness. Our finding echoes
previous work in this species showing that characteristics of
the male, such as body size, have little influence on carrion
consumption or weight gain of the female, whereas females
adjust their consumption and weight gain to match their male
partner’s weight gain (Pilakouta et al., 2016). In light of this
evidence, and keeping in mind that there was no difference in
weight gain by inbred and outbred males in our experiment (see
discussion below), it seems unlikely that females adjusted their
carrion consumption and weight change to the status of their
male partner.

The final main result of our study was that males paired
with inbred females gained more weight over the breeding
attempt than males paired with outbred females. We predicted
that males paired with inbred females would gain less weight
over the breeding attempt. The reason for this is that males
paired with inbred females should be expected to increase their
investment into current reproduction to compensate for the
detrimental effects of maternal inbreeding. Thus, our finding
suggests that males instead might increase their investment into
future reproduction when their partner is inbred. However, this
seems unlikely given that a previous study on N. vespilloides
found that males paired with inbred females provided more
care than males paired with outbred females (Mattey and
Smiseth, 2015). An alternative explanation is that males paired
with an inbred female gained more weight over the breeding
attempt because they provided more care than males paired
with an outbred female. In this species, parents feed from the
carcass whilst breeding and males might gain better access
to the carcass if they provide more care (Pilakouta et al.,
2016). If so, we might expect a positive correlation between
male food provisioning and male weight gain in this species.
Altogether, our findings suggest that males benefitted in terms
of gaining more weight during the breeding attempt when
assisting an inbred partner. Given that male weight gain serves
as a proxy for investment in future reproduction (Creighton
et al., 2009), one avenue for future work is to compare the
subsequent reproductive performance of males paired with
an outbred or inbred female during a previous breeding
attempt.

Our results have broader implications for understanding how
social interactions shape the severity of inbreeding depression.
There is increasing evidence that social interactions can alter
the severity of inbreeding depression, with stressful interactions
aggravating the severity of inbreeding depression (e.g., Meagher
et al., 2000) and benign interactions buffering against inbreeding
depression (e.g., Pilakouta et al., 2015). It is well documented that
maternal care enhances larval survival and growth in burying
beetle (e.g., Eggert et al., 1998; Trumbo, 2007; Arce et al., 2012).
Thus, maternal care may buffer against inbreeding depression in
offspring by reducing environmental stresses to offspring, such
as the risk of death due to starvation, infanticide by conspecific
intruders, and predation. In contrast, as discussed above, there is
mixed evidence as to whether male assistance in care enhances
offspring fitness (Pooley et al., 2014; our study). Thus, our results
suggest that parental care or other benign social interactions
will not always buffer against inbreeding depression. There is
now a need for further work on the buffering effects of male
assistance in parental care against the detrimental effects of
maternal inbreeding on offspring fitness in systems where males
contribute more toward care. For example, such experiments
could be conducted on bird species where males and females
contribute more equally toward parental care (Clutton-Brock,
1991).
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