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Abstract 

 
 

Avulsion of the flexor digitorum profundus (FDP) tendon from the distal phalanx (DP) 

in the finger is a common and distinct clinical injury of the hand (‘jersey finger’) with 

considerable functional morbidity. Multiple surgical techniques are employed to 

reattach the tendon to the bone, but no single technique has emerged as the optimal 

treatment method. Issues such as reduced range of movement, infection, nail 

deformity and cost complicate the requirement for strong fixation and prevention of 

re-rupture.  

 

Crucially, repair of avulsion injuries does not regenerate the enthesis, the region of 

graded multiphasic microanatomy at the tendon-bone insertion. The enthesis allows 

uniform muscle force transmission between the mechanically distinct tendon and 

bone through specialised adaptations to dissipate stress foci. Avulsion repair is scar-

mediated and of low mechanical strength, prone to re-rupture at the tendon-bone 

interface. Interfacial tissue engineering provides the opportunity to create an in vitro 

tendon-bone model with potential to re-establish the enthesis through co-culture of 

tendon and bone cells, which could be used to evaluate repair techniques or as a 

composite tissue graft for clinical use. 

 

The aim of this project was to establish an in vitro model system that was anatomically 

representative and clinically applicable to the investigation and treatment of FDP 

avulsion injury. The 2 main objectives were to thoroughly evaluate the native anatomy 

of the human FDP insertion, and to design and develop a relevant 3-dimensional (3D) 

in vitro tendon-bone co-culture model. 

 

Human cadaveric tissue was dissected and photographed for image analysis to 

determine gross shape and dimension morphometrics of the FDP-DP tendon-bone 

interface, FDP tendon and DP bone. Finger and gender differences were found to 

significantly influence measurement values, with data groupings informing design 

guidelines for ‘small’, ‘medium’ and ‘large’ model sizes. Cadaveric tissue was also 

histologically processed to qualitatively describe the fibrocartilaginous FDP enthesis 

for the first time. Quantitative analysis of tendon fibres revealed a mean angle of 
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insertion across the soft-hard tissue interface of 30o, providing a guide to the angled 

attachment of the tendon and bone model components. 

 

Development of the in vitro model enhanced an existing multi-tissue fibrin scaffold soft 

tissue-bone anchor design into an FDP tendon analogue-DP bone anchor single 

species co-culture construct. Rat fibroblast and osteoblast cultures were established 

and characterised in standard growth medium, mineralising medium and a 50:50 

media mix. Formation and maturation of the fibroblast-seeded fibrin tendon analogue 

was analysed histologically in single and multi-strand cultures for morphological 

development and collagen deposition. Long term tendon analogues were cultured 

with different anchor sizes, fibrin constituent volumes, cell numbers and growth media 

for width comparison with cadaveric tendon data, and assessment of 3D morphology 

with optical coherence tomography. Investigation of the bone anchor component 

focused on brushite, a phosphate mineral-based bone scaffold material, including 

assessment of attachment and proliferation of seeded osteoblasts.  

 

Model assembly required development of a novel 3D printed mold and silicone 

impression system for guided tendon analogue culture and angled bone anchor 

attachment. Optimal design elements and in vitro culture materials ultimately 

combined to produce a fibroblast-seeded tendon analogue and osteoblast-seeded 

bone anchor 3D model, co-cultured in 3 anatomical sizes clinically relevant to FDP 

tendon avulsion. These models can be used as the basis to study enthesis formation 

and further optimised towards a clinical product for use in FDP avulsion repair. 
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Lay Summary 

 
 

The flexor digitorum profundus (FDP) is a hand tendon that bends the finger and 

allows gripping and pinching. A problematic injury that reduces hand use is the FDP 

tendon pulling away from its attachment to the furthest bone of the finger, the distal 

phalanx (DP). Many surgical reattachment methods exist but issues such as poor 

finger movement and infection are common, and no method restores the original 

tendon-bone attachment strength, so the tendon is more likely to detach again. 

 

Tendons attach to bones through a millimetre sized connecting region, consisting of 

specialised cells in an environment distinct from the tendon and bone, called the 

‘enthesis’. During tendon contraction for bone movement, the enthesis helps prevent 

potentially excessive and harmful forces at the join between the soft tendon and hard 

bone. However, after injury, the enthesis is damaged and not regenerated after 

tendon-bone reattachment, so the attachment is weaker and detachment more likely 

to reoccur. In the laboratory, cells can be grown inside 3-dimensional (3D) materials 

resembling tendon and bone, and controlled to try to form the enthesis (‘tissue 

engineering’). Such a tendon-bone laboratory model could be implanted into patients 

by surgeons to improve treatment of these injuries.   

 

This project aimed to make a tendon-bone model, using cells in the laboratory, that 

would be the correct size and shape to potentially use in patients with FDP tendon 

attachment injury. This first involved detailed study of the human FDP attachment, 

then design and production of the laboratory model using this information. 

 

Observations and measurements were made of the FDP tendon, DP bone and their 

connecting region using human material donated to the university after death. 

Measurement results were variable between the different fingers and genders, 

leading to a model design of 3 particular sizes. The FDP tendon enthesis was also 

examined microscopically in the human material, providing the first specific 

description in this particular tendon. The tendon was found to attach to the bone at an 

overall angle of 30o, which was an important part of the laboratory model design.  
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The laboratory model required a number of parts, including cells, supporting materials 

in which the cells grow, and nutritional substances (‘media’). These parts were tested 

to find the most suitable of each to use in the model. Tendon and bone cells were 

obtained from rats and, since they would be grown together in the same model, their 

behaviour in different media mixtures was observed. The soft tendon portion of the 

model, containing the tendon cells, was examined microscopically and with a 3D 

scanner for formation and shape, and its width was specifically compared to human 

tendon measurements when grown using different media, volume of supporting 

material and number of tendon cells. A promising bone-like ceramic material was 

investigated for the hard bone portion, assessing how well it allowed attachment and 

growth of bone cells. 

 

Based on the human observations, specialised molds were produced so that the 

tendon and bone parts of the model could attach together correctly in a defined shape 

and size, whilst the cells in the materials were grown. A 3D tendon-bone laboratory 

model was ultimately achieved, in 3 sizes appropriate for a broad range of patients 

with FDP tendon attachment injury. With the specific structure in place, the model can 

be used to focus on laboratory development of the enthesis and improvement of 

strength between the tendon and bone parts, nearing eventual use as a patient 

treatment. 
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1.1 Chapter Overview 

 

This introduction reviews the 4 key topics pertinent to the project – the flexor digitorum 

profundus, flexor digitorum profundus tendon-bone insertion injury, the enthesis, and 

interfacial tissue engineering. Each section ends with key summary points that outline 

the context of the project. The chapter concludes by condensing the summary points 

into the rationale for the project, and setting out the global aim and objectives for the 

proceeding data chapters.   

 

1.2 The Flexor Digitorum Profundus 

 

1.2.1 Overview  

 

The human flexor digitorum profundus (FDP) (Figure 1.1) is a muscle in the flexor 

(anterior or palmar/volar, in respective additional anatomical or clinical description) 

compartment of the forearm. Along with its superficial counterpart, the flexor digitorum 

superficialis (FDS), it provides the long flexor tendons to the index, middle, ring and 

little fingers that give strength to finger flexion for grip. The 4 FDP tendons attach to 

the distal phalanx (DP) of each finger, with muscle contraction causing concomitant 

flexion of each DP. As the only musculotendinous unit to cross the flexor surface of 

the distal interphalangeal joint (DIPJ), purposeful DP flexion in the fingers is provided 

solely by the FDP.  Additionally the FDP contributes to flexion of more proximal joints 

crossed by each tendon – the proximal interphalangeal joint (PIPJ), 

metacarpophalangeal joint (MCPJ) and wrist joint. The anatomical and biomechanical 

organisation of the FDP and other long digital flexors in the upper limb add a high 

degree of strength to the precise digital positioning provided by the intrinsic muscles, 

giving the human hand its distinguishing motor characteristics.  
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1.2.2 Muscle 

 

The FDP muscle (Figure 1.1a) is the most powerful and bulky of the forearm 

musculature (Sinnatamby, 2011). Lying beneath the FDS muscle (Figure 1.1b), the 

FDP arises from the upper three-quarters of the anterior and medial surfaces of the 

ulna, including aponeurotic origin from the posterior border, and the anterior surface 

of the interosseous membrane. Fibres longitudinally descend the forearm and 

contribute with medial-lateral (ulnar-radial) regional distinction to form the 4 deep 

flexor tendons in the distal half of the forearm. The tendon of the index finger typically 

detaches from the other tendons in the forearm and remains separate in its course 

(Sinnatamby, 2011). The middle, ring and little finger tendons are united by areolar 

tissue and tendinous slips until the palm (Warwick and Williams, 1973; Malerich et al, 

1987).  

 

The nerve supply of the FDP muscle is compartmental, with the medial half (the 

muscle bellies for the little and ring finger tendons) innervated by the ulnar nerve and 

the lateral half (bellies for the middle and index) by the anterior interosseous branch 

of the median nerve (C8, T1 root values). This ‘standard’ 2:2 muscle belly innervation 

pattern occurs in 60% of individuals, with 1:3 or 3:1 distributions found equally in the 

remaining 40% (Sinnatamby, 2011). The blood supply to all muscle belly divisions is 

from the anterior interosseous artery, a branch of the ulnar artery, running on the 

interosseous membrane. 

 

1.2.3 Tendon 

 

1.2.3.1 Gross Anatomy 

The 4 FDP tendons traverse the carpal tunnel invested within a common synovial 

sheath shared with the 4 more superficially lying FDS tendons. Distal to the carpal 

tunnel the tendons run in deep and superficial pairs towards the fingers. Where the 

tendons are then free of synovial sheath in the mid palm, small lumbrical muscles 

arise from the sides of each FDP tendon (Figure 1.1c), travelling on the lateral sides 

of their tendons and sharing a common innervation with their parent muscle belly. The 

lateral 2 lumbricals are unicipital in tendon origin, whereas the medial 2 are bicipital 

from adjacent tendons (Sinnatamby, 2011), forming a further point of unification of the 

middle, ring and little finger FDP tendons. 
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At the level of the metacarpal heads the tendon pairs enter the digital fibrous flexor 

sheaths (‘flexor sheaths’) of the fingers (Figure 1.1d). Just proximal to the flexor 

sheaths the tendon pairs of the index, middle and ring fingers are reinvested in a 

synovial sheath, continuing to their insertion; the little finger usually maintains a 

continuous synovial sheath through the palm from the carpal tunnel (Moore and Agur, 

2002). Within the flexor sheath the FDS tendon splits near the level of the PIPJ into 

radial and ulnar slips which spiral around the FDP and re-join in a gutter-shaped bed 

on the flexor surface of the middle phalanx (MP) (Camper’s chiasm). The majority of 

the FDS slips attach to the sides of the MP, where their principle function is to flex the 

PIPJ. The FDP tendon continues through the partial decussation of the FDS and 

inserts onto the base of the flexor surface of the DP. 

 

1.2.3.2 Architecture 

The FDP tendon, like any tendon, is predominantly composed of collagen by dry 

weight. A hierarchical tendon structure is assembled from mainly parallel collagen 

fibrils, fibres, and fascicles to form the tendon proper (Figure 1.2). The connective 

tissue providing route for vessels and nerves condenses as endotenon, ensheathing 

bundles of fibres associated with more than one tendon cell - subfascicles and 

fascicles, and as epitenon, investing the whole tendon. The connective tissue remains 

loose as it surrounds the tendon as paratenon, a false tendon sheath allowing 

unrestricted movement from surrounding tissues, only developing into a true discrete 

sheath in areas of increased friction such as the flexor sheath (Kannus, 2000) (see 

Section 1.2.3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 | Hierarchical Tendon Structure  
Illustration of tendon microarchitecture, adapted from Kannus (2000) and Fedorczyk (2006). 
Collagen fibrils are formed of microfibrils aggregated from insoluble collagen molecules. Fibrils 
(visible on low power electron microscopy) are gathered together as a fibre (visible on light 
microscopy), bound in primary (1o), secondary (2o) and tertiary (3o) bundles by endotenon. The 
epitenon and paratenon together form the peritenon.  
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The FDP tendons are long and flexible, but densely fibrous and practically inelastic 

(Warwick and Williams, 1973; Kannus, 2000; Thorpe and Screen, 2016). The vascular 

network, primarily fed by descending vessels from the muscle (Sinnatamby, 2011), is 

sparse, exposing the white appearance of the tendon. Large fascicles may also add 

striation to the gross structure. In cross section the tendons are typically oval, but 

distally they develop a biconcave bean-shape form due to the longitudinal 

rearrangement of coarse fasciculi (Warwick and Williams, 1973). A median groove, 

more conspicuous on the flexor than dorsal side, is usually grossly perceptible by the 

MCPJ, becoming clearly apparent distal to the FDS decussation where the tendon 

appears almost cleaved apart (Wilkinson, 1953). The presence of a parallel fissure in 

the tendon may permit the tendon to modify its form within the flexor sheath pulley 

system during muscle contraction (Benjamin and Ralphs, 1998). 

 

1.2.3.3 Flexor Sheath 

The digital fibrous flexor sheath is an osseo-fibrous tunnel from the metacarpal head 

to the DP base. The fibrous component consists of a particular arrangement of 

transverse (annular) and cruciate fibre condensations (ligaments, or ‘pulleys’), that 

facilitate flexion and overall function of the sheath (Figure 1.3). The flexor sheath 

provides protection and, by binding the tendons down to the phalanges, prevents 

bowstringing and improves the biomechanical advantage of tendon excursion on joint 

flexion (see Section 1.2.3.5). 

 

The synovial sheath, within the osseo-fibrous tunnel, develops from the peripheral 

discrete layer of the tendon (epitenon) and its surrounding loose connective tissue 

(paratenon) (see Section 1.2.3.2). It comprises a visceral layer, surrounding the 

tendon, and a parietal layer, on the internal aspect of the fibrous sheath, with a closed 

synovial space between (Kannus, 2000). The visceral layer is covered by 

synoviocytes which secrete synovial fluid into the space, bathing and lubricating the 

tendon. The fluid allows smooth tendon glide within an enclosed area of potential 

friction, and diffusion of nutrients. 
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1.2.3.4 Nutrition 

Nutrition of both FDP and FDS tendons within the synovial sheath is provided by 2 

routes: vascular perfusion and synovial diffusion (Seiler, 2017; Shapiro and Kamal 

2020). Their maintenance or disruption in injury and restoration in repair are essential 

to pathophysiology, healing and operative technique. The primary vascular supply is 

through well-developed long and short vincula, from segmental branches of the ulnar 

and radial (palmar) digital arteries (Figure 1.4). A vinculum is a mesentery 

(mesotendon) formed by a double layer of synovial membrane, connecting parietal 

and visceral layers, which transmits blood to (or from) the dorsal (deep) aspect of the 

tendon from these digital vessels. The flexor (superficial) aspect of the tendons within 

the flexor sheath are subsequently relatively avascular, obtaining nutrition though 

passive diffusion of solutes and gases (Boyer, 2005). Diffusion is achieved through 

the synovial fluid by the process of imbibition, whereby tendon flexion and extension 

Figure 1.3 | The Digital Fibrous Flexor Sheath  
Illustration of lateral view (above) and flexor view (below) of the flexor sheath 
of the finger, from Strickland (2000). The fibrous sheath is organised into 
annular (A) and cruciate (C) pulleys, labelled numerically from proximal (left) 
to distal (right). A1, A3 and A5 pulleys overlie the MCPJ, PIPJ and DIPJ, 
respectively, whilst the larger and denser A2 and A4 pulleys overlie the shafts 
of the proximal and middle phalanx. The cruciate pulleys, less substantial and 
collapsible in finger flexion, lie in the intervening space between all annular 
pulleys except A1 and A2. The palmar aponeurosis pulley (PA), formed by the 
transverse fascicular fibres and paratendinous bands of the palmar 
aponeurosis, provides a functional proximal extension to the sheath (Manske 
and Lesker, 1983). FDP – flexor digitorum profundus; FDS – flexor digitorum 
superficialis. 
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pumps synovial fluid into its fascicular interstices through conduits on the tendon 

surface (Manske and Lesker, 1985; Strickland, 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.3.5 Biomechanics 

The long flexor tendons of the FDP and FDS are cables that allow the power 

generated by a large area of contracting muscle in the forearm to be conveyed into 

the rotary force of flexion in the fingers (Goodman and Choueka, 2005). Muscle 

contraction causes tendon excursion, producing joint rotation. Following mechanical 

principles, the relationship of tendon excursion to joint rotation is determined by the 

shortest perpendicular distance of the tendon, producing linear force across the joint, 

from the axis of rotation (moment arm) (Zajac, 1992). The shorter the moment arm, 

the greater the joint rotation for the same tendon excursion (Strickland, 2000). 

Average moments arms for the FDP tendons across the DIPJ have been calculated 

to range from 7.00mm (ring finger) to 8.69mm (little finger) (Franko et al, 2011). These 

values would be substantially greater but for the flexor sheath pulleys, particularly A2 

Figure 1.4 | Flexor Tendon Vincula  
Illustration of the vincular blood supply within the flexor sheath to the FDS and FDP tendons, cut 
over the metacarpal (left, proximal), adapted from Strickland (2000). 2 vincula, 1 long (longum) 
and 1 short (brevis), distribute to each deep (FDP) and superficial (FDS) flexor tendon. The vinculum 
brevis profundus (VBP) and vinculum brevis superficialis (VBS) are triangular bands attaching to 
the deep surface of the FDP and FDS tendons, respectively, near the tendon insertions. The 
vinculum longus profundus (VLP) to the FDP, and the vinculum longus superficialis (VLS), often 
double to the FDS, are thread-like slips. The VLP arises in conjunction with the VBS in the distal 
region of the proximal phalanx, then passes between the FDS slips to reach the FDP at the level of 
the PIPJ. The VLS arises at the base of the proximal phalanx, passing either side of the FDP to reach 
the FDS. The arterial vessels within the vincula originate from proximal, intermediate and distal 
transverse (segmental) branches of the longitudinal digital arteries. 



9 
 

and A4, which considerably increase the efficiency of the biomechanical system by 

holding the tendons adjacent to the joints. The greatest power in flexion can then be 

achieved when the tendons are maximally lengthened, and are thus able to undergo 

maximum excursion, achieved through extension of the wrist (power grip). 

 

The FDP tendon has a resting tension of 1N (Bright and Urbaniak, 1977). Unresisted 

passive and active flexion are generally reported to generate an FDP tendon force of 

1-4N (Bright and Urbaniak, 1977; Kursa et al, 2006), with active flexion against mild 

and moderate resistance resulting in 10N and 17N, respectively (Strickland, 2000). A 

tendon force of around 20N may however be required to produce active flexion without 

any resistance (Schuind et al, 1992). During strong composite grasp the FDP tendon 

force is 63N, roughly doubling to 118N when performing fingertip pinch (Schuind et al, 

1992). Ex vivo, the limit of force through the FDP before failure (bony avulsion or 

intratendinous rupture close to the insertion) in cadavers ranges from 263-548N, with 

an average of 400N (Felder et al, 2013). 

 

1.2.3.6 Insertion 

The FDP tendon inserts onto the flexor surface of the lower third (base) of the DP. 

The insertion area represents the proximal metaphyseal region of the bone (Al-Qattan, 

2016a; Bachoura, Ferikes and Lubahn, 2017) with the volar plate attaching just 

proximally onto the epiphysis (see Section 1.2.5). The approaching tendon fibre 

bundles, after crossing the DIPJ, diverge such that the more superficial flexor fibres 

attach laterally at the base of the insertion, while the deeper dorsal fibres attach more 

distally and centrally (Wilkinson, 1953). The insertion footprint is always widest at its 

base and tapers distally, occupying an average surface area of 20% of the flexor 

surface of the DP (Chepla, Goitz and Fowler, 2015).  

 

Leversedge et al (2002) delineated the vascular anatomy at the FDP insertion, 

dispelling previous notions suggesting that the bone provided little if any vascular 

contribution (Warwick and Williams, 1973; Mankse and Lesker, 1982) (Figure 1.5). 

Clinically this matches with the haematoma usually noted at the insertion site after 

true acute tendon-from-bone avulsion. Both a dorsal and volar vascular supply are 

described at the insertion, in contrast to the vincula within the flexor sheath, whose 

supply solely penetrates from the dorsal tendon surface (see Section 1.2.3.4). 
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1.2.4 Distal Phalanx Bone 

 

The distal phalanx (DP) is the terminal bone of the digits in the hand and foot. In the 

hand, the index, middle, ring and little fingers, receiving the FDP tendon, exhibit a 

similar morphology. The DP of the thumb, flexing at its articulating interphalangeal 

joint through action of the flexor pollicis longus (FPL), and the DPs of the foot digits, 

are of similar but distinct form in comparison.  

 

The base of the DP in the fingers is wide for attachment of the respective FDP and 

extensor tendons on the flexor and dorsal surfaces. The base conforms to receive the 

articulating pulley-shaped head of the MP; lateral tubercles provide base width on 

each side and the bone protrudes and extends proximally at the DIPJ more on the 

dorsal than flexor surface. The base tapers into a slender rounded shaft covered by 

periosteum (Al-Qattan, 2016a), with the distal end (the ungual fossa) representing the 

narrowest portion of the bone (Darowish, Brenneman and Bigger, 2015). From the 

ungual fossa the bone expands distally into the head as a bulbous ungual tuberosity 

(‘tuft’, clinically), obliquely set from anterior-proximal to posterior-distal. The ungual 

tuberosity is thus more pronounced on the flexor surface, with bilateral ungual spines 

projecting proximally, lending the whole tuberosity an inverted horse-shoe shape. 

Between identical medial and lateral borders the bone is convex dorsally, but more 

Figure 1.5 | FDP Insertion Vasculature  
Illustration of perfusion of the distal FDP tendon, as reported by Leversedge et 
al (2002). Osseous vessels (A, B, C) supply the tendon insertion and the vinculum 
brevis profundus (D) supplies the distal tendon proximal to the insertion, with 
an area of hypovascularity between the 2 sources. A = intraosseous vessels 
directly penetrating tendon insertion; B = bilateral vessel leash from bony ostia 
densely covering flexor surface; C = extraosseous vascular leash supplying the 
dorsal surface. Adapted from Ruchelsman et al, 2011. 
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flattened on the flexor side. Along its longitudinal axis there is typically a gentle 

concavity. Anterior and distal to the ungual tuberosity is the finger pulp, consisting of 

fat loculated by fibrous septa running from bone to dermis, which roughen the 

corresponding surfaces of the tuberosity. The dorsal surface of the tuberosity is 

comparatively smooth, upon which lies the delicate nail bed tissue, with germinal nail 

matrix more proximally over the shaft. Between the lateral tubercles on the base of 

the bone to the ungual spines at the head stretch the bilateral lateral interosseous 

ligaments, protecting distal neurovascular structures passing from the flexor surface 

dorsally to the nailbed (Wilkinson, 1953). These neurovascular structures pass to the 

nail bed and nail matrix through bilateral spaces (rima ungualum) between the lateral 

interosseous ligaments and the bone (Kakinoki, 2012). 

 

1.2.5 Distal Interphalangeal Joint 

 

The distal interphalangeal joint (DIPJ) of the fingers is a uni-axial synovial hinge joint 

between the base of the DP and the head of the MP. The active joint movements are 

flexion and extension; although minor asymmetry of the condyles on the MP head 

causes slight supination of the DP in flexion, allowing the finger pulps to more fully 

face the thumb pulp (Warwick and Williams, 1973; Merrell and Hastings, 2017). 

Minimal accessory movements of rotation, abduction, and anterior-posterior glide can 

also passively occur, permitting gripping fingers to adapt to the shape of a held object 

(Warwick and Williams, 1973). The normal range of motion (ROM) at the DIPJ is 0-

85o (Bachoura, Ferikes and Lubahn, 2017), however the average flexion posture for 

functional tasks is 39o (Hume et al, 1990), approximately at the point of mid-flexion. 

 

The stability of the joint is provided principally by the ligamentous condensations 

reinforcing the flexor and lateral surfaces of the fibrous joint capsule. Adhering to the 

thin flexor surface of the true capsule is a 2-3mm thick plate of fibrocartilage [‘volar 

plate’ (VP)], providing the main resistance to joint hyperextension. The VP arises 

proximally from the subcondylar fossa of the MP and attaches distally to the base of 

the DP approximately 1mm proximal to the FDP insertion (Al-Qattan, 2016a). The 

lateral margins of the VP are suspended by the collateral ligaments; at its distal 

insertion onto the DP, the VP is only densely attached peripherally where it is 

confluent with these collateral attachments (Merrell and Hastings, 2017). The stout 

collateral ligaments, on the ulnar and radial sides of the capsule, are the primary 
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stabilisers against lateral deviation of the joint. They consist of proper and accessory 

divisions, both arising dorsally on the lateral aspect of each MP condyle, passing 

obliquely to insert either onto the anterolateral base of the DP (proper) or into the VP 

(accessory) (Rozmaryn, 2017). The joint has substantial stability, particularly in 

extension, due to the opposing insertions and short lever arms of the FDP and 

terminal extensor, and tight arrangement of the soft tissue envelope, in addition to 

these main capsular ligaments (Merrell and Hastings, 2017). 

 

1.2.6 Summary 

 

Key points: 

 The FDP is a forearm muscle providing a tendon to each of the 4 fingers; 

 Digital flexor sheaths afford tendon protection and biomechanical advantage; 

 The tendons flare out to a defined attachment on the DP flexor surface base; 

 The FDP primarily flexes the DIPJs, providing fingertip pinch and power grip; 

 FDP contraction generates large forces at its tendon-DP attachments. 

 

1.3 Flexor Digitorum Profundus Insertion Injury 

 

1.3.1 Overview  

 

FDP insertion injury is technically and clinically defined as within flexor zone I: flexor 

tendon injury distal to the FDS insertion (Verdan, 1960 and 1972). This includes both 

true FDP avulsion from the distal phalanx (with or without a bone fragment) and distal 

FDP tendon substance injury or rupture (with a variable tendon stump remaining 

attached to the bone). The typical zone I injury mechanism is closed (no skin wound) 

bony avulsion or laceration, although open (skin wound) avulsion and crush injury 

also occur (Murphy and Mass, 2005), and subsequently the patient is unable to flex 

their DP causing difficulty with everyday manual tasks. In addition to avulsions, distal 

zone I FDP tendon ruptures may not leave an attached tendon stump of sufficient 

length or health to perform primary tendon-tendon repair. The focus of surgical 

treatment at or adjacent to the distal phalanx insertion is therefore effective restoration 

of the tendon-bone attachment. Achieving a strong tendon-bone repair at the original 
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anatomical attachment without re-rupture or complications is however challenging 

and suboptimal with current surgical methods. 

 

1.3.2 Epidemiology 

 

Trauma at the FDP insertion is the most frequent type of closed flexor tendon injury 

(Boyes, Wilson and Smith, 1960; Imbriglia and Goldstein, 1987; Freilich, 2015) and 

10.7% of flexor tendon injuries lie in zone I (de Jong et al, 2014). However data on 

incidence and frequency of FDP insertion injury is scarce as no specific large scale 

clinical series or investigations are reported. Nonetheless, reviews describe the injury 

as common (Tuttle, Olvey and Stern, 2006; Ruchelsman et al, 2011; Abrego and 

Shamrock, 2019) and it is a distinct clinical entity in both younger and older 

populations entailing continued review and discussion of optimum management. 

 

Injury to tendons in the hand in general is frequent. 33.2 injuries per 100,000 person-

years occurred in the United States between 2001-2010, with highest incidence in 

males and those aged 20-29 (de Jong et al, 2014). Indeed, 20-30% of accident and 

emergency department presentations are hand and wrist injuries (Angermann and 

Lohmann, 1993; Dias and Garcia-Elias, 2006; de Putter et al, 2012; Polinder et al, 

2013), and fingers are the most common region of upper limb injury presentation, 

accounting for 38.4% (Ootes, Lambers and Ring, 2012). FDP tendons are more 

frequently injured than FDS tendons, most commonly in the index finger, followed by 

the little, ring, and lastly middle finger (de Jong et al, 2014). These studies also show 

that finger injuries occur most often at home (51.9%), with 11.3% in places of 

recreation (Ootes, Lambers and Ring, 2012), however tendon damage specifically is 

most frequently work-related (24.9%) (de Jong et al, 2014). 

 

Our reliance on effective manual function for work and daily living means that hand 

injuries have a very extensive and wide-ranging impact, both economically and 

socially, on the individual and society (Rosberg, Carlsson and Dahlin, 2005; Dias and 

Garcia-Elias, 2006). Injuries to the hand and wrist have the most significant economic 

repercussions of any body region, with hand and finger fractures being the most 

expensive, due to both direct health care costs and loss of productivity costs from 

absenteeism (de Putter et al, 2012). Work absence due to hand injuries in fact 

accounts for over 1.5 million days lost per year in the United States (Kelsey et al, 



14 
 

1997). More recently, a meta-analysis of 21 studies on acute hand and wrist injuries 

shows that loss of productivity represents the greatest fraction of total costs incurred 

from injury, with a median net cost estimate per injury of $6,951 (Robinson et al, 2016). 

 

1.3.3 Aetiology and Pathophysiology 

 

Avulsion of the FDP tendon from its bony insertion is caused by forced passive 

hyperextension of the distal phalanx at the DIPJ during active FDP flexion. Typically 

this is during clenching of the fist, when the FDP muscle belly is at maximum 

contraction (Abrego and Shamrock, 2019). Excess mechanical force accrues around 

the tendon-bone interface, leading to failure and disinsertion. Early experimental work 

by McMaster (1933) showed that the tissue transition from tendon to bone represents 

the weakest point in the muscle-tendon-bone unit, and, clinically, the majority of flexor 

tendon ruptures seen are FDP insertion avulsions (Boyes, Wilson and Smith, 1960; 

Bois, Johnston and Classen, 2007). 

 

FDP avulsion injury is known as ‘jersey finger’, which portrays the classic causative 

history and injury mechanism. The injury is commonly sports related, often seen in 

football, American football and rugby, when a player grabs or has a finger trapped in 

an opponent’s jersey (Leddy and Packer, 1977; Reef, 1977; Lunn and Lamb, 1984; 

Bachoura, Ferikes and Lubahn, 2017; Shapiro and Kamal, 2020). The flexing finger 

is forced into sudden hyperextension by the evading player as they abruptly pull away. 

The position of flexed fingers with hyperextended DIPJs is also noted in other athletes, 

such as rock-climbers employing the ‘crimp grip’ and baseball pitchers (Marco et al, 

1998; Vigouroux et al, 2006; Shapiro and Kamal, 2020), who also represent at-risk 

groups. Avulsion injury has been reported in all ages, and although sporting injury is 

the most common presentation, further at-risk groups of tendon rupture are those with 

systemic inflammatory diseases, such as rheumatoid arthritis (Ruchelsman et al, 

2011). 

 

The extreme location and function of the distal phalanx place it at particular risk of 

injury (Bachoura, Ferikes and Lubahn, 2017). The fingertips are exposed and 

substantial torque can be conveyed through the FDP insertion (Tuttle, Olvey and 

Stern, 2006), with the FDP on average 50% stronger than the FDS (Bois, Johnston 

and Classen, 2007). Experimental studies investigating power grip vary in describing 
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the stress load on the FDP as either equal to or greater than the FDS (Imbriglia and 

Goldstein, 1987; Goislard de Monsabert et al, 2012). Interestingly however, Vigouroux 

et al (2006) compared FDP and FDS tendon tensions during grip with either a 

hyperextended or flexed DIPJ, with all other finger joints flexed, and found a nearly 

2:1 FDP:FDS tension ratio during DIPJ hyperextension compared to approximately 

1:1 when flexed. This suggests the considerable transfer of load to the FDP when 

finger position changes from a grip of flexion in all joints to DIPJ hyperextension, 

risking rupture of the FDP insertion. 

 

The ring finger is considered the most commonly affected in FDP avulsion, although 

the injury has been reported in all fingers and thumb (FPL) (Murphy and Mass, 2005; 

Tuttle, Olvey and Stern, 2006). Leddy and Packer’s classic early series of 36 cases 

and review of the injury (1977) recounted that 75% of cases concerned the ring finger. 

The reason for particular ring finger involvement is not entirely certain, but postulated 

on grounds of anatomical restraint, vulnerability and distinct insertion weakness. Lack 

of independent movement of the ring finger is suggested as the common anatomical 

theme (Eglseder and Russell, 1990): it is uniquely tethered on both radial and ulnar 

sides by bipennate lumbricals (Lunn and Lamb, 1984; Bachoura, Ferikes and Lubahn, 

2017) (see Figure 1.1c); the juncturae tendinae limit its independent 

metacarpophalangeal joint movement (Leddy and Packer, 1977); and its muscle 

fibres are wedged between that of the little and middle fingers in a common muscle 

belly (Gunter, 1960) (see Figure 1.1a). Experimentally, Bynum and Gilbert (1988) 

found that the ring finger was 5mm more prominent than others during grip, and 

absorbed the most pull away force, whilst Manske and Lesker (1978) reported that 

the load to failure of the FDP insertion in cadaveric testing was weaker in the ring 

compared to middle finger.  

 

1.3.4 Presentation 

 

The pathognomonic sign of FDP insertion injury is the inability to actively flex the DIPJ 

in the injured finger. DIPJ flexion may however be somewhat present due to the 

influence of the volar plate and distal vinculum (Sasaki and Nomura, 1987; Stewart et 

al, 2007), so assessment against resistance is essential. The normal cascade is 

altered as the affected finger adopts a more extended resting position (Ruchelsman 

et al, 2011). Functionally, reduced DIPJ motion leads to decreased dexterity, pinch 
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strength and grasp capability (Bachoura, Ferikes and Lubahn, 2017) which affects the 

whole range of daily manual tasks. 

 

Acutely there is usually tenderness, swelling and ecchymosis particularly on flexor 

aspect of the finger, and localised pain on palpation with a subcutaneous mass may 

represent the position of the retracted tendon end in the finger or palm. Delayed 

presentation with less apparent clinical findings is however also a relative feature, 

particularly in athletes not appreciating the injury or dismissing it as minor (Tuttle, 

Olvey and Stern, 2006; Bachoura, Ferikes and Lubahn, 2017), which may impact on 

treatment options.  

 

1.3.5 Classification 

 

FDP avulsion injury classification is described and summarised in Table 1.1. Leddy 

and Packer (1977) first defined the original Type I-III classification as a staging system 

to guide treatment. The key feature is the level of retraction of the proximal tendon 

end, influencing vascular tendon nutrition from the vincula and thus treatment and 

prognosis. The Type IV injury pattern was originally described by Robins and Dobyns 

(1974) and later proposed as an addition to the classification system by Smith (1981). 

Type V was suggested by Al-Qattan (2001), where the presence or absence of intra-

articular fracture necessitated varied treatments and directed a Va and Vb subtype. 

More recently, further fracture patterns have been described with potential additional 

or redeveloped classifications (Cheriyan, Neuhaus and Mudgal, 2013; Azeem et al, 

2017; Narang et al, 2019), which may further improve treatment guidance. 

 

Type I injuries are the most severe, due to vascular compromise and need for early 

treatment, and may develop from Type II with continued activity (Stamos and Leddy, 

2000). Type II injuries are the most frequent (Leddy and Packer, 1977; Shapiro and 

Kamal, 2020), followed by Type III, then Type I, with IV and V less common (Tuttle, 

Olvey and Stern, 2006; Ruchelsman et al, 2011). Approximately 50% of avulsions are 

reported to involve a bony fracture fragment (Eglseder and Russell, 1990; 

Ruchelsman et al, 2011). 
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Table 1.1 | Classification of FDP Avulsion Injuries  
Overview of FDP avulsion patterns, vascular sequelae and suggested treatments. Retraction level is 
principally determined by bone fragment size, with consequential vincular injury and vascular 
disruption. Treatment is informed by timing (acute ≤ 10 days from injury; chronic > 10 days from injury) 
and associated tendon vascularity, and fracture pattern. Note Type V can be sub-classified into Type 
Va (extra-articular fracture comminution) and Type Vb (intra-articular fracture comminution). 
Illustrations taken from Huq, George and Boyce (2013), showing typical bony finger in sagittal section 
from metacarpal (right) to DP (left) with underlying annular pulleys from A1 (right, 
metacarpophalangeal joint) to A5 (left, DIPJ). The FDP tendon is highlighted in red and the FDS is 
removed for clarity. Details on vincular disruption and treatment taken from Ruchelsman et al (2011) 
and Tuttle et al (2006), respectively. # = fracture; 1o = primary; DIPJ = distal interphalangeal joint; FDS 
= flexor digitorum superficialis; ORIF = open reduction internal fixation; PIPJ = proximal 
interphalangeal joint; ROM = range of movement; VBP = vinculum brevis profundus; VLP = vinculum 
longus profundus. 
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1.3.6 Surgical Management 

 

Table 1.1 suggests surgical treatment options for each class of avulsion injury. These 

exist where the tendon can be delivered beneath the pulleys and does not require 

significant advancement. Unfavourable conditions, increasing with time from injury, 

require greater consideration of more extreme measures such as DIPJ fusion, tendon 

grafting as a single-stage or 2 stage reconstruction, or no surgical treatment 

(Ruchelsman et al, 2011). This section focuses on the optimum surgical option where 

significant fracture is not present - direct tendon-bone repair, which aims to restore 

the anatomical tendon-bone interface.   

 

In avulsions or distal zone I FDP injuries, up to 1cm of tendon advancement is deemed 

acceptable to perform tendon-bone reattachment. Any remaining distal tendon stump 

of <1cm can be debrided away to prepare the reattachment site. Further tendon 

advancement results in appreciable loss of extension in the repaired finger and the 

‘quadriga’ phenomenon (Wagner, 1958; Malerich et al, 1987). ‘Quadriga’ refers to 

flexion lag in the fingers adjacent to the repaired tendon with increased tension, due 

to the common FDP muscle belly, particularly of the middle, ring and little finger (see 

Section 1.2.2).  

 

1.3.6.1 Tendon-Bone Fixation 

1.3.6.1.1 Techniques 

A multitude of avulsion repair techniques exist, many illustrated in Table 1.2. These 

techniques are based on 2 principal methodologies: the traditional pull-out suture with 

dorsal button (Bunnell, 1948), or all-inside (internal) fixation, primarily represented by 

the bone anchor (also known as suture anchor). The pull-out button suture consists 

of sutures placed in the proximal avulsed tendon end, with the free suture strands 

passed obliquely through holes drilled in the distal phalanx, exiting the nail plate and 

tied over a button dressing (see Table 1.2). Sutures are then typically removed at 6 

weeks. Bone anchors are expandable or threaded fixation devices of varying size with 

attached sutures, inserted into the bone through pilot drill holes. The tendon end is 

subsequently affixed using the sutures on the anchor. The standard bone anchor for 

FDP reattachment is the Mitek ‘micro’ anchor (see Table 1.2), or slightly larger ‘mini’ 

anchor (DePuy Mitek, Raynham, MA, USA), expandable anchor types that deploy 

flanges to hold in the bone. 
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More recently new or combination techniques have been devised and performed. Al-

Qattan (2016a and 2016b) describes the use of end-to-end attachment of the proximal 

FDP tendon end to the entire DIPJ volar plate, released at its middle phalanx insertion 

and used as a distally based flap, in zone I injuries 1-3mm from insertion. The entire 

in situ volar plate can also be incorporated into a more standard avulsion repair from 

below to increase biomechanical strength (Al-Qattan et al, 2010; Brar et al, 2014). 

Authors are also more commonly augmenting bone anchors with additional internal 

or external fixation, for example with miniscrews (Nho et al, 2018), tension banded 

suture reinforcement (Halát et al, 2018), buried dorsal tie-over (Polfer, Sabino and 

Katz, 2019), or pull-out dorsal tie-over (Lee et al, 2011; Ruchelsman et al, 2011).   
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Table 1.2 | FDP Avulsion Repair: Techniques, Complications and Limitations 
Overview of external and internal fixation techniques for tendon-bone surgical repair of FDP avulsions 
without significant fracture. The foremost techniques are the pull-out dorsal button suture and the 
Mitek ‘micro’ bone anchor. Real and potential complications are drawn from case series described by 
the authors using each technique. General complications refer to all techniques in the fixation 
category. Illustrations show sagittal section of finger from middle phalanx (right) with underlying A4 
annular pulley, to DP (left); FDS is removed. Illustrations and review of complications adapted from 
Huq, George and Boyce (2013). DIPJ = distal interphalangeal joint; K-wire = Kirschner wire. 
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1.3.6.1.2 Drawbacks 

Flexor tendon surgery in general has inherent difficulties. Strickland (2000) opens his 

25 year review of flexor tendon surgery saying that “regaining satisfactory digital 

function after flexor tendon laceration and repair has long been one of the most 

difficult problems in hand surgery”. Reparative surgery itself contributes to adhesion 

formation between the tendon and surrounding structures during healing. The multi-

tissue pathology and more complex surgical handling techniques associated with 

tendon-bone injury and repair may contribute to greater adhesions than pure tendon 

injury alone. Adhesions can affect tendon excursion, and in addition to tendon 

advancement can lead to flexion (joint) contracture. Indeed, flexion contracture stands 

as the main general adverse post-operative outcome for tendon-bone repair. 

 

The array of complications and limitations for avulsion repair techniques are listed in 

Table 1.2. The chief drawback of external fixation techniques, such as the pull-out 

button suture, is infection risk due to the externalised suture or wire, which may also 

be partially retained on attempted removal (Kang, Marsh and Dewar, 2008; Lee et al, 

2011). Kang, Marsh and Dewar’s case series (2008) of pull-out button suture repair 

in 23 patients in fact reported a 22% infection rate, as well as 35% abnormal nail 

growth. Consequently, there has been an inclination towards internal fixation (Huq, 

George and Boyce, 2013), in particular the simplicity of bone anchors. Bone anchors 

are also appealing as they can allow incorporation of more modern multi-strand (e.g. 

4 strand) locking sutures to the repair (Seiler, 2017). These are more resistant to 

failure than the non-locking 2 strand repairs used for external fixation techniques 

(Brustein et al, 2001), and furthermore they do not require removal.  

 

The primary disadvantage of bone anchors is cost, with a single Mitek ‘micro’ anchor 

costing around £180 (Huq, George and Boyce, 2013), whereas other techniques 

usually only require sutures at substantially less price. Many authors also advocate 

and employ multiple anchors (Brustein et al, 2001; McCallister et al, 2006; Lee et al, 

2011; Ruchelsman et al, 2011; Chepla, Goitz and Fowler, 2015). Bone anchors can 

fail from anchor site pull-out or suture material failure (Brustein et al, 2001; 

Latendresse et al, 2005; Halát et al, 2014), and are also not without complications of 

foreign body reaction, infection and extrusion (Vadodaria et al, 2007; Giannikas et al, 

2009; Tiong and O’Sullivan, 2011), although these are rare. There is also a real risk 

of DP dorsal cortex and DIPJ penetration through pre-drilling and anchor placement, 
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with inherent inflammatory reaction, particularly in the little finger (Rehak et al, 1994; 

Jain et al, 2011; Samson and Gupta, 2018; Bond, Rust and Boland, 2019). Bone 

anchors may not be suitable with concomitant DP fractures or osteoporotic bone 

(Matsuzaki et al, 2008). Furthermore, bone mineral density has been shown 

experimentally to reduce by up to 41% after tendon-bone repair, which may 

particularly lead to failure in techniques requiring robust bone for anchorage (Ditsios 

et al, 2003a). 

 

1.3.6.1.3 Optimal Approach 

The ideal repair should achieve anatomical reunion of the tendon-bone insertion with 

the strength to withstand the loading stresses of early post-operative mobilisation with 

no surgical complications. A number of studies have compared the strength, 

functional outcomes and complication rates of varying techniques, in both laboratory 

and clinical studies, but no one technique is generally regarded as superior overall. In 

the only clinical outcome study to compare pull-out button suture and micro bone 

anchor, McCallister et al (2006) found no difference in sensibility, active ROM, flexion 

contracture or grip strength between techniques. Both pull-out button suture and bone 

anchor repairs are strong enough to endure the forces of passive rehabilitation 

regimes, but the tendency for reduced tendon-bone gap formation and increased 

stiffness with bone anchors may be preferential for active post-operative rehabilitation 

(Huq, George and Boyce, 2013; Putnam and Adamany, 2019). Yet this comes at a 

cost, particularly where additional strength is provided by 2 anchors (Brustein et al, 

2001). The alternative method of internal fixation with all-inside sutures/wires avoids 

the infection risk of an external device and the cost of anchors. However they are 

technically demanding, and the method shows no difference in tensile stiffness, load 

to failure or ultimate load when compared to the pull-out button suture or bone anchor 

(Chu et al, 2013). Choice of repair technique is therefore often personal, with different 

surgeons prefering different techniques. 

 

Whichever technique is employed, the key features of optimal avulsion repair are 

close apposition of tendon to bone, and return of the tendon to the same footprint 

position on the bone. Maximal secure tendon-bone contact area will encourage 

healing processes to directly adhere tendon to bone. In view of this principle, and to 

guide an anatomically-positioned repair, Leddy and Packer (1977) originally utilised a 

bone ‘trough’ in the distal phalanx to seat the FDP. A more distinct ‘bone tunnel’ is 
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common in anterior cruciate ligament (ACL) tendon-bone reattachment in the knee 

(Lu et al, 2019), however a flattened tunnel has been shown to have improved early 

stage healing (Zhao et al, 2019). Moreover, for FDP repair, maturation of tendon-bone 

healing is inferior in a bone tunnel compared to surface repair, potentially due to 

increased tendon inflammation from deformation around the bone tunnel edge, or 

restricted availability of DP trabecular bone for tendon-bone contact (Silva et al, 2006). 

Evidence therefore suggests that clinical FDP avulsion repair should maximise 

cortical bone contact in a surface repair, and no gapping between the tendon and 

bone should exist. 

 

Accurate reduction of the tendon to its original DP attachment area (‘anatomical 

reduction/repair’) is crucial to reinstate the balance of biomechanical forces across 

the traversed joints, especially the DIPJ. In addition to re-establishing optimal muscle 

and joint function, restoring correct flexor moment arms across finger joints is 

important to match rehabilitation protocols developed from normal anatomy (Franko 

et al, 1990). Too distal a reinsertion effectively shortens the FDP tendon, causing 

flexion contracture and potentially decreased grip strength and quadriga (see Section 

1.3.6). Although Malerich et al (1987) proposed that up to 1cm of advancement 

(shortening) is permissible before adverse clinical signs are apparent, Gillig et al 

(2015) later reported that the force required to make a fist increases linearly with 

tendon shortening up to 2.5cm. This implies that any avulsed FDP tendon 

repositioned too distally could precipitate reduced functionality. Too proximal a 

reinsertion slackens the FDP tendon, decreasing the mechanical advantage of the 

muscle. Flexion is ultimately weaker, which will diminish the range of active DIPJ 

motion. This is demonstrated in the distally-based volar plate flap repair technique 

(see Section 1.3.6.1.1), where the author cites a reduction in active DIPJ flexion as a 

consequence of the FDP connection to bone, via the volar plate, being more proximal 

than the anatomical tendon insertion (Al-Qattan, 2016a). Finally, any unintended 

rotary (pronation/supination in flexion) forces should be prevented by accurate tendon 

orientation at the interface and avoidance of a lateralised reinsertion position. Such 

forces may reduce flexion and grip strength, and place chronic abnormal stresses on 

the DIPJ, potentially leading to laxity and arthritis.   
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1.3.6.1.4 Outcomes 

The diversity and non-standardisation of outcome criteria contributes to the difficulty 

in acknowledging if a particular technique is superior to others. Randomised studies 

are lacking and case series are generally small, involving a variety of injury 

classifications, and occasionally with no reference criteria for outcomes. In general, 

current techniques of primary avulsion repair do not deliver a satisfactory outcome, 

and patients should be aware of potentially losing over half of their arc of DIPJ motion, 

with inherent lack of full extension (Tuttle, Olvey and Stern, 2006). Less than half of 

DIPJ ROM was observed in two-thirds of cases by Moiemen and Elliot (2000), and in 

a significant proportion of surgical follow-ups in further reports (Zhang, Shao and 

Zhang, 2014; Al-Dubaiban et al, 2014; Al-Qattan, 2016a), although a mean of up to 

two-thirds of normal DIPJ ROM is described in some series (McCallister et al 2006; 

Teo et al 2009; Tripathi et al 2009). Extension deficit, where documented, amounts to 

around 10-15o (Leddy and Packer, 1977; Halát et al, 2017). As an overall classification 

of functionality, Tempelaere et al (2017) describe a poor outcome in 40% of 19 post-

operative repair follow-ups. 

 

1.3.6.2 Tendon-Tendon Fixation 

Although tendon-bone repair is the principal concern with insertion injuries, tendon-

tendon repair (tenorrhaphy) also warrants consideration. In flexor zone I, end-to-end 

tenorrhaphy is the favoured technique for FDP injuries more than 1 cm from the bony 

insertion, to avoid the aforementioned complications of over advancement in 

attempted tendon-bone repair (see Section 1.3.6). It is also relevant for insetting 

tendon grafts, which may be applicable to insertion injury. End-to-end tenorrhaphy 

can be used at either end of a graft, although for free flexor tendon grafts a weaving 

technique is usually preferred proximally. Furthermore, the principles of tenorrhaphy 

guide the surgical technique in tendon-bone repair when securing the tendon end. 

 

Tenorrhaphy aims to provide robust and accurate tendon apposition to establish 

optimal healing whilst limiting external adhesions and friction to allow smooth tendon 

glide, particularly in the area of the flexor sheath (zone II). Strength is primarily 

provided by sutures across the core of the tendon, with an approximately proportional 

increase in strength with the number of core sutures employed (Shaieb and Singer, 

1997; Choueka, Heminger and Mass, 2000; Strickland, 2000; Boyer et al, 2001; Seiler, 

2017). An abundance of core suture techniques exist, and increasing placement of 
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sutures for strength is balanced against excessive tissue handling, needle damage, 

technical difficulty, time and space limitations (Rawson, Cartmell and Wong, 2013). 

The principle extends to tendon-bone repair, where repair strength is improved with 

increased core strands, whether using a pull-out button or suture anchor technique 

(Silva et al, 1998).  

 

The use of peripheral circumferential (epitendinous) sutures is also particularly 

important in tenorrhaphy. The initial advocacy for epitendinous sutures was to attain 

smoother approximation of the tendon ends at the circumference (Mason and 

Shearon, 1932; Rawson, Cartmell and Wong, 2013; Seiler, 2017) and certainly 

reducing friction improves glide, especially in the tendon sheath. As with tendon-bone 

repair, maximum contact between the apposed tissues is paramount, since gap 

formation prevents the normal accumulation of strength and stiffness in healing 

(Gelberman et al, 1999). Gapping may also bring about adhesions, further affecting 

rehabilitation and limiting tendon excursion (Strickland, 2000). Epitendinous sutures 

significantly reduce gapping at the repair site and increase overall strength (Wade, 

Wetherell and Amis, 1989; Silfverskiöld and Andersson, 1993; Kubota et al, 1996; 

Strickland, 2000), therefore as well as improving apposition of the tendon ends and 

maximising intrinsic healing, they contribute to inherent repair stability.   

 

1.3.7 Summary 

 

Key points: 

 FDP tendon avulsion from the DP is a common and challenging injury; 

 Reduced manual function has extensive impact on the individual and society; 

 A variety of surgical techniques exist to reattach the FDP tendon to bone; 

 All surgical repair techniques have drawbacks, with no single optimal method; 

 Surgical repairs generally have poor outcomes.  
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1.4 The Enthesis 

 

1.4.1 Overview  

 

The enthesis is the region of tendon, ligament or joint capsule attachment to bone. 

More broadly it may be known as an attachment/insertion site, or more specifically as 

the osteotendinous/osteoligamentous junction. The enthesis lies at interfacial areas 

between soft and hard tissue in the musculoskeletal system, allowing the functions of 

musculotendinous movement and ligamentous/capsular stability of the skeleton. It 

must facilitate the transmission of force in both directions between the tissues, 

including ground reaction and impact forces back to the soft tissue (Shaw and 

Benjamin, 2007), whilst maintaining the integrity of the interface. The influence of 

mechanical factors dictates the principle of ‘form follows function’ underpinning Wolff’s 

Law (Benjamin et al, 2006; Milz, Benjamin and Putz, 2005), where, akin to bone and 

other major musculoskeletal tissues, the enthesis displays a number of structural and 

compositional features that optimise function. Despite adaptations, the enthesis is 

liable to damage and deterioration from overuse, frank acute avulsion injuries and 

spondyloarthropathies (Benjamin and McGonagle, 2009), and it is thus of particular 

clinical interest. Furthermore, the microanatomical characteristics of the enthesis are 

not regenerated after injury or repair, and, since the complex developmental 

mechanisms that originally create the enthesis are not fully elucidated, the region is 

also a spotlight for basic science research. The focus of clinical and research interest 

in this thesis is specifically the tendon-bone enthesis, although its pertinent features 

are similar to all soft tissue entheses.  

 

1.4.2 General Structure and Function Principles 

 

In the transfer of muscular force to move a bone, the tendon enthesis has 2 major 

functions: 1) anchorage, and 2) dissipation of stress. The macroscopic structure of 

tendon attachments addresses both purposes. Tendons flare out at their bony 

insertion, providing a greater contact surface area for attachment and dispersal of 

interfacial stress forces, and resistance to the effects of insertional angle change 

during joint movement (Benjamin et al, 2006; Schlect, 2012). Flaring also allows wider 

interconnections and overlap with other entheses and fasciae for extra stability; 
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examples include the tendons of sartorius, gracilis and semitendinosus at the pes 

anserinus on the tibia (Shaw and Benjamin, 2007), vastus lateralis, vastus 

intermedius, adductor magnus and adductor brevis along the lateral lip of the linea 

aspera (Schlect, 2012) and the continuation of quadriceps tendon fibres anteriorly 

over the patella to the patellar ligament (Toumi et al, 2006). Additionally, flaring resists 

stretch, which limits the propensity for tendon narrowing and consequent vulnerability 

to rupture (Knese and Biermann 1958; Schlect, 2012). Where tendons do require 

narrow attachments for more precise movement control, other gross adaptations exist 

to reduce rupture and avulsion risk, such as spreading the force generated by a single 

muscle belly over multiple tendon attachment sites (e.g. the FDP) (Shaw and 

Benjamin, 2007). 

 

Anchorage of tendon to bone provides resistance to static and dynamic loads 

otherwise acting to disconnect the interface. At the true anatomical tendon-bone 

junction, the bone is highly irregular (Milz et al, 2002), affording maximum surface 

area contact between the tendon and bone. The ‘jigsaw’-like interdigitations are also 

multidirectional, interlocking the tissues and resisting failure in any one direction 

(shear) (Shaw and Benjamin, 2007). This design is analogous to a tree root system, 

where minimal material is devoted to anchorage and the majority allotted for primary 

functions requiring compliance and flexibility (Benjamin et al, 2006; Schlect, 2012). 

For tendon, these functions are the transfer of contracting muscle force to bone and 

storage of strain energy (Benjamin and Ralphs, 1998).   

 

Tendon and bone are biomechanically distinct structures of essentially dissimilar 

physical properties, although notably of comparable ultimate tensile strengths (Hems 

and Tillman, 2000). Tendon is a compliant material, with a Young’s modulus 

(elastic/tensile modulus) of 200MPa in the direction of contracting muscle force, but 

buckles on compression; bone is stiff and brittle, with a Young’s modulus of 20GPa in 

both tension and compression (Thomopoulos, Genin and Galatz, 2010). In 

engineering terms, the junction between these materials is a mechanical impedance 

mismatch, vulnerable to failure as a focal point of stress concentrations. As well as 

the macroscopic features to dissipate stress over a large surface area and to 

surrounding structures, the enthesis possesses microscopic structural and 

compositional qualities to traverse the material mismatch. In particular, an intervening 

layer of fibrocartilage provides a transitional zone of increasing stiffness from soft to 
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hard tissue through a gradation of tissue properties (Doschak and Zernicke, 2005). 

Not all entheses contain this fibrocartilaginous transition zone; it is present in those 

many tendon attachments that are precisely localised for a specific function (Benjamin 

et al, 2006), which are less able to dissipate stress over a large interfacial area. 

 

1.4.3 Classification 

 

Entheses are conventionally classified as ‘fibrocartilaginous’ or ‘fibrous’, referring to 

their tissue structure at the tendon-bone interface (Benjamin and Ralphs, 1995; 

Benjamin et al, 2002; Apostolakos et al, 2014). The classification has developed from 

previous terminologies which were less universal or clear. The original German 

histological descriptions differentiated ‘chondral-apophyseal’ and ‘diaphyseal-

periosteal’ attachments (Biermann, 1957; Knese and Biermann, 1958), respectively 

representative of fibrocartilaginous and fibrous entheses, but with application to long 

bones only. Woo et al (1988) distinguished ‘direct’ (fibrocartilaginous) and ‘indirect’ 

(fibrous) entheses, which, although understandably describing an indirect tendon 

attachment through periosteum to the bone (fibrous), confuses an equally indirect 

tendon attachment through fibrocartilage to the bone (fibrocartilaginous), despite 

highlighting the absence of periosteum.  

 

1.4.4 The Fibrocartilaginous Enthesis  

 

The fibrocartilaginous enthesis is structured as a sequence of 4 tissue zones: 1) 

dense fibrous connective tissue (tendon), 2) uncalcified fibrocartilage, 3) calcified 

fibrocartilage, and 4) bone (Dolgo-Saburoff, 1929; Cooper and Misol, 1970; Benjamin 

and Ralphs, 1998). A tidemark demarcates the boundary of soft and hard tissue, lying 

between the uncalcified fibrocartilage and calcified fibrocartilage, with the true 

anatomical boundary and site of union of the tendon and bone at the junction of the 

calcified fibrocartilage and bone (Benjamin et al, 2002). The fibrocartilage zones are 

often not present along the complete length of the enthesis, where the absence of 

fibrocartilage represents a focal region of fibrous attachment, however the existence 

of any fibrocartilage classifies the entire enthesis as fibrocartilaginous (Benjamin et al, 

2002). 
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Fibrocartilaginous entheses are present at soft tissue attachments to bony epiphyses 

and apophyses (Benjamin, Evans and Copp, 1986; Apostolakos et al, 2014) and, as 

the majority of tendons and ligaments attach around joints, most entheses are 

fibrocartilaginous (Benjamin and Ralphs, 1998). There is no periosteum at the 

insertion site, and the subchondral cortical bone is typically thin (Benjamin et al, 2002). 

Examples of the most clinically relevant muscles and ligaments attaching through 

fibrocartilaginous entheses are the rotator cuff muscles, the ACL, and the Achilles 

tendon (Benjamin and McGonagle, 2001; Lu and Thomopoulos, 2013). Such 

entheses are clinically relevant as they are prone to injury through overuse and 

rupture. Tendons attaching to epiphyses typically undergo a large change in angle 

between the long axis of the tendon and their attached bone in fulfilling their function, 

such as the supraspinatus abducting the humerus, with resultant stress and abrasion 

at the insertion site (Benjamin and Ralphs, 1998) (Figure 1.6). In comparison, the 

mid-diaphyseal attachment of the deltoid, a fibrous enthesis insertion, endures a 

much more minimal change in angle (see Section 1.4.5). The fibrocartilage layer 

within fibrocartilaginous entheses is an adaptation to diminish damaging stress 

concentrations enhanced by the compression and shear forces generated through 

large functional angle changes at the insertion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 | Comparison of Insertional Angle Change at Epiphyseal and Diaphyseal Tendon Insertions  
Anterior view of the shoulder joint in resting adduction (left) and abduction (right), showing the 
epiphyseal insertion of supraspinatus and diaphyseal insertion of deltoid on the humerus. As the 
humerus is abducted, the inserting tendon fibres of supraspinatus undergo a large change in angle, 
whereas those of deltoid remain relatively unchanged. The variable loading with changing angles of the 
fibres causes compression and shear forces, countered by the presence of fibrocartilage at the 
supraspinatus insertion. Illustration adapted from Benjamin and Ralphs (1998).  
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The fibrocartilaginous enthesis provides smooth and efficient transmission of force 

through a specialised compositional and architectural microstructure. In the short 

distance of the enthesis between the mechanically distinct tendon and bone, typically 

100µm-1mm (Lu and Thomopoulos, 2013), there is a wide variation in tissue 

properties across the 4 zones: cell morphology, extracellular matrix (ECM) 

composition, collagen structure, geometry and viscoelastic biomechanical properties 

(Thomopoulos et al, 2003). This allows a micromechanical optimal distribution of 

stress with limited expenditure of material (Thomopoulos, Genin and Galatz, 2010).  

The 4 zones are continuous but compositionally distinct (Lu and Thomopoulos, 2013), 

although studies suggest a gradation in microstructure without abrupt boundaries 

between the zones, with a decrease in collagen orientation and increase in 

mineralisation from tendon to bone (Wopenka et al, 2008; Genin et al, 2009; 

Thomopoulos, Genin and Galatz, 2010; Schwartz et al, 2012). As well as smooth 

stress distribution, interfacial gradients eliminate stress singularities, decrease stress 

concentration, improve bonding strength and reduce the risk of failure (Suresh, 2001; 

Benjamin et al, 2006). Indeed the biomechanical efficiency of the fibrocartilaginous 

enthesis is appreciated in the frequent occurrence of avulsions fracturing through the 

adjacent subchondral bone as well as at the true anatomical tendon-bone interface 

(Lam, Shrive and Frank, 1995; Gao et al, 1996a; Schlect, 2012). The following 

sections describe the composition, structure and function of each of the 4 zones that 

contribute to the fibrocartilaginous enthesis as a whole, summarised in Figure 1.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.7 | The Fibrocartilaginous Enthesis  
Diagram and summary of the composition and structure of the fibrocartilaginous enthesis. The key 
cellular and extracellular matrix constituents are listed, further elaborated in the main text. Note the 
increase in mineralisation and decrease in collagen fibre alignment from dense fibrous connective tissue 
to bone, as well as a decrease in the longitudinal arrangement of cells.  
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1.4.4.1 Dense Fibrous Connective Tissue 

Dense fibrous connective tissue is composed of fibroblast cells within an ECM of 

predominantly collagen fibres. Tendon is a typical regular dense fibrous connective 

tissue, very similar to ligament, where collagen fibres are arranged in a highly compact 

and aligned hierarchical structure (Figure 1.2). Tendon fibroblasts (tenoblasts, the 

active precursor of mature tenocytes) are spindle-shaped and elongated, arranged in 

longitudinal rows parallel to the length of the tendon, lying freely between the collagen 

fibres (Kannus, 2000; Kuntz et al, 2018). They communicate via gap junctions 

between cytoplasmic processes both along and amongst the rows (McNeilly et al, 

1996). Collagen is the strongest fibrous protein (Schlect, 2012) and its dense, 

organised assembly provides tendon with an ultimate tensile strength superior to most 

soft tissues (Gelberman et al, 1988). The most abundant collagen in tendon is type I 

(Kannus, 2000; Apostolakos et al, 2014; Calejo, Costa-Almeida and Gomes, 2019), 

with other minor types including III, V and IX (Calejo, Costa-Almeida and Gomes, 

2019). Collagen also affords some tendon elasticity, with potential for stretch and 

recoil of 6% without damage (Benjamin et al, 2006), due to initial straightening of 

relaxed wavy fibres preceding shearing between the stiffened parallel fibres (Schlect, 

2012). Elastin is also present, but at <3% overall dry weight, compared to 10-15% in 

ligament (Yang and Temenoff, 2009). The other main constituent of the ECM is the 

proteoglycan group in the ground substance, binding extracellular fluid and forming a 

gelled matrix (Schlect, 2012), containing primarily decorin and biglycan (Thomopoulos 

et al, 2003; Killian et al, 2012; Rothrauff and Tuan, 2014), with fibromodulin, lumican 

and versican (Yang and Temenoff, 2009).  

 

1.4.4.2 Fibrocartilage 

Fibrocartilage is a type of cartilage with abundant collagen fibres in the ECM. It 

resembles dense fibrous connective tissue as the orientated layers of collagen fibres 

from the tendon continue within it, but with intervening bands of hyaline cartilage 

matrix. The most prevalent collagen is type II (Waggett et al, 1998; Milz et al, 2005; 

Galatz et al, 2007), almost fully replacing type I from the tendon, with type III and other 

minor types also reported (Benjamin et al, 2006; Apostolakos et al, 2014; Calejo, 

Costa-Almeida and Gomes, 2019). The cartilaginous ground substance provides a 

solid yet flexible tissue consistency, bridging the properties of tendon and bone, due 

to the predominance of glycosaminoglycans (GAGs), existing as proteoglycans or 

hyaluronic acid (Young, O’Dowd and Woodford, 2014). The most typical proteoglycan 
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in fibrocartilage is aggrecan (Waggett et al, 1998; Benjamin and McGonagle, 2001; 

Smith et al, 2012), in contrast to tendon and bone. Other proteoglycans present are 

similar to those found in tendon, excluding versican, important for the regulation of 

collagen fibril formation (Benjamin and Ralphs, 1998; Shaw and Benjamin, 2007). 

GAGs, and particularly those associated with aggrecan, are potently hydrophilic, 

imbibing water and providing a tissue incompressibility to stiffen the ECM (Benjamin 

et al, 2002; Yoon and Halper, 2005; Young, O’Dowd and Woodford, 2014). It is this 

ECM property of fibrocartilage that provides the protection against compression 

forces, and, as such, enthesis fibrocartilage is thicket in the deepest part of the tendon 

where it is compressed by the superficial part against the bone (Benjamin and Ralphs, 

1998; Benjamin et al, 2006). 

 

Cells in the fibrocartilaginous layer of the enthesis resemble cartilage cells more than 

tendon cells, in morphology and biomarker expression, but are not as fully 

chondrocyte-differentiated as cartilage cells (Rossetti et al, 2017; Kuntz et al, 2018). 

Such fibrochondrocyte cells are usually aligned in rows between the layers of dense 

collagen fibres, maintaining the same arrangement as the fibroblasts from which they 

derived by metaplasia (Gao et al, 1996b; Benjamin et al, 2006) (see Section 1.4.7), 

but with larger, oval/round morphology. The fibrocartilage cells are often packed with 

intermediate filaments, which may be vital for load transduction across the enthesis 

(Ralphs, Benjamin and Thornett, 1991; Benjamin and Ralphs, 1998). Secretion of 

cartilage matrix by active fibrochondroblasts completely isolates mature 

fibrochondrocytes and, since these cells do not express connexins and do not form 

gap junctions, intercellular communication is indirect via cell-matrix interactions or 

soluble factors (Benjamin and Ralphs, 1998; Benjamin and McGonagle, 2009). In 

addition to the avascular and aneural properties of enthesis fibrocartilage (see Section 

1.4.6), this likely contributes to the poor healing response at the insertion site (Font 

Tellado, Balmayor and Van Griensven, 2015) (see Section 1.4.8.2). 

 

1.4.4.2.1 Uncalcified Fibrocartilage 

The boundary between the dense fibrous connective tissue of the tendon and the 

uncalcified fibrocartilage is not readily distinct. Uncalcified fibrocartilage is signified by 

the first presence of fibrochondrocytes and a pericellular metachromatic matrix, 

representing proteoglycans granules at ultrastructure level (Rufai, Ralphs and 

Benjamin, 1996; Benjamin et al, 2002). As the uncalcified fibrocartilage zone blends 



33 
 

with the tendon, longitudinal rows of fibrochondrocytes are particularly pronounced. 

The cells are generally more ovoid than rounded, maintaining a phenotype closer to 

fibroblasts. As the tissue properties gradually change from tendon to bone, the 

collagen fibres also become less parallel than in tendon, isolating some cells from 

their longitudinal arrangement (Benjamin et al, 2002). In addition to type II collagen 

and aggrecan, there are also high levels of pericellular collagen type III, with small 

amounts of type I, IX and X collagen and further proteoglycans associated with 

chondroitin sulfate GAGs (Thomopoulos, Genin and Galatz, 2010; Font Tellado, 

Balmayor and Van Griensven, 2015; Calejo, Costa-Almeida and Gomes, 2019).  

 

Uncalcified fibrocartilage in particular is most prominent where there is a large degree 

of movement between the tendon fibres and bone during joint movement (Evans, 

Benjamin and Pemberton, 1990; Benjamin et al, 1991; Benjamin and Ralphs, 1995; 

1998) (see Figure 1.6). Across the enthesis, collagen fibres are flexible in the tendon 

but fixed in stiff mineral in the calcified fibrocartilage as they insert into bone. Where 

there is a considerable change in angle between flexible approaching fibres and stiff 

inserting fibres, the solid but pliable uncalcified cartilage matrix promotes the gradual 

bending of fibres to the insertion point just like a rubber grommet guiding a wire into 

a plug (Schneider, 1956; Benjamin and Ralphs, 1998; Benjamin et al, 2002). The 

gradual fibre bending, occurring nearly entirely in the uncalcified fibrocartilage region 

(Benjamin, Evans and Copp, 1986), rather than a sudden angle change, diminishes 

cumulative damage and abrasion, as a particular feature of adapting to compression 

and shear forces. The heterogeneity of uncalcified fibrocartilage thickness across the 

same enthesis suggests varying degrees of angle change in the inserting fibres, with 

corresponding compression and shear forces (Toumi et al, 2012; 2014; 2016; 

Beaulieu et al, 2016), most notably present in the deepest part of the tendon closest 

to the rotating joint (Frowen and Benjamin, 1996). 

 

1.4.4.2.2 Calcified Fibrocartilage 

The zone of calcified fibrocartilage is small and typically less cellular, likely due to cell 

death from reduced nutrient diffusion through the mineralised ECM (Benjamin and 

Ralphs, 1998; Benjamin et al, 2006). Fibrochondrocytes are hypertrophic, displaying 

a rounded and larger morphology more similar to chondrocytes (Rothrauff and Tuan, 

2014; Font Tellado, Balmayor and Van Griensven, 2015). As well as the typical 

cartilage markers of type II collagen and aggrecan, type X collagen is notably 
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expressed in the ECM of the calcified fibrocartilage layer (Fukuta et al, 1998; Galatz 

et al, 2007; Font Tellado, Balmayor and Van Griensven, 2015). Type X collagen is 

characteristic of hypertrophic chondrocytes (Thomopoulos, Genin and Galatz, 2010) 

and has a role in controlling excess mineralisation into the tendon (Benjamin and 

Ralphs, 1998). Inorganic ECM mineral is in the form of calcium phosphate crystals, 

increasing the Young’s modulus in comparison to the uncalcified fibrocartilage zone 

(Moffat et al, 2008) and holding the increasingly dispersed collagen fibres stiff as they 

attach to bone.  

 

The thickness and extent of the calcified fibrocartilage region (i.e. area) appears to be 

related to the physiological strength and loading of the tendon on the bone, particularly 

of maximum transmitted force (Evans, Benjamin and Pemberton, 1991; Benjamin et 

al, 1991; Gao and Messner, 1996; Benjamin and Ralphs, 1998). Regional variations 

in thickness or amount of calcified fibrocartilage exist within the same enthesis as per 

uncalcified fibrocartilage, suggesting non uniformity of load along the interface 

(Sasaki et al, 2012; Toumi et al, 2012; 2014; 2016; Beaulieu et al, 2016). The shear 

stresses potentially generated on tendon loading are protected against by the stiff 

anchorage of the calcified fibrocartilage as the Young’s modulus increases towards 

bone. 

 

1.4.4.2.3 Tidemark 

The tidemark provides a readily visible border between the uncalcified and calcified 

fibrocartilage zones. It is traditionally described as a calcification front where material 

has accumulated (Benjamin et al, 2002; Shaw and Benjamin, 2007), often being 

intensely basophilic from the dense granulation (Rufai, Ralphs and Benjamin, 1996; 

Benjamin and Ralphs, 1998). The more intense metachromasia around the deepest 

uncalcified fibrocartilage fibrochondrocytes is thought to be representative of a 

calcium ‘sink’ as they function to constrain mineral deposition just ahead of the 

tidemark (Benjamin et al, 2002).  

 

The tidemark is the level at which macerated soft tissues separate from bone in the 

preparation of a dry skeleton, leaving a smooth surface, similar to articular cartilage 

but in contrast to fibrous enthesis attachments, representative of the smooth (straight 

or wavy) tidemark line (Benjamin, Evans and Copp, 1986). Collagen fibres traverse 

the tidemark, possibly functioning as a shear-reducing anchorage point (Redler et al, 
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1975), on their way to insert into bone. As the tendon moves on the calcified tissue, 

the likelihood of fibre damage and abrasion is reduced by the smooth form of the 

tidemark (Benjamin et al, 2002; Apostolakos et al, 2014). The tidemark is thus 

designated as the mechanical boundary between soft and hard tissues (Benjamin et 

al, 2002; Shaw and Benjamin, 2007; Apostolakos et al, 2014). However, the 

illumination of an increasing gradation in mineral content from tendon to bone across 

the fibrocartilaginous enthesis (Wopenka et al, 2008; Genin et al, 2009; Schwartz et 

al, 2012) suggests that the notion of a soft-hard tissue border may not be so well-

defined.  

 

1.4.4.3 Bone 

Bone primarily consists of osteoblasts, osteocytes and osteoclasts in a mineralised 

ECM of principally type I collagen. Mature lamellar bone is composed of parallel 

sheets of collagen, mineralised and structured for lightweight strength and rigidity, as 

well as providing elasticity and resistance to deformation. Lamellar bone is organised 

as densely compact cortical bone in the walls of long bones, or as a network of 

trabecular bone in the medullary cavity, approximately 80% porous (Yang and 

Temenoff, 2009) but surrounded by marrow tissue. Compact bone consist of 30% 

organic matrix (90% collagen, with a small proportion of GAGs, mainly as chondroitin 

sulfate-containing proteoglycans and hyaluronic acid) and 70% inorganic mineral 

salts (primarily calcium and phosphate as hydroxyapatite crystals) by weight (Young, 

O’Dowd and Woodford, 2014). Active osteoblasts (≤6% of resident bone cell 

population) are cuboidal cells found on bone surfaces, and through the activity of 

alkaline phosphatase secrete the bone matrix-related proteins, including osteocalcin, 

osteopontin, osterix and bone sialoprotein, in addition to the type I collagen (Calejo, 

Costa-Almeida and Gomes, 2019). With deposition and mineralisation of the ECM 

they become encased in lacunae and mature into dendritic shaped osteocytes (up to 

95% of bone cells), communicating across gap junctions between long cytoplasmic 

processes extended through canaliculi, and continue a role in bone formation (Calejo, 

Costa-Almeida and Gomes, 2019). Other cells of osteoblastic lineage are bone-lining 

cells: mature, inactivated osteoblasts that have avoided encasement in lacunae; and 

pre-osteoblasts: proliferative osteoprogenitor cells with osteogenic capability 

(Gartland et al, 2012). Bone resorption is chiefly performed by the phagocytic 

osteoclasts, of distinct lineage to the osteoblastic cells. 
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A cement line signifies the true anatomical tissue boundary at the tendon insertion 

site onto bone, at the calcified fibrocartilage-bone junction. The irregular ‘jigsaw’ 

arrangement at this interface as an important feature of secure anchorage has been 

described in Section 1.4.2. Even at the largest fibrocartilaginous entheses, the 

anchoring cortical bone is extremely thin, appearing as if a continuous shell of the 

trabecular network (Benjamin et al, 2007). This feature may contribute to stress 

dissipation by permitting slight deformation of the bony shell under the tendon load 

(Benjamin et al, 2002; Benjamin et al, 2007). The trabecular bone itself may also 

contribute to mechanical function, since the trabecular architecture at the enthesis, as 

in other bone regions, is closely aligned with the direction of principle strain force 

(Biewener et al, 1996; Inoue et al, 1998). Indeed the trabeculae in the calcaneus 

orientate in a parallel anisotropic alignment between the Achilles tendon and plantar 

fascia insertions, seemingly relaying the transfer of force from the tendon to the fascia 

(Milz et al, 2002). 

 

1.4.5 The Fibrous Enthesis  

 

Fibrous entheses are composed of dense fibrous connective tissue at the tendon-

bone interface, with no intervening fibrocartilage. They are further subdivided as 

‘bony’ or ‘periosteal’ depending on their particular point of attachment: uninterrupted 

to cortical bone or via periosteum, respectively (Hems and Tillmann, 2000). Periosteal 

fibrous entheses are weaker, but they are able to retain their relative position on a 

developing bone during appositional bone growth, migrating with the interstitial growth 

of the periosteum, with potential to become bony on skeletal maturity (Matyas et al, 

1990; Shaw and Benjamin, 2007). In anchoring to bone directly through tendon, 

ligament or periosteum, Sharpey’s mineralised perforating fibres characterise the 

fibrous enthesis insertion (François, Braun and Khan, 2001; Benjamin et al, 2002; Lu 

and Thomopoulos, 2013). Compositionally, fibroblasts are present in the dense 

fibrous connective tissue without any fibrocartilage cells, and although collagen type 

I and III are associated with Sharpey’s fibres, specific molecular knowledge of the 

fibrous enthesis is spare (Benjamin et al, 2002). 

 

Muscles attaching via a fibrous tendon enthesis include the deltoid and pronator teres 

to the humerus, adductor magnus to the linea aspera, and pectoralis minor to the ribs 

(Benjamin, Evans and Copp, 1986). Ligamentous fibrous entheses include the tibial 
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insertion of the medial collateral ligament of the knee (Woo et al, 1988). They attach 

to the metaphysis and, more commonly, the diaphysis of long bones and are generally 

associated with thick cortical bone in the appendicular skeleton (Benjamin et al, 2002). 

Their tendons are typically short but with expansive attachment sites, helping to 

spread the stress focus over a wide area of interface and limiting stretch and splay 

(Shaw and Benjamin, 2007; Lu and Thomopoulos, 2013). During muscle action of a 

fibrous tendon enthesis on a bone, such as the deltoid abducting the humerus, the 

change in angle between the long axis of the tendon and bone is minimal, reducing 

the likelihood of enthesis damage from overuse (Benjamin and Ralphs, 1998; 

Apostolakos et al, 2014) (see Figure 1.6). These structural and mechanical features 

allow the fibrous enthesis to suitably function without the need for a specialised 

fibrocartilaginous tissue transition.   

 

Fibrous entheses are less common than fibrocartilaginous entheses and are less 

frequently injured in acute avulsions or chronic enthesopathies (Shaw and Benjamin, 

2007; Apostolakos et al, 2014). They are thus the subject of comparatively little 

investigation or literature coverage, in basic science or translational applications such 

as tissue engineering. Similarly, the remainder of this chapter and future chapters will 

focus on the fibrocartilaginous enthesis, with ‘enthesis’ assumed as a 

fibrocartilaginous enthesis unless specifically stated as fibrous. 

 

1.4.6 Vascularity and Innervation 

 

The enthesis derives a blood supply from the adjacent peritenon and bone marrow 

vessels (McGonagle and Benjamin, 2015). Enthesis fibrocartilage is however 

avascular (Dörfl, 1969a; Benjamin, Evans and Copp, 1986), in accordance with 

(fibro)cartilage elsewhere in the body (Benjamin and Ralphs, 2004), and 

representative of the compressive mechanical environment which would occlude any 

potential vessels (Benjamin and McGonagle, 2001). Intratendinous and bone marrow 

vessels may however anastomose across the tendon-bone junction in the fibrous 

enthesis (Dörfl, 1969b), and since nearly all fibrocartilaginous entheses exhibit a 

discontinuous fibrocartilage layer, interfacial vessel communication may potentially 

occur at the ‘fibrocartilaginous’ enthesis (Benjamin and McGonagle, 2001). Absence 

of the whole subchondral plate of cortical bone and calcified fibrocartilage is also 

apparent in many histological observations of the enthesis and, whether this is 



38 
 

pathological or nutritional, can result in bone marrow vessels contacting the 

uncalcified fibrocartilage layer (Benjamin and McGonagle, 2001; Benjamin et al, 

2007). 

 

Although previously considered richly innervated (Palesy, 1997), the healthy enthesis 

is aneural (Shaw et al, 2007; McGonagle and Benjamin, 2015). This is again 

appropriate for a tissue region, like articular cartilage, that sustains heavy 

compression, where continued mechanical nerve stimulation would be detrimental, 

and thus nerves are limited to the periphery of the insertion site (Benjamin et al, 

2004a). Nociceptive and mechanoreceptive nerve fibres are found in adjacent fat 

pads (Shaw et al, 2007) and the epitenon (Benjamin et al, 2004a), which, in addition 

to purely tendon and bone nerve fibres, are likely to be the sensory origins of enthesis 

pain and proprioception. Such surrounding structures, including fat pads, bursae, and 

sesamoid and periosteal fibrocartilages, contribute to the concept of an ‘enthesis 

organ’: adjacent tissue specialisations that are functionally related to dissipate stress, 

influencing enthesis physiology and pathology (Benjamin and McGonagle, 2001). 

 

1.4.7 Development  

 

1.4.7.1 Overview 

The precise mechanisms of enthesis development are not fully understood. Animal 

studies have captured the essential presence and interplay of biological and 

mechanical factors, and associated formation with that of the growth plate, but a 

process unifying all elements of molecular control to tissue formation has not been 

delineated specifically for the enthesis. Enthesis development requires a spatial 

gradation of tendon, fibrocartilage and bone. Tendon and bone precursors arise in 

foetal life at a similar stage, but the critical events forming the intervening 

fibrocartilaginous transition are post-natal (Bland and Ashhurst, 1997; Thomopoulos, 

Genin and Galatz, 2010). However, at 7 days after birth in a murine model, the 4 

zones of the fibrocartilaginous enthesis are distinguishable (Galatz et al, 2007) and a 

mineral gradient is already detectable at the leading edge of the hard-soft tissue 

interface (Schwartz et al, 2012).  

 

Gao et al (1996b) studied fibrocartilaginous enthesis formation in the rat, relating the 

process to the endochondral ossification of the attached bone precursor. At first the 
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tendon attaches to a bone precursor of hyaline cartilage. As the cartilage is ossified 

proximally towards the tendon, with a plug of hyaline cartilage not yet ossified on the 

‘bone’ side of the enthesis, fibrocartilage develops on the tendon side by metaplasia 

of tendon cells. As the hyaline cartilage on the ‘bone’ side is completely ossified, the 

enthesis fibrocartilage advances further into the tendon. The enthesis therefore acts 

as a growth plate, with cartilage resorption and formation balanced on the ‘bone’ and 

tendon side of the interface (Benjamin and Ralphs, 1998).  

 

Enthesis fibrocartilage forms entirely from within the tendon, in a process fully 

separate to that of bone morphogenesis (Zelzer et al, 2014; Calejo, Costa-Almeida 

and Gomes, 2019). Cells initially differentiating as fibroblasts and arranged in rows in 

the tendon undergo phenotypic change to fibrocartilage cells, remaining likewise 

arranged in rows and separated by parallel type I collagen fibres coursing across the 

tidemark to the bone junction (Benjamin and Ralphs, 1998; Benjamin and McGonagle, 

2009). Calcification in the deepest fibrocartilage zone occurs only when fibrocartilage 

formation slows (Benjamin and Ralphs, 1998), following which remodelling of collagen 

fibres and mineral creates the well organised tendon-bone transition (Lu and 

Thomopoulos, 2013).  

 

1.4.7.2 Biological Factors 

Several important molecular signals have been recognised in enthesis development. 

The principle  biological molecules involved appear to be sclexaris (Scx) and sex-

determining region Y-box 9 (Sox9) for tenogenesis and chondrogenesis, respectively; 

transforming growth factor(TGF)-β and bone morphogenetic protein (BMP) for 

initiation of growth; and Indian hedgehog (Ihh) and parathyroid hormone-related 

protein (PTHrP) for mineralisation and maturation. The coordinated spatiotemporal 

expression pattern of these signalling molecules allows the development of the 

specialised tissue gradation of cellular phenotype and ECM composition from tendon 

to bone (Lu and Thomopoulos, 2013; Rothrauff and Tuan, 2014; Zelzer et al, 2014).  

 

Scx, essential for tenogenesis, is expressed in all tendon tissues and Sox9, essential 

for chondrogenesis, is expressed in proliferative chondrocytes (Font Tellado, 

Balmayor and Van Griensven, 2015). Sugimoto et al (2013) and Blitz et al (2013) 

proposed that the tendon-bone insertion is formed by differentiation of a multipotent 

pool of Scx+/Sox9+ progenitor cells. An interface is established through increasing Scx 



40 
 

expression (formation of tenocytes) or Sox9 expression (formation of entheseal 

chondrocytes), in a region between tenoprogenitors (Scx+/Sox9-) and 

chondroprogenitors (Scx-/Sox9+) (Sugimoto et al, 2013). TGF-β appears crucial to 

directing tendon or cartilage differentiation (Galatz et al, 2007; Rothrauff and Tuan, 

2014) and BMP-4 is necessary to mediate formation of the entheseal bone ridge (Blitz 

et al, 2009; Blitz et al, 2013; Calejo, Costa-Almeida and Gomes, 2019). 

 

The Ihh/PTHrP feedback loop is important in control of growth plate chondrocyte 

proliferation/differentiation and mineralisation, and the expression of these signalling 

molecules in the enthesis (Chen et al, 2007; Liu et al, 2013) suggests that they also 

influence the mineral gradient at the tendon-bone attachment (Lu and Thomopoulos, 

2013; Zelzer et al, 2014). In the longitudinal columns of chondrocytes in the growth 

plate, the deepest cells extending towards the metaphysis become hypertrophic and 

loaded with calcium, mineralising the surrounding matrix (Thomopoulos, Genin and 

Galatz, 2010). Ihh is expressed by hypertrophic chondrocytes and, by negative 

feedback and induction of PTHrP, prevents inappropriate chondrocyte hypertrophy 

and mineralisation, possibly analogous to the control of the unmineralised-mineralised 

transition in the enthesis (Thomopoulos, Genin and Galatz, 2010; Font Tellado, 

Balmayor and Van Griensven, 2015; Calejo, Costa-Almeida and Gomes, 2019). 

 

1.4.7.3 Mechanical Factors 

Mechanobiology is evidently an important mechanism in enthesis development. All 

enthesis cell types are mechanoresponsive (Lu and Thomopoulos, 2013) and the 

appearance of enthesis fibrocartilage is a post-natal phenomenum (Galatz et al, 

2007). The initiation of enthesis formation does not require muscle loading, appearing 

to be fully biologically controlled, but mechanical cues sustain enthesis growth and 

maturation after birth (Blitz et al, 2009; Lu and Thomopoulos, 2013). Studies on the 

developing enthesis of the paralysed rat supraspinatus from birth show that although 

no difference exists compared to controls up to day 14, continued reduced muscle 

load impairs fibrocartilage formation and mineral deposition (Thomopoulos et al, 

2007), and collagen fibre organisation, maximum strength and Young’s modulus 

(Schwartz et al, 2013). Compression and shear forces at the tendon insertion are also 

the probable signals for metaplasia of fibroblasts to entheseal fibrocartilage cells 

(Benjamin and McGonagle, 2009). Although Ihh and PTHrP are associated with the 

mechanoresponse (Chen et al, 2007; Schwartz et al, 2015), knowledge of the 
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mechanically evoked molecular cascades determining development remain unclear 

(Font Tellado, Balmayor and Van Griensven, 2015). 

 

1.4.8 Injury and Repair 

 

Damage to the enthesis can occur through mechanical injury or distinct 

rheumatological conditions. Mechanical injury may be in the form of acute rupture, or 

chronic degeneration from overuse or subclinical injury, leading to inflammation. 

Common sites of mechanical enthesis pathology include the ACL, medial collateral 

ligament (MCL) and meniscal root in the knee; the rotator cuff attachment to the 

humerus; the Achilles tendon on the calcaneus; the common origin of the 

forearm/wrist flexors on the medial epicondyle of the humerus (‘tennis elbow’); and 

the quadriceps tendon and patellar ligament attachment on the patella (‘jumper’s 

knee’) (Derwin et al, 2018).  

 

Enthesis injuries around the large joints are particularly common. In the United States, 

2/1000 people per year suffer knee ligament injury, 90% involving the ACL and MCL 

(Rothrauff and Tuan, 2014), and rotator cuff tears are present in more than 40% of 

the population over 60 (Ricchetti et al, 2012). Locally in Edinburgh, the 

incidence/100,000 adults of soft tissue injuries has been reported as 8.06 (ACL), 5.21 

(MCL), 3.73 (rotator cuff tear), and more commonly 23.76 (meniscal tear) and 11.33 

(Achilles tendon rupture) (Clayton and Court-Brown, 2008). The majority of injuries 

occur in the young, active population (Clayton and Court-Brown, 2008) where the 

economic and societal impact from missed work days for treatment is greatest. 

Injuries frequently require surgical repair, with conservative treatment often failing and 

leaving a chronic disability that can predispose the adjacent joint to osteoarthritis. 

Such surgical repairs are costly, estimated at $17,000-$25,000 for ACL reconstruction 

and rehabilitation (Hewett et al, 2010).  

 

Idiopathic rheumatological inflammatory conditions affecting the enthesis are the 

seronegative spondyloarthropathies, including ankylosing spondylitis, reactive 

arthritis and psoriatic arthritis (Benjamin and McGonagle, 2001). The mainstay of 

treatment is immune modulation medications, however surgical replacement may be 

indicated for local advanced disease. 
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1.4.8.1 Surgical Treatment 

The basic premise of surgical repair of a ruptured or damaged enthesis is to provide 

secure reattachment of the soft tissue to bone with sutures or bone anchors. The 

ruptured soft tissue end and bony insertion are first debrided to healthy tissue, 

destroying any remaining fibrocartilage (Rothrauff and Tuan, 2014). Reattachment 

does not then reconstitute the complex fibrocartilaginous insertion with its graded 

mechanical properties, relying on a capacity for sustained and functional soft tissue-

bone integration. The inability to re-establish the enthesis compromises successful 

long term outcomes, as the exposed mechanical mismatch and stress focus at the 

interface predisposes to gapping and frank rupture (Derwin et al, 2018). Re-rupture 

necessitates further surgery, increased costs and longer rehabilitation. Surgical 

grafting, for reconstruction or transfer of an already intact enthesis, additionally 

introduces the potential for increased surgical complications and side-effects. 

 

The unsatisfactory nature of surgical treatment is illustrated by 2 of the most common 

structural repairs. Rotator cuff repairs are performed by direct apposition of the 

debrided tendon(s) against the humeral head. 275,000 are performed annually in the 

United States (Jain et al, 2014), with failure rates from 20% with partial tears 

(Harryman et al, 1991) to 94% for large and massive tears (Galatz et al, 2004). 

Similarly, 130,000 ACL repairs are performed (Buller et al, 2014), with 56% 

experiencing knee pain at 1 year follow-up (Corry et al, 1999). ACL surgery is an 

example of a repair usually demanding reconstruction with a graft, bringing associated 

morbidity and cost. Autograft repairs typically utilise hamstring tendon or bone-

tendon-bone patellotibial grafts, fixed into tibial and femoral bone tunnels, creating 

harvest site morbidity such as further wounds, muscle weakness and chronic joint 

pain (Corry et al, 1999). Allografts require availability, tissue sizing and sterilisation 

procedures, and risk tissue rejection, reduced biological and mechanical integrity from 

processing, and donor pathogen transmission (Smith et al, 2012). Synthetic grafts 

generally perform poorly, with complications including mechanical breakdown, pain, 

sterile effusion, synovitis and osteoarthritis (Paxton, Baar and Grover, 2012).  

 

1.4.8.2 Healing 

Surgical debridement and reattachment produces a fibrovascular scar at the enthesis 

site rather than the fibrocartilaginous transition zone (Rodeo et al, 1993; Liu et al, 

1997; Galatz et al, 2006; Silva et al, 2006), eventually maturing to resemble a fibrous 
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enthesis (Newsham-West et al, 2007; Paxton, Baar and Grover, 2012). The repaired 

interface is biomechanically inferior (Rodeo et al, 1993; Thomopoulos, Williams and 

Soslowsky, 2003; Galatz et al, 2006), and does not recreate the gradation in collagen 

fibre orientation and mineral (Rodeo et al, 1993; Silva et al, 2006; Derwin et al, 2018). 

A new layer of woven bone forms on the pre-existing lamellar bone, however there is 

significant underlying bone loss, potentially contributing to repair weakness (Ditsios 

et al, 2003a; Galatz et al, 2005; Silva et al, 2006). Overall the repaired enthesis is of 

reduced structural integrity and mechanical functionality. 

 

The early features of a fibrovascular scar are a hypercellular environment with a 

disorganised ECM of increased type III collagen (Thomopoulos, Williams and 

Soslowsky, 2003; Galatz et al, 2006). Healing is thought to progress through the 

stages of 1) inflammation (0-7 days), 2) repair (5-14 days), and 3) remodelling (>14 

days); associated particularly with TGF-β-mediated scar formation and matrix 

metalloproteinase(MMP)-mediated remodelling to establish aligned type I collagen 

fibres (Angeline and Rodeo, 2012; Apostolakos et al, 2014). This acute inflammatory 

healing process is however in contrast to the chronic overuse injury model. Chronic 

injury represents a continuum of tendinopathy through 1) reactive tendinopathy (non-

inflammatory proliferation), 2) tendon disrepair (ECM disorganisation and collagen 

separation), and 3) degenerative tendinopathy (increased acellularity with poor 

capacity to remodel the disorganised ECM) (Cook and Purdam, 2009). Whether acute 

or chronic, it is likely that the avascularity and relative hypocellularity of the enthesis 

contribute to a poor healing response (Rothrauff and Tuan, 2014). Understanding of 

the specific mechanisms of enthesis healing is however limited. This knowledge gap, 

along with an incomplete picture of the interrelated mechanisms of enthesis 

development (see Section 1.4.7), are the principle reasons for the lack of satisfactory 

treatments for enthesis injury. 

 

1.4.8.2.1 Augmentation 

There is limited evidence that fibrocartilage can reform after considerable time from 

surgical enthesis repair (Gerber et al, 1999; Uhthoff et al, 2002). This suggests that a 

regenerative capacity does exist, requiring a natural transdifferentiation of fibroblasts 

or osteoblasts into fibrochondrocytes, or chondrogenesis from endogenous progenitor 

cells (Rothrauff and Tuan, 2014). Researchers have attempted to augment this 

capacity in vivo in animal models through a number of strategies, focusing on direct 
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fibrocartilage formation or enhancement of healing. Cellular therapy at the repair site 

has employed a variety of mesenchymal stem cells (MSCs), mature chondrocytes 

and periosteal progenitor cells, generally promoting fibrocartilage formation and 

enhancing associated mechanical properties (Rothrauff and Tuan, 2014). Addition of 

growth factors has aimed to replicate the healing response, with notable success in 

fibrocartilage formation and mechanical strength using BMPs, although with limited 

success using TGF-β (Paxton, Baar and Grover, 2012). Likewise, dampening the 

effects of certain factors can improve healing, in particular with inhibition of MMP 

(Demirag et al, 2005; Bedi et al, 2010). Bone cements, such as calcium phosphate, 

brushite and magnesium-based cements, provide an osteoconductive material to 

induce bone ingrowth and increase ultimate failure strength, or act as a carrier for 

growth factors (Paxton, Baar and Grover, 2012). Both hypoxia (Zhao et al, 2011) and 

delayed loading (Thomopoulos, Williams and Soslowsky, 2003) also appear 

beneficial to fibrocartilaginous healing, as broad modifications to the general 

environment. These promising developments in animal models have currently had 

limited exploration in human trials. However, exogenous biochemical modulation and 

maturation are key strategies in interfacial tissue engineering, where an original, 

uninjured enthesis may potentially be fully formed in vitro. 

 

1.4.9 Summary 

 

Key points: 

 Tendon/ligament and bone are biomechanically distinct structures; 

 The enthesis is the specialised transition between tendon/ligament and bone; 

 A gradation of cell phenotype and ECM facilitates smooth force transmission; 

 Enthesis development is complex and remains incompletely understood; 

 The enthesis is not regenerated after injury or surgical repair; 

 Repair is of inferior strength and tissue organisation, risking re-rupture. 
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1.5 Interfacial Tissue Engineering 

 

1.5.1 Overview  

 

Tissue engineering is a discipline that “applies the principles of engineering and the 

life sciences toward the development of biological substitutes that restore, maintain, 

or improve tissue function” (Langer and Vacanti, 1993). Tissue damage from trauma 

or disease may be beyond effective pharmaceutical or surgical treatment, and 

suitable organ transplantations are notoriously lacking and risk immune rejection, 

leaving tissue engineering as an increasingly promising therapeutic option. The 

musculoskeletal system is particularly befitting to the application of tissue engineering 

due to relatively well characterised structure and function, and limited functional 

treatment options (Rothrauff and Tuan, 2014). Furthermore, musculoskeletal 

conditions are one of the major causes of worldwide disability (Brooks, 2006), only 

increasing with an aging population. 

 

Interfacial tissue engineering (ITE) aims to regenerate the connecting interface 

between distinct tissue types. Many musculoskeletal interfaces exist, including the 

tendon/ligament-bone enthesis, with furthest ITE progress at the osteochondral and 

periodontal junctions (Boys et al, 2017). Engineering homogenous musculoskeletal 

tissues is well established, such as bone (Amini, Laurencin and Nukavarapu, 2012), 

tendon (Butler et al, 2008) and ligament (Yilgor, Yilgor Huri and Huri, 2012), however 

their interfacial regions often contain separate biochemical and mechanical 

properties. The challenge of ITE is to replicate a highly heterogenous, complex 

structure of small size that provides native mechanical functionality. By generating a 

replica interface between 2 tissues ex vivo, in vivo integration can then occur more 

reliably between homogenous native and engineered tissues at either end of the ITE 

model. 

 

A biological interface can be studied in 2-dimensional (2D) or 3-dimensional (3D) 

culture, however a 3D setting provides a more simulated in vivo environment, and is 

necessary to form an implantable replica model. A model is designed and cultured 

through the interactions of the 3 pillars of tissue engineering: scaffolds, cells and 

stimulators. These elements may be employed in compartmentalised, stratified 
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designs or continuous, gradient designs, which are then matured to create the 

interface between tissues. The optimal design is not yet established, and research 

continues to ascertain a practical synergy between the most advantageous scaffold 

and cell properties and stimulation and maturation techniques.  

 

1.5.2 2-Dimensional versus 3-Dimensional  

 

2D tissue engineering studies involve a cellular monolayer anchored to a favourable 

attachment surface, typically treated cell culture plastic. Such studies are cheap, 

maintain continuous contact with culture medium for similar nutrition to an evenly 

distributed cell population, and provide easy access to the culture environment for 

manipulation (Bicho et al, 2018). They may particularly provide the basis for cell 

characterisation studies or co-culture interactions (Wang et al, 2007). However, cell 

behaviour differs in 2D compared to 3D culture. As an example, in screening for 

cancer chemotherapeutics, drugs are much less effective against 3D in vitro tumour 

models compared to 2D models, reproducing the chemoresistance found in vivo that 

results from 3D cellular function (Longati et al, 2013). 

 

3D tissue culture represents a more physiological and relevant in vivo environment. 

Cells demonstrate more natural morphology, cell-cell and cell-environment 

interactions, enhancing their viability, proliferation, differentiation, migration and 

response to stimuli (Antoni et al, 2015). Overall cellular function is thus enhanced, 

and gene expression and protein synthesis is more realistic. Such 3D models usually 

involve a cellular scaffold, which can then be scalable to an anatomical model of 

appropriate size to integrate into the in vivo tissue. Furthermore, although difficulty in 

equal diffusion of nutrients through scaffolds may be viewed as a disadvantage, this 

also mimics the in vivo diffusion environment (Kinney et al, 2013). 3D models are 

therefore much more appropriate to study cellular interactions and tissue 

regeneration, and provide closer possibilities for clinical translation.  

 

1.5.3 Design Components  

 

1.5.3.1 Scaffolds  

A scaffold acts as an artificial ECM. Scaffold function is thus that of the ECM: to give 

structural integrity and support 3D tissue formation by providing the medium through 
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which cells, soluble proteins and mechanical cues are hosted and delivered to the 

tissue (Armitage and Oyen, 2015). Additionally, a scaffold intended for implantation 

to replace or enhance repair of the enthesis requires the capability to integrate in vivo. 

3D models may also be scaffold-less, particularly effective as in vitro tools for 

characterisation of cultures or drug screening, but which can also form structurally 

viable units for implantation once cells secrete and mature their own ECM (Alsaykhan, 

2019).  

 

The essential considerations for a scaffold are its structural and biological properties 

(Font Tellado, Balmayor and Van Griensven, 2015). Structural properties are the 

architectural design, such as pore size, and mechanical attributes. Pore size affects 

cell proliferation and function, nutrient diffusion and mechanical properties. 

Fibroblasts and chondrocytes prefer smaller pores (in the order of 10µm) whilst bone 

cells favour larger pores (of 100µm order magnitude) (Armitage and Oyen, 2015), with 

in vivo trabecular bone notably averaging a pore size on the order of 1mm (Keaveny 

et al, 2001). Pore size can be highly controlled in many materials, and size gradients 

are possible with techniques such as freeze casting and salt leaching (Font Tellado 

et al, 2017). Mechanical attributes may be inherent to the pore size, such as an upper 

size limit for providing structural integrity. However microwall or individual fibre 

stiffness also particularly influence cell phenotype expression, with stiffer materials 

promoting osteogenic differentiation (Engler et al, 2006; Armitage and Oyen, 2015).  

 

Biological properties include cell-material interactions, biodegradation and 

biocompatibility. Cells must anchor to a scaffold to function appropriately and sense 

the mechanical microenvironment, binding better to some scaffolds than others. Cell-

scaffold adhesion is promoted though ligands, molecules present in proteins naturally 

found in the ECM (e.g. collagen, proteoglycans) that bind to integrins on cell 

membranes, and therefore synthetic protein-lacking materials may first need to be 

functionalised with ligands for improved cell adhesion  (Paxton et al, 2009; Armitage 

and Oyen, 2015). Biodegradation, through hydrolysis or enzymes, must balance in 

vivo integration and infiltration by host tissue with any requirement for retained 

structural support. The presence and degradation of a scaffold in vivo should also be 

biocompatible and elicit a minimal immune response, since any additional scar-

mediated healing undermines the aim of enthesis regeneration. 

 



48 
 

1.5.3.1.1 Materials  

Since the elastic moduli of enthesis tissues vary widely, there are a diverse range of 

ITE material options, each with their own advantages and disadvantages. They must 

fulfil scaffold function in structural and biological properties, either peculiar to a 

specific enthesis tissue region, or to host graded modulations over the entire enthesis. 

 

Stiff materials commonly used for tissue engineering bone include calcium phosphate 

ceramics, such as hydroxyapatite (HA) and β-tricalcium phosphate (TCP), which 

show high osteointegration and biocompatibility, but are brittle and slow to degrade 

(Font Tellado, Balmayor and Van Griensven, 2015). Bioactive glasses, silicate- or 

borate-based glass-ceramics, have a similar mineral content to bone and can be 

controlled to degrade faster than HA and β-TCP, but are of lower strength (Fu et al, 

2011). Polymers, natural and synthetic, can be used for both bone and for more 

compliant soft tissue engineering. Natural polymers include collagen, fibrin, agarose 

and alginate, with high biocompatibility and biodegradability but low tensile strength, 

and silk, which offers higher tensile strength and the ability to form micro/nanofibres, 

but requires pre-treatment to avoid immune rejection (Font Tellado, Balmayor and 

Van Griensven, 2015). Synthetic polymers, including polycaprolactone (PCL), 

polylactic acid (PLA), polyglycolic acid (PGA), polylactic-co-glycolic acid (PLGA) and 

polyethylene glycol diacrylate (PEGDA), are cheaper and can be fabricated into many 

shapes, sizes and fibres. Decellularised bone, tendon and ligament matrices preserve 

the material structure, mechanical properties and biochemical components of 

separate tissues (Boys et al, 2017), but are a predetermined shape and risk immune 

rejection on implantation from residual allograft or xenograft cells (Font Tellado, 

Balmayor and Van Griensven, 2015).  

 

1.5.3.1.2 Fabrication Methods  

The surface topography of the scaffold is important for cell-scaffold interaction, such 

as sensing mechanical environment and phenotype expression. Scaffold materials 

may be processed into a number of different formats to influence and optimise this 

interaction, such as hydrogels, films, sponges, porous scaffolds (e.g. foams), meshes 

and micro/nanofibers. 

 

Hydrogel materials are a particularly important approach, with simple manufacture 

and cell addition processes, and allowing flexible manipulation. They are a hydrophilic 



49 
 

polymer network (natural or synthetic) with opportunities for gradients of multiple 

polymers (Armitage and Oyen, 2015). In their liquid or gel form they can be 

encapsulated with a homogenous spread of cells and molded into any shape on 

curing. As a bioink they are also compatible with the emerging technique of 3D 

bioprinting, allowing fine control of the size and shape of the cellular scaffold 

(O’Connell, Garcia and Amir, 2017) with the potential to print a multi-tissue interface 

(Laternser et al, 2018). Hydrogels however have poor mechanical properties, less 

suitable for engineering load-bearing tissues (Chan and Leong, 2008).  

 

The nanofibrous scaffold is a further important configuration. The scaffold provides 

nanoscale cell-material interactions where cells are predisposed to adhere, 

proliferate, differentiate and function, whilst increasing porosity and surface area to 

volume ratio (Font Tellado, Balmayor and Van Griensven, 2015). The scaffold is 

typically produced by electrospinning a polymer solution into a meshwork of fibres, 

where fibre diameter, alignment and pore size can be controlled and graded (Armitage 

and Oyen, 2015). Multiple polymers can be integrated together, and ceramics or 

glass-ceramics incorporated to add a mineral gradient, distributing the most 

appropriate material properties along the scaffold to promote each enthesis tissue 

region. The optimal contemporary scaffold is likely to be a combination of different 

materials organised at nanoscale level with opposing gradients in fibre alignment and 

mineral content.   

 

1.5.3.2 Cells 

Cells are the natural engineers that develop the enthesis in vivo, and are similarly 

harnessed in tissue engineering to guide enthesis regeneration. They may be 

incorporated into a scaffold as a true 3D environment, such as encapsulation within a 

hydrogel, or seeded onto a scaffold, where they may migrate into the material or 

remain on surfaces as strictly 2D attachments. They mature scaffolds pre-

implantation and integrate scaffolds post-implantation, responding to material and 

cell-cell interactions, substrate stiffness, mechanical conditioning and biochemical 

signalling (Boys et al, 2017).  

 

The heterogenous cell population of the enthesis (see Section 1.4.4) dictates 2 main 

cell culture strategies: co-culture of differentiated cells, or variable differentiation of 

MSCs, with a combination of strategies possible. Active cells for ITE cell culture are 
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usually therefore differentiated tendon/ligament cells (fibroblasts) and bone cells 

(osteoblasts), or MSCs, from primary cells or immortalised cell lines. Since a central 

aim of enthesis generation is chondrogenesis, differentiated cartilage cells 

(chondrocytes) may also be employed. Terminally differentiated cells are already 

tissue specific, but inherently have less regenerative capacity (Font Tellado, Balmayor 

and Van Griensven, 2015). Bone cells in particular are often modelled through 

immortalised cell lines, where their fundamental biology may not be fully comparable 

to their in vivo counterparts (Calejo, Costa-Almeida and Gomes, 2019). MSCs are 

multipotent cells with the potential to differentiate into the range of musculoskeletal 

cells that contribute to the enthesis. They secrete bioactive molecules that provide a 

regenerative microenvironment (Rothrauff and Tuan, 2014) and, compared to 

fibroblasts, possess an increased proliferation rate and collagen deposition rate (Ge, 

Goh and Lee, 2005). Since an enthesis culture model based on MSCs requires only 

one cell source, compared to multiple for differentiated cells, MSCs may be the most 

appropriate cell choice for clinical application.  

 

The majority of MSCs are sourced as bone marrow-derived mesenchymal stem cells 

(BMSCs), although adipose-derived mesenchymal stem cells (ASCs), tendon-derived 

mesenchymal stem cells (TDSCs) and ACL-derived MSCs may also be used. BMSCs 

respond to their biochemical and mechanical environment in a predictable manner 

(Smith et al, 2012), but ASCs can offer many advantages. Harvest of ASCs via 

lipoaspiration provides higher cell yield and lower associated pain than BMSCs (Liao 

and Chen, 2014), and at surgery adipose tissue is readily accessible and considered 

discard tissue. In culture, ASCs also have a higher proliferation capacity and lower 

senescence rate than BMSCs, with improved maintenance of phenotype (Zhu et al, 

2008). Use of ASCs in enthesis tissue engineering is however currently at an early 

stage and requires further investigation, as although of multipotent character, ASCs 

can be less effective at cartilage and bone differentiation than BMSCs (Im, Shin and 

Lee, 2005). TDSCs and ACL-derived MSCs are minor region-specific multipotent cell 

populations of more recent discovery, as yet of limited ITE application due to a lack 

of reliable and practical isolation protocols (Rothrauff and Tuan, 2014; Calejo, Costa-

Almeida and Gomes, 2019). 
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1.5.3.2.1 Co-Culture  

Co-culture of different cell types allows heterogenous cell-cell contact and 

communication to provide closer in vivo models of multicellular tissues (Goers, 

Freemont and Polizzi, 2014). It exploits paracrine signalling as a method of tissue 

engineering, and since heterotypic cellular interaction is implicated in enthesis 

development (see Section 1.4.7), co-culture is a prominent ITE technique.  

 

Cellular cross talk influences cell response, function and gene expression (Bicho et 

al, 2018), and can modify characteristics and ultimately the phenotype of either cell 

population. Co-culture of osteoblasts and chondrocytes lowers osteoblast-mediated 

mineralisation and chondrocyte-mediated GAGs deposition (Jiang, Nicoll and Lu, 

2005). Similarly, co-culture of osteoblasts and fibroblasts dampens osteoblast 

mineralisation whilst inducing fibroblast-mediated mineralisation (Wang et al, 2007). 

Moreover, the same study demonstrated expression of fibrocartilage markers in cells 

at the osteoblast-fibroblast interface, showing the potential for co-culture cellular 

transdifferentiation and eventual fibrocartilage tissue formation.   

 

Co-cultures demand particular attention to culture methodology and design. The 

technique may be achieved through multiple means, such as monolayers, scaffolds, 

transwell plates or scaffold-less methods, but different cell types ideally require 

different culture environments. A particular cell type’s optimum growth medium, 

oxygen tension, material stiffness or fibre alignment may lead to undesirable 

phenotypic drift in the other cell type(s), not present in the primary cell line (Bicho et 

al, 2018). Such co-cultures can be difficult to control, and may be best suited to the 

regulated and potentially compartmentalised environment of a bioreactor (see Section 

1.5.3.4). 

 

1.5.3.2.2 Stem Cell Culture  

MSCs are directed towards a specific lineage by biochemical and mechanical cues. 

Biological growth factors (see Section 1.5.3.3.1) and mechanical load (see Section 

1.5.3.3.2) are important exogenous differentiation factors. Cell-material interactions 

inherent to the scaffold environment also affect cell phenotype. MSCs cultured on 

scaffolds of aligned fibres elongate and develop a fibrogenic phenotype, whereas 

cells in scaffold-less pellets remain rounded with a chondrogenic phenotype (Baker 



52 
 

et al, 2010), whilst stiff scaffolds promote osteogenic differentiation (Engler et al, 

2006). 

 

MSCs may be differentiated separately and co-cultured together, or variably 

differentiated by a gradient of biochemical or material factors. They may also be 

cultured with terminally differentiated cells, and undergo differentiation by intercellular 

signals and paracrine factors. MSCs cultured between fibroblasts and osteoblasts can 

induce differentiation to a fibrocartilage lineage, including a gradual mineral transition 

(Nayak et al, 2010; He et al, 2012).  

 

Modelling the enthesis accurately via MSCs depends on reliable differentiation and 

confirmation of component enthesis cells, posing challenges to method and theory. 

Osteogenic and chondrogenic inductive media and protocols are well established, 

however attempting tenogenesis can be more diverse as an ideal medium formulation 

is not available (Calejo, Costa-Almeida and Gomes, 2019). Knowledge of the 

character of specific cells at the enthesis interface has also been lacking, limiting 

confirmation of successful interface generation, however recent proteomics (Rossetti 

et al, 2017) and transcriptomics (Kuntz et al, 2018) have elucidated 10 enthesis 

biomarkers as a benchmark for interface differentiation.  

 

1.5.3.3 Stimulators 

 

1.5.3.3.1 Growth Factors  

Growth factors are proteins secreted by cells that act as signalling molecules to other 

cells, helping to develop, repair and maintain homeostasis of the enthesis tissues 

(Boys et al, 2017). They may be exogenously added to ITE models via culture media 

supplementation or incorporation into or onto scaffolds, differentiating stem cells, 

encouraging a particular cell phenotype, and depositing and maturing ECM. Growth 

factor selection therefore depends on the tissue phase of the enthesis, cell behaviour 

to induce and stage of cell differentiation. Local delivery and control of concentration 

are important to match the mutli-tissue enthesis environment, ideally with 

compartmentalised culture (such as with a bioreactor, see Section 1.5.3.4), stratified 

scaffolds or in gradient design. A synergistic effect may also be achieved through 

multiple combinations of growth factors employed simultaneously or in sequence 

(Font Tellado, Balmayor and Van Griensven, 2015). The ideal enthesis model 
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therefore utilises spatiotemporal regulation of growth factor delivery, most likely 

influencing a single pool of multipotent cells, although the optimum constituents and 

distributions have not yet been established due to the complexity of the enthesis 

(Armitage and Oyen, 2015).  

 

Use of particular growth factors in vitro is based on knowledge of enthesis 

development and separate tendon/ligament, cartilage and bone tissue engineering, 

as well as success in in vivo enthesis repair augmentation strategies (see Section 

1.4.8.2.1). Promotion of cartilage generation presents a principal objective. Insulin-

like growth factor(IGF)-1 and TGF-β both increase GAGs and collagen production in 

tissue engineered cartilage constructs, as well as increasing chondrogenic 

differentiation of MSCs on scaffolds (Park et al, 2010; Sundararaj et al, 2015; Boys et 

al, 2017). BMP-2 can also influence chondrogenic differentiation of MSCs at low 

doses, and at high doses promotes hypertrophic chondrocyte development with 

expression of collagen type X, ALP and osteocalcin (Demoor et al, 2014). The BMP 

family are however primarily the growth factors most important for bone formation and 

healing (Bessa, Casal and Reis, 2008) and are commonly employed for bone 

engineering as they induce mineralisation and stimulate osteoblast proliferation on 

scaffolds (Boys et al, 2017). Common tendon/ligament engineering growth factors 

include basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF) 

and growth differentiation factors (GDFs) (Font Tellado, Balmayor and Van 

Griensven, 2015), with GDFs promoting tenogenesis of MSCs seeded on a 3D 

scaffold (James et al, 2011). 

 

1.5.3.3.2 Mechanical Loading  

Mechanical signals are fundamental to enthesis maturation (see Section 1.4.7.3). The 

association of compression with the presence of fibrocartilage in the native enthesis 

has already been highlighted in Section 1.4.4. This also translates to in vitro, where 

compression is associated with chondrogenesis, high uniaxial tensile stress with 

tenogenesis, and low tensile stress with osteogenesis, directing both MSCs and the 

behaviour of differentiated cells (Font Tellado, Balmayor and Van Griensven, 2015). 

For example, in MSCs, compressive force upregulates Sox9, type II collagen and 

aggrecan (Takahashi et al, 1998), cyclic tension of 10% strain upregulates fibroblastic 

markers such as Scx and type I collagen (Qiu et al, 2016) whilst cyclic 2.5% tensile 

strain upregulates osteogenic markers including osteocalcin and BMP-2 (Kearney et 
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al, 2010). Of particular note, Thomopoulos et al (2011) showed that cartilage markers 

could only be upregulated in MSCs when compression was combined with TGF-β, 

emphasising the synergistic effect of biochemical and mechanical factors. The 

fundamental mechanisms of how cells respond to mechanical forces is not clear, but 

a combination of growth factor and mechanical stimulation is likely to provide the best 

in vitro strategy for enthesis generation.  

 

1.5.3.4 Bioreactors 

Bioreactors provide an advanced design environment for in vitro 3D models that aims 

to better reproduce in vivo physiological conditions. They allow dynamic cell culture 

through control of microenvironmental parameters (e.g. temperature, pH, oxygen 

tension), aseptic parameters (e.g. feeding, waste removal, sampling) and automated 

processing (Salehi-Nik et al, 2013). Furthermore, bioreactors can be designed to 

apply mechanical load, exploited to mature tendon, ligament and cartilage constructs, 

although this has not yet been applied to enthesis ITE where simultaneous tension 

and compression on the distinct tissue components would be the ideal (Boys et al, 

2017). Advanced dual- or multi-chamber bioreactors with separate compartments are 

however employed for other culture conditions, especially the delivery of tissue 

specific media or additive solutions, used particularly in osteochondral models 

(Malafaya and Reis, 2009; Bicho et al, 2018). Microfluidic techniques can also be 

applied to not only enable the distribution of separate solutions but also control precise 

physical factors such as shear stress via the perfusion rate, additionally influencing 

the micromechanical environment (Goldman et al, 2016).  

 

Fine control of culture parameters dictates that bioreactors, and in particular 

microfluidic systems, are difficult to design and expensive. Nevertheless, production 

of large-scale, anatomically-matched, functional 3D engineered enthesis tissues are 

likely to require bioreactor designs. Multi-tissue constructs ideally demand specific 

culture conditions for each tissue element. In addition, without a vascular system, cells 

rely on diffusion for nutrition and waste removal, which may only be equally distributed 

throughout the tissues in larger dimensions through the use of bioreactors (Salehi-Nik 

et al, 2013). 
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1.5.4 3-Dimensional Multi-Tissue Strategies  

 

To create replacement or representative in vitro models of the enthesis, tissue 

engineers use a combination of scaffolds, cells and stimulators to build multi-tissue 

3D structures with a focus on the interfacial tissue transition. The ultimate aim is a 

tissue system of a spatially and phenotypically varied cell population with a graded 

mechanical structure (Smith et al, 2012). The 2 design paradigms to achieve this are 

stratified constructs or gradient constructs. Stratified constructs are more 

representative of the classical description of a sharp boundary between soft and hard 

tissues at the interface. However, more recent descriptions of a gradual mineral 

transition (see Section 1.4.4.2.3) are better matched to gradient designs, which can 

also address the gradient in ECM fibre alignment and mechanical properties. Yet 

stratified constructs may also develop a natural physiologically relevant composition 

gradient in vivo after host degradation (Patel et al, 2018). The following sections 

highlight a selection of the most relevant stratified and gradient ITE designs. 

 

1.5.4.1 Stratified  

Stratified designs use separate biomaterial strata usually with a variety of cell 

populations. Creation of an enthesis interface relies on cell-mediated metaplasia 

between distinct cell populations, or the interposition of a discrete interface-like layer. 

Commonly, homogenous scaffolds may be separately formed and joined together, 

however this does not mediate the transition between dissimilar materials, and inhibits 

cellular infiltration, nutrient transport and cell-cell signalling (Armitage and Oyen, 

2015). The primary risk with such designs is delamination from interfacial stress 

concentrations. This has been countered in the tri-phasic scaffold design described 

by Mosher, Spalazzi and Lu (2015), based on regions with different forms of PLGA-

based material sintered together, providing material similarity and structural 

continuity. Spalazzi et al (2006) originally employed this design to investigate enthesis 

formation by seeding fibroblasts on the soft tissue region (knitted sheets), osteoblasts 

on the bone region (microspheres with bioactive glass), with an intervening interface 

region of microspheres. Although matrix heterogeneity and cell migration across the 

interface occurred, it was only on the addition of chondrocytes to the interface region 

(Spalazzi et al, 2008) that a fibrocartilaginous region formed between soft tissue and 

bone regions. The effect of the neo-fibrocartilage on mechanical properties in vivo 

was not however clear. 
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For ligament, the ideal construct includes 2 interfacial regions as a bone-ligament-

bone whole multi-tissue construct. With the interfacial regions engineered in vitro, the 

focus of implantation is the less challenging issue of osteointegration. Paxton et al 

(2009) created a bone-ligament-bone construct using fibroblasts seeded in fibrin 

hydrogel, representing ligament, stretched between 2 PEGDA anchors incorporated 

with HA, representing bone. The attachment longevity of the ligament-bone interface 

was later optimised by replacing the bone element with brushite anchors (Paxton, 

Grover and Baar, 2010). The greatest progress with enthesis formation in a whole 

multi-tissue construct has been made by Ma et al (2009 and 2012), fashioning 

separate scaffold-less ligament and bone cultures from differentiated BMSCs and co-

culturing them as bone-ligament-bone constructs. The constructs remodelled in vivo 

and did not fail under physiological tensile loading, as a replacement rat MCL and 

sheep ACL. Furthermore, a fibrocartilaginous transition with aligned cells was attained 

(Ma et al, 2012). Such constructs are complex and time-consuming to manufacture, 

however Mahalingam et al (2015) have demonstrated that they remain viable after 

frozen storage and thawing, showing their versatility and substantial clinical potential.  

 

1.5.4.2 Gradient  

Gradient designs generally employ a single population of multipotent cells, influenced 

by biochemical and mechanical stimuli to promote local cell differentiation. Gradients 

are typically achieved by materials processing, or creating mineral and growth factor 

gradients. Microstructure gradients can be created by directional freezing and salt 

leaching to cause fibre orientation and pore size gradients, respectively, in silk fibroin, 

affecting ASC differentiation and proliferation (Font Tellado et al, 2017). Hybrid 

materials such as co-polymers are particularly useful for mineral gradient design, 

especially exploiting polymer-ceramic/bioglass composites. Liu et al (2014) used a 

gradient mineral coating on a PLGA-based nanofiber scaffold to induce graded 

osteogenesis of ASCs, and similarly Samavedi et al (2012) manufactured a HA 

particle gradient on a co-polymer electrospun scaffold to produce graded 

osteogenesis of BMSCs. Phillips et al (2008) created a concentration gradient of 

osteogenic transcription factors on collagen scaffolds, causing osteoblastic 

transdifferentiation of fibroblasts and a gradient of mineralised matrix which was 

maintained in vivo. Although a fibrocartilaginous region was not formed, graded 

mechanical properties were achieved with a single cell type. In added complexity, a 

reverse gradient of increasing BMP-2 and decreasing IGF-I was engineered by Wang 
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et al (2009) using microspheres on silk porous scaffolds. The contrasting growth factor 

gradients directed BMSCs to generate a gradient increase in mineral, GAGs and 

collagen types II and X, resembling the uncalcified to calcified fibrocartilage transition. 

Although potentially the most representative enthesis constructs, translating 

microscale and nanoscale gradients to relevant in vivo scales presents a significant 

challenge.    

 

1.5.5 Future Developments  

 

ITE is challenging, due to the critical interrelationships between structure, function 

and biomechanics. The enthesis is a complex transitional design, and a complete 

understanding of how tissue boundaries and gradients in cell phenotype and ECM are 

developed and maintained has not been fully realised. Furthermore, although studies 

on single component tissues or cartilage development, such as growth plate function, 

are insightful, it is likely that the cell type at the enthesis interface is phenotypically 

distinct from tendon/ligament, cartilage, and bone cells (Lu and Thomopoulos, 2013). 

Until specific molecular and cellular biophysical mechanisms in response to 

endogenous and exogenous factors at the enthesis are entirely known, ITE strategies 

remain experimental.  

 

The breath of ITE strategies to model the enthesis demonstrates that the optimal 

design has not yet been achieved. However much progress has been made, 

particularly in the development of materials processing and establishing gradient 

properties. A combination of leading cell, scaffold, growth factor and mechanical 

stimuli techniques is likely to represent the ideal current theoretical design (Figure 

1.8). Incorporating nanoscale and high resolution 3D bioprinting techniques for 

precision control of scaffold structure and gradient would provide an optimum cell 

environment. Next generation ‘smart biomaterials’ are emerging with tuneable 

chemical, physical and biological properties, which may allow spatially or temporally 

regulated biochemical delivery (Font Tellado, Balmayor and Van Griensven, 2015). 

Advanced biological techniques such as gene therapy, including clustered regularly 

interspaced short palindromic repeats (CRISPR) gene editing, and induced 

pluripotent stem cells (iPSCs) could also facilitate spatially guided local cell 

differentiation for phenotype gradients (Boys et al, 2017). A bioreactor would provide 

optimal delivery of biochemical and mechanical cues, and with optimal engineering 
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parameters experimental time could be reduced, and construct functionality 

enhanced. Such technologies are expensive, and contrasting strategies exploit the 

body as a bioreactor to mature the construct for augmentation of healing, as 

‘facilitated endogenous repair’ (Rothrauff and Tuan, 2014). This approach aims to 

develop optimal implantable and degradable scaffolds, with a recent example 3D 

bioprinted scaffold sleeves seeded with MSCs that provide a fibrocartilage transition 

for in vivo enthesis healing (Park et al, 2018).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5.5.1 Anatomy in Tissue Engineering 

The complexity of ITE encourages a multidisciplinary approach. Success will likely be 

achieved through collaboration of a broad range of specialists, including biomedical 

scientists, mechanical engineers, material scientists and clinicians. A further 

important, but less well recognised, collaborator is the anatomist. Anatomists relate 

structure to function, inherent to the foundations of tissue engineering, which aims to 

develop new biological structures for the restoration of function. Indeed, tissue 

engineering has been described as a new phase of anatomical research (Mironov and 

Markwald, 2001). Researchers need to consider the design of not only an imitating 

system, but the native size and shape of a model to function as the body originally 

Figure 1.8 | Optimum Interfacial Tissue Engineering Gradient Approach  
Illustration of theoretical combined approach to generate an interfacial tissue engineered model of 
soft tissue, interface and bone, with gradient properties. A continuous nanoscale scaffold of hybrid 
materials with mineral gradient is seeded with multipotent mesenchymal stem cells (MSCs). A 
gradient of differentiated cell phenotype and matured matrix is achieved through cell-scaffold 
interactions, and spatiotemporal growth factor (GF) and mechanical stimuli in a bioreactor system. 
Adapted from Font Tellado, Balmayor and Van Griensven, (2015).      
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created. Macroscopic structure-function relationships are generally overlooked when 

considering scaling up models for clinical relevance. Furthermore, regional 

anatomical knowledge is crucial to successful in vivo integration and interaction with 

surrounding structures. ITE models are inherently connections, and do not function in 

isolation in vivo. Anatomists can add an appreciation of musculoskeletal system-wide 

relationships that may close the translational gap between in vitro studies and clinical 

adoption.  

 

1.5.6 Summary 

 

Key points: 

 ITE aims to recreate the interface between 2 distinct tissues; 

 3D ITE models can be implanted to replace or augment healing of entheses; 

 Key constituents of ITE models are scaffolds, cells and stimulators; 

 Co-culture is an important ITE methodology; 

 Multi-tissue model design uses a stratified or gradient approach;  

 Anatomy is a crucial, but often neglected, discipline in tissue engineering. 

 

1.6 Project Rationale 

 

FDP tendon avulsion is a common injury with considerable patient morbidity. Current 

repair techniques are suboptimal due to surgical complications and low healing 

strength from lack of enthesis regeneration. ITE provides an opportunity to develop a 

specific FDP tendon-DP bone in vitro model system that may be employed to study 

this particular enthesis, used as a replica model to practise, improve or discover novel 

repair techniques, or eventually be implanted to replace or augment healing of the 

damaged interface. Such a model can also bring cost, availability and ethical benefits 

over the use of human and animal tissue. Crucially, to be relevant and translatable to 

clinical practice, the model must be anatomically matched to the native tendon-bone 

insertion. 
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1.7 Aims 

 

The overall aim was to establish a tendon-bone in vitro tissue engineered model 

system that replicated the FDP-DP insertion, forming the basis for a clinically 

applicable product for the treatment of FDP avulsion injury. 

 

The objectives were to: 

 

1) Examine and evaluate the native anatomy of the FDP-DP enthesis, 

a) morphologically (macroscopically), 

b) histologically (microscopically); 

 

2) Develop and characterise a relevant, anatomically matched, 3D in vitro model, 

a) based on a multi-tissue stratified approach, 

b) integrating novel design and co-culture methods. 
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CHAPTER 2 

 

 

MORPHOLOGY OF THE FLEXOR DIGITORUM 

PROFUNDUS INSERTION 
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2.1 Chapter Overview 

 

This chapter investigates the gross morphology of the human flexor digitorum 

profundus (FDP) insertion through dissection and measurement analysis of cadaveric 

tissue. The key components of the insertional anatomy – the tendon-bone interface, 

tendon, and bone – are sequentially examined with a particular focus on the size 

influence of different genders and fingers. The results are assimilated to produce a 

design guide for recreating the component elements in an in vitro tissue engineered 

model that is relevant to surgical repair of FDP avulsion injury. 

 

2.2 Introduction 

 

The fundamental concept of this project was ‘human tissue engineered anatomy’ as 

the basis for clinically-significant advancement (Mironov and Markwald, 2001). The 

principle initial phase of this design approach was a thorough understanding of the 

morphology of the native tissues, before the development of the matching tissue 

engineered components. The observation and investigation of real human tissue was 

therefore an essential and substantial component of the work, standing as a 

distinguishing feature in the cellular and materials focused discipline of tissue 

engineering. The human body demonstrates the principle of form following function, 

hence to achieve a functional (‘clinical’) tissue engineered model, the form of the 

human FDP insertion was closely studied. Incorporating the analysis of human tissue 

into the engineering design consequently aimed to expedite the translational clinical 

potential of the model.  

 

The prototype of a scaffold-based in vitro model of the soft-hard tissue interface for 

this project was already previously established by Paxton, Grover and Baar (2010). 

The model is based on fibroblast-seeded fibrin hydrogel contracting between anchor 

points (see Chapter 4, Figure 4.2), with size dimensions of 4x4x3mm for the 3D 

trapezoidal bony anchor component and <2mm width for the formed soft tissue 

analogue (Paxton et al, 2012a) (see Chapter 4, Figure 4.1b). These basic hard and 

soft tissue components required modification to a model replicating the gross anatomy 

of the FDP tendon-distal phalanx (DP) bone insertion. As well as size dimensions, an 

appreciation of 3D shape was essential. Although tendon dimensions are commonly 
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clinically explored by imaging such as computed tomography (CT), magnetic 

resonance imaging (MRI) and ultrasound (Hayes et al, 2019), single live images are 

limited to snapshot 2D information. Furthermore, validation of imaging techniques for 

dimensional measurements is made in comparison to ‘control’ measurements made 

on the tendon itself in vivo (intra-operative) (Yasumoto et al, 2006; Chang, Seong and 

Kim, 2009; Galanis et al, 2016) or ex vivo (cadaveric) (Noguchi et al, 2002; Alghamdi 

et al, 2019). The opportunity to explore human tissue by dissection therefore provided 

an optimum method to both acquire a variety of morphological measurements and 

observe 3D structural relationships.   

 

Literature on the detailed anatomy of the FDP insertion is sparse. Observational 

studies of in-depth regional anatomy are rarely the contemporary focus of leading 

anatomical journals. More historic papers such as Wilkinson’s ‘The insertions of the 

flexores pollicis longus et digitorum profundus’ (1953) provide perceptive descriptions 

connecting the gross form and function of particular structural elements that are often 

absent in general anatomical texts. Specialist surgical texts provide a high level of 

regional anatomy detail, but naturally focus on clinical relationships over 

comprehensive anatomical description. Insights into certain structures related to the 

FDP insertion can be gleaned from in vivo and ex vivo studies of surgical technique, 

such as the close relationship of the distal interphalangeal joint (DIPJ) volar plate (Al-

Qattan, 2016a) or the shape and dimensions of the DP bone at insertion (Jain et al, 

2011; Samson and Gupta, 2018; Bond, Rust and Boland, 2019). Recent studies on 

the specific insertional anatomy of the FDP tendon are however limited to 2 papers: 

vascular anatomy (Leversedge et al, 2002) and clinical anatomy (Chepla, Goitz and 

Fowler, 2015). The approach to the morphological investigations of the FDP insertion 

by Chepla, Goitz and Fowler (2015) proved the stimulus to the first stage of this project.  

 

This chapter is primarily a collection of exploratory studies on the tendon-bone 

interface, tendon and bone components of the human FDP-DP insertion. In any single 

person there are 8 FDP tendon insertions to consider. A single tissue engineered 

replica, although an acceptable general or pilot design, is unlikely to be of use in a 

clinical setting, for example in selecting an appropriately-sized composite graft to aid 

in tendon-bone repair. 8 specific tissue engineered models, although seemingly of 

optimal relevance, are not a pragmatic use of resources for an anatomical region of 

limited size range, and do not take into account the natural variation of finger sizes in 
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a population. Certain factors may have a greater influence on size dimensions than 

others, potentially targeting where size modifications may be necessary. Those 

factors pre-selected as most important to explore were gender, finger and side, based 

on expectations of influence on size variables. This formed hypotheses-driven 

investigations and analysis regarding whether a particular (1) gender, (2) finger, or (3) 

side had a significant effect on size dimensions. The most influential features could 

then direct the most practical, resourceful and relevant designs.    

 

2.3 Aim and Objectives 

 

The aim of the chapter was to obtain gross morphological information on the FDP 

tendon-DP bone insertion, relevant to the size and shape design of a clinically-

applicable in vitro tendon-bone tissue engineered model. 

 

The objectives were to measure and analyse: 

 

1) The FDP-DP tendon-bone interface dimensions; 

2) The position of the tendon insertion on the bone; 

3) The approaching FDP tendon dimensions; 

4) The receiving DP bone dimensions. 

 

2.4 Materials and Methods 

 

2.4.1 Cadaveric Specimens  

 

Human cadaveric tissue was obtained from The University of Edinburgh Medical 

School body donation programme, regulated by The Anatomy Act (1984) and The 

Human Tissue (Scotland) Act (2006). All donors had consented to photography before 

death. 12 body donation specimens were used in the project, detailed in Table 2.1. 

Due to availability restrictions, a sample of convenience was necessary; however, 

effort was made to balance genders and maximise samples for each investigation. 

Previous operative details, comorbid conditions not contributing to death, and hand 

dominance were unknown. No specimens displayed gross external or internal 

pathology warranting sample exclusion. Fresh frozen cadaveric fingers were 
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detached by technical staff in a transverse plane through the mid proximal phalanx 

(PP) and thawed overnight at 4oC before dissection.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
2.4.2 General Dissection 

 

All cadaveric tissue investigations began with the same finger dissection methodology 

to expose the DP and attached FDP. Dissections were performed with standard 

dissection tools (Fine Science Tools, Cambridge, UK) with number 15 carbon steel 

blades (Swann-Morton, Sheffield, UK), under x3 loupe magnification (UKloupes, 

Bristol, UK), at room temperature, using 0.9% saline (Baxter Healthcare Ltd, Norfolk, 

UK) for tissue moistening throughout. The common dissection steps are described in 

Figure 2.1.  

 

 

 

                      

 

 

 

Table 2.1 | Demographics and Utilisation of Specimens 
All investigations are described in this chapter except for Histology (Chapter 3).  
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2.4.3 Tendon-Bone Interface 

 

48 fingers from 6 cadavers (3 male, 3 female; mean age 82.2, range 65-95) (Table 

2.1) were prepared to investigate the FDP-DP tendon-bone interface morphology 

(shape, size, position). 

 

2.4.3.1 Footprint Generation 

An inking methodology adapted from Chepla, Goitz and Fowler (2015) was employed 

to visualise the FDP insertion as a footprint, from which accurate digital 

measurements could then be taken. After the initial dissection steps (Figure 2.1), the 

entire DP with attached FDP tendon was isolated from surrounding tissues and 

Figure 2.1 | General Dissection Methodology 
a) Defrosted fresh frozen cadaveric finger, flexor view. b) Exposure of the fibrous flexor sheath after 
midline flexor incision, dissecting in plane between the subcutaneous tissue and flexor sheath. The A3 
and A5 annular pulleys overlie the proximal interphalangeal joint (PIPJ) and distal interphalangeal joint 
(DIPJ), respectively, while A4 overlies the middle phalanx (MP). c) Midline opening of the fibrous flexor 
sheath exposing the FDP tendon. * indicates the area of FDP insertion on the distal phalanx (DP). Note 
a lateral interosseous ligament (LIL) on each side of the DP. d) The FDP is dissected from its 2 vincula 
and carefully flipped over about its insertion point, exposing the DIPJ volar plate (VP) and Camper’s 
Chiasm (CC) of the flexor digitorum superficialis. Blunt dissection is employed when separating the FDP 
from the VP to avoid disruption of the FDP insertion. e) Opening of the DIPJ by dissecting the VP, ulnar 
collateral ligament (UCL) and radial collateral ligament (RCL) initially from their proximal attachments 
on the MP. f) Complete excision of the VP, UCL and RCL exposing the DIPJ. x indicates the excised distal 
attachment of the VP, with particular care to avoid sharp dissection into the FDP insertion. The LILs on 
the DP have also been excised, exposing the nailplate.  g) With its insertion now exposed, the FDP is 
replaced in preparation for further specific investigation techniques. Female right ring finger. 
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excised. The tendon-bone sample was next immersed in methylene blue 1% w/v 

aqueous solution (Scientific Laboratory Supplies Ltd, Coatbridge, UK) for 10 seconds, 

with excess ink being briefly blotted away as the sample was removed. The FDP was 

then directly dissected away at the tendon-bone interface with a fresh number 15 

blade, revealing the FDP footprint (Figure 2.2).  

 

Initial samples trialled a varying length of methylene blue immersion times to establish 

optimal footprint clarity. 5 minutes (n=6), 45 minutes (n=3) and 90 minutes (n=1) were 

tested before adopting the standardised 10 second methodology. The 90 minute 

immersion noticeably overstained and reduced the footprint and was excluded from 

sample analysis. Samples immersed for 5 and 45 minutes however produced 

footprints without gross discernible difference to the 10 second immersion, and were 

included. Sample size for tendon-bone interface analysis therefore totalled 47 FDP 

footprints and DPs.  

 

 

 

 

 

 

 

 

 

 

 

                                                                                               

 

 

 

 

2.4.3.2 Image Acquisition 

After approximately 1 hour to dry the ink at room temperature, a digital photograph of 

the flexor surface of the entire stained DP with unstained FDP footprint was taken 

Figure 2.2 | FDP Footprint Generation 
a) Excised distal phalanx (DP) bone with attached FDP tendon (flexor surface) from Figure 2.1, after 
disarticulation at the DIPJ, and detachment from surrounding extensor tendon, nailplate, and 
remaining soft tissues. b) Tendon-bone sample after 10 second methylene blue immersion. c) DP after 
excision of the FDP at the tendon-bone interface, leaving the FDP footprint. This final flexor view 
image is used for digital software processing and measurement. Scale bar 2mm throughout; female 
right ring finger. 
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using a macro lens on a mounted Canon EOS 60D camera (Tokyo, Japan). The FDP 

footprint surface was presented parallel to the camera lens, with camera settings 

remaining the same for all samples to achieve maximum light and focus on the FDP 

footprint region.  

 

2.4.3.3 Image Analysis 

2D measurements were obtained from the digital photographs using ImageJ software 

(National Institutes of Health, Bethesda, USA). Firstly, the FDP footprint perimeter 

was manually outlined at the demarcation of peripheral colour change, at the point 

where variation from the standard dark blue of the methylene blue was first perceived. 

A software-generated bounding box was then applied to the perimeter, allowing 

creation of a binary black ‘mask’ FDP footprint shape and perimeter box on a white 

background, from which measurements could be clearly made. Surface area, height, 

widths, internal angles and distances of the shape from the base of the distal phalanx 

(DIPJ) were assessed, described in Figure 2.3. A similar approach and comparable 

measurements of surface area, height and width were also taken for the DP itself 

(Figure 2.4).  
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Figure 2.3 | FDP Footprint Measurements 
a) Mapped FDP footprint perimeter (dotted red line) with FDP footprint bounding box (full red line), 
creating binary mask image of the trapezoidal FDP footprint shape within perimeter box [(b) and (c)]. 
Surface area is quantified from the area inside the footprint perimeter.  b) General FDP footprint 
measurements. Base width (BW) is taken as the widest measurement (i.e. width of perimeter box), and 
apex width (AW) as the highest point at which the sides turn horizontally towards the midline. Height 
is calculated from a mean of height at mid-width of the perimeter box (H1) and maximum height (H2, 
i.e. height of perimeter box). c) 4 internal angles (apex left, AL; apex right, AR; base left, BL; base right 
BR) are calculated as a mean of 2 trapezoids (subscripts 1 and 2). The base of the trapezoids are defined 
by the perpendicular at the highest point of left or right perimeter box intersection (subscript 1, broken 
green line) or at the lowest point of the footprint (subscript 2, broken gold line). Apices are positioned 
the same for both trapezoids. d) DP bounding box (full orange line) generated after mapping the entire 
DP perimeter (not shown, see Figure 2.4), allowing subtraction of the external area [dotted pattern, (e) 
and (f)] and clear delineation of the lowest point of the DP base (i.e. DIPJ line). e) FDP base to DIPJ 
measurement, calculated as a mean of the height between the DIPJ line (DP perimeter box at lowest 
point of DP) and the FDP base at the mid-width of the FDP footprint perimeter box (H3) and lowest point 
of FDP base (H4, i.e. FDP footprint perimeter box). f) Centroid to DIPJ measurement (H5). The centroid 
is the geometric centre of the FDP footprint bounding box as determined by the ImageJ software. 
Where the lowest point of the DP (DIPJ line) does not coincide with the mid-width of the FDP footprint 
perimeter box, all measurements in (e) and (f) are repeated to the DP base (DIPJ line) at the FDP 
footprint perimeter box mid-width using an underlying original photo, and a mean of the 2 
measurements taken. Scale bar 2mm throughout; female right ring finger. 
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2.4.4 Tendon Width 

 

The width of the approaching FDP tendon to its DP insertion was evaluated in 64 

fingers from 8 cadavers (5 male, 3 female; mean age 77.1, range 65-90) (Table 2.1).  

 

2.4.4.1 Sample Preparation  

Cadaveric specimens underwent the general dissection methodology (Section 2.4.2) 

to the point of first full exposure of the FDP tendon (Figure 2.1c).  

 

2.4.4.2 Image Acquisition 

A digital photograph was taken of the undisturbed distal tendon and its DP attachment, 

with a pin placed to indicate the base of the FDP insertion. Tendons were 

Figure 2.4 | Distal Phalanx Measurements 
Flexor surface view of the entire DP. Surface area 
is quantified from outlining the DP perimeter 
(dotted red line). Base width (BW) and height (H) 
are determined by the dimensions of the 
bounding box (full red line). Female right ring 
finger. 
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photographed through a macro lens on a mounted Canon EOS 60D camera, using 

the same approach and camera settings throughout as adopted in Section 2.4.3.2. 

  

2.4.4.3 Image Analysis 

ImageJ software was employed to measure the 2D width of the FDP tendon from the 

digital photographs. Width measurements were made perpendicular to the median 

longitudinal sulcus in the tendon at 3mm intervals from the FDP insertion base (Figure 

2.5). Measurements were performed up to and including 12mm proximal from the 

insertion base. 12mm represented the standard distance between the 2 points 

anchoring the soft tissue analogue in the prototype in vitro tissue engineered model 

(Paxton et al, 2012a), and assessment of intervening width variation was deemed 

important for both native tendon morphological description and future tendon 

engineering experiments (see Chapter 4, Section 4.4.3.6). 

 
 
 

 

 

 

 

 

 

 

     

 

 

 

 

 
 
 
 
 
 
 
 

Figure 2.5 | FDP Tendon Width Measurements 
Flexor surface view of the FDP attachment to the DP, after opening 
of the flexor sheath (Figure 2.1c).  4 measurements are made, at 
3mm, 6mm, 9mm and 12mm proximal to the FDP insertion base, 
perpendicular to the median longitudinal tendon sulcus. Female right 
ring finger. 
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2.4.5 Bone Depth 

 

The depth of the DP bone at the FDP insertion was investigated in 96 fingers from 12 

cadavers (6 male, 6 female; mean age 80.8, range 65-90) (Table 2.1).  

 

2.4.5.1 Sample Preparation  

The entire DP and attached FDP tendon was excised from the cadaveric specimen 

(Figure 2.2a) after completing the general dissection methodology (Section 2.4.2) 

(Figure 2.1). Measurements were taken immediately before the sample was inked for 

FDP insertion footprint generation (Section 2.4.3.1) or before preparation for histology 

(Chapter 3).  

 

2.4.5.2 Measurements 

The anterior-posterior depth of the DP bone was measured at the proximal and distal 

insertion points of the FDP (Figure 2.6), primarily to inform depth design of the future 

bone anchor. A digital Vernier caliper (Draper Tools, Eastleigh, UK), with an accuracy 

of 0.01mm, was selected to gauge the measurements as there was concern that a 

true lateral photographic image for ImageJ application could not be reliably achieved. 

The caliper was gently clamped astride the bone perpendicular to the desired insertion 

point, viewed under x3 loupe magnification (UKloupes), and the reading recorded. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.6 | Distal Phalanx Bone Depth Measurements 
Lateral view of isolated DP bone with attached FDP tendon. 
Depth measurements are taken perpendicular to the 
proximal and distal points of FDP insertion. Female right ring 
finger. 
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2.4.6 Inter-Observer Reliability 

 

Measurement analyses of the tendon-bone interface (FDP footprint and DP 

measurements) and tendon width were repeated once by a new observer (different 

observers for each investigation set) to assess the reliability of the measurement 

methodologies. 2nd observers were trained in the methodology by the 1st observer, 

then undertook the same full set of measurements on the original unprocessed and 

unannotated digital photographs using the same software on different workstations. 

Agreement and reliability between the 1st and 2nd observers was determined by the 

intraclass correlation coefficient (ICC) of single measures of absolute agreement, and 

by Cronbach’s alpha, using SPSS version 24 (IBM, Armonk, USA) statistical package. 

 

2.4.7 Data Analysis 

 

Measurement data was collected and tabulated in Excel 2016 (Microsoft, Redmond, 

USA) and graphed in GraphPad Prism version 8 (GraphPad Software Inc, San Diego, 

USA). Linear mixed effects models were employed in SPSS version 24 (IBM) to 

account for the non-independence of fingers sampled and measured from the same 

cadaveric specimen, generating estimated marginal means (Table 2.2). Models were 

explorative, and, for specific hypothesis testing of the effects of factor levels for fingers, 

genders, sides and sizing categories, multiple pairwise comparisons were performed 

with an alpha level of 0.05, and a Bonferroni post-hoc correction applied. Output from 

models was accepted without further correction for running multiple models. Unless 

otherwise stated, data in the chapter is presented as estimated marginal (EM) means 

± standard error of the mean (±SEM), with graphical error bars also indicating ±SEM, 

and the level of any statistical significance highlighted as *p<0.05, **p<0.01, 

***p<0.001. 
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Table 2.2 | Build and Application of Linear Mixed Effects Model Series   
Multiple explorative SPSS linear mixed effects models were utilised to adjust for the non-independence 
relationship of individual fingers measured from the same specimen. Specimen (identifier) was 
therefore always a random effect in the model series. Fixed factors included gender, finger, individual 
finger (gender specified) and size category (gender and finger specified). Side was excluded as a fixed 
factor to simplify models, except where the effect of side was specifically investigated (models 3, 4 and 
5). Statistical output generated estimated marginal (EM) means and standard error of estimated 
marginal means (SEM), used as the reported means and for multiple pairwise comparisons in figures 
and tables throughout the chapter. Factors are tested as main effects, and a type III sum of squares 
model is applied to fixed effects. Models assume normal data distributions, checked graphically as Q-
Q normal probability plots of observed versus expected residual values from each model. 
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2.5 Results 

 

2.5.1 Tendon-Bone Interface 

 

The FDP insertion footprints were roughly trapezoidal in shape, and almost triangular. 

A flat, wide base narrowed distally to a more variable flat or rounded apex (Figure 

2.7). This primary finding determined the range of measurement dimensions, treating 

the shape as a trapezoid and thence including assessment of the shape’s apex and 

internal angles.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7 | Complete Specimen Set of FDP Footprints  
Flexor surface view of stained DPs with unstained FDP footprints from 1 male cadaveric specimen. 
The binary ‘mask’ image of the footprint from which measurements were analysed is shown below 
each DP.  Note the trapezoidal, near triangular shape. Scale bars 2mm. 
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2.5.1.1 Footprint Morphometrics  

Tabulated and graphical summaries of the general FDP footprint shape 

measurements are shown in Table 2.3 and Figure 2.8 (surface area), Table 2.4 and 

Figure 2.9 (height), Table 2.5 and Figure 2.10 (base width) and Table 2.6 and Figure 

2.11 (apex width).  

 

The mean surface area of the FDP footprint from fingers of both genders was 29.29 

± 2.35mm2, with a mean of 34.72 ± 3.32mm2 for males and 23.86 ± 3.31mm2 for 

females (Table 2.3). The little finger (combined genders) was significantly smaller 

than all other fingers (p<0.01 overall) (Figure 2.8b). This significance pattern was 

echoed in male fingers to various levels, and in females the little finger was also the 

smallest (Figure 2.8c). The largest mean surface area was the male middle finger 

(39.11 ± 3.56mm2), with the smallest being the female little (19.50 ± 3.56mm2).  

 

Height of the FDP footprint was significantly different between males (6.14 ± 0.30mm) 

and females (4.75 ± 0.29mm) (p<0.05) (Table 2.4 and Figure 2.9a). The little finger 

(combined genders) was significantly shorter than all other fingers (p<0.001) (Figure 

2.9b), also seen to various significance levels within males (Figure 2.9c). The female 

little finger was the shortest of either gender finger (4.23 ± 0.34mm), and was also 

significantly shorter than the tallest of all fingers, the male middle finger (6.59 ± 

0.34mm) (p<0.05) (Table 2.4 and Figure 2.9b).  

 

Base width averaged 8.58 ± 0.37mm, with a mean of 9.18 ± 0.52mm in males and 

7.99 ± 0.52mm in females (Table 2.5). The little finger (combined genders) again 

demonstrated the smallest dimension, significantly smaller than the middle (p<0.001) 

and ring (p<0.05) (Figure 2.10b). Both genders once more revealed middle fingers 

as having the largest dimension (male 9.77 ± 0.56mm, female 8.62 ± 0.56mm), and 

the little fingers the smallest (male 8.46 ± 0.56mm, female 7.46 ± 0.56mm), ranging 

from the male middle to the female little finger (Table 2.5). 

 

Apex width exhibited no discernible pattern. No significant differences were 

demonstrated between genders or fingers, and standard errors were proportionally 

the greatest of all general footprint dimensions (Figure 2.11). Male and female means 

were similar at 1.57 ± 0.16mm and 1.63 ± 0.15mm, respectively, whilst the middle 

finger (combined genders) (1.77 ± 0.20mm) was slightly wider than all other fingers 
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Table 2.7 | Internal Angles of FDP Footprint Trapezoid 
Table of internal angle measurements for individual fingers and gender 
total means. ‘All’ refers to combined finger means within gender or 
collective individual finger means. Differences between individual fingers 
or gender totals within base or apex groups on either side are all non-
significant. EM mean (±SEM). 

Figure 2.12 | Side Comparison of FDP Footprint Trapezoid Internal Angles  
Pairwise comparison of left and right sided angles of all individual fingers. Base 
angle side or apex angle side is analysed as an added fixed factor to the linear 
mixed effects model (SEM 1.26o throughout) (see Table 2.2 – Models 3a and 
3b). Left and right comparisons are non-significant (ns), suggesting a 
symmetrical FDP footprint trapezoid across the vertical axis. EM mean ± SEM.  
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2.5.1.2 Positioning on Distal Phalanx  

Dimensions of the flexor view of the DP are summarised in Table 2.8. These general 

measurements allowed calculation of FDP:DP measurement ratios (Table 2.9), which, 

along with the distances of the FPD footprint from the DIPJ (Table 2.10), provided a 

guide to the FDP insertion position on the DP. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

The mean ratio of FDP to DP surface area was 22.26 ± 1.11% collectively, ranging 

between 20.51 ± 1.86% (female ring) and 24.13 ± 1.86% (male index) (Table 2.9).  

All fingers showed similar ratios, and no significant differences existed between 

individual fingers, gender means or combined gender finger means. 

 

The FDP:DP height ratio (Table 2.9) is interpreted as the height of the centre of the 

FDP footprint distally along the DP. The overall mean was 27.05 ± 0.73% along the 

DP, ranging from 23.53 ± 1.32% (female little) to 31.22 ± 1.32% (male middle). Male 

Table 2.8 | General Dimensions of Flexor View of Distal Phalanx  
Individual finger breakdown and gender total means for surface area, 
height and base width. Male middle finger has the largest dimensions 
throughout; female little finger has the smallest dimensions except for 
height (female index). Multiple significant differences exist between 
fingers within separate genders (not highlighted). ‘All’ refers to 
combined finger means within gender or collective individual finger 
means. EM mean (±SEM). 
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mean was 29.10 ± 1.04% (finger range 26.75% - 31.22%), which was significantly 

greater than females (mean 25.00 ± 1.03%, finger range 23.53% - 26.73%) (p=0.048). 

When finger means from combined genders were compared, the middle (28.97 ± 

0.93%) was significantly greater than the little (25.14 ± 0.93%) (p<0.01), however 

there was no significance when the individual fingers were split across genders.  

 

The mean FDP:DP base width ratio (Table 2.9) was 78.34 ± 1.59% collectively, 

ranging from 74.69 ± 3.08% (female index) to 83.40 ± 3.08% (female little), with no 

significant differences between individual finger, gender, or combined gender finger 

means. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.9 | Ratio of FDP Footprint Measurements to 
Related Distal Phalanx Measurements 
Individual finger breakdown and gender total means for 3 
measurement ratios as a guide to the position of the FDP 
insertion on the DP. The only significant difference (*) 
between individual fingers or gender total data sets within 
each ratio occurs between male and female means for FDP 
centroid height related to DP height (p=0.048). ‘Surface 
Area’ = surface area of FDP footprint to surface area of flexor 
view of DP; ‘Height’ = height of FDP footprint centroid from 
DIPJ compared to total height of DP; ‘Base Width’ = greatest 
width of FDP footprint trapezoid base to greatest width of 
DP base. ‘All’ refers to combined finger means within gender 
or collective individual finger means. EM mean (±SEM). 
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Table 2.10 summarises the distances between the DIPJ (i.e. the base, or most 

proximal point, of the DP) and the FDP footprint base and centroid, and delineates 

significant differences between genders and combined gender fingers.  

 

The overall mean distance between the DIPJ and the FDP (Table 2.10) was 2.55 ± 

0.10mm. The male middle showed the greatest distance of all fingers (3.56 ± 

0.24mm), significantly greater than the male little (2.45 ± 0.24mm) (p<0.05), and all 

female fingers except the middle [index, 1.74 ± 0.24mm (p<0.001); ring, 2.15 ± 

0.24mm (p<0.05); little, 1.92 ± 0.24mm (p<0.01)]. The female index showed the least 

distance of all fingers (1.74 ± 0.24mm), significantly smaller than all male fingers 

except for the little finger [index, 3.07 ± 0.24mm (p<0.05); middle, 3.56 ± 0.24mm 

(p<0.001); ring, 3.00mm ± 0.24 (p<0.05)]. 

 

The overall mean distance between the DIPJ and FDP centroid (Table 2.10) was 5.16 

± 0.20mm, ranging significantly between 3.87 ± 0.33mm (female little) and 6.71 ± 

0.33mm (male middle) (p<0.05). Within genders, the male little finger (5.02 ± 0.33mm) 

was significantly smaller than all other fingers [index, 6.03 ± 0.33mm (p<0.05); middle, 

6.71 ± 0.33mm (p<0.001); ring, 6.06 ± 0.34mm (p<0.05)] but the female little finger 

(3.87 ± 0.33mm) was only significantly smaller than the middle (4.93 ± 0.33mm) 

(p<0.05).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.10 | Distance of FDP Footprint Base and Centroid from DIPJ 
Collated measurement means for individual fingers, gender totals and finger totals. 
Comparative analysis within gender totals and finger totals reveal multiple significant 
differences (not highlighted): male vs female for both FDP base (p<0.01) and FDP centroid 
(p<0.05); for combined gender fingers - for FDP base, middle vs little (p<0.01) and vs index 
(p<0.05), and for FDP centroid -  little vs ring, vs middle (both p<0.001), and vs index (p<0.05), 
and middle vs index (p<0.01). ‘All’ represents mean of combined genders, fingers, or both. 
EM mean (±SEM). 
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2.5.1.3 Inter-Observer Reliability  

Reliability statistics and interpretation scales comparing the agreement of 2 observers 

measuring the FDP footprint and DP dimensions are provided in Table 2.11. From all 

measurements taken, the collective reliability was extremely high, with an intraclass 

correlation coefficient (ICC) of 0.997 and Cronbach’s alpha of 0.998.  

 

The most reliable FDP footprint measurements were internal angles (ICC 0.992) and 

surface area (ICC 0.971), with ‘good’ reliability also between base width (ICC 0.846) 

and height (ICC 0.807) measurements. Isolated apex width measurements were 

however of ‘poor’ reliability (ICC 0.398). 

 

DP measurements showed either ‘excellent’ reliability [surface area (ICC 0.933) and 

height (0.929)] or a high ‘moderate’ reliability (base width, ICC 0.728). Measurements 

of the FDP footprint from the DIPJ were ‘excellent’ (FPD centroid, ICC 0.977) or near-

excellent (FDP base, ICC 0.877). 
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2.5.2 Tendon Width 

 

The gross morphology of the FDP tendon altered along its course towards insertion 

onto the DP. At the point of finger detachment from the cadaveric specimen, around 

the distal A2 pulley, the cross section of the tendon was oval shaped. Progressing 

distally, a developing median longitudinal sulcus gradually furrowed the tendon’s 

flexor surface. Beneath the A4 pulley the sulcus became much more evident, which 

coincided with a marked flattening of the tendon, giving the tendon a kidney-shaped 

or biconcave cross section. Between the A4 and A5 pulleys (C3 region) the sulcus 

flattened as the tendon then fanned out to its insertion on the DP (see Figure 2.1b,c). 

The more superficial fibres on the flexor surface, either side of the median sulcus, 

fanned out to attach more laterally and proximally at the insertion, whereas the deeper 

dorsal fibres, beneath the median sulcus, emerged to attach more centrally and 

distally (see Figure 2.5). 

 

2.5.2.1 Morphometrics  

The breakdown of all FDP tendon width measurements across gender and fingers is 

shown in Table 2.12. The fanning out of the tendon towards its DP attachment was 

described by the increasing overall width measurements from 12mm proximal to the 

FDP insertion base (4.69 ± 0.20mm), to 9mm (5.08 ± 0.26mm), 6mm (6.05 ± 0.25mm), 

3mm (7.16 ± 0.23mm), and finally the insertion base itself (8.58 ± 0.37mm) (see Table 

2.5). This pattern was seen in either gender and any finger, except for the female little 

finger, where the width at 12mm (3.75 ± 0.36mm) was greater than that at 9mm (3.61 

± 0.47mm). 

 

Figure 2.13 depicts and describes the finger pattern of tendon widths for each gender. 

Figure 2.14 similarly graphs the tendon widths for individual fingers, and summarises 

the significant differences between them, at each distance proximal to the insertion 

base. 
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2.5.2.2 Inter-Observer Reliability 

Reliability statistics of the agreement of 2 observers measuring the same tendon width 

images are presented in Table 2.13. Overall reliability was ‘excellent’ with an 

intraclass correlation coefficient (ICC) of 0.938 and Cronbach’s alpha of 0.970. All 

separate measurements at different distances from the FDP insertion base were 

either ‘excellent’ [3mm (ICC 0.910), 6mm (ICC 0.916), 9mm (0.919)] or ‘good’ (12mm, 

ICC 0.849).    

 

 

 

 

 

 

 
 
 

2.5.3 Bone Depth 

 

Grossly, the FDP tendon attached to the DP over a relatively flat vertical plane, where 

the anterior commencement of the DP bone depth (anterior-posterior) measurements 

lay on the same coronal plane for both proximal and distal insertion points (see Figure 

2.6). The proximal third of the DP flared out in both medial-lateral (see Figure 2.7) 

and posterior directions (see Figure 2.6) to provide a larger articular surface for the 

head of the middle phalanx at the DIPJ. Accordingly, the measurements at the 

proximal point of FDP insertion were always deeper than at the distal point, for any 

finger in either gender, as shown by the full measurement sets in Table 2.14. The 

overall mean depth at the proximal insertion point was 6.20 ± 0.17mm [ranging from 

5.23 ± 0.27mm (female little finger) to 7.05 ± 0.27mm (male middle)] compared to 

4.20 ± 0.06mm at the distal insertion point [similarly ranging from 3.48 ± 0.11mm 

(female little) to 4.86 ± 0.11mm (male middle)] (p<0.001). 

 

Table 2.13 | Inter-Observer Reliability of Tendon Width Measurements 
SPSS reliability statistics (95% confidence intervals) comparing 2 observers. See Table 2.11 for details 
and interpretation. Full SPSS statistical output is provided in Appendix 1.2.   
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Figure 2.15 graphs and summarises the pattern of finger values for each gender, and 

Figure 2.16 likewise describes patterns and comparisons between individual fingers 

at each measurement point.  

 

An ‘average’ data set was also calculated and plotted from the mean of the 

measurements made at the 2 insertion points. Note that this did not necessarily 

indicate the bone depth at the mid-point of proximal-distal distance (height) of 

insertion, since the flaring in the proximal third of the bone was not an oblique straight 

line, but curved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.14 | Distal Phalanx Bone Depth Measurements at FDP Insertion  
Collated measurements of DP anterior-posterior bone depth. ‘Proximal’ and ‘Distal’ refer to 
measurements made from the extreme points of FDP insertion, at the base and apex, respectively. 
‘Average’ is the calculated mean from the 2 measurements. ‘All’ represents mean of combined 
genders, fingers, or both. EM mean (±SEM). Values are plotted in Figure 2.15 and Figure 2.16.  
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2.5.5 Combined Data Groupings 

 

In order to distil the large collection of data into a small set of appreciably different 

values, data from FDP footprint, tendon width and bone depth measurements was 

rearranged and replotted into 3 distinct size categories – ‘large’, ‘medium’ and ’small’ 

(see Section 2.6.4). ‘Large’ was comprised of male index, middle and ring finger data; 

‘medium’ was comprised of male little and female index, middle and ring finger data; 

and ‘small’ was female little finger data alone. Figure 2.17 portrays the graphical data 

and well defined size differences, with all the values given in Table 2.16. 

Table 2.15 | Influence of Side on FDP, Distal Phalanx, Tendon Width and Bone Depth Measurements   
Statistical results from left versus right comparisons of all variables within gender (combined fingers) 
and finger (combined genders) using a series of linear mixed effects models (see Table 2.2 – Models 4a, 
4b, 5a, 5b, 5c, 5d). <13% of total comparisons are significant; excluding bone depth measurements <6% 
are significant. Where significant differences are present, parentheses indicate mean difference of left 
and right means. All mean differences are <0.5mm or <5% ratio, except for FDP footprint base in males 
(0.73mm). Overall, side influence is low; however particular differences are noted in males and middle 
fingers for bone depth measurements. For comparison of FDP footprint internal angles see Table 2.7 
and Figure 2.12. ‘Sig’ = significant difference; ‘ns’ = non-significant. *p<0.05, **p<0.01, ***p<0.001. 
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2.6 Discussion 

 

Work in this chapter has collected morphological measurement data on the human 

FDP insertion in 3 major study groups: the FDP-DP tendon-bone interface, FDP 

tendon width and DP bone depth. Each set of measurements within each major study 

group is now reviewed for implications on design of a clinically-relevant tissue 

engineered model and surgical repair of FDP avulsion, focusing on how factors such 

as gender and finger, and reliability of the methodologies, affect model size and repair 

position.  

 

 

 

 

Table 2.16 | Size Category Values for FDP Footprint, Tendon Width 
and Bone Depth  
Measurements of individual finger data for the FDP footprint, 
tendon width and DP bone depth re-arranged into 3 distinct size 
category groupings. EM mean (±SEM). See Figure 2.17 for details, 
plots and significant difference levels between size categories.  
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2.6.1 Tendon-Bone Interface 

 

2.6.1.1 Methodology Rationale 

Achieving an accurate morphological representation of the native FDP insertion was 

the principle concern in designing a tissue engineered tendon-bone interface. The 

methodology employed by Chepla, Goitz and Fowler (2015) utilised a number of 

techniques that were perceived to increase the accuracy of morphometric data 

acquisition beyond standard gross measurements made by ruler or caliper. 

Furthermore, by creating a negative impression of the footprint in ink, analysis of an 

entire footprint shape was possible. Software-based image analysis added the ability 

for close magnification and potential for more objective measurements, including 

calculation of the ‘centroid’ (centre point) of an area. Their published investigative 

method related to the exact region of interest as for this project, and the necessary 

equipment was readily available, in contrast to other considered techniques such as 

image-based scanning or serial histological sectioning. 

 

The present study therefore followed the principles of the Chepla, Goitz and Fowler 

(2015) methods, but with standardised or enhanced processes in order to try to further 

increase accuracy and objectivity. Timings of the steps to generate the footprint 

required optimisation as they did not describe the length of time that the FDP-DP 

sample was exposed to methylene blue, or the drying time that elapsed between 

excising the tendon and photographing the bone. Imaging software was used to take 

all measurements of the FDP insertion and tendon, extending their use of the modality 

from footprint surface area and centroid only. A more representative insight into the 

causal effect of finger, gender type and side on all measurements in the chapter was 

also explored through statistical models accounting for the non-independence of 

fingers from the same cadaver, improving on the inappropriate tests in their study that 

ignored pseudo-replication.  

 

 2.6.1.2 Tendon-Bone Interface Model Design 

 2.6.1.2.1 Shape 

The inking methodology generated a yellow-beige insertion footprint of unstained thin 

cortical bone, contrasting against the surrounding dark methylene blue stain (Figure 

2.7). An initial endeavour to objectively analyse the lighter insertion shape was 

attempted in ImageJ software by thresholding light/dark pixels through a validated 
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algorithim to generate a binary computerised shape, such as devised by Jones et al 

(2016). Despite the emphasis on maintaining the same camera settings, thresholding 

recognised lighting reflections on the varied surface topography on the DP as light 

pixels, even in the stained areas, so the technique could not be standardised across 

images and was abandoned. The next best approach was to manually trace around 

the lighter insertion area, producing the binary ‘mask’ shape (Figure 2.7). This 

established a clear image from which the shape could be analysed and 

measurements taken. 

  

The FDP insertion footprint was, roughly but reliably, a trapezoid shape. Initial 

dissections, inkings and mask images revealed an insertion shape with a relatively 

flat, horizontal base, tapering distally through roughly symmetrical sloping sides. The 

roof of the insertion shape formed an apex, which was either flat or more rounded. It 

was therefore decided to consistently approach the shape as a trapezoid, 

standardising dimension measurements to an averaged trapezoid shape. The 

maximum width measurement was taken as the base width, since although it may not 

have always encompassed the most proximal (lowest) edge of the footprint, the 

maximum width was of most morphological interest and always lay in the base region. 

The horizontal apex width was measured between the points where the tapering 

oblique sides of the trapezoid made a final discrete horizontal turn towards the midline 

at the distal (highest) region of the shape. Height was averaged from maximum height 

of the entire shape and at the midpoint of the shape, to account for any discrepancy 

in the maximum (base) width not lying at the most proximal point of the shape, and 

the apex measurement not encompassing the most distal tip. Similarly, to register the 

internal angles of the ideal average trapezoid, the internal angles of 2 trapezoids were 

measured and averaged: a ‘maximum’ trapezoid from apex measurement to lowest 

point of the shape, and a ‘minimum’ trapezoid to the highest possible point considered 

a base (where the widest point of the shape intersected the perimeter box). Through 

these means, the most average representation of a trapezoidal footprint shape could 

be constructed. 

 

Establishing a consistent shape as the tendon-bone interface was an important 

design step for the tissue engineered model. The interface represents the attachment 

area of a tendon analogue to a bone anchor in the model, and as such reflects the 

shape of the bone anchor itself. Although footprint surface area was an important 
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measurement helping to dictate size of the overall interface and model (see Section 

2.6.4), obtaining standardised exterior measurements to scale the dimensions of a 

fixed shape was more comparable between footprints and practical for design. 

Initially, unsuccessful attempts were made to merge all of the binary mask images 

into one single average image with analysis software to dictate the interface shape. 

This shape would have had highly irregular borders and would still have required 

manipulation to achieve a practical design, most likely still best matched geometrically 

to a trapezoid. Although a triangle was considered, with the shape tapering to a single 

point, a trapezoid was judged as the most representative shape due to a discrete roof 

at the highest point of the shape in the majority of cases. In repair of an avulsed 

tendon, the shape of the FDP attachment may even be more critical than its position, 

due to differential loading across the DIPJ (Chepla, Goitz and Fowler, 2015). Re-

creating a trapezoidal insertion shape in tendon-bone fixation is therefore also an 

important surgical consideration (see Section 2.6.3.3). 

 

 2.6.1.2.2 Dimensions 

Morphometric measurements set out to provide accurate mean values of the 

dimensions of the FDP insertion trapezoid shape to guide the size of the tendon-bone 

interface for the model. The effect of gender, finger and side was tested to identify 

any important differences in levels of these factors that might inform diversity in the 

model design. These factors were deemed the most clinically relevant from the 

available data provided with the cadaveric specimens, for example in matching a 

specific model size to a particular injured finger. Side had a negligible effect on all 

dimensions (Table 2.15), however gender and finger did influence mean values. 

 

Surface area measurements (Table 2.3, Figure 2.8) provided a useful overall gauge 

of size patterns, but were not directive of the trapezoid model design dimensions. 

They anticipated and amplified the size patterns and relationships between gender 

and finger types subsequently shown more subtly in the directive dimensional 

measurements. The little finger was the smallest finger and was significantly smaller 

than other fingers, whilst the middle finger was the largest. Index and ring fingers had 

similar measurements, which were closer in value to middle fingers than little fingers. 

Overall female fingers were smaller than male fingers, which for surface area was by 

approximately one-third of male size. All significant differences in surface area found 

through multiple comparisons of individuals fingers involved the little finger, 
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suggesting that of any data category (level of any factor) the little finger may be the 

most important influence on size differentiation. These findings were not unexpected, 

with measurement discrepancies corresponding to gross observation of the size or 

length of fingers in an average hand. 

 

Height measurements (Table 2.4, Figure 2.9) showed a very similar arrangement of 

values and significant differences as surface area. The exception was that the female 

middle finger was not the largest female finger, although only by an insubstantial 

0.09mm from the most sizeable finger (ring), and still within its own SEM. Mean values 

for index, middle and ring fingers for either gender all in fact occurred within the 

boundaries of each other’s SEM, suggesting they are indistinguishable. The 

significantly smaller comparative height of the little finger to other fingers in each 

gender meant that the male little finger was similar in height to the female index, 

middle and ring, while the female little finger appeared relatively isolated from all other 

finger heights. 

   

Base width measurements (Table 2.5, Figure 2.10) showed the same pattern of 

mean measurement values as surface area. Mean values between fingers and 

genders were however closer, leading to a reduced number of significant difference 

comparisons, although when present the majority involved the little finger as 

expected. Changes in base width size between fingers and genders may therefore 

have less of an influence on overall insertion surface area than height. 

 

Apex width measurements (Table 2.6, Figure 2.11) did not follow the usual pattern 

or comparative relationships. Indeed, no clear pattern was evident. For combined 

genders, middle fingers had the widest apices, although this was principally due to 

the magnitude of the female middle finger (0.69mm greater than the male counterpart, 

non-significant). Error bars were the widest of any of the FDP footprint measurements, 

showing that apex width mean values were the least precise. However, an average 

width of 1.60mm distinguished the insertion shape as trapezoidal rather than 

triangular. Unlike the surface area, height, and base width measurements, apex width 

of the insertion trapezoid did not appear related to the general gross size of a finger, 

and showed no appreciable differences between genders or fingers. 

 



102 
 

The apex measurement also allowed the investigation of the internal angles of the 

trapezoid (Table 2.7, Figure 2.12). As per the surface area measurements these were 

not directive of the trapezoid model design dimensions, but they helped define the 

trapezoid shape. Left and right sided angles at the base and apex of the trapezoid 

were very similar and within a narrow range of values, confirming that a simple 

symmetrical shape design about a vertical axis was appropriate and representative. 

 

Height and base width of the FDP footprint were also measured by Chepla, Goitz and 

Fowler (2015), with a greater height of 0.7mm and narrower base width of 0.7mm for 

overall combined finger and gender means. Their range of values for both dimensions 

for individual fingers across genders were all approximately within 1mm of the values 

recorded in this study, and in surgical scale terms these are of limited disparity. Small 

discrepancies between the studies may have been due to their use of calipers to 

record measurements rather than image analysis software, and non-standardisation 

of the timings involved in the generation of their footprints. Their study primarily used 

morphometric footprint measurements to infer the position of the FDP insertion 

relative to the DP for reattachment surgery, and so further discussion of this study 

follows in Section 2.6.1.3.  

 

In summary, the FDP footprint measurements described a symmetrical trapezoidal 

tendon-bone interface shape whose overall surface area, height and base width were 

influenced by gender or different fingers. To translate these findings into the bone 

anchor design of a clinically relevant model, both tendon width data (Section 2.6.2) 

and bone depth data (Section 2.6.3) required similar analysis before an overall design 

guide for the model components could be devised (Section 2.6.4). 

 

 2.6.1.3 Surgical Positioning 

The FDP tendon insertion position on the DP is an important anatomical feature that 

influences the biomechanics of the muscle-tendon-bone unit across the DIPJ (see 

Sections 1.2.3.5 and 1.3.6.1.3). After avulsion injury, surgical restoration of the 

insertion to its original native position avoids flexion contracture and quadriga (too 

distal a reinsertion) and reduced flexion power and active arc of motion (too proximal). 

As well as primary tendon-bone repair, this also applies to insetting a graft, either as 

autografted tendon or potentially as a tissue engineered tendon-bone interface graft. 

Although an in vitro tendon-bone model includes a ‘bone’ component, it is still 
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essential to know where to affix the model ‘bone’ in relation to the native DP bone in 

order to re-establish the original location of the tendon-bone interface and moment 

arm across the DIPJ. 

 

The DP dimensions of surface area, height and base width were measured by image 

analysis (Table 2.8) after thorough removal of soft tissue from the DP by sharp 

dissection, inking, FDP excision and photography. These dimensions were used to 

calculate the position of the FDP insertion in relation to the DP, as a ratio of each 

dimension (Table 2.9). This followed an initiative by Chepla, Goitz and Fowler (2015) 

(for surface area and height) to control for the varying dimensions of the DP, 

attempting to establish an overall surgical guide for re-insertion positioning in any 

finger. The same study’s concept was followed to investigate specific fingers and 

genders in their distances from the DIPJ (base, or most proximal point, of the DP) to 

the FDP footprint base or footprint centre point (‘centroid’) (Table 2.10). Combining 

and distilling data from these different perspectives aimed to provide surgeons with 

the most relevant and practical information to correctly reposition the insertion, 

working in measurement units applicable to surgical practice. 

 

From the present results, the general surgical aim is to create an FDP insertion 

surface area of 20-25% of the total surface area of the flexor surface of the DP. The 

design of the tendon-bone interface surface area for a clinically-applicable model 

should also lie within these limits. The height of the centre of the insertion should be 

25-30% distally along the DP, closer to 25% for males and 30% for females. The base 

width of the insertion should occupy 75-80% of the maximum base width of the DP, 

which also pertains to the pre-determined base width of the tendon-bone interface in 

a clinically-applicable model. 

 

The measurement results of the distance of the FDP insertion from the DIPJ 

suggested more specific aims that seem best outlined by gender. For males, the 

distance from insertion base to the DIPJ should be approximately 3mm, and from the 

insertion centre approximately 6mm. For females, the approximate equivalent 

distances should be 2mm and 4-5mm. Different fingers also evidently had an 

influence on distances from the DIPJ, highlighted by a number of significant 

differences between them. In practical terms it may be appropriate to more simply 

consider the approximate values for male and female distances as the average over 
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a range from larger middle finger distances to smaller little finger distances. The 

finding that these distances from the DIPJ were roughly 1mm less for females is in 

line with data suggesting that the insertion trapezoid height was roughly 6mm for male 

and 5mm for females (Table 2.4), and the base width roughly 9mm for males and 

8mm for females (Table 2.5). Thus the most clinically relevant distances when re-

inserting the FDP tendon, that of insertion size and particularly position on the DP, 

have a useful general distinction of 1mm difference in magnitude between males and 

females. 

 

These results showed both conformity and inconsistencies with those of Chepla, Goitz 

and Fowler (2015), who used the same general methods and organisation of data. 

Surface area % of the footprint on the DP was in general agreement at 20%. Their 

lower mean range of values (17-22%, compared to 20.51-24.13%) was potentially 

due to the lack of complete soft tissue clearance on their DPs, particularly the lateral 

interosseous ligaments (Figure 2.18). Excess soft tissue increases the flexor surface 

area of the ‘DP’ and therefore decreases the relative ratio % of the FDP footprint. 

They also did not report the timings of their inking and drying stages before 

photography. Extended time periods may have allowed bleeding of the ink into the 

footprint before photography, reducing its perceived surface area.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.18 | Representative FDP Footprints from Equivalent Study 
Figure as previously published by Chepla, Goitz and Fowler (2015), with additional 
arrow annotations, showing flexor view of full set of DPs from a single human 
cadaveric specimen. Unstained FDP footprints were achieved through the same 
inking methodology as this project. Compare with Figure 2.7. Not all soft tissue has 
been removed, especially in the region of the lateral interosseous ligaments (white 
arrows). Mild green-coloured bleeding of ink into the unstained footprint is 
seemingly evident (red arrows). Note the small but variable distance between the 
base of the FDP footprint and the proximal point (base) of the DP. IF = index finger; 
MF = middle finger; RF = ring finger; LF = little finger.  
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Chepla, Goitz and Fowler’s (2015) concluding surgical guidelines proposed 

positioning the centre of the FDP insertion 4mm from the DIPJ in males and 3mm in 

females, equivalent to roughly 20% distally along the DP. Corresponding guidelines 

in this project were up to 2mm greater and 5-10% more distal. A similar discrepancy 

was found in measurements of FDP insertion base from the DIPJ, reporting 

approximately half the size in distance compared to this project, at a difference of 1-

1.5mm in the majority of mean individual finger sizes. As there was relative agreement 

in the morphometrics of the footprint itself (Section 2.6.1.2), these comparative 

differences in footprint position imply that the main discrepancy was the distance 

between the DIPJ (base of the DP) and FDP insertion base, which also then impacted 

upon the distance to the centre point. Comparison of Figure 2.7 and Figure 2.18 

indicates a generally larger bony length over the DIPJ-FDP insertion base distance in 

the current study. This may be explained by the older age of the cadaveric specimens 

used in this project (mean age 82.2, range 65-95; compared to a mean of 54, range 

43-64), possibly presenting with a variable lip of DP osteophytic growth over the flexor 

surface of the DIPJ from mild degenerative osteoarthritis. The DIPJ articular cartilage 

in these specimens was however noted to be grossly intact. For guidelines on 

positioning of the FDP insertion it is therefore perhaps prudent to appreciate that 

position relative to the proximal point of the DP, labelled in both studies as the ‘DIPJ’ 

for ease of description, may elongate in an older population. The insertion should 

however remain the same distance from the axis of rotation of the DIPJ (moment arm 

unchanged). During surgery the proximal point of the DP is not visible in health, being 

covered by the volar plate on the flexor surface and the collateral ligaments of the 

joint capsule laterally. The joint line may nevertheless be palpated and so guidelines 

regarding distances from the DIPJ may still be of practical value for both primary re-

insertion and placement of a tendon-bone interface graft.  

 

 2.6.1.4 Validity and Reliability 

General limitations of the collected studies in this chapter, concerning the sample, 

dissection methods and 2D measurements, are discussed in Section 2.6.5. 

 

The inking technique of Chepla, Goitz and Fowler (2015) was regarded as an effective 

method to observe the FDP insertion shape. It was considered a truer representation 

of the insertion than drawing or point marking on the bone around the tendon, and 

more applicable to developing a scanning and analysis method. However it 
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necessitate destruction of the interface to reveal the footprint, and the technique 

required optimisation to improve the perceived validity of the generated negative 

footprint in representing the actual insertion area, as timings of the inking steps were 

not reported in the referenced study. The length of time that the tendon-bone sample 

was immersed in the methylene blue ink impacted on the size of the footprint, since 

the trial of a 90 minute immersion noticeably reduced the unstained area on gross 

examination after excising the tendon. Presumably the ink had ‘bled’ through the bony 

foramina and trabecular spaces and between tendon fascicles to stain the bone 

surface of the interface beneath the tendon in this time period. This sample was 

excluded from analysis, however other early trial samples immersed for 5 and 45 

minutes (n=9) were included with those of the later standardised timing of 10 seconds 

(n=38). Although there was concern that the ink in these longer stained samples may 

have bled into the negative footprint, gross observation of their footprints found them 

to be similar to the 10 second immersion samples and justified their inclusion. The 

decrease in study power by reducing samples to 38 from 47 was felt to be more severe 

than including samples with a confounding factor of immersion time leading to a 

possible, but grossly imperceptible, alteration in footprint size. Furthermore, early 

‘bleeding’ of the ink into the footprint appeared to manifest as a green colour on the 

bone surface. These areas were included in the assessment of the footprint surface 

area since the area was manually outlined at the first perceptible colour change from 

the dark blue ink (see Figure 2.3). 

 

Assessment of the trapezoidal footprint shape and position on the FDP demanded a 

large number of subjective image analysis measurements. This measurement 

methodology was therefore checked for reliability in comparison with a 2nd observer, 

through the intraclass correlation coefficient (ICC) of absolute agreement, as most 

strict assessment of identical recorded values (Table 2.11). Overall reliability of all 

measurements taken, as a guide to the general methodology, was extremely high. 

For measurement of each separate dimension, nearly all had excellent or good 

reliability, however a poor result was achieved for apex width.  

 

The apex width measurement was included to attempt to define the horizontal roof of 

the trapezoid footprint shape. The point where the obliquely narrowing sides of the 

footprint discretely turned to form a roof was clearly subjective, attempting a collective 

description of the variably more rounded or pointed distal tapering. The subjectivity 
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may have been an influence on the finding of similar apex widths across fingers and 

genders, and no discernible comparative pattern, in contrast to all other FDP footprint 

measurements. However it is a dimension that would have been difficult to predict, for 

example by gross observation of an average set of fingers, and significant differences 

would have been unexpected. The apex width is a small measurement between 1-

2mm and has a limited impact on discernible scale for surgery or relevant model 

design. If the 2nd observer’s measurements were used to calculate the definitive model 

design guide at the end of the chapter (Table 2.17, Section 2.6.4) the apex widths for 

each size would still be within two-thirds of a millimetre. Since the apex width 

dimension was important to include in order to define the trapezoid shape and bone 

anchor design, although having a limited effect on size scale, no readjustments or 

reassessments were made on this particular measurement despite its unreliability.   

 

2.6.2 Tendon Width 

 

2.6.2.1 Methodology Rationale 

Cadaveric finger dissection to expose the FDP insertion allowed an appreciation of 

the tendon morphology along the distal two-thirds of the flexor sheath. Cross sectional 

morphology varied from oval at the distal A2 pulley, flattening to a kidney/biconcave 

shape around the A4 pulley, finally fanning out to a trapezoidal insertion area on the 

DP. The structural rearrangement of the gross distal tendon fasciculi into 2 discrete, 

almost fully separated, halves by a midline longitudinal sulcus agreed with the detailed 

description of Wilkinson (1953) (see Section 1.2.3.2). In establishing their attachment 

footprint, the 2 halves of the segregated fasciculi on the flexor surface formed the left 

and right halves of the proximal region of the footprint trapezoid and base, whilst those 

fasciculi deep to the sulcus provided the distal region and apex.  

 

The changing morphology of the FDP tendon as it approached insertion demonstrated 

a need to quantify dimensions of a length of tendon proximal to its insertion. Since the 

length of the soft tissue analogue in the undeveloped soft tissue-bone model was 

12mm (Paxton et al, 2012a), the 12mm length of the most distal tendon was 

investigated. This was divided into 4 equal increments to maximise the assessment 

of change in morphology as the tendon fanned out at its insertion. The 12mm length 

was found to be the part of the tendon that lay beneath the A5 and C3 pulleys. The 
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point at 12mm proximal to the insertion base roughly coincided with the middle and 

deepest point of the grossly-observable median longitudinal sulcus (see Figure 2.5). 

 

Since a 12mm length of tendon was selected for model design, the point at 12mm 

proximal to the insertion base was the crucial measurement for clinical relevance. At 

this point a potentially implantable tissue engineered tendon-bone graft requires 

integration with the native tendon. Although the proximal end of a tendon graft is 

usually weaved into the native tendon, a 12mm length of engineered tendon lying in 

the distal flexor sheath would require direct end-to-end tenorrhaphy with the native 

tendon in the C3 pulley region. The engineered tendon would thus require 

morphological matching with the native tendon to give a smooth transition across the 

native-engineered tendon ends in the tenorrhaphy, allowing unobstructed glide in the 

flexor sheath and reduction of adhesions. Tendon width was selected as the most 

relevant and measurable dimension to guide native and engineered tendon 

morphology matching. The method of photography and image analysis, as per 

assessment of the FDP insertion dimensions, was thus again employed to gain the 

most accurate measurement of width.    

 

2.6.2.2 Tendon Analogue Model Design 

As per the tendon-bone interface morphometrics, tendon width measurements aimed 

to provide a model design guide, and to explore the effect of finger, gender and side 

differences. Left or right side did not have a substantial influence on mean 

measurements (Table 2.15). Finger and gender differences were significant, with a 

generally reliable descriptive pattern. 

 

The fanning out of tendon fibres to their insertion is not only portrayed by a shorter 

tendon width at 12mm proximal to the insertion than at 3mm (or at the insertion base 

width itself, Table 2.5) in all fingers and gender breakdowns, but also by an increasing 

width between each progressively distal increment measured (i.e. for overall means: 

0.39mm (12-9mm proximal from insertion), 0.97mm (9-6mm proximal), 1.11mm (6-

3mm proximal) and 1.42mm (3mm proximal-insertion base width). As a minimum 

therefore, the tissue engineered model would require a proximal anchorage point for 

the tendon analogue of smaller width than the bone block base at the tendon-bone 

interface. Furthermore, the ideal tendon replica should aim to increasingly fan out to 

the insertion base. An abrupt change of width (i.e. a step) at either end or within the 
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length of the tendon analogue could present obstruction to smooth glide in the flexor 

sheath. Unless the tendon analogue naturally assumes the desired fanning out shape, 

it may require manipulation at some or all of the 3mm incremental points towards its 

bony insertion to match the native morphology. 

 

Finger and gender clearly influenced the magnitude of tendon width, as shown by the 

large number of significant multiple comparisons (Figures 2.13 and Figure 2.14), and 

should be acknowledged in designing a model relevant for different male and female 

fingers. The most helpful approach to evaluating finger and gender effects was to 

initially consider the graphical data patterns, then the importance of the differences 

within these patterns could be assessed through the presence or level of significant 

differences. 

 

The pattern of tendon width magnitude for fingers is reliably middle>index>ring>little. 

This varies slightly compared to FDP insertion morphometrics, where mean values 

for index and ring are extremely similar. Although this pattern of tendon widths might 

be partially expected by simple correlation with grossly observed average widths of 

entire fingers on a typical hand, the index and ring appear grossly similar. To explain 

the discrepancy in tendon width, it may be that the index finger tendon has undergone 

slight hypertrophy due to its comparative freedom compared to the ring finger, which 

is anatomically restrained by bipennate lumbricals on both sides (Lunn and Lamb, 

1984; Bachoura, Ferikes and Lubahn, 2017), by juncturae tendinae, particularly 

limiting MCPJ movement (Leddy and Packer, 1977) and also by being lodged 

between the middle and little finger muscles in a shared muscle belly (Gunter, 1960). 

The extensor indicis also provides the index with greater power and range of 

movement which may demand more service of the index FDP over the ring (and other 

fingers’) FDP. Despite a consistent difference in mean values however, there were no 

actual significant differences between index and ring finger tendon widths in gender 

or finger breakdowns. Similarly, the middle finger was consistently the widest tendon, 

but it very rarely showed any significant difference to the index or ring fingers. The 

most isolated finger in the finger patterns was the little finger, which was significantly 

different from all other fingers at all points of measurement in both genders (bar one: 

12mm proximal to the insertion in females, compared to the ring finger, but it was still 

the smallest width) (Figure 2.13). The importance of the significantly narrower width 

of the little finger was underlined in the comparison of individual fingers amongst both 



110 
 

genders (Figure 2.14). The female little finger was the only female finger significantly 

smaller than male fingers. However, it was never significantly smaller than the male 

little finger, although it was always of a smaller mean value. The little finger may 

therefore require particular consideration in the sizing of a clinically-relevant tissue 

engineered model. 

 

2.6.2.3 Validity and Reliability 

Tendon width was perceived as the most valid and useful dimension readily 

measurable to describe the changing morphology of the tendon close to its insertion. 

As a design guide for a 3D model, 3D measurements would likely have provided more 

descriptive information, particularly as the cross sectional shape was observed to 

undergo changes along the distal tendon. However, a well-defined 2D measurement 

such as width was considered to give a more powerful and comparable native tendon 

data set than attempting to establish a 3D scanning method. Despite the subjectivity 

involved in taking measurements, reliability of the tendon width method was 

consistently excellent between 2 observers, over all measurements in total or at each 

incremental point individually (Table 2.13). Accurate incremental measurement points 

near the insertion were vital to describe the changing tendon morphology, which may 

have been difficult to achieve with some scanning methods (e.g. ultrasound). 

Furthermore, 2D assessment of the undeveloped soft tissue-bone model for this 

project is a viable method to evaluate the maturation and morphology of the 

engineered tendon/ligament (Paxton et al, 2012a). Tendon width measurements can 

thus be optimally employed as both a design guide and assessment tool to directly 

compare the native and engineered tendon (see Chapter 4). Nevertheless it is 

acknowledged that tendon width is not a true representation of the 3D morphology.   

 

2.6.3 Bone Depth 

 

2.6.3.1 Methodology Rationale 

Dimensions of the DP bone have previously been studied as they are relevant to the 

placement of bone anchors for FDP insertion repair (Jain et al, 2011; Samson and 

Gupta, 2018; Bond, Rust and Boland, 2019) and headless compression screws for 

DIPJ arthrodesis (Wyrsch et al, 1996; Song et al, 2012; Mintalucci et al, 2014; Braun, 

Bogle and Wiesler, 2015; Darrowish, Brenneman and Bigger, 2015). The majority of 

studies measured radiographs, but 3 studies used cadaveric tissue dissection and 
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digital caliper measurement (Wyrsch et al, 1996 Jain et al, 2011; Bond, Rust and 

Boland, 2019). Since human tissue was available in this project, this was deemed 

preferable to radiographs, allowing live manipulation of the DP for the most accurate 

plane of measurement. Additionally, in the development of a model design guide, 

there would be greater association with the FDP insertion and tendon width values, 

as data collected for bone depth would be from a sample inclusive of the DPs that 

generated these other morphometric data sets (see Table 2.1). Initially, the 

measurement method of photography and image analysis was trialled as per the 

previous morphometric data sets; however, as further discussed in Section 2.6.5.3, 

digital caliper measurement was found to be the optimal available method.  

 

Due to the variable width profile of the DP, multiple depth measurements were 

considered most appropriate to describe bone depth at the FDP insertion. Depths at 

the proximal and distal insertion points were selected as they were easily discernible 

by the still attached FDP tendon. Initial samples also suggested that these were an 

approximation of the deepest dimension (proximal) and narrowest dimension (distal) 

beneath the tendon insertion (see Figure 2.6), providing an effective guide to the 

range of bone depth and extreme values. A measurement of depth at the mid-height 

of the FDP insertion was also originally attempted, however this was not deemed 

sufficiently accurate to judge with calipers, or by calculation as the average depth from 

combined measurements at the DP base and mid-height DP, as employed by Jain et 

al (2011). The ‘average’ depth in the present study, calculated here using the values 

from the proximal and distal insertion depths, was helpful to substantiate the general 

overall effects of finger and gender, but was not based on a measured data point.  

 

2.6.3.2 Bone Anchor Model Design  

Native DP bone depth was assessed to direct the depth design of the tissue 

engineered bone anchor component. To be surgically relevant as a graft, the bone 

component needs to integrate with the native bone, unless it is designed as the entire 

DP itself. Additionally, the bone anchor component needs to provide the interface for 

fixation to the native bone, perhaps either mechanically by a screw, or chemically by 

an adhesive compound. These are more advanced engineering considerations. The 

primary design concern was to be confident of a depth of bone anchor that was 

shallow enough to sit within the native DP and not sit proud of the native dorsal cortex, 
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but also deep enough to provide a robust anchorage point for the tendon interface in 

vitro and to allow potential fixation techniques to the native bone in vivo. 

 

The effect of gender, finger and side on bone depth were explored as per the previous 

morphometric data sets to consider how they might affect the model design. The 

larger data pool here (twice the size of that for tendon-bone interface morphometrics) 

brought more study power and confidence in mean values, and so a large number of 

significant differences became apparent. As such, the effect of side was more evident 

for bone depth (Table 2.15). Right and left differences were significant at all 3 depths 

assessed in males, but not in females. Although an unusual finding, this could perhaps 

be explained by slight bony hypertrophy from greater lifetime manual activity in males, 

focused then on their dominant hand. The middle finger may also present this 

significant effect of side as, being the largest DP overall (see Table 2.8), it may 

undergo the largest dimension changes as a result of hypertrophy. This is however 

very speculative and cannot be matched to data on cadaveric donor hand dominance 

(unavailable), or indeed to occupation, which does not allude to a manual bias in either 

gender (see Table 2.1). Where side difference was significant, the difference was only 

of less than 0.5mm, which may be too small for practical or clinical relevance. 

 

Gender and finger type also significantly influenced depth and, as with tendon width 

data, ascertaining the consistent patterns was most insightful. Females were smaller 

than males at the consistently smaller distal measurement point, and also according 

to the average measurement (see Figure 2.15). The lack of significant difference at 

the proximal point may be due to females being at greater risk of osteoarthritis and 

presenting with bony osteophytes near the DIPJ, potentially increasing some or all 

proximal depth measurements (see Section 2.6.3.4). The overall finger pattern of 

middle>index>ring>little was as seen for tendon width measurements, and similarly 

the little finger was the most influential in significant comparisons. From the average 

and distal measurements, the female little finger was significantly smaller than all 

other fingers across either gender, except for the male little. The male little finger was 

significantly smaller than all other male fingers, but not significantly smaller than any 

female fingers.  

 

An engineered bone anchor component of roughly 50% of the depth of the native 

bone was deemed a reasonable initial estimate to balance the requirements of leaving 
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enough native bone for potential graft fixation and maintaining a sturdy ‘platform’ for 

the tendon interface. Yet with a suitable depth of bone anchor platform established, 

this could potentially then be applied to any individual finger of any gender, affecting 

the depth of the remaining native bone only. Since side may also have a very slight 

effect on depth, a standard bone anchor depth for all fingers would also prevent the 

impractical doubling of models specific to right and left sides. The smallest bone depth 

dimensions therefore provided the key directing measurements. Female fingers at the 

distal point of the FDP insertion had the narrowest dimensions, averaging 3.99mm 

over all fingers (Table 2.14). 50% of this distance is roughly 2mm, which was regarded 

as a convenient depth of bone anchor, large enough to provide a solid platform for 

the interface of a model relevant to any individual finger. Since the female little finger 

had the smallest depth (3.48mm, distally), and was the only dimension substantially 

smaller than the average dimension of 3.99mm, it was considered whether an 

approximate 1.5mm was enough remaining native dorsal bone in this particular finger. 

Although small, this would however be a minimum value at only the distal FDP 

insertion edge, as the posterior flaring of the bone beneath the insertion provides an 

ever-increasing bone depth moving proximally, with 3.23mm of native bone remaining 

in this female little finger by the proximal point of insertion (at 5.23mm depth, see 

Table 2.14). Across the whole length of the insertion this was therefore regarded as 

enough surrounding native dorsal bone for stability and potential fixation, and the 

standard bone anchor depth for the model of 2mm was thus decided. 

 

2.6.3.3 Surgical Bone Anchor Fixation 

The amount of available native DP bone is surgically significant for the correct 

anatomical repositioning of an avulsed FPD tendon. Many surgeons prefer the simple 

bone anchor for repair, over the more complex all inside suture/wire internal fixation 

techniques or the infection risk of the pull-out button suture (see Section 1.3.6.1). 

Ideally the bone anchor is placed at a 45o retrograde angle for the greatest resistance 

to anchor pull-out (Schreuder et al, 2006), based on the ‘deadman theory’ of 

stabilisation first applied to rotator cuff anchorage (Burkhart, 1995). This also reduces 

the risk of dorsal bone cortex penetration from an anchor placed perpendicularly to 

the insertion surface. Indeed, the greatest depth of bone beneath the FDP insertion 

to accommodate an anchor was found to be at the proximal point of the insertion, 

retrograde to the centre of insertion, in the current project. However, the DP remains 

a small bony compartment into which to place a bone anchor originally designed for 
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large soft tissue avulsions such as the rotator cuff. Too long a bone anchor risks dorsal 

cortex penetration with perpendicular insertion but also DIPJ penetration with 

retrograde insertion. To account for this a surgeon may place a perpendicular bone 

anchor too proximally, or a retrograde anchor too distally (Chepla, Goitz and Fowler, 

2015), upsetting the original biomechanics across the DIPJ and causing reduced 

flexion power or flexion contracture, respectively. These surgical concerns highlight 

the importance of the FDP insertion position, also applicable to relevant tissue 

engineering design and implantation as an interface graft.  

 

Surgical interest in DP dimensions allows comparison of the bone depth 

measurements recorded here to other published studies using cadaveric dissection 

and caliper measurements, as a gauge of reliability. Jain et al (2011) measured bone 

depth (unknown sample age) at the mid-height of the FDP insertion, calculated by the 

average of the depth at the base of the DP and at the mid-height of the DP. Although 

not the exact same measurement points used to calculate the ‘average depth’ in this 

project, they are similar approximations and mean values of each finger for combined 

genders are within 0.25mm between the studies. Bond, Rust and Boland (2019) 

measured bone depth (mean age 88) at the ‘widest (deepest), most proximal point’, 

which is a similar, but more proximal, measurement point to the depth at proximal 

point of FDP insertion in this project. Due to the observation of the DP flaring out 

proximally, their study’s results for finger means for combined genders are all 

expectedly larger than the proximal insertion depth in this project, but are all within 

0.55mm. Both these studies relate DP bone depth to insertion of perpendicular bone 

anchors: the Mitek ‘micro’ (length 3.7mm) and ‘mini’ (length 5.4mm), which both 

require pre-drilling with a 5mm long drill bit. In the current study, the 5mm drill bit 

would penetrate the calculated average depth of little fingers (agreeing with both 

studies) and the female ring (additionally agreeing with Jain et al, 2011) (all <5mm), 

and the only perpendicular depth that would not seat the micro anchor without dorsal 

cortex penetration would be the female little finger (<3.7mm, although specifically at 

the distal point of FDP insertion) (agreeing with both studies) (see Table 2.14). Overall 

therefore, these studies provide a similar descriptive picture of DP bone depth to that 

presented here. 

 

In radiological comparison, Samson and Gupta (2018) measured lateral radiographs 

(patient ages unknown) to find the deepest DP measurement beneath the FDP 
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insertion, based on the position of the radiolucent FDP insertion as reported by 

Chepla, Goitz and Fowler (2015). The deepest measurement beneath the FDP 

insertion for the current study was the proximal measurement point, which measured 

up to 0.75mm greater for each combined gender finger mean compared to their study. 

Although well within a millimetre, the greater measurement discrepancy with this 

study could be due to greater age and potential osteophytic growth, enlarging the 

proximal measurements, in the current study (discussed further in Section 2.6.3.4), 

and the use of radiographs and software measurement compared to cadaveric 

material and calipers.  

 

Many authors recommend the use of 2 side-by-side bone anchors (McCallister et al, 

2006; Lee et al, 2011; Ruchelsman et al, 2011) due to the extra strength in fixation 

over a single anchor (Brustein et al, 2001). Moreover, Chepla, Goitz and Fowler 

(2015) recommend 2 anchors in order to recreate the anatomical width of the FDP 

insertion footprint. Such recreation of the footprint base requires anchor insertion at 

the proximal point of the FDP insertion. At this insertion point, the results in the current 

study recommend micro anchors, as the longer mini anchors placed perpendicularly 

would penetrate the dorsal cortex in female little fingers (<5.4mm) and risk DIPJ 

penetration in retrograde placement. The 1.3mm diameter of the micro anchor (Jain 

et al, 2011) suggests that 2 side-by-side anchors are well within the base width 

dimensions of the DP [smallest width 8.97mm (female little finger), see Table 2.8], 

even when the flanges are deployed. For optimal recreation of the trapezoidal footprint 

shape of the FDP insertion, a further single point of midline fixation could then be 

employed distal to the bone anchors, such as a pull-out button (Figure 2.19). 
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2.6.3.4 Validity and Reliability 

No inter-observer comparison was performed to test the reliability of bone depth 

measurements. It was judged that the larger data pool for bone depth assessment, 

compared to the previous morphometric measurement data sets that did test inter-

observer reliability, may help to reduce any inaccuracy of measurements through the 

resulting mean values. The presence of observer bias however cannot be checked. 

The limitation of measuring a 3D surface through 2D means, particularly relevant here 

to bone depth measurements, is discussed with the general limitations of this chapter 

in Section 2.6.5.3.  

 

Bone depth measured at the proximal point of the FDP insertion was close to the 

DIPJ. As such, osteophytic growth from mild degenerative joint disease may have 

existed, as noted on the flexor surface in a potential increase in distance between 

DIPJ and FDP insertion base (see Section 2.6.1.3). This may have also increased the 

distance of the proximal bone depth measurement, particularly by excess bone 

posteriorly. This may also account for why proximal measurements are less consistent 

Figure 2.19 | Combination FDP Fixation Technique for Optimal Footprint Recreation 
Figure from Ruchelsman et al (2011) depicting 2 side-by-side retrograde micro bone 
anchors with a distal dorsal pull-out button suture in flexor view (left) and lateral view 
(right). As well as providing a reinforced repair with protection against gapping at the 
tendon-bone interface, data from this chapter suggests that this may be the optimal 
technique to recreate the original trapezoidal shape of the FDP insertion. The 2 bone 
anchors provide the width of the FDP insertion base, whilst the pull-out button draws 
the insertion up to an apex, creating an overall trapezoid shape. The 3 points of 
fixation also correspond to the 3 discrete groupings of tendon fibres that form the 
insertion footprint; 2 forming the left and right halves of the insertion base and the 
3rd forming the midline apex, as described in Section 2.6.2.1. 
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than distal measurements (greater SEMs). Proximal depth measurements are 

therefore most valid to the age range of the sample (65-90). However, the proximal 

measurement point is always the deepest dimension of bone at the FDP insertion, 

and both the model design guide and surgical bone anchor fixation are concerned 

with how narrow the bone may be. The narrower measurement at the distal point of 

insertion is more consistent and unlikely to have substantially changed with age and 

therefore the model design and surgical guidelines presented here, based on this 

distal measurement, should be valid across all skeletally mature age ranges.  

 

2.6.4 Overall Model Design  

 

The aim of this chapter was to analyse the morphology of the native human FDP 

insertion and translate this into the design of an anatomically and clinically relevant 

tissue engineered model. Pertinent gross structural components and arrangements 

were analysed – the FDP-DP interface, FDP tendon, and DP bone – to inform the 

construction of a multi-tissue 3D model that could potentially be implanted as a 

composite surgical graft, or used as a standalone morphological replica for 

investigating and improving repair techniques. A wealth of data was collected and the 

particular effects of finger, gender and side, as pre-selected factors of interest, were 

explored to investigate whether levels of these factors were important to inform 

different model categories. The data now required assimilation into a practical and 

representative guide for the next stage of the project. 

 

Finger and gender type had significant influences on the mean morphometric values 

of all data sets, whilst the effect of side was small overall. The design of 8 models for 

index, middle, ring and little fingers in both male and female varieties would not 

however be pragmatic or cost effective. Furthermore, the various dimensions for 

these models based on mean values would differ in most cases by fractions of 

millimetres beyond practical relevance to even magnified hand surgery. Yet a single 

design, although useful as a basic average model, most relevant for investigating and 

improving FDP avulsion repair techniques, would limit its surgical application as a 

potential graft by providing a poor size match to the larger or smaller finger and gender 

groups revealed in the data. The data was therefore reviewed to identify the main 

patterns signifying the presence of potential major size groupings and discrepancies, 

in order to find a balance of practicality and relevance for the model design.  
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For FDP footprint morphometrics, the surface area of the footprint provides an 

insightful guide to overall size as it contains the largest values and spread of data. 

Visual appraisal of graphical data of individual fingers separated by finger and gender 

(Figure 2.8c) suggests a cluster of mean values in 3 groupings: male index, middle 

and ring fingers; male little and female index, middle and ring fingers; and female little 

finger. This is reinforced by the little finger being the only finger to show significant 

difference to other fingers within each gender. The pattern is similar for FDP footprint 

height (Figure 2.9c) and base width (Figure 2.10c). Furthermore the pattern is 

repeated for tendon width values at all points proximal to the FDP insertion (Figure 

2.14a-e). Analysis of the many significant differences present in the FDP footprint data 

and tendon width data pinpointed the little finger as the most significantly different in 

multiple comparisons to other fingers, which supports its position in a lower size 

grouping to the other fingers (see Section 2.6.1.2.2 and Section 2.6.2.2, respectively). 

Although the middle finger was the largest in all dimensions (except for female tendon 

width at 12mm proximal to the FDP insertion) it was very rarely significantly larger 

than any other finger besides the little finger, supporting its grouping with index and 

ring fingers within the same gender. Bone depth data showed a tendency to a similar 

pattern, although it was not as clear (Figure 2.16a-c). 

 

After recognition of these data cluster observations, the data was then categorised 

and separated into the 3 group levels to generate amalgamated mean values and 

new differential comparisons (Figure 2.17 and Table 2.16). Although apex width of 

the FDP footprint did not follow the pattern of 3 cluster groupings, it was included in 

the data re-arrangement for consistency with the other dimensions. Highly significant 

differences were apparent between all 3 groupings, with a wide spread of mean 

values. Differences in size dimensions were around 1mm, which was considered of 

surgical and tissue engineering design significance, in comparison to fractions of 

millimetres. These groupings therefore satisfied a division of the data that was most 

disparate but remained both practical and relevant to potential clinical use. The groups 

were thus labelled ‘large’ (male index, middle and ring finger), ‘medium’ (male little 

and female index, middle and ring finger), and ‘small’ (female little finger) as different 

size categories for design of the model. 

 

Although pre-selected factors, particularly finger and gender, were tested to analyse 

their specific influence on mean measurement variables as the basis for describing 
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and differentiating the data set, an alternative approach could have been to explore 

the total data variation. A greater focus on the spread of data for each measurement 

variable may have better determined the need for multiple model sizes rather than 

categorisation based on finger and gender groupings alone. This may have been 

particularly worthwhile with a larger data set, but, for the current sample, testing of 

specific factors thought most influencial to size was chosen as the analysis approach.   

 

The majority of data within this chapter concerned the design of the bone anchor. The 

FDP-DP interface was trapezoidal, and this should represent the area of attachment 

of the engineered tendon analogue onto the bone anchor. A bone anchor design 

larger than the tendon attachment area was considered, however it was predicted that 

it would be easier to engineer a tendon analogue to attach to an entire area, rather 

than partial area, of bone anchor. Thus the dimensions determining the trapezoidal 

interface shape (height, base width and apex width) provide the 2D attachment 

surface dimensions of the bone anchor. Bone anchor depth was established at 2mm 

for all model sizes, as described in Section 2.6.3.2. In addition, the pattern of 3 mean 

value clusters within data separated by finger and gender was not as well defined for 

bone depth as for FDP footprint and tendon width data, and since side appeared to 

have some effect on bone depth, a single value was most appropriate.  

   

An ultimate design guide based on the 3 size categories could now be prepared for 

the tissue engineering stage (Table 2.17). This would allow set up of the 2 anchor 

points between which the tendon analogue would form. At one point is the bone 

anchor with a 3D shape representative of the FDP insertion area and applicable to 

the depth of the native bone, with the proximal anchorage point (such as the length of 

suture employed by Paxton et al, 2012a) at a 12mm distance, aiming to establish a 

tendon analogue width matching the native tendon. 
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2.6.5 General Limitations 

 

This chapter attempted to obtain living population morphometric values from a sample 

of cadaveric material, to represent the native FDP-DP tendon-bone insertion and infer 

the effects of finger, gender and side on size differences. A number of limitations were 

therefore inherent in the sample, and general dissection and measurement 

methodologies, which must be considered when interpreting the results.  

 

2.6.5.1 Sample 

The analysis of human tissue was integral to the clinical-relevance of a tissue 

engineered model. The most appropriate source of precious human tissue for 

research purposes was cadaveric tissue from the university anatomy department. The 

sample was therefore necessarily one of convenience from the available donated and 

research-appropriate material. A formal power calculation for each morphological 

study was not performed, however a number of factors were considered in the 

experimental design to maximise the power of the studies. Reasonable sample size 

was determined through review of similar morphological cadaveric studies with 

significant inferential statistics on the FDP insertion or DP dimensions. Sample 

number used in these studies was 40 (Chepla, Goitz and Fowler, 2015), 36 

(Leversedge et al, 2002) and 32 (Bond, Rust and Boland, 2019). The sample number 

in each of the present morphological studies was 48 (FDP insertion), 64 (tendon 

width) and 96 (bone depth), with greater sample numbers helping to account for the 

Table 2.17 | Component Design Guide for Tissue Engineered Model 
Dimensions for construction of 3D trapezoidal bone anchor and tendon analogue 
width (anchor) at 12mm from bone anchor. 3 main size categories are most 
clinically relevant: ‘large’, ‘medium’, and ‘small’. Universal size is the overall 
mean of all fingers and genders combined, as a guide to a single basic model. See 
Table 2.16 and Figure 2.17 for selected data. EM mean. As with all data in this 
chapter, mean values are calculated through statistical modelling (see Table 2.2), 
with slight adjustment but close proximity to raw means (see Appendix 2).  
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loss of power factored into the statistical mixed effects models that adjusted for the 

non-independence of samples. However, since the mixed effects models allowed 

non-independent samples, all fingers from one cadaver could be used to maximise 

samples, rather than limiting to one finger from one cadaver. Attempts to limit random 

variation were also made in standardising experimental techniques (e.g. inking 

methodology timings for FDP footprint) and material (e.g. aiming to match sample 

number from each gender). Despite this, a greater number of samples would have 

likely improved the reliability of population traits inferred from the data.  

 

The sample was taken from a Scottish population, and therefore may be more 

applicable regionally than internationally. Differences in the world-wide population 

from factors such as race genetics or lifetime levels of manual or physical work may 

have a slim effect on the morphometrics studied here. Perhaps most importantly, the 

age range of the cadavers (65-90) is focused in later life. Although FDP avulsion injury 

is found in older populations, this age range is most likely older than the average age 

of an injured patient. The size and shape of the FDP insertion and tendon itself seems 

unlikely to grossly change over time in healthy individuals and this data should 

translate to younger populations. However some bony change around the DIPJ may 

be apparent, such as discussed in Section 2.6.1.3 and Section 2.6.3.4. Since bone 

depth measurements were investigated as a rough guide to depth of the bony model 

component, rather than a definitive dimension such as at the interface, measurements 

should still be approximately relevant to a human population. Repetition of the studies 

on a younger sample population, free of any potential degenerative change, would 

inform how important a factor age is regarding the morphometrics of the FDP 

insertion. Moving forward, it should be remembered and acknowledged that the 

results and design guide produced in this chapter are based on a regional, older 

population.  

 

Data provided with the cadaveric specimens was limited (see Table 2.1). The sample 

of specimens may have contained levels of other variables that may have inferred 

stronger correlations or have affected the associations of gender, finger and side 

described in this chapter. For example, body mass index (BMI) may have a greater 

influence on morphometrics than gender. Hand dominance may have been 

associated with side differences. A relevant past surgical history may have led to 

reduced use of a particular finger or hand with potential atrophy. However, prospective 
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body donors with extreme BMIs were not suitable for original donation (a local policy 

of accepting BMIs of 18-25 only) and specimens with obvious external deformities 

were not selected for the sample, protecting against data skewing from outlying values 

or confounding factors. A greater sample number would further limit any effect from 

more subtle confounding factors.    

 

2.6.5.2 Dissection Methodology 

The human tissue analysed was cadaveric, and not living, tissue. The material was 

however fresh frozen, so it was unlikely to have undergone perceptible decomposition 

or degeneration to distort the gross FDP insertion morphometrics found in life, from 

either the initial point of freezing soon after death or through the freeze-thaw process. 

Dissection provided an appreciation of 3D structure, not only of the component tissues 

for the model but of surrounding topographical relationships and tissue planes, only 

otherwise possible in surgery. Dissection inherently disturbs the tissue envelope as 

structures are approached, which may affect some positional relationships such as 

the natural lie of the FDP tendon. It should not however have affected the 

measurement variables of insertion position, tendon width or bone depth. The FDP 

tendon was photographed for width analysis immediately on opening its own tissue 

envelope, the fibrous flexor sheath. Excision of the DIPJ ligaments and volar plate to 

free the DP did require some manipulation of the FDP tendon (see Figure 2.1d-f), 

with minor traction potentially avulsing a few insertional tendon fibres at the 

microscopic level, however tissue handling was always gentle.  

 

Techniques to assess interface component structures without disturbing the 

surrounding soft tissues were considered, such as ultrasound or MRI for tendon and 

insertion analyses, and radiographic or CT images to assess bony dimensions. Such 

techniques or specific image databases were not readily available for living anatomy, 

and cadaveric tissue necessitated staying on licensed premises. Use of scanners may 

have been able to generate in vivo objective computational morphometric analyses, 

but these would first have to be validated, for example due to signal noise (Hayes et 

al, 2019), and are unlikely to have allowed the range of measurements achieved 

through dissection. The ability to maintain a 360o view of the dissected cadaveric 

tissue was in fact crucial to appreciate the most important measurement dimensions 

around the interface.  

 



123 
 

2.6.5.3 Measurement Methodology 

The approach to taking morphometric measurements in all of the studies in this 

chapter was to approximate linear measurements to describe imperfectly straight or 

even curving surfaces. The rational and limitations associated with defining the shape 

and dimensions of the tendon-bone interface using this approach is described in 

Section 2.6.1.2. The macroscopic interface was a relatively 2D surface due to the 

flexor surface of the DP base being generally flat, however tendon width and bone 

depth measurements reported 2D measurements of curved 3D structures. 2D 

measurements can only provide a guide to a structure’s dimensions viewed from a 

single plane. Such analyses have here provided useful clinical measurements and 

tissue engineering design guides, but bias the focus of attention to the chosen plane 

rather than characterising the 3D configuration. Although working with cadaveric 

tissue allowed an appreciation of 3D structure and selection of the most pertinent 2D 

measurements, the human body is 3D and therefore requires design of 3D tissue 

engineered models. Where scanning techniques are available, they may provide 

useful additional 3D information to 2D measurements to enhance model design, 

particularly in describing shape and cross-sectional area. This is most relevant to the 

native tendon and engineered tendon in this project, discussed further with the use of 

optical coherence tomography in Chapter 4. 

 

When taking the 2D measurements, subjectivity was required to judge what 

orientation of the sample was indeed the defined anatomical plane. Although image 

analysis allowed a greater degree of accuracy in measuring an image (tendon-bone 

interface and tendon width studies), an important pre-determining factor of 

representative accuracy of the sample was the camera angle in obtaining a parallel 

‘flexor surface view’. Indeed the difficulty in determining a reliable lateral view of the 

curved surface of the DP for bone depth measurements led to the use of calipers over 

the image analysis method. Although more subjective and limited in analytic scope, 

calipers allowed interaction with the bone itself rather than with the camera to 

determine the plane of measurement. Once the correct viewing plane was 

established, reliable repetition of the plane for each repeat sample was required to 

obtain the most precise measurement mean. Human judgement error here was 

unlikely to have had a substantial effect due to a minimal measurement change for a 

small discrepancy in sample orientation and averaging of repeats. The subjectivity of 

judging the measurement itself from the image analyses once the plane of view was 
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set was a potentially more pertinent source of error, addressed in Section 2.6.1.4 and 

Section 2.6.2.3. 

 

2.7 Summary of Findings 

 

Morphometric assessment of the human FDP insertion revealed a trapezoidal, near 

triangular, footprint attachment shape between the FDP and DP, of 20-25% surface 

area and 75-80% base width of the DP flexor surface, positioned 25-30% distally 

along the DP. This will inform the distinctive trapezoidal shape at the interface of 

engineered bone anchor and tendon analogue, and ideal surgical positioning of the 

interface. The distal FDP tendon was composed of 2 major fibre bundles, flaring out 

over its distal 12mm, with mean widths of 7.16mm, 6.05mm, 5.08mm and 4.69mm, at 

3mm, 6mm, 9mm and 12mm, respectively, from the FDP insertion base, as a guide 

to ideal engineered tendon analogue widths. Bone depth was on average 2mm 

narrower at the distal point of the FDP insertion compared to the proximal point, 

averaging 4.20mm distally and 6.20mm proximally, most narrow in female little fingers. 

The mean depth of the smallest gender (females) at the smallest measurement point 

(distal insertion) was 3.99mm, suggesting a reasonable future engineered bone 

anchor depth of 2mm, equating to at least 50% remaining native bone depth even 

when accounting for these smallest average dimension factors. Gender and finger 

type highly influenced mean values of insertion footprint dimensions, tendon width 

and bone depth, whilst side influence was minimal. Morphometric mean values from 

individual fingers, distinguished by both gender and finger, clustered into 3 distinct 

data groupings as the basis for 3 clinically relevant size categories in a design guide 

for the tissue engineered FDP-DP model. 
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CHAPTER 3 

 

 

HISTOLOGY OF THE FLEXOR DIGITORUM 

PROFUNDUS INSERTION 
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3.1 Chapter Overview 

 

This chapter examines the microscopic anatomy of the flexor digitorum profundus 

(FDP) insertion onto the distal phalanx (DP) through histology of human cadaveric 

tissue. A qualitative appraisal of the overall histological features is reported and the 

angle of inserting tendon fibres across the enthesis is quantified. The results are 

integrated into the design guide devised in Chapter 2 to enhance the anatomical 

reproduction of an in vitro tissue engineered FDP-DP tendon-bone model. 

 

3.2 Introduction 

 

The macroscopic exploration of native human FDP insertion anatomy in Chapter 2 is 

continued and complemented in this chapter with a microscopic evaluation. The 

specialised enthesis tissue zones are a particularly fine and detailed example of the 

form following function principle of the human body, and since the majority of these 

design features are revealed microscopically, considerable project work was invested 

into histological study. After reviewing the existing descriptive enthesis literature, both 

a qualitative and quantitative investigative approach were designed, with histological 

assessment providing a resourceful and effective method to obtain a data set large 

enough for inferential statistics as well as novel insights.    

 

A detailed description focusing on the human FDP enthesis is not found in the known 

literature. The majority of published FDP histology is incidental to a canine FDP model 

of tendon-bone avulsion, an easy-access site used for studying surgical techniques, 

tissue changes and repair processes (Ditsios et al, 2003a; 2003b; Silva et al, 2002, 

2006; Boyer et al, 2003; Thomopoulos et al, 2009), with little description in health. 

Morphological studies of the human FDP insertion are limited and dissection based, 

macroscopically (Chepla, Goitz and Fowler, 2015) or microscopically (Leversedge et 

al, 2002). Where human FDP enthesis histology is mentioned, it is part of a broad 

survey of numerous enthesis sites in the body, assessing specific features. Benjamin 

et al (2004a) noted the presence of fat at the insertional angle of the FDP enthesis, 

and furthermore suggested that it forms an ‘enthesis organ’ as the tendon fuses with 

the volar plate (Benjamin et al, 2004b). Benjamin and McGonagle (2007) also 

perceived that it creates a synovial-enthesial complex, lying adjacent to the distal 
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interphalangeal joint (DIPJ), in reference to synovial disease. The only remark that 

the FDP enthesis is fibrocartilaginous is mentioned by Benjamin et al (2007), 

observing that it can be a site of histopathological changes. In the current project, it 

was therefore worthwhile to provide an overall description of the FDP enthesis based 

on qualitative histological observations, as the first in depth account of this anatomical 

region and a reference for the design pinnacle of a tissue engineered replica.  

 

In addition to a general description, it was important to undertake a quantitative 

investigation with direct relevance to the design of the in vitro model. In anticipation 

of finding a fibrocartilaginous enthesis, measuring the thickness of the uncalcified or 

calcified fibrocartilage layers was considered. Uncalcified fibrocartilage is associated 

with a large degree of movement of the inserting tendon fibres (Evans, Benjamin and 

Pemberton, 1990; Benjamin et al, 1991; Benjamin and Ralphs, 1995; 1998), and 

calcified fibrocartilage thickness appears related to tendon loading on the bone 

(Evans, Benjamin and Pemberton, 1991; Benjamin et al, 1991; Gao and Messner, 

1996; Benjamin and Ralphs, 1998). Both layers are often quantified concurrently for 

insights into the functionality of particular entheses (Benjamin et al, 1991; Kumai et 

al, 2002; Toumi et al, 2012; 2014; 2016; Shinohara et al, 2014; Beaulieu et al, 2015; 

2016). Although these could have provided interesting insights into the FDP enthesis, 

tissue engineering any fibrocartilage at the enthesis is an immense challenge, let 

alone a desired thickness, so effort was focused towards a simpler in vitro design 

feature. The studies of Beaulieu et al (2015; 2016) investigated the gross angle of 

insertion of anterior cruciate ligament (ACL) fibres at the knee, and adapting their 

methods to the FDP enthesis was thought both reproducible to guide the tendon-bone 

insertion angle in the model, and also valuable descriptive information to enhance the 

qualitative observations. 

 

As per Chapter 2, the investigations in this chapter are exploratory of FDP enthesis 

anatomy with reference to the design of a relevant in vitro model. A similar approach 

to the quantitative data analysis was implemented, testing hypotheses of whether a 

particular gender, finger or side had a significant effect on the angle of tendon fibre 

insertion onto the bone, using explorative mixed effects models. Furthermore, the size 

category data groupings developed in the Chapter 2 design guide were also 

compared to establish whether significantly different tendon-bone insertion angles 

were demanded of their in vitro designs. 
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3.3 Aim and Objectives 

 

The aim of the chapter was to investigate the microscopic structure of the human FDP 

enthesis through histology, to augment the design guide established in Chapter 2 for 

an anatomically relevant in vitro tendon-bone tissue engineered model.    

 

The objectives were to provide: 

 

1) A qualitative descriptive overview of the magnified FDP enthesis;  

2) A quantitative assessment of the angle of FDP tendon fibres at insertion. 

 

3.4 Materials and Methods 

 

3.4.1 Cadaveric Specimens  

 

Human cadaveric tissue was obtained as detailed in Chapter 2, Section 2.4.1. As for 

the FDP morphology investigations, the sample was one of convenience, however 

effort was made to balance genders and maximise sample use with all fingers. 48 

fingers from 6 cadavers (Specimens 7-12 in Chapter 2, Table 2.1) (3 male, 3 female; 

mean age 79.3, range 73-91) were prepared for histological analyses. 8 thumb 

samples of the flexor pollicis longus (FPL) insertion from 4 of the 6 cadavers were 

also prepared for initial optimisation trials of decalcification timings, but not used for 

analysis. 

 

3.4.2 Sample Preparation  

 

The aim of sample preparation was to excise an en-bloc tissue composite of the FDP 

tendon and attached distal phalanx (DP) bone, large enough to encompass the entire 

tendon insertion undisturbed, but small enough for routine histological processing and 

minimal decalcification treatment. The preliminary dissection steps to expose the FDP 

and DP are described in Chapter 2: Section 2.4.2 and Figure 2.1. The ensuing 

method to isolate the FDP-DP tendon-bone sample is described in Figure 3.1. As 

soon as the sample was obtained it was submerged and fixed in 10% neutral buffered 

formalin (Sigma-Aldrich, Merck Life Science, Gillingham, UK) at 4oC for 48 hours. 
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FPL-DP tendon-bone samples for initial optimisation trials were isolated in the same 

manner. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.4.3 Decalcification  

 

Decalcification of samples was required for smooth microtome sectioning of the bone 

and tendon-bone junction, balanced against the risk of over decalcification and loss 

of tissue detail on staining. Initial methodology investigations with FPL-DP samples 

trialled 48, 60, 72 and 96 hour decalcifications, with 72 hours providing the optimal 

timing for both satisfactory sectioning and staining. Samples were decalcified in 

Decalcifying Solution-Lite (Sigma-Aldrich), an aqueous solution of hydrochloric acid 

and proprietary compounds, at room temperature.  

Figure 3.1 | Dissection of Tendon-Bone Histological Sample 
a) Exposure of the FDP tendon attachment to the DP. The skin, subcutaneous tissue envelope and 
fibrous flexor sheath have been opened in the midline of the flexor surface and retracted. The 
collateral ligaments (white arrows) of the distal interphalangeal joint have been dissected off the DP, 
and the volar plate has been carefully excised, freeing the DP from the head of the middle phalanx 
(MP). Superfluous soft tissue surrounding the DP has also been dissected away. Flexor view. b) The 
ungual tuberosity (UT) of the DP is cut horizontally with an electric rotary saw (Dremel, Uxbridge) at 
the point where the tuberosity meets the shaft at the ungual fossa in the midline. The remaining 
ungual spines (US) are then removed with bone cutting forceps. Flexor view. c) Flexor view, and lateral 
view (d), of the excised FDP-DP tendon-bone sample after detachment from any residual soft tissues, 
ready to be fixed for histological processing. The ungual tuberosity is entirely removed and the tendon 
cut at 5-10mm from the base of its bony insertion, to minimise excess calcified tissue and sample 
bulk. Male right middle finger. 
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After formalin fixation, each sample was washed thoroughly with tap water and 

submerged in 30-40ml of decalcifying solution in a 50ml centrifuge tube. The tube was 

set on a gyro-rocker (VWR, Lutterworth, UK) at low speed to enhance even 

penetration of the solution and reduce decalcifying time, with fresh solution 

exchanged every 24 hours. At 48 and 72 hours end point testing was performed to 

check decalcification progress (see Section 3.4.3.1). At 72 hours decalcification was 

deemed complete and the samples were removed from solution, washed thoroughly 

in tap water and returned to 10% neutral buffered formalin at 4oC until paraffin wax 

processing. 

 

3.4.3.1 Endpoint Testing 

Samples were tested both chemically and physically. Chemical testing entailed 

adding 5ml of 5% ammonium oxalate (Fisher Scientific, Loughborough, UK), followed 

by 5ml of 5% ammonium hydroxide (Sigma-Aldrich), to a 5ml aliquot of decalcifying 

solution from the sample tube. Decalcification was complete when no precipitate 

formed. Physical testing required careful slicing into the bone portion of the sample 

away from the enthesis with a number 11 carbon steel blade (Swann-Morton, 

Sheffield, UK), assessing for mineral resistance or grating. A suitably decalcified 

sample was compressible with no gritty resistance to the blade. 

 

3.4.4 Paraffin Wax Processing  

 

Samples were removed from formalin and held in tissue cassettes immersed in 70% 

ethanol (industrial methylated spirits) (Fisher Scientific) before processing in a VIP 

E300 Tissue-Tek processor (Sakura, Alphen aan den Rijn, Netherlands). During the 

17.5 hour programme, samples were dehydrated through an ethanol series from 70% 

to 100%, followed by 100% xylene, then submerged in 60oC paraffin wax and placed 

under vacuum for paraffin infiltration. The following day samples were manually 

embedded in paraffin blocks, orientated to permit sagittal sectioning to the long axis 

of the DP.  

 

3.4.5 Sectioning  

 

Parasagittal 10µm sections were cut on a Leica RM 2245 microtome (Milton Keynes, 

UK). To minimise friction and tissue scarring from any residual bone mineral, 
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particularly across the enthesis, the block was cut in a tendon to bone direction and 

moistened with a wet paper towel every 2-3 sections. Sections were floated onto 

standard glass slides (Thermo Scientific, Cramlington, UK) and left to dry in a 37oC 

oven overnight before storing at room temperature until staining. 

 

A particular sectioning method was devised to sample the central (mid-sagittal) 

portion of the enthesis (i.e. halfway across the medial-lateral/radio-ulnar enthesis 

width), assumed to provide the most representative and generalisable enthesis 

sections. This was based on the morphometric investigations in Chapter 2 that found 

a vertically symmetrical trapezoidal FDP insertion shape. Initial optimisation trials with 

FPL-DP samples noted that 5-8 sections could be mounted onto a glass slide. By 

cutting a ribbon of 10 sections with the current samples, 5-8 of the best sections were 

mounted, discarding the remainder. 8 slides per sample were taken, assumed to 

cover various potential stains and investigations. This amounted to a total width of 

800µm (8 slides, sampling 10 x 10µm sections). From Chapter 2 morphometric data, 

mean base width of the FDP attachment for any finger of either gender was known. 

By starting the µm width counter on the microtome as soon as a parasagittal section 

moved from bone alone to the tendon-bone enthesis, 800µm across the mid-sagittal 

plane of the enthesis could be sectioned. For example, Chapter 2 data showed that 

the average width of a male index finger was 9036µm (see Table 2.5). The mid-

sagittal point thus lay at 4518µm, and an 800µm region centred on this was 4118-

4918µm. Section collection thus began at a width of 4118µm. 

 

3.4.6 Staining  

 

Sections were dewaxed in 100% xylene (Fisher Scientific) and rehydrated through an 

ethanol series from 100% to 70% (Fisher Scientific) into water. Full sets of sections, 

containing one slide for each of the 48 fingers, were stained in hematoxylin and eosin 

(H+E) (Section 3.4.6.1) for overview, toluidine blue (Section 3.4.6.2) for focus on 

(fibro)cartilage, and Van Gieson’s (Section 3.4.6.3) and Masson’s trichrome (Section 

3.4.6.4) for focus on collagen. As standard after staining, sections were dehydrated 

back through the 70-100% ethanol series, cleared in 100% xylene and mounted using 

dibutylphthalate polystyrene xylene (DPX) (Sigma-Aldrich) and glass coverslips 

(VWR). After a minimum of 72 hours drying at room temperature, high resolution 
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images of whole sections were acquired using a Nanozoomer XR slide scanner 

(Hamamatsu, Welwyn Garden City, UK) for qualitative and quantitative analysis.    

 

3.4.6.1 Hematoxylin and Eosin 

Sections required 20 minutes total staining in Shandon Harris hematoxylin (Thermo 

Scientific), in sequences of 3-5 minute staining and review under a Leica DMi1 light 

microscope to check nuclear staining, followed by 60 seconds in Shandon 0.1% 

water-based eosin-Y (Thermo Scientific). Sections were briefly rinsed with de-ionised 

water after both stains.   

 

3.4.6.2 Toluidine Blue 

Sections were stained for a total of 2.5–3 minutes in 0.1% toluidine blue (Sigma-

Aldrich) in deionised water, with successive 30-90 second staining and light 

microscope review, then briefly rinsed in de-ionised water. 

 

3.4.6.3 Van Gieson’s 

50% Van Gieson’s solution (Sigma-Aldrich) in deionised water stained sections for a 

total of 2-3 minutes with consecutive 1 minute staining and light microscope review. 

Promptly after staining sections were immersed in 70% ethanol followed by 95% 

ethanol (Fisher Scientific) before dehydrating fully to 100% ethanol and clearing in 

100% xylene as standard. 

 

3.4.6.4 Masson’s Trichrome 

Sections for modified Masson’s trichrome staining followed the protocol from the 

staining kit manufacturer (Sigma-Aldrich), except using 30 minute hematoxylin 

staining rather than the suggested 5 minutes (explained in Section 3.6.4.2). After 

dewaxing and rehydrating through the ethanol series as standard, sections were 

immersed in Bouin’s solution (Sigma-Aldrich) overnight at room temperature as a 

mordant, then washed in running tap water for 30 minutes the following day. Sections 

were then sequentially immersed in working Weigert’s iron hematoxylin [solution A + 

solution B (Sigma-Aldrich)] (30 minutes), Biebrich scarlet-acid fuchsin (5 minutes), 

working phosphotungstic / phosphomolybdic acid (5 minutes), aniline blue (5 minutes) 

and 1% acetic acid (Fisher Scientific) (2 minutes). Sections were briefly rinsed in de-

ionised water after the hematoxylin, scarlet-acid fuchsin and acetic acid steps.   
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3.4.7 Tendon Fibre Angle Measurements  

 

The set of sections stained with toluidine blue was used to quantitatively assess the 

angle of tendon fibres (collagen fibre bundles) at the FDP-DP enthesis. For each 

single slide (representing 1 of the 48 fingers), 1 of the 5-8 mounted sections on the 

scanned digital image was chosen for analysis. Selection was designated by random 

number generation, from 1 to the total number of sections available on the slide, 

counting from top to bottom of the slide, using an online ‘true random number service’ 

(www.random.org). 1 slide was found to contain crumpled sections that would not 

allow a representative assessment of tendon fibre angles, and was excluded from 

analysis. Sample size therefore totalled 47 FDP-DP entheses.    

 

Measurement of the angle of tendon fibres was adapted from a method employed by 

Beaulieu et al (2015; 2016) using ImageJ software (National Institutes of Health, 

Bethesda, USA), defining the angle between a line parallel with the fibres and a line 

of best fit of the tidemark. Figure 3.2 illustrates and explains the measurement 

technique. To trace the tidemark, the proximal point (beginning) of the tendon enthesis 

tidemark was located, and the software’s segmented line tool then used to plot points 

along the tidemark at approximately 25-50µm regular intervals. The proximal-distal 

length of the enthesis was set using the mean value of the FDP insertion footprint 

height for the corresponding finger and gender (Chapter 2 data, see Table 2.4), with 

the tidemark traced for this length to its endpoint. The line of best fit of the tidemark 

was generated by fitting a first order polynomial curve to the points. Where a 

duplicated tidemark was visualised (see Figure 3.6), the tidemark most proximal on 

the tendon was followed. 

 

To investigate and describe both the fibre insertion angle and the typical curving of 

fibres in their passage across the enthesis, 2 measurements were assessed: 1) angle 

of fibres intersecting the tidemark, and 2) angle of approaching fibres – a broader 

evaluation of the direction of inbound fibres over a 20% enthesis distance. For each 

section, both measurements were assessed at 5 distance measurement points along 

the enthesis from proximal to distal: 20%, 40%, 50%, 60% and 80%, in order to 

compare values or enhance the accuracy of an accumulated average angle. 

Subtracting the angle of approaching fibres from the angle of tidemark intersection 

provided an estimate of the change in angle of the fibres. 
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3.4.7.1 Inter-Observer Reliability 

The tendon fibre angle measurement methodology was assessed for reliability by 

comparing the measurements made by the 1st (primary) observer with the results of 

a 2nd observer. The 2nd observer, different to the 2nd observers in Chapter 2, was 

trained in the methodology by the 1st observer, and completed the same full set of 

measurements on the same single selected scanned section on a different 

workstation. Both observers traced the tidemark over the same pre-determined 

enthesis length, however judgement of the beginning of the tendon enthesis and the 

outline of the tidemark was determined independently. Agreement and reliability 

between the 2 observers was ascertained by the intraclass correlation coefficient 

(ICC) of single measures of absolute agreement, and by Cronbach’s alpha, using 

SPSS version 24 (IBM, Armonk, USA). 

 

3.4.8 Data Analysis  

 

Quantitative angle measurement data was handled and graphed in the same way, 

and with the same software, as per Chapter 2 (see Section 2.4.7). Similarly, linear 

mixed effects models were employed in SPSS version 24 (IBM) to account for the 

non-independence of fingers measured from the same cadaveric specimen, and for 

multiple distance points (20%, 40%, 50%, 60% and 80%) measured along the same 

enthesis, generating estimated marginal means (Tables 3.1a and 3.1b). Various 

models again tested the pre-selected factors of finger, gender and side, and 

compared sizing categories and distance measurements, with multiple pairwise 

comparisons using an alpha level of 0.05 and Bonferroni post-hoc correction. No 

further corrections were made for running multiple models. Unless otherwise stated, 

data in the chapter is presented as estimated marginal means ± standard error of the 

mean (±SEM), with graphical error bars also indicating ±SEM, and the level of any 

statistical significance highlighted as *p<0.05, **p<0.01, ***p<0.001. 
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Table 3.1a | Build and Application of Linear Mixed Effects Model Series (1)  
Continued overleaf as Table 3.1b. See Table 3.1b for details.  
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Table 3.1b | Build and Application of Linear Mixed Effects Model Series (2)  
Continued from Table 3.1a. Multiple explorative SPSS linear mixed effects models 
were utilised to adjust for the non-independence relationship of individual fingers 
measured from the same specimen. Specimen (identifier) was therefore always a 
random effect in the model series. Fixed factors included gender, finger, individual 
finger (gender specified), size category (gender and finger specified) and distance 
along the enthesis. Side was excluded as a fixed factor from models 1, 2 and 3 for 
model simplification, but was included where the effect of side was specifically 
investigated (models 7a, 7b, 8a, 8b, 8c and 8d). Side was also included where distance 
measurements along the enthesis were compared (models 4, 5a, 5b, 6a, 6b, 6c and 
6d), as this was a determining factor in the grouping of repeated distance 
measurement points along the same enthesis (on left or right side of the same finger 
grouping). Statistical output generated estimated marginal (EM) means and standard 
error of estimated marginal means (SEM), used as the reported means and for 
multiple pairwise comparisons in figures and tables throughout the chapter. Factors 
are tested as main effects, and a type III sum of squares model is applied to fixed 
effects. Models assume normal data distributions, which were checked graphically as 
Q-Q normal probability plots of observed versus expected residual values from each 
model. 
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3.5 Results 

 

3.5.1 Qualitative Analysis  

 

3.5.1.1 Enthesis Classification 

The FDP enthesis was fibrocartilaginous. A fibrocartilage transition zone between the 

FDP tendon and DP bone was apparent in all 47 samples examined. Figure 3.3 

highlights the defining histological features. H+E and toluidine blue stains proved 

more valuable than Van Gieson’s and Masson’s trichrome (Figure 3.4) for both 

qualitative description and quantitative tendon fibre angle measurements.      

 

3.5.1.2 General Findings 

The FDP tendon contained dense collagen fibre bundles with intervening elongated 

fibroblasts (see Figure 3.3b), often aggregated into rows. The tendon fibres ran over 

the base of the flexor surface of the DP roughly parallel to the long axis of the bone, 

before beginning a sloping descent, at a point approximately perpendicular to the 

base of the insertion area, to their bony attachment (see Figure 3.2a,b and 3.3a). 

 

Tendon fibres reached the tidemark either directly or through an area of uncalcified 

fibrocartilage. Uncalcified fibrocartilage contained a variable number of 

fibrochondrocytes, typically ordered in rows which were most obvious where they 

were less numerous (see Figure 3.3b). Staining was generally most intense around 

fibrochondrocytes, noticeable with H+E (Figure 3.3) and especially toluidine blue 

(Figure 3.5), demonstrating a high level of pericellular glycosaminoglycans (GAGs).  

 

The enthesis tidemark commenced as a continuation of the tidemark in the volar plate 

tissue (see Figure 3.2c), indicating that the FDP tendon and volar plate merge 

microscopically at their insertion. The enthesis tidemark was present either between 

uncalcified and calcified fibrocartilage zones, or between tendon and calcified 

fibrocartilage when there was no uncalcified fibrocartilage (see Figure 3.5d). The 

tidemark merged with the tendon-bone junction in fibrous regions without any 

fibrocartilage. It followed a grossly smooth and gently curved line. Magnified, it 

displayed rougher, tighter undulations; however the underlying tendon-bone junction 

was more irregular (see Figure 3.3b). 
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A calcified fibrocartilage zone existed with or without an adjacent uncalcified 

fibrocartilage zone. Fibrochondrocytes here were more hypertrophic and less 

numerous compared to those in uncalcified fibrocartilage, and displayed variable 

pericellular metachromasia (see Figure 3.3b and 3.5b). Tendon fibres could be 

discerned traversing both fibrocartilage zones, embedded within a more homogenous 

cartilage matrix stain not seen in the tendon, before they attached to cortical bone. 

Tendon fibres did not generally deviate as they crossed through calcified fibrocartilage, 

maintaining the same angle at the tidemark as at the tendon-bone junction.  

 

Cortical bone was thin around the whole DP perimeter, but particularly so at the 

enthesis. The cortical bone profile at the enthesis was either flat to the DP flexor 

surface (e.g. see Figure 3.2) or convex and drawn up into the tendon region (e.g. see 

Figure 3.3a and 3.5a). Where the profile was convex, the peak was usually biased 

proximally, towards the insertion base, which appeared to coincide with the area of 

greatest fibrocartilage.   
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Figure 3.3 | Histology of the FDP Enthesis (1) 
a) The FDP tendon (T) attaches to the DP bone (B) as a fibrocartilaginous enthesis, signified by areas 
of intervening fibrocartilage. Fibrocartilage predominates in the more proximal enthesis region, 
nearer the distal interphalangeal joint (to right of image), demonstrated by a thicker layer of calcified 
fibrocartilage between the separated tidemark (black arrows) and tendon-bone junction (gold 
arrows). Elsewhere, the tidemark and tendon-bone junction approximate each other, indicating 
fibrous enthesis regions. The dorsal surface of the tendon is highlighted by a dotted black line, with 
remaining volar plate tissue beneath. Box indicates (b). Micrograph of a typical mid-sagittal section 
of an FDP enthesis (female right middle finger), H+E. b) Magnified box view of the enthesis, 
demonstrating the 4 zones of the fibrocartilaginous enthesis: tendon (T), uncalcified fibrocartilage 
(UF), calcified fibrocartilage (CF) and bone. The cortical bone (CB) is as thin as the trabecular bone 
(TB). The calcified fibrocartilage lies between the tidemark (black arrows) and the tendon-bone 
junction (gold arrows). Fibrochondrocytes (white arrows), rounded and lying in lacunae within 
cartilage matrix, indicate the cartilaginous areas and generally align in rows. They are more numerous 
in the uncalcified fibrocartilage (UF) zone. Elongated fibroblasts (blue arrows, not deeply stained) lie 
between the tendon collagen fibre bundles, which are continuous through the fibrocartilage areas to 
attach to the cortical bone. H+E. 
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Figure 3.4 | Histology of the FDP Enthesis (2) 
Van Gieson’s (a) and Masson’s trichrome (b) stains of fibrocartilaginous regions of the FDP enthesis. 
The 4 tissue zones are present: tendon (T), uncalcified fibrocartilage (UF), calcified fibrocartilage (CF) 
and bone (cortical bone – CB). Both stains visualised the tendon and bone elements, but were less 
effective than H+E or toluidine blue for qualitative and quantitative analysis of the enthesis. With Van 
Gieson’s stain, (a) (red/orange: collagen; yellow: remaining connective tissue), both the tendon-bone 
junction (red arrows) and tidemark (black arrows) were difficult to discern, and cell nuclei were not 
stained. With Masson’s trichrome, (b) [blue: collagen; deep red: cytoplasm; black (understained): 
nuclei], the tidemark was often difficult to differentiate from streaky staining in the tendon (white 
arrows), and the tendon-bone junction (gold arrows) could be obscured by variable patchy staining 
in the calcified fibrocartilage zone. Cell nuclei were generally weakly stained, and, as with Van 
Gieson’s, identification of fibrochondrocytes relied on the presence of circular lacunae. Magnified 
typical mid-sagittal section micrographs of similar regions of the same FDP enthesis (male left ring 
finger).  
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3.5.1.3 Regional Variation 

The structure and composition of the enthesis varied along its length, demonstrated 

and described in Figure 3.5. In particular, fibrocartilage zones were not present 

throughout the entire length of the enthesis. Many areas contained no fibrocartilage 

at all, indicating localised fibrous attachment, with others only demonstrating calcified 

fibrocartilage. Fibrocartilage, especially uncalcified fibrocartilage, predominated in the 

proximal enthesis region. Regional variation in the angle of tendon fibres was also 

apparent, quantitatively reported in Section 3.5.2. The alignment of fibrochondrocytes 

in the uncalcified fibrocartilage zone in the more proximal enthesis region was often 

curved, indicating the bending of tendon fibres through this zone as they neared the 

tidemark and cortical bone. 

 

3.5.1.4 Histopathology 

The FDP enthesis samples displayed a number of microscopic pathological features, 

some of which were pertinent to measuring the angle of the tendon fibres (see 

Sections 3.4.7 and 3.5.2.1) (Figure 3.6). Focal areas of cortical bone loss were a 

common feature, with tendon fibres entering into bone marrow spaces, deviating to 

attach to the nearest cortical bone edge, or degenerating. Degenerated fibres were 

also noted around contained micro-avulsions (<200µm) at the tendon-bone junction, 

often amongst disorganised repair tissue. A double or even triple tidemark, generally 

considered pathological (Lane and Bullough, 1980; Binks et al, 2014), was also 

occasionally apparent, especially in the proximal enthesis region.  
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Figure 3.5 | Comparison of Proximal, Middle and Distal Regions of the FDP Enthesis 
a) Entire section of the FDP-DP tendon-bone sample. The FDP tendon (T) attaches to the flexor surface 
of the DP. The proximal end of the DP (right) is covered by deeply stained DIPJ articular cartilage (AC). 
The dorsal aspect of the DP (bottom) is removed due to physical testing for the end point of 
decalcification. b, c and d indicate proximal, middle and distal regions of the enthesis, respectively, 
corresponding to the proceeding panels. Note the presence of a convexity in the bone at the tendon-
bone interface, inclined towards the proximal region – this was not an uncommon feature. b) Proximal 
enthesis region. The 4 zones of a fibrocartilaginous enthesis are apparent. The approaching tendon 
fibres undergo a considerable change in angle in reaching the tidemark (TM) and cortical bone (CB). 
The majority of the angle change occurs in the uncalcified fibrocartilage (UF) zone, indicated by the 
curved alignment of fibrochondrocytes (white arrows). The deeper blue staining around the 
fibrochondrocytes represents typical pericellular metachromasia. c) Middle enthesis region. A 
calcified fibrocartilage (CF) zone is present, although less thick than in the proximal region, with a layer 
of uncalcified fibrocartilage (UF) demonstrated by the limited but perceptible presence of 
fibrochondrocytes (white arrow). Compared to the proximal enthesis region, the approaching tendon 
fibres are generally less acute to the horizontal, and there is less angle change between the 
approaching fibres and tidemark intersection fibres. d) Distal enthesis region. Areas of calcified 
fibrocartilage (CF) are sporadic and are interspersed between fibrous enthesis regions which lack any 
fibrocartilage. The absence of fibrochondrocytes proximal to the calcified fibrocartilage indicates no 
uncalcified fibrocartilage zone. Tendon fibres approach the tidemark (TM) more acutely than the 
middle enthesis region. Micrographs of a typical mid-sagittal section of an FDP enthesis (male left ring 
finger), toluidine blue. AC = articular cartilage; CB = cortical bone; CF = calcified fibrocartilage; T = 
tendon; TM = tidemark; UF = uncalcified fibrocartilage. 
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Figure 3.6 | FDP Enthesis Histopathology 
a) Areas of cortical bone loss (brackets), exposing the tendon to the bone marrow. In some regions 
the tendon fibres extend down into the marrow space to blend with the bone marrow tissue (*). Box 
indicates (b). Micrograph of middle(left)-proximal(right) region of mid-sagittal section of an FDP 
enthesis (female right little finger), H+E. b) Magnified box view, showing a duplicated tidemark (black 
arrows) between the uncalcified fibrocartilage zone and tendon-bone junction (gold arrows). H+E. 
BM = bone marrow; CB = cortical bone; CF = calcified fibrocartilage; T = tendon; TB = trabecular bone; 
UF = uncalcified fibrocartilage. 
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3.5.2 Tendon Fibre Angle Measurements  

 

3.5.2.1 Tidemark Intersection Fibres 

The tidemark intersection tendon fibre angles could be measured in 71.9% of all 235 

measurement points (169/235). Angle measurements could not be accurately or 

reliably recorded in the remaining 28.1% either due to a measurement point coinciding 

with an area of cortical bone loss (see Figure 3.6), or, at the tidemark, haphazard 

degenerated fibres or poor fibre definition. Most measurements were taken at the 60% 

enthesis distance point (76.6%; 36/47), followed by 20% (74.5%; 35/47), 80% (72.3%; 

34/47), 50% (70.2%; 33/47), with the least measurements taken at the 40% distance 

(66.0%; 31/47). 

 

Table 3.2 details the tidemark intersection angles broken down across gender and 

fingers. Also tabulated are the values for size category groupings as determined in 

Chapter 2, Section 2.5.5. Values are separately graphed and compared between 

gender, finger and size category for each distance point measured along the enthesis 

in Figures 3.7 (20%), 3.8 (40%), 3.9 (50%), 3.10 (60%), 3.11 (80%) and 3.12 

(average of all distances measured). 

 

Overall, mean tidemark intersection angles were similar across all distances, ranging 

from 27.69 ± 1.51o (80%) to 33.05 ± 1.47o (40%), and averaging 30.05 ± 0.72o, for 

combined gender and finger means (Table 3.2). Significant angle differences when 

comparing fingers, genders and size categories at each distance were scarce. For 

the average angle across all distances measured (Figure 3.12), the only slight 

significant difference was between males and females (p<0.05), with a small angle 

discrepancy of 4.55o; different fingers and size categories had very similar angles.   

 

At the 20% distance (Figure 3.7), the most proximal measurement point, no 

comparisons were significant. Mean angles ranged from 26.80 ± 6.63o (female little 

finger) to 43.60 ± 5.95o (female index, the largest mean angle of all distances), with a 

combined mean of 31.97 ± 3.09o (Table 3.2). Female finger mean angles appeared 

to evenly decrease from index across to little finger, although the standard errors 

indicated this was not a dependable pattern.   
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At 40% (Figure 3.8), males and females had a significant angle difference of 6.56o 

(p<0.05), with no other significant differences or trends of note. Mean angles ranged 

from 27.01 ± 3.20o (male little finger) to 39.43 ± 5.55o (female middle) (Table 3.2). 

 

At 50% (Figure 3.9), representing the midpoint of the enthesis, all mean angles were 

alike and no significant differences existed. The combined mean was 29.67 ± 1.45o. 

Mean angles ranged from 26.44 ± 4.97o (male middle finger) to 34.66 ± 6.09o (female 

little), (Table 3.2) the narrowest range (8.22o) of all distances points measured. 

 

The widest range of values (17.07o) was at the 60% distance (Figure 3.10), ranging 

from 25.10 ± 2.79o (male ring finger) to 42.17 ± 3.60o (female little) (Table 3.2). The 

sizeable female little finger mean angle imparted a significant difference over 4/7 other 

fingers (p<0.05 compared to male index, middle and ring, and female middle). This 

also dictated that the little finger (combined genders) mean angle was greater than all 

other fingers, significantly so compared to the middle (p<0.05), that the small size 

category was significantly different to both other size categories (p<0.01 medium; 

p<0.001 large), and that females were significantly greater than males (p<0.05). The 

combined mean angle was however similar to the other distances, at 28.89 ± 1.08o.   

 

At 80% (Figure 3.11), the most distal measurement point, no comparisons were 

significant. Mean angles ranged from 22.42 ± 4.02o (male index finger, the smallest 

mean angle of all distances) to 32.95 ± 3.60o (female index) (Table 3.2). 
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 3.5.2.1.1 Effect of Enthesis Distance 

The tidemark intersection angle did not vary significantly across the different distance 

points measured along the enthesis (Table 3.3).  Females, ranging from 29.75 ± 1.83o 

(80%) to 36.33 ± 2.31o (40%), and middle fingers, ranging from 25.51 ± 2.03o (60%) 

to 37.16 ± 3.37o (40%) (see Table 3.2) were the most variable gender and finger 

groups, but did not reach a significant threshold. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.5.2.2 Approaching Fibres 

A greater proportion of approaching tendon fibre angles could be measured compared 

to tidemark intersection fibres, at 83.4% (196/235 measurement points). The ability to 

take an accurate and reliable measurement decreased in a proximal direction, with 

87.2% of measurements recorded at the 80% and 60% distance points (41/47), 83.0% 

at 50% distance (39/47), 80.9% at 40% (38/47) and 78.7% at 20% (37/47). 

Approaching fibre angle could not be reliably judged where fibres had degenerated or 

become fragmented from sectioning. 

 

Table 3.4 shows the mean angles of approaching fibres, broken down for gender, 

finger and size category grouping for each measurement distance along the enthesis. 

Approaching fibre angles were primarily of interest in influencing the size of angle 

change between them and the tidemark intersection fibres (see Section 3.5.2.3).    

 

The overall combined mean angle of approaching fibres was 15.20 ± 0.97o, averaged 

across all enthesis distance measurement points (Table 3.4). However, regional 

variation was noticeable between the distance points. Mean angles were smallest 

(most acute) at the 20% distance point, the most proximal region measured, with a 

combined mean of 11.27 ± 2.16o, ranging from 4.87 ± 4.48o (male ring finger, the 

Table 3.3 | Tidemark Intersection Fibres Enthesis Distance Comparison 
Multiple comparisons analysis between angle measurements made at the 20%, 40%, 50%, 
60%, and 80% enthesis distance points for tidemark intersection tendon fibres. No distance 
point is significantly different to another within genders (combined fingers), fingers 
(combined genders) or overall combined gender and finger mean (‘All’). Parentheses 
indicate p value. ‘ns’ = non-significant.  



152 
 

smallest mean angle of any distance) to 14.21 ± 3.34o (male index). They were then 

next smallest at the most distal region measured, at 80% distance, with a combined 

mean of 13.99 ± 1.09o, ranging from 12.45 ± 2.44o (male index finger) to 16.27 ± 2.10o 

(female ring). The approaching fibres were least acute across the central enthesis 

region, at the 40%, 50% and 60% distance points, showing similar combined mean 

angles of 16.92 ± 1.43o, 17.42 ± 0.92o and 16.36 ± 0.93o, respectively. Approaching 

fibre angles at the 50% distance point were greatest on average, ranging from 11.89 

± 2.80o (male middle finger) to 21.05 ± 2.48o (female little finger), with a range of 13.61 

± 2.63o (male little finger) to 21.52 ± 3.04o (female ring, the largest mean angle of any 

distance) at 40% distance, and 11.06 ± 1.85o (male middle finger) to 20.01 ± 1.85o 

(female little) at 60%. The majority of size category groupings showed similar mean 

angles for each size at each distance point, with a <3o range of mean angles for the 

average of all distances. Larger ranges were seen at the 50% (5.91o) and 60% 

distance (8.52o), principally because of the considerable mean angles in the small 

size category (20.91 ± 2.28o at 50%, 21.22o ± 1.94 at 60%). 
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3.5.2.3 Angle Change 

The difference between the angle of approaching fibres and angle of tidemark 

intersection fibres generated a value for change in angle that was generally similar 

across genders and fingers, but different across enthesis distance measurement 

points. Table 3.5 displays the angle change values for genders and fingers, and 

Figure 3.13 graphs and summarises the pattern of comparisons between distance 

points. 

 

The most consistent result was that the mean angle change at the 20% distance point 

was always greater than that at all other distances, with a combined mean of 21.05 ± 

1.47o, ranging from 18.69 ± 1.69o (males) to 24.18 ± 2.44o (females) (Table 3.5). It 

was the only distance point to register significant angle change differences compared 

to other distances. Mean angle change then appeared to decrease distally, from the 

40% distance, with a combined mean of 16.51 ± 1.56o [range 14.10 ± 2.64o (index 

fingers) to 22.50 ± 4.18o (middle fingers)], to the 50%, 60% and 80% distances. The 

distal 3 distances provided a cluster of similar ranges [11.85 ± 2.55o to 13.59 ± 2.55o 

(50%), 9.95 ± 1.60o to 13.54 ± 2.39o (60%), 10.86 ± 4.00o to 15.89 ± 2.23o (80%)], 

with a less predictable pattern of comparative mean values within gender and finger 

groups. Overall, the combined mean angle change at the 80% distance of 13.71 ± 

1.49o was slightly greater than that at the 50% (12.64 ± 1.50o) and 60% (11.84 ± 1.44o) 

distances, but never significantly so. 
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3.5.2.4 Effect of Side 

For all tendon fibre angle measurements, data was split into left and right side values 

and compared to check if side exerted a significant effect. Table 3.6 summarises the 

results, showing that the overall influence of a particular side on mean angle 

measurements was low.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.6 | Influence of Side on Tendon Fibre Angle Measurements   
Statistical results from left versus right comparisons at all distance measurement points along the 
enthesis for tidemark intersection and approaching fibres, within gender (combined fingers) and 
finger (combined genders), using a series of linear mixed effects models (see Table 3.1b – models 7a, 
7b, 8a, 8b, 8c, 8d). Side influence is low. Where significant differences are present, parentheses 
indicate mean angle difference between left and right means. All mean differences are <8o, with the 
majority of significance approximating 5o. Analysis for tidemark intersection angle comparisons on 
the middle finger at 40% and the little finger at 80% could not be run as the number of observations 
made was ≤ the number of model parameters.  ‘Sig’ = significant difference; ‘ns’ = non-significant; 
‘n/a’ = not applicable. *p<0.05. 
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3.5.2.5 Inter-Observer Reliability 

Reliability statistics, with interpretation scales, comparing the agreement of 2 

observers undertaking all tendon fibre angle measurements are displayed in Table 

3.7, for collective measurement groupings, and Table 3.8, for more individual 

measurements.  

 

Overall reliability for all measurements made was ‘excellent’, with an intraclass 

correlation coefficient (ICC) of 0.907 and Cronbach’s alpha of 0.953. The reliability of 

both tidemark intersection and approaching fibre measurements was ‘good’, with 

tidemark fibres (ICC 0.820) more reliable than approaching fibres (ICC 0.796). 

Measurements made at each distance along the enthesis showed either ‘excellent’ or 

‘good’ reliability, ranging from an ICC of 0.939 (20% distance) to 0.862 (40% distance), 

and there was no clear differentiation between reliability of more proximal or distal 

distances.  

 

For tidemark intersection measurements specifically, reliability was predominantly 

‘good’, being ‘moderate’ at the 40% distance (ICC 0.709) only. The majority of 

approaching fibre measurements also had ‘good’ reliability, with a high ‘moderate’ 

result at the 50% (ICC 0.740) and 80% (ICC 0.732) distances.  
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3.6 Discussion 

 

3.6.1 The FDP Enthesis  

 

The FDP enthesis can be classified as fibrocartilaginous since a fibrocartilage layer 

was consistently identified on tissue sections. This was principally detected by the 

presence of fibrochondrocytes, including their pericellular metachromasia on toluidine 

blue staining, and an elevated tidemark, indicating calcification extending into the 

tendon as the zone of calcified fibrocartilage. This classification was expected since 

the FDP inserts onto the base of the DP near the DIPJ, and the attachment to bony 

epiphyses and apophyses is characteristic of fibrocartilaginous entheses (Biermann, 

1957; Knese and Biermann, 1958; Benjamin, Evans and Copp, 1986; Apostolakos et 

al, 2014). 

 

Regions of genuine fibrocartilage in the transition from tendon to bone were however 

the minority of the insertion overall. The greater proportion lacked distinguishable 

fibrocartilage and was assumed to form a fibrous insertion. In their general survey of 

human tendon insertion histology, Benjamin, Evans and Copp (1986) noted that areas 

devoid of cartilage, such as found exclusively in the deltoid and pronator teres, 

consisted of tendon collagen fibres inserting at acute angles to the bone. Aligning with 

their observation, an acute angle of insertion was found across the majority of the 

FDP insertion (further discussed in Section 3.6.2.2) signifying that the majority of the 

insertion was fibrous. It should therefore be recognised that although the FDP 

insertion is classified and described as a fibrocartilaginous enthesis, the average 

angle of fibre insertion onto the bone across the whole enthesis is (perhaps 

counterintuitively) acute. 

 

The greatest quantity of fibrocartilage was observed in the proximal half of the 

enthesis, towards the DIPJ. This was also an expected finding, guided by previous 

descriptions that fibrocartilage is most apparent in the portion of the tendon nearest 

the joint it crosses (Benjamin, Evans and Copp, 1986; Frowen and Benjamin, 1996). 

Although volar plate tissue of the DIPJ capsule was grossly excised during original 

dissection of the sample, the elevated tidemark at the proximal commencement of the 
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FDP enthesis was found as a continuation of the tidemark of the volar plate, a 

fibrocartilaginous structure, evidently fused with the FDP at their insertion.   

 

Both the uncalcified and calcified fibrocartilage layers appear to relate to forces 

generated at the enthesis interface. Uncalcified cartilage in particular protects against 

compression forces (Benjamin and Ralphs, 1998; 2004; Benjamin et al, 2006). 

Benjamin and Ralphs (1998) describe the degree of fibrocartilaginous differentiation 

relative to the distance from the bony surface against which the tendon is 

compressed, i.e. the closer to the bony surface, the greater the uncalcified 

fibrocartilage as an adaptation to compression. The deepest fibres of the FDP 

insertion are the most proximal fibres, becoming compressed by the more superficial 

fibres (fibres eventually inserting more distally) during movement of the DIPJ, 

especially in extension. These deep proximal fibres are also likely to undergo the 

greatest change in angle during DIPJ movement, as the presence of uncalcified 

fibrocartilage here also mitigates against the shear force of an abrupt insertional angle 

change by promoting gradual fibre bending (Evans, Benjamin and Pemberton, 1990; 

Benjamin et al, 1991; Benjamin and Ralphs, 1995; 1998; Benjamin et al, 2002).  

 

Calcified fibrocartilage is suggested to relate to the degree of tendon loading on the 

bone (Evans, Benjamin and Pemberton, 1991; Benjamin et al, 1991; Gao and 

Messner, 1996; Benjamin and Ralphs, 1998). This layer was more variably distributed 

along the enthesis compared to the uncalcified fibrocartilage, often being present in 

all 3 proximal, middle and distal regions, however it appeared to be most evident in 

the proximal region. This perhaps suggests that greater force at the enthesis is 

transmitted through these proximal/deeper tendon fibres, although the thickness/area 

of the calcified fibrocartilage was not quantified to substantiate any potential 

correlations.   

 

An unexpected feature present in some, but not all, FDP entheses was a convex bone 

profile (see Figure 3.3a and 3.5a), instead of a flat interface. The cortical shell of the 

DP appeared drawn up into the tendon, with both the convex elevation as a whole 

and the peak of the elevation usually inclined proximally. This was not noticed in the 

gross morphological assessments of the FDP-DP interface made in Chapter 2. The 

cortical bone throughout the DP in mid-sagittal section was remarkably thin, although 

this agreed with previous descriptions (Benjamin et al, 2002; Benjamin et al, 2007). 
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The reason for thin bone has been suggested as a contribution to the overall enthesis 

function of stress dissipation, by allowing slight deformation of the bony shell under 

tendon load (Benjamin et al, 2002; Benjamin et al, 2007). The frequent convex bone 

profiles observed here may substantiate this idea, where deformation has now 

become obvious and permanent. Since the tissue originated from donors of latter age 

(mean 79.3), the bony convexity may be a manifestation of the cumulative lifetime 

effect of tendon pull, in addition to the recognised thinning of cortical bone with age 

(Benjamin et al, 2006) (age-related changes are further discussed in Section 3.6.4.1). 

Furthermore, it appeared that the convexity coincided with the greatest region of 

fibrocartilage. It would be interesting to investigate whether a correlation exists 

between thickness of calcified fibrocartilage and peak bone convexity, to further 

corroborate the association between extent of calcified fibrocartilage and force 

through the tendon at the enthesis.  

 

3.6.2 Tendon Fibre Insertion Angle 

 

3.6.2.1 Methodology Rationale 

The principal reason for undertaking a quantitative histological analysis of the 

enthesis was to investigate pertinent features that could be translated to the tendon-

bone in vitro model design. The angle of tendon fibre insertion at the enthesis 

influences shear and compression (see Section 1.4.4), forces particularly associated 

with a fibrocartilaginous enthesis, and thus insertion angle was both a 

biomechanically important and feasible design feature for an anatomically relevant 

model. Change in fibre angle, especially, at the insertion appears related to the 

presence and magnitude of enthesis fibrocartilage (Evans, Benjamin and Pemberton, 

1990; Benjamin et al, 1991; Benjamin and Ralphs, 1995; 1998), and so this was also 

investigated to further characterise the FDP enthesis. 

 

Analysis of tendon fibre angle was based on a published method by Beaulieu et al 

(2015; 2016), who used toluidine blue histology sections to measure a gross single 

angle of ligamentous insertion against a line of best fit of the tidemark. The current 

methodology used in this chapter adapted this technique to measure multiple focal 

angles to amass a more detailed appreciation of the tendon insertion. Since the angle 

of tendon fibres appeared to differ the closer the fibres were to the bone, a distinction 

between approaching fibres and inserting fibres was made in the current method. 
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These fibres were measured at 5 enthesis distance points to explore if the angles 

changed both along the enthesis length as well as between approaching and inserting 

fibres. More advanced techniques to assess the tendon collagen fibre insertions were 

considered, such as electron microscopy, to visualise individual fibres, and polarised 

light microscopy (PLM), for semi-quantitative orientation analysis through 

measurement of fibre birefringence. However, these techniques focus on a highly 

specific region, whereas histological analysis allowed a better overall assessment of 

the insertion, more suited to a macroscopically relevant tendon-bone model, and was 

more readily available for the collection of a larger data set.  

 

The tidemark was the key reference point in the histological methodology. This was 

selected as the point of ‘fibre insertion’ rather than the tendon-bone junction (the 

location of true anatomical insertion) for a number of reasons. The tidemark is used 

as the reference for similarly measuring inserting angles on histology images in 

published methodologies, both by Beaulieu et al (2015; 2016), and Chandrasekaran 

et al (2017), who also specifically examined the digital flexor tendon-bone insertion in 

pigs. The tendon-bone junction and the tidemark have similar general profiles, and in 

stained sections the tidemark was often more apparent and easier to trace than the 

tendon-bone junction. Fibres could be visualised intersecting (traversing) the tidemark, 

thus the angle was easier to appreciate than at the tendon-bone junction where no 

fibres were visible ‘emerging below’ this junction line. Fibres also maintained their 

angle from the tidemark to the tendon-bone junction, appearing generally linear in 

sagittal section, and so the angle corresponded at the tidemark and tendon-bone 

junction. This was expected due to the mineralised fibrocartilage matrix holding the 

fibres rigid in the calcified fibrocartilage zone. Denoting the angle of tidemark 

intersection as the reference for the angle of ‘insertion’ was also based on the 

classical description of the tidemark representing the mineralisation line, and the 

mechanical boundary between soft and hard tissues, such as in the preparation of the 

dry skeleton (see Section 1.4.4.2.3). Overall therefore, referencing angle 

measurements to the tidemark was considered the best representative of the soft-

hard tissue interface for a tendon-bone in vitro model. 

 

Generating a line of best fit of the tidemark from multiple mapped points also followed 

the published method of Beaulieu et al (2015; 2016). This technique created a single 

reference line against which to measure angles on the same enthesis, and provided 
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standardisation for comparison of different entheses. This best represented entheses 

with flat bone profiles, as was anticipated at the FDP enthesis. However, in addition 

to flat profiles, many of the current samples displayed an area of bony convexity, 

particularly towards the proximal enthesis end. This had a minor impact on the 

gradient of the line of best fit, but primarily influenced the rationale to record multiple 

measurements along the enthesis length. In areas of bony convexity, the line of best 

fit of the tidemark and the ‘true’ tangent of the tidemark could lie at dissimilar gradients, 

and vary with a positive or negative inclination depending on whether the comparison 

was made on the upslope or downslope of the convexity. It is unclear how much the 

convexity affected the angle of intersection of the ‘true’ tidemark (further discussed in 

Section 3.6.2.2), however it is likely that measurements recorded on a bony upslope 

undersized representative angles, and those on a downslope oversized 

representative angles. By taking multiple measurements along the enthesis, 

recordings were liable to be taken on both upslopes and downslopes of any 

convexities, controlling for an undulating bony profile. Measuring angles against the 

‘true’ tidemark tangent at every measurement point was considered, however it was 

difficult to consistently judge the tidemark tangent, whereas the single best fit line was 

definitive. Most relevantly, the basic design for the in vitro model was planned as a 

flat tendon-bone interface, and the line of best fit was the optimum method to 

represent the average angle against a flat tendon-bone interface profile. 

 

The selection of toluidine blue as the stain for angle measurement analysis again 

followed the Beaulieu et al (2015; 2016) method. Toluidine blue is useful for cartilage 

staining since as well as general background staining, the GAGs in the cartilage 

proteoglycans produces a violet/purple colour shift distinguishable from the regular 

blue, ‘metachromasia’, (Sridharan and Shankar, 2012) which aided identification of 

fibrochondrocytes with an abundant pericellular cartilage matrix. Calcified 

fibrocartilage was particularly well stained compared to H+E, Van Gieson’s and 

Masson’s trichrome. Consequently, this provided the most reliable indication of the 

both the tidemark, as the upper limit of the calcified fibrocartilage zone, and the 

tendon-bone junction, as the lower limit, whilst still allowing visualisation of the tendon 

fibres running in the zone and hence the angle of tidemark intersection. Toluidine blue 

was generally less adept at isolating the tidemark, particularly compared to H+E (see 

Figure 3.3). Multiple tidemarks could therefore rarely be identified with toluidine blue. 

However, if a multiple tidemark existed (see Figure 3.6b), the tidemark of interest was 
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the most proximal on the tendon, still represented by the well-defined upper border of 

the calcified fibrocartilage with toluidine blue. Overall, toluidine blue was judged to 

provide the greatest overall information for both the angle measurement method and 

qualitative description.  

 

The main modification to the Beaulieu et al (2015; 2016) method was assessing 

multiple angles on the same enthesis section. Focusing on fibres at the tidemark was 

considered the optimum location to evaluate the angle of inserting fibres, as recently 

described. The measurement of approaching tendon fibres was more similar to their 

method, requiring judgement of an average angle from a wide region of fibres. This 

was a particularly subjective measurement, perhaps reflecting a slightly less reliable 

agreement in angles on inter-observer analysis (ICC 0.796) compared to tidemark 

intersection angles (ICC 0.820), although both still reflected ‘good’ reliability of the 

measurement methodology. Evaluating the approaching fibre angle over a preceding 

20% enthesis distance was deemed long enough to appreciate the change in angle 

compared to angle at the tidemark, but short enough to capture fibres fixed in position 

that reflected the native angle (further discussed in Section 3.6.4.2).  

 

Examining multiple measurement points along the length of the enthesis brought a 

number of benefits. It allowed comparison and greater appreciation of the angle 

differences along the enthesis length (see Sections 3.5.2.1.1 and 3.5.2.3), similarly 

using 5 comparative measurement points as per Thomopoulos (2006) and 

Chandrasekaran et al (2017) in their insertional fibre orientation studies. As previously 

described, multiple measurement points also controlled for undulation of the bone 

(tidemark) profile when reporting an average angle across the whole enthesis length. 

Primarily however, it maximised opportunities to generate measurement data in 

samples with multiple areas of pathology, such as cortical bone loss (see Section 

3.5.1.4), which precluded recording an angle measurement. This improved the validity 

of the analysis, further discussed in Section 3.6.2.5. 5 distance measurement points 

were selected to provide a representative spread across the enthesis length. 4 points 

were equally distributed across the enthesis at 20% distances (20%, 40%, 60%, 80%). 

The 50% point was also examined to ensure that the data set included values for the 

midpoint of the enthesis length, which would be important when considering a 

potential single interface angle for an in vitro model. The whole data set 

(measurements at 20%, 40%, 50%, 60% and 80%) was therefore weighted to the 
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central area of the enthesis, however this was also considered advantageous for 

generating an average single angle, as the central area was thought to contain the 

most representative angles.  

 

In the current method, the length of the enthesis, and hence tidemark, was determined 

by measurement data from Chapter 2 of the height of the FDP insertion footprint, 

rather than judgement on the section scan image itself. On sagittal section the length 

of the FDP enthesis (the FDP footprint height dimension in Chapter 2) was difficult to 

discern. The proximal FDP enthesis tidemark blended with that of the remaining volar 

plate tissue, although the 2 structures were relatively simple to differentiate. Judging 

the distal end of the tidemark was particularly problematic due to microscopic 

connective tissue layers on the tendon that were not grossly visible in the dissections 

performed in Chapter 2. Whether these layers inserted into bone and formed part of 

the tendon at the enthesis was not clear. Using pre-determined gender- and finger-

matched FDP footprint height data overcame this issue, provided a standardised 

length of measurement for sample comparison, and also combined investigations 

from macroscopic (Chapter 2) and microscopic (current chapter) investigations that 

are mutual to the design of the in vitro model. The pre-determined lengths also aided 

inter-observer comparisons (see Section 3.6.2.5) as the 2 observers were more likely 

to examine the same precise distance point, and hence test the reliability of the angle 

measurement technique, rather than measuring an angle at slightly different distance 

points.  

 

3.6.2.2 Tidemark Intersection Fibres 

Data collected on the angle of tidemark intersection was explored in depth as this 

measurement was considered the most important to the design of an anatomically 

relevant in vitro model. As per Chapter 2, the influence of gender, finger and side, as 

specific factors of interest, was explored; however it is again acknowledged that 

greater emphasis on analysing variation in the total dataset, rather than testing pre-

selected factors, could have provided a useful alternate approach. Since a model 

design guide based on 3 size categories (large, medium and small) was established 

in Chapter 2 (see Section 2.6.4), finger and gender data was likewise re-categorised 

here to assess whether the different size categories also had a significant effect on 

value differences. Furthermore, data was analysed to investigate whether the angle 

differed at varying points along the proximal-distal length of the enthesis.    
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Unlike data in Chapter 2, there was no clear pattern of influence amongst genders, 

fingers or size categories. When considering the average angle across all 5 enthesis 

distances measured (Figure 3.12) the only categorical significant difference was 

gender, comparing females (mean of 32.33 ± 1.01o) and males (27.78 ± 1.01o) (Table 

3.2). This significance pattern was found in only 2/5 of the distance points measured 

(40% and 60%), and since this average angle difference was <5o, the discrepancy 

seems of limited importance. A significance difference between fingers was only 

demonstrated at the 60% enthesis distance (Figure 3.10b), where the little finger 

angle was significantly greater than the middle finger, including a noticeably greater 

mean value (but not significant) compared to the index and ring fingers. When 

separating the fingers across genders, the female little finger was revealed to have 

the greatest angle (Figure 3.10c), which also led to rare significant differences 

between size categories (Figure 3.10d), since the female little finger is the only finger 

in the ‘small’ category. The reason for this particular finger at 60% distance having a 

mean angle of roughly 10o greater than all other fingers is unclear, and is likely to be 

an anomaly in the data. The 60% distance point itself is unlikely to have had a 

particular effect, since all other fingers, when broken down by finger and gender, are 

of an approximately similar value. This is reinforced by finding no significant 

differences when comparing the distance measurement points across gender and 

finger groups (Table 3.3). A particular side also did not impart an important influence 

on the tidemark intersection angle (Table 3.6). 

 

The overall finding that the angle of tidemark intersection remained approximately the 

same across finger, gender, size category and side groupings was not unexpected. 

The size discrepancies between fingers apparent on gross observation that predicted 

much of the morphometric data relationships in Chapter 2 are unlikely to affect how 

fibres of a particular FDP tendon are microscopically positioned at the enthesis 

tidemark. The proximal-distal longitudinal axes of the FDP tendon, held down by the 

fibrous flexor sheath, and the DP bone, in neutral resting position at the DIPJ joint, 

are grossly the same in all fingers. Factors that might affect the long-term relationship 

between the longitudinal FDP tendon and DP axes, such as chronic joint, tendon or 

enthesis pathology, are unlikely to have a predilection for a particular finger across a 

population as they are inherently systemic. 
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Although no significant angle differences between distance measurement points 

along the enthesis for tidemark intersection fibres were found (Table 3.3), it should 

be recognised that angles were measured against a line of best fit of the tidemark, 

not the ‘true’ tidemark tangent at the particular measurement point. In reference to the 

‘true’ tidemark tangent, general observation of fibres intersecting the tidemark in the 

proximal region was much more perpendicular (see Figure 3.5b), compared to those 

in the middle (see Figure 3.5c) or distal regions (see Figure 3.5d). Whether the 

presence of the bony convexity in the proximal region precipitated this more 

perpendicular angle, or whether the same angle at the tidemark existed when the 

bone profile was flat, is uncertain. The presence of the plug of fibrocartilage in the 

proximal region, characteristic of where fibres cross the tidemark at approximately 

perpendicular angles (Benjamin, Evans and Copp, 1986), probably suggests that the 

same angle was already present. Even so, the bony convexity is likely to be 

pathological, or at least a feature developed in the life of the cadaveric donors, so any 

acquired associated angle differences would not represent the normal physiological 

state. Hence this was a prime reason for collecting multiple measurements along the 

enthesis, where the average angle across all the distance points measured is more 

representative than specific angles at certain distance points. 

 

The mean combined tidemark intersection angle across all genders, fingers and 

different distance measurement points was 30.05 ± 0.72o, with mean angles ranging 

from  22.42 ± 4.02o to 43.60 ± 5.95o (Table 3.2). As previously described, this result 

reflects an average angle across the whole length of the enthesis, measured against 

a line of best fit of the tidemark. Additionally, some angle measurements may have 

been slightly undersized if a convex bone profile existed in the proximal enthesis 

region, marginally tilting the gradient of the line of best fit of the tidemark against which 

angles were measured. Even so, 30.05o is in contrast to the classical description of 

fibrocartilaginous fibres generally crossing the tidemark at right angles (Redler et al, 

1975; Benjamin et al, 2002). Where the fibrocartilaginous transition was most obvious, 

in the proximal enthesis region, many fibres did appear to have a near perpendicular 

angle to the ‘true’ tidemark tangent. However, the average result of 30.05o reflects 

that a large proportion of the FDP is fibrous, associated with much more acute 

insertion angles (Benjamin, Evans and Copp, 1986). 

 



169 
 

The current study measures collagen fibre bundles visible on light microscopy scans, 

which, although adapted from a published technique (see Section 3.6.2.1), cannot be 

compared to any known study of similar methodology that focuses on fibre bundles 

intersecting the tidemark. A much more detailed investigation of the tendon collagen 

fibres, such as with electron microscopy or PLM, would give insight into the highly 

magnified true fibre attachment angle onto bone. At this level of magnification, fibres 

may lie at a less acute angle. However, in aid of an overall design for a whole multi 

tissue in vitro replica model, the present level of magnification and investigation was 

both microscopically insightful but still practical. The finding of an average shallow 

angle with the current methodology may in fact be a contributing factor to the 

frequency of FDP avulsions, since a less perpendicular angle of insertion increases 

the possibility of stress singularities at the interface (Lu and Thompoulos, 2013).   

 

3.6.2.3 Approaching Fibres 

The angle of approaching tendon fibres was principally a subsidiary measurement to 

the tidemark intersection fibres, as an attempt to quantify the amount of angle change 

between the 2 sets of measurements (see Section 3.6.2.4). The approaching fibre 

angle was planned to be of less direct relevance to the in vitro model design, so 

hypothesis testing of the influence of gender, finger and size category was not 

explored with inferential statistics for each measurement distance along the enthesis. 

However, the mean angles were still collated for each of these groupings as per the 

tidemark intersection fibres (Table 3.4) for reference.  

 

Mean angles within gender, finger and size categories were generally similar. For the 

average of all distances measured along the enthesis, the mean angle difference 

between the maximum and minimum of the range was limited to 2.07o (gender), 2.46o 

(fingers) and 2.75o (size categories) (Table 3.4). A particular side also did not 

substantially impact mean angles (Table 3.6). As reasoned for the tidemark 

intersection fibres in Section 3.6.2.2, these findings of similarity were not unexpected. 

 

Along the length of the enthesis, angles did appear to vary, although the range was 

not vastly extensive, from the most acute mean angle of 11.27 ± 2.16o (at the 20% 

distance measurement point) to the widest mean angle of 17.42 ± 0.92o (at 50%) 

(Table 3.4). The finding that the most acute approaching fibre angles were at the 

peripheral measurement points (20% and 80%), with the widest centrally (40%, 50% 
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and 60%), may be explained by the macroscopic distal flattening of the FDP tendon 

as it came to insert on the DP (i.e. in sagittal section, the proximal-distal length of the 

enthesis was greater than the flexor-dorsal depth of the tendon). The most distally 

inserting fibres (i.e. measured at the 80% distance) had an extended distance to travel 

to insert and therefore approached the insertion at a shallow angle. The most proximal 

fibres (i.e. measured at the 20% distance) had the most abrupt angle of descent to 

their insertion, however as the measurement was taken over a 20% preceding length 

of the enthesis, a large proportion of these fibres were still running nearly parallel with 

the long axis of the tendon, and had yet to start their abrupt descent into the insertion. 

The fibres included in this area of measurement interest could therefore widely vary 

between more flat or steep angles, reflected in the largest standard error of the 

combined mean for this 20% distance measurement point (2.16o), compared to the 

others (1.43o, 40%; 0.92o, 50%; 0.93o, 60%; 1.09o, 80%) (Table 3.4). For the centrally 

inserting fibres (i.e. measured at the 40%, 50% and 60% distance), the fibres were 

already descending more uniformly to their attachment point in the area of 

measurement interest, and were therefore of the widest comparative angles. 

 

3.6.2.4 Angle Change 

Investigation of the change in angle of fibres from their approach to their insertion 

provided interesting supplementary data to the qualitative description of the FDP 

enthesis (Section 3.5.1). The general pattern was for the greatest angle change 

proximally, progressively decreasing distally (Table 3.5, Figure 3.13). This matched 

with the general observation of a greater presence of fibrocartilage in the proximal 

region of the enthesis, although the area or thickness of the fibrocartilage was not 

quantified. In particular, uncalcified fibrocartilage appeared much more prominent in 

proximal region (see Figure 3.5b) where the change in angle was greatest. This 

supports the classical analogy of uncalcified fibrocartilage protecting fibres in the 

same way as a rubber grommet of a plug, allowing a supported gradual bending of 

fibres/wires into the insertion/plug (Schneider, 1956; Benjamin and Ralphs, 1998; 

Benjamin et al, 2002). The proximal fibres would otherwise be particularly susceptible 

to damage from shear forces from a large change in angle over a short distance. 

Future work to quantify the thickness of the uncalcfied fibrocartilage at the same 

distance measurement points as the angle change readings would help to confirm 

these suspected observations, however for this project these investigations were 

considered less relevant to an initial in vitro model design. 
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Although the angle change measurements at the 20% and 40% enthesis distance 

points were consistently the points of largest angle change, they were still potentially 

undersized. The common presence of a proximal convexity in the enthesis bone 

profile, as described in Sections 3.6.2.1 and 3.6.2.2, necessitated that these proximal 

points were often measured where fibres were approaching and inserting into an 

upslope of bone. If the measurement point lay on a flat bone profile, when compared 

to a line of best fit of the tidemark, the approaching fibres would have a similar angle 

but the inserting fibres would have a greater angle, thus the angle change would be 

increased.  

 

The angle change registered at the most distal measurement point, 80%, often did 

not follow the general pattern of being the smallest, although it was always smaller 

than the most proximal measurement points. Although the reason for variability is not 

entirely clear, this is partially described by the distal flattening in sagittal section of the 

FDP as it inserts, as described in Section 3.6.2.3. Since the approaching fibre 

measurements at this 80% point were generally shallower compared to the central 

measurement points, but angle of tidemark intersection angle was similar between all 

measurement points, this could make the angle change greater in the distal region 

compared to the central region. Uncalcified fibrocartilage was however limited in both 

central and distal regions on general overview observations. Despite a wider range of 

angle change measurements at the 80% measurement point, the values are not large, 

and the associated shear forces are perhaps not likely to demand a guided uncalcified 

fibrocartilage transition.  

 

3.6.2.5 Validity and Reliability 

The angle measurement data gathered in this chapter aimed to be valid primarily to 

guide the design of an anatomically relevant in vitro model. The measurement 

methodology was devised with this in mind, and the issues pertinent to the validity of 

the method itself are previously discussed in Section 3.6.2.1, such as measuring fibre 

angle at the tidemark rather than tendon-bone junction, and controlling for a bony 

convexity at the tendon-bone interface. The method explicitly describes angle relative 

to a line of best fit of the entire tidemark, rather than relative to the ‘true’ tidemark 

tangent at each particular distance measurement point. Although this could be 

considered misleading for specific measurement points, a single best fit line was a 
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deliberate choice to be most valid to represent a single straight interface, as would be 

replicated in the basic tendon-bone interface for the in vitro model.  

 

Angle measurements were a subjective assessment, thus validation of the 

methodology with a 2nd observer was a crucial process. Absolute agreement of 

measurements was scrutinised, as the strictest model of the intraclass correlation 

coefficient (ICC). The overall reliability of the method was ‘excellent’, where even for 

the lowest ICC for a specific category of measurements, the tidemark intersection 

fibres at 40% distance, the agreement was a high ‘moderate’ (Table 3.7 and 3.8). The 

slightly higher ICC for tidemark intersection fibres (0.907) over approaching fibres 

(0.886) reflects that tidemark intersection angles were more defined, whereas the 

approaching fibres required a judgement of average angle of fibres that often had a 

range of angles. Despite this, reliability of the approaching fibre methodology between 

the 2 observers remained in the upper range of ‘good’. When taking the 

measurements, the proximal 20% distance measurement point seemed to require the 

greatest degree of judgement over approaching or tidemark intersection angles, due 

to the greatest range of angles, however this was not manifested by a lower ICC at 

20%. In fact, the 20% distance measurement point had the highest level of agreement 

of any distance when both tidemark intersection and approaching fibres were 

amalgamated (ICC 0.970), demonstrating that the methodology was still robust when 

having to judge a single average angle from a range. 

 

Early attempts to measure angles were performed at 3 distance measurement points 

rather than 5, however this was regarded as too few to provide an overall 

representation of angles along the enthesis and an accurate mean. Due to a number 

of pathological features (see Section 3.5.1.4), particularly areas of cortical bone loss, 

many measurement points fell in areas where a reliable angle was problematic to 

record. Therefore if any doubt existed, the measurement was excluded. By increasing 

the measurement points to 5 rather than 3, more data could then be recorded, with a 

confidence that the measurements were reliable. Even so, a considerable proportion 

of measurements could not be recorded: 28.1% of tidemark intersection fibres and 

16.6% of approaching fibres. Samples with less or no pathological features (further 

discussed in Section 3.6.4.1), would have provided a more valid set of measurements. 

For tidemark intersection angle data, most relevant to in vitro model design, over 25% 

of potential data was unrecordable. Fortunately, for both tidemark intersection and 
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approaching fibre data, the spread of immeasurable data points for different distances 

along the enthesis was relatively similar and did not heavily skew to a particular 

distance, ranging from 23.4% (60% distance point) to 34.0% (40% distance) for 

tidemark intersection and 12.8% (80% and 60% distance) to 21.3% (20% distance) 

for approaching fibres. Comparing mean values at the different distance points was 

therefore still felt to be reliable. 

 

3.6.3 Tendon-Bone Interface Model Design 

 

Histological investigation of the FDP enthesis revealed a number of characteristics 

that could potentially be incorporated into the design of a replica in vitro enthesis 

model; for example a fibrocartilaginous transition, greater fibrocartilage in the proximal 

insertion region, and a general decrease in the change in angle between approaching 

and tidemark fibres distally along the enthesis. Such specific findings might form the 

theoretical blueprint for an advanced replica model, such as a triphasic tendon-

fibrocartilage-bone design, using nanoscaffolds to control tendon fibre angle and 

mechanical stimulation to replicate tendon fibre movement at the enthesis. However 

the key findings to inform the initial, feasible enhancing features for a specific FDP-

DP in vitro model for this project were the angle of tidemark intersection results, which 

would determine the angle at which tendon and bone components would interface.  

 

When pre-planning the interface design of the model before commencing work in this 

chapter, 2 competing principles were contemplated. Since the long axis of the FDP 

tendon and DP bone are approximately parallel at rest, it was clear that tendon fibres 

needed to incline at an angle to insert into the bone. However, fibrocartilaginous 

enthesis tendon fibres are suggested to insert at a roughly perpendicular angle 

(Redler et al, 1975; Benjamin et al, 2002), and a fibrocartilaginous FDP enthesis was 

anticipated. An initial design idea was therefore a simple tissue transition in series 

from tendon analogue to bone anchor, with a straight perpendicular interface, and to 

let the pliability of the tendon component produce a natural angle of inclination during 

movement. Yet the opportunity was taken to evaluate the inserting fibres histologically 

in more detail, and indeed such a design would have oversimplified the angle at the 

interface. The FDP enthesis had a considerable fibrous insertion component, and with 

it many fibres inserting at a shallow angle. 
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The design for the interface between tendon and bone elements for the in vitro model 

was based on a straight bone anchor surface into which the tendon analogue would 

insert. The use of the line of best fit of the tidemark as a single straight reference line 

was therefore an important feature of the methodology. The angle that the tendon 

fibres crossed this line, the angle of tidemark intersection, could then be explored in 

the same way as per Chapter 2 data, assessing the influence of finger, gender, side 

and the novel size category designs previously established.  

 

The angle of tidemark intersection was revealed to be similar, whether evaluated by 

finger, gender, side or size category (see Section 3.5.2.1). A single average angle 

was therefore thought the most appropriate selection for each of the ‘large’, ‘medium’ 

and ‘small’ model design sizes (see Chapter 2, Table 2.17). The overall mean angle 

for all genders and fingers, averaged across all distances measured along the 

enthesis, was 30.05 ± 0.72o (Table 3.2). The mean angle at the 50% distance 

measurement point, the centre of the enthesis and considered to represent the most 

regular and reliable fibre insertions, was similarly 29.67 ± 1.45o. These values both 

rounded to 30o, as the nearest whole degree. Notably, although these mean values 

were determined as estimated marginal means, calculated from statistical models due 

to the nature of the data, raw means were within 0.03o for the overall mean (30.08o) 

and 0.05o for the 50% distance mean (29.62o), also both rounding to 30o. For the 

design of an anatomically-based, single angle of interface between tendon analogue 

and bone anchor for the in vitro model, this was now set at 30o for all model sizes. 

 

3.6.4 General Limitations 

 

3.6.4.1 Sample 

Investigation of human tissue was fundamental to the project concept of designing an 

anatomically and clinically relevant tendon-bone model. Although images of living 

human anatomy were considered for analysis of tendon fibre angles, such as 

ultrasound or MRI, cadaveric tissue allowed a much more versatile range of 

investigations through histology and microscopic examination. The availability of 

human cadaveric tissue was limited, and inferring means, patterns and differences in 

the sample data to the population come with a number of caveats. Chapter 2, Section 

2.6.5.1 discusses these general caveats, also directly relevant to the use of human 

cadaveric tissue in this chapter. Notably, reasonable sample size was considered in 
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relation to the same published work as cited in that section; the same statistical 

models were used to maximise sample number from pseudoreplicated finger data; 

sample source should be explicitly acknowledged as a regional Scottish population; 

and other unknown variables about the donors, such as handedness, may have 

influenced the observations. 

 

The age range of the sample (73-91; mean 79.3) was very likely associated with the 

number of histopathological changes observed.  Villotte and Knüsel (2013) noted that 

from the 6th decade onwards, the fibrocartilaginous enthesis is targeted by 

degeneration processes, including microtears, microdamage, disturbance of collagen 

fibres and cell columns, bony resorption, increased calcified fibrocartilage thickness 

and fibrocartilage vascularisation. Microtears and microdamage were certainly 

apparent in the present work, as was bone resorption with thin, or frank loss, of cortical 

bone in a number of regions. Discontinuity of the cortical shell is common in later age, 

with Benjamin et al (2007) noting similar small cortical holes (100–400 μm wide), in 

90% of 60 cadavers with a mean age 84 (range 49-101). Interestingly they also found 

rare large holes (>1mm wide) in the FDP insertion, not observed here. The form of 

the tidemark may also disclose pathology, such as poor definition (Shaw and 

Benjamin, 2007) and particularly duplication, associated with osteoarthritis (Lane and 

Bullough, 1980; Binks et al, 2014), both features noted in the present sample. A 

further feature observed here was the common partial convexity in the enthesis bone 

profile. This may well have resulted from a cumulative lifetime of stress at the FDP 

enthesis and buckling of the cortical bone shell in line with the tension force. All these 

histopathological findings affected the design of the measurement methodolgy (see 

Section 3.6.2.1 and 3.6.2.5), however measurements in such affected regions were 

excluded if any abnormality impacted on the angle of the fibres. Yet it is not possible 

to assume that these findings are not present in a younger sample population. With a 

greater level and intensity of activity, microdamage and remodelling may also exist, 

potentially to a higher degree. Even so, the results determined in this chapter should 

be recognised to derive from a particular sample of latter age donors. 

 

3.6.4.2 Sample Preparation 

Preparation of the histological samples entailed some minor limitations in both the 

qualitative and quantitative assessment. Human cadaveric tissue was fresh but had 

undergone a freeze-thaw cycle necessary for storage and use, which may have 
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affected staining and tissue detail. Poor or abnormal visualisation of tidemark or 

tendon fibres may have slightly impacted on angle measurements, however no 

apparent loss of differentiation between enthesis zones or major tissue disruption, 

such as from ice crystal damage, was apparent. Lack of tissue detail was more likely 

the result of the decalcification process in the acidic solution. Such was this explicit 

hazard that trials were run with FPL samples before FDP samples to discover the 

minimum decalcification time necessary to allow smooth microtome tissue sectioning. 

Despite this, cellular staining was deficient in the majority of sections. Nuclear staining 

with hematoxylin was performed for 4x the suggested time length for H+E samples, 

and 6x for Masson’s trichrome, attempting to compensate for the many ensuing 

counterstains and washes, with regular microscope review during the staining 

process. However, an ideal level of nuclear visualisation was very rarely achieved. 

Thus cells were identified more by morphology than stain, in particular by lacunae for 

fibrochondrocytes, and thus slender fibroblasts, packed between collagen fibres, were 

difficult to identify. Preferably, harder blades specialised for cutting mineralised tissue 

should be used where available, which may allow a reduction, or perhaps even 

avoidance, of decalcification. 

 

Tissue dissection to isolate the FDP-DP tendon-bone sample necessarily disturbed 

the surrounding tissue envelope. Dissection beneath the FDP tendon near the 

insertion, for example to free the sample from the volar plate, required elevating the 

FDP tendon about its insertion and moving it through an excessive, non-physiological, 

range of motion (see Chapter 2, Figure 2.1). Despite only brief manoeuvring, inserting 

tendon fibres may have been bent out of position, although this is very unlikely to have 

affected the deep fibres at the tidemark which influenced the in vitro model design. 

Furthermore, although the FDP was returned to its natural position for the remaining 

dissection steps, its position in relation to the DP was not fixed once the sample was 

isolated and no supporting tissues were in place, before being placed in formalin. In 

assessing a single macroscopic ligament insertion angle, Beaulieu et al (2015; 2016) 

fixed their samples in formalin in a custom-built fixation device to maintain a natural 

angle of attachment. Samples in this project were free-floating in formalin without 

support, which may have fixed the tendon fibres in non-physiological angles. The 

current samples were much smaller than the comparative study, which used human 

knee ligament and bone tissue, and gravity was thought to have a minimal effect on 

relative tissue positions. No macroscopic abnormalities were perceptible. Even if 
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some tendon fibre angles were mal-positioned, these would most likely be the most 

proximal FDP fibres near where the tendon was cut in preparing the sample. The 

angle measurement methodology was designed to measure much deeper fibres, 

even for the approaching fibre measurement.   

 

3.6.4.3 Tissue Analysis 

As with any body region, the enthesis is a 3D structure. Although histology was 

selected as the most practical and informative investigation technique, only 2D 

information was possible. To manage this limitation, the methodology was designed 

to collect the most representative samples of the enthesis. Since Milz et al (2002) 

showed in 3D reconstructions of the human Achilles tendon insertion that the most 

complex arrangements of the fibrocartilaginous enthesis layers were located centrally, 

and Thomopoulos et al (2006) demonstrated by PLM that collagen fibres were more 

organised centrally, the mid-sagittal plane was assumed to be the optimal sample 

plane. As the FDP insertion footprint was previously found to be a vertically 

symmetrical trapezoid with its near triangular apex tapering distally (see Chapter 2), 

the mid-sagittal plane also provided the greatest amount of tissue in section, to 

observe for patterns and variations. A deliberate numerical sampling technique using 

the microtome counter was therefore designed to obtain mid-sagittal sections. 

Sections were also collected in a parasagittal plane, midway between the lateral edge 

of the enthesis and the mid-sagittal plane, with the intention to compare with the mid-

sagittal tissue, however these sections were not analysed. Including these in the 

measurement data set would have improved inferences about the entire 3D enthesis. 

Indeed, if a large variety of parasagittal sections were analysed, a 3D computer 

reconstruction may have been possible, such as achieved by Dai et al (2015) with 

ACL histology sections at 50µm intervals. Time limitations dictated that only mid-

sagittal sections were analysed, and, similarly, only 1 section per finger, where ideally 

multiple sections per finger would have enhanced the data set. The data analysis was 

however deemed to be more powerful through having a single section from a larger 

sample of the population rather than more sections from a smaller population sample. 

 

3.7 Summary of Findings  

 

Histological appraisal of the human FDP has revealed a fibrocartilaginous enthesis, 

with a considerable element of fibrous insertion. Enthesis fibrocartilage predominated 
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in the proximal enthesis region, coinciding with the region of greatest angle change 

as tendon fibres neared their bony insertion. The angle of tendon fibres at the enthesis 

tidemark averaged 30o, with little variation between genders, fingers, side, size 

categories and distance along the enthesis, and this will inform the angle of interface 

between tendon analogue and bone anchor components for all size categories of the 

in vitro FDP-DP model.  
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CHAPTER 4 

 

 

ASSESSMENT OF TENDON AND BONE 

COMPONENTS FOR IN VITRO MODEL 
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4.1 Chapter Overview 

 

This chapter commences and explores the in vitro tissue engineering of the 3-

dimensional (3D) tendon-bone model. Cell and tissue culture experiments are 

performed on each of the essential components of the co-culture model – cells, 

tendon analogue and bone anchor – to determine their optimal individual contribution 

to a representative and anatomically-relevant model. Results of the studies guide the 

selection of materials and culture methods for the culminating co-culture designs in 

Chapter 5. 

 

4.2 Introduction 

 

Tissue engineering ultimately aims to generate replica 3D tissues to replace damaged 

or diseased native tissues, providing hope for therapeutic advancements in all areas 

of medicine. It is especially applicable to the musculoskeletal system and the 

orthopaedic sciences, where form and function are well characterised and a wealth of 

research aims to progress particularly limited surgical treatments. Within the field of 

hand surgery and digital flexor tendon reconstruction, tissue engineering has recently 

focused on the use of decellularised flexor tendon allograft as a pre-formed scaffold 

(Drake, Tilt and DeGeorge, 2013; Galvez et al, 2014; Samora and Klinefelter, 2016), 

enabling production of reseeded human flexor tendon (Pridgen et al, 2011; Raghavan 

et al 2012) and in vivo reconstruction in animal models (Kryger et al, 2007; Thorfinn 

et al, 2012). This principle has been extended to flexor zone I injuries, decellularising 

a tendon-bone composite graft consisting of the flexor digitorum profundus (FDP) and 

attached portion of the distal phalanx (DP) in human cadavers (Bronstein et al, 2013; 

Fox et al, 2013), although yet without clinical trials. The tendon-bone composite graft 

recognises the importance of an intact soft-hard tissue interface, obviating the need 

to restore the transition between 2 tissues of different structural and mechanical 

properties. A similar multi-tissue stratified construct is the engineering focus of the 

current project, but without the need for precious human donor tissue and 

decellularisation processes. 

 

The basis for the in vitro project work is the established 35mm well fibroblast-seeded 

fibrin hydrogel construct, formed between suture or brushite anchors (Figure 4.1). 
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Silk suture is a standard anchoring material, providing adherence points and an 

intervening basal tension, between which soft tissue analogues may form, from either 

cellular monolayers self-organising into a cylinder (Calve et al, 2004; Hairfield-Stein 

et al, 2007) or cell-seeded 3D scaffolds. Fibrin is a versatile natural polymer of high 

biocompatibility and degradability with great potential as a cell-seeded scaffold 

(Ahmed, Dare and Hincke, 2008) and has been used with this suture anchor system 

to create constructs of skeletal muscle (Huang et al, 2005; Huang, Dennis and Baar, 

2006), smooth muscle (Hecker et al, 2005), cardiac muscle (Huang, Khait and Birla, 

2007) and tendon (Kapacee et al, 2008; Bayer et al, 2010). Introducing a second 

tissue creates a more advanced construct by including a tissue interface, such as 

tendon anchors in muscle constructs (Dennis and Kosnik, 2000; Larkin et al, 06). 

Assembling the more demanding hard-soft tissue interface, by using a ‘bone’ anchor 

in the fibrin gel construct system, was first established by Paxton et al (2009) and 

Paxton, Grover and Baar (2010). Brushite, a bioresorbable calcium phosphate salt 

and excellent bone substitute material due to its similar structural and biological 

properties (Paxton et al, 2010), was used as the bone anchor material to create the 

hard-soft tissue interface in a whole bone-ligament-bone construct (Paxton, Grover 

and Baar, 2010) (Figure 4.1b). The current project adapts and develops this bone-

ligament-bone construct in 3 ways: 1) creating a tendon construct with single bone 

anchor and single soft anchorage point (suture); 2) shaping and scaling the tendon 

and bone components to anatomically match the FDP and DP; and 3) seeding 

osteoblasts onto the bone anchor to establish a co-culture system with the fibroblast-

seeded fibrin gel.  

  

This chapter encompasses a number of in vitro studies on the cellular, tendon and 

bone elements of the model. Cell work focused on obtaining representative cells from 

a single species; tendon work on manipulating the morphology of the developing cell-

seeded fibrin; and bone work on achieving successful cell seeding. The majority of 

the studies were observational, exploring cell and tissue behaviour over time and the 

effects of different additional factors, to gain a deeper knowledge of the culture system. 

Early study designs were therefore generally qualitative, with later studies quantitative 

as relevant parameters were identified and measured. As experience and 

understanding of basic model development increased, the components were 

engineered to try and improve their physiological and morphological relevance to an 

FDP-DP tendon-bone model, for example with different culture media or fibrin gel 
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4.4 Materials and Methods 

 

4.4.1 Cell and Tissue Culture   

 

4.4.1.1 Sterility 

All cell and tissue construct culture work was performed in a class II laminar flow 

biological safety cabinet, with preceding decontamination of surfaces and non-sterile 

equipment with 70% industrial methylated spirit (IMS) (Genta Medical, York, UK) in 

de-ionised water. PBS (phosphate buffered saline), distilled water, and additional 

glassware, plasticware and dissection instruments were autoclaved (Astell Scientific, 

Sidcup, UK) at 115oC for 30 minutes before use. Culture media were prepared and 

maintained sterile. Culture media additives and reagents that could not be prepared 

sterile were ultimately sterile filtered through a 0.2µm syringe filter (Sartorius Stedim 

Biotech, Goettingen, Germany) in the laminar flow cabinet before use.  

 

4.4.1.2 Phosphate Buffered Saline 

PBS was prepared as a 1x concentration of 0.01M phosphate buffer, 0.0027M 

potassium chloride and 0.137M sodium chloride (Sigma-Aldrich, Merck Life Science, 

Gillingham, UK), and was without calcium. PBS was used sterile for cell culture, 

isolations and reagent preparation. 

 

4.4.1.3 Culture Media 

 4.4.1.3.1 S-DMEM  

Supplemented Dulbecco’s modified eagles medium (S-DMEM) was the standard 

general cell culture medium, consisting of Dulbecco’s modified eagles medium 

(DMEM) (Sigma-Aldrich) with addition of 10% fetal bovine serum (FBS) (Labtech, 

Heathfield, UK), 2% L-glutamine (Gibco, Thermo Fisher Scientific, Cramlington, UK), 

2.4% 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer and 1% 

penicillin/streptomycin (Gibco). 

 

4.4.1.3.2 RODM  

Rat osteoblast differentiation medium (RODM) was acquired from Cell Applications, 

Inc (San Diego, USA). Although the precise ingredients were commercially withheld, 
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the medium was stated to be fully supplemented to promote osteoblast differentiation 

in culture, and to allow mineralisation of differentiated osteoblast extracellular matrix. 

 

4.4.1.3.3 50:50 Medium  

A 50%:50% combination of S-DMEM and RODM (50:50 medium) was freshly mixed 

from pre-made S-DMEM and RODM on the day of use. 

 

 4.4.1.3.4 Ascorbic Acid and Proline 

250µM ascorbic acid (AA) and 50µM proline (P) often supplemented S-DMEM. AA 

was prepared as a 250mM stock, by dissolving 362mg of L-ascorbic acid 2-phsophate 

sesquimagnesium salt hydrate powder (Sigma-Aldrich) in 5ml pre-warmed 37oC PBS. 

P was prepared as a 50mM stock, by dissolving 576mg L-proline powder (Sigma-

Aldrich) in 10ml PBS. Both reagent stocks were sterilised through a 0.2µm syringe 

filter, stored at 4oC, and on each day of use freshly added S-DMEM. 

  

4.4.1.3.5 Media Changes   

Medium used in cell and tissue construct cultures was changed every 2-3 days unless 

stated. 

  

4.4.1.4 Culture Methods 

4.4.1.4.1 General 

Cells were expanded in T25cm3, T75cm3 or T175cm3 vented cell culture-treated 

polystyrene flasks (Greiner Bio-One Cellstar, Fisher Scientific), and cells and tissue 

constructs were cultured in cell culture-treated 6-well plates (Greiner Bio-One Cellstar) 

unless stated. Cells and tissue constructs were kept in a 37oC, 5% CO2 incubator 

(Panasonic, Bracknell, UK) when not in use, and solutions used for culture were pre-

warmed to 37oC in a digital water bath (Grant, Fisher Scientific) unless stated.  

 

4.4.1.4.2 Sub-Culture 

Cells were expanded until approximately 80% confluent in flasks, then either used for 

experiments or sub-cultured (passaged). Cell detachment from plastic was achieved 

by 1-3ml of TrypLE Express (Gibco) for 3-5 minutes with 37oC, 5% CO2 incubation, 

after initial removal of culture medium and washing of the cell layer with PBS. 

Dissociated cells were then re-suspended in fresh culture medium, either to be 
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counted in preparation for experiments, or moved to a fresh flask for further expansion 

(as such undergoing 1 passage). 

 

4.4.1.4.3 Cell Counting 

Cell counting was performed using a haemocytometer counting chamber (Hawksley, 

Lancing, UK). A sample of evenly mixed cell suspension from a known total volume 

was transferred into the counting chamber to obtain a 1mm2 count. An average 1mm2 

count was acquired from 5 x 1mm2 grid areas viewed under a Leica DMi1 light 

microscope (Milton Keynes, UK), repeated on a 2nd grid of 5 x 1mm2 areas and further 

averaged, then multiplied by 104 to estimate the number of cells per ml. 

 

Desired cell concentrations were prepared by counting cells, centrifuging the cell 

suspension at 1000rpm for 3 minutes using a tabletop centrifuge (Heraeus, 

Cambridge, UK), removing the supernatant from the cell pellet with an aspirator pump, 

and evenly re-suspending cells in a calculated volume of fresh culture medium.  

 

4.4.1.5 Cell Storage 

Expanded cells in culture not intended for imminent experimental use were 

cryopreserved in their exponential growth phase (70-80% confluent) for future use. 

Dissociated cells were counted and centrifuged at 1000rpm for 3minutes, the 

supernatant aspirated and the cell pellet re-suspended in 4oC pre-chilled freezing 

medium [10% dimethyl sulfoxide (DMSO) (Sigma-Aldrich) in DMEM] at 1 million 

cells/ml. 1ml cell suspension in cryopreservation vials (Cryo.s, Greiner Bio-One, 

Stonehouse, UK) were held in a Mr Frosty isopropanol freezing container (Thermo 

Scientific, Cramlington, UK) at -80oC overnight, until transfer to liquid nitrogen storage 

at -196oC. 

 

4.4.1.6 Cell Thawing 

Cryopreservation vials were retrieved from liquid nitrogen storage, transferred in dry 

ice and rapidly thawed in a 37oC water bath. The 1ml cell suspension was pipetted 

into 9ml culture medium and centrifuged at 1000rpm for 3minutes. The supernatant 

was aspirated from the cell pellet, the cells re-suspended in fresh culture medium, 

transferred to a T75cm3 culture flask and incubated at 37oC, 5% CO2. Cells were 

always passaged once after thawing before experimentation.   
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4.4.1.7 Imaging and Photography 

Cell cultures and histology sections were studied with a Leica DMi1 light microscope 

and digital images captured with a fitted Leica MC170 HD microscope camera. 

Overview photographs of cellular monolayers and tissue constructs were taken with 

a Canon IXUS 275 HS digital camera (Tokyo, Japan), mounted on a retort stand and 

clamp. Sterile cultures were photographed in the laminar flow cabinet with a black 

fabric background, culture plate lids removed and culture medium in place, unless 

stated. 

 

4.4.2 Cells  

 

4.4.2.1 Procurement, Isolation and Expansion 

 4.4.2.1.1 General Rat Dissection 

Primary cell cultures of rat tendon fibroblasts (RTFs), bone marrow-derived 

mesenchymal stem cells (BMSCs) and osteoblasts (RObs) were isolated concurrently 

on separate occasions from 3 freshly euthanised female Sprague-Dawley rats, aged 

14, 15, and 16 weeks old, obtained from the local animal facilities at The University of 

Edinburgh.  

 

Animals were pinned on benchtop cork boards and the skin was sprayed with 70% 

IMS. Sterile dissection instruments (Fine Science Tools, Cambridge, UK), number 15 

disposable scalpels (Swann-Morton, Sheffield, UK) and x3 loupe magnification (UK 

Loupes, Bristol, UK) were used throughout dissection and cleaning of tendons and 

bones. A circumferential skin incision was made around the top of each hind limb, and 

a fresh scalpel used to deglove and remove the hind limb skin down to the feet. The 

femoral heads were dislocated from their acetabula and the hind limbs were detached 

by incising through the hip joint musculature and ligaments. RTFs (Section 4.4.2.1.2), 

BMSCs (Section 4.4.2.1.3) and RObs (Section 4.4.2.1.4) were then isolated by further 

dissection of the hind limbs.  

 

4.4.2.1.2 Rat Tendon Fibroblasts 

RTFs were sourced from the full length of both Achilles tendons by collagenase 

digestion. Excised tendons were immediately placed in 5% antibiotic-antimycotic 

solution (ABAM) (Gibco) in PBS until transfer to a sterile laminar flow cabinet for 

further work. They were then carefully scraped clean with a fresh scalpel and residual 
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connective tissue cleared away. Any remaining debris was removed with 4 washes of 

PBS using manual hydraulic pressure from a 10ml syringe and 21 gauge needle. 

Tendons were then placed in 20ml 0.1% collagenase type II solution (Gibco) in DMEM 

and incubated overnight at 37oC, 5% CO2. After 15 hours, when the tendons were 

frayed but not fragmented, the solution was vigorously manually shaken, producing 

mild tendon disintegration. Using a 10ml serological pipette, the tendons were held 

down to the bottom of the collagenase tube and pipetted up and down in order to 

release the cells. The solution was then passed through a 100µm cell strainer (Falcon, 

Fisher Scientific) and centrifuged at 1250rpm for 5 minutes. Although a pellet was not 

obvious, the supernatant was aspirated to leave ≈0.5ml, which was re-suspended in 

20ml FBS to deactivate the collagenase. This suspension was further centrifuged at 

1250rpm for 2 minutes, the supernatant again aspirated to leave ≈0.5ml, which was 

finally re-suspended in 15ml S-DMEM and transferred to a T75cm3 flask for culture of 

the isolated cells at 37oC, 5% CO2. Both supernatants were also processed as above 

into T25cm3 culture to maximise cell capture. 

 

4.4.2.1.3 Rat Bone Marrow-Derived Mesenchymal Stem Cells 

Rat BMSCs were isolated by direct plastic adherence. Continuing the general rat 

dissection (Section 4.4.2.1.1), bilateral femurs and tibias were excised after gross 

removal of surrounding soft tissues, collected in 5% ABAM in PBS and transferred to 

a sterile laminar flow cabinet. The bones were then meticulously scraped clean of 

remaining soft tissue with a fresh blade and repeatedly washed with PBS. The 

epiphyses were removed from the bones and the marrow cavities thoroughly washed 

out with PBS under hydraulic pressure using a 10ml syringe and 21 gauge needle. 

The 40ml of washed-through marrow in PBS was collected in a 150mm dish and the 

marrow cells dissociated by drawing the solution up and down through a 21 gauge 

needle. The suspension was then transferred into a centrifuge tube, centrifuged at 

1000rpm for 5 minutes, the supernatant aspirated, and the cell pellet washed and re-

suspended in 20ml PBS. After a further centrifuge (1000rpm for 5 minutes) and 

supernatant aspiration step, the pellet was re-suspended in 25ml S-DMEM and 

transferred to a T175cm3 flask for culture at 37oC, 5% CO2. After 3 days, S-DMEM 

was removed and the substantial population of non-adherent haematopoietic cells 

cleared away with 2x PBS washes, before S-DMEM was replenished and culture of 

the attached BMSCs continued. The PBS wash step was also repeated on day 6 to 

remove any remaining non-adherent cells. A further T75cm3 flask was processed as 
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above from a PBS wash-out of the 150mm dish after transfer of the cell suspension, 

to capture any remaining cells.   

  

4.4.2.1.4 Rat Osteoblasts 

Isolation of RObs followed a published protocol (Bakker and Klein-Nulend, 2012) for 

long bone explant culture, using the same bilateral femurs and tibias as for the BMSC 

isolation (see Section 4.4.2.1.3). After removal of the epiphyses and flushing of the 

marrow cavities to obtain the BMSCs, the marrow cavities were meticulously cleaned 

with needle tip scraping and further multiple flushes of PBS with a 21 gauge needle 

and syringe. The clean diaphyses were then cut into 1-2mm2 pieces using bone 

cutting scissors, and further washed with PBS. The bony pieces were placed into a 

0.2% collagenase type II solution to remove any remaining soft tissue; the solution 

was warmed in a 37oC water bath for 2 hours, with manual inversion of the solution 

every 5 minutes and vigorous shaking every 30 minutes. After aspiration of the 

collagenase supernatant the bone pieces were rinsed and shaken 3x in S-DMEM, 

allowing the FBS component to deactivate the collagenase. 20-30 pieces were then 

equally distributed to each of 4x T25cm3 flasks containing 5ml S-DMEM. Pieces were 

spread evenly over the bottom of the flask by swirling, and left to incubate at 37oC, 5% 

CO2, undisturbed for 3 days before standard S-DMEM exchanges commenced. Bone 

pieces were removed on first passage of the cells when areas of patchy confluence 

from explanted cells was reached.  

 

4.4.2.1.5 Differentiated Rat Osteoblasts 

Differentiated rat osteoblasts (dRObs) were pre-prepared and cryopreserved by 

previous laboratory members in passage 4-6 before the start of the project. These rat 

osteoblasts were acquired from Cell Applications, Inc (San Diego, USA), as a cryovial 

of 1st passage cells obtained from normal healthy adult rat bone (secondary cell 

culture). The vial was thawed and placed into culture with S-DMEM according to 

provider protocols. Cells were cultured at full confluency for up to 14 days for 4-5 

passages, where a progression in cell phenotype from a large, rounded morphology 

to smaller, rounded cells with faster proliferation was observed, when cells were 

considered differentiated.  
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4.4.2.1.6 Chick Tendon Fibroblasts 

Before isolation of RTFs, early tendon analogue work employed primary cultures of 

chick tendon fibroblasts (CTFs), pre-prepared and cryopreserved by previous lab 

members before project commencement. CTFs were isolated from hind limb tendons 

dissected from 13.5 day old chick embryos. Tendons were collected in 5% ABAM in 

PBS, transferred to the sterile laminar flow cabinet, washed 3x with PBS and isolated 

by collagenase digestion. Collagenase digestion and subsequent isolation steps then 

proceeded as per RTFs (see Section 4.4.2.1.2), except using a 1.5 hour collagenase 

digestion.  

 

4.4.2.2 Mineralisation Testing 

Cultures of RTFs, BMSCs, RObs and dRObs underwent testing with alizarin red in 

various culture media for the ability to produce a mineralised extracellular matrix (ECM) 

within 25 days of culture. This allowed qualitative observation of cell behaviour in 

extended cultures, and aimed to establish the optimum cell type and culture medium 

for use in a co-culture of fibroblasts and osteoblasts. The effect of culture media on 

cellular phenotype was observed, in particular whether: 1) RTFs transdifferentiated 

towards an osteoblast phenotype in RODM, 2) BMSCs differentiated into functional 

osteoblasts in RODM, 3) RObs and dRObs required RODM over S-DMEM for 

mineralising ability, and 4) whether 50:50 medium maintained both fibroblast and 

osteoblast phenotypes.    

 

4.4.2.2.1 S-DMEM 

3 sets of RTFs (from each rat cell isolation as biological repeats, all in passage 2, ‘P2’), 

and 1 set each of BMSCs (P3), RObs (P2) and dRObs (P6) were tested in S-DMEM. 

All cells were seeded in duplicate at 100,000 cells per well in 4 x standard treated 6-

well plates in 2ml S-DMEM and incubated at 37oC, 5% CO2, with S-DMEM 

replacement every 2-3 days. When 100% confluence was approximately reached, 

encountered for all cell types by day 4, cells of 1 plate from each cell type were fixed 

in 1ml 4% formaldehyde (Sigma Aldrich) per well for 1 hour at 4oC, after preceding 

removal of S-DMEM and 2x PBS washes. The 4% formaldehyde was then aspirated, 

the cells again washed 2x in PBS and then left in 2ml PBS at 4oC until staining. 

Remaining plates continued to be cultured, with 1 plate from each cell type similarly 

fixed at weekly intervals (days 11, 18, 25).  
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4.4.2.2.2 RODM 

RTFs, BMSCs, RObs and dRObs were set up for testing in RODM in the same 

passages as per S-DMEM testing (see Section 4.4.2.2.1). The exception was dRObs, 

in P7, seeded at 50,000 cells per well, since preliminary investigation of dRObs 

seeded at 100,000 cells produced over-confluence and a fragile cell layer with 

excessive ECM that began to disintegrate before completion of the experiment. All 

cells were seeded in 2ml S-DMEM, but after 24 hours S-DMEM was exchanged for 

2ml RODM, and RODM culture then sustained. Plates were fixed as per S-DMEM 

testing, at the same day 4, 11, 18 and 25 time points.  

 

4.4.2.2.3 50:50 Medium 

RTFs (P5) and dRObs (P7) were also tested in 50:50 medium. Both cell types were 

seeded at 100,000 cells per well and set up in the same way as for S-DMEM testing 

(see Section 4.4.2.2.1), but with S-DMEM exchanged for 2ml 50:50 medium after 24 

hours, and 50:50 medium culture then sustained. Plates were fixed as per S-DMEM 

testing and at the same time points.  

 

4.4.2.2.4 Alizarin Red Staining 

Fixed plates were stained in batches with alizarin red (Millipore, Merck Life Science, 

Gillingham, UK), pre-filtered through a 0.2µm syringe filter for sediment removal, to 

positively stain any extracellular calcium bright red. Fixed plates were retrieved from 

4oC storage, PBS was aspirated and wells each washed with 1ml distilled water. 1ml 

of alizarin red was then added to each well, and plates incubated in the dark at room 

temperature for 45 minutes. The alizarin red was then aspirated and excess stain 

carefully washed away with 4x 1ml washes of distilled water. Digital images of the cell 

layer and wells were captured directly after staining. 

 

4.4.3 Tendon Analogue  

 

4.4.3.1 Fibrin Hydrogel Reagents 

Fibrin hydrogel was the cellular scaffold for the tendon analogue component in all 

model development constructs. Insoluble fibrin was formed through the action of 

thrombin on soluble fibrinogen, with addition of the fibrinolysis inhibitors 

aminohexanoic acid and aprotinin. A ‘thrombin mix’ solution of S-DMEM containing 

10U/ml thrombin (Section 4.4.3.1.1), 2µl/ml aminohexanoic acid (200mM) (Section 
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4.4.3.1.2) and 2µl/ml aprotinin (10mg/ml) (Section 4.4.3.1.3) was initially prepared, to 

which fibrinogen (20mg/ml) (Section 4.4.3.1.4) was added in the ratio 1 part fibrinogen 

to 2.5 parts thrombin mix. The fibrin gel was then polymerised at 37oC for 1 hour 

before fibroblast seeding.  

 

4.4.3.1.1 Thrombin 

Thrombin was prepared as a 200U/ml stock solution. A 1000U vial of powdered 

bovine thrombin (Merck, Darmstadt, Germany) was dissolved in a 0.2µm syringe 

filtered 5ml solution of 0.1% bovine serum album (Sigma-Aldrich) in F-12K nutrient 

mixture (Kaighn’s modification) medium (Gibco), stored at -20oC and thawed at room 

temperature before use. 

 

4.4.3.1.2 Aminohexanoic Acid 

Aminohexanoic acid stock was prepared as a 200mM 10ml solution. 0.262g of 6-

aminohexanoic acid powder (Sigma-Aldrich) was dissolved in 10ml PBS, the solution 

then sterilised through a 0.2µm syringe filter, and stored at 4oC until use.   

  

4.4.3.1.3 Aprotinin 

A 1% stock solution (10mg/ml) of aprotinin was prepared by dissolving a 10mg vial of 

aprotinin powder (Sigma-Aldrich) in 1ml PBS, pre-warmed in a 37oC water bath. The 

solution was transferred to an open 35mm dish and sterilised by UV (ultraviolet) light 

in the laminar flow cabinet for 20 minutes. 50µl aliquots were stored at -20oC and 

thawed at room temperature before use.    

 

4.4.3.1.4 Fibrinogen 

Fibrinogen was prepared as a 2% stock solution (20mg/ml). 1g of bovine plasma 

fibrinogen powder (Sigma-Aldrich) was dissolved in 50ml F-12K nutrient mixture 

(Kaighn’s modification) medium, using a 37oC water bath with manual inversions 

every 15-30 minutes for 4-6 hours. The dissolved solution was sterilised by 0.22µm 

bottle-top vacuum filtration (Corning Life Sciences, Amsterdam, Netherlands), and 

stored in 15ml aliquots at -20oC until room temperature thawing for use. 
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4.4.3.2 Basic Suture-Suture Constructs 

 4.4.3.2.1 General Method 

The tendon analogue was formed by seeded fibroblast contraction of the fibrin 

hydrogel scaffold between 2 anchor points. Basic tendon constructs were made with 

2 silk sutures as anchors set 12mm apart in a 35mm well, as part of a 6-well plate, 

summarised in Figure 4.2.  

 

The base of wells of a 6-well plate were coated with 1.5ml Sylgard 184 silicone 

elastomer, prepared as 9 parts base agent to 1 part curing agent by mass as provided 

in the kit (Dow Corning, Wiesbaden, Germany), and left to polymerise at either room 

temperature for a minimum of 7 days or 50oC in an oven overnight. 2 x 5mm lengths 

of number 1 silk suture (Ethicon, Bridgewater, USA) were set down flat onto the 

Sylgard 12mm apart, end to end in series, held in place by Austerlitz minutiens 

stainless steel insect pins (Fine Science Tools) at the suture ends. Sutures were cut 

to length using a plastic millimetre slide rule and sharp dissecting scissors (Fine 

Science Tools), and the 12mm separating distance judged by pinning sutures at each 

end of a 12mm line visible through the bottom of the well, all conducted under x3 

loupe magnification (UKloupes, Bristol, UK). The wells, plate and lid were sterilised 

by thorough spraying with 70% IMS in the laminar flow cabinet, leaving to soak for 20-

30 minutes, then vacuum aspirating the IMS and air drying for a minimum of 20 

minutes before use. 500µl of ‘thrombin mix’ (see Section 4.4.3.1) was added dropwise 

to each well, making sure to fully attach to the suture anchors, and agitated to cover 

the whole well surface. 200µl of fibrinogen was subsequently added dropwise 

throughout the well surface and the fibrin gel left to polymerise at 37oC for 1 hour. 

Fibroblasts (RTFs or CTFs) were seeded onto the fibrin gel in droplets at a density of 

100,000 cells in 1ml S-DMEM per well. Plates were then incubated at 37oC, 5% CO2, 

with a minimum cell attachment time considered 4 hours, and further culture continued 

with 2ml S-DMEM exchange every 2-3 days. The first culture medium exchange took 

place on day 3, when any gel remaining adhered to the well rim was encouraged to 

contract away by gently sweeping between the rim and gel with a micropipette tip.  
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4.4.3.2.2 Investigations 

For early handling experience and general qualitative descriptive morphology of 

formation and maturation over time, multiple constructs were variously set up with P3 

and P7 CTFs and P5 RTFs, photographed in overview twice weekly in cultures of up 

to 35 days. 

 

Extended cultures were performed to compare morphology at earlier and later time 

points, on constructs grown using P5 CTFs and cultured in S-DMEM, with 

supplementation of AA (250µM) and P (50µM) into S-DMEM from week 3 onwards. 

Histology was performed on 2 constructs after 4 weeks of culture and 2 constructs 

after 8 weeks (see Section 4.4.3.4). 

 

4.4.3.3 Multi-Strand Suture-Suture Constructs 

Multi-strand suture-suture constructs were made by combining multiple pre-formed 

single-strand basic suture-suture constructs. 40 single basic suture-suture constructs, 

formed with P5 CTFs in S-DMEM as per Section 4.4.3.2.1, were cultured for 21 days 

and then combined to form 8 double parallel constructs and 8 triple parallel constructs. 

Single constructs, containing the tendon analogue and both suture ends, were 

transferred by removing the insect pins and transferring to the well of another single 

construct using forceps. The construct was then re-pinned directly in parallel with the 

occupying construct, aiming for contact between tendon analogue strands along their 

entire long edge, with slight overlap preferable to gapping. Double or triple constructs 

were formed by transfer of 1 or 2 constructs, respectively, into another occupied well 

with S-DMEM remaining in place. After combing the constructs, S-DMEM was 

replaced with 4ml S-DMEM supplemented with AA (250µM) and P (50µM), 

maintained for the remaining culture. Formation and maturation was studied by 

overview photography twice per week, and histology (Section 4.4.3.4) was performed 

Figure 4.2 | Method of Tendon Analogue Formation in Basic Suture-Suture Constructs  
Schematic methodology diagram, plan view of 35mm wells.  
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on 4 double and 4 triple constructs at both 1 week and 5 weeks of culture after 

combination of single pre-formed constructs (therefore totalling 4 and 8 weeks from 

the set up of the single constructs, respectively).  

 

4.4.3.4 Histology 

Both single-strand (Section 4.4.3.2.2) and multi-strand (Section 4.4.3.3) suture-suture 

constructs underwent histology. Constructs were fixed in 3-4ml 4% formaldehyde for 

1 hour at 4oC, then washed and held in PBS at 4oC until histology processing. 

 

4.4.3.4.1 Paraffin Wax Embedding and Sectioning  

Constructs underwent paraffin wax processing as per Chapter 3, Section 3.4.4. 8µm 

sections were cut in the transverse and coronal plane on a Leica RM 2245 microtome, 

and multiple sections floated onto standard glass slides (Thermo Scientific), left to dry 

in a 37oC oven overnight and stored at room temperature until staining.   

 

4.4.3.4.2 Staining  

Construct sections were stained with hematoxylin and eosin (H+E) for general 

overview and modified Masson’s trichrome for a qualitative focus on collagen 

production. Sections were dewaxed, rehydrated, and dehydrated and mounted after 

staining as per Chapter 3, Section 3.4.6.  

 

Sections for H+E underwent 2 minutes of staining in Shandon Harris hematoxylin 

(Thermo Fisher Scientific) and 90 seconds in Shandon eosin-Y (Thermo Fisher 

Scientific). Modified Masson’s trichrome staining was performed as per Chapter 3, 

Section 3.4.6.4 except for 5 minutes staining in working Weigert’s iron hematoxylin.  

 

4.4.3.5 Suture Manipulation Experiments 

The length and orientation of the suture anchors in basic single-strand suture-suture 

constructs were varied to observe the consequence on developing shape morphology 

of the tendon analogue. These experiments were the first step in investigating larger, 

vertically positioned anchors and their effect on gel width at regular intervening 

distances between the anchor points, as a prelude to the ‘anatomical suture 

experiments’ (Section 4.4.3.6) based on native tendon morphometrics. 
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Fibroblast-seeded fibrin constructs using 100,000 P3 RTFs per 35mm well were set 

up and cultured as per basic suture-suture constructs (see Section 4.4.3.2.1), with the 

same 12mm distance between suture anchors, but with sutures pinned in 

vertical/vertical (Section 4.4.3.5.1) or vertical/horizontal (Section 4.4.3.5.2) 

arrangements. Triplicate technical repeats of each size of vertical/vertical or 

vertical/horizontal construct were set up and cultured for 35 days. Overview digital 

photographs were taken every 2-4 days to qualitatively observe macroscopic shape 

and to quantitate widths of the tendon analogue (fibrin gel) using ImageJ software 

(National Institutes of Health, Bethesda, USA), as subsequently described. 

 

4.4.3.5.1 Vertical/Vertical  

Vertical/vertical constructs consisted of parallel, symmetrical vertical silk sutures of 

either 10mm, 5mm or 2mm (Figure 4.3a). Width measurements of the fibrin gel of the 

developing tendon analogue were taken at the mid-point of each left and right suture 

and at quartered distance points between the sutures, namely at 25% (3mm), 50% 

(6mm) and 75% (9mm) of the distance from the left suture to the right suture (Figure 

4.3b), to aid descriptive analysis of the shape of the tendon analogue. The analysis 

focused on whether the fibrin gel widths at the distance measurement points between 

the sutures contracted to more, or less than, or equal to, the gel width at the level of 

the sutures (as a single suture gel width average from both left and right sutures). 

Such contraction patterns would respectively describe a more round, ‘H’ shaped, or 

rectangular tendon analogue shape. It was hypothesised that larger sized constructs 

would produce more of an ‘H’ shape as gel contraction continued over time between 

and around the larger sutures, whereas the smaller constructs would remain 

rectangular or more round. 

 

4.4.3.5.2 Vertical/Horizontal  

Vertical/horizontal constructs consisted of vertical 10mm, 5mm, or 2mm sutures set 

perpendicular to a horizontal 5mm suture (Figure 4.3c). Fibrin gel width 

measurements were correspondingly taken as for vertical/vertical constructs (see 

Section 4.4.3.5.1), noting that the 25%, 50% and 75% distance measurement points 

were determined by the length between the mid-point of the vertical suture and left 

edge (inward facing) of the horizontal suture (Figure 4.3d). Gel width at the horizontal 

suture was measured at the mid-point of the suture.  
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Descriptive analysis of shape focused on whether the developing tendon analogue 

maintained a triangular shape, with base at the vertical suture and apex at the 

horizontal suture, or whether gel contraction between the sutures continued to 

produce a more sideways ‘T’ shape (with crossbar as the vertical suture). The analysis 

considered that where the gel width of the distance measurement points between the 

sutures was equal or less than the width of the gel at the horizontal suture, a near ‘T’ 

shape was described. The constructs with larger vertical sutures were hypothesised 

to produce a proportionally greater ‘T’ shape, from anticipated continued gel 

contraction around the vertical suture over time. 

 

4.4.3.5.3 Suture Gel Contraction  

It was also investigated whether the fibrin gel at the upper and lower edges of the 

suture anchor contracted to the same size as the suture itself, using the digital 

photograph measurements of the vertical/vertical constructs. As well as the gel width 

measurement taken at the mid-point of each vertical suture (as shown in Figure 4.3b), 

gel width was also measured at the left and right edges of each suture, giving a mean 

gel width at the suture calculated from left edge, mid-point and right edge 

measurements. Similarly, a mean width of the suture itself was averaged from left 

edge, mid-point and right edge width measurements of the suture, and this was 

compared to the gel width. Both left and right sutures in each vertical/vertical construct 

were individually added into the data pool from the 3 repeats for each size of construct, 

providing an n of 6 for each 10mm, 5mm and 2mm suture.  

 

 

 

 

 

 

 

 

 

 

 

 

 





198 
 

4.4.3.6 Anatomical Suture Experiments 

Single strand vertical/vertical tendon analogue constructs were subsequently set up 

using suture anchor sizes (widths) based on the human flexor digitorum profundus 

(FDP) tendon width data from Chapter 2. The left suture was that of the mean width 

of the base of the FDP insertion onto the bone, 8.58mm (see Chapter 2, Table 2.5), 

and the right suture was that of the mean width of the FDP tendon at 12mm distance 

from its insertion base, 4.69mm (see Chapter 2, Table 2.12), positioned in parallel 

with central opposite alignment.  

 

Fibroblast-seeded fibrin gel constructs in 35mm wells with a 12mm gap between 

sutures were set up as per the vertical/vertical constructs in the suture manipulation 

experiments (see Section 4.4.3.5). 8 different culture variables, as detailed in the 

following Sections 4.4.3.6.1 and 4.4.3.6.2, were investigated. Each culture variable 

was set up using 3 different sets of RTFs, isolated from 3 different rats (see Section 

4.4.2.1) as biological replicates, all in P3. Each separate RTF-seeded construct was 

prepared with 3 technical repeats, giving 9 constructs per culture variable. 2 

constructs for each variable were also set up without cells and maintained under the 

same culture conditions, including media changes, as controls.   

 

Constructs underwent overview photography and width measurements of the gel 

every 7 days, commencing at day 7, over 56 days of culture. Width measurements 

were assessed using Image J as per vertical/vertical constructs (see Section 4.4.3.5.1 

and Figure 4.3b), measuring the distance points between the sutures at 0% (mid-

point of the 8.58mm left suture), 25%, 50%, 75% and 100% (mid-point of the 4.69mm 

right suture). Such measurements could thus be related to the measurements of 

corresponding mean width of the human FDP tendon; at 3mm (25% distance of the 

12mm gap between sutures), 6mm (50%), 9mm (75%) and 12mm (100%) from the 

base of its bony insertion (see Chapter 2, Table 2.12).    

 

4.4.3.6.1 Standard Volume Gel 

4 culture variables were applied to the standard (single) volume fibrin gel set up, using 

500µl thrombin mix and 200µl fibrinogen for fibrin formation per 35mm well, as per 

the standard general method (Section 4.4.3.2.1), with standard cell seeding at 

100,000 cells in 1ml S-DMEM per well. Culture variables were: 

1) ‘S-DMEM’: Standard S-DMEM culture medium throughout. 
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2) ‘+AA+P’: Supplementation of S-DMEM with 250µM ascorbic acid (AA) and 

50µM proline (P), introduced at the first medium change on day 3 and 

continued thereafter. 

3) ‘RODM’: S-DMEM changed to RODM at the first medium change on day 

3 and continued thereafter. 

4) ‘Mid-point Pins’: 2 extra insect pins, as used to secure the sutures, were 

pinned midway (at 6mm) between the sutures to act as extra anchorage 

points for the contracting gel, in S-DMEM culture throughout. The pins 

were separated by a vertical distance of 6.05mm [that of the mean FDP 

tendon width at 6mm (see Chapter 2, Table 2.12), parallel and in central 

alignment to the sutures. Distances were judged with a flexible millimetre 

paper ruler under x3 loupe magnification.  

 

4.4.3.6.2 Double Volume Gel 

4 further culture variables were applied to double the standard volume fibrin gel setup, 

using 1000µl thrombin mix and 400µl fibrinogen for fibrin formation per 35mm well. 

Culture variables were: 

1) ‘Double Gel’: Standard S-DMEM culture medium throughout. 

2) ‘Double Gel/+AA+P’: Supplementation of S-DMEM with 250µM AA and 

50µM P, introduced at the first medium change on day 3 and continued 

thereafter. 

3) ‘Double Gel/Double Cells’: Double the standard number of cells seeded in 

1ml S-DMEM to 200,000 cells (density ratio of cells to fibrin now remains 

the same as standard volume gel set ups). Standard S-DMEM culture 

medium throughout. 

4) ‘Double Gel/Double Cells/+AA+P’: As per ‘double gel/double cells’ but with 

supplementation of S-DMEM with 250µM AA and 50µM P, introduced at 

the first medium change on day 3 and continued thereafter.  

 

4.4.3.6.3 Hypotheses 

Culture variables were investigated for their effect on gel contraction compared to 

standard culture in S-DMEM, and their proximity to corresponding human FDP tendon 

widths. Addition of AA+P to S-DMEM was expected to produce greater contraction 

over time compared to S-DMEM alone, both in standard volume gel and double 

volume gel cultures, with and without doubling cell seeding number. Culture in RODM 



200 
 

was also expected to produce greater contraction due to its ascorbate content. 

Addition of mid-point pins was expected to increase the gel width at the 50% 

anchorage point, and also provide a consequential increased width at the 25% and 

75% points. Double gel volume was expected to increase gel width, but doubling both 

gel volume and cell seeding number was not. Double cell seeding number, whether 

with the addition of AA+P to S-DMEM or not, was expected to produce greater 

contraction than standard cell seeding number, as compared in double volume gels. 

These effects on fibrin gel width were expected to occur predominantly at the 

measurement points between the sutures (25%, 50% and 75% points) rather than at 

the suture anchors themselves (0% and 100% points).  

 

4.4.3.6.4 Optical Coherence Tomography 

As an adjunct to the 2D width analyses, optical coherence tomography (OCT) was 

performed to obtain cross sectional 2D images and 3D reconstructions of the 

constructs by sub-surface, full depth, imaging. Since 2D overview photography 

suggested a greater density of gel at the construct peripheries, OCT images would 

help confirm this observation and provide greater appreciation of the overall 

morphology and formation of the constructs for each culture variable. Scanning was 

conducted on 1 construct from each culture variable group after fixation on day 77 of 

culture. Constructs were fixed in 3-4ml 4% formaldehyde for 1 hour at 4oC, then 

washed and held in PBS at 4oC until the day of scanning.  

 

OCT was performed using a TEL220C1 Spectral Domain OCT System (Thorlabs, Ely, 

UK) at Heriot-Watt University, Edinburgh. The system comprised a high resolution 

Telesto TEL220 base unit and OCTG-1300 scanner of 170nm bandwidth centred at 

1300nm. Images were taken at 5µm axial (depth) resolution and 8µm lateral resolution, 

with a single point A-scan line rate of 28kHz. B-scan 2D cross-sectional images of at 

least 15mm2 scanned area per construct were obtained from multiple A-scans, and 

3D volume images were reconstructed from multiple B-scans moving orthogonally 

through the length of the construct. Image data, including stills from an integrated 

video camera, were acquired from the integrated ThorImageOCT software package. 
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4.4.4 Bone Anchor  

 

Experimental bone anchors employed during the project were phosphate mineral 

based ceramic materials, either brushite (Section 4.4.4.1) or Reprobone® (Section 

4.4.4.2). Brushite, castable and microporous, was the principle (acellular) bone 

anchor scaffold used in the design of the original bone-ligament-bone construct 

(Paxton, Grover and Baar, 2010) (see Figure 4.1b), and was therefore the main 

material studied towards development of a seeded bone anchor for the co-culture 

model. Reprobone, a commercially produced macroporous material, was investigated 

initially as an alternate scaffold, but, not being castable into custom shapes, was not 

assessed further in comparison with brushite. 

 

4.4.4.1 Brushite 

4.4.4.1.1 β-Tricalcium Phosphate   

A stock of CAPTAL® β-tricalcium phosphate (TCP) crystalline powder, used in the 

formation of brushite, was acquired from Plasma Biotal (Buxton, UK). β-TCP had a 

theoretical calcium to phosphate molar ratio of 1:5, with a phase purity and crystallinity 

of >95% and average particle size of 15-30µm. 

 

4.4.4.1.2 Cement Formation   

The basis for brushite cement formation was combining β-TCP with orthophosphoric 

acid (OA). Pre-optimisations of the concentration of OA, β-TCP:OA powder:liquid ratio 

mix and use of cement-setting retardants had been previously investigated and 

standardised by the supervisor (Paxton et al, 2010) and former laboratory members. 

Cements were accordingly made by mixing β-TCP with a solution of 3.5M 85% pure 

OA (Sigma-Aldrich), containing 200mM citric acid (Sigma-Aldrich) and 200mM 

sodium pyrophosphate (Sigma-Aldrich) as retardants, at a powder:liquid ratio of 

3.5g/ml. Mixing was performed on a vibrating plate (Jintai R&D, China) as a further 

retardant. The resulting cement was microporous with 45% porosity (Paxton et al, 

2010).    

 

4.4.4.1.3 Cement Casting   

Brushite cement was cast into a specific shape by reverse molding. The unique 

designs for various experiments are specified in separate subsequent sections, 

however the standard process for manufacture of the brushite bone anchors by 
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reverse molding is described here. The desired shape was composed and integrated 

into a multi-shape casting tray as a computer-aided design (CAD) file in Tinkercad 

software (Autodesk, San Rafael, USA). The casting tray was 3D printed in Acrylonitrile 

Butadiene Styrene (ABS), a strong and lightweight thermoplastic, using a ThermoJet 

solid object printer (3D Systems, Valencia, USA) at facilities at Edinburgh College of 

Art, The University of Edinburgh. The mold for the brushite cement was created by 

filling the casting tray with Kemsil silicone (Associated Dental Products, Swindon, UK), 

setting within 10 minutes at room temperature, and removing the mold. Brushite 

cement paste was formed (see Section 4.4.4.1.2) and immediately spread and 

packed into the negative shapes of the mold with a spatula. The cement completely 

set within 30-60 seconds at room temperature, after which time the specific brushite 

shapes were removed from the mold for use. Brushite was mixed and cast on the day 

of sterilisation.  

 

4.4.4.1.4 Sterilisation   

Brushite bone anchors required sterilisation before tissue culture experimentation. 

After casting, the anchors were transferred to the sterile laminar flow cabinet and 

thoroughly sprayed with 70% IMS, leaving them to soak for 20-30 minutes submerged 

in a dish of 70% IMS. The 70% IMS was then vacuum aspirated from the dish and 

anchors, and the anchors left to air dry at room temperature for 20-30 minutes. The 

anchors were then used directly for experimentation or kept in a sterile container 

overnight for use the next day.   

 

4.4.4.2 Reprobone 

Reprobone® material was provided by Ceramisys (Sheffield, UK), as pre-

manufactured, sterile, cubed (≈3x3x3mm) or cuboidal (≈3.5x3.5x6mm) blocks. 

Reprobone is a synthetic, resorbable clinical bone graft substitute made from 60% 

hydroxyapatite (HA) and 40% β-TCP, at 80% porosity with pore sizes of 200-800µm 

(macroporous), affording a composition and structure approximating that of trabecular 

bone.  

 

4.4.4.3 Basic Tendon-Bone Constructs 

Reprobone blocks were used for an initial trial of a basic bone anchor-suture anchor 

tendon-bone construct, to observe the development and attachment of a tendon 

analogue to a bone anchor. A 6-well plate of 6 single basic constructs was set up as 
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per Section 4.4.3.2.1 except with Reprobone blocks (3 cubes and 3 cuboids) replacing 

one of the suture anchors. Bone anchors were wedged in place on the Sylgard-coated 

wells, by 4 surrounding insect pins positioned centrally at each edge, 12mm from the 

remaining suture anchor. Formulation of the fibrin gel, cell seeding and culture was 

performed as per Section 4.4.3.2.1, seeding P5 CTFs. Constructs were cultured in S-

DMEM for 12 weeks, with serial overview photography every few days. At 5 weeks 

and 12 weeks, the cuboid blocks were lifted from the well floor with forceps to verify 

tendon-bone attachment, with and without gentle axial tension from the forceps, and 

to observe the arrangement of the attachment.  

 

4.4.4.4 Brushite Acid Washout Trials 

Brushite tendon-bone constructs had been previously observed to acidify culture 

medium, with an adverse effect on tendon-bone attachment (reported ahead in 

Chapter 5, Section 5.5.2.1.1). It was therefore investigated if the acid in the brushite 

could be washed out before cell culture commenced, and if so, how many washes 

were required. S-DMEM was used for washes, being the standard culture medium, 

and because the DMEM formulation contained phenol red, a colorimetric pH indicator 

that transitions from yellow to red along a working range of pH 6.4 to 8.2 (Morgan et 

al, 2019). 

 

Trapezoidal brushite bone anchors in ‘large’, ‘medium’ and ‘small’ sizes were made 

to the specifications of the bone anchor design guide in Table 2.17 (Chapter 2). The 

fabrication specifics for these anchors is described in Section 5.4.1.1 and Figure 5.1 

(Chapter 5),  but in short, the bone anchors were cast from fresh brushite cement 

filling the negative shapes in Kemsil silicone molds made from specifically designed 

multi-shape casting trays. The anchors were then sterilised as per Section 4.4.4.1.4. 

 

Single ‘large’, ‘medium’, and ‘small’ brushite bone anchors were placed in triplicate 

into wells of a 12-well plate. 1ml S-DMEM was added to these experimental wells, 

making sure to fully submerge the anchor, and also added to triplicate control wells in 

the same plate containing no anchor. After 10 minutes (1st ‘wash’), any colour change 

of the S-DMEM in the experimental wells compared to the control wells was noted by 

gross observation, the plate photographed against a white paper towel background, 

and the S-DMEM vacuum aspirated from the wells and anchors. The anchors were 

then transferred to a fresh 12-well plate, in the same arrangement, and left to air dry 
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for 30 minutes. Following drying, 1ml of S-DMEM was again added to the 

experimental wells and control wells. After 10 minutes (2nd ‘wash’), the process of 

colour change observation, photography, S-DMEM aspiration, plate transfer and 30 

minutes air drying was repeated. The procedure was continued until the S-DMEM in 

all experimental wells was observed to not undergo a colour change compared to the 

controls in the 10 minute period.  

 

The trial was repeated with different brushite anchors from the same batch on the 

same day, with some modifications to test validity: 1) different, freshly made S-DMEM, 

2) no 30 minute air drying time between washes, 3) further washes after no colour 

change between experimental and control wells, and 4) repeat photography of a final 

wash plate after 7 hours left at room temperature in the laminar flow cabinet.  

 

4.4.4.5 Osteoblast Seeding Trial 

The proliferation of dRObs seeded on a brushite scaffold and cultured over a 1 week 

period was investigated using the CyQUANT cell proliferation assay kit (Invitrogen, 

Thermo Fisher Scientific), a fluorescence-based nucleic acid cell proliferation assay. 

 

4.4.4.5.1 Preparations   

Trial brushite scaffolds were manufactured as discs, as a perceived optimum shape 

to receive drops of cell suspension, of 4.6mm diameter by 2mm height. A 20 disc 

casting tray was designed, 3D printed and used to create a Kemsil silicone mold. 

Brushite cement was formed and spread into the negative shapes of the mold, casting 

the discs, which were then sterilised as per Section 4.4.4.1.4.  

 

Some discs were used to plan the optimum volume of suspension for cell seeding. 

100µl, 50µl, 20µl and 10µl of tap water were pipetted in drops onto the discs to 

observe for spillage and disc coverage. 100µl and 50µl spilled over the disc edge, 

whilst 10µl seemed too small a volume to reach the peripheries of the disc. 20µl was 

optimum, as pipetting 2-3 separate drops of the volume and pausing for a few seconds 

for absorption allowed good coverage of the whole disc without spillage.   

 

4.4.4.5.2 Acid Washouts   

The brushite scaffolds required washout of acid before cell seeding (see Section 

4.4.4.4), serving also to pre-soak the material in culture medium for improved cell 
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attachment. Washes took place in 24-well, flat bottomed, non-tissue culture treated 

plates (Falcon, Fisher Scientific), to avoid the potential for the hydrophilic treatment 

applied to treated plates transferring onto the bottom surface of scaffolds. 

 

12 brushite discs were placed singly into wells of the top row of the 24-well plates and 

1ml S-DMEM added to each well to submerge the discs. After 10 minutes, S-DMEM 

was aspirated from the well and disc, and the discs transferred to a fresh well (row 

below in plates) for another 10 minute wash in S-DMEM. 5 washes of S-DMEM were 

performed, as per the results of the acid washout trials (see Section 4.5.3.2). After the 

5 h wash, S-DMEM was aspirated, and the discs transferred to fresh wells to dry at 

room temperature for 1 hour before cell seeding.  

 

4.4.4.5.3 Cell Seeding   

After drying, the discs were transferred to 3x fresh experimental 24-well plates, set up 

identically for testing at day (D) 0, 2 and 7. Flat bottomed, non-tissue culture treated 

plates were again used to prevent seeded cells potentially migrating towards a treated 

well base by chemotaxis. 3 discs per plate were seeded with 10,000 P10 dRObs in 

20µl by carefully pipetting the cell suspension onto the top of the disc in 2-3 drops, 

pausing for absorption between drops, and ensuring no direct spillage of suspension 

over the disc edge. As positive controls, 20µl of 10,000 cells was also plated out in 

sextuplicate into wells of 3x flat bottomed, tissue culture treated 24-well plates for D0, 

2 and 7. All plates were then incubated at 37oC, 5% CO2 for 5 hours for cell attachment.  

  

 4.4.4.5.4 Cell Collection and Freezing 

After 5 hours incubation, cells in the D0 plate were prepared for the CyQUANT assay. 

Each disc was lifted out of its well with forceps, rinsed with 750µl PBS into the same 

well, and directly transferred into a 1.5ml reaction tube (Greiner Bio-One, Fisher 

Scientific) (‘Tube A’ – attached seeded cells). The 750µl of PBS rinse was collected 

into a 2nd 1.5ml reaction tube, added to which was a further 750µl PBS rinse to 

maximise cell collection (‘Tube B’ – unattached seeded cells). To detach cells adhered 

to the discs, 250µl of TrypLE Express was added to Tube A, submerging the disc, 

following which the tube was incubated at 37oC, 5% CO2 for 10 minutes and then 

briefly flicked and tapped on the worktop. With fresh forceps each disc was then lifted 

out of its tube and rinsed with 1000µl of PBS into the same tube to collect the 

dissociated cells, and the disc discarded. For the D0 positive control plate, 250µl of 
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TrypLE Express was also added to each well, the plate incubated for 10 minutes at 

37oC, 5% CO2 and then tapped to dissociate cells, and the 250µl cell suspension 

added to a 3rd 1.5ml reaction tube (‘Tube C’ – plastic-adhered positive control cells). 

Wells were rinsed with 1000µl of PBS to collect any residual cells and added to the 

same tube. 

 

Tubes A, B and C were then micro-centrifuged (Eppendorf, Stevenage, UK) at 

2000rpm for 5 minutes, and the supernatant aspirated to leave ≈25µl (as a cell pellet 

was not often apparent). A PBS wash step was performed to wash away/dilute the 

phenol red in the S-DMEM that might affect fluorescence readings: 900µl of PBS was 

added to each tube, micro-centrifuged again at the same settings and the supernatant 

aspirated to leave ≈25µl. Tubes were then frozen and stored at -80oC until assaying. 

 

D2 and D7 plates, instead of undergoing cell collection and freezing, underwent 

culture medium addition after the 5 hour cell seeding incubation. Each disc was 

moved into a new empty well in the same plate (so only attached cells from the initial 

seeding would be captured in future cell collections), 1ml S-DMEM added to each disc 

well, and plates incubated at 37oC, 5% CO2.  

 

On day 2, D2 plates underwent the same cell collection and freezing protocol as D0 

plates, with the exception that Tube B contained 1ml of S-DMEM (as the culture 

medium addition) and a 500µl rinse of PBS (instead of 750µl, beyond the capacity of 

the reaction tube). D7 plates underwent 1ml S-DMEM exchanges on this day, and at 

day 5. On day 7, D7 plates underwent the same cell collection and freezing protocol 

as D2 plates. 

 

4.4.4.5.5 Assaying 

All tubes were assayed with 5x concentration of CyQUANT dye, due to its extended 

linear detection range for predicted cell numbers, from pre-performed standard curves 

(see Section 4.4.4.5.6). The CyQUANT dye fluoresces green when bound to the 

nucleic acids released from lysed cells and, as per manufacturer instructions, the dye 

and cell-lysis buffer (both from the Invitrogen kit) were pre-mixed into one working 

solution. The 5x dye concentration was thus prepared by an 80 fold dilution of the 

provided 400x concentrated dye in a 1x concentration of cell-lysis buffer, itself diluted 

from the provided 20x concentration in nuclease-free water (Omega Bio-tek, Norcross, 
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USA). To prevent photodegradation of the dye, the working solution was prepared 

fresh and held in a centrifuge tube wrapped in tin foil, and the assay was conducted 

on the benchtop without overhead lights. 

 

Frozen tubes were serially defrosted and assayed at room temperature in batches to 

prevent thawed tube contents from degrading. 200µl of the dye/cell-lysis buffer was 

added to each defrosted cell suspension, mixed by pipetting up and down in the tube, 

and the entire contents transferred into a well of a flat-bottomed, black chimney, 96-

well plate (Greiner Bio-One, Cellstar). A number of tubes were prepared for the plate 

whilst allowing the optimum 2-5 minute incubation period at room temperature, then 

fluorescence was read using a GloMax® Explorer microplate reader (Promega, 

Southampton, UK) with excitation at 475nm and emission detection at 500-550nm. 

 

4.4.4.5.6 Standard Curves 

Standard curve experiments of known cell numbers were performed before assaying 

the osteoblast seeding trial collections to ascertain the optimum concentration of 

CyQUANT dye to achieve a linear cell number vs fluorescence relationship to 

translate to a predicted range of cell numbers in the seeding trial.  

 

A dilution series of 50, 100, 500, 1000, 5000, 10,000, 25,000 and 50,000 P9 dRObs 

in S-DMEM was prepared in quadruplicate in 1.5ml reaction tubes.  The cells were 

collected and frozen as per Section 4.4.4.5.4: all tubes were micro-centrifuged at 

2000rpm for 5 minutes, the supernatant aspirated leaving ≈25µl, cells washed with 

900µl of PBS, and a 2nd micro-centrifuge step and supernatant aspiration leaving 

≈25µl for -80oC freezing. These tubes were assayed with CyQUANT as per Section 

4.4.4.5.5, in the first instance with a 1x concentration of dye, prepared by a 400 fold 

dilution of the dye in a 1x concentration of cell-lysis buffer. 200µl of the dye/cell-lysis 

buffer without cells was also plated in quadruplicate and measured in the same way. 

The standard curve was repeated with the same dilution series using P8 dRObs, but 

assayed with 5x dye concentration, as per Section 4.4.4.5.5. Resultant standard 

curves are graphed in Appendix 4. 
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4.4.5 Data Analysis  

 

Quantitative tendon analogue and bone anchor data was recorded and tabulated in 

Excel 2016 (Microsoft, Redmond, USA) and graphed in GraphPad Prism version 8 

(GraphPad Software Inc, San Diego, USA). All descriptive and inferential statistics 

were performed in GraphPad Prism version 8.   

 

To analyse the anatomical suture constructs (Section 4.4.3.6) linear mixed effects 

models were employed in GraphPad Prism version 8 to account for the non-

independence of the same constructs undergoing repeated measures over time. A 

single design was used for all comparisons, where the main effect of the culture 

variable (fixed factor) on mean values was tested in a type III sum of squares model 

including time (fixed factor) and construct measured (random factor); sphericity was 

not assumed and a Geisser-Greenhouse correction was therefore applied (Figures 

4.21 to 4.25, and Appendix 5).  

 

When analysing osteoblast seeding trial data (Section 4.4.4.5), a 2-tailed paired t-test 

was used for seeding efficiency to compare attached and unattached cells (Figure 

4.31) and a 1-way analysis of variance (ANOVA) for proliferation on both the brushite 

scaffold and plastic compared between different days (Figure 4.32). 

 

The appropriate normality of data was confirmed through Shapiro-Wilk tests. An alpha 

level of 0.05 was set, and a Bonferroni post-hoc correction applied to multiple pairwise 

comparisons for mixed effects and ANOVA models. Unless otherwise stated, data in 

the chapter is presented as mean ± standard error of the mean (±SEM), with graphical 

error bars also indicating ±SEM, and the level of any statistical significance highlighted 

as *p<0.05, **p<0.01, ***p<0.001. 
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4.5 Results 

 

4.5.1 Cells  

 

4.5.1.1 Isolation and Phenotype 

4.5.1.1.1 Rat Tendon Fibroblasts 

Cells from Achilles tendon collagenase digestion were first observed in isolation on 

day 2 of primary culture, and confidently seen in small colonies on day 5 (Figure 4.4). 

After adherence, cells soon displayed a classical spindle-shaped morphology and 

colonies proliferated exponentially until confluence. In established 2D sub-culture, 

RTFs maintained a large, spindle-shaped morphology and proliferated rapidly. All 

isolations behaved similarly, although RTFs from the 3rd rat appeared, by observation, 

to proliferate at a slower rate.  

 

4.5.1.1.2 Rat Bone Marrow-Derived Mesenchymal Stem Cells 

Plastic-adhered cells from bone marrow isolations were observed as disparate single 

cells on day 3 of primary culture, with small colonies noted on day 6 of varying 

morphology from more rounded to spindle-shaped cell groups (Figure 4.4). Colonies 

proliferated at a moderate rate initially, with the rate appearing to increase with time, 

where the majority of cells were of haphazard morphology with multiple processes 

and a large nucleus. Once established in higher cell densities, BMSCs were mostly 

spindle-shaped, and, compared to RTFs, appeared of similar size with a similar 

proliferation rate. All isolations behaved alike. 

 

4.5.1.1.3 Rat Osteoblasts 

Cells first emerged as explant cultures from bone pieces on day 6, with small colonies 

in all flasks at day 8 (Figure 4.4). Cells were primarily large, rounded/polygonal cells 

with substantial cytoplasm, although some patches were more spindle-shaped. Most 

ROb cell explants developed from the smallest bone pieces and microscopic 

fragments. Disparate cell colonies grew slowly with small confluent areas around 

bone pieces at day 13-15 as colonies coalesced. After sub-culture, RObs grew more 

evenly but still appeared slow to proliferate. When cells then became fully confluent 

they developed a smaller polygonal shape with a higher nuclear-cytoplasmic ratio that 

together produced a cobblestone appearance (see Figure 4.6 and 4.7). With further 
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sub-culture of these smaller confluent cells, RObs grew much quicker than in the initial 

primary and early passage cultures, similar to the rate of RTFs and BMSCs. 

 

Unlike the RTF and BMSC primary cell isolations, ROb explant culture was only 

successful on the 1st of the 3 occasions. In the 2nd isolation attempt, 1 small explant 

colony of 4 cells was noted on day 8, but this did not proliferate and receded after a 

further week of culture. No cells were observed on the 3rd attempt.  

 

4.5.1.1.4 Differentiated Rat Osteoblasts 

dRObs, from a separate cell line of rat osteoblasts (see Section 4.4.2.1.5), had a 

relatable phenotype to sub-cultured RObs (see Section 4.5.1.1.3), but to a further 

extent. They similarly appeared rounded/polygonal in 2D culture but were noticeably 

smaller, with an apparent faster proliferation rate (Figure 4.5). At confluence they also 

displayed characteristics distinct from isolated primary RObs, forming multi-layered 

nodules of cells and ECM, further described in Section 4.5.1.2.1.  

 

4.5.1.1.5 Chick Tendon Fibroblasts 

CTFs had a similar morphological and behavioural phenotype to RTFs, appearing 

more spindle-shaped and smaller overall.  
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Figure 4.4 | Primary Rat Cell Isolation Cultures and Proliferation 
Light micrographs of early (left panels) and later (right panels) time points of primary isolation 
cultures of rat tendon fibroblasts (RTFs), bone marrow-derived mesenchymal stem cells (BMSCs) and 
osteoblasts (RObs) from the same animal. RTFs in colony were first seen adhering to culture plastic 
on day (D)5 of culture, though yet to develop full spindle-shaped morphology. Once established, 
proliferation was rapid and full confluence was reached by D12. BMSCs were first confidently seen at 
D6 as groups of rounded or spindle-shaped cells, with large cell colonies of mostly haphazard 
morphology noted by D11. RObs first emerged from bone pieces at D6-8, proliferating slowly. By D15, 
colonies of large rounded/polygonal cells with extensive cytoplasm were forming around and 
between bone chips, merging together. Scale bar 200µm throughout.  
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4.5.1.2 Mineralisation Testing 

 

Mineralisation tests were performed in duplicate (technical repeats), and RTFs were 

also performed with 2 further biological repeats. All results described below represent 

the qualitative general findings observed in all repeats. 

 

4.5.1.2.1 S-DMEM 

No cell types showed evidence of a mineralised ECM when cultured in S-DMEM for 

25 days (Figure 4.6). All cell types reached 100% confluence by day 4, with the 

greatest cell density observable in dROb cultures. After day 4, RTFs continued to 

proliferate gradually as they packed together, and appeared to have produced patchy 

areas of unmineralised ECM by day 18, which were more obvious and coalesced by 

day 25. In contrast, BMSCs and RObs, behaving similarly, were able to pack together 

with a seemingly greater cell density, often with a whorled appearance, but no distinct 

ECM was perceived on light microscopy. BMSCs and RObs were discernible by their 

cell morphology until they reached 100% confluence, after which both cultures were 

Figure 4.5 | Differentiated Rat Osteoblasts in Early Culture 
Light micrograph of differentiated rat osteoblasts (dRObs) at P6, 
previously sub-cultured multiple times at full confluence from a separate 
rat osteoblast cell line, on day 1 in culture. In approximately the first 48 
hours of culture, the majority of dROb cell bodies remain highly refractile, 
possibly still undergoing full anchorage, but are not free floating.  The cells 
are generally polygonal with a high nuclear-cytoplasmic ratio; cell 
processes are more notable here due to the low cell density. dRObs are 
conspicuously smaller than RObs. Scale bar 200µm.  
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not perceptibly different. dRObs rapidly developed many patches of high density 

polygonal cells, forming a niche of multi-layered cells in different focal planes, already 

more opaque and clearly observable by day 4. These regions became more dense 

and numerous by day 11, developing into macroscopic nodules of apparent ECM and 

cells by day 18, and continued to amass into a trabecular-like network by day 25.   

 

4.5.1.2.2 RODM 

dRObs were the only cell type to produce a mineralised ECM when cultured in RODM 

(Figure 4.7). dROb morphology, proliferation and production of nodular ECM forming 

a trabecular pattern was similar to when cultured in S-DMEM, but with added 

mineralisation of the ECM nodules by day 18, and further ECM expansion and 

mineralisation beyond the nodules by day 25. RTFs did not appear to radically change 

phenotype or transdifferentiate in RODM, but there were some added observations, 

as follows. Compared to S-DMEM culture, RTFs appeared to proliferate to a higher 

density and by day 18 more areas of patchy ECM seemed present. By day 25 the cell 

layer was certainly more fragile, potentially signalling a difference in the amount or 

quality of the ECM, and in some cultures the ECM appeared nodular. RTF ECM 

however remained unmineralised. Neither BMSC nor ROb cultures produced a 

mineralised ECM. BMSC and ROb behaviour appeared very similar in RODM culture 

compared to S-DMEM, with no obvious ECM observable, and no apparent BMSC 

differentiation or ROb progression towards a more dROb phenotype.  

 

4.5.1.2.3 50:50 Medium 

In 50:50 medium, dRObs still produced a mineralised ECM, although mineralisation 

occurred at a later stage (day 25) (Figure 4.8) compared to RODM culture (day 18) 

(Figure 4.7). dROb behaviour and trabecular-like nodular ECM production was similar 

to S-DMEM and RODM culture. RTFs appeared to produce a more nodular ECM than 

in S-DMEM culture, more similar to RODM culture, but the cell layer remained intact 

and was less contracted than in RODM culture. RTFs did not show an obvious change 

in morphology and their culture did not display any mineral. 
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Figure 4.8 | Mineralisation Testing of RTF and dROb Cultures in 50:50 Medium 
Representative light micrographs (left panels) and 35mm culture wells (right panels) 
for RTFs and dRObs grown in 50:50 S-DMEM:RODM medium, fixed and stained with 
alizarin red at various time points. dRObs have started to mineralise their trabecular-
like ECM by day 25, shown by areas of faint positive red stain for calcium. RTFs show 
focal nodular areas of unmineralised ECM by day 18 (thickened areas) and the cell 
monolayer has retained full integrity by day 25. Scale bar 200µm for all micrographs 
(black) and 5mm for all wells (blue). 
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4.5.2 Tendon Analogue  

 

4.5.2.1 Basic Suture-Suture Constructs 

The general overview of the formation of the tendon analogue between 2 suture 

anchors in series is displayed in Figure 4.9. The fibroblast-seeded fibrin gel rapidly 

contracted from the well rim towards and around the suture anchors within the first 

few days. The vast proportion of contraction occurred within the first week, and by 7 

days the shape of the fibrin gel in overview had conformed to the position of the 

anchors, stretched between them. From day 7-14, the gel noticeably condensed down 

further between the anchors, becoming slimmer and denser. From day 14-28 

macroscopic changes were minimal, although a subtle progression in slimming and 

density continued. By day 28, the gel continued to be present around all edges of the 

suture anchors, with the region of gel attached to the inward facing (opposing) edge 

often tending to be least dense. The general smoothness and uniformity of the shape 

of the tendon analogue was primarily affected by the regularity of contraction within 

the first week: where more fibrin gel converged around one particular anchor or 

regions contracted at different rates, the resulting tendon analogue was often less 

symmetrical.  

 

Histology of a single-stranded tendon analogue (Figure 4.10) showed that inward 

folding of the fibrin gel was the principle process in its formation through contraction. 

The folds became tighter and more elaborate with maturity, as the tendon analogue 

cross section progressed from elliptical to more circular. Cells seeded initially on top 

of the gel were shown to have migrated throughout the structure, and with time cell 

numbers comparatively increased and there were regions of cellular alignment in 

parallel in the direction of tension between the suture anchors. These areas of linear 

organisation were also where cellular deposition of collagen was most evident in the 

fibrin (Figure 4.11). The amount of stained collagen throughout the structure 

increased with time but was still low after 8 weeks. A particular histological feature 

was the presence of a surrounding cellular capsular layer (Figure 4.10 and 4.11), 

present at both the 4 and 8 week investigation time points. H+E and Masson’s 

trichrome stains showed that this layer was external to the fibrin and particularly cell 

dense, and by 8 weeks it was also a focus of collagen deposition (Figure 4.11).    
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Figure 4.10 | Histology of the Basic Single-Strand Tendon Analogue (1)  
Representative histology micrographs of a single tendon analogue at 4 weeks (left panels) and 8 
weeks culture (right panels) in mid-transverse (upper panels) and mid-coronal section (lower panels) 
showing morphological progression. Folds in the fibrin gel (red arrows) become more convoluted 
and deeper with time. Cells have seeded throughout the fibrin gel, although a marked cellular 
capsular layer (black arrows) is conspicuous at the periphery. At 4 weeks, the fibrin gel is flatter, 
wider and less folded and compact. At 8 weeks, the fibrin is folded in on itself and condensed into a 
more circular cross-section within the surrounding capsular layer. The structure also appears more 
cellular at 8 weeks, with cells more aligned in the direction of tension between the anchors (to right 
and left of coronal panels). H+E. 
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Figure 4.11 | Histology of the Basic Single-Strand Tendon Analogue (2)  
Representative mid-coronal section histology micrographs of a single tendon analogue at 4 weeks (left 
panels) and 8 weeks culture (right panels) comparing collagen production (blue stain) and tissue 
organisation in 2 similar regions (upper or lower panels). At 4 weeks, the overall structure of the 
tendon analogue is less condensed, and the cells are less arranged. Collagen production is limited to 
small pericellular areas (yellow arrows). At 8 weeks, the tissue is more compact. Cells are more 
organised along the line of tension between anchors (to right and left of all panels), where production 
of parallel bands of collagen is evident (white arrows). The ever-present highly cellular capsular layer 
(black arrows) appears to be a region of particular collagen production with time (lower panels). 
Modified Masson’s trichrome stain (deep red: cytoplasm; blue: collagen; black: nuclei). Scale bar 
100µm all panels. 
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4.5.2.2 Multi-Strand Suture-Suture Constructs 

Macroscopic overview of the development of double- and triple-stranded suture-

suture tendon analogue constructs is depicted in Figure 4.12. The separate strands 

appeared to grossly fuse together with time. By day 15 of combined culture the 

transparencies between separate strands, indicating their division, was progressively 

difficult to discern, and at final observation on day 35 the constructs appeared as 

single units. Histology however revealed that the individual strands remained 

separate (Figure 4.13). The interface between individual strands narrowed to the 

point where no cellular capsular layer was interpositioned between the strands at 5 

weeks of combined culture, however the separate tendon analogue strands had not 

fused together. This resembled the interfacial arrangement of folds of the same strand 

against (within) itself. The overall cross-sectional shape of the double-stranded 

tendon analogue was roughly biconcave (Figure 4.13), flatter at 1 week and bulkier 

at 5 weeks, representing the continuing compression of folds of fibrin gel in each 

maturing individual single-stranded tendon analogue. Histological findings were the 

same for triple-stranded constructs as for double-stranded, including the result of no 

strand fusion, except that the cross-sectional shape of triple-strands had 2 concavities 

on each upper and lower surface.   
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4.5.2.3 Suture Manipulation Experiments 

  

4.5.2.3.1 Vertical/Vertical 

The development of tendon analogues between opposing parallel vertical sutures is 

depicted in Figure 4.14 and graphed in Figure 4.15, highlighting general trends. Early 

formation was similar to basic suture-suture constructs (see Section 4.5.2.1), with 

most fibrin gel contraction occurring in the first 3 days and a roughly predictable 

rounded rectangle shape stretched between the suture anchors by day 7 (Figure 

4.14).  

Figure 4.13 | Histology of the Double Multi-Strand Tendon Analogue  
Representative histology micrographs of a double stranded tendon analogue at 1 week (left panels) 
and 5 weeks culture (right panels) after combination of pre-formed single strand tendon analogues, 
in mid-transverse (upper panels) and mid-coronal section (lower panels), showing morphological 
progression. By 1 week, the capsular cell layer (black arrows) has encompassed both strands as a 
single structure, although at the interface of the 2 strands (blue arrows) the capsular layer remains. 
At 5 weeks, the whole double tendon analogue structure is more rounded, compact and less flat, as 
the single strands fold tighter both into themselves and against each other. The interface between 
the 2 strands (blue arrows) is almost obliterated in some areas by 5 weeks, and barely perceptible in 
coronal section, and although the capsular cell layer may not be continuous at the interface, the 2 
strands have not merged together. H+E. 
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At day 0, the relative mean width of the gel at all 3 of the 25%, 50% and 75% distance 

measurement points (relative to the width of the gel averaged at both sutures) was 

similar in all constructs, ranging between 103.58 ± 1.12% (75% point, 10mm construct) 

and 106.87 ± 1.00% (50% point, 2mm construct) (Figure 4.15). The relative widths 

all increased by day 3 [ranging from mean widths of 105.06% (75% point, 5mm 

construct) to 118.39 ± 7.33% (25% point, 2mm construct)], apart from a small 

decrease at the 75% measurement in the 5mm construct (Figure 4.15b), and then 

followed a generally decreasing trend over the remaining time (Figure 4.15).  

 

Bowing of the tendon analogues between the sutures to a more ‘H’ shape was 

represented by a relative mean width of <100% of the width of the gel at the sutures, 

highlighted in graphed results (Figure 4.15). All 3 distance measurement points were 

<100% by day 7 in the 5mm construct (Figure 4.15b) and by day 14 and 21 in the 

10mm (Figure 4.15a) and 2mm (Figure 4.15c) constructs, respectively. The 50% 

measurement point (mid-point between sutures) for both the 10mm and 2mm 

constructs was however <100% by day 10.  

 

In the 10mm construct (Figure 4.15a), relative widths for all measurement points 

decreased until around day 21, where they then appeared to plateau and the tendon 

analogue shape did not clearly contract further (Figure 4.14). The 50% measurement 

registered the lowest relative mean width, to a minimum of 89.27 ± 2.28% at day 35, 

indicating that the bowing was greatest in the middle of the tendon analogue. The 25% 

measurement was consistently slightly less wide than the 75% measurement from 

day 10 onwards, reaching minimums of 93.04 ± 2.98% at day 28 and 95.65 ± 0.31% 

at day 35, respectively. From day 14 onwards, all 3 measurements generated small 

standard errors of the mean (error bars), showing that the shape of the tendon 

analogue from this point on was particularly consistent between the technical repeats. 

 

In the 5mm construct (Figure 4.15b), after a large decrease in relative width from day 

3-7 for all measurement points (25%: 14.39% decrease in relative width; 50%: 29.42%; 

75%: 20.82%), there was a general gradual decrease in relative widths until day 35, 

with the greatest rate of decrease in the 25% measurement and least in the 75%. The 

50% measurement point maintained the lowest relative width from day 14 onwards, 

reaching a minimum of 72.70% at day 35, the lowest relative width of all constructs, 

producing the greatest proportional macroscopic mid-point bowing (Figure 4.14). The 
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75% and 25% measurements reached similar, but larger, minimums on day 35, of 

79.24% and 79.99%, respectively. 

 

In the 2mm construct (Figure 4.15c), all 3 measurement points generally continued 

to decline in width from days 3-35, at a faster and steadier rate than the 5mm construct. 

The 50% measurement generally maintained the lowest relative width from day 7 

onwards, finishing at a minimum of 75.10 ± 13.20% on day 35, followed by the 75% 

measurement (minimum of 81.17 ± 9.95% on day 28) and then the 25% measurement 

(minimum of 88.83 ± 8.06% on day 35). The relative widths of the 75% and 25% 

measurement points appeared to plateau from day 21 onwards as the 50% point 

continued to decrease, further pronouncing the macroscopic mid-point bowing 

(Figure 4.14).   

 

In summary, all constructs showed minor mid-point bowing by day 10, which then 

generally increased with time, more so in smaller constructs. Bowing was greatest at 

the mid-point (50%) rather than the 25% or 75% points. All constructs therefore 

developed beyond a rectangular or more round shape, contracting to a slight ‘H’ 

shape, which was proportionally greatest in the 5mm and 2mm constructs. The 10mm 

construct was the least proportionally ‘H’ shaped, in contrast to hypothesised results. 
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4.5.2.3.2 Vertical/Horizontal 

Tendon analogue development between perpendicular vertical/horizontal sutures is 

depicted in Figure 4.16 and graphed in Figure 4.17. As per the vertical/vertical suture 

constructs, the general contracted shape of the gel, as directed by suture size and 

orientation, had formed by day 7, with only incremental shape changes thereafter. By 

day 7 the general macroscopic shape was a roughly rounded triangle, with a base 

(gel at vertical suture) wider than apex (gel at horizontal suture), although in the 

2/5mm construct the base was only very marginally wider than the apex (Figure 4.16).  

 

All construct gels began contraction from a similar mean width relative to the 

horizontal suture at day 0, ranging from 110.52 ± 0.94% (75% point, 2/5mm construct) 

to 113.58 ± 0.72% (50% point, 10/5mm construct) (Figure 4.17). Each construct then 

developed differently in relation to the horizontal gel width, whether maintaining the 

triangular shape or bowing to a ‘T’ shape.  

 

In the 10/5mm construct (Figure 4.17a), the mean width at each of the 25%, 50% and 

75% distance measurement points, also including that of the vertical suture itself (0%), 

increased with a roughly logarithmic-shaped curve relative to the width at the 

horizontal suture. At each time point values were always 0%>25%>50%>75%, and 

all measured points remained >100% of the horizontal suture width. The differences 

in relative mean widths between each of the measurement points also remained of 

similar proportional value as time progressed, describing a triangular shape without 

obvious bowing of its sides between the sutures (Figure 4.16).  

 

In the 5/5mm construct (Figure 4.17b), the relative mean width at each of the 25%, 

50% and 75% distance measurement points increased from day 0-3, after which the 

75% and 50% points decreased to <100% width of the horizontal suture gel by day 

14 and 17, respectively. From these days forward, the 50% point remained roughly 

equal to the 100% relative width, whilst the 75% point continued <100%, to a minimum 

of 87.57 ± 4.32% on day 21. These ≤100% measurements relative to the horizontal 

suture gel described a more ‘T’ shape of the tendon analogue, seen in overview from 

day 14 onwards (Figure 4.16). However, the gel did not contract tightly around the 

vertical suture (‘crossbar’ of the sideways ‘T’), as the width at the 25% point 

remained >100% width of the horizontal suture gel throughout, maintaining a similar 

value from day 3 onwards (Figure 4.17b). 
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In the 2/5mm construct (Figure 4.17c), the relative mean width of each of the 3 main 

distance measurement points generally gradually decreased with time, directly from 

day 0 for the 25% and 50% points, and from day 3 for the 75% point. The 25% and 

50% points decreased to <100% width of the horizontal suture gel by day 7, reaching 

minimum mean relative widths of 85.84 ± 10.96% and 66.36 ± 7.42% (the lowest 

relative width of all constructs), respectively, both at day 28. The 75% point reached 

<100% by day 10, to a minimum of 88.05 ± 4.67% on day 31. The minimum mean 

widths for each of the 25%, 50% and 75% points were all lowest in this construct, 

showing that it developed the greatest proportional ‘T’ shape. Yet since the gel width 

at the 2mm vertical suture (0% distance) only reached a maximum mean value of 

136.87 ± 13.08%, at day 35, clearly much less than in the constructs with larger 

vertical sutures (210.94 ± 28.51%, 5/5mm construct; 377.85 ± 54.50%, 10/5mm 

construct), the ‘T’ shape was less obvious in overview (Figure 4.16). 

 

In summary, the 10/5mm construct remained triangular whilst the gel between the 

sutures bowed to a more ‘T’ shape in the 5/5mm and 2/5mm construct, proportionally 

greatest in the 2/5mm construct. The smaller the vertical suture the greater the 

proportional T shape, which was the opposite of hypothesised results.  
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4.5.2.4 Anatomical Suture Experiments 

 

4.5.2.4.1 Standard Volume Gel 

Overview photographs of developing standard volume gel anatomical suture-suture 

tendon analogue constructs are displayed in Figure 4.19. Graphical representations 

of fibrin gel contraction over time for all culture variables (including double volume gel 

variables) are shown at each distance measurement point in Figures 4.21a (0% 

distance, left suture), 4.22a (25%), 4.23a (50%), 4.24a (75%) and 4.25a (100%, right 

suture), with standard volume gel culture variables isolated for clarity in Appendix 5. 

OCT images of standard volume gel constructs are included in Figure 4.26.  

 

Of the 9 constructs set up for each culture variable, 3 from each ‘S-DMEM’ and 

‘+AA+P’ cultures and 2 from each ‘RODM’ and ‘mid-point pins’ cultures were excluded 

from gel width analysis. Exclusion was due to failure of integrity of the fibrin gel 

between or around suture anchors which was deemed to have affected gel width 

within the 56 day analysis period. Failure between anchors often resulted from foci of 

poor gel attachment to suture anchors. Examples are displayed in Appendix 6. 

Construct n numbers analysed were therefore 6 for ‘S-DMEM’ and ‘+AA+P’ cultures 

and 7 for ‘RODM’ and ‘mid-point pins’ cultures. 

 

Overview photographs (Figure 4.19) showed that the tendon analogue for all 

constructs had taken general shape by day 7, and that the fibrin gel had contracted 

well around the sutures by day 14. The general morphology appeared to undergo no 

further clear macroscopic morphological change after days 21-28. The extra mid-point 

pin anchors evidently restricted gel contraction, with the gel region between the 

Table 4.1 | Width Difference between Gel at Suture and Suture Itself 
Table of collated calculated measurements at progressive time points. ‘Suture Size’ refers to size (width) 
of sutures used in vertical/vertical suture tendon analogue constructs. Mean (±SEM). See Figure 4.18.  



234 
 

sutures appearing of greater width than the ‘S-DMEM’, ‘+AA+P’ and ‘RODM’ cultures. 

Mild-minimal central bowing was apparent in ‘S-DMEM’, ‘+AA+P’ and ‘RODM’ 

cultures, distinct from around day 14-21 onwards. The ‘RODM’ tendon analogue 

developed regions of opacity after a few weeks, with an opaque precipitate also 

gathering in the well bottom by day 14. Addition of alizarin red to this precipitate layer 

at the conclusion of culture (day 77) positively stained for calcium mineral, although 

the tendon analogue itself had already been removed and was not tested.   

 

Mean gel widths at the 0% distance measurement point (at the mid-point of the left 

suture) (Figure 4.21a, Appendix 5a) were similar between culture variables, with no 

standard volume gel culture variable significantly different to ‘S-DMEM’. The greatest 

decrease in recorded mean width was between day 7 and 14 for all standard gel 

volume variables, then from day 14-21, as was generally common for all distance 

measurement points. Mean gel width generally plateaued after day 21, apart from 

‘+AA+P’ culture which decreased further to day 28, at which point it was the only 

culture variable to approximate the corresponding human FDP tendon width at the 

base of its bony insertion (8.58mm, also the suture size), continuing close to this value 

over subsequent weeks. Mean gel width in other culture variables remained around 

0.5mm wider from day 21 onwards, at ≈9mm. 

 

At 25% distance between sutures (Figure 4.22a, Appendix 5b), ‘S-DMEM’ and 

‘+AA+P’ cultures were similar, reaching a plateau in mean gel width close to the 

corresponding human FDP tendon width (7.16mm) around day 28. ‘Mid-point pins’ 

culture was significantly wider than ‘S-DMEM’ culture (p<0.01), similarly plateauing at 

day 28 but approximately 1-1.5mm wider than ‘S-DMEM’ and ‘+AA+P’ cultures. Gel 

width contracted more steadily with ‘RODM’ culture, appearing to plateau later at day 

42, and remained at a greater width than ‘S-DMEM’ culture at all measured time points, 

but was not significantly different overall.  

 

At the 50% distance point (Figure 4.23a, Appendix 5c), the pattern was very alike to 

the 25% distance. ‘Mid-point pins’ culture was the only variable significantly wider than 

‘S-DMEM’ culture (p<0.001), remaining around 2mm wider from day 14 onwards. ‘S-

DMEM’ and ‘+AA+P’ cultures were similar, although mean gel width with ‘+AA+P’ was 

greater at early (day 7) time points and less at later time points (day 35 onwards), but 

the overall difference was non-significant. ‘+AA+P’ culture contracted the gel to a 
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mean width of 5.50 ± 0.13mm by day 56, 0.55mm less than the corresponding human 

FDP tendon width (6.05mm). Mean gel width in ‘S-DMEM’ culture plateaued at the 

approximate FDP tendon width from day 21-28, whilst ‘RODM’ cultures plateaued at 

a similar width on day 42, as per the 25% distance. OCT images at the 50% distance 

point (Figure 4.26) revealed the cross-sectional morphology of the standard volume 

gel constructs, clearly showing bunching and folding of the gel at the peripheries with 

a thin central region, as suggested by 2D overview photography. Inward folding/rolling 

of the peripheral gel was particularly striking in the ‘+AA+P’ tendon analogue, in 

contrast to the ‘mid-point pins’ tendon analogue which was relatively even throughout 

cross-section, maintained by the additional pin anchors. 

 

The general comparative pattern between the standard volume gel culture variables 

persisted into the 75% distance measurement point (Figure 4.24a, Appendix 5d). 

‘Mid-point pins’ culture was again the only variable significantly wider than ‘S-DMEM’ 

(p<0.01), maintaining a mean gel width approximately 1-1.5mm greater than ‘S-

DMEM’ culture from day 21 onwards. Each culture variable reached a plateau in mean 

gel width at day 28, apart from ‘RODM’, again at day 42. ‘RODM’ culture reached a 

similar mean width at plateau to ‘S-DMEM’, which was around 0.5mm greater than 

the corresponding FDP tendon width of 5.08mm. ‘+AA+P’ culture was the only culture 

variable to produce a mean gel contraction to the approximate width of the 

corresponding FDP tendon width, from day 28 onwards. 

 

At 100% distance (mid-point of the right suture) (Figure 4.25a, Appendix 5e) the 

pattern of gel contraction over time across standard volume gel culture variables was 

similar to at 0%. No culture variables were significantly different to ‘S-DMEM’. 

However, gel width in ‘+AA+P’ culture was notably smaller than other cultures from 

day 21 onwards, from where its mean gel width continued at a similar width to the 

corresponding FDP tendon (4.69mm, also the suture size) without fully reaching it 

(minimum 4.73 ± 0.14mm, day 56). Plateauing of mean gel width generally occurred 

between day 21 and 28, although ‘RODM’ culture appeared to plateau later, reaching 

a minimum width at day 42 (5.13 ± 0.21mm). 

 

4.5.2.4.2 Double Volume Gel 

Overview photographs of developing double volume gel anatomical suture-suture 

tendon analogue constructs are displayed in Figure 4.20. Graphical representations 
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of fibrin gel contraction over time for double volume gel culture variables are shown 

with all culture variables and compared to ‘S-DMEM’ in Figures 4.21a (0% distance, 

left suture), 4.22a (25%), 4.23a (50%), 4.24a (75%) and 4.25a (100%, right suture), 

and are shown in isolation and compared to the standard double volume gel culture 

(i.e. ‘double gel’, cultured in S-DMEM) at the same distance measurement points in 

Figures 4.21b, 4.22b, 4.23b, 4.24b and 4.25b. OCT images of double volume gel 

constructs are included in Figure 4.26 and are the focus of Figure 4.27.  

 

Tendon analogues in all double volume gel constructs were more robust than in 

standard volume gel constructs. There were no integrity failures in the developing 

fibrin gel, and all constructs set up were included in analysis (n=9 for each culture 

variable). 

 

Overview photographs (Figure 4.20) demonstrated that the general formation and 

maturation of double volume gel constructs was similar to standard volume gel 

constructs (Figure 4.19), taking shape by day 7 and maintaining a very similar 

macroscopic morphology from day 21-28 onwards. Their increased robustness 

compared to standard volume gel counterparts was evident in their denser, more 

opaque appearance. ‘Double gel/+AA+P’, ‘double gel/double cells’ and ‘double 

gel/double cells/+AA+P’ cultures showed relatively similar gel contraction in general 

overview, with mild-minimal central bowing between sutures, compared to the less 

contracted ‘double gel’ culture, which maintained straighter sides to the tendon 

analogue shape. 

 

At the 0% distance measurement point (mid-point of the left suture) (Figure 4.21), 

mean gel width in ‘double gel’ and ‘double gel/+AA+P’ cultures was significantly wider 

than ‘S-DMEM’ culture (p<0.01 and p<0.001, respectively) (Figure 4.21a). However, 

all culture variables, including standard volume gel variables, showed a tight range in 

mean gel widths, particularly from day 14 onwards where the range from widest 

(‘double gel’) to smallest (‘+AA+P’) at each time point was always <1.00mm. 

Comparing the double volume gels in isolation (Figure 4.21b), ‘double gel/double 

cells’ and ‘double gel/double cells/+AA+P’ cultures were significantly more contracted 

than ‘double gel’ culture (p<0.001 and p<0.01, respectively), whilst the ‘double 

gel/+AA+P’ culture maintained similar mean gel widths to ‘double gel’ throughout. All 

double volume gels appeared to plateau around day 28, although each variable 
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reached its lowest mean gel width on the final day of analysis. No variables reached 

the corresponding FDP tendon width of 8.58mm (also the suture size), the closest 

being ‘double gel/double cells’ culture on day 56, at 8.84 ± 0.09mm. 

 

Gel width data was more spread at the 25% distance point (Figure 4.22). All double 

volume gel variables were significantly wider than ‘S-DMEM’ culture (‘double gel’, 

p<0.001; ‘double gel/+AA+P’, p<0.001; ‘double gel/double cells’, p<0.05; ‘double 

gel/double cells/+AA+P’, p<0.05), although notably those with double cell number 

were more contracted and less significantly different from ‘S-DMEM’ (Figure 4.22a). 

Compared to ‘double gel’ culture (Figure 4.22b), all other double volume gel variables 

were significantly narrower (all p<0.001), with ‘double gel/double cells’ and ‘double 

gel/double cells/+AA+P’ being the narrowest and registering very similar mean gel 

widths at all time points. Although the majority of contraction had occurred in all double 

volume gels by day 28, mean gel width continued to incrementally fall with subsequent 

time points, with all minimum values reached on day 56. No variables reached the 

corresponding FDP tendon width of 7.16mm, with ‘double gel/double cells’ and 

‘double gel/double cells/+AA+P’ closest, ≈0.5mm wider on day 56. 

 

Midway between the sutures at the 50% distance (Figure 4.23), the individual and 

comparative patterns in mean gel widths were very similar to the 25% distance. All 

double volume gel variables were significantly wider than ‘S-DMEM’ culture (‘double 

gel’, p<0.001; ‘double gel/+AA+P’, p<0.001; ‘double gel/double cells’, p<0.01; ‘double 

gel/double cell/+AA+P’, p<0.05), although ‘double gel/double cells/+AA+P’ was within 

0.40mm of ‘S-DMEM’ culture by day 56 (Figure 4.23a). Compared to ‘double gel’ 

culture (Figure 4.23b), all other double volume gel variables were again significantly 

narrower (all p<0.001). ‘Double gel/double cells/+AA+P’ culture was the narrowest at 

all time points, however remained just wider than the corresponding FDP tendon width 

of 6.05mm, at 6.31 ± 0.27mm on day 56. Mean gel width continued to decrease with 

time for each variable, although the difference in mean widths between day 28 and 

56 was always <0.65mm.  

 

Patterns were similar at the 75% distance (Figure 4.24), although the main difference 

was that ‘double gel/double cells/+AA+P’ culture was not significantly different to ‘S-

DMEM’ (Figure 4.24a). The other double volume gel variables remained significantly 

wider than ‘S-DMEM’ (‘double gel’, p<0.001; ‘double gel/+AA+P’, p<0.001; ‘double 
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gel/double cells’, p<0.01). As with 25% and 50% distances, all other double volume 

gel variables were significantly narrower compared to ‘double gel’ culture (all p<0.001) 

(Figure 4.24b). ‘Double gel/double cells/+AA+P’ culture was again clearly the 

narrowest at all time points, but not reaching the corresponding FDP tendon width of 

5.08mm, closet at 5.35 ± 0.24mm on day 56. Each variable showed a continuous 

decreasing pattern in mean gel width over all time points in the same manner as at 

the 25% and 50% distances.  

 

At the 100% distance (mid-point of the right suture) (Figure 4.25), mean gel widths 

for all culture variables, including standard gel volume variables, were spread over a 

tighter range at all time points (Figure 4.25a), as at 0% distance, compared to the 

distance measurement points between the sutures. In contrast to the 0% distance 

however, only ‘double gel’ culture was significantly wider than ‘S-DMEM’ (p<0.01) and 

the data range from day 14 onwards between widest mean gel width (‘double gel’) 

and narrowest (‘+AA+P’) was slightly greater, from 1.57mm at day 14 to 1.08mm at 

day 56. Compared to ‘double gel’ culture (Figure 4.25b), all other double volume gel 

variables were significantly narrower, at various levels of significance, from most 

significantly different (‘double gel/double cells/+AA+P’, p<0.001) to least (‘double 

gel/double cells’, p<0.05). As at 0% distance, the mean gel width of each variable 

appeared to plateau more from day 28 onwards, however each variable’s minimum 

mean gel width was registered on the final day of analysis, day 56. ‘Double gel/double 

cells/+AA+P’ culture again gave the most contracted gel, at a minimum of 4.90 ± 

0.16mm on day 56, but still not contracted to the corresponding FDP width (also right 

suture) of 4.69mm. 

 

OCT images showed the increased thickness (depth) of double volume gel constructs 

in cross-section at the 50% distance, in comparison to standard volume gel constructs 

(Figure 4.26). However, the central region of double volume gel constructs could still 

show non-uniform thickness, even becoming as thin as standard volume gel 

counterparts in focal areas (see ‘double gel’ variable, Figure 4.26). Folding and 

bunching of the peripheral gel regions was similar to standard volume gel constructs, 

but of greater 2D area, and similarly those constructs in media supplemented with 

AA+P appeared to demonstrate a greater degree of folding, as opposed to bunching, 

at their peripheries. Multiple slices through the same tendon analogue construct 

(‘double gel/double cells/+AA+P’, Figure 4.27) showed that the extent of peripheral 
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folding increased from 25% to 50% to 75% distance through the construct, suggesting 

an increase in folded area the nearer to the smaller suture anchor. In accordance, 

while the central region remained of relatively similar thickness, the width of the gel 

generally decreased towards the smaller suture anchor, leaving a greater area 

(volume) of gel for folding/bunching at the periphery if equivalent contraction occurred 

throughout the construct.  

 

4.5.2.4.3 Summary of Effect of Culture Variables 

Supplementation of S-DMEM with AA+P: In standard volume gels, ‘+AA+P’ cultures 

were more contracted at every time point from day 14 onwards than ‘S-DMEM’ 

cultures (except for day 14 at 50% distance), but never significantly so overall. Notably 

however, ‘+AA+P’ cultures were always less contracted than ‘S-DMEM’ cultures on 

day 7. In double volume gels with regular cell number, ‘double gel/+AA+P’ cultures 

were more contracted at every time point than ‘double gel’ cultures (except for day 14 

at 0% distance), significantly so overall at all distances except 0%. In double volume 

gels with double cell number, ‘double gel/double cells/+AA+P’ cultures were always 

more contracted than ‘double gel/double cells’ cultures at every time point at 50%,  

75% and 100% distances, but were very similar at 0% and 25% distances. ‘Double 

gel/double cells/+AA+P’ was the double volume gel variable most similar to ‘S-DMEM’ 

culture, not significantly different at 0%, 75% and 100% distances. 

 

Culture in RODM: ‘RODM’ cultures were never significantly different to ‘S-DMEM’ 

cultures. At the position of the sutures, at 0% and 100% distances, both cultures were 

very similar at all time points. Between the sutures, at 25%, 50% and 75%, ‘RODM’ 

cultures were notably less contracted than ‘S-DMEM’ cultures from day 7-35, but then 

reached a plateau at a similar width as ‘S-DMEM’ from day 42 onwards. 

 

Addition of extra pin anchors between sutures: ‘Mid-point pins’ cultures were 

significantly less contracted than ‘S-DMEM’ cultures between sutures (at 25%, 50% 

and 75% distance), but not significantly different at the position of the sutures (at 0% 

and 100% distance). ‘Mid-point pins’ cultures were wider most significantly at the 50% 

distance where the pins were placed, (p<0.001), compared to the 25% and 75% 

distance (both p<0.01). Despite placing the pins at an intervening width of 6.05mm, 

that of the corresponding FDP tendon width, mean gel width plateaued at 1.58-

1.81mm wider from day 28 onwards.  
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Doubling gel volume: ‘Double gel’ cultures were always significantly wider than ‘S-

DMEM’ cultures, more so between sutures (25%, 50%, 75% distances, p<0.001) than 

at the suture position (0% and 100% distances, p<0.01). Mean gel width for ‘double 

gel’ cultures was always the least contracted variable at all time points for all distances 

(apart from day 14 at 0% distance). 

 

Doubling cell number: ‘Double gel/double cell’ cultures were significantly more 

contracted than ‘double gel’ cultures at all distances. Compared to ‘S-DMEM’ cultures, 

‘double gel/double cell’ cultures were still significantly wider at the 25%, 50% and 75% 

distance points, but always less significantly different than ‘double gel’ cultures. 

 

Acellular control cultures did not display contraction of the fibrin gel (Appendix 7). 
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Figure 4.26 | OCT Images at 50% Distance through Anatomical Suture Constructs 
2D cross-sectional OCT scan images midway between sutures (50% distance) for all culture variables 
in anatomical suture tendon analogue constructs, obtained from constructs fixed on day 77. The 
‘Mid-point Pins’ scan was taken just beyond 50% distance to avoid interference from the positioned 
pins. Tendon analogue formation has occurred by folding or bunching of fibrin gel at the peripheries, 
with the central gel region remaining generally flat. The central region in the standard volume gels 
(‘S-DMEM’, ‘+AA+P’, ‘RODM’ and ‘Mid-point Pins’) is particularly thin, although it is thicker for the 
‘Mid-point Pins’ culture where the pin anchors have prevented excessive peripheral gel 
folding/bunching. Constructs with addition of AA and P to culture media (‘+AA+P’, ‘Double 
Gel/+AA+P’ and ‘Double Gel/Double Cells/+AA+P’) appear to have a more folded peripheral gel 
appearance, whereas those in S-DMEM alone (‘S-DMEM’, ‘Mid-point Pins’, ‘Double Gel’, ‘Double 
Gel/Double Cells’) show a comparatively more bunched appearance at gel peripheries. The ‘RODM’ 
tendon analogue appears hyperdense, most likely due to precipitants from the RODM, causing light 
attenuation and consequently the lower half is shadowed. Scale bar 500µm throughout.      
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Figure 4.27 | OCT Images through a ‘Double Gel/Double Cells/+AA+P’ Anatomical Suture Construct 
Multiple OCT scan images through a single anatomical suture-suture tendon analogue construct, 
showing 2D cross-sections at 25% (a), 50% (b) and 75% (c) distances between sutures and a 3D 
volumetric segment (d). Inset images (right) show the corresponding region of cross-sectional slice 
(red line) or area segment (red box) on the construct (equal scale all panels). The closer the fibrin gel 
to the smaller suture anchor, the greater the 2D area of peripheral folded gel (a, b, c). The 3D 
reconstruction (d) shows the comparatively flat profile of the central region, with an elliptical area of 
deficiency in the gel crossed by the right edge of the area segment (red box, inset image) only a 
discontinuity of the cortical layer. Scale bar 500µm for 2D cross-sectional images, surrounding box in 
3D image shows millimetre scale.  
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4.5.3 Bone Anchor  

 

4.5.3.1 Basic Tendon-Bone Constructs 

The bone block acted as a successful anchor to the fibrin gel, and gel contraction and 

maturation proceeded similarly over time as per a basic suture-suture construct (see 

Section 4.5.2.1). The majority of gel contraction occurred within the 1st week, with 

slow maturation of the tendon analogue continuing to the full 12 weeks of culture 

(Figure 4.28). The tendon analogue attached around all sides of the base of the bone 

anchor, representative of the fibrin gel contracting from the well edge and enclosing 

around the bone anchorage point (Figure 4.28). The tendon-bone attachment was 

maintained on lifting the bone anchor and gently stressing the attachment at weeks 5 

and 12 of culture (Figure 4.29). Approximately equal gentle axial tension was applied 

during both time points, however no assessment of (difference in) strength to failure 

was made.    

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.29 | Attachment of Basic Tendon-Bone Construct at 12 Weeks 
Oblique overview photographs of a tendon analogue attaching to a cuboidal Reprobone bone anchor 
at 12 weeks (day 84) of culture in S-DMEM in a 35mm well. The bone anchor is picked up with forceps 
to demonstrate attachment around its base, showing the lateral surface (a), inferior surface (b) and 
superior surface (rotated 90o to face camera) of the bone anchor (c). The tendon analogue attaches to 
each bone anchor surface around its base but not onto the inferior surface itself. Scale bar 5mm 
throughout.   
 

Figure 4.28 | Basic Tendon-Bone Construct Formation 
Overview photographs of a basic tendon-bone construct forming by fibrin gel contraction around a 
cubed Reprobone bone anchor (left) and suture anchor (right) in a 35mm well, over 12 weeks (84 days) 
of culture in S-DMEM. Fibrin gel initially fills the whole well, already considerably contracted by day 3, 
and by day 8 the majority of contraction has occurred. Gel contraction becomes progressively tighter 
around the bone anchor and suture anchor with time. As the fibrin contracts, the greatest gel density 
lies at its peripheries, with a thinner, more translucent, area at the leading edge of the bone anchor (see 
day 15, red arrow); this progressively fills in as the tendon analogue matures. Scale bar 5mm throughout. 
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4.5.3.2 Brushite Acid Washout Trials 

Brushite bone anchors ceased to acidify their culture medium on their 5th wash 

(Figure 4.30). S-DMEM acidity was most obvious in the 1st wash of S-DMEM, turning 

the S-DMEM yellow. pH change in the 2nd, 3rd and 4th washes was progressively less, 

with a more subtle orange-red colour change. By the 4 h wash, some wells appeared 

the same colour as controls, but only by the 5th wash were all experimental wells 

judged to be the same colour as controls. Size of anchor did not make an obvious 

difference to the culture medium acidity. These results were found for both the air 

drying trial (Figure 4.30a) and non-air drying repeat (Figure 4.30b). 

 

6 h and 7th washes beyond a 5th wash, undertaken in the non-air drying repeat (Figure 

4.30b), produced the same colour of S-DMEM in all wells as the 5th wash, 

demonstrating that these had no additional effect on pH. After 7 hours in the 7th S-

DMEM wash, the colour still remained the same between experimental and control 

wells, suggesting that no further acid had been released by the brushite. However, in 

all wells the S-DMEM was bright pink, indicating an increase in alkalinity in the culture 

medium with or without brushite.  

 

A further observation from both trials was that the anchors effervesced in the early 

period of the 10 minute S-DMEM wash in the 1st and 2nd washes. This was obvious in 

the 1st wash, with very slight effervescence in the 2nd wash, but was not apparent in 

the 3rd or following washes. With progressive washes it was also noticed that the slight 

remaining material sediment in the anchor wells after they had been transferred to a 

fresh plate became progressively less with each wash, and much reduced after the 

3rd and following washes. 
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4.5.3.3 Osteoblast Seeding Trial 

dRObs attached and proliferated on the brushite scaffold discs over a 7 day period.  

 

4.5.3.3.1 Seeding Efficiency 

Of the 10,000 dRObs seeded, a mean of ≈1300 cells (1314 ± 305) was measured 

attached to the scaffold after 5 hours, yielding a total seeding efficiency of 13%. A 

similar mean of ≈1500 cells (1535 ± 128) was measured unattached, suggesting 46% 

of recorded cells were able to attach, however ≈7200 cells (72%) were unaccounted 

for (Figure 4.31). dRObs displayed approximately 6x better attachment to the treated 

culture plastic of the positive controls, with ≈8200 cells (8244 ± 361) attached after 5 

hours on day 0 (Figure 4.32b), compared to the scaffold.     

 

 

 

 

 

 

 

 

 

 

 

 

4.5.3.3.2 Proliferation 

From day 0 to day 2, numbers of dRObs attached to the brushite scaffold disc were 

similar, proliferating slightly from a mean of approximately 1300 (1314 ± 305) to 1400 

(1418 ± 248), respectively. At day 7, dRObs had proliferated more considerably to 

≈4000 cells (3944 ± 1404), although this was not a significant increase (Figure 4.32a). 

On the treated culture plastic of the positive controls, dRObs doubled from 

approximately 8200 (8244 ± 361) to 16,200 (16,246 ± 1582) (p<0.01) after 2 days of 

culture. At day 7, they had significantly proliferated to ≈106,200 cells (106,213 ± 1762) 

(p<0.001) (Figure 4.32b), 27x more numerous than on the scaffold at the same time 

point. 

 

 

Figure 4.31 | Osteoblast Seeding Efficiency on Brushite Scaffold 
Comparison of number of dRObs attached to the brushite scaffold with those 
unattached (recovered from the seeding well) after seeding on day 0. Cell 
numbers are comparatively similar and not significantly different. Mean ± SEM. 
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4.6.1.1.1 Rat Tendon Fibroblasts  

RTFs never produced a mineralised ECM in any tested media in the current 

experiments, showing that they did not transdifferentiate into osteoblasts in RODM 

culture. In both S-DMEM and RODM cultures, they were spindle-shaped cells that 

appeared to produce regions of ECM within 2 weeks of confluence (day 18) on light 

microscopy. However, in later culture periods (day 18 and 25) there were observable 

differences, suggesting that sustained RODM culture was causing some phenotypic 

drift. In RODM, cells appeared more tightly packed, with greater areas of more 

discretely observable ECM, and fragmentation of the cell layer occurred. This was 

likely due to the AA in RODM. AA increases the synthesis and secretion of collagen, 

by functioning as a co-factor in the hydroxylation of lysine and proline residues to 

collagen (Gallagher, Gundle and Beresford, 1996) and increasing procollagen 

messenger ribonucleic acid (RNA) gene transcription and stability (Prockop and 

Kivirikko, 1984). It also increases cellular proliferation, for example in fibroblasts 

(Lima et al, 2009), MSCs (Fujisawa et al, 2018) and osteoblasts (Gartland et al, 

2012), and increases total non-collagenous protein synthesis (Gallagher, Gundle 

and Beresford, 1996). The cells were therefore probably producing an ECM of 

increased collagenous (and non-collagenous) matrix in the RODM, noticeable as 

more nodular areas in culture, generating contraction of a monolayer of increased 

stiffness and leading to the regions of fragmentation. Whether this represented 

enhanced function of fibroblasts or a true drift towards an osteoblast phenotype is 

not discernible by observation alone. In either case, culture in 50:50 medium 

appeared to reduce the progressive characteristics noted in RODM, and although 

the ECM did appear more nodular than in S-DMEM culture, the degree of ECM 

production/composition that might cause monolayer fragmentation did not occur.  

  

4.6.1.1.2 Rat Bone Marrow-Derived Mesenchymal Stem Cells  

BMSCs were isolated to especially explore if they could develop functional osteoblast 

characteristics for use in the tendon-bone model, as well as to potentially provide a 

future source of differentiated fibroblasts or chondrocytes. It was thought that the 

constituents of RODM would confer an osteoblastic ability to mineralise ECM upon 

the BMSCs, but this did not occur within the 25 day experiments. A basal culture 

medium with the addition of AA and phosphate, with or without glucocorticoid, can 

induce osteoblast differentiation in MSCs, for example in human (Jaiswal et al, 1997; 

Tare et al, 2012) or rat (Maniatopoulos, Sodek and Melcher, 1988), even after 
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maintenance of primary cultures in basal medium without AA for an initial 1-2 weeks. 

If AA and phosphate were ingredients in RODM, the current BMSCs may not have 

undergone osteoblast differentiation due a number of potential reasons. The limit of 

25 experimental days may not have allowed sufficient time for differentiation, which 

may require several weeks (Vater, Kasten and Stiehler, 2011). Primary and early sub-

cultures were not immediately cultured in AA, potentially precluding mineralising 

capability or indeed an ability to generate ECM at all, as seen in osteoblast primary 

cultures (further discussed in Section 4.6.1.1.3). Many osteogenic differentiation 

protocols also include additional vitamin D3 and factors such as transforming growth 

factor(TGF)-β and bone morphogenetic proteins (BMPs) (Vater, Kasten and Stiehler, 

2011), which may not have been present in RODM. Despite not conferring a 

mineralising ability, BMSCs did however display a morphology and behaviour very 

similar to RObs. This suggests possible development down a ‘pre-osteoblast’ lineage 

(see Section 4.6.1.1.3), yet is unlikely since this observable phenotype was also seen 

in S-DMEM as well as RODM cultures. Although BMSCs were only tested in a single 

biological set of cells, following these results they were not explored further for use in 

the tendon-bone model. 

 

4.6.1.1.3 Rat Osteoblasts  

RObs, from the single successful explant culture, did not produce a mineralised ECM 

in either S-DMEM or RODM cultures, or appear to generate any ECM visible on light 

microscopy altogether. In RODM culture this was highly unexpected, as RODM was 

stated to promote osteoblast differentiation and matrix mineralisation, which indeed 

did occur in dRObs cultured in RODM (Section 4.6.1.1.4). Bone explant cultures 

consist of osteogenic lineage cells of all stages of differentiation and maturation 

(Gartland et al, 2012), and cultures may have been dominated by particularly 

proliferative pre-osteoblasts. Such cells have yet to develop full osteoblast phenotype, 

and may explain the observed similarity to BMSC cultures if the BMSCs were likewise 

partially differentiated. Yet the current primary ROb cultures did display osteoblast 

characteristics of a rounded/polygonal morphology and a cobblestone appearance at 

early confluence, different to BMSCs, and isolates were from an adult, rather than 

neonate, where cells are more liable to be mature, less proliferative and more 

differentiated. A further reason for lack of mineralisation may be that, despite the 

current cells being in a relatively early 2nd passage, osteoblasts are known to lose 

their osteoblastic phenotype on repeated culture (Gartland et al, 2012), with foetal rat 
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calvarial osteoblasts even reportedly losing mineralising ability on or after their 3rd 

population doubling (Moskalewski, Boonekamp and Scherft, 1983). The most 

pertinent issue however appears to be the lack of AA, necessary for osteogenic 

differentiation of primary osteoblast isolates (Orriss et al, 2014), in extended early 

culture. Early investigators also came upon lack of mineralising ability in primary bone 

isolates for this reason (Ashton et al, 1985). AA is required continuously in primary 

culture to provide cells with the capability to mineralise their ECM, and even if AA is 

first added to secondary sub-cultures for extended periods, the cells will not mineralise 

or secrete significant matrix (Gallagher, Gundle and Beresford, 1996; Gartland et al, 

2012). The current cells were grown in primary culture for 15 days, then in 1st passage 

for 33 days, both in S-DMEM alone, before cryopreservation. It seems therefore that 

RObs, whether pre-osteoblasts or originally mature osteoblasts, were in a state 

incapable of secreting or mineralising ECM even if cultured in RODM. RObs were 

therefore not used as the osteoblast source for further experiments in developing the 

tendon-bone co-culture model. 

 

4.6.1.1.4 Differentiated Rat Osteoblasts  

dRObs were derived from a commercially acquired line of healthy rat bone isolates, 

which appeared of differing phenotype in the acquired 1st passage (larger morphology, 

slower proliferation) to those cells considered ‘differentiated’ (dRObs) after 4-5 

passages. Testing whether these dRObs had not transdifferentiated towards a more 

fibroblastic phenotype and were still osteoblasts capable of mineralising was a 

principle reason for conducting the set of mineralising experiments. dRObs were duly 

confirmed as differentiated and active osteoblasts, showing ECM secretion and 

mineralising abilities, and were therefore used as the osteoblast source for the 

tendon-bone co-culture model.   

 

dRObs produced macroscopically visible 3D nodular aggregates of cells, raised into 

different focal planes by secreted ECM, in both S-DMEM and RODM. Although the 

nodules were not analysed in depth, their formation matched descriptions of the 

characteristic collagenous ECM formed in differentiated osteoblast cultures (Bellows 

et al, 1986; Maniatopoulos, Sodek and Melcher, 1988; Gallagher, Gundle and 

Beresford, 1996; Mechiche Alami et al, 2016). In particular, the nodules coalesced 

into a web-like trabecular pattern, characteristic of rat osteoblast cultures (Orriss et al, 

2014). ECM nodules do not form without a medium containing AA (Bellows et al, 1986; 
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Gartland et al 2012), however the current cells still formed ECM nodules when 

cultured in S-DMEM without AA. This suggests that the original commercially acquired 

isolates were primary cultured in a medium containing AA, potentiating an ECM 

secreting and mineralising ability despite the lack of AA in subsequent sub-culture 

media, highlighting its importance in primary culture. As expected, dRObs only 

mineralised the ECM in RODM and 50:50 medium culture, due to the presumed 

phosphate ingredient in RODM that is essential to mineralisation (Bellows et al, 1986; 

Maniatopoulos, Sodek and Melcher, 1988; Gallagher, Gundle and Beresford, 1996; 

Gartland et al, 2012; Orriss et al, 2014). Analysis of such mineralised nodules have 

shown their histological and immunochemical similarity to in vivo woven bone, 

containing surface osteoblast-like cells and osteocyte-like cells buried deeper within 

a mineralised matrix of predominantly type I collagen (Bellows et al, 1986; 

Maniatopoulos, Sodek and Melcher, 1988; Beresford, Graves and Smoothy, 1993; 

Mechiche Alami et al, 2016).  

 

4.6.1.2 Selection for Co-Culture 

The ultimate goal of the project was to design an in vitro 3D tendon-bone model with 

co-culture of fibroblasts and osteoblasts. The mineralisation experiments were 

designed to select the most suitable fibroblasts, osteoblasts and culture medium for 

co-culture from the cells and media formulations reasonably available. A single 

species co-culture was important for observations of cellular interaction in cells of the 

same species, and to maintain translational proximity to an eventual human co-culture 

model as an immunocompatible implant. Rat cell populations were therefore isolated 

and acquired, as cells easily obtainable and well characterised for literature 

comparison. In addition, since a compartmentalised bioreactor design of different 

culture media was beyond the scope of the project, an important feature for a single 

compartment co-culture design was a medium choice to optimally maintain both 

fibroblasts and osteoblasts simultaneously. 

 

RTFs and dRObs were suitable and representative fibroblast and osteoblast 

populations, due to the observed phenotype in their respective supporting media (S-

DMEM or RODM) as described in Section 4.6.1.1. Although certain changes in cell 

behaviour were perceived when one cell type was cultured in medium supportive of 

the other, culture of either cell type in a 50:50 mix of both media was encouraging for 

single compartment co-culture. The increased proliferation and ECM production of 
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RTFs in RODM was lessened in 50:50 medium, and dRObs, not able to mineralise 

ECM in S-DMEM, achieved mineralisation in 50:50 medium, although a week later 

than in RODM. Avoidance of fibroblast osteogenic drift and osteoblast loss of 

mineralising ability are key lines of inquiry in the development of novel co-culture 

systems (Wang et al, 2007; Cooper et al, 2014; Calejo et al, 2018). These studies 

were able to induce fibroblast ECM mineralisation with medium containing AA, β-GP, 

± dexamethasone, not seen in the current mineralisation experiments with RTFs in 

RODM, or 50:50 medium. Concentration of β-GP was particularly crucial to their 

optimum co-culture medium, where 1-3mM β-GP maintained osteoblast 

mineralisation but limited fibroblast mineralisation (Wang et al, 2007; Cooper et al, 

2014). This is notably similar to the 2mM optimal β-GP concentration for culturing 

bone-forming rat osteoblasts (Orriss et al, 2014), although comparison cannot be 

made with the current dROb cultures as the concentration of β-GP in RODM is 

unknown. Where detailed control of mineralising medium supplements is beyond the 

scope of investigation and only basal medium (S-DMEM) and mineralising medium 

(RODM) are available, the current results agree with Calejo et al (2018) in selecting 

a 50:50 media mix as the optimal co-culture medium.  

 

4.6.1.3 Limitations 

4.6.1.3.1 Isolations and Cell Type 

Rat cells were isolated to create populations of same species primary cells, ultimately 

for co-culture of different cell types. However the cells were not characterised in depth, 

for example in the expression of cell-specific markers, and assumptions of cell type 

were based on isolation protocols, and observed in vitro morphology and behaviour, 

where some crossover in cell type may exist.  

 

RTFs were recognised confidently by their conspicuous spindle-shaped morphology 

and rapid proliferation. All cells in RTF cultures appeared similar, within and between 

biological replicates, and also were comparable to CTFs used in early stages of the 

project. Their proliferation characteristics and apparent deposition of ECM after 

confluence was as expected. BMSCs were less confidently distinguished. Early 

cultures in particular contained a variety of morphologies, where separate colonies of 

narrow spindle shaped or larger rounded/polygonal cells were common, although 

morphological heterogeneity can be typical of BMSC cultures (Javazon, Beggs and 

Flake, 2004). The present isolation technique relied on the selective physical property 
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of plastic adherence of BMSCs, however macrophages, endothelial cells, 

lymphocytes and smooth muscle cells are also known to adhere and contaminate 

early BMSC cultures (Javazon, Beggs and Flake, 2004). BMSCs underwent 

mineralisation testing in P3, and the repeated expansion and culture in basal S-DMEM 

would probably have not supported the propagation of these contaminating cells over 

BMSCs. Fibroblast contamination seems less likely, as, although most BMSC 

populations appeared fibroblastoid in morphology, particularly at high densities, 

collagenase was not used in the isolation technique and BMSCs did not produce 

obvious ECM as per RTFs. The lack of BMSC differentiation to mineralising cells in 

RODM was nonetheless unexpected, but this does appear to be explained by the lack 

of AA in primary culture medium or other subsequent differentiating factors, as 

discussed in Section 4.6.1.1.2.  

 

Since RObs did not produce mineralised ECM in RODM, there was concern that a 

different cell type was isolated. Non-osteoblastic cells such as osteoclasts and 

particularly periosteal fibroblasts, which may overgrow the primary osteoblast cultures, 

can be preferentially isolated (Bakker and Klein-Nulend, 2012). Although ROb 

cultures had morphological similarities to RTFs in high densities, care was taken to 

remove all soft tissue from the extracted bones with sharp dissection and collagenase, 

and cells were seen to grow out from bone pieces with a generally rounded/polygonal 

morphology. Bone is a difficult tissue from which to extract cells, due to the 

heterogeneity of cell types, complex structure and mineralised ECM (Gartland et al, 

2012) and indeed only 1 of 3 osteoblast isolation attempts was successful. In the 

unsuccessful attempts, no other cell types were cultured, suggesting the technique 

did not support fibroblast extraction anyway. The most likely reason for unsuccessful 

attempts may have been disturbing the cultures and bone pieces too early, 

undertaking a first medium change on day 3, as was customary for other cells, which 

was not specifically stated in the followed protocol (Bakker and Klein-Nulend, 2012). 

Other protocols highlight the importance of not dislodging the explants and leaving 

the cultures undisturbed for 7 days, changing medium initially on day 7 and 14 only 

(Gallagher, Gundle and Beresford, 1996; Gartland et al, 2012). Since the same 

technique proved successful in the 1st attempt, it may be that the FBS, different in the 

1st attempt to the other 2 attempts, was superior in supporting osteoblast isolation. 

Different FBS batches are known to have considerable variation in stimulation and 
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survival of primary bone cells (Bakker and Klein-Nulend, 2012), and a few explant 

cells were even seen in the 2nd attempt, but died off before proliferation.  

 

The exact phenotype of dRObs was not clear, however, as a population able to 

mineralise their ECM, they were satisfactorily verified as mature osteoblasts. Their 

progression from the larger, less proliferative cells acquired commercially in 1st 

passage to smaller, more proliferative cells and with more refractile cell bodies in 4th 

or 5th passage is not typically described in the literature. It may be that the cells 

acquired some fibroblastic characteristics with sustained culture in the non-

osteogenic S-DMEM, although retained an ability to secrete ECM and mineralise from 

their commercially performed primary culture. In future, a more revealing phenotype 

profile could be evaluated with quantified expression of fibroblastic and osteoblastic 

markers.  

 

4.6.1.3.2 Applicability and Validity 

The age of the rats from which RTFs, BMSCs and RObs were isolated was 14-16 

weeks, representative of the young adult stage (Sengupta, 2013). These ages were 

selected based on the adult osteoblast explant protocol (Bakker and Klein-Nulend, 

2012), and to balance the physiological differences of younger, more proliferative, 

active cells, such as in neonates, with the more differentiated but less active cells of 

adulthood (Gartland et al, 2012). It was important to use mature cells with adult 

characteristics, particularly where a translational model was most applicable to an 

adult human population, so young adults were chosen in anticipation of retaining 

reasonable proliferative potential. The use of mature mineralised bone over neonatal 

bone may have however made osteoblasts especially difficult to extract, potentially 

contributing to failure of explant culture in 2 of the 3 attempts. Furthermore, in using 

cells from a narrow age range of rats, results and cellular characteristics are restricted 

to this age group or level of maturity, although descriptions and differences in the rat 

cell population was not under investigation. 

 

Use of primary cell lines was also an important feature. Cells were isolated, or 

acquired in the case of dRObs, to retain representative, close in vivo characteristics. 

Cells were investigated in as early a passage as reasonably possible (RTFs P2 and 

P5; BMSCs P3; RObs P2) although ideally investigations would have occurred in P1, 

negating cell senescence and possible loss of phenotype, as may have been 
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encountered in RObs (see Section 4.6.1.1.3). dRObs were investigated in P6 and P7, 

when indeed their phenotype had somewhat altered (‘differentiated’), however their 

increased proliferation rate was beneficial for experimental preparations. 

 

Consideration was always given to features that could best develop a tendon-bone 

model with translational human potential. Human cells would have been ideal, 

however their acquisition was beyond project timings. Rats were the best available 

source as a common mammalian model system, however potential cell physiology 

differences between rat and human are acknowledged. Attempts were made to isolate 

both functional fibroblasts and osteoblasts from the same animal, and as multiple 

biological repeats, to preferably study individual-specific co-culture cellular responses. 

A single animal system would provide corresponding study for the potential of a 

patient requiring a tendon-bone model graft with their own, non-immunogenic, cells. 

Isolated RObs were unfortunately unsatisfactory for use as mature osteoblasts, so a 

single species different animal approach was progressed (isolated RTFs and acquired 

dRObs). Better still, isolation of MSCs capable of fibroblast and osteoblast 

differentiation would be most satisfactory to develop a single cell source non-

immunogenic translational human model. BMSCs were isolated, but appeared to lack 

osteoblast differentiation potential in the current culture conditions, so were not 

explored further. However, MSCs may in fact represent the best clinically-applicable 

cell type to explore in future model development.   

 

4.6.2 Tendon Analogue   

 

4.6.2.1 Formation and Maturation 

4.6.2.1.1 Single-Strand  

The basis for generation of a tendon analogue was contraction of a flat 3D layer of 

fibrin hydrogel scaffold seeded with fibroblasts around 2 suture anchor points. Gel 

contraction was cell mediated, since control constructs, set up during the anatomical 

suture experiments without cells but maintained under the same culture conditions as 

seeded constructs, did not contract (Appendix 7). Occasional fibrin gels were noted 

to be ‘contracted’ before cell seeding, after retrieval from 37oC polymerisation (see 

Figure 4.9), which, although of uncertain true cause, appeared to be due to a 

combination of slight mechanical vibration from the incubator and nearby refrigeration 

units and the highly hydrophobic nature of the underlying Sylgard. Sylgard’s 
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hydrophobicity was a crucial property to prevent cell and gel attachment and provide 

a low friction surface for unhindered contraction, and indeed in these cases the pre-

seeded gel appeared to have ‘slipped’ and folded over, without losing volume. In 

contrast, fibroblast mediated contraction occurs from the traction force produced as 

cells degrade the fibrin and start to replace it with a thin filamentous matrix and 

subsequent collagen fibrils that crosslink together (Huang, Khait and Birla, 2007; 

Kapacee et al, 2008; Paxton et al, 2012a). 

 

Gel contraction was apparent within 24 hours, with the vast majority occurring within 

7 days. Contraction proceeded from the peripheries towards the centre of the well, 

revealed by histology to be a structural result of peripheral folding and compaction, 

and described by Huang, Khait and Birla (2007) as a process of delamination from 

the underlying culture surface. Radial contraction was directed into a linear form by 

the suture anchors, without which the gel would have compressed into a central 

circular mass (Hecker et al, 2005). The first few days of contraction, when the gel 

peripheries lay at a distance from the imposing tension force between the anchors,   

were therefore often uneven, which if substantially irregular could residually distort 

the morphological uniformity of the mature construct. After 7 days the general shape 

of the tendon analogue was formed along the tension line between the sutures, and 

as contraction reduced in subsequent weeks, gel opacity increased, seemingly a 

result of the progressively more dense and elaborate folding as shown in histology 

transverse sections. These observations agreed with the monitoring of near identically 

formed fibroblast-seeded fibrin constructs by Paxton et al (2012a), describing the 

stages of development as early (day 0-7), maturation (day 7-35) and late maturation 

(day 35 onwards), also noting that the enhancing opacity was indicative of increased 

matrix deposition.  

 

Fibrin provided a supportive 3D cellular environment, with histology showing 

proliferating cells spread throughout the gel. With time the cells appeared to align in 

parallel between the sutures, also described by Hecker et al (2005), Bayer et al (2010) 

and Paxton et al (2012a) as a result of the mechanical tension force provided by the 

suture anchors. Modified Masson’s trichrome staining showed that these cells were 

the focus of collagen production, itself likewise in parallel linear bands, suggesting 

that these cells were the most stimulated and functional and were beginning to 

organise the scaffold into the histological structure of fibrous tissue. Indeed the 
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importance of maintaining mechanical tension on cellular function has been illustrated 

by the disorganised collagen produced after constructs are severed at their midpoint, 

as performed by Kapacee et al, 2008. Nevertheless, even at 8 weeks, staining for 

collagen was limited. Cells characteristically replace the fibrin with their own ECM, 

and similar constructs have shown near complete fibrin degradation in 1-4 weeks 

(Huang et al, 2005; Huang, Khait and Birla, 2007; Kapacee et al, 2008). It may be that 

more collagen was present but that staining was poor; or that the intense red 

cytoplasmic stain of the modified Masson’s stain masked the weaker blue collagenous 

stain, since the densely cellular construct peripheries, external to the fibrin, showed 

much clearer blue staining. Yet collagenous blue staining was abundant with the same 

staining technique in the previously investigated human tendon samples (see Chapter 

3, Figure 3.4b). Paxton, Grover and Baar (2010) however note that fibrin is only 

degraded and replaced by collagen when AA and P is added to maintenance culture 

media, so the paucity of collagen in the present constructs may most likely be the 

result of an initial 3 weeks of culture without AA and P.  

 

A particular histological characteristic was the aggregation of cells on the surface of 

the fibrin, forming a capsular layer, also noted by Huang et al (2005) and Paxton et al 

(2012a). This may have been due to the droplet seeding technique, rather than cell 

embedding during formation of the gel, and although histology showed that cells 

migrated throughout the fibrin, a preponderance remained lining the surface. These 

cells also appeared to be a hub of collagen production on modified Masson’s 

trichrome staining as development proceeded. Bayer et al (2010) similarly 

distinguished a cortical surrounding of collagen type I using immunohistochemistry in 

their constructs. The enhanced ECM production of these cells may have been a result 

of increased cellular density and interactions, and/or better access to nutrients and 

more proficient waste elimination due to their surface position.  

 

4.6.2.1.2 Multi-Strand  

Multi-strand constructs were investigated for the potential to create a mechanically 

superior tendon analogue of multiple macroscopic bundles, similar to 3o collagen fibre 

bundles in the hierarchical structure of tendon (Chapter 1, Figure 1.2). Of particular 

interest was whether the separate strands merged into a single unit, which was 

revealed by histology to have not occurred by 5 weeks of culture (after 3 weeks of 

preceding single strand culture). The cellular capsular layers from each strand did 
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rapidly integrate by week 1, and this bridging area between the separate strands was 

a focal area of cellular proliferation and potentially of fibrin degradation. However, 

although the fibrin from the separate strands did directly interface as the structure 

became more compact at later time points, it did not appear to have fused. This 

appearance was potentially because of the overall limited fibrin degradation seen, as 

previously discussed, leaving the separate folds of fibrin in their similar individual 

forms. It would have been interesting to compare the process of multi-strand fibrin 

degradation with constructs cultured earlier in media more encouraging of collagen 

production, such as with growth factors along with AA and P, to establish if and how 

separate strands might merge. Further work would have also particularly focused on 

mechanical testing, as the principle tissue engineering reason to progress 

development of these multi-strand tendon analogues is if they are stronger than the 

sum of individually-tested single strands.     

 

Morphologically, through the basic single-strand suture-suture method, the flat layer 

of fibroblast-seeded fibrin gel latterly matured into a tight cylindrical structure (see 

Figure 4.10). As noted by Paxton et al (2012a), this is not an ideal individual 

morphological replicate for tendon or ligament. The distal FDP tendon is a biconcave 

bean shape in transverse section, seemingly composed of 2 distinct large fibre 

bundles either side of a median sulcus on flexor and dorsal sides (see Chapter 1, 

Section 1.2.3.2). The double strand construct was therefore also an investigation of 

morphological interest, as a potentially enhanced native morphological match. The 

double strand tendon analogue was biconcave in transverse section throughout its 

combined culture of single strands, but, likewise to single strands, transitioned from 

an overall flatter shape at earlier time points to become subsequently more rounded. 

Thus morphological matching to the distal FDP appeared to be more optimal after 1 

week of combined culture rather than 5 weeks (Figure 4.13), presumably principally 

due to the preceding 3 weeks of single strand culture, although at 5 weeks this was 

still a better shape than a basic single strand suture-suture tendon analogue. The 

double strand construct was not investigated further in favour of increasing the gel 

volume in a single strand, primarily because of the time involved in first culturing single 

strands before combination. Nonetheless, an improved tendon analogue may have 

been formed by earlier combination of single strands, for example after 7 days once 

the general linear form has been established, followed by longer double strand culture. 
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This may have potentially balanced the earlier flatter biconcave morphology with more 

time for fibrin degradation and potential merging of the 2 strands.    

 

4.6.2.2 Suture Anchor Manipulation  

The tight cylindrical morphology of the mature basic suture-suture tendon analogue 

was not well matched to the distal FDP, not only in cross-section but also in the size 

and shape of its proximal and distal ends. The proximal end should be of similar size 

to the native tendon where potential graft-to-native tenorrhaphy might occur, and the 

distal end is that of the bone interface where attachment area and position affects 

biomechanics. Beyond further exploration of the double stranded construct, the best 

way to achieve an equivalent native morphology appeared to be using the size and 

position of the construct anchors to manipulate the shape of the contracting fibrin gel. 

The suture manipulation experiments were therefore primarily observational studies 

to explore how the gel contracted around vertically placed suture anchors, and, since 

analysis of human FDP tendon width (Chapter 2) showed that the bone insertion end 

and the end 12mm proximal were of different sizes, how it contracted around 

differently sized opposing sutures. As 5mm sutures were used for the basic 

(horizontally placed) suture-suture tendon analogues, this 5mm size, as well as larger 

(10mm) and smaller (2mm) sizes, were investigated. In addition to primarily observing 

the shape of the contracting gel, particularly between the anchors, 4 width 

measurements were taken across the 12mm construct, as analogous to the 

measurements of the human FDP tendon at its insertion (Chapter 2), to add a 

quantitative interpretation.   

 

A degree of continued gel contraction was expected in the region between the 

anchors, gradually driving the linear rectangular shape of vertical/vertical tendon 

analogue constructs towards an ‘H’ shape and the triangular shape of 

vertical/horizontal constructs towards a sideways ‘T’ shape. Yet to what degree of 

contraction was difficult to predict. Since the contracting gel was previously shown to 

tend towards a thin cylindrical morphology, greater relative gel contraction between 

sutures was expected in constructs with larger anchors (i.e. with a 10mm vertical 

suture), producing more distinct ‘H’ and ‘T’ shapes, than constructs with smaller 

anchors. Continued gel contraction did continue between the sutures in all constructs, 

but not to a large degree, with mid-point widths (50% distance measurement point) 

remaining at ≈75-90% of gel width at the sutures in vertical/vertical constructs. 
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Comparative quantitative results between different sized constructs in fact suggested 

the opposite to original hypotheses, with the smaller constructs of 2mm or 5mm 

vertical sutures producing greater ‘H’ and ‘T’ shapes. It appears that, for the volume 

of gel used, the vertical 10mm suture in either vertical/vertical or vertical/horizontal 

constructs was able to maintain enough outward tension in the gel between the 

sutures to minimise substantial contraction to an ‘H’ or ‘T’ shape. For constructs with 

2mm or 5mm vertical sutures, the gel between the sutures was perhaps comparatively 

less taught and cell mediated contraction could continue to overcome the tension 

force, demonstrating an interplay between mechanical (tension) and biological (cell 

based contraction) factors. The smaller anchors were less well able to maintain linear 

margins to the contracting gel shape.  

 

Measurement of gel width in line with the sutures notably showed that the gel did not 

contract to the width of the suture itself. This was illustrative of the means of gel 

contraction, by compaction and folding of the gel peripheries towards the centre of 

the well. The gel peripheries bunched up and attached against the suture anchor, as 

also shown histologically by Paxton et al (2012a) at a cement anchor. Smaller anchors 

displayed a greater difference in width between the gel and suture itself because there 

was a greater distance for the gel to contract from periphery to anchor, and thus a 

greater volume of compacted/folded gel lying against the suture. Even for 5-10mm 

vertical anchor sizes, as a similar size range to the native human tendon widths at 

bony insertion and 12mm proximal, although the difference between gel width and 

suture width progressively declined there was still an approximate width difference of 

0.5mm by 35 days of culture. 

 

Overall, the suture manipulation studies demonstrated that although some bowing of 

contracting gel does occur between anchors, larger anchors used in this system can 

generate enough outward gel tension to maintain a relatively defined linear shape in 

the maturation phase of development. However, due to the general 

folding/compaction process of contraction and variability across replicates, achieving 

a precise gel width is challenging, even at the anchor position itself. 

 

4.6.2.3 Effect of Culture Variables 

Culture variables were tested in constructs containing suture anchor sizes directed by 

human FDP tendon widths at its bony insertion and 12mm proximal to the insertion. 
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The general development of the tendon analogues cultured with any of the variables 

was similar to that of basic suture-suture constructs and suture manipulation 

experiments, with basic shape formation in 7-14 days and maturation thereafter. 

Macroscopic effects on gel contraction by the culture variables were subtle, but 

quantitative statistical analyses demonstrated that different variables did yield 

significant effects. The results highlighted that culture media, additional anchors, fibrin 

gel volume and cell number can all be employed advantageously to tissue engineer 

a predictable and morphologically relevant tendon analogue.  

 

4.6.2.3.1 Culture Medium  

Addition of AA and P to standard S-DMEM in general produced greater gel contraction 

than S-DMEM alone, agreeing with expectations. The effect was most apparent in 

double volume gels with regular cell number, where ‘double gel/+AA+P’ cultures were 

significantly more contracted than ‘double gel’ cultures over all distance measurement 

points between the suture anchors, so under these conditions the null hypothesis of 

no effect can be rejected. The greater contraction effect of additional AA and P was 

also evidenced by smaller mean gel widths in standard volume gels from day 14 

onwards, and in double volume gels with double cell number, although they were 

either respectively of non-significance or not statistically compared.  

 

AA and P are promotors of collagen synthesis. AA, as previously described, is an 

essential co-factor for prolyl-4-hydroxylase and is required in the hydroxylation of 

lysine and P for collagen fibril assembly (Gallagher, Gundle and Beresford, 1996; 

Paxton et al, 2012a); as such, P forms a substantial amino acid component of the 

collagen protein. The more collagen fibrils produced, the more they crosslink together 

and the greater the gel contraction. AA and P additionally appear to increase cell 

proliferation and affect matrix metalloproteinase (MMP) activity, likely intensifying 

fibrin degradation and reducing gel volume, whilst AA may also initiate a level of 

transdifferentiation in fibroblasts towards a more contractile myofibroblastic 

phenotype (Paxton et al, 2012a). The environment of fibrin, collagen and fibroblasts 

is similar to that of wounds, where supplementation of AA thus predictably accelerates 

contraction in animal wound models (Cabbabe and Korock, 1986; Jagetia et al, 2007).  

 

The chosen concentrations of supplementing AA and P were standard in the 

laboratory, allowing direct comparison to the supervisor’s similar previous work 
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[Paxton et al (2012a)], which also described the increased contraction effect of AA 

and P in fibroblast-seeded fibrin constructs using smaller anchors. This work 

highlighted that additional AA and P accelerated gel contraction only in the maturation 

phase of tendon analogue development, also agreeing that at early time points 

contraction was slower with AA and P. In the present study, ‘+AA+P’ cultures were 

initially less contracted than ‘S-DMEM’ cultures at day 7 in standard volume gels, but 

not in double volume gels. Why addition of AA and P initially appears to have less of 

a contraction effect than basal medium alone, but not when gel volume is doubled, is 

unclear. Even if perhaps AA and P caused an initial slower decrease in scaffold size 

due to earlier immature (less contractile) ECM deposition before substantial fibrin 

degradation, this effect would have been expected whatever the gel volume, so the 

results may reflect the variability of contraction in early stage formation. Paxton et al 

(2012a) also used OCT to observe the 3D cross section of the contracting gel in their 

small anchor constructs, noting that addition of AA and P folded the gel into thin 

cylinders, rather than the broad and flat shape without AA and P. In the present 

studies, OCT images suggested that the contracting gel peripheries were more tightly 

folded over with AA and P, rather than bunched up without AA and P, which may 

similarly reflect the increased folding effect of additional AA and P when the 

contracting peripheries are restricted due to wider anchors.   

 

Since AA was a presumed component of RODM (Gartland et al, 2012), it was also 

expected that gel contraction would be greater with RODM than S-DMEM, however 

there was no clear evidence to support this. In the regions between the sutures, 

‘RODM’ cultures were in fact less contracted than ‘S-DMEM’ cultures until day 35-42, 

after which both were similar until the day 56 experimental end point. If AA was indeed 

an RODM ingredient, it may have been at lower concentrations than the AA used for 

the ‘+AA+P’ culture variable (250µm) and so exerted less or no contraction effect. Yet 

in 2D fibroblast culture in RODM there appeared to be increased cell proliferation and 

collagenous matrix production, although this was inferred by general observation 

rather measurement (see Section 4.6.1.1.1). The other probable ingredients, 

including glucocorticoid and phosphate solution, may have added the diminished 

contraction effect, by affecting cellular function or ECM properties. A phenotypic drift 

of fibroblasts towards osteoblasts may have resulted in the production of a less 

contractile ECM. The ‘RODM’ tendon analogues were also noted to appear more 

opaque and brittle than other cultures. Alizarin red testing of the RODM precipitate 
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remaining in the well of ‘RODM’ constructs after tendon analogue removal stained 

positively for mineral (see Section 4.5.2.4.1), suggesting that mineral may also have 

precipitated in the 3D constructs [despite calcium not being present in 2D fibroblast 

cultures with RODM, (see Section 4.5.1.2.2)]. This may have hardened the 

contracting gel, also producing the light attenuation noted on OCT (Figure 4.26). The 

hardened gel may have resisted contraction in early weeks, slowing contraction rate, 

but not prevented the plateau in contraction being reached, as per ‘S-DMEM’ cultures, 

around day 42. The potential varying effects of RODM on RTFs may be representative 

of altered cellular behaviour in 2D and 3D environments. 

 

4.6.2.3.2 Additional Anchor Points  

2 additional anchor pins were placed at the mid-point between the suture anchors, at 

a width of 6.05mm, corresponding to the native human FDP width at its mid-point 

(6mm proximal to bony insertion) between FDP bony insertion (0mm) and 12mm 

proximal. These mid-point pins significantly increased the gel width at the 3 

measurements points between the sutures (25%, 50% and 75% points), most 

significantly at the 50% point, compared to S-DMEM culture without mid-point pins, 

confirming the hypothesis of their effect on gel contraction. This demonstrated that 

pin anchors can successfully be utilised to manipulate the width of contracting gel. As 

the gel width at the 50% measurement point, where the mid-point pins were placed, 

was approximately 1.5-1.8mm wider from day 28 onwards, this indicated that the 

folding/compacting peripheries of the gel had gathered against the pin and were 

prevented from further inwards contraction. If a precise gel width was required using 

this additional pin anchor technique, pins would need to be placed more narrowly 

together than the intended gel width, requiring consideration of both gel volume and 

the ideal time to harvest the model.  

 

4.6.2.3.3 Fibrin Gel Volume  

Doubling the volume of fibrin gel was trialled since standard volume gels produced 

thin (depth dimension) tendon analogues when cultured with wide anchors, not well 

morphologically matched to the distal FDP tendon, and also resulted in occasional gel 

fragmentation during formation. Doubling gel volume was however hypothesised to 

also increase gel width, specifically when compared to standard (single) volume gels 

when both cultured in S-DMEM. This was, not unsurprisingly, confirmed, by ‘double 

gel’ cultures being significantly less contracted than ‘S-DMEM’ cultures at all 
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measurement points. All double volume gel culture variables did nevertheless appear 

more robust and anatomically-relevant than standard volume gel culture variables, 

and none fragmented during formation. Compensation for the inevitably increased 

width from doubling gel volume was attempted by changes to other variables to 

increase contraction towards the ideal human tendon width, either with AA and P (as 

discussed in Section 4.6.2.3.1) or increased cell number (next discussed). 

 

4.6.2.3.4 Cell Number  

The effect of doubling cell seeding number, examined in gels of double volume, was 

confirmed to increase gel contraction, as hypothesised, as ‘double gel/double cell’ 

cultures were significantly more contracted than ‘double gel’ cultures at all distance 

measurement points. ‘Double gel/double cell’ cultures represented the same fibrin 

gel:cell ratio (i.e. density) as standard ‘S-DMEM’ cultures, whilst ‘double gel’ cultures 

represent a halved ratio, so a more accurate description is that halving cell density 

significantly decreased gel contraction. Hecker et al (2005) also showed that their 

fibroblast-seeded fibrin constructs contracted faster with 100,000 cells rather than 

50,000 cells, therefore a greater number of fibroblasts presumably degrades fibrin 

faster and produces a greater quantity of contractile ECM. Doubling cell number in 

the double volume gel did not contract the double volume gel to the level of ‘S-DMEM’ 

(a standard volume gel), as ‘double gel/double cell’ cultures were still significantly 

wider at measurement points between the anchors compared to ‘S-DMEM’ cultures. 

This suggests that doubling gel volume has a greater gel expansion effect than the 

contraction effect of doubling cell number. Also, although not compared statistically, 

it is not clear whether the contraction effect of doubling cell number produces more 

contraction than adding AA and P. These variables appear relatively similar in effect, 

with a slight tendency for greater contraction with double cell number, since mean gel 

widths for ‘double gel/double cell’ cultures are less at every time point than ‘double 

gel/+AA+P’ at 0%, 25% and 50% measurements, whilst ‘double gel/+AA+P’ cultures 

are mainly less at 75% and 100% measurement points.  

 

4.6.2.4 Optimum Set Up for Co-Culture Construct   

The anatomical suture experiments, with suture anchors representative of human 

FDP tendon width, were used to analyse potential culture specifics for an optimum 

tendon analogue morphology by the proximity of their contracting fibrin gel to ideal 

human widths at various measurement points. Within 56 culture days, these widths 
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were only reached in standard volume gel cultures, in ‘+AA+P’ cultures (all distance 

measurement points except 12mm) and also ‘RODM’ and ‘S-DMEM’ cultures at the 

6mm point, where gel contraction was greatest. No double volume gel culture 

variables contracted to the ideal human width. However, double volume gels were 

sturdier and more morphologically relevant, making them better candidates for the 

final co-culture model. With addition of AA and P and doubling cell number, ‘double 

gel/double cells/+AA+P’ cultures contracted the double volume gel closest to ideal 

human width, and were not significantly different to ‘S-DMEM’ cultures at the 0%, 75% 

and 100% measurement points.  

 

Time to construct harvest, for example for potential graft use, was also an important 

consideration. By 4 weeks in most cultures, the majority of gel contraction had 

occurred and gel width then plateaued, suggesting that ECM production and 

contraction was balanced with residual scaffold volume. Double volume gel culture 

variables did appear to still be contracting, minimally, from week 4 onwards at 

measurement points between the sutures (25%, 50% and 75% points), but over the 

following 4 weeks only contracted by a further maximum of  ≈0.5mm. 

 

The size of anchors also clearly influenced tendon analogue morphology. At either 

suture anchor (0% and 100% distance measurement points) only ‘+AA+P’ cultures 

reached the intended width, at the 0% point. Additional pin anchors were able to 

influence contracting gel width, but, as with the main suture anchors, the gel 

contracted against the side of the anchors and was therefore always of greater than 

intended width. Addition of mid-point pins at an ideal width actually made the 

developing gel less morphologically accurate than without extra anchor pins at all.  

 

Overall, the most relevant tendon analogue morphology seems to be a balance of 

greater gel volume with culture variables that can contract the gel to the greatest 

extent, whilst providing anchorage points of a matching, or just less than ideal, size. 

A contracted tendon analogue is well formed at 2 weeks, but for added maturation the 

time to harvest seems optimal at 4 weeks. A 4 week culture of ‘double gel/double 

cells/+AA+P’ therefore seems the most ideal for the final model, although the culture 

medium may need further consideration for support of osteoblasts in the co-culture 

model. 
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4.6.2.5 Limitations 

The method of fibroblast-seeded contraction of fibrin hydrogel to form a tendon 

analogue was reliable but the precise morphology (width/volume/folding pattern) 

resulting from the gel contraction was quite variable, particularly in the early stages of 

development. Contraction variability could potentially be compounded if areas of the 

gel had adhered to the well base, creating additional lines of stress and interfering 

with contraction and ECM formation (Kapacee et al, 2008). Gels were released from 

any adherence to the well rim on day 3 of experiments, but no further intervention 

followed thereafter, to encourage as natural a contraction as possible. Such sizeable 

natural variation in contraction would be best countered by multiple replicates. Most 

tendon analogue studies were akin to pilot studies, aiming to gain a broad range of 

observational trends on tendon analogue formation rather than comprehensively 

studying one area, and as such most studies contained limited replicates. Constructs 

were vulnerable to infection or failure of gel integrity over long investigative time 

courses, for example reducing initial triplicate repeats of the suture manipulation 

experiments (Section 4.5.2.3) over 35 days to an n of 1 for the 5mm vertical/vertical 

construct. Histology of single- and multi-strand basic constructs were performed on 

an n of 2-4, with qualitative assessment of representative mid-axis sections, and did 

not involve a specific sample section selection technique or quantification, so 

subjectivity bias was potentially prevalent. Extending such results to ‘population’ traits 

is cautioned, although they are representative of the samples obtained. The last set 

of tendon analogue experiments, the anatomical suture experiments (Section 4.5.2.4), 

however aimed to test hypotheses and select the materials to take forward into the 

summative co-culture model. These were designed with an n of 9 over technical and 

biological repeats and can therefore be viewed with the most certainty of reliable 

findings.  

 

Most analyses of the developing tendon analogue were of gel width, as a 

representation of contraction and morphology. Measurement of width as a gel 

contraction guide was a published method (Paxton et al, 2012a), could be related to 

human FDP measurements and was easily achievable and available, but is 

acknowledged as a 2D parameter to assess developing 3D morphology. The nature 

of gel contraction by folding and bunching of the gel peripheries, whilst the central 

area of wide anchored constructs remains relatively flat, makes this caveat particularly 

pertinent. Although gel contraction was variable in the formation stage (days 0-7), with 
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subsequent maturation it was more stable and width was therefore judged as a 

reasonable method for comparison between constructs, particularly after a week of 

formation. 3D assessment of form would however have been more representative. 3D 

form is essential at the tendon insertion onto the bone, for example in the relationship 

of attached surface area to biomechanical performance, or at the proximal tendon 

analogue end, which as a graft may potentially be sutured to native tendon and require 

3D matching of apposed surfaces. Furthermore, a significant experimental focus was 

on doubling gel volume to create a more anatomically relevant tendon analogue, 

however this was only assessed in 2D, and still more gel would likely have been 

required to match 3D morphology. OCT was performed at another institution on 

mature constructs and gave fantastic insight into the 3D structure and process of gel 

contraction. Had this been more readily available, 3D assessment over time may have 

been possible, although achieving cross sectional images over multiple specific 

regions repeated over time, attained in 2D by ImageJ measurements, would have 

been much more variable with OCT. With some constructs it was also difficult to 

achieve an image of the entire depth of the tendon analogue, which would have 

prevented comparable assessments. Nevertheless, OCT provided excellent 3D 

visualisation and further work would incorporate its use further, as an increasingly 

important evaluation of the dynamic changes in engineered tissues (Liang, Graf and 

Boppart, 2009). 

 

The basis for gel contraction, and therefore the effects of culture variables tested, was 

fibrin degradation and replacement with collagenous ECM. An improved or more 

complete picture of the effect of culture variables on 3D cellular function could have 

been an increased focus on collagen. Collagen was assessed, but only by qualitative 

interpretation of modified Masson’s trichrome staining on histology. A method could 

be devised to quantify collagen staining through assessment of stained areas with 

ImageJ software of images of sections systemically acquired in a number of 

constructs, potentially with selective immunohistochemistry for greater accuracy. 

Alternatively, constructs could be processed for collagen content with assays or 

specific expression of collagen genes with quantitative polymerase chain reaction 

(qPCR). These may have particularly aided the investigation of culture media, already 

limited by the unknown true ingredients and concentrations in RODM. An important 

set of investigations in association with collagen assessment would have been 

mechanical strength testing of the tendon analogues. It may be expected that greater 
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collagen presence would increase ultimate tensile strength, and testing and 

confirming such a hypothesis would increase support for the use of culture media 

driving greater fibroblast derived collagen production. 

 

Lastly, it should be noted that although the human FDP tendon width guide 

measurements, calculated in Chapter 2 through digital software, were given to 

0.01mm, the resulting construct set ups were less accurate. The size of the suture 

anchors, the 12mm distance between sutures, and the ideal intervening width and 

mid-point placement of the extra mid-point pins anchors were all prepared with a 

millimetre slide rule. Although accuracy was enhanced by judging the scale under x3 

magnification, these measurements were likely to be to the nearest quarter millimetre 

rather than 0.01mm. Measurements of the gel widths themselves were however still 

accurate to 0.01mm through the ImageJ software measuring technique. 

 

4.6.3 Bone Anchor   

 

4.6.3.1 Tendon Analogue Attachment 

The basic tendon-bone construct was a proof of concept study that confirmed that a 

ceramic scaffold of bone substitute material could act as an anchor point for an in vitro 

tendon-bone model. The tendon analogue formed in the same way as a suture-suture 

construct and, similarly, the fibrin gel attached around all sides of the bone anchor 

base. Light microscopy showed continuous gel attachment around the base sides, 

even at the leading bone anchor edge facing the suture anchor, where in early weeks 

the gel was thinner due to contraction concentrating the gel peripherally.  

 

Although not robustly tested, the tendon-bone attachment was strong enough to 

withstand gentle axial tension at 5 and 12 weeks of culture. However, if strength to 

failure was assessed, the recorded failure force would likely be a small fraction of that 

of in vivo tendon-bone attachment. This highlights the importance of formal future 

mechanical testing, of not only the tendon analogues (as discussed in the previous 

section), but also of the engineered tendon-bone interface, providing quantifiable 

baseline attachment strength values and future comparative data when testing new 

experimental variables. Viewing the interface at higher magnification was also 

planned but not ultimately performed due to time, and may have revealed collagenous 

bony ingrowth, such as is seen with Sharpey’s fibres in the fibrous enthesis, providing 
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the attachment strength. On electron microscopy of similar fibroblast-seeded fibrin 

constructs, Paxton, Grover and Baar (2010) noted areas of both fibrin gel invagination 

into their cement anchors and reciprocal calcium phosphate crystals in the attaching 

fibrin gel, possibly even signifying the development of a graded soft-hard interface.  

 

The tendon-bone attachment of the basic construct demonstrated that, even at 84 

culture days, the fibrin gel attachment remained around all edges of the anchor and 

did not rearrange under tension to form a single attachment area at the leading edge 

opposite the suture. This provides a challenge in developing an anatomically relevant 

FDP insertion model, where a defined insertion area on a single surface of bone 

anchor is required. Accordingly, the gel would need to be guided onto a specific 

attachment point, and this key design feature is addressed in Chapter 5. Such a 

design would also reveal whether the strength of the maintained gel-bone anchor 

attachment, briefly tested here, was primarily a result of gel encasement around the 

anchor, or gel-anchor integration at the interface. Furthermore, this design challenge 

suggested that a custom castable bone anchor material was required, rather than a 

block of material onto which to guide the gel attachment. The commercially acquired 

Reprobone was only provided in blocks, so for the remainder of the project the focus 

of bone anchor development switched to brushite, readily available and castable into 

any shape from a paste. 

 

4.6.3.2 Brushite Acid Washout  

Brushite blocks, formed from mixing β-TCP and OA, were seen to noticeably liberate 

acid on addition of S-DMEM. The acid washout trials were qualitative observational 

studies, utilising the phenol red indicator in DMEM rather than a calibrated pH meter, 

so specific pH was not quantified. However, on initial addition of S-DMEM to the 

brushite, acidification was rapid and yellow discolouration, indicating a pH below 6.8, 

occurred within a few minutes with all blocks trialled. The prompt and vivid colour 

change suggested that the pH could in fact be well below 6.8. Such a change in 

environment is likely to have a significant effect on the physiology of any adhered cells 

and on the material properties of an attached soft tissue scaffold in a tendon-bone 

model, and is an important issue to mitigate in model development.  

 

The S-DMEM washes appeared to have an immediate and beneficial effect on 

liberating and subsequently clearing the acid. The S-DMEM colour change was by far 
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greatest with the 1st wash, moderately evident with the 2nd wash, then only very subtle 

with the 3rd and 4th washes. The same pattern was notable with both effervescence, 

presumably a release of a hydrogen compound gas, and the slight sediment residue 

left behind after moving the blocks to a new well after each wash, indicating the 

lessening extent of chemical reaction between the brushite and S-DMEM. By the 5th 

wash, no colour change, effervescence or excess residue was apparent on gross 

observation, suggesting no substantial chemical reaction within that 10 minute wash 

period. A pH meter would have confirmed with more accuracy when the S-DMEM had 

stopped acidifying, however continued 6th and 7th washes remained identical to the 5th 

wash on gross observation.  

 

The 1ml of wash and 10 minute timeframe seemed to be sufficient quantities for 

effective acid washout with the current size of brushite blocks. There were no obvious 

experimental differences between the different block sizes, suggesting that 10 

minutes was adequate for full dispersal of the S-DMEM through the internal porous 

structure of even the largest blocks, accomplishing acid liberation over all the 3D 

structure. This was also endorsed by the lack of obvious differences between larger 

blocks that had fragmented, exposing a more accessible surface area to the S-DMEM, 

and those that had maintained original shape, and also the lack of colour difference 

compared to controls even after 7 hours of the 7th wash.  

 

The results were replicated over 2 trials and without obvious differences between the 

triplicate blocks tested in each size. Use of a fresh S-DMEM preparation and removal 

of the drying period between washes in the 2nd trial appeared to have no influence. 

The technique of 5x10 minute S-DMEM washouts, without a requirement to dry blocks 

between washes, therefore appeared reliable for the current block sizes and could be 

utilised in the future preparation of brushite bone anchors for cell seeding and 

integration into the co-culture tendon-bone model.  

 

4.6.3.3 Osteoblast Seeding  

4.6.3.3.1 Methodology Rationale  

The methodology for the osteoblast seeding trial had no pre-optimised protocol and 

was developed solely from literature review. Each step was carefully considered to 

best achieve the representative number of cells attached to the ceramic brushite 

scaffold. The first key question was choice of quantification method and assay. Many 
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methods to assess cell proliferation exist, most commonly haemocytometer cell 

counting, metabolic assays such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide (MTT), and quantification of deoxyribonucleic acid (DNA) content 

using fluorophores such as CyQUANT or PicoGreen. Assessment of DNA content is 

regarded as the most accurate method, particularly as metabolic activity greatly varies 

with cellular density and therefore metabolic assays are inappropriate to assess cell 

number in high density 2D and 3D cultures (Ng, Leong and Hutmacher, 2005; Quent 

et al, 2010). CyQUANT, measuring both DNA and RNA, was therefore selected as 

the assay most representative of proliferation and most familiar to the laboratory group. 

This specific assay choice then required planning of the appropriate cell extraction 

technique, handling of factors affecting fluorescence, and cell seeding number, as 

subsequently discussed.  

 

Quantifying nucleic acids requires their extraction into solution by cell lysis. Cell lysis 

is usually accomplished by enzymes (e.g. proteinase K), chemicals (e.g. surfactants 

such as triton X-100) or physical means (e.g. snap freezing, sonication) (Piccinini, 

Sadr and Martin, 2010), often in combination. Where scaffolds are natural polymers, 

the scaffold itself is commonly solubilised during enzymatic digestion along with the 

cell contents; however with ceramic scaffolds methods are particularly variable and 

can also involve additional crushing (Liu et al, 2008), scissor maceration (Jones et al, 

2010) and scraping cells from the scaffold (Kotobuki et al, 2006). CyQUANT also 

employs a single working solution of combined cell lysis buffer and fluorescent dye, 

so the nucleic acids should be in a homogenised solution rather than on a solid 3D 

scaffold for measurement of fluorescence. Furthermore, nucleic acids are known to 

electrostatically bind to ceramics, underestimating their quantification (Piccinini, Sadr 

and Martin, 2010). These issues prompted the use of trypsin in the present method, 

to first detach cells from the scaffold into a cellular suspension before addition of the 

combined cell lysis buffer and fluorescent dye, which theoretically was an effective 

method although not one obviously reported in the literature.   

 

CyQUANT manufacturer’s instructions specifically state that phenol red in culture 

medium may interfere with the fluorescence of the dye. Since the scaffolds were cell-

seeded and cultured in S-DMEM, containing phenol red, an extra PBS wash step was 

included as standard in the methodology to wash away/dilute the phenol red in the 

sample before cell freezing. Extra samples without the PBS wash step were prepared 
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for comparison while performing standard curves, and were clearly observed to have 

a red tint in the final measurement solutions, recording considerably greater 

fluorescence readings compared to those without the wash step for preparations 

≤1000 cells. A second concern regarding altered fluorescence was whether dissolved 

brushite would have an effect. This was another reason why trypsin was used to 

detach cells from the brushite scaffold before cell lysis, and also why the reaction 

tubes containing the trypsinised cell scaffolds were flicked/tapped to release the cells, 

maintaining scaffold structure, rather than the more disruptive technique of vortexing.  

 

Seeding scaffolds with 10,000 cells was decided by scaffold shape and size, 

commonly used seeding numbers, CyQUANT cell detection range and prediction of 

cell proliferation over the 7 day time course. Cylindrical discs are a frequently used 

scaffold shape to assess cell adherence and proliferation, and appeared to 

accommodate drops of cell suspension well for even seeding (see Section 4.4.4.5.1). 

A number of studies using similarly sized scaffold discs to study cell proliferation were 

consulted, their scaffold volume gauged and the equivalent cell seeding number 

calculated for the present brushite scaffold volume. Approximate equivalent cell 

seeding numbers, if used for the present brushite discs, were 20,000 (Wu, Lin and 

Qin, 2015), 50,000 (Chen et al, 2007), 120,000 (Yan et al, 2015), 150,000 (Thibault 

et al, 2010) and 200,000 (Materna et al, 2008). Yet the standard CyQUANT linear cell 

detection range is 50 to 50,000 cells (Jones et al, 2001) and, although a reasonable 

proportion of cells were expected to fall through the scaffold and not seed, those 

seeded were anticipated to proliferate considerably. Seeding at 10,000 cells was 

therefore considered reasonable to allow a good proportion of cells to seed and then 

proliferate over 7 days, but not beyond the CyQUANT linear detection range of 50,000 

cells.  

  

4.6.3.3.2 Seeding 

The number of cells measured after seeding was roughly equal between those 

attached (46%) and those unattached (54%). Although more cells were expected to 

attach than not, this showed that the present developed method using trypsin was 

indeed able to register nucleic acids from cells originally attached to the scaffold. 

Reasons for why approximately half of the cells remained unattached may be 

explained by issues with either seeding methodology, attachment time or handling 

technique, as discussed separately in the following paragraphs. 
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Cells were seeded with a static droplet seeding method, where a proportion of cells 

naturally falls through the porous scaffold by gravity before being able to attach. 

Specific steps in the experimental method aimed to mitigate against this effect. The 

acid washouts served as pre-soaking in culture medium to allow FBS proteins to coat 

the scaffold, promoting cellular adhesion and preventing cells in suspension sliding 

off the ceramic; non-tissue culture treated plates were used to avoid cell chemotaxis 

towards a preferential attachment surface on the well base; and cells were dropped 

slowly onto the scaffolds without forced pressure. Yet a different seeding method 

altogether may have increased cell attachment, for example using a dynamic 

procedure (e.g. centrifugal seeding), which can result in seeding densities of 65-90% 

(Tan, Ren and Kuijer, 2012).  

 

The 5 hour incubation period between cell seeding and collection for assaying may 

not have been long enough for full cell attachment, so that a proportion of cells that 

would have later attached were rinsed away and counted as unattached. Standard 

practice in our laboratory group is a minimum of 4 hours for cell attachment to cell 

culture-treated plastic, and the CyQUANT manufacturer’s instructions suggest 0.5-8 

hours depending on cell type and other experimental parameters. Brushite was not 

expected to promote cell attachment as well as cell culture treated plastic, so an 

increased attachment time was employed. However similar studies seeding on 

ceramic based/incorporated scaffolds appeared to in fact favour a shorter attachment 

time of 2-3 hours (Du, Furukawa and Ushida, 2008; Materna et al, 2008; Jones et al, 

2010; Chen et al, 2015; Yan et al, 2015). 5 hours in the present study should have 

therefore been adequate, whilst still short enough to avoid the risk of cell proliferation. 

 

The methodology demanded lifting the scaffold out of its seeding well with forceps for 

PBS rinsing to remove unattached cells and transfer to a reaction tube for 

trypsinisation. Mechanical disruption from the forceps may have dislodged attached 

cells which were then read as unattached, although this is a more minor explanatory 

point due to the overall limited surface area of the gripping forceps. 

 

Despite 46% of recorded cells attaching, the more pertinent issue is that this 

represents only 13% of the originally seeded cells. This was particularly unexpected 

and, although a single cause is not clear, may be explained by a combination of 

different factors. Beyond procedural limitations, such as limiting the rinses of scaffolds 
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and wells for cell collection to the reaction tube volume of 1.5ml, the foremost factors 

for apparent cell loss could be material interaction issues, low cell numbers, and 

nucleic acid degradation, as subsequently discussed.  

 

The main issue may be the known reversible electrochemical bond that occurs 

between ceramic material and nucleic acids, often overlooked in cell proliferation 

studies. This effect underestimates DNA retrieval by 90% at low DNA concentrations 

(low cell number), and even at high DNA stock concentrations (320mg/ml) there is still 

10% underestimation (Piccinini, Sadr and Martin, 2010). Since cell numbers used in 

the current study were relatively low (further discussed later in this section), DNA 

retrieval and derived cell number conversions are likely to have been considerably 

lowered. This phenomenon is reversible with a phosphate buffer (Piccinini, Sadr and 

Martin, 2010), but whether or not the CyQUANT cell lysis buffer contains phosphate 

is unknown. If it does, this explanation would be ruled out, however future cell 

proliferation studies on ceramics should ensure phosphate is included in cell lysis 

solutions. A further material interaction issue may be that 10 minute exposure to 

trypsin may not have been enough time for effective cell detachment from the 3D 

scaffold. TrypLE Express dissociates dRObs from cell culture-treated plastic in 3-5 

minutes, but even over an extended 10 minutes may not have diffused well enough 

through a 3D scaffold to fully dissociate centrally located cells, which would then be 

lost when the scaffold is discarded. Centrally located cells may also have evaded 

washout into the trypsinised solution, due to their protected position, even if they were 

fully detached. Furthermore, enzymes in trypsin are most active at pH 8 (Gilbert, 

Sellaro and Badylak, 2006) so any residual acid on the scaffold surface may have 

reduced its dissociative activity.  

 

Seeding 10,000 cells was relatively low compared to other similar studies (see Section 

4.6.3.3.1), but was primarily based on the CyQUANT linear detection range of 50 to 

50,000 cells with 1x dye concentration. Yet when performing standard curves of cell 

number up to 50,000 cells, 1x dye concentration did not produce a linear 

fluorescence-cell number relationship, whereas 5x dye concentration did (Appendix 

4) and so was used for experiments. However, since the trial produced unexpectedly 

low cell numbers, such as around 1000 recorded here for seeding, at these quantities 

both dye concentrations produced a linear fluorescence-cell number relationship, but 

the 5x concentration represented around 250 less cells than the 1x dye concentration 
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for the same fluorescence value (Appendix 4a). The issue of low cell numbers 

therefore not only underestimated nucleic acid retrieval due to the ceramic material 

reaction, but also underestimated cell number based on the fluorescence of the 

nucleic acid that was retrieved due to use of the 5x concentration of dye.  

 

Serum contains nucleases with the ability to degrade nucleic acids (von Köckritz-

Blickwede, Chow and Nizet, 2009; Hahn et al, 2014; Bruno and Sivils, 2016), therefore 

precluding their fluorophore binding and fluorescence measurement. FBS was 

constituent in S-DMEM used throughout cell seeding and culture, but nucleic acids 

were only deliberately released during addition of the CyQUANT cell lysis buffer/dye 

solution to the defrosted cell pellet. The cell pellet was prepared during micro-

centrifuge steps and removal of S-DMEM supernatant, also including a further PBS 

wash step and supernatant removal, so even where ≈25µl of supernatant remained 

with the pellet, contact between nucleic acids and FBS nucleases would be minimal. 

However, cell death during seeding and/or cell culture may have led to early cell lysis 

and exposure of nucleic acids to S-DMEM over longer time periods, for example 5 

hours during cell seeding or indeed over 7 days for the final assay time point. Cell 

seeding may have been the occasion of greatest cell death, since cells were seeded 

in only 20µl of S-DMEM, and the subsequent 5 hour incubation at 37oC may have 

evaporated enough medium to leave some cells unviable. From this point forward 

serum nucleases could then start degrading any released nucleic acids and cell 

number measurements would decrease.  

 

4.6.3.3.3 Proliferation  

dRObs were shown to proliferate on the brushite scaffold by approximately 3 fold over 

a 7 day period, with the majority of the increase occurring between day 2 and 7. A 

similar increasing proliferation pattern was exhibited on the cell culture treated plastic, 

demonstrating that brushite was likewise a material that could support cell adherence 

and proliferation. The much greater cell numbers and significant differences across 

time points for the treated culture plastic was due to an increased seeding number, a 

material optimised for adherence, and very similar replicates. The measured cell 

number seeded on the treated culture plastic of 8244, although similar to the 10,000 

intended for seeding, was an almost 20% reduction and may indicate that under-

seeding was another reason for unexpectedly low cell numbers across the experiment. 

The cells’ preference for the treated culture plastic was anticipated and evident in their 
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exponential increase and narrow standard error ranges, suggesting a similarity 

amongst replicates of healthy proliferation. This was in contrast to the wider error 

ranges for brushite, where cell behaviour thus appeared more variable, however the 

material still supported an increasing cell population overall.  

 

4.6.3.3.4 Integration into Co-Culture Construct  

In the development of the bone anchor component for the tendon-bone model, 

brushite was a material demonstrated to allow rapid casting into any shape and to 

support dROb proliferation. Furthermore, as a bone substitute it is osteoconductive, 

of relatively high compressive strength, and can be biologically resorbed (Paxton et 

al, 2010). It was therefore taken forward into the final designs for 3D co-culture with 

the fibroblast-seeded fibrin tendon analogue. The present data showed that seeding 

at 10,000 cells on a brushite disc of 2mm height and 4.6mm diameter, after removal 

of acid with 5x S-DMEM washes, produced proliferating dRObs by day 7. These 

successful criteria for cell number:scaffold volume ratio, acid washout, and time 

period for proliferation would thus also provide the principles for setting up the 

osteoblast-seeded bone anchor before integration into co-culture with the fibroblast-

seeded fibrin.  

 

4.6.3.3.5 Limitations  

Although the methodology was carefully considered, the osteoblast seeding trial 

results were only based on triplicate technical repeats performed on a single occasion, 

due to time constraints. The trial should therefore be viewed more as a preliminary, 

rather than definitive, experiment and although reasonable results were achieved, 

their interpretation should be cautioned. 

 

The study lacks power due to the low number of replicates. This is a principle reason 

why cell proliferation on brushite was non-significant, despite a 3 fold increase 

between day 0 and day 7. Although cell behaviour on brushite was likely quite variable, 

more so than on treated culture plastic for example, further repeats, both technical 

and biological with dRObs from a different rat, would have provided a more definitive 

answer to whether the increase in cell number was significant. dRObs were employed 

in their 10th passage, and cell senescence may have affected their brushite adherence, 

proliferation or viability, despite both young and old cell cultures having been shown 

to produce near identical standard curves with CyQUANT when grown on plastic 
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(Jones et al, 2001). Even so, ideally younger cells would have also been trialled, and 

if no differences were shown between young and old cells, result could have been 

combined for increased study power.   

 

As a newly developed methodology, various steps would ideally be optimised before 

running definitive experiments. Although the theoretical steps were deliberately 

devised through literature review, actual performance of the steps exposed 

unforeseen technical difficulties or additional potential variables. Many of the sources 

of unexpected results or variability have been previously discussed in Section 

4.6.3.3.2, and an optimised method would address these issues. For example, trials 

of greater cell seeding number, a cell lysis buffer containing phosphate, greater 

volume of scaffold washes for cell collection, an active seeding technique and reduced 

incubation time for seeding may identify areas that could increase the validity and 

reliability of results. The use of trypsin to detach cells from ceramic was particularly 

unfamiliar, in both technique and timing, along with a possible effect on fluorescence 

readings from variably fragmented scaffolds through flicking/tapping the reaction 

tubes to release the trypsinised cells. Future trials might focus on a technique to fully 

solubilise the scaffold whilst also lysing the cells, and then separately perform the 

nucleic acid dye binding step.  

 

Once more familiarity is gained with the technique, greater exploration of key issues 

in the development of a cell seeded bone anchor could be addressed. Within the remit 

of this project, different scaffold materials and cells could be investigated, for example 

fibroblast and osteoblast proliferation and MSC differentiation on different ceramics, 

particularly comparing the microporous structure of brushite with macroporous 

materials more similar to trabecular bone. Further beyond, developing and assessing 

a cell-embedded bone anchor material to match the cell-embedded fibrin of the 

tendon analogue, rather than having cells adhere in 2D onto the surfaces of a porous 

structure, would progress towards a truly 3D co-culture model.  

 

4.7 Summary of Findings  

 

RTFs and dRObs were characterised as the most suitable single species fibroblast 

and osteoblast cell choices for use in the tendon-bone co-culture model, with 50:50 

medium optimum to maintain dROb ECM mineralising ability whilst retaining RTF 
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phenotype. Fibroblast-seeded fibrin gel formed a tendon analogue by cell-mediated 

contraction around suture anchors, establishing an overall morphology in 

approximately 7 days as directed by suture size and orientation, with subsequent 

maturation and collagen deposition. Fibrin gel contraction increased with greater cell 

number and addition of AA and P to S-DMEM, and decreased with greater gel volume, 

although with the overriding benefit of a more robust tendon analogue. Brushite 

cement provided a castable bone substitute scaffold, but required 5x10 minute rinses 

with S-DMEM to washout its constituent acid. dRObs attached onto brushite with a 

static droplet seeding efficiency of 13%, proliferating over 7 days.   
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CHAPTER 5 

 

 

INTEGRATED ANATOMICAL MODEL DESIGN AND 

TENDON-BONE CULTURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



288 
 

5.1 Chapter Overview 

 

This chapter combines data from Chapters 2, 3 and 4, culminating in the production 

of the 3-dimensional (3D) tissue engineered tendon-bone model. A bespoke 

anatomical culture zone of various clinically relevant sizes is designed, molded and 

utilised in vitro to guide tendon analogue culture and bone anchor attachment. The 

development and established morphology of tendon fibroblast monoculture constructs 

and added bone osteoblast co-culture constructs are qualitatively assessed as the 

completion of the project work. 

 

5.2 Introduction 

 

Chapter 2 investigated the morphometrics of the human distal flexor digitorum 

profundus (FDP) tendon, distal phalanx (DP) and the FDP insertion footprint, 

establishing the optimal dimensions to tissue engineer an anatomically matched 

tendon analogue inserting onto a bone anchor. Clinical relevance was enhanced by 

dividing the dimensions into 3 main size groupings, ‘large’, ‘medium’ and ‘small’, as 

well as an overall ‘universal’ average size, resulting in the model design guide (Table 

2.17, Chapter 2). Chapter 3 examined the angle of bony attachment of human FDP 

tendon collagen fibres, finding an average of 30o. Chapter 4 explored in vitro culture 

components, suggesting that a tendon analogue of double volume fibrin gel seeded 

with double cell number of rat tendon fibroblasts (RTFs), attaching to a brushite bone 

anchor seeded with differentiated rat osteoblasts (dRObs), cultured in 50:50 medium, 

would deliver the optimal tendon-bone construct. This chapter references and 

integrates these previous results in the design of a culture zone to direct the 

anatomically and clinically relevant dimensions and attachment angle, and 

subsequently progress tendon-bone monoculture trials towards an ultimate co-culture 

construct.  

 

The anatomical modelling of interfacial tissue engineering constructs is lacking and 

not explored in the literature, requiring a novel design technique. Although casting of 

individual components, such as bone scaffolds, is common, using this approach to 

derive a whole multi-tissue stratified design is scarce. The silicone impression system 

employed in this chapter develops the standard use of Sylgard as a culture well 
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coating, which creates a hydrophobic, smooth and transparent culture base suitable 

for fibrin hydrogel contraction, pinning of suture anchors and examination by 

microscopy, by exploiting its potential for molding in 3D. Just as 3D printed casting 

trays can reverse mold multiple sizes and shapes of bone anchors using silicone 

(Paxton et al, 2010), a bespoke culture zone could be molded around specially 

designed 3D prints to any size and shape using Sylgard. In this way, the 2 key design 

considerations of generating a single surface bone anchor attachment and a 30o 

interface between tendon analogue and bone anchor could be realised.    

 

The chapter completes the project by producing tendon-bone co-culture constructs 

using the anatomical model design. 3 sizes of constructs are produced for the final 

co-cultures to demonstrate the future potential to apply the basic model system design 

with clinical utility as a graft for injury across any finger or gender. The development 

of preparatory monocultures, with only the tendon analogue component seeded with 

cells, and final co-cultures, with both tendon analogue and bone anchor components 

seeded, is qualitatively assessed through serial overview photography and 

observation.  

 

5.3 Aim and Objectives 

 

The aim of this chapter was to integrate the morphometric and in vitro culture findings 

from previous chapters into the production of an anatomically and clinically relevant 

FDP-DP tendon-bone tissue engineered model. 

 

The objectives were to: 

 

1) Design and create a bespoke anatomical culture zone; 

2) Employ the culture zone to achieve a tendon-bone co-culture construct.    
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5.4 Materials and Methods 

 

5.4.1 Model Design and Production  

 

The model design elements were based on the specific dimensions in Table 2.17 

(Chapter 2), aiming to create a single surface bone anchor attachment and tendon-

bone interface of 30o. Modelling of size and shape relied upon carefully devised 3D 

printed molds and surrounding silicone impressions, either in Sylgard 184 silicone 

elastomer (Dow Corning, Wiesbaden, Germany) or Kemsil silicone (Associated 

Dental Products, Swindon, UK). 3D prints were designed in Tinkercad software 

(Autodesk, San Rafael, USA), printed in Acrylonitrile Butadiene Styrene (ABS) 

through a ThermoJet solid object printer (3D Systems, Valencia, USA), at facilities at 

Edinburgh College of Art, The University of Edinburgh. 

  

5.4.1.1 Bone Anchor 

Brushite was cast into 3D trapezoidal bone anchor blocks by a process of reverse 

molding (Figure 5.1), described in Section 4.4.4.1.3 (Chapter 4). The 3D printed 

casting tray consisted of 6 identical shapes, matching the dimensions of the resultant 

bone anchors. Dimensions of bone anchor height, base width and apex width, and 

therefore the shapes in the casting tray, were determined by the specific size guide 

of Table 2.17 (Chapter 2), with a common depth of 2.00mm for all sizes.  

 

5.4.1.2 Culture Zone 

5.4.1.2.1 ‘Fish Shape’ Mold 

A ‘fish shape’ 3D mold design was established as the optimum shape to create the 

bespoke culture zone in surrounding Sylgard in a 35mm diameter culture well. A ‘tail’ 

section, varying in size depending on the model size, allowed presentation of the bone 

anchor from below, at a fixed 30o angle, to a horizontal culture surface for tendon 

analogue development provided by the ‘body’, common to all models (Figure 5.2). 

 

5.4.1.2.2 Lattice Frame Mold 

For ease of simultaneous preparation of all wells in a 6-well plate, 6 fish shape designs 

were incorporated into a 3D printed lattice suspension frame (Figure 5.3). The frame 
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was able to sit unsupported on a lid-less 6-well plate, suspending each fish shape 

centrally within each well, whilst providing strength to the overall mold structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 | Bone Anchor Production 
Manufacture of an anatomical brushite bone anchor block by reverse molding. The ‘universal’ size is 
shown; specific ‘universal’ size dimensions are in parentheses, common dimensions are not. a) 
Tinkercad software design of casting tray for 6 bone anchors, superior oblique view; entire tray 
dimensions – length 40mm, width 35mm, depth 8mm. The projecting trapezoidal shapes represent 
the dimensions of the desired bone anchor. For ‘large’, ‘medium’ and ‘small’ bone anchor (model) 
sizes, the trapezoidal shape designs are modified: ‘large’ – height (H) 6.36mm, base width (BW) 
9.30mm, apex width (AW) 1.66mm; ‘medium’ – H 5.05mm, BW 8.30mm, AW 1.56mm; ‘small’ – H 
4.33mm, BW 7.57mm, AW 1.65mm. Depth (d) remains 2.00mm for all sizes, as do the whole tray 
dimensions. b) ABS 3D print of (a), superior view. c) Kemsil silicone mold from (b), superior view. d) 
Cast brushite bone anchor block formed from a single trapezoidal impression from (c), superior-lateral 
oblique view. H, BW, AW and d are the same dimensions as the projecting trapezoidal shapes in the 
Tinkercad tray design in (a). Note the roughened surfaces of the brushite block.  
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Figure 5.2 | ‘Fish Shape’ Culture Zone Mold Design 
Tinkercad design specifications for the ‘fish shape’ mold, to create an impression in Sylgard and direct 
attachment of the developing tendon analogue onto a single surface of the bone anchor at 30o. The 
‘universal’ size is depicted; specific ‘universal’ dimensions are in parentheses, common dimensions 
are not. a) Lateral view of component elements of design (superior and inferior surfaces appear 
rounded in 3D). The ‘tail’, composed of blue and red blocks, provides space for insertion and housing, 
respectively, of the bone anchor. The ‘body’, composed of a cylindrical orange block, provides space 
for the developing tendon analogue. The red block mimics the trapezoidal bone anchor size and shape, 
set at 30o to the horizontal inferior surface of the orange block, positioned at the point where its 2 
forward-facing bottom corners both intersect the curved edge of the orange block. The height (H) of 
the red block (bone anchor) is specific to the size of model required, whilst depth (d) is common to all 
sizes. The blue block continues the 3D shape of the red block to the level of the superior surface of the 
orange block to create the space necessary to insert the bone anchor. The common 8.00mm depth of 
the orange block was designed large enough to contain a volume of contracting fibrin gel and culture 
medium without extending above the height of a standard 35mm diameter well. b) Superior view of 
component elements. The common 21.00mm diameter of the orange block (‘body’) provides the new 
sizeable culture space for the tendon analogue, fitting comfortably within a standard 35mm diameter 
well, whilst allowing enough space for the additional ‘tail’ components of all specific model size. The 
apex width (AW) and superimposed base width (BW) of the red/blue blocks are determined by the 
specific model size required.  
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Figure 5.3 | Lattice Mold Design 
Superior (a) and superior-lateral oblique (b) view of Tinkercad design for the lattice 
mold. Lattice frame dimensions were calculated so as to allow 6 ‘fish shapes’ to 
each be held centrally within the wells of a standard 6-well plate, whatever the 
model size (fish shape) required. Fish shapes (‘universal’ size shown) are suspended 
centrally by 7.00mm (diameter) x 4.00mm (depth) cylinders at the intersection of 
the horizontal and vertical bars of the lattice. Lattice frame depth 2.00mm. All units 
in millimetres.  
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5.4.1.2.3 Preparation and Set Up 

See Figure 5.4. The lattice frame mold was placed on a 6-well plate (Figure 5.4a), 

with the fish shapes located in the wells away from the well rim (Figure 5.4b). Sylgard 

was filled around the fish shapes to the level of the superior surface of the ‘body’ 

(Figure 5.4b), requiring approximately 9ml for each well, and cured at either room 

temperature for a minimum of 7 days or 50oC in an oven overnight. For positional 

security the frame was temporarily fixed to the plate with adhesive tape during Sylgard 

filling and curing. The entire mold was then removed to leave the impression (Figure 

5.4c), requiring gentle freeing of each fish shape mold from the Sylgard with a 

stainless steel micro spatula followed by removal of the frame with pliers.  

 

The suture anchor was prepared by cutting number 1 silk suture (Ethicon, Bridgewater, 

USA) with sharp dissecting scissors (Fine Science Tools, Cambridge, UK) to the same 

width as the ideal tendon width of a particular model size in the model design guide 

based on human data in Table 2.17 (Chapter 2). The suture was secured flat onto the 

Sylgard with stainless steel insect pins (Fine Science Tools) at the suture ends, 

vertical, parallel and central to the point where the fish shape ‘body’ impression 

becomes the ‘tail’ (i.e. the nearest bone anchor edge when in position), at a 12mm 

distance (Figure 5.4d-f). Suture and construct distances were judged under guidance 

of a millimetre slide rule and x3 loupe magnification (UKloupes, Bristol, UK). Plates 

and lids were then sterilised with 70% industrial methylated spirit (IMS) in the laminar 

flow cabinet as described in Section 4.4.3.2.1 (Chapter 4), taking care that all areas 

of the new internal culture zone were sterilised. Bone anchors were separately 

sterilised as per Section 4.4.4.1.4 (Chapter 4). A sterile bone anchor, seeded with 

osteoblasts for co-culture or acellular for monoculture of tendon analogue fibroblasts 

only, was positioned into the base of the ‘tail’ impression of the culture zone (Figure 

5.4d-f) with a stainless steel micro spatula with angled end under x3 loupe 

magnification in the laminar flow cabinet.   
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Figure 5.4 | Culture Zone Production and Set Up 
a) Lattice mold in place on a standard lid-less 35mm well diameter 6-well plate. ‘Universal’ size shown 
and subsequently followed. b) Magnified side view of a single 35mm well of the 6-well plate, showing 
the ‘fish shape’ suspended centrally in the well, above the well base. Sylgard is then filled around the 
fish shape up to the broken line, level with the superior surface of the fish shape. c) Fish shape 
impressions produced in the cured Sylgard after removal of the lattice mold, creating the bespoke 
internal culture zones. d) Sterilised wells set up with bone anchors and pinned sutures in position. e) 
Plan view of a single 35mm well, displaying the newly created internal culture zone with 21mm 
diameter ‘body’. The bone anchor, pre-seeded with osteoblasts for co-culture, or acellular for 
monoculture, is located at the base of the ‘tail’ of the culture zone. The suture is positioned 12mm 
from the nearest edge of the bone anchor, secured with vertical pins onto the Sylgard. Suture width 
is determined by the size of the model, shown here as 4.69mm for the ‘universal’ size: ‘large’ – 
5.38mm; ‘medium’ – 4.39mm; ‘small’ – 3.68mm. Air bubbles in the Sylgard formed beneath the mold 
during curing are evident, however these lie just below the surface of the internal culture zone base. 
The culture zone base is flat but roughened by the texture of the inferior surface of the 3D printed 
material, whilst the culture zone sides are smooth. f) Superior oblique view of (e), showing the full 
face of the bone anchor, ready for addition of the fibrin and fibroblasts.  
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5.4.2 Construct Cultures  

 

5.4.2.1 Culture Methods 

Cell and tissue culture methods, including sterility, cell preparation, construct culture 

and photography, were conducted as described in Section 4.4.1 (Chapter 4), unless 

stated. Preparation, use and exchange of supplemented Dulbecco’s modified eagles 

medium (S-DMEM), S-DMEM supplemented with 250µM ascorbic acid (AA) and 

50µM proline (P) (molarities unchanged throughout) , and rat osteoblast differentiation 

medium (RODM) in 50%:50% combination with S-DMEM (50:50 medium) was as per 

Section 4.4.1.3 (Chapter 4), with medium exchanges of 1ml volume. As standard, 

cells were seeded in S-DMEM and exchanged to a particular medium for continued 

culture at the first medium change on day 3. The source of RTFs and dRObs is 

described in Section 4.4.2 (Chapter 4).  

 

All tendon-bone construct cultures were performed in the bespoke 3D culture zones 

of each well of a 6-well plate, using brushite bone anchors and suture anchors, 

prepared and set-up as described in Section 5.4.1. Fibrin gel preparation, fibroblast 

seeding and continued culture was performed as per basic suture-suture constructs 

(Section 4.4.3.2.1, Chapter 4), unless stated. Particular care was taken to ensure 

formation of fibrin over the bone anchor, with directed agitation of the thrombin mix 

and delivery of the fibrinogen into the ‘tail’ of the culture zone impression. At the 

completion of the culture period, selected constructs were photographed with gentle 

axial tension on the tendon analogue with forceps, and also after freeing from the 

Sylgard with a disposable scalpel (Swann-Morton, Sheffield, UK).  

 

5.4.2.2 Monoculture Constructs 

Initial trials of the tendon-bone model design were monocultures, consisting of 

fibroblast-seeded fibrin tendon analogue cultures with acellular bone anchors. All 

monocultures continued for 14 days with gross overview photography every 2-3 days. 

 

5.4.2.2.1 Without Brushite Acid Washout 

The 1st monoculture constructs were set up in the ‘universal’ size in 6 wells of the 

same 6-well plate. Bone anchors were sterile but did not undergo preceding acid 

washout. Standard (single) volume fibrin gel (500µl of thrombin mix with 200µl of 

fibrinogen) was polymerised at 37oC for 2 hours, since after the standard 1 hour the 
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thrombin appeared semi-solid. P5 RTFs (from the 1st RTF isolation) were seeded on 

the fibrin with standard cell number (100,000 cells in 1ml S-DMEM per well) and the 

constructs then continually cultured in S-DMEM (‘S-DMEM’ culture).  

 

A 2nd monoculture trial, also using the ‘universal’ size, was performed to investigate a 

number of the promising culture variables tested in the ‘anatomical suture 

experiments’ in Section 4.4.3.6 (Chapter 4), namely ‘+AA+P’ and ‘double gel/double 

cells/+AA+P’. In the same 6-well plate, 3 constructs were set up with standard volume 

fibrin gel and standard cell number, and 3 constructs with double volume fibrin gel 

(1000µl thrombin mix with 400µl fibrinogen) and double cell number (200,000 cells 

per well), cultured in S-DMEM supplemented with AA and P (‘+AA+P’ and ‘double 

gel/double cells/+AA+P’ cultures, respectively). For seeding, P5 RTFs (from the 2nd 

RTF isolation) were prepared in a cell concentration of 200,000 cells/ml S-DMEM, 

adding 0.5ml/well to ‘+AA+P’ cultures (with additional 0.5ml/well S-DMEM top up) and 

1ml/well to ‘double gel/double cells/+AA+P’ cultures. This technique was followed for 

constructs of both standard and double cell number in the remaining constructs of the 

chapter.  

 

5.4.2.2.2 With Brushite Acid Washout 

A 3rd monoculture trial was conducted with additional acid washout of the brushite 

bone anchors before their positioning into the ‘tail’ of the culture zone. ‘Medium’ size 

bone anchors and culture models were used, with further investigation of culture 

variables from the ‘anatomical suture experiments’ (Section 4.4.3.6, Chapter 4).  

 

12 sterile ‘medium’ bone anchors underwent acid washout with 5 washes of S-DMEM 

as per Section 4.4.4.5.2 (Chapter 4), then were inset into all 12 wells of 2x 6-well 

plates, with approximately 1 hour drying time at room temperature between the last 

wash and formation of overlying fibrin. Each plate was set up with duplicates of 3 

culture variables, using P5 RTFs (1st isolation), with each plate cultured in either S-

DMEM or S-DMEM supplemented with AA and P. In the S-DMEM plate, duplicates of 

standard volume gel and standard cell number (‘S-DMEM’ cultures), double volume 

gel and standard cell number (‘double gel’) and double volume gel and double cell 

number (‘double gel/double cells’) were set up. In the plate supplemented with AA 

and P, the same 3 sets of duplicates were set up, respectively forming ‘+AA+P’, 

‘double gel/+AA+P’ and ‘double gel/double cells/+AA+P’ cultures.  
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5.4.2.3 Co-Culture Constructs 

Tendon-bone co-culture constructs were prepared similarly to the monocultures, 

including the brushite acid washout step. However, co-culture constructs investigated 

all 3 of the ‘large’, ‘medium’ and ‘small’ model sizes, used RTFs isolated from all 3 rat 

isolations (biological repeats), extended culture time to 28 days, and included the key 

addition of osteoblasts seeded on the bone anchor.  

 

5.4.2.3.1 Osteoblast Bone Anchor Seeding 

Osteoblast seeding on ‘large’, ‘medium’ and ‘small’ brushite bone anchors was based 

on the successful seeding of 10,000 dRObs in 20µl S-DMEM onto brushite discs, as 

per Section 4.4.4.5.3 (Chapter 4), proliferating over 7 days. Since the trapezoidal bone 

anchor scaffolds were different volumes to the discs, and to each other, scaling was 

required to maintain the ratio of both cell density and volume of cell seeding solution 

on the scaffold (Table 5.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After bone anchor production and sterilisation, 6 anchors each of ‘large’, ‘medium’ 

and ‘small’ size underwent the brushite acid washout steps as per Section 4.4.4.5.2 

Table 5.1 | Bone Anchor Scaling for Osteoblast Seeding 
Calculations to maintain the scaffold cell seeding density and cell 
solution volume from discs to trapezoidal bone anchors. 2D area 
for discs was calculated by πr2, where disc diameter was 4.6mm. 
2D area for trapezoidal bone anchors was calculated using the 
dimensions of the model design guide in Table 2.17 (Chapter 2), 
splitting the trapezoid into component elements of a central 
rectangle and 2 outer triangles. 3D volume was calculated by 2D 
area x depth.  
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(Chapter 4). S-DMEM colour changes surrounding the bone anchors were compared 

to a control of anchor-free S-DMEM, and despite the increased volume of the 

trapezoidal bone anchors compared to discs, 5x 10minute S-DMEM washes 

remained sufficient to prevent further S-DMEM colour change. Following the S-DMEM 

washes, the bone anchors were air dried for 1 hour at room temperature before cell 

seeding. A 500,000 cell/ml seeding solution of P7 dRObs in S-DMEM was prepared 

and seeded onto each bone anchor in flat bottomed, non-tissue culture treated 24-

well plates as per Section 4.4.4.5.3 (Chapter 4), pipetting the required volume of cell 

seeding solution onto each ‘large’ (21,000 cells), ‘medium’ (15,000 cells) and ‘small’ 

(12,000 cells) bone anchor as per Table 5.1. After 5 hours of incubation at 37oC, 5% 

CO2 for cell attachment, the bone anchors were moved into fresh wells of the same 

plates, 1ml S-DMEM added (submerging the anchors), and then returned to 37oC, 5% 

CO2 incubation for continued culture. Osteoblast-seeded bone anchors were cultured 

for 7 days, with exchange of 1ml S-DMEM every 2-3 days.  

 

5.4.2.3.2 Co-Culture Integration 

After 7 days of osteoblast culture on the bone anchors, the S-DMEM was aspirated 

and the 6 bone anchors of each ‘large’, ‘medium’ and ‘small’ size were inset into the 

‘tails’ of 6 culture zones in a 6-well plate each of reciprocal ‘large’, ‘medium’ and ‘small’ 

size (Figure 5.4d-f). The tendon analogue component of all wells was set up with 

double volume fibrin gel and double cell number, with 2 groups of triplicates in each 

plate (model) size cultured in either S-DMEM supplemented with AA and P (‘double 

gel/double cells/+AA+P’) or 50:50 medium (‘double gel/double cells/50:50’). Each 

construct of a triplicate was a biological replicate of P5 RTFs from each of the 3 rat 

isolations. Cultures were maintained for 28 days with overview photography every 3-

7 days.  

 

5.5 Results 

 

5.5.1 Culture Zone  

 

Sylgard cured as intended around the ‘fish shape’ mold to create a transparent, 3D 

culture zone within a 35mm diameter well. The lattice frame allowed simultaneous 6-

well preparation and adequately positioned fish shapes in all wells without contact 
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with interior well surfaces. Sylgard molded closely to the fish shape, and the ‘tail’ 

impression provided a tight fit for the angled bone anchor and ensured single surface 

attachment by the tendon analogue onto the ‘presenting’ surface, with no fibrin gel 

present in the tail area on or around unintended bone anchor surfaces. The 21mm 

diameter ‘body’ impression provided enough space for tendon analogue formation 

and maturation between the bone and suture anchors, and the freshly polymerised 

fibrin gel on day 0 appeared to cover the entire presenting surface of the bone anchor, 

as was essential. However, the markedly reduced volume, compared to a 35mm 

diameter well, necessitated media exchanges of 1ml and cell concentrations for 

seeding prepared at 200,000 cells/ml S-DMEM, rather than the standard 2ml media 

exchanges and 100,000 cells/ml for seeding, as only just over 1ml of volume remained 

after the fibrin gel had been added.  

 

Air bubbles were trapped under the surface of the fish shape mold during Sylgard 

curing (Figure 5.4e), usually <1mm diameter but occasionally coalesced into larger 

bubbles of >5mm. Although these lay below the flat culture surface and did not cause 

undulation, freeing of the fish shape molds from the Sylgard did occasionally 

penetrate into larger bubbles through the thin flat culture surface, rendering the well 

unsuitable for culture.  

 

ABS printed molds were faithful to the Tinkercad designs, but lacked perfect finish on 

edges and surfaces. Resolution was not refined to the 0.01mm accuracy of designs, 

but this did not drastically affect the Sylgard impression and the key feature of single 

surface bone anchor attachment was retained. The upper and lower surfaces of the 

ABS prints, although not side surfaces, were slightly textured, translating to a fine 

notching on the horizontal culture zone surface. This did not seem to grossly impinge 

on fibrin gel contraction, not requiring any procedures to release the gel from the 

under surface, but it was notably less smooth than the unroughened side wall of the 

well.  
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5.5.2 Construct Cultures  

 

5.5.2.1 Monoculture Constructs 

5.5.2.1.1 Without Brushite Acid Washout 

The main feature of the initial 2 monoculture trials was yellowing of the culture medium, 

signifying acidification due to the colorimetric phenol red pH indicator within the S-

DMEM. 

 

In the 1st monoculture trial (Figure 5.5), culturing standard volume gel and standard 

cell number constructs in S-DMEM, the thrombin mix over the brushite bone anchor 

began to turn markedly yellow soon after its addition into the culture zone. After an 

hour of fibrin polymerisation, all fibrin gel constituents were yellowed to some degree, 

most heavily so, and the fibrin correspondingly appeared semi-solid. A further hour of 

37oC incubation to encourage polymerisation resulted in an increase in, but not 

complete, solidification. Furthermore, after fibrin polymerisation, a curved area of thin, 

translucent gel was present, like a ‘halo’, at the bone anchor interface, suggesting gel 

attachment was poor or even absent (Figure 5.5a). Over the ensuing culture period, 

the majority of the gel contracted as expected, forming the general morphology of the 

tendon analogue by day 3-5, with minor continued contraction over the following days 

until the trial conclusion at 14 days. The tendon analogue extended in roughly 

rectangular morphology between suture anchor and bone anchor, but only attached 

to the bone anchor by 2 slips either side of a curved absence of gel (Figure 5.5b and 

5.5c). The tendon analogue was thin, and, once removed from the culture zone 

without tension on the suture anchor, contracted to a vastly reduced width (Figure 

5.5d). Notably, the thrombin mix and culture medium of 1 of the 6 tendon analogues 

was much less yellow than all others at day 0 and beyond, and this tendon analogue 

never developed the halo of thin gel at the bone interface (Figure 5.5b).  
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In the 2nd monoculture trial (Figure 5.6), the yellowing (acidification) of the thrombin 

mix and culture medium was similar, although the fibrin gel seemed marginally more 

solid after the standard 1 hour of polymerisation before cell seeding. The halo of 

translucent gel at the bone interface was present in both the ‘+AA+P’ and ‘double 

gel/double cells/+AA+P’ cultures, but less obvious in ‘double gel/double cells/+AA+P’ 

cultures. At day 2, 2 of the ‘double gel/double cells/+AA+P’ tendon analogues had 

detached from their bone anchor, and by day 3 all 3 tendon analogues had detached. 

All ‘+AA+P’ tendon analogues were still attached by day 7 and were contracted 

between the suture and bone anchors despite the lack of gel at the interface. By day 

10, however, 2 of the ‘+AA+P’ tendon analogues had detached from their bone anchor, 

with the 3rd remaining attached on day 14 by approximately half the width of the base 

of the bone anchor.    
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5.5.2.1.2 With Brushite Acid Washout 

The 3rd monoculture trials, which included the brushite acid washout steps, did not 

display acidic yellow media or the curved halos of translucent gel at the bone interface, 

and the fibrin was fully solid after 1 hour of polymerisation. All tendon analogues 

remained attached to the bone anchor at the conclusion of the trial on day 14. 

Both the monocultures cultured in S-DMEM (Figure 5.7) and S-DMEM supplemented 

with AA and P (Figures 5.8 and 5.9) revealed commonalities in tendon analogue 

development. The standard volume gel cultures (‘S-DMEM’ and ‘+AA+P’) contracted 

the most and produced the thinnest (of depth) tendon analogues. The double volume 

gel with double cell number cultures (‘double gel/double cells’ and ‘double gel/double 

cells/+AA+P’) were more contracted than double volume gel with standard cell 

number cultures (‘double gel’ and ‘double gel/+AA+P’), but less than the standard 

volume gel cultures. The general morphology of the tendon analogue formed by 

approximately day 5, after which those tendon analogues supplemented with AA and 

P (Figures 5.8 and 5.9) appeared to continue contracting more than those cultured 

in S-DMEM alone (Figure 5.7).  

By day 14, the most anatomically relevant construct was the ‘double gel/double 

cells/+AA+P’ culture, where the peripheral edges of the fibrin gel formed a relatively 

rectangular tendon analogue with attachment to the bone anchor (Figure 5.9). In all 

constructs, however, the bulk of the gel was in the half to two-thirds of the tendon 

analogue towards the suture anchor side, as the gel peripheries folded/bunched in 

contraction towards the suture anchor, whilst remaining attached to the bone anchor. 

Despite the fibrin gel on formation at day 0 being of a depth to seemingly cover the 

entire presenting surface of the bone anchor, tendon analogue attachment on day 14 

was only to the lower aspect of the bone anchor (Figure 5.9). 
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5.5.2.2 Co-Culture Constructs 

Cultures incorporating osteoblast seeded bone anchors were also capable of forming 

tendon-bone constructs. The general tendon analogue morphology between suture 

and bone anchor again formed within the first week. Those constructs cultured in S-

DMEM supplemented with AA and P (Figure 5.10) did not demonstrate a clear 

morphological progression after day 7, and by day 28 the tendon analogue remained 

largely flat (Figure 5.11), rather than being noticeably rolled up at the peripheries had 

significant contraction occurred. In comparison, the 50:50 medium constructs 

continued to contract after day 7 to a greater extent (Figure 5.12), and by day 28 the 

fibrin gel width over the whole distance of these tendon analogues was much more 

similar to the dictating widths of the suture and bone anchors (Figure 5.13). The fibrin 

gel was not however tightly contracted around the suture anchor by day 28, with most 

tendon analogues appearing of wider (S-DMEM with AA and P constructs) or 

approximately equal (50:50 medium constructs) width at the suture anchor compared 

Figure 5.9 | Tendon-Bone Monocultures with Acid Washout in S-DMEM with AA and P (2) 
Superior oblique (upper panels) and superior-lateral oblique (lower panels) photographs of the 
‘+AA+P’, ‘Double Gel/+AA+P’ and ‘Double Gel/Double Cells/+AA+P’ monoculture constructs from 
Figure 5.8 on day 14 without culture medium. Noticeable is the extent of rolling/folding at the 
peripheries of the fibrin gel in the contraction and formation of the tendon analogues; the comparative 
thinness of the standard volume gel ‘+AA+P’ culture; and the increased contraction of ‘Double 
Gel/Double Cells/+AA+P’ culture over ’Double Gel/+AA+P’. Gentle axial tension on the tendon 
analogues (lower panels) highlights that the tendon-bone attachment occurs on the lower aspect of 
the bone anchor presenting surface, with the single volume gel ‘+AA+P’ seemingly attaching over the 
smallest area and on the lowest aspect, compared to the other double volume gel constructs. Scale 
bar 5mm all panels.  
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to the bone anchor, despite the suture anchor always being of smaller width than the 

bone anchor. Overall gel contraction appeared greatest in ‘small’ sized models, 

followed by ‘medium’ and then ‘large’, as expected by the corresponding increase in 

size of the suture and bone anchors dictating gel width. 

 

The tendon-bone constructs could be successfully extracted from the Sylgard culture 

zones with maintenance of the interface (Figure 5.14). Closer observation revealed 

that, although the fibrin gel was attached, the attachment did not encompass the entire 

intended trapezoidal presenting surface of the bone anchor, remaining attached only 

to the lower third, with a width less than that of the base of the attachment surface. 

The removal of tension from the pinned suture anchor during extraction caused a 

narrowing of gel at the distal end of the tendon analogue near the bone anchor, 

highlighting that the greater volume of gel, resisting relaxation, lay at the proximal 

area nearer the suture anchor. This more proximal gel did not contract in the same 

fashion as the more distal gel on removal of tension, retaining its width.  

 

2 of the constructs cultured in 50:50 medium, 1 ‘large’ and 1 ‘medium’ construct, failed 

at the tendon-bone interface during culture. The ‘medium’ tendon analogue had 

detached from the bone anchor on examination at day 21, whilst the large tendon 

analogue had detached on day 28. In both constructs, a reduced attachment was first 

noted on day 17, along with mild yellowing (acidification) of the culture medium in the 

same wells. Increasing detachment and deeper yellowing of the medium occurred 

over time until full detachment. Macroscopic contamination was not clearly evident, 

and the fibrin gel remained solid, although the construct and medium was not 

visualised microscopically due to the raised culture zone now being at a plane beyond 

focus for standard light microscopy. Despite both tendon analogue detachments 

occurring in RTFs from the 3rd isolation, there was no obvious trend between RTFs 

from different isolations and differences in gel contraction throughout the co-cultures 

seemed only within the limits of natural variation.  
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Figure 5.11 | Tendon-Bone Co-Cultures in S-DMEM with AA and P (2) 
Superior oblique (upper panels) and superior-lateral oblique (lower panels) photographs of the ‘large’, 
‘medium’ and ‘small’ ‘double gel/double cells/+AA+P’ co-culture constructs from Figure 5.10 on day 
28 without culture medium. All tendon analogues have yet to contract fully between the suture and 
bone anchors, maintaining a relatively flat profile (rather than rolled peripheries and thinner central 
region as per Figure 5.9) and curved, rather than straight, peripheral edges between the anchors. The 
lower panels demonstrate the focus of tendon-bone attachment over the lower half of the bone 
anchor presenting surface. Scale bar 5mm all panels.  
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Figure 5.13 | Tendon-Bone Co-Cultures in 50:50 Medium (2) 
Superior oblique (upper panels) and superior-lateral oblique (lower panels) photographs of the ‘large’, 
‘medium’ and ‘small’ ‘double gel/double cells/50:50’ co-culture constructs from Figure 5.12 on day 
28 without medium. The upper panels demonstrate the greater contraction of the tendon analogue 
in all construct sizes as compared to similar ‘double gel/double cells/+AA+P’ co-cultures, forming a 
straighter, more rectangular morphology between suture and bone anchor (compare Figure 5.11). 
The lower panels again demonstrate tendon-bone attachment on the lower aspect of the bone 
anchor presenting surface, appearing even lower than ‘double gel/double cells/+AA+P’ co-cultures 
(compare Figure 5.11). Scale bar 5mm all panels.  
 

Figure 5.14 | Isolated Tendon-Bone Co-Culture Constructs  
‘Small’ (left), ‘medium’ (middle) and ‘large’ (right) ‘double gel/double cells/50:50’ tendon-bone co-
culture constructs removed from culture on day 28, representing the culmination of an anatomically 
and clinically relevant tissue engineered FDP-DP tendon-bone model. Slight contraction of the tendon 
analogue has occurred, particularly at its ‘neck’ just proximal to bone insertion, due to removal of the 
tension from the pinned suture anchor; however the double volume of gel limits contraction much 
more than a construct of standard volume gel (compare Figure 5.5d). The brushite bone anchor is 
softer than at the start of culture, but retains attachment of the tendon analogue, albeit on the lower 
third of the desired attachment surface.  
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5.6 Discussion 

 

5.6.1 Culture Zone 

 

5.6.1.1 Anatomical Design 

The ‘fish shape’ culture zone was designed to direct the anatomical assembly of the 

in vitro model components. The ‘tail’ region provided a key advancement from the 

previously established brushite bone anchor with fibrin gel construct system (Paxton, 

Grover and Baar, 2010), regulating a single surface attachment where previously gel 

attached all around the base of the bone anchor. The tail also presented the bone 

anchor at a 30o angle to the tendon analogue, aiming to induce tension lines in the 

contracting fibrin gel between the anchors to slope at 30o at the bone anchor 

attachment and encourage developing collagen fibres to follow correspondingly.  

 

Macroscopically, the culture zone and resulting set up of the tendon-bone constructs 

successfully integrated the intended elements of the anatomical design. The tendon 

analogue did not appear to attach to any bone anchor surface other than the 

presenting surface, although this was not microscopically examined. As further 

discussed in Section 5.6.2.3, the key finding at the interface was that the tendon 

analogue did not attach over the entire presenting surface of the bone anchor, but 

contracted to a smaller area. Future design modifications might consider working on 

a principle of post-culture sculpting of the anatomical interface, by culturing a tendon 

analogue attachment over a greater than intended single surface area on the bone 

anchor, then physically shaping the attachment area after culture by sharp dissection 

to the optimum anatomical shape. This optimum shape could be imprinted on the 

bone anchor, visible through the translucent tendon analogue at the attachment area, 

as a stencil to guide post-culture shaping. The 30o attachment angle was also not 

examined in detail, and ideally the angle at which the bone anchor was presented in 

culture would have been checked with measurements of side view photographs and 

the insertion angle of collagen fibres or tension lines in the gel quantified histologically, 

as per Chapter 3. Since the tendon-bone construct removed from culture is not fixed 

macroscopically at this 30o interface angle, histology would further reveal the impact 

of 30o interface culture and if the anticipated benefits existed, for example compared 

to 0o or 90o interface culture. 
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5.6.1.2 3D Printing and Molding 

ABS afforded low cost production of relatively strong 3D printed molds. Its main 

drawback was textured printed surfaces, preventing a smooth culture surface 

impression in the Sylgard. This was in contrast to smooth culture surfaces when 

Sylgard was used in wells without molds, and provided a confounding factor when 

comparing fibrin gel contraction in tendon-bone constructs in this chapter with the 

anatomical suture-suture constructs of Chapter 4 (Section 4.5.2.4). Although Sylgard 

is hydrophobic and should allow natural contraction, a textured surface could provide 

physical points of focal gel-surface attachment and obstruct contraction. No snagging 

of the gel was macroscopically evident during construct cultures, however this may 

have been present microscopically and caused a slowing of contraction. Other 

members of the laboratory group have attempted to wrap similar ABS-printed molds 

in flexible laboratory film, creating a smoother Sylgard impression. However, this 

increased the dimensions of the impression so that fibrin gel could infiltrate around 

the bone anchor in the tail region, attaching to multiple bone anchor surfaces. This 

technique was therefore not employed, but could be explored further so that only the 

inferior surface of the body of the fish shape mold (producing the tendon analogue 

culture surface) is wrapped. Otherwise, utilising printers and materials capable of 

producing molds of entirely smooth surfaces should be used with future designs. 

 

The curing of Sylgard tightly around the fish shape molds was welcomed in the 

creation of accurate impressions, but this also made the molds difficult to remove. 

The lack of flexibility in the ABS material meant that the removal procedure required 

particular care and technical experience, as breakages in the mold, especially at the 

junction between the fish shape and suspending lattice frame, were common during 

early removal attempts. A material with moderately high flexibility, maintaining 

position against the curing Sylgard but able to bend on removal after curing, would be 

a greater attribute than increased strength against breakage. Flexible filaments, 

thermoplastic elastomers of combined hard plastic and rubber, are printing materials 

possessing these properties and should be explored for future designs.  

 

Air bubble entrapment was not an issue when curing Sylgard without printed molds, 

as the bubbles rose to the surface and usually escaped within ≈15 minutes when 

unobstructed. However, with the multi-surfaced and angled components of the fish 

shape molds, the bubbles were prevented from release and, although not directly 
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impacting upon cultures, prevented adequate preparation of some wells if the bubbles 

against the culture surface were breached.  Minimising air entrapment during mixing 

in preparation of the Sylgard was challenging, and future degassing techniques may 

be best employed at the curing stage.  After pouring, the 6-well plate could be first 

placed in a vacuum to draw out the air bubbles, for example for 30 minutes (Nguyen 

et al, 2014), before heat curing. Using a flexible printed mold material might also allow 

attempts to clear the bubbles manually. During early curing an instrument could be 

inserted beneath the fish shape to sweep away the bubbles, made much easier if the 

fish shape was able to bend to one side and then reliably return to its original position.  

 

With general overall success of the design of the culture zone, future preparations 

might consider 3D printing the entire culture zone itself, for example as a 35mm 

diameter well insert. This negates the issues surrounding Sylgard use, but still 

requires a material of accurate and smooth surface finish. Sylgard possesses many 

useful properties for tissue culture, including hydrophobicity, transparency, and the 

ability to be surface sterilised, and a printed material for culture use would also ideally 

demand these qualities.  

 

5.6.2 Construct Cultures  

 

5.6.2.1 Brushite Acid Leaching 

Monocultures without brushite acid washout were the first cultures in the project to 

use a brushite bone anchor combined with fibrin gel tendon analogue culture. 3 

unexpected but important findings were quickly apparent: addition of thrombin mix or 

culture medium alone to the brushite – 1) liberated acid into solution, 2) impaired 

polymerisation of fibrin, and 3) created a deficiency in fibrin at the tendon-bone 

interface. These phenomena were not noticeably reported on review of the literature 

using the fibrin gel system with brushite. Whilst the 1st monoculture trials produced 

the ‘halo’ of fibrin deficiency at the tendon-bone interface, the 2nd monoculture trials 

confirmed the major issue, with tendon analogues fully detaching from their bone 

anchors by day 2. Pre-culture washout of brushite acid was therefore investigated 

(Chapter 4, Section 4.5.3.2) and the washout procedure mandated before any 

subsequent cultures with brushite. 
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Brushite was formed from a combination of orthophosphoric acid (OA) with β-

tricalcium phosphate (TCP), using a high 3.5 molarity of OA, previously shown to 

increase the attachment time of a fibrin gel soft tissue analogue (Paxton et al, 2010). 

Citric acid was also employed as a retardant during the cement formation process. 

The liberation of acid into solution should therefore not be surprising, and its effects 

may be remarkable in this project due to the larger volumes of brushite anchors used 

(e.g. ‘universal’ size anchor ≈5x9x2mm) compared to anchors of 3-4mm dimensions 

in similar fibrin gel-brushite constructs (Paxton et al, 2010; Paxton, Grover and Baar, 

2010; Paxton et al, 2012). The explanation for 1 of the 6 identically sized brushite 

anchors in the 1st monoculture trial releasing noticeably less acid is not immediately 

obvious. In the formation of the cement, that particular portion of paste may have 

accumulated more acid; or more likely, during the sterilisation with 70% IMS before 

culture, it may have been subjected to a comparatively greater volume of IMS and 

had more acid washed out. Either way, the tendon analogue forming against this 

anchor did not seemingly suffer the fibrin deficiency of the other tendon analogues.  

 

As well as affecting cell physiology, pH has a considerable effect on fibrin formation 

and structure (Kurniawan et al, 2017; Weisel and Litvinov, 2017). In vitro studies of 

blood coagulation have previously shown that fibrin polymerisation time doubles at a 

pH of 6.4 and polymerisation is virtually absent at pH 5.4 (Green et al, 1978). The 

rapid and obvious conversion of the S-DMEM in the thrombin mix to a yellow colour 

when added to brushite suggested that the phenol red’s working limit low of pH 6.4 

(Morgan et al, 2019) had at least been achieved, and the pH was potentially even 

lower. Towards an acidic extreme of pH, thrombin would denature and reduce the 

conversion of soluble fibrinogen to insoluble fibrin, explaining the general increase in 

polymerisation time seen and the focal lack of polymerisation alongside the brushite 

anchor where the acid was most concentrated. It was therefore crucial to reduce the 

brushite acid content for suitable formation of the tendon analogue and its bone 

anchor attachment.  

 

5.6.2.2 Contraction and Morphology 

Although fibrin gel contraction was not quantified by width measurements for definitive 

comparison between constructs, as per Chapter 4, the morphology of all developing 

tendon analogues was serially observed and recorded photographically. The 

perceived trends observed amongst the varying constructs are subsequently 
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discussed with reference to general contraction, gel volume and cell number, and 

culture media, and also ahead in Section 5.6.2.4 for co-cultures. 

 

5.6.2.2.1 General Contraction 

Tendon-bone constructs cultured in the bespoke culture zone displayed similar early 

stage development to anatomical suture-suture constructs (Section 4.5.2.4, Chapter 

4), forming their general shape, as dictated by the anchor sizes, within the first week. 

Most tendon-bone constructs appeared to contract to their general shape by day 5, 

rather than approximately day 7 for anatomical suture-suture constructs, likely due to 

the more confined culture well body of 21mm diameter rather than 35mm.   

 

Contraction proceeded from the culture zone ‘body’ rim towards the centre of the well, 

whilst the gel formed over the bone anchor in the ‘tail’ of the well anchored to the bone 

anchor presenting surface. As the gel gathered around the suture anchor, there was 

a bias of gel volume in the proximal tendon analogue end towards the suture anchor 

over the distal end towards the bone anchor. Ideally the gel volume should be similar 

over the full length of the tendon analogue, and this might be addressed in future 

developments by altering the shape of the culture zone ‘body’. For example, a more 

elliptical shape might be employed; the rim could be tighter to the suture anchor, 

preventing excessive gel gathering behind the suture anchor, but wider more centrally, 

encouraging greater bulk over the length of the tendon analogue. 

 

Over the 2 week monocultures and 4 week co-cultures, the gel never contracted fully 

to the width of suture anchor, as had previously been noted in Chapter 4 (Section 

4.5.2.3.3). Although the suture provided attachment for the gel, the pins appeared to 

have greater influence over the 3D tendon analogue morphology, as they restrained 

the contracting peripheral gel folds from meeting centrally. Where the aim is to 

generate a biconcave engineered tendon analogous to the 3D human morphology, 

the pins could in future be placed close together rather than at the ends of the suture, 

still providing 2 point fixation, but allowing the bulky folds of fibrin to meet centrally. 

With the gel folds contracted more centrally, the suture itself may be better able to 

define the intended width.  

 

A notable finding in this chapter was the gel contraction (relaxation) that occurred after 

removal of the construct from culture. This emphasised the tension generated by the 
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anchors, crucial for organised collagen fibre alignment in the tendon analogue 

(Kapacee et al, 2008; Bayer et al, 2010). The contraction was particularly striking in 

tendon analogues with a standard volume of gel, where contraction appeared to occur 

in both length and width directions. Doubling the volume of gel reduced this post-

culture contraction effect, although contraction was still conspicuous in areas of the 

double volume gel tendon analogues where less gel had aggregated (i.e. at the ‘neck’ 

before bone anchor attachment). To negate this effect, there should be a balance of 

present tension during culture of the tendon analogue without an undue stretch on 

completion of development that would lead to considerable recoil on removal of the 

construct from culture, for which starting gel volume is likely to be a key factor.  

 

5.6.2.2.2 Gel Volume and Cell Number 

Trends in regard to tendon analogue fibrin gel volume and cell number for tendon-

bone constructs in this chapter were similar compared to the anatomical suture-suture 

constructs in Chapter 4: tendon analogues with standard volume gel contracted more 

than those with double volume gel, and those with higher cell number contracted more 

than those lower cell number. Although standard volume tendon analogues 

contracted into a more optimal rectangular, rather than rounded, shape between 

suture and bone anchor, they were insubstantial and mismatched in volume 

compared to the human FDP. The tendon analogues of double volume gel were more 

robust, but still lacked the 3D bulk to match the human FDP and attach over the full 

intended surface of the bone anchor. Future trials with this bespoke culture well 

design might therefore employ triple or quadruple volumes of gel. Cell number was 

an important factor in tendon analogue morphological development, and a scaling of 

gel volume should be matched by a scaling of cell number, in order to retain the same 

cell density per volume of gel. Constructs of double gel volume and standard cell 

number equated to half the cell density per volume of gel, producing inferior 

contraction and morphological development compared to constructs of double gel 

volume and double cell number. Where future trials use triple or quadruple gel volume, 

a cell number of 300,000 or 400,000 cells, respectively, should be added in the first 

instance. Greater volumes of gel may also require an increase in the volume of the 

culture zone body to allow enough space for culture media, which should not be 

problematic since extra space was available in the surrounding 35mm diameter well. 
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5.6.2.2.3 Culture Media 

Chapter 4 established that the addition of 250µM AA and 50µM P to S-DMEM 

increased gel contraction after the initial formation stage of the tendon analogue, and 

produced the most morphologically relevant tendon analogue in cultures of double 

volume gel and double cell number in suture-suture constructs. The initial tendon-

bone monoculture trials in the current chapter were affected by brushite acid leaching, 

however it was noticeable that comparable standard volume constructs cultured with 

AA and P (2nd monoculture trial) resulted in interface detachment of 2 of 3 tendon 

analogues by day 10, whilst all 6 constructs cultured in S-DMEM alone (1st 

monoculture trial) had not detached by day 14. This suggested that detachment may 

also be a manifestation of the increased contraction forces in constructs cultured with 

AA and P. In the 3rd monoculture trials, unaffected by acid and culturing tendon-bone 

constructs both with and without AA and P supplementation, comparative differences 

were difficult to perceive over the 14 day culture period. The constructs cultured with 

AA and P supplementation did appear more contracted at day 14 over day 5, whilst 

those in S-DMEM alone appeared very similar at the 2 time points, suggesting 

continued contraction with AA and P, as would be expected. Width quantification as 

per Chapter 4 would however be needed to confirm the small contraction margins. As 

per the anatomical suture-suture constructs of Chapter 4, the ‘double gel/double 

cells/+AA+P’ monoculture constructs were the most morphologically relevant at the 

completion of the 3rd monoculture trials at day 14. The final co-culture trials therefore 

included this set up, in addition to culturing constructs in 50:50 medium as the most 

suitable medium for co-culture of osteoblasts and fibroblasts, and these constructs 

are discussed separately in Section 5.6.2.4.     

 

5.6.2.3 Tendon-Bone Interface Attachment 

Chapter 2 showed that the native human FDP-DP attachment footprint was 

trapezoidal. The in vitro bone anchors represented this entire attachment shape, with 

the aim of the culture zone design to direct the developing tendon analogue onto the 

whole of this surface. Despite the fibrin gel initially appearing to fully cover the bone 

anchor presenting surface on day 0 after polymerisation, axial tension on the tendon 

analogue at the conclusion of successful constructs (3rd trial of monocultures, and co-

cultures) demonstrated that the attachment was concentrated on the lower third of the 

presenting surface only. This was a consistent finding, although the remaining 
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attachment area was not analysed in detail in order to establish its precise size and 

shape or predictability in reduction from the original attachment area. 

 

The reduced attachment was potentially due to a combination of contraction, gravity 

and gel volume factors. Contraction forces away from the bone anchor seemingly 

drew the gel down onto the lower aspect of the presenting surface, enhanced by 

gravity on a sloping surface. The most important factor however was likely to be gel 

volume, as a bulkier tendon analogue, initially attaching over a greater area, seemed 

better able to resist contraction and gravity. Standard volume gel cultures appeared 

to attach over a lesser area and lower down on the presenting surface compared to 

double volume gel cultures. Both tendon analogue morphology, as previously 

discussed in Section 5.6.2.2.2, and the interface attachment should be enhanced with 

greater gel volume in future trials.    

 

After establishing the pre-culture brushite acid washout steps, the tendon-bone 

interface remained intact in 100% of monocultures at 2 weeks (3rd trial, n = 12/12) and 

89% of co-cultures at 4 weeks (n = 16/18). This interface, and the provision of tension 

as a counterpoint anchor to the suture during gel contraction, relied on the inherent 

attachment between the fibroblast-seeded fibrin and brushite (osteoblast-seeded in 

co-cultures). Unlike similar fibrin-based soft tissue models contracting around sutures 

(Huang et al, 2005; Huang, Dennis and Baar, 2006; Huang, Khait and Birla, 2007; 

Kapacee et al, 2008; Bayer et al, 2010) or brushite anchors (Paxton, Grover and Baar, 

2010; Paxton et al, 2012), the attachment was not bolstered by the additional restraint 

and increased surface area of attachment behind the anchor. Brushite is known to 

augment tendon-bone integration in vivo (Wen et al, 2009) and the physical 

attachment in the in vitro constructs was likely based on ingrowth of the fibrin and 

potential collagen fibres into the brushite, as demonstrated by Paxton, Grover and 

Baar (2010) through electron microscopy of their brushite-fibrin constructs. Although 

the current bone anchor presenting surface is macroscopically straight, the brushite 

is porous and any ingrowth of the tendon analogue creates a microscopic interface 

region of mixed soft and hard tissue, much like the fibrocartilaginous enthesis. To 

further increase the inherent attachment between tendon analogue and bone anchor, 

additional physical modification could be made to the bone anchor presenting surface. 

This surface could be designed either to recreate the multi-directional, irregular, 

‘jigsaw-like’ interdigitation at the bone-calcified fibrocartilage junction in the 
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fibrocartilaginous enthesis, or to balance the known positive effects of surface area 

against the negative effects of stress concentration on attachment duration and 

strength (Paxton et al, 2010), for example with smooth micro-undulations. Such 

designs would also increase the ‘enthesis’ region of mixed soft and hard tissue. 

Engineering ceramics to these custom, high resolution specifications might be 

accomplished with techniques such as 3D powder printing (Gbureck et al, 2008), 

selective laser sintering (Wilson et al, 2004), or stereolithography (Levy et al, 1997; 

Chu et al, 2002). 

  

5.6.2.4 Co-Cultures 

The co-culture constructs represented the culmination of the tissue engineered FDP-

DP model, integrating anatomical design and clinically relevant sizes into 3D soft-hard 

tissue co-culture. All model sizes could be successfully cultured, and no particular 

size appeared better or worse in generating anatomical tendon analogue morphology 

or bone anchor attachment, likewise noted across the 3 RTFs from separate isolations.  

 

A distinction between monocultures and co-cultures was not observable 

macroscopically, as tendon analogue formation and continued development was 

similar in both culture types. Through observation alone, the seeding of osteoblasts 

onto the bone anchor did not appear to clearly enhance or reduce the attachment 

area at the interface. It should be acknowledged, however, that the interface was not 

studied in detail, due to time limitations at the end of the project, for investigation not 

only of the surface area of attachment but also the microscopic environment. Function, 

interaction and migration of interface cells, and their matrix environment, was not 

investigated, but would be expected to differ between co-cultures and monocultures, 

even if macroscopic overview observation was similar. Such studies are integral to 

interface tissue engineering, and now that this co-culture model system has been 

established these key questions about cellular behaviour and microenvironment can 

be addressed. 

 

One dissimilarity noted between co-cultures and monocultures was that 2 co-culture 

constructs detached at the interface, not seen in monocultures with brushite acid 

washout. Since the detachments occurred at days 21 and 28, and the monocultures, 

as briefer preliminary studies, only ran until day 14, detachment may have also 

ensued in monocultures if similar time periods were reached. However, full 
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detachment in the co-cultures was preceded by acidification of the culture medium, 

suggesting a change in environment or cell physiology, often as a result of 

contamination, although this was not confirmed. Seeding and 7 day culture of 

osteoblasts on the bone anchor introduces additional techniques and culture time that 

can result in contamination, as a drawback of co-culture preparation. Yet if preceding 

osteoblast culture was the source of contamination, its effects would probably have 

arisen before day 17 of the co-culture (when the first abnormal signs were noted), and 

so the detachments most likely represent an issue not specific to co-culture. The 

osteoblast seeding and 7 day culture period followed the method that achieved 

proliferating osteoblasts as demonstrated in Chapter 4 (Section 4.5.3.3). Further 

optimisation would likely increase seeding density and reduce culture time before 

integration into the co-culture, which may have positive cellular effects on the interface 

attachment whilst lessening contamination risk through reduced time and 

interventions.  

 

Work in Chapter 4 previously established that the ‘double gel/double cells/+AA+P’  

culture set up produced the most anatomically relevant tendon analogue, whilst 50:50 

medium was the most appropriate medium for fibroblast and osteoblast co-culture. 

Both ‘double gel/double cells/+AA+P’ and ‘double gel/double cells/50:50’ culture 

variables were trialled in the final co-cultures, and, surprisingly, ‘double gel/double 

cells/50:50’ constructs produced the more contracted and morphologically relevant 

tendon analogues. ‘Double gel/double cells/+AA+P’ constructs did not appear to 

undergo any great contraction after day 7, in contrast to the ‘double gel/double 

cells/+AA+P’ anatomical suture constructs in Chapter 4 (Section 4.5.2.4.2). 50:50 

medium was not investigated in the anatomical suture constructs of Chapter 4, 

although (100%) RODM was, and was found to contract fibrin gel noticeably less than 

cultures in S-DMEM or S-DMEM supplemented with AA and P. It is not clear why 

these findings were seemingly reversed in the co-culture constructs, as they are 

unlikely to be the result of the added osteoblast-seeded bone anchor. Since cell 

viability was not checked, unseen contamination may have reduced cell function in 

the ‘double gel/double cells/+AA+P’ cultures. Nevertheless, it was encouraging that 

‘double gel/double cells/50:50’ cultures produced morphologically relevant tendon 

analogues as well as providing the most suitable co-culture medium, and this set up 

should form the basis for future work on the model. 
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5.6.2.5 Limitations 

The main limitation to the results and trends described for the constructs in this 

chapter is the lack of quantification and statistical analysis to substantiate similarities 

and differences. Subjective observation alone was used for assessment. Had further 

time been available, gel contraction would have been assessed as per Chapter 4, with 

2nd observer validation, permitting greater confidence in describing results and 

implications. In describing relevance and relationships to human morphology, 

constructs would ideally have undergone histological assessment of the angle of fibre 

insertion, as per Chapter 3, and also the analysis of the tendon-bone insertion 

footprint, as per Chapter 2. Furthermore, as discussed in the previous section, 

detailed investigation of the interface biological microenvironment would be a crucial 

line of enquiry, as well as mechanical interface properties. As the project time 

concluded, these assessments remain as the basis for future work. 

 

Further specific limitations in this chapter have been discussed elsewhere, such as 

the textured surfaces and resolution of the ABS prints (Section 5.6.1.2). More general 

limitations pertinent to the construct cultures performed in this chapter have already 

been discussed in Chapter 4, including greater replicates to overcome the natural 

variation in gel contraction (and potential for contaminations) (Section 4.6.2.5), 

accuracy of suture anchor size and distances measured in the construct set up 

(Section 4.6.2.5), unknown true RODM ingredients (Section 4.6.1.1) and the need for 

biological replicates of osteoblasts (Section 4.6.3.3.5). 

 

5.7 Summary of Findings  

 

The human morphometric data from Chapters 2 and 3 could be translated into the 

anatomical design of an in vitro FDP-DP tendon-bone co-culture model by creating a 

bespoke culture zone using a 3D printed mold and surrounding silicone impression. 

Single surface attachment of the tendon analogue onto the bone anchor was achieved, 

but the area of attachment after fibrin gel contraction was considerably less than 

intended. Brushite scaffolds in culture acidified their medium and impaired fibrin 

formation, and acid washout was essential for maintenance of the tendon-bone 

interface. Tendon analogues formed from higher volumes of gel and higher cell 

number were the most comparable to human morphology, and better resisted 
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contraction on removal from culture. Co-culture constructs appeared macroscopically 

similar to monoculture constructs, and 50:50 medium was suitable for morphological 

development of co-culture constructs.   
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CHAPTER 6 

 

 

GENERAL DISCUSSION 
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6.1 Chapter Overview 

 

This final chapter reviews the main findings of the project, addressing the global aim 

and objectives, and discusses the implications for continued research. Avenues of 

future work with the novel 3-dimensional (3D) model, as a completed design or for 

improvement of particular design features, are suggested. The chapter concludes by 

highlighting the position and value of the work within the wider research landscape.   

 

6.2 Review of Results 

 

The aim of the project was to tissue engineer an in vitro tendon-bone model applicable 

to the treatment of flexor digitorum profundus (FDP) insertion injury at the distal 

phalanx (DP). The central focus was model design, with the essential feature of 

investigating and reproducing the native human anatomy to enhance translation 

towards a future clinical product.  

 

After introducing the fundamental themes of the project in Chapter 1, Chapter 2 

examined the macroscopic morphology of the FDP insertion, distal FDP tendon and 

DP bone. The principal findings were:  

 A trapezoidal tendon-bone interface footprint; 

 An FDP insertion footprint of 20-25% DP flexor surface area, centred 25-30% 

distally along the DP; 

 A distal FDP tendon arranged as 2 major fibre bundles, flaring out at insertion; 

 Limited depth of DP bone at the FDP insertion, narrower at the distal point 

than proximal point of insertion; 

 Morphometric data clustering across factors of finger and gender type into 3 

size categories. 

 

Chapter 3 examined the histology of the FDP insertion, primarily finding: 

 A fibrocartilaginous enthesis; 

 FDP fibres inserting across the tidemark at 30o; 

 Greatest angle change in fibres nearing their insertion in the proximal enthesis 

region, where fibrocartilage predominated.  
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Chapter 4 began in vitro development, assessing individual cellular, tendon and bone 

components for optimal design of an anatomically-matched, stratified co-culture 

model. The main findings were: 

 Rat tendon fibroblasts (RTFs) and differentiated rat osteoblasts (dRObs) as 

the most suitable and representative fibroblast and osteoblast cell populations; 

 50:50 medium as the most appropriate co-culture medium; 

 Tendon analogue formation by contraction of RTF-seeded fibrin hydrogel 

around anchor points; 

 Establishment of general tendon analogue morphology in approximately 7 

days, shaped by the size and position of the anchors, with little width change 

in anatomically-sized tendon constructs after 4 weeks; 

 An increase in fibrin gel contraction with greater RTF cell numbers or addition 

of ascorbic acid (AA) and proline (P) to basal medium, and a decrease in 

contraction with greater gel volume; 

 Contracted fibrin gel always remaining wider than the width of the suture 

anchor; 

 Limited tendon analogue collagen staining, even in extended 8 week cultures; 

 Brushite as a bone anchor scaffold capable of custom casting, allowing dROb 

seeding and subsequent proliferation over 7 days.  

 

Chapter 5 integrated the morphometric and tissue culture findings from the previous 

data chapters to produce the final FDP-DP tissue engineered co-culture model. The 

major design and in vitro findings were: 

 The production of a novel culture well through a 3D printed mold and silicone 

impression system; 

 Leaching of acid from brushite bone anchors, affecting fibrin formation; 

 Achievement of single surface bone anchor attachment; 

 Interface attachment of less than intended area; 

 Improved tendon analogue morphology with greater fibrin gel volume and RTF 

numbers. 

 

The ultimate production of a novel, anatomically relevant FDP-DP co-culture model 

satisfied the overall project aim. As project work progressed, each data chapter 

addressed the 4 original objectives: through evaluation of the morphology (Chapter 2) 

and histology (Chapter 3) of the native human FDP-DP insertion, then developing the 
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pre-established stratified soft-hard tissue culture model (Chapter 4) towards an 

anatomical design and co-culture (Chapter 5).  

 

Anatomical assessments strove to establish the most useful macroscopic and 

microscopic culture design parameters. In doing so, reliability-tested methods of 

analysing the tendon insertion footprint and angle of tendon fibre insertion were 

developed, which can be applied to any other enthesis in the body. Evaluation of the 

anatomical data also established 3 different model sizes for improved clinical 

relevance and utility. The transition from pure analysis to synthesis of the in vitro 

model demonstrates how tissue engineering represents a new, contemporary phase 

of anatomical research (Mironov and Markwald, 2001). 

 

6.3 Implications, Applications and Future Work 

 

The basis of this project was to demonstrate the concept of human anatomy-informed 

tissue engineering. It was therefore of broad scope, ranging from first principles to 

novel culture model production, and encompassed gross anatomy, histology, clinical 

application, cell sourcing and culture, tissue engineering of tendon, bone and the 

intervening interface, and engineering design. As such, each area was investigated 

to a certain level, but most results demanded prompt application elsewhere in the 

project rather than continued deeper exploration. The anatomical (Chapter 2) and 

histological (Chapter 3) results were directly applied to the tissue engineering work, 

fulfilling the overall project concept, and ultimately a culture model was produced. One 

theme of future work is investigation of this model as a completed design. Another 

theme is the deeper exploration of the many avenues opened throughout the project, 

in particular addressing the results of culture trials (Chapters 4 and 5). With the 

anatomical requirements established, greater optimisation of in vitro materials, 

methods and design will enhance the potential for clinical translation of the model. 

 

This project has launched the development of an ex vivo FDP-DP replicate. The 

ultimate aim is for future use as an in vivo graft, yet many complex issues would need 

consideration before clinical use, such as immunocompatibility and maintenance of 

structural integrity in an inflammatory surgical environment. Further development and 

investigation of the ex vivo model is first required, for example to realise the optimal 

anatomical design and acquire native tendon-bone fixation strength. The following 
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sections suggest themes for the most pertinent initial developments and 

investigations, in the context of the tendon analogue, bone anchor, tendon-bone 

interface, and cells.  

 

6.3.1 Tendon Analogue 

 

The engineered tendon has not yet matched the native human FDP tendon 

morphology in 2D width, cross section or 3D volume using existing methods. 

Foremost future trials using the current model would test increasing volumes of fibrin 

gel and fibroblast numbers, aiming for a more substantial tendon analogue whilst still 

retaining good contraction. If greater gel volume overall does not improve the 

preponderance for gel to gather around the suture anchor, the culture zone may need 

to be redesigned. A possible modification could involve a shorter but wider elliptical 

shape rather than a circle, with minimal distance (≤2mm) behind the suture anchor 

but greater width between the 2 anchors to encourage more gel bulk to gather along 

the whole length of the tendon analogue. Since the gel does not contract to the width 

of the suture anchor, seemingly impaired by the anchoring pins, early future trials 

would also secure the suture anchor by 2 pins placed centrally in the suture, rather 

than at either end. This aims to allow the contracting rolls of peripheral gel between 

the suture anchor and bone anchor to meet centrally at the pins, encouraging the 

biconcave morphology of the native distal FDP, with greater potential for the gel width 

to match the directing suture width. The distal FDP arrangement of 2 distinct side-by-

side gross fibre bundles suggests that the double-stranded tendon analogue construct 

could provide an excellent morphological match. However, since the double-strand 

technique requires separate single-strand cultures before incorporation together, and 

the FDP-DP model requires bone anchor attachment, incorporation of 2 single-strand 

cultures with bone anchors would also demand fixing the 2 bone anchors together. 

This would be a major drawback to model production, however if double-stranded 

tendon analogues were demonstrated to be of increased strength over an equal 

volume of combined single strands, then this may be a challenge worth investigating. 

 

3D bioprinting provides the ideal opportunity to produce optimal tendon analogue 

morphology, and would overcome the current reliance on contraction and 

manipulating factors. A fibroblast encapsulated hydrogel, such as fibrin or collagen, 

could be employed as a bioink and printed in a desired shape as a single strand or 
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parallel double strand onto an osteoblast seeded bone block, forming a construct for 

immediate investigation or for further co-culture. Printing would also allow precise 

positioning of the hydrogel onto the bone block, ensuring single surface connection 

and a specific interface shape. Once such a print is achieved, culture trials would be 

required to assess the level of further fibroblast mediated hydrogel contraction, 

particularly of fibrin, which may alter the morphology of the tendon analogue and area 

of tendon-bone attachment, as encountered in this project.  

 

Fibrin remained the major component of the current cultured tendon analogues, 

providing only limited strength, and which in vivo would be degraded. Increasing the 

collagen content of tendon analogues will be essential for improving structural 

integrity and strength, and should be investigated and incorporated into the model. 

AA and P, as promoters of collagen synthesis (Gallagher, Gundle and Beresford, 

1996; Paxton et al, 2012a), were used at a single standard concentration in the project, 

and higher concentrations could be explored. Growth factors which increase fibroblast 

extracellular matrix (ECM) deposition, such as basic fibroblast growth factor (bFGF) 

and platelet-derived growth factor (PDGF) (Thomopoulos et al, 2005), could also be 

incorporated into the culture medium. Additionally, mechanical stimulation of collagen 

production might be employed, most optimal in fibroblast-seeded fibrin constructs as 

short, intermittent stretch loads using a bioreactor (Paxton et al, 2012b). This 

highlights the utility of a bioreactor in the next stage of investigations, where both 

mechanical strength testing and further enthesis maturation can be addressed. 

 

6.3.2 Bone Anchor 

 

Brushite was the only material to be trialled as an anatomically-shaped bone anchor 

and undergo osteoblast seeding for co-cultures. Although a good bone scaffold 

candidate, being osteoconductive and of relatively high compressive strength and 

biological resorption capability (Paxton et al, 2010), its propensity for acid leaching 

interfered with fibrin formation and potentially with cell attachment and proliferation. 

Furthermore, the microporous nature of brushite at 45% porosity is not ideally 

matched to the approximately 80% macroporous trabecular bone found in vivo (Yang 

and Temenoff, 2009), since 3D bone cell proliferation and function is favoured by 

large pore sizes of 100µm order magnitude (Armitage and Oyen, 2015). Other 

materials of greater porosity should therefore be compared to brushite over a range 
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of investigations, including cell seeding and proliferation, tendon analogue interface 

formation and longevity, and testing of both inherent material mechanical properties 

as well as interface attachment strength. Reprobone is an excellent initial candidate, 

but ideal future materials might also include freeze casted porous bioactive glass or 

nanofibrous polymer scaffolds with incorporated mineral. In the current model design, 

a material of customisable shape is ultimately required to realise the desired 

anatomical dimensions, being the main reason why Reprobone was not explored 

further in the project, but tangential work could first compare similarly sized blocks of 

any design as a bone anchor in fibroblast-seeded fibrin gel co-culture.  

 

The bone anchor was designed primarily to model an in vitro FDP-DP interface, but 

its clinical application as part of a composite graft, requiring fixation of the engineered 

bone to native bone at the traumatised/pathological insertion, was also considered. 

The 2mm bone anchor depth was based on native bone depth measurements, aiming 

to balance a perceived adequate depth of platform for tendon attachment with 

adequate depth of remaining native bone for fixation. For graft use with the current 

model, the native DP would need to be prepared with a reciprocally-shaped bone 

‘trough’ to seat the anchor, which may not require extensive preparation if the cortical 

bony shell has already avulsed with the tendon. However, fixing the 2mm deep bone 

anchor to native bone would be technically demanding, as 2mm is unlikely to hold 

screws unless driven across the attachment from the tendon to bone side, disrupting 

the engineered interface. Such technical assessments could indeed be tested in a 

cadaveric model. With such small amounts of engineered and native bone to place 

metalwork, a biocompatible bone adhesive with suitable bond strength for 

osteosynthesis would be ideal, but, although an area of promising developments, no 

product is currently in clinical use (Böker et al, 2019). Until a suitable bone adhesive 

is found, future work might consider designing the bone anchor as the fixation device 

itself, such as a screw, barb or flange. Although more advanced designs, results from 

this project have revealed the ideal positioning of the tendon attachment on the DP 

and the depth of native bone available at the interface, providing a basis for further 

clinically relevant testing. 
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6.3.3 Tendon-Bone Interface 

 

The ideal engineered tendon-bone attachment would match both FDP-DP interface 

anatomy and mechanical strength. To improve the anatomical attachment area 

achieved in the current constructs, early future work would investigate a greater 

volume of fibrin gel and 3D bioprinting (discussed in Section 6.3.1) before considering 

modifications to the culture zone, such as engineering a larger attachment area and 

subsequently sculpting the ideal trapezoidal interface shape (discussed in Section 

5.6.1.1, Chapter 5). The mechanical strength of the current model is unknown and 

fundamental future work should establish the ultimate tensile strength of these 

constructs before comparing those with future modifications aiming to increase 

attachment strength. To match native demands, the engineered interface needs to 

withstand from 20N (active FDP flexion) to 118N (fingertip pinch) (Schuind et al, 1992), 

and although the current model necessitates single surface bone anchor attachment, 

it is encouraging that constructs of fibrin and brushite have previously achieved an 

interface ultimate tensile strength in the same order of magnitude as embryonic 

ligaments (Paxton, Grover and Baar, 2010). 

 

Augmentation of the engineered tendon-bone attachment will be vital to advance 

interface strength towards the ideal native levels, particularly with single surface 

tendon-bone attachment. As well as improving the topography of the hard-soft tissue 

interface (discussed in Section 5.6.2.3, Chapter 5), biological and chemical 

modifications should be explored. Bioactive molecules targeting cell adhesion can be 

added to ceramics to enhance their biological properties (Poli et al, 2019). Although 

ceramics can adsorb pro-adhesive proteins from serum (Hennessy et al, 2008), 

incorporation of additional ligands can improve cell adhesion, particularly with 

osteogenic cells (LeBaron and Athanasiou, 2000; Paxton et al, 2009; Poli et al, 2019) 

and could be particularly investigated for promotion of fibroblast adhesion in the 

attachment of the tendon analogue. The current model is biphasic, focusing on 

tendon-bone attachment as 2 tissue types, however a key line of subsequent enquiry 

is generation of the native fibrocartilaginous interface to improve the mechanical 

properties and reduce the stress focus across the soft-hard tissue junction. Chemical 

cellular stimulation with growth factors might be investigated, with bone 

morphogenetic protein (BMP)-2 an excellent starting candidate due to its ability to 

increase both fibrocartilage formation and mechanical strength at the healing tendon-
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bone interface (Hashimoto et al, 2007; Kim et al, 2007; Chen et al, 2011). Growth 

factors can be incorporated into brushite cements for gradual release (Le Nihouannen 

2008; Hofmann, 2009), and similar incorporation of BMP-2, potentially concentrated 

at the tendon attachment surface, could be trialled for fibrocartilage conversion in cells 

around the interface and effects on mechanical properties.  

 

6.3.4 Cells 

 

Establishing the model as a future 3D tool for investigating enthesis generation was 

an important purpose of the work. The model uses a stratified, rather than gradient, 

approach, most suited to distinct cell populations and the potential for cell-mediated 

metaplasia through heterotypic interactions at the interface. Examination of the co-

culture interface would have formed the next stage of investigation in the current 

project if time. As well as electron microscopy to view the interconnection of the 

tendon analogue and bone anchor, the biological microenvironment requires 

examination. The key question is whether a replicate of the native fibrocartilaginous 

enthesis can be achieved, with priniciple analysis being of cellular function and the 

surrounding matrix. Such work could investigate interface expression of fibrocartilage 

markers, for example collagen type II and aggrecan with immunohistochemistry or 

gene expression measurement, or presence of glycosaminoglycans (GAGs) using a 

specific detection assay. 

 

The current model was established with rat cells, and the natural progression towards 

a translational model is the use of human cells. Human fibroblasts and osteoblasts 

could be isolated from discarded surgical tendon/ligament and bone tissue, 

respectively, at operation with patient consent. Isolation methods would learn from 

the findings of isolation techniques in this project, for example using an osteoblast 

culture medium containing AA from the outset and avoiding disturbing bone explant 

cultures for at least 7 days after plating. The human cells could also follow the same 

characterisation experiments as performed in this project to test functionality and 

optimum co-culture medium choice, and then undergo investigations of interface 

strength and potential fibrocartilage formation as recently discussed. As a biphasic 

model, fibroblasts and osteoblasts would form the basis for initial future investigations, 

however further work on enthesis generation may consider seeding of either 

differentiated chondrocytes or mesenchymal stem cells (MSCs) inter-positioned at the 
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interface, aiming for chondrogenesis of MSCs through intercellular signals and 

paracrine factors. A single source of human MSCs for the whole model would be 

optimal for clinical use, but would rely on much preliminary work to establish 

osteogenic and tenogenic differentiation in the bone anchor and tendon analogue 

component, respectively, before consideration of the interface. 

 

6.4 Conclusion 

 

This thesis presents a journey from descriptive anatomy to novel in vitro culture design 

and production, standing to emphasise the role of anatomy and anatomists in tissue 

engineering. Tissue engineering provides an important prospect for therapeutic 

advances, and establishing the anatomical basis for the culture model in this project, 

as an example for any body region, endeavours to expedite its clinical translation. 

FDP avulsion injury not only brings significant individual disability but wider social and 

economic impact, and current treatments remain sub-optimal. Further work is required 

to advance the current FDP-DP model towards an implantable composite graft, but 

results from these anatomical investigations and in vitro culture trials are hoped to 

contribute to improved treatment, lessened impact, and better quality of life for 

patients with FDP avulsion injury.  
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Appendix 1.2 | Inter-Observer Reliability of Tendon Width Measurements 
See Table 2.13 and Appendix 1.1. Full SPSS reliability statistics output (95% confidence intervals) 
comparing 2 observers using a 2-way mixed effects model for the intraclass correlation coefficient 
(ICC).  
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Appendix 2 | Raw Means for Component Design Guide for Tissue Engineered Model 
Raw mean values (±SEM) for Table 2.17, provided for comparison. See Table 2.17 
legend for details. Raw mean values are all within a difference of 0.11mm of 
estimated marginal means except for ‘large’ bone anchor height (0.21mm 
difference), demonstrating the small but statistically necessary correction made for 
non-independence of samples. Such minor adjustments are of limited practical 
concern for the scale of surgical application and tissue engineering modelling. 
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Appendix 6 | Unsuccessful Anatomical Suture Construct Examples  
Examples of failed integrity of the fibrin gel forming the tendon analogue in anatomical suture 
constructs at day 56 of culture (see Section 4.5.2.4.1). Such constructs were excluded from gel width 
analyses. a) Failure of retained attachment to a suture anchor (‘+AA+P’ culture). b) Failure of the 
central gel region (‘S-DMEM’ culture). c) Substantial failure at the suture attachment region (‘RODM’ 
culture). Scale bar 5mm throughout. 
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Appendix 8 | Oral and Poster Presentations 
Table of project related presentations. Presenter underlined.  
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