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ABSTRACT Rapid increase in scholarly publications on theweb has posed a new challenge to the researchers
in finding highly relevant and important research articles associated with a particular area of interest. Even
a highly relevant paper is sometimes missed especially for novice researchers due to lack of knowledge
and experience in finding and accessing the most suitable articles. Scholarly recommender system is a
very appropriate tool for this purpose that can enable researchers to locate relevant publications easily and
quickly. However, the main downside of the existing approaches is that their effectiveness is dependent
on priori user profiles and thus, they cannot recommend papers to the new users. Furthermore, the system
uses both public and non-public metadata and therefore, the system is unable to find similarities between
papers efficiently due to copyright restrictions. Considering the above challenges, in this research work,
a novel hybrid approach is proposed that separately combines a Content Based Filtering (CBF) recommender
module and a Collaborative Filtering (CF) recommender module. Unlike previous CBF and CF approaches,
public contextual metadata and paper-citation relationship information are effectively incorporated into these
two approaches separately to enhance the recommendation accuracy. In order to verify the effectiveness of
the proposed approach, publicly available datasets were employed. Experimental results demonstrate that
the proposed approach outperforms the baseline approaches in terms of standard metrics (precision, recall,
F1-measure, mean average precision, and mean reciprocal rank), indicating that the proposed approach is
more efficient in recommending scholarly publications.

INDEX TERMS Scientific paper recommendation, public contextual metadata, content-based filtering,
collaborative filtering, hybrid approach.

I. INTRODUCTION
Searching related information over the internet using generic
search engines is the most common and convenient method
among the researchers [1]. Using this traditional method,
the researchers need to filter huge number of information
and it is a time-consuming task. Furthermore, a reasonable
level of expertise needs to be achieved for finding and keep-
ing track of relevant information efficiently. In this regard,

The associate editor coordinating the review of this manuscript and
approving it for publication was Ricardo Colomo-Palacios.

developing a recommender system capable of reducing irrel-
evant data processing and providing the researchers with
sufficient relevant data has become an essential tool in the
recent years. [2].

The scholarly recommender systems that help in find-
ing papers of interest without much effort from a vast
resource collection have attracted many researchers as a
highly important and challenging research field [3]. Different
scientific paper recommendation approaches have been pro-
posed in the literature [4]–[9]. In general, there exists three
forms of current scholarly recommendation approaches: CBF
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(Content-Based Filtering), CF (Collaborative Filtering), and a
Hybrid approach. The CBF approach analyzes the content of
a scientific paper (e.g., abstract, keywords, introduction, and
conclusion) in order to construct a researcher’s profile and
then recommends papers that are similar to the profile. For
example, Sugiyama and Kan [10] proposed a framework that
recommends papers to researchers by building researchers
profile from the whole content of their previous publica-
tions. Nascimento et al. [11] suggested a source-independent
method for determining paper similarity using metadata such
as title and abstract, and then using the similarity to pro-
duce recommendations. Kaya [12] proposed a recommenda-
tion model that builds a user profile using meta-data from
the researcher’s previous publications. However, due to the
complexity of natural language, the CBF method often fails
to produce correct recommendations. Furthermore, the user
profiling and feature extraction based on both public and
non-public metadata, and the new researchers (users) are the
major problems emerged in the CBF approach.

In order to address the shortcomings of the CBF approach,
another conventional recommendation approach, CF, has
received significant attention in the recent decade [13], [14].
For instance, McNee et al. [15] used collaborative filtering
to produce different rating matrices from a scientific paper’s
citation network. Sugiyama and Kan [16] applied collabora-
tive filtering method to identify potential citation papers from
researchers’ previous publications. To find secret associations
between articles, Liu et al. [17] proposed a neighbor-based
collaborative filtering method. However, the CF approach,
like the CBF approach, has a number of drawbacks. One of
them is to find a suitable paper rating matrix for the new user
(researchers).

In recent years, a hybrid recommendation approach has
been suggested to address the above-mentioned problems
by combining the CBF and CF approaches [18], [19]. For
instance, Sun et al. [20] recommended articles by analyzing
the semantic content of the article and extracting online users’
connection. Zhao et al. [21] introduced a graph-based hybrid
recommendation model that created a user profile based on
the information gaps of the researchers. To build a definition
map, the authors look into the context information and goal
knowledge of the researchers. Wang et al. [22] proposed
a hybrid article recommendation approach by incorporating
social tag and friend information in scientific social network.
Unfortunately, these approaches fail to fully utilize the abun-
dant public contextual metadata that normally existed in the
scientific paper. For example, the researchers usually use
metadata in a scholarly article that best reflects the overview
of the article. Since metadata defines an article’s content,
it has an obvious effect on the article’s latent features. There-
fore, considering metadata information while recommending
papers can not only provide additional textual information but
also help in making the preferences of the researchers. On the
other hand, publicly available contextual citation relations
information also can play an important role in personalized
article recommendation. Despite these advantages of public

contextual metadata, there has been little analysis on meta-
data knowledge mining to solve challenges such as priori
user profile, non-public contextual metadata, and new users in
conventional CBF and CF scientific paper recommendation
approaches available in the current literature of scholarly
recommender systems.

As a result, in order to resolve the aforementioned issues
and to enhance recommendation accuracy, this study pro-
poses a novel hybrid scholarly recommendation approach
that integrates public contextual metadata in scientific papers.
Firstly, the contextual metadata, i.e., title, keywords, and
abstract are incorporated into the traditional CBF approach
to find content-based similarity. Secondly, the contextual
citation relations information, i.e., citation context is incorpo-
rated into the traditional CF approach to find the collaborative
similarity. Finally, the two separate similarity scores from the
CBF and CF methods are combined in constructing a hybrid
approach.

The key contributions in this research can be summarized
as follows:

1. A novel hybrid scholarly article recommendation
approach is proposed that does not depend on priori
user profiles and utilizes only public contextual meta-
data information.

2. A scholarly knowledge application in which
researchers may use the web to find appropriate and
useful research publications regardless of their previ-
ous research experience or research field.

The rest of the article is organized as follows. Section II
examines similar studies on current scientific paper recom-
mendation methods. The proposed approach is introduced in
Section III. Section IV describes the experimental set-up and
evaluation procedure. The results are analyzed and discussed
in Section V. Finally, the concluding remarks is presented in
Section VI.

II. RELATED WORK
Related work has been presented based on three aspects: Con-
tent Based Filtering (CBF), Collaborative Filtering (CF), and
Hybrid approach. Several existing literatures are identified
and reviewed based on their strengths and weaknesses in the
above fields. Table 1 shows the selected previous studies in
the domain of scholarly recommendation.

A. CONTENT BASED FILTERING APPROACH IN
SCHOLARLY RECOMMENDATION
The CBF approach usually extracts content (e.g., text data)
from scientific papers to create a relationship between the
papers [23]. In this approach, different inherent features are
collected to generate an article profile. Different researchers
utilized different contents in the literature. Sugiyama and
Kan [10] proposed a framework that utilizes whole con-
tent of researchers’ previous publication list to construct the
researchers’ profiles. The approach recommends papers by
computing similarity between the researchers’ profile and
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TABLE 1. Selected previous studies.

target papers. Sugiyama and Kan [24] extended their work
further by investigating different sections of the articles to
solve multidisciplinary problems. Nascimento et al. [11] pro-
posed a new approach that utilized public contextual meta-
data. It extracted title and abstract from the researchers’ target
paper and applied a content-based filtering to find similarity
between the target paper and candidate papers.

Meng et al. [25] proposed a unified graph-based model
by incorporating both public and non-public metadata (e.g.,
authorship, content, citation and collaboration network).
They employed a random-walk algorithm to calculate sim-
ilarity. To produce recommendations, Guo et al. [26] pro-
posed a multi-layered graph-based recommendation model
that included the co-authorship graph, paper-citation graph,
paper-author graph, and paper-keyword graph. The approach
utilized both the public and non-public metadata to find simi-
larity between the papers. Mu et al. [27] introduced a method
for generating query-focused personalized recommendations
by integrating personalized query details into a multi-layered

graph. Bhagavatula et al., [23] proposed a model that embed-
ded articles into a vector space by encoding the textual con-
tent of each article. Authors utilize the title, abstract, authors
and keywords fields of an article to build a user profile.
Kaya [12] introduced a recommendation model that builds
a user profile based on contextual data such as the number
of researchers’ published articles, the number of citations of
the paper, the year of publication, and the keywords of the
article. Yang et al. [28] proposed a Convolutional Neural Net-
work (CNN) based context-aware citation recommendation
model. The model utilized non-public contextual information
to find similarities between the papers. Dai et al. [29] intro-
duced a global citation recommendation model that used a
citation network to extract different text content and citation
features. To learn the process of feature regression, different
citation features (e.g., title, abstract, keywords, citation count,
author history) were extracted and incorporated with a topic
model. A customized recommendation method based on het-
erogeneous graph was proposed by Ma et al., [30]. Based on
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the content of the articles, a user and a paper profiles were
created (i.e., title, keywords, abstract).

The approaches presented in [10]–[12], [23]–[30] depend
on priori user profile to generate recommendation. As a
result, they are unable to make suggestions to the new user.
Furthermore, they utilize both the public and non-public
metadata, therefore, the system cannot find similarities
between the papers accurately due to copyright restrictions.

B. COLLABORATIVE FILTERING APPROACH IN
SCHOLARLY RECOMMENDATION
The CF approach proposes items (paper) to users based on
previous preferences of other users with similar tastes [15].
It finds similarity based on rating history of items and rec-
ommends further based on the ratings of the items. Dif-
ferent researchers have suggested various other methods in
previous studies. McNee et al. [15] proposed a method that
explored citation network of a scientific article. As a ranking
matrix, they implemented a paper-citation relation matrix.
To compute their similarity, the method counted the number
of times papers were co-cited with a target paper and rec-
ommended papers with the highest total co-citation count.
Agarwal et al. [31] proposed a subspace clustering model that
used previous reading habits of the researchers to construct
matrix of the researchers and the papers. It identified like-
minded researchers by identifying groups of researchers who
expressed an interest in papers that are close to their own.
Sugiyama and Kan [16] proposed an alternative approach
by extending their previous work to solve the sparsity prob-
lem. The authors used the collaborative filtering approach
to distinguish possible citation papers from a researchers’
previous publications list, in addition to content-based fil-
tering. For citation recommendation, Liu et al. [17] pro-
posed a neighbor-based collaborative filtering system. The
hidden association that existed between a target paper and
its referenced papers were mined to make a personalized
recommendation. Xia et al. [32] proposed an author-based
collaborative filtering approach that took into account com-
mon author relationships as well as historical preferences.
In order to produce recommendations, a random walk algo-
rithm was used to create a user profile. Haruna et al., [33]
proposed a collaborative approach that mined hidden asso-
ciations between a target paper and its citations. To identify
similar neighbors, authors employed a single level paper-
citation relationship. To overcome the sparsity problem of
conventional collaborative filtering, Dai et al. [34] proposed
an alternative method that combined low-rank sparse matrix
with a fine-grained paper and an author affinity matrix.
Sakib et al. [35] proposed a collaborative scientific paper rec-
ommender framework in which 2-level paper-citation rela-
tionships were mined separately using citation context to find
related neighbors. Wang et al. [36] proposed an alternative
hybrid collaborative filtering approach by considering both
the paper content and network topology. It produced a paper
rating matrix based on the paper text (e.g., title and abstract).

As shown in Table 1, it is clear that the CF approach,
as a successful and popular approach, was utilized in schol-
arly recommendation and it can provide useful recommen-
dations. However, these approaches [15]–[17], [31]–[36]
only measure the collaborative similarities to find similar
neighbors.

C. HYBRID APPROACH IN SCHOLARLY
RECOMMENDATION
The hybrid approach is a special kind of recommendation
approach where the CBF and the CF approaches are com-
bined to take advantage of their individual benefits. The moti-
vation behind the hybrid recommendation approach is the
opportunity to achieve an improved accuracy. This is because
each recommendation approach has drawbacks which can
be overcome by combining them [3]. Kim et al. [37] pro-
posed a hybrid approach that constructed user profiles with
the help of a collaborative filtering to enhance the content
recommendation process. It first defined useful user trends,
then adds to the user profile by enlisting the support of
other users with common interests. Sun et al. [20] pro-
posed a hybrid scientific paper recommendation approach
that took into account various forms of online social inter-
actions between the researchers in order to find like-minded
neighbors, and then combined this with the CBF approach
to suggest research articles. Raamkumar et al., [38] pro-
posed an alternative recommendation approach that utilized
author-specified keywords of a target paper to generate rec-
ommendations. Zhao et al. [21] proposed a hybrid recom-
mendation model that generated a user profile based on
the information gaps found by the researchers. In order to
produce a recommendation list, the authors looked at the
context information and goal knowledge of the researchers.
By integrating social tag and neighbor knowledge in sci-
entific social networks, Wang et al. [22] proposed a hybrid
article recommendations model. Waheed et al. [39] proposed
a hybrid approach by integrating multilevel citation networks
and author relationship networks to produce recommenda-
tions, where the authors classified key authors from their rela-
tionship networks. Khan et al. [40] proposed an alternative
approach that investigated different logical sections of the
papers’ content to identify in-text citation pattern while rank-
ing the articles. Zhao et al. [41] proposed a hybrid neural net-
work model for recommending the research papers by incor-
porating researchers’ historical behaviors (favorites records)
and the information about paper content. Haruna et al. [42]
proposed a recommendation framework that employed the
contextual metadata collecting from the scientific article
rather than the researchers’ priori profiles.

The approaches presented in the papers [20]–[22]
and [37]–[41] either constructed priori user profiles or uti-
lized non-public contextual metadata information to gener-
ate the recommendations. Apart from them, a novel hybrid
approach has been proposed in this work for recommending
scientific paper that does not rely on priori user profiles and
only uses publicly available contextual metadata. In addition,
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FIGURE 1. Overview of the proposed hybrid approach of scholarly article recommendation.

unlike the work in [42] that mined single level paper-citation
relation with public metadata (i.e., title and abstract) of a tar-
get paper, in this work, a 2-level paper-citation relation with
public contextual metadata (i.e., title, keywords, abstract)
of a papers of interest (POI) is employed in order to find
similar neighbors. Experimental results of this work have
demonstrated the effectiveness of the proposed approach in
recommending scholarly publications.

III. PROPOSED METHODOLOGY
Contextual metadata of a scholarly article can be used
to characterize the scientific paper. The researcher usu-
ally uses metadata in a scientific article that best reflects
the overview of the article. Hence, a novel hybrid schol-
arly recommendation approach is proposed to assist the
researchers in identifying the appropriate scholarly articles
for their research interests, considering the metadata of a
scientific paper. The reason for the proposed approach is
that the researchers’ contextual metadata can represent and
be used to produce useful recommendations. The proposed
hybrid approach is illustrated in Fig. 1. The framework
of the proposed approach includes the following stages:
(a) Data Acquisition phase: web data crawling and data
preprocessing, (b) Synthesis phase: Content Based Recom-
mendation (CBR) model and Collaborative Filtering Recom-
mendation (CFR) model, and (c) Hybrid recommendation

phase. The CBR model and the CFR model utilize public
metadata such as, title, keywords and abstract and public
contextual paper-citation relational information of a schol-
arly article separately to find similarities. The results from
these two models are combined further by the hybrid model
to increase the recommendation accuracy. A brief sum-
mary of each stage has been presented in the following
sections.

A. DATA ACQUISITION PHASE
The web crawler is used to scan the web for all the informa-
tion required to address a user query (POI). The web crawler
extracts a full technical experimental dataset for each POI
given by researcher. Once the POI is received from a user
as an input, the web crawler extracts all the public contextual
metadata of the given POI from the web (Google Scholar to
be precise) that includes citations, references, title, keywords,
and abstract. The algorithm employed in web data crawling
stage is shown in Algorithm 1. The data extracted from the
web by web data crawling is further analyzed and prepro-
cessed in order to make them clean. Stop words, which are
often meaningless have been eliminated during the cleaning
process. Prepositions such as ‘‘with’’, ‘‘in’’, ‘‘by’’, and others
are examples of these terms. Python, a high-level program-
ming language, is used to delete them from the extracted
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Algorithm 1Extraction of Candidate Papers and Their Public
Contextual Metadata
Input Paper of Interest (POI)
Output Candidate Papers and their public metadata
Received a query message (POI) from a user,
(1) Retrieve all papers Ci which cites POI

For each of the citation papers Ci, extract all other papers Pi
that appearing at the end of Ci as references
(2) Retrieve all papers Rfi that appearing at the end of POI

as references
For each of the reference papers Rfi, extract all other papers
Pj that cited Rfi
(3) Select all the candidate papers CP from Pi and Pj

which are co-cited with the POI and which has been
referenced by at least any of the POI references

(4) Extract the content of the Title, Keywords, andAbstract
from POI and each of the qualified candidate papers

data. The result of preprocessed data is further used as the
experimental dataset.

B. SYNTHESIS PHASE (THE CBR MODEL INTEGRATING
WITH PUBLIC CONTEXTUAL METADATA)
The CBRmodel computes similarities between POI and each
of the qualified candidate papers based on their public con-
textual metadata that includes title, keywords, and abstract.
The approach consists of three steps:
Step 1: Compute feature vector FPOI for researcher’s Paper

of Interest (POI).
A researcher’s Paper of Interest (POI) is represented as

a feature vector FPOI using Equation 1 and Equation 2.
Term frequency (TF) scheme has been employed in Equa-
tion 3 in order to find content similarity between each vector
representation.

FPOI = TTitle + TKeywords + TAbstract (1)

=

(
WPOI
t1 ,WPOI

t2 ,WPOI
t3 , . . . . . . ,WPOI

tr

)
(2)

where, r represents the number of distinct terms in the content
of the title, keywords and abstract of a POI. Also ts represents
the each term, where s = 1,2,. . . ,r.

Using a term frequency (TF), each termWPOI
t1 of FPOI from

Equation 2 is further defined by Equation 3.

WPOI
ts =

tf (tS ,P OI )∑Z
y=1 tf

(
ty,P OI

) (3)

where f(ts, POI) represents the frequency of each term ts for
a given POI.
Step 2: Compute feature vector FCi (i= 1, 2,. . . ,j) for each

of the qualified candidate papers.
Each of the candidate paper to recommend Ci (i =

1,2,3,. . . ,j) is represented as a feature vector FCi using

Equation 4 and Equation 5.

FC =
m∑
k=1

TTitle +
n∑
l=1

TKeywords +
◦∑

q=1

TAbstract (4)

=

(
WC
t1 ,WC

t2 ,WC
t3 , . . . . . . .,WC

tr

)
(5)

where r represents the number of distinct terms in the content
of the title, keywords and abstract of a candidate paper.
In addition, ts represents the each term, where s = 1,2,. . . ,r.
The term frequency (TF) scheme is employed in order to

find content similarity between each vector representation.
Using term frequency (TF), each term WC

t1 of F
C from Equa-

tion 5 is further defined by Equation 6.

WC
ts =

tf (ts,C)∑Z
y=1 tf

(
ty,C

) (6)

where f(ts,C) represents the frequency of each term ts for a
qualified candidate paper.
Step 3: Compute the cosine similarity SIMI (FPOI, FCi)

between Paper of Interest FPOI and each of the candidate
papers FCi (i = 1,2,. . . .,j).

With the feature vectors already constructed, similarity
between a POI and each of the candidate papers is obtained.
The cosine similarity measure is used and defined by
equation 7:

SIMI
(
FPOI ,FC

)
=

f POI · f C∣∣f POI ∣∣ · ∣∣f C ∣∣ (7)

where fPOI and fC represent feature vectors of a researcher’s
POI and a qualified candidate paper.

C. SYNTHESIS PHASE (THE CFR MODEL INTEGRATING
WITH PUBLIC CONTEXTUAL PAPER-CITATION
RELATIONAL INFORMATION)
Unlike the CBR model, the CFR model searches for secret
correlations between POI and each of the candidate papers
using paper-citation relationships. It does not need the content
of scientific papers to work, and it can find interesting con-
nections that the CBR model is unable to do. The proposed
approach consists of four steps:
Step 1: Identify hidden associations between POI and can-

didate papers using citation context
Citing papers (citation papers) with common cited papers

(referenced papers) can be considered to be similar. The
similarity between these two citing papers are determined
using the cited papers they have in common. In Fig. 2(a),
two citing papers c1 and c2 cited the same paper r2 simul-
taneously, therefore, they are similar to some extent. The
proposed approach converts this direct citation relation into
hidden associations. It is considered while two papers are
co-occurred with same cited paper(s) (as shown in Fig. 2(b))
and two papers are co-occurring with the same citing paper(s)
(as shown in Fig. 2(c)) are significantly similar to some
extent.
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FIGURE 2. Paper-citation relation based on (a) direct relation
(b) co-occurred (c) co-occurring.

TABLE 2. Paper-citation relation matrix based on co- occurred.

TABLE 3. Single role association matrix.

Step 2: Measure the extent of similarity between POI and
candidate papers based on co- occurred

Based on Fig. 2(b), Table 2 depicts a paper-citation rela-
tion matrix. Here, rows represent cited papers, and columns
represent citing papers. If a paper i cites a paper j, Ci,j =1 in
the citation relation matrix C; otherwise, Ci,j = 0.
Table 3 represents the transformation of Table 2 into single

role association matrix in order to find hidden associations
that exits between these two citing and cited papers. If two
papers have at least one citing paper in common, they were
considered to be substantially co-occurred. A binary value
of 1 or 0 is used to indicate whether two papers co-occurred
or not.

Then, using the Jaccard coefficient from Equation 8,
the pairwise collaborative similarity between POI and each of
the candidate papers based on the hidden association matrix
is computed.

Jco-occurred =
Z11

Z01 + Z10 + Z11
(8)

where Z11 denotes the total number of attributes with values
of 1 for both A and B. Z01 denotes the total number of
attributes in which A’s attribute is 0 and B’s attribute is 1,

TABLE 4. Paper-citation relation matrix based on co- occurring.

TABLE 5. Single role association matrix.

while Z10 denotes the total number of attributes in which A’s
attribute is 1 and B’s attribute is 0.
Step 3: Measure the extent of similarity between POI and

candidate papers based on co- occurring
Based on Fig. 2(c), Table 4 depicts a paper-citation rela-

tion matrix. Here, the rows represent cited papers, and the
columns represent citing papers. If a paper i cites a paper j,
Ci,j = 1 in the citation relation matrix C; otherwise, Ci,j = 0.
Table 5 represents transformation of Table 4 into a single

role association matrix in order to find hidden associations
that exits between these two citing and cited papers. If two
papers have at least one cited paper in common, it is consid-
ered to be substantially co-occurring. A binary value of 1 or
0 is used to indicate whether two papers co-occurring or not.

Then, using the Jaccard coefficient in Equation 9, the pair-
wise collaborative similarity has been computed between
POI and each of the candidate papers based on the hidden
association matrix.

Jco−occurring =
M11

M01 +M10 +M11
(9)

M11 denotes the total number of attributes, with A and B
having the same value of 1. M01 denotes the total number of
attributes in which A’s attribute is 0 and B’s attribute is 1,
while M10 denotes the total number of attributes in which A’s
attribute is 1 and B’s attribute is 0.
Step 4: Normalising results by combing similarities scores

(co-occurred score and co- occurring score)
To measure collaborative similarity, both Jco-occurred and

Jco-occurring scores are used, which provide the relevancy
of each candidate paper to the POI. Equation 10 is used to
average these two ratings.

collaborative Simialrity

=

∑n
i=1

(
Jco-occurred + Jco-occurring

)
2

(10)

D. SYNTHESIS PHASE (HYBRID RECOMMENDATION
PHASE)
Although both the CBR and CFR models are widely used
separately in order to generate recommendations but due to
their individual limitations they are unable to prepare best
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recommendation results. The novel hybrid approach in this
study can provide more precise recommendations than a
single approach. Equation 11 incorporates the two separate
similarity scores into a hybrid recommendation, which offers
more accurate relevancy between POI and each of the candi-
date articles.

Hybrid_Recommendation

=
Content Based Scores+ Collaborative Scores

2
(11)

IV. EXPERIMENTS
A. DATASET
The experimental set-up for the proposed hybrid approach to
test its efficacy is discussed in this section. In this research,
publicly available dataset was used provided by Sugiyama
and Kan [24]. The dataset included a list of 50 researchers’
publications in the fields including software engineering, pro-
gramming languages, security, operating systems, networks,
information retrieval, graphics, and user interface design.
The proposed approach gathered public metadata for each of
their publications including title, keywords, abstract, citations
and references and extracts all references from each of the
POI’s citations as well as any other papers that cited any of
the POI’s referenced papers from the web (Google Scholar).
Table 6 shows information about the dataset that was used in
this study.

TABLE 6. Statistics of the utilized dataset.

B. BASELINE METHODS
To demonstrate the efficacy of the proposed hybrid approach,
the experimental results were compared to the following four
baselines:

1) BASELINE 1: CCF
Liu et al. [17] presented a Context-based Collaborative Filter-
ing (CCF) method that used an association matrix based on a
single level paper-citation relation matrix. By converting the
paper-citation relation matrix into an association matrix and

computing pairwise paper similarity, it uncovered the secret
relationship between POI and its reference papers.

2) BASELINE 2: CCA
Another method named as Contextual Collaborative
Approach (CCA) proposed by Haruna et al. [33] employed a
single role association matrix to mine the secret relationship
between the POI and its citation papers. It measured pairwise
similarity based on these paper representations.

3) BASELINE 3: SPR
Sakib et al. [35] proposed a Scientific Paper Recommenda-
tion (SPR) method which implemented a collaborative filter-
ing approach to expose the secret relationships between a POI
and its citations and reference papers. In order to compute
similarities between the POI and each of the candidate papers,
it made use of 2-level paper-citation relations to mine secret
associations of these two paper-citation relations.

4) BASELINE 4: RPRS
Furthermore, Haruna et al. [42] presented a Research Paper
Recommender System (RPRS) that utilized a hybrid concept
by combining both the content and collaborative filtering
to calculate similarities between the papers. The authors
extracted public metadata (title and abstract) as the papers’
content, and fit into with collaborative filtering to generate a
recommendation.

In the proposed approach, the concept of hybrid recom-
mendation was also applied since it could provide more
reliable suggestions rather than a single approach. It could
also address the drawbacks of a single approach. In addition,
unlike the work presented in [42], that combined papers’
metadata with single level collaborative filtering, in this
work, the paper’s metadata was employed using a 2-level
paper-citation relation with the help of collaborative filtering
to find similarities between the POI and each of the candidate
papers. Furthermore, unlike the works presented in [17], [33]
and [35], that used only collaborative similarity, whereas
in this work, both content and collaborative similarity was
employed by creating a hybrid approach to make better
recommendation.

C. EVALUATION METRICS
The following technique was used to divide the dataset into
a training set and a test set in order to assess the accuracy
of recommendation. A 5-fold cross validation was conducted
for each POI by choosing 20% of the data as a test set.
In addition, the three most commonly used measurement
metrics were utilized for the evaluation purpose as defined
by Equation 12, Equation 13, and Equation 14. (a) Preci-
sion assesses the system’s accuracy by recommending related
documents, (b) Recall calculates the proportion of relevant
papers in the Top-N recommendation list to the total number
of papers in the collection, and (c) F1 measures, a harmonic
mean of precision and recall assess the overall performance
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of the proposed approach.

Precision =
Number of relevant papers

Total mumber of recommended papers
(12)

Recall =
Number of relevant papers

Total number of relevant papers
(13)

F1 =
2× Precision× Recall
Precision+ Recall

(14)

Two other metrics were also used in this study includ-
ing Mean Average Precision (MAP) and Mean Reciprocal
Rank (MRR) to determine the system’s ability to return rel-
evant papers at the top of the recommendation list. Average
Precision (AP) is the average of precision values of related
papers for all rank positions, and MAP calculates the average
of all AP (Equation 15). MRR measures the first ranking
position of the relevant papers in the recommendation list
averaged over all researchers (Equation 16).

MAP =
1
I

∑
i∈I

1
ni

n∑
k=1

P (Rik) (15)

MRR =
1
I

∑
i∈I

1
rank(i)

(16)

where I represents a set of papers. The number of relevant
papers in the recommendation list is denoted by ni. The
length of the recommendation list is N. P(Rik ) represents the
precision of retrieved papers from the top until paper k is
reached, and rank(i) represents the rank of the first relevant
paper in the recommendation list.

V. RESULTS AND DISCUSSIONS
The results of the proposed approach versus the Base-
line approaches are presented in this section. Aggre-
gated results obtained by the proposed approach across all
50 researchers who contributed to the dataset have been
presented. Fig. 3 depicts the performance improvement of the
proposed approach based on precision, recall and F1 evalu-
ation matrices. It was clear from Fig. 3(a) that the proposed
approach significantly outperformed the Baseline approaches
in terms of precision. However, the RPRS approach slightly
outperformed the proposed approach when N = 5(N @ 5),
but with an increase in the value of N, it was evident that
precision of RPRS reduced significantly while precision of
the proposed approach was rising. Besides, for all N rec-
ommendation values, the proposed approach significantly
outperformed the other Baseline approaches. Thus, it demon-
strated the effectiveness of the approach in returning relevant
papers than others.

The recall results are shown in Figure 3(b). The proposed
approach significantly outperformed the Baseline approaches
in terms of recall. However, the RPRS approach slightly
outperformed the proposed approachwhenN= 5(N@5), but
with an increase in the value of N, it was evident that recall of
RPRSwas reducing significantly while recall of the proposed

FIGURE 3. Performance comparison of the proposed approach with the
baselines (Context-based Collaborative Filtering (CCF), Contextual
Collaborative Approach (CCA), Scientific Paper Recommendation (SPR),
Research Paper Recommender System (RPRS)) in terms of Precision,
Recall and F1.

approach was rising. Besides, for all N recommendation val-
ues, the proposed approach significantly outperformed the
other Baseline approaches. Thus, it proved the effectiveness
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FIGURE 4. Performance comparison of (a) MAP and (b) MRR for
baselines.

of the proposed approach in removing less relevant papers
than the others.

It was clear from the Fig. 3(c) that similar to the experi-
mental results of precision and recall presented in Fig. 3(a)
and Fig. 3(b), the proposed approach also significantly out-
performed the Baseline approaches in terms of F1 measure.
RPRS approach slightly outperformed the proposed approach
when N = 5(N @ 5), but with an increase in the value of N,
the results of F1 measure of RPRS was reducing significantly
while the results of F1 measure of the proposed approach was
rising. Besides, for all N recommendation values, the pro-
posed approach also significantly outperformed the other
Baseline approaches.

Based on the results shown in Fig. 3, it was clearly pre-
sented that the proposed approach outperformed the baseline
approaches on all three metrics. However, when N was less
than 15, the approach does not show significant differences
compared to the Baseline approaches due to strict rules

applied in selecting eligible candidate papers for recommen-
dation. However, as the N increased, the current approach
started providing significantly better results. This demon-
strated the usefulness of public contextual metadata in the
proposed novel hybrid approach for providing researchers
with more precise recommendations.

Figure 4 shows the results comparisons based on the MAP
and MRR evaluation metrics, which reflect the recommenda-
tion’s rank details. It could be observed from Fig. 4(a) that
the proposed approach significantly outperformed the Base-
line approaches for all recommendation values (N) based on
MAP. However, the best results based on MAP was obtained
when N = 5 (N@5).
On the other hand, the comparison of results based on

MRR presented in Fig. 4(b) showed that, the proposed
approach highly outperformed the baseline approaches for
all recommendation values (N) similar to the MAP metric.
Furthermore, the proposed approach showed the potential
to recommend related papers in the first rank of the recom-
mendation list. This further demonstrated that public contex-
tual metadata found in the scientific papers was extremely
useful in improving the efficiency of recommendation algo-
rithms. In addition, combining the CBF and CF into a
hybrid approach to improve recommendation accuracy was
very effective.

VI. CONCLUSION
A novel hybrid approach for incorporating public contextual
metadata in scientific papers is successfully proposed in this
study. The public contextual metadata, i.e., title, keywords,
and abstract have been used into the CBF to find content
similarities between the papers. Simultaneously, the CF is
used to find collaborative similarities by using 2-level citation
relations between the papers based on citation context. The
results of these two methods are then combined to form a
hybrid approach that generates recommendations regardless
of the researchers’ previous research experience or research
field. Compared to the baseline methods (CCF, CCA, SPR
and RPRS), the experimental findings indicate that the pro-
posed hybrid approach produces the best recommendation
results.

The main advantage of this research is that it can use
publicly available contextual metadata for recommending
research papers. In future, the research work can be further
extended by incorporating other available additional informa-
tion such as co-authorship to further improve the recommen-
dation performance.
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