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Abstract 

We evaluate a series of thin-sheet hydrogel molecularly imprinted polymers (MIPs), using a family of 

acrylamide-based monomers, selective for the target protein myoglobin (Mb). The simple production 

of the thin-sheet MIP offers an alternative biorecognition surface that is robust, stable and uniform, 

and has the potential to be adapted for biosensor applications. The MIP containing the functional 

monomer N-hydroxymethylacrylamide (NHMAm), produced optimal specific rebinding of the target 

protein (Mb) with 84.9 % (± 0.7) rebinding and imprinting and selectivity factors of 1.41 and 1.55, 

respectively. The least optimal performing MIP contained the functional monomer N,N-

dimethylacrylamide (DMAm) with 67.5 % (± 0.7) rebinding and imprinting and selectivity factors of 

1.11 and 1.32, respectively. Hydrogen bonding effects, within a protein-MIP complex, were 

investigated using computational methods and Fourier transform infrared (FTIR) spectroscopy. The 

quantum mechanical calculations predictions of a red shift of the monomer carbonyl peak is borne-

out within FTIR spectra, with three of the MIPs, acrylamide, N-(hydroxymethyl) acrylamide, and N-

(hydroxyethyl) acrylamide, showing peak downshifts of 4, 11, and 8 cm-1, respectively. 
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Introduction 

Biomarkers are naturally occurring molecules which can be indicators of a biological state or condition 

[1]. Protein biomarkers are particularly useful because of the availability of a large range of analytical 

instrumentation that can identify and quantify proteins within complex biological samples [2]. 

Biomarkers can be used clinically to screen, diagnose or monitor the activity of diseases, while also 

guiding molecular target therapy and measuring therapeutic response [3], [4]. Since the 1960s, 

biosensors have been researched as analytical devices to convert a biological state into a 

physiochemical event [3], [4]. Biosensors usually require a biological recognition entity (such as 

enzymes, antibodies or whole cells [5]), which binds to a chemical target with a high degree of 

specificity; an ensuing physicochemical signal is then transduced into a measurable output [6]. 

Biosensors have the advantages of being cost effective and portable tools, allowing for the fast and 

real time detection of a target analyte, with a high degree of accuracy. However, biosensors which 

rely on a biorecognition entity have drawbacks.  Environmental conditions such as temperature and 

pH can impair their functions. Denaturation of protein structures can occur outside of the optimum 

pH and temperature ranges. Such issues when using metastable biological molecules for 

biorecognition has led to the search for new approaches to replace them using temperature and acid 

stable synthetic receptors. 

Molecularly imprinted polymers (MIPs) form an important class of synthetic bioreceptor that have 

gained significant attention over the past 30 years. Their unique properties include low cost and facile 

preparation, high selectivity and sensitivity.  

More recently, the molecular imprinting of large biomolecules, such as nucleic acids, viruses and 

proteins, has become increasingly topical, especially with the aim of developing MIP-based sensors 

for the detection of disease markers [7], [8]. MIP-based biosensors, have been reported for the 

determination of a number of protein biomarkers including bovine (and human) serum albumin, 

bovine haemoglobin (BHb), myoglobin (Mb), cardiac troponin T, ferritin, prostate specific antigen, 

alpha-fetoprotein, and carcinoembryonic antigen [9], [10], [11], [12]. The imprinting of 

macromolecules and bio-macromolecules is not without challenges, when compared with the 

imprinting of low molecular weight templates. The molecular imprinting of low molecular weight 

solutes is by and large conducted in an organic solvent system, the latter chosen to have optimum 

compatibility with both template and functional monomers. [10]. Traditional organic-solvent based 

MIPs are usually rigid and crystalline and thus lack the polymer chain relaxations that may be required 

when binding metastable biomacromolecules capable of conformational changes. Protein 

precipitation or unravelling of the tertiary and/or quaternary conformations of a protein when using 

an organic solvent [13] can also negatively impact binding site formation leading to corresponding 
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issues with low affinity and low selectivity of the MIP [14]. The approach with biomolecular imprinting 

has therefore been to use an aqueous solvent system [15], [16], which allows the biomolecular 

template to remain structurally stable during and after the imprinting process. The use of water-

soluble monomers and cross-linkers in the synthesis of MIPs for biomacromolecular targets is now 

common place. 

The resulting hydrogel materials are hydrophilic and highly crosslinked. Due to their high water 

compatibility, hydrogel-based MIPs have been shown to retain protein stability and provide a robust 

means for recognition of target analytes over long periods [17], [18].  

For hydrogel protein imprinting, water-soluble monomers such as acrylamide and functionalised 

acrylamides have been used alongside the cross-linker N,N’-methylenebisacrylamide (mBAm) to 

produce polyacrylamide-based hydrogels (Figure 1). The amide group of acrylamide monomers can 

form strong hydrogen bonds. The occurrence of a C=O and C-N dipoles allow acrylamide to act as a 

hydrogen bond acceptor. Due to the presence of N-H dipoles,  acrylamide can additionally act as a 

hydrogen bond donor [10], [19]. 

 

     
  

Acrylamide 

(AAm) 

N-(Hydroxymethyl)acrylamide 

(NHMAm) 

N-(Hydroxyethyl)acrylamide 

(NHEAm) 

 
 

 

N,N-Dimethylacylamide 

(DMAm) 

N-[Tris(hydroxymethyl)methyl]acrylamide 

(TrisNHMAm) 

N,N’-Methylenebis(acrylamide) 

(MBAm) 

 

Figure 1. Structural formulae of polymerization mixture components used in the MIP synthesis: the 
monomers - acrylamide (AAm), N-(Hydroxymethyl)acrylamide (NHMAm), N-(Hydroxyethyl)acrylamide 
(NHEAm), N,N-Dimethylacrylamide (DMAm), N-[Tris(hydroxymethyl)methyl]acrylamide 
(TrisNHMAm), and the cross-linker - N,N’-methylenebisacrylamide (mBAm). 
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These monomers therefore contain functional groups that are capable of non-covalent (hydrogen 

bonding and van der Waals’) interactions with the protein template.  Hydrogen bonding interactions 

are essential during the pre-association phase between the template protein and acrylamide 

monomer  [8], [10], [20], [21], [22], [23]. Subsequent polymerisation, in the presence of a bi-functional 

cross-linker can impart the robustness that the polymer requires to retain its form and shape. Once 

the polymerisation has taken place, the protein has been imprinted.  

Hydrogen bonding, can also play a very significant role in the formation of a MIP-protein complex [24], 

[25], [26], The depiction in Figure 2 is of the carbonyl group of acrylamide interacting with the 

quaternary ammonium group typical within a protein [27], [28], [29].  Monomers are chosen to 

optimise such hydrogen bonding effects in order to enhance binding association. Using monomers 

with hydrogen bonding capability can also result in them being more soluble in water and this is 

beneficial when preparing protein-based MIPs, thus avoiding denaturation and changes to the 

conformation of the protein structure if an organic solvent were to be used [10], [18]. 

 

 

Figure 2. Example of hydrogen bonding that can occur between an acrylamide (AAm) carbonyl (C=O) 
group and a NH3

+group from a protein (myoglobin) residue.  

 

In its simplest form, a hydrogel-based MIP can be produced through a one-pot synthesis. An aqueous 

solution containing functional monomer, template, crosslinker, catalyst and initiator react together at 

room temperature to form a hydrogel MIP monolith, typically 1-5 mL in volume [10]. This so-called 

bulk or 3D imprinting method for protein templates creates a hydrogel MIP monolith and has become 

a common technique [18]. After polymerisation, the monolith is extruded through a sieve, to produce 

smaller microparticles, and exposing surface bound protein. The protein template is then extracted 

n 
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from the surface of the polymer gel particles through a series of sodium dodecyl sulphate surfactant 

(SDS) and acetic acid washes. Template removal exposes surface binding sites (so-called cavities) 

which are capable of recognising and rebinding the same protein [10]. While bulk imprinting is a 

common method for producing MIPs, it should be noted that the sieve process is not only time-

consuming, but also destructive. During gel extrusion through the sieve, the polymer is physically 

broken into microparticles to expose binding sites on the particle surface. However, this harsh process 

can potentially damage some of the binding sites themselves, with reports of useable high affinity MIP 

materials from this process estimated to be around 30-40% of the total polymer produced [26]. This 

top-down approach therefore results in significant losses. However, since the bulk MIP approach is 

more easily scalable and uses low cost monomer reagents, such losses can be acceptable. For example, 

3-5g of useable bulk MIP microparticles can be produced per batch within 24hrs [10], [30]. 

Various groups have investigated and progressed bottom-up approaches resulting in nanoparticle-

based MIPs. Using similar monomers to the bulk approach, the MIP nanoparticles (typically 100-150 

nm in size) are grown with the protein being imprinted on the surface of the nanoparticle [31], [32]. 

There is therefore no requirement for breaking-up of the polymer (as with the bulk approach) to gain 

access to and remove the template. Therefore, a greater proportion of the binding sites are retained. 

However, the reported yields for nanoMIPs are low with the concentration of the nanoMIP solution 

produced being approximately 100 µg/mL (for a 100 mL solution) per batch [33]. 

Alongside bulk (3D) MIP and nanoparticle (NP) MIP approaches, thin film-based (2D) MIPs have also 

been investigated. These are typically produced on solid substrates such as mica and electrode 

surfaces. The films (typically 0.1-10 µm thick) are produced either by stamping or spin-coating of a 

polymerising solution [34], or electrochemical approaches [35]. In all cases, the template binding sites 

are located on the exposed surface of the thin film. These thin films lend themselves to ready 

integration to sensor surfaces. However, they are fragile and can degrade during use [36]. Stability can 

be improved by increasing film thickness, resulting in thin sheets (greater than 200 µM thick) [37].   

Various methods that have been investigated to produce a rigidly-coupled thin-film to the sensor 

surface include electrochemical polymerisation, dip-coating and/or stamping of a polymerising 

solution [36]. The latter methods typically produce thin MIP films (0.1 to 10 µm). While, such thin-

films are crucial to the transduction of a signal with for example electrochemical and quartz crystal 

microbalance sensing modes [36], there is not necessarily the same restriction on thickness required 

for optical sensing. Simpler methods of thin-sheet formation for optical sensing applications can be 

investigated in order to produce thicker and potentially free-standing and transferrable thin sheets.   
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The aforementioned nanoparticle MIP approaches offer the advantage of higher density of binding 

sites, compared with either bulk imprinting or thin-sheets. However, the translation of nanoparticle-

based MIPs into thin-sheets can present problems due to lack of a dense, homogeneous and 

continuous layer and challenges of integrating them with a sensor surface [38]. Additionally, the time-

consuming and complicated synthesis process makes the nanoparticles unsuitable for large-scale 

industrial production and application [38]  

Herein, we report a method to produce portable MIP thin sheets that can be applied to optical protein 

sensing. We evaluate thin-sheet hydrogel-based MIPs and compare them against bulk MIPs for protein 

recognition. We show that thin-sheet MIPs are simple to produce and allow for easy accessibility to 

template-selective binding sites where binding can occur at or near the surface of the polymer without 

the need for any post-synthesis processing of the MIP. This is in contrast to the aforementioned bulk 

imprinting approach requiring aggressive post-processing reducing selective protein binding ability  

[10], [34], [39], [40]. 

Methods 

MIP Synthesis 

Materials. 

Acrylamide (AAm), ammonium persulphate (APS), bovine haemoglobin (BHb), fetal bovine serum 

(fbs), hydrochloric acid, glacial acetic acid (AcOH), lysozyme (Lys; from chicken egg white), myoglobin 

(Mb; from equine skeletal muscle), N-(Hydroxymethyl)acrylamide (NHMAm), N-

(Hydroxyethyl)acrylamide (NHEAm), N,N-Dimethylacylamide (DMAm), N, N’-methylenebisacrylamide 

(mBAm), N-[Tris(hydroxymethyl)methyl]acrylamide (TrisNHMAm), phosphate buffered saline (PBS), 

sodium dodecyl sulphate (SDS), sodium hydroxide and tetramethylethyldiamide (TEMED), were all 

purchased and used without purification from Sigma-Aldrich, Poole, Dorset, UK. 

Methods. 

Solution preparations. A solution of 10% (w/v):10% (v/v) SDS:AcOH was prepared for use in the 

washing (protein elution) stages before the template reloading stage. SDS (10 g) and AcOH (10 mL) 

was dissolved in 990 mL of deionised (DI) water, to produce 1 L of the elution solution. 
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MIP preparation. Thin-sheet MIP hydrogels were produced (Figure 3), using an optimised 

methodology [10], where a 10 % cross-linking monomer/N,N’-methylenebisacrylamide hydrogel was 

found to produce the optimal imprint for Mb, in terms of specificity and rebinding efficiency of the 

MIP, compared with the non-imprinted polymer (NIP) [10].  

 

Figure 3. Schematic representation of the synthesis of the thin-sheet (2D) MIP: (I) Template contained 
polymerising solution placed on to Parafilm®, followed by compression using bronze weights, then 
polymerisation, to form thin-sheets. (II) Elution of templates molecule with 10% (w/v):10% (v/v) 
SDS:AcOH eluent, for two hours, followed by five water washes . (III) The reloading of target molecule 
and/or non-specific target to the MIPs. 

The thin-sheet MIPs were produced with different monomers (AAm, NHMAm, NHEAm, DMAm, 

TrisNHMAm) and a 10% cross-linking density for the protein myoglobin as a template using the 

following method. Into an Eppendorf tube, 12 mg of myoglobin template was dissolved in 970 μL of 

deionised water vortexed for 1 minute, followed by the addition of 7.6 x10-4 mol of functional 

monomer and mBAm (cross-linker) at a ratio of 9:1 by weight (individual masses of each monomer 

and cross-linker are shown in Table 1), then vortexed for a further minute. Finally, 10 μL of a 5% TEMED 

(v/v) solution and 20 μL 5% APS (w/v) solution were added and the mixture was vortexed for 1 minute. 

The solution was then poured onto 4 cm2 of Parafilm® and covered with another Parafilm® square 

cutting, before sandwiching between two coverslips. A pressure of 2 kPa was applied using bronze 

weights and the solution was left to polymerise overnight [40]. Corresponding NIPs were produced 

using the same method as above but in the absence of a protein template. 

Table 1. The masses (mg) of monomers, cross-linker (mBAm) and volume (μL) of H2O 
used in the synthesis of the thin-sheet MIPs. 
Monomer Monomer mass 

(mg) 
Cross-linker (mBAm) 

mass (mg) 
Volume of H2O (μL) 

AAm 54 6 970 
NHMAm 77 9 970 
NHEAm 87 10 970 
DMAm 75 8 970 

Compression to 
form thin-film 

Polymerisation 
solution 

Elution of template 
molecule 

Target protein 
re-binding Non-target protein 

re-binding 
I II III 
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TrisNHMAm 133 15 970 
 

After polymerisation, the free-standing thin sheet gels (0.4 mm) were cut into circular disks of 120 mg 

and 90 mm in diameter. The thin sheet gel thickness was determined using a Mitutoyo 500-162-20 

Absolute Digimatic Caliper with a 0.01 mm resolution and a ± 0.02 mm accuracy. The determination 

of the thickness is an average of measurements taken at 5 different points of the thin-sheet, repeated 

3 times. The disks were then washed with five 1 mL deionised water, followed by soaking in a 1 mL 

volume of 10% (w/v):10% (v/v) SDS:AcOH eluent, for two hours; this allowed for the removal of the 

template protein from the MIP cavities. Following this, the gels were washed with five 1 mL volumes 

of deionised water to remove all residual 10% (w/v):10% (v/v) SDS:AcOH from the thin-sheet MIP gels. 

Corresponding non-imprinted polymers (NIPs) were synthesized, using the same procedure as the 

MIPs, but in the absence of the template molecule. 

MIP Rebinding Studies. The subsequent rebinding effect of the conditioned and equilibrated MIPs and 

NIPs were characterized using the BioDrop μLITE UV/visible spectrometer. The thin-sheet hydrogels 

MIPs (120 mg) were placed into an Eppendorf containing 0.72 mg of myoglobin (template protein) 

dissolved into 1 mL of deionized water (DI). The polymer/protein solutions were left for two hours and 

allowing to protein rebinding to occur at room temperature (22 ± 2 °C). The polymer was then washed 

four times with 1 mL of deionized water. The selectivity of the conditioned and equilibrated MIPs was 

also investigated by placing the thin-sheet hydrogels MIPs (120 mg) were placed into an Eppendorf 

containing 0.72 mg of lysozyme (non-target protein) dissolved into 1 mL of deionized water (DI). 

Computational Details. Quantum mechanics (QM) calculations of C=O vibrational frequency shifts for 

simplified models (as described in the results), were calculated using density functional theory (DFT) 

with M05-2X [41] and the 6-31+G** basis set [42], [43], given its performance for description of non-

covalent systems [44]. All geometries were optimized and validated as minima with all real 

frequencies. Vibrational frequencies were scaled using the recommended scaling factor (0.936) [45] 

for the M05-2X/6-31+G** method. All DFT computations were performed with Jaguar 9.2. 

FTIR Spectroscopy Characterization. MIP and NIP thin-sheets were analysed using an Agilent Cary 620 

Fourier transform infrared spectrometer interface with an Agilent Cary 620 microscope fitted with a 

15x-cassegrain objective and a narrow-band liquid nitrogen cooled detector. The microscope was 

operated in the reflectance mode, with each sample run at 16 scans, with a scan range of 400-4000 

cm-1, an aperture source of 2 cm-1 at 4000 cm-1, with the spectral resolution at 2 cm-1 and a beam 

attenuation throughput of 50%. In all cases the incident infrared beam was focused at a thin-sheet of 

MIP layered upon a gold coated disk. Agilent Resolution Pro software was used to analyse the spectra. 
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Results and Discussion 

Here we evaluate bulk to thin-sheet hydrogel-based MIPs for protein recognition. Having previously 

developed a series of polyacrylamide-based hydrogels MIPs for protein recognition, we hereby build 

upon this with the creation of a series free-standing thin-sheet polyacrylamide hydrogel MIPs, for the 

specific selection of the target protein myoglobin. These thin-sheet MIPs potentially offer the same 

robustness and high performance as our previous MIPs, but without the need of and laborious 

grinding or sieving. The selectivity of the MIPs was investigated with the non-target proteins lysozyme 

and bovine haemoglobin (BHb), because of the similarity in size (myoglobin 17.0 kDa and lysozyme 

(14.3 kDa) and similarity in structure, respectively. Computational studies were undertaken to predict 

whether the hydrogen bonding effects caused by the target protein (myoglobin) binding within a MIP 

cavity could cause any peak shifting within infrared region. This peak shifting was investigated using 

FTIR spectroscopy.  

 

Rebinding Experiments 

We produced a series of acrylamide-based (AAm, NHMAm, NHEAm, DMAm, and TrisNHMAm) 

hydrogel MIPs with selective recognition for the target protein myoglobin [30]. By comparing the MIPs 

with their corresponding non-imprinted polymer (NIP) controls, an imprinting factor (IF) was 

calculated, using Equation 1 and used to assess performance. Following up on this work, we explored 

the selectivity of this MIPs further by studying their binding with the non-target proteins lysozyme, 

chosen due to similarity in size and hydrophobic solvent accessible surface areas (SASA), allowing for 

the calculation of the selectivity factor (SF) using Equation 2. 

 

𝐼𝐹 =
% ௣௥௢௧௘௜௡ ௥௘௕௜௡ௗ ௧௢ ெூ௉

% ௣௥௢௧௘௜௡ ௕௜௡ௗ ௧௢ ேூ௉
                                                                                                                               (1) 

𝑆𝐹 =  
% ௧௔௥௚௘௧ ௣௥௢௧௘௜௡ (௠௕) ௥௘௕௜௡ௗ ௧௢ ெூ௉

% ௡௢௡ି௧௔௥௚௘௧ ௣௥௢௧௘௜௡ (௟௬௦) ௕௜௡ௗ ௧௢ ெூ௉
                                                                                                      (2) 

The IF was calculated as a ratio of the amount of target rebound to the MIP to the amount of target 

protein that bound to the corresponding NIP. IF is commonly used to evaluate the imprinting effect 

and is a measure of the strength of interaction between the functional monomer and the target 

molecule. A high IF value, the more selective the MIP is for the target molecule, with an IF > 1.20 is 

generally considered favourable. A selectivity factor (ratio of MIP binding to target versus a non-target 

protein) is generally accepted as a better determinant of selectivity and again an SF > 1.20 is now 

generally considered more favourable [46], [47], [48]. This is shown in Table 2. 
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Table 2. Percentage of the myoglobin target protein rebind to the five different acrylamide-based MIPs 
and NIPs, and their corresponding impact factors. Results for co-monomer combinations A (TrisNHAm 
+ DMAm) and B (NHEAm + DMAm) are also shown. 

Monomer/ 
Co-monomer 

MIP 
Percentage of 
Myoglobin 
Rebind (%) 

NIP 
Percentage of 
Protein Bind 
(%) 

MIP 
Percentage 
of Lysozyme 
Rebind (%) 

Imprinting 
Factor (IF) 

Selectivity 
Factor (SF) 

NHMAm 98.9 ± 0.2 51.8 ± 0.4 41.5 ± 3.7 1.90 2.38 
AAm 85.4 ± 1.0 47.5 ± 4.2 42.4 ± 1.8 1.80 2.01 
NHEAm 77.2 ± 3.0 43.6 ± 1.3 44.3 ± 2.1 1.77 1.74 
TrisNHMAm 79.9 ± 4.8 72.3 ± 1.7 59.7 ± 3.1 1.10 1.34 
DMAm 72.0 ± 3.0 48.8 ± 0.9  43.2 ± 1.9 1.48 1.67 

 

The generally accepted self-assembly method to produce MIPs, relies on there being an initial degree 

of association between the monomer and the template in solution, and mainly depends on hydrogen-

bonding interactions [49]. Therefore, the monomers that contain hydroxy groups (NHMAm, NHEAm 

and TrisNHMAm), have the potential for stronger binding towards the template, in contrast to the 

monomers AAm and DMAm. The non-selective binding by the NIPs also supports this, where the –OH 

containing monomers, TrisNHMAm and NHMAm, demonstrate the highest amount of protein binding 

(72.3% and 51.8%, respectively), whereas the AAm NHEAm NIP demonstrate lower values of 47.5% 

and 43.6%, respectively. However, when the monomers are ranked by the percentage of protein that 

rebinds to the MIP (NHMAm > AAm > TrisNHMAm > NHEAm > DMAm), the MIPs do not follow the 

same trend as the NIPs. Of note, the monomer AAm, although void of –OH groups, is ranked second, 

and superior to both NHEAm and TrisNHMAm. Additionally, TrisNHMAm, although possessing three –

OH groups capable of hydrogen bonding, it rebinds target only marginally better than the more 

hydrophobic   NHEAm (77.2%) and DMAm (72.0%). While this would seem somewhat surprising, work 

by Kryscio et al. [14] showed that pre-polymerisation protein-monomer complexes can potentially 

cause changes to the secondary structure of the protein and force proteins into various conformations 

and aggregates that if imprinted, can produce MIPs which lack the desired target selectivity. 

Monomers interacting with proteins could disrupt the secondary structure within the protein, 

especially if the monomer interactions are with functional groups along the protein backbone [50]. 

Indeed, Sullivan et al., [30]  showed that the hydroxyl groups in TrisNHMAm were able to strongly 

hydrogen bond to helical backbone residues within the potential binding sites of myoglobin leading to 

changes in this target’s secondary structure.  In addition to this, TrisNHMAm has a low IF value of 1.10 

suggesting that the MIP behaves similarly to the NIP and is therefore deemed unacceptable for use as 
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a MIP. Therefore, other factors besides the potential strength of protein-template interactions, need 

to be considered when choosing a suitable monomer for a target protein. With regards to selectivity 

NHMAm and AAm still outperform the other monomers with SF values of 2.38 and 2.01, respectively. 

While, the selectivity factor (1.34) of the TrisNHMAm MIP is improved when compared to the 

corresponding imprinting factor 1.10, this MIP still has the lowest selectivity. This further supports 

that the TrisNHMAm monomer is disrupting the secondary structure of the template protein during 

the prepolymerization mixture, hence producing a MIP less selective for the target. 

The five acrylamide-based monomers (AAm, NHMAm, NHEAm, DMAm, and TrisNHMAm) were further 

studied to produce thin-sheet MIPs and NIPs, using myoglobin as the template/target. These 

monomers and target proteins were chosen due to our previous success with them in bulk imprinting  

[30]. The thin-sheets were cut into uniform circular disks of 120 mg and 90 mm in diameter. Template 

removal and rebinding protocols developed by Hawkins et al [10] were used in this study. After the 

template protein (myoglobin) was removed from the disks using a 10% (w/v):10% (v/v) SDS:AcOH, the 

disks were then place into Eppendorf tubes with 0.72 mg of protein, either myoglobin (target protein) 

or lysozyme (non-target protein), dissolved into 1 mL of deionized water. The binding of the target 

protein myoglobin was performed on the thin-sheet MIPs and their corresponding NIPs to determine 

the percentage of the target protein able to rebind. The binding of the non-target protein lysozyme 

was also studied, in order to determine the selectivity of the MIP. The subsequent imprinting factors 

(IFs) and selectivity factors (SFs) were again calculated using Equations 1 and 2, respectively 

The rebinding studies are presented in Figure 4 and Table 3 and show that the NHMAm polymer 

produced the thin-sheet with the highest myoglobin rebinding percentage and thus having the 

greatest target protein recognition ability, with 84.9% of the myoglobin being rebound to the MIP, an 

imprinting factor of 1.41 and a selectivity factor of 1.55. The thin-sheet MIP with the lowest myoglobin 

rebinding percentage was DMAm, with only 67.5% of the protein myoglobin being able to rebind and 

having a corresponding imprinting factor of 1.11 and selectivity factor of 1.32. With the exception of 

DMAm, all the MIPs possessed an IF value above 1.2 and would therefore generally be considered to 

have good recognition for the target/template molecule. This is comparable with the work of Zayat et 

al. which produced similar imprinting factors of 1.4 for polyacrylamide thin-sheets (of similar 

monomer and crosslinker density) imprinted for the target, maltose binding protein. [48]. This shows 

that the thin-sheet MIPs that have been produced in this work using a range of functionalised 

acrylamide monomers, are able to offer good selectivity for the target protein. With respect to overall 

MIP efficacy, NHMAm > TrisNHMAm > AAm > NHEAm > DMAm. This is consistent with our previous 

bulk MIP analysis, which also shows the monomers NHMAm and DMAm, to be the highest and lowest 

performing monomers, respectively [30]. While the percentage rebinding for the thin-sheet MIPs, 
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generally follow the same pattern as the bulk MIPs [30], there is one notable exception, TrisNHMAm 

performs much better as a thin-sheet MIP. When the non-target protein lysozyme was loaded onto 

the MIPs, the percentage of the protein that bound was similar ranging from the lowest, DMAm at 

50.8 % to the highest TrisNHMAm at 56.2 %. This provided selectivity factors all greater than 1.32, 

showing that all the MIPs were selective for the target protein myoglobin and not other proteins. This 

is consistent with the work of Matsunaga et al. who immobilised an acyclic acid-based (crosslinked 

with MBAm) thin-sheet MIP onto a surface plasma resonance (SPR) chip surface, for the detection of 

lysozyme [51]. In this work cytochrome c was loaded onto the MIP and measured using SPR, in order 

to determine selectivity of the MIP. The calculated selectivity factor for this MIP was 1.2, which agrees 

with the selectivity of our MIP (with SF > 1.32). With respect to our previous bulk MIPs, the 

performance of these new thin-sheet MIPs is slightly reduced [30], but not enough to discount their 

applicability. For example, the percentage rebind for the bulk NHMAm MIP is 98.9% (SF 2.38) 

compared with the thin-sheet NHMAm MIP is 84.9 % (SF 1.55). This shows that the performance of 

the thin-sheet MIP is comparable with previous work and literature, with the additional benefits of 

simplistic synthesis, processing and usability of the thin-sheet [30], [51]. Moreover, when tested with 

a non-target protein (lysozyme) the MIPs where shown to be highly selective against the non-target, 

again with SF comparable with literature [51]. It should also be noted that the bulk (3D) MIP possesses 

a much greater surface area : volume ratio and therefore a higher density of template active binding 

sites compared with the thin sheet (2D) MIPs. 

Table 3. Percentage of the myoglobin target protein and lysozyme non-target protein rebind to the 
five different acrylamide based thin-sheet MIPs and NIPs, and their corresponding impact factors 
and selectivity factors. 
Monomer/ 
Co-monomer 

MIP 
Percentage of 
Mb Rebind 
(%) 

NIP 
Percentage of 
Protein Bind 
(%) 

MIP 
Percentage 
of Lys Bind 
(%) 

Imprinting 
Factor (IF) 

Selectivity 
Factor (SF) 

NHMAm 84.9 ± 0.6 60.0 ± 1.1 54.6 ± 0.2 1.41 1.55 
TrisNHMAm 83.4 ± 1.2 66.0 ± 0.3 56.2 ± 1.6 1.26 1.48 
AAm 77.2 ± 0.2 57.5 ± 0.6 52.9 ± 1.7 1.34 1.46 
NHEAm 76.4± 0.7 62.0 ± 0.4 55.3 ± 0.7 1.23 1.38 
DMAm 67.5± 0.7 61.1 ± 3.2  50.8 ± 0.9 1.11 1.32 
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Figure 4. Percentage of the myoglobin target protein and lysozyme non-target protein rebind to the 

five different acrylamide based thin-sheet MIPs and NIPs. 

 

Myoglobin being a coloured protein allowed us to use optical inspection as an additional and simple 

method to confirm protein removal and rebinding within a MIP and NIP (Figure 5). While such optical 

inspection is possible with coloured proteins, in order to also assess colourless proteins, we would 

need to refer to for example UV/Visible spectroscopic techniques and evaluate the absorbance at 280 

nm (A280) to quantitatively and qualitatively assess protein removal and rebinding within the MIP [47]  
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Figure 5. Optical images showing the removal and rebinding of myoglobin target protein: (a) freshly 
prepared MIP/NIP with target protein still loaded, (b) MIP/NIP with the target protein eluted, (c) 
MIP/NIP after the target protein has been reloaded. 

 

The disadvantage here is that we are assaying the unbound protein in solution and subsequently 

determining the amount of protein bound to the MIP; we are therefore not directly interrogating the 

MIP for protein binding. The UV/Visible spectrometer does not readily lend itself to the direct 

interrogation of thin sheets. Due to its method of operation, the degree of light absorbed and 

transmitted through the sheet will vary in a non-linear fashion depending on changing thickness (due 

to possible swelling/deswelling) and refractive index of the thin sheet MIP.  FTIR spectroscopy has 

been used to explore hydrogen bonding within molecules. Hydrogen bonding can cause the vibrational 

bands within spectra to vibrate at lower frequencies, as long as these vibrational bands are actively 

involved and participating in hydrogen bonding [52], [53]. Where vibrational bands are not associated 

with hydrogen bonding, FTIR spectral bands remain unaffected [54]. We surmise that FTIR spectra of 

imprinted polymers may therefore reveal information on the protein binding state of MIPs. More 

specifically, hydrogen bonding may cause the vibrational modes in polar bonds to vibrate at lower 

frequencies than before. We therefore investigated ATR-FTIR spectroscopy to interrogate protein 

binding only to the surface layers of the thin sheet MIP. Specifically, we investigated changes to the 

C=O stretch of the acrylamide MIPs and NIPs as a function of protein binding in order to elucidate a 

hydrogen bonding signature for selective protein binding to MIP. 

Computational Calculations 

It is understood that only when the cognate protein is selectively docked into the corresponding MIP, 

the strong hydrogen bond donor residues (for example, lysine), within the protein, are responsible for 

the hydrogen bonding related shift in carbonyl frequency. As a simple test, using DFT at the M05-2X/6-

311+G** level of theory [41], [42], [43], the shift in the C=O vibration frequency of acrylamide, was 

investigated. An optimized complex of AAm hydrogen, bonded with a single water molecule was 

compared with AAm binding to a model (NH3
+-CH3) of +1 charged lysine. The lowering of the frequency 

was observed when switching from water (hydrogen bond distance = 1.9 Å) to the lysine model 

(hydrogen bond distance = 1.6 Å), by 30 cm-1.  

FTIR Characterization 

The free-standing hydrogel MIP and NIP sheets produced in this study provided uniform and 

homogeneous layers, with a thickness of 0.40 ± 0.03 mm. FTIR spectroscopy was used to characterize 

these sheets, using the reflection mode to probe the polymer surface. This uses true specular 
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reflectance as a surface measurement technique, working on the principle of reflective efficiencies, 

with every sample having a refractive index, which varies with the frequency of light to which it is 

exposed. Instead of examining the energy that passed through the sample, true specular reflectance 

measures the energy that is reflected off the surface of a sample or its refractive index [55]. This 

technique is most suited to the thin smooth layer of the MIPs and NIPs, with the thin smooth layer 

allowing the incident light to reflect from the surface of the metallic plate and exit from the surface of 

the sample.  

The FTIR spectra of the myoglobin imprinted MIPs hydrogels are shown in Figure S1A, and are 

characteristic of polyacrylamide-based hydrogels, with a high-water content (94% water). The strong 

broad peaks at approximately 3400 cm-1 can be assigned to O-H stretching of water, and the small 

sharp peaks approximately 2950 cm-1 can be assigned to C-H stretching within the polymer. The strong 

broad peaks between the range of 1600 - 1700 cm-1, an enhancement of S1A (between 2000 - 1000 

cm-1) shown in Figure S1B, are assigned to the C=O stretching within the polymer hydrogels. These 

peaks are interestingly broader than expected, and this is due to the hydrogen bonding effects caused 

by the water molecules within the hydrogels. There is an absence of N-H stretching peaks 

(approximately 3300-3400 cm-1), which could be possibly due to the high percentage (94 %) of water 

present, resulting in the weak N-H stretching peaks, usually seen, being masked by the strong O-H 

stretching peak of the water molecule. Furthermore, the C=O stretching peak (1600-1700 cm-1) being 

much broader than usually seen, could possible explain the absence of the weak and sharp N-H 

bending peaks that would be seen in the same areas.  The broad medium peak seen at around 1000 

cm-1 is assigned to the C-N stretching peak, again this is broader than expected and is possibly due to 

the hydrogen bonding effects caused by water molecules within the hydrogel. It should be noted that 

the amide I amide II bands, from secondary structures [56] of the target protein, are not readily 

observed in the FTIR spectrum of the protein bound MIP, since these bands are masked by the 

stronger carbonyl peak of the polyacrylamide hydrogel. Figure S2 is the FTIR spectrum for the non-

imprinted polymer (NIP), and shows the same characteristic peaks as the MIPs in Figure S1A, proving 

that the NIPs and MIPs are of the same polymeric material, with Figure S2B being an enhancement 

(between 2000 - 1000 cm-1) of Figure S2A, again focussing on the C=O stretching vibrational peaks, in 

the range of 1600 - 1700 cm-1, within the polyacrylamide-based hydrogels. The C=O peak shifts, for 

the five thin-sheet MIPs (AAm, NHMAm, NHEAm, DMAm, and TrisNHMAm), at their different protein 

bound states, are summarised in Table 4. 
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Table 4. The carbonyl (C=O) amide peaks for different monomer thin-sheet MIPs and NIPs at the 
different protein bound states.ab  
 
MIP/NIP Status 

Peak (cm-1) 
AAm NHMAm NHEAm DMAm TrisNHMAm 

Fresh NIP 1698 1621 1693 1696 1692 
NIP washed  1698 1621 1693 1696 1692 
Target reloaded (Mb) 1698 1621 1693 1696 1692 
Target reloaded from 
serum (Mb) 

1698 1621 1693 1696 1692 

Fresh MIP (Mb intact) 1694 1610 1685 1696 1692 
MIP washed (Mb eluted) 1698 1621 1693 1696 1692 
Target reloaded (Mb) 1694 1610 1685 1696 1692 
Non-target loaded (Lys) 1698 1621 1693 1696 1692 
Non-target loaded (BHb) 1698 1621 1693 1696 1692 
Target reloaded from 
serum (Mb) 

1694 1610 1685 1696 1692 

a Carbonyl amide peaks that demonstrate a peak shift associated with protein binding are 
highlighted in bold italics. 
b All peak values are the result of 3 consecutive measurements across the thin-sheet surface  

 

The NIPs did not exhibit any shift in the carbonyl peak when target protein was loaded onto the 

polymer. This is be expected as NIPs lack template-specific cavities or binding sites, meaning any 

resulting binding displayed by the NIP is not from carbonyl-specific hydrogen bonding. As the NIP is a 

hydrogel containing 94 % water, there is a potential for the protein template to be absorbed within 

the polymer matrix. When the MIPs, AAm, NHMAm, and NHEAm are bound with target protein (Fresh 

MIP (Mb intact) and target reloaded (Mb)) the carbonyl peak is at the lower values of 1694, 1610 and 

1685 cm-1, respectively, compared to when target protein is not bound (MIP washed (Mb eluted), non-

target loaded (Lys) (Figure S3) and non-target loaded (BHb) (Figure S4)), 1698, 1621, and 1693 cm-1, 

respectively. This downshift of 4, 11 and 8 cm-1 for AAm, NHMAm and NHEAm, respectively, is 

suggestive of hydrogen bonding effects due to selective target protein binding. However, this 

downshift value is much lower than expected (compared with computational experiments) and 

furthermore, the DMAm and TrisNHAm MIPs did not show any downward shift when these MIPs are 

bound with the target protein. This can be expected with the TrisNHMAm MIP as the functional 

monomer (TrisNHMAm) in this MIP contains three hydroxyl groups, which are the main functional 

groups within the MIP cavity, where subsequent binding takes place [30]. As a result, the FTIR peak 

attributed to the carbonyl peak does not shift, instead we would expect to see a broad FTIR peak in 

the OH region (approximate wavelength 3000-3500 cm-1) due to these hydroxyl groups; as the as the 

hydrogel is composed of 94 % water (ie. only 6% polymer material), the TrisNHMAm -OH peaks would 

be heavily masked by the broad -OH band of water. Additionally, the lower than expected or no 

downshift seen in the spectra could also be explained by the protein molecule to monomer molecules 
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ratio being approximately 1 : 1000 in the polymerization mixture. With the vast majority of monomer-

protein interactions taking place on the surface of the protein [30], only a small percentage (less than 

10 %) of the monomers are taking part in hydrogen bonding. To explore the MIPs for their potential 

use within a biological sample, further testing of MIPs produced using each of the monomers (AAm, 

NHMAm, NHEAm, DMAm, TrisNHMAm) was conducted with fetal bovine serum spiked with the target 

protein myoglobin (Figure S5). This was repeated for all corresponding NIPs (Figure S6). The results 

show that the MIPs produced from AAm, NHMAm and NHEAm, produced the same peak shifts (4, 11 

and 8 cm-1, respectively) as the corresponding reloading studies in PBS, while DMAm and TrisNHMAm 

did not produce any shifts (again, consistent with the previous reloading studies). These 

biocompatibility results suggests that the target protein can be selectively bound to the MIP from a 

serum sample that contains a range of different proteins, including bovine serum albumin (BSA) and 

globulins [57]. 

FTIR spectroscopy potentially offers a powerful tool to follow selective MIP-protein interactions. 

However, further work is required to understand the range and breadth of polymers for which it would 

be applicable. 

Conclusions 

Here we have shown the production of simple and easily usable acrylamide-based hydrogel thin-sheet 

MIPs, which are capable of selectively binding a specific target protein. These thin-sheet materials 

provide good performance with the NHMAm monomer producing the MIP with optimal rebinding of 

the target protein and the overall MIP efficacy for the monomers decreasing in the order NHMAm > 

TrisNHMAm > AAm > NHEAm > DMAm. The thin sheet MIP performance is comparable with previous 

bulk MIP work, with the additional benefits of the simplistic synthesis and processing, and 

transferability. Quantum mechanical calculations (based on a simple model) predicted a noticeable 

downshift in the FTIR carbonyl peak of the polymer, when target protein is bound to the MIP, caused 

by hydrogen bonding within the protein-MIP complex. This effect was seen experimentally, with only 

NHMAm, AAm, and NHEAm based MIPs. The development of these unique thin-sheet hydrogel MIPs 

offers a simple and effective method to produce a robust biorecognition material in the form of a 

uniform and free-standing portable layer, that is easily movable from surface to surface. The materials 

we have produced could easily be adapted for biosensing purposes and potentially incorporated onto 

the surface of a sensor leading to their use within a portable MIP-based biosensor, leading to the 

future development of chemical and biosensors that are capable of detecting protein biomarkers. 

Conflicts of Interest 

Page 17 of 22 AUTHOR SUBMITTED MANUSCRIPT - BPEX-102323.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



There are no conflicts to declare 

Acknowledgements 

SMR acknowledges financial support from the Wellcome Trust Seed Fund (108003/A/15/Z). the 

authors would also wish to thank the University of Central Lancashire for financial support. 

References 

[1] Biomarkers Definitions Working Group., "Biomarkers and surrogate endpoints: Preferred 
definitions and conceptual framework," vol 69, no 3, pp. 89-95, 2001.  

[2] H. Mischak, G. Allmaier, R. Apweiler, T. Attwood, M. Baumann, A. Benigni, S. E. Bennett, R. 
Biscoff, E. Bongcam-Rudloff, G. Capasso, J. J. coon, P. D'Haese, A. F. Dominiczak, M. Dakna, H. Dihazi, 
J. H. Ehrich, -. Fernandez P., D. Fliser, J. Frokiaer, J. Garin, M. Girolami, W. S. Hancock, M. Haubitz, D. 
Hochstrasser, R. R. Holman, J. P. A. Ioannidis, J. Jankowski, B. A. Julian, J. B. Klein, W. Kolch, T. Luider, 
Z. Massy, W. B. Mattes, F. Molina, B. Monsarrat, J. Novak, K. Peter, P. Rossing, M. Sánchez-Carbayo, 
J. P. Schanstra, O. J. Semmes, G. Spasovski, D. Theodorescu, V. Thongboonkerd, R. Vanholder, T. D. 
Veenstra, E. Weissinger and T. Yamamoto, "Recommendations for biomarker identification and 
qualification in clinical proteomics," Science translational medicine, vol 2, no 46, pp. 46ps42, 2010.  

[3] R. Mayeux, "Biomarkers: Potential uses and limitations," NeuroRx, vol 1, no 2, pp. 182-188, 2004.  

[4] A. Ravalli, D. Voccia, I. Palchetti and G. Marrazza, "Electrochemical, electrochemiluminescence, 
and photoelectrochemical aptamer-based nanostructured sensors for biomarker analysis," 
Biosensors (basel), vol 6, no 3, pp. E39, 2016.  

[5] C. I. L. Justino, A. C. Freitas, R. Pereira, A. C. Duarte and Rocha Santos, T. A. P., "Recent 
developments in recognition elements for chemical sensors and biosensors," TrAC trends in 
analytical chemistry, vol 68, pp. 2-17, 2015.  

[6] B. Van Dorst, J. Mehta, K. Bekaert, E. Rouah-Martin, W. De Coen, P. Dubruel, R. Blust and J. 
Robbens, "Recent advances in recognition elements of food and environmental biosensors: A 
review," Biosensors and bioelectronics, vol 26, no 4, pp. 1178-1194, 2010.  

[7] H. El-Sharif, D. M. Hawkins, D. Stevenson and S. M. Reddy, "Determination of protein binding 
affinities within hydrogel-based molecularly imprinted polymers (HydroMIPs)." Physical chemistry 
chemical physics, vol 16, pp. 15483-15489, 2014.  

[8] D. Hansen, "Recent developments in the molecular imprinting of proteins." Biomaterials, vol 28, 
pp. 4178-4191, 2007.  

[9] Y. Wang, M. Han, G. Liu, X. Hou, Y. Huang, K. Wu and C. Li, "Molecularly imprinted 
electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic 
liquid for specific recognition of bovine serum albumin," Biosensors and bioelectronics, vol 74, pp. 
792-798, 2015.  

[10] D. M. Hawkins, D. Stevenson and S. M. Reddy, "Investigation of protein imprinting in hydrogel-
based molecularly imprinted polymers (hydrogels)." Analytica chimica acta, vol 542, pp. 61-65, 2005.  

Page 18 of 22AUTHOR SUBMITTED MANUSCRIPT - BPEX-102323.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



[11] M. V. Sullivan, W. J. Stockburn, P. C. Hawes, T. Mercer and S. Reddy M., "Green synthesis as a 
simple and rapid route to protein modified magnetic nanoparticles for use in the development of a 
fluorometric molecularly imprinted polymer-based assay for detection of myoglobin," 
Nanotechnology, vol 32, no 9, pp. 095502, 2021.  

[12] G. Selvolini and G. Marrazza, "MIP-based sensors: Promising new tools for cancer biomarker 
determination." Sensors (basel), vol 17, pp. 718, 2017.  

[13] K. Griebenow and A. M. Klibanov, "On protein denaturation in Aqueous−Organic mixtures but 
not in pure organic solvents," Journal of american chemical society, vol 118, no 47, pp. 11695-11700, 
1996.  

[14] D. R. Kryscio, M. Q. Fleming and N. A. Peppas, "Conformational studies of common protein 
templates in macromolecularly imprinted polymers," Biomedical microdevice, vol 14, pp. 679-687, 
2012.  

[15] S. M. Reddy, Q. T. Phan, H. El-Sharif, L. Govada, D. Stevenson and N. E. Chayen, "Protein 
crystallization and biosensor applications of hydrogel-based molecularly imprinted polymers." 
Biomacromolecules, vol 13, pp. 3959-3965, 2012.  

[16] S. P. Graham, H. F. El-Sharif, S. Hussain, R. Fruengal, R. K. McLean, P. C. Hawes, M. V. Sullivan 
and S. M. Reddy, "Evaluation of molecularly imprinted polymers as synthetic virus neutralizing 
antibody mimics," Frontiers in bioengineering and biotechnology, vol 7, pp. 115, 2019.  

[17] M. E. Byrne and V. Salian, "Molecular imprinting within hydrogels II: Progress and analysis of the 
field," International journal of pharmaceutics, vol 364, no 2, pp. 188-212, 2008.  

[18] M. E. Byrne, K. Park and N. A. Peppas, "Molecular imprinting with hydrogels. ," Advanced drug 
delivery reviews, vol 54, pp. 149-161, 2002.  

[19] C. Yu and K. Mosbach, "Insights into the origins of binding and the recognition properties of 
molecular imprinted polymers prepared using an amide as the hydrogen-bonding functional 
group. ," Journal of molecular recognition, vol 11, pp. 69-74, 1998.  

[20] T. Takeuchi and T. Hishiya, "Molecular imprinting of proteins emerging as a tool for protein 
recognition," Organic & biomolecular chemistry, vol 6, pp. 2459-2467, 2008.  

[21] M. N. Albarghouthi, B. A. Buchholz, P. J. Huiberts, T. M. Stein and A. E. Barron, "Poly-N-
hydroxyethylacrylamide (polyDuramide): A novel, hydrophilic, self-coating polymer matrix for DNA 
sequencing by capillary electrophoresis," Electrophoresis, vol 23, no 10, pp. 1429-1440, 2002.  

[22] S. H. Ou, T. C. Chou and C. C. Liu, "Polyacrylamide gels with electrostatic functional groups for 
the molecular imprinting of lysozyme," Analytica chimica acta, vol 504, no 1, pp. 163-166, 2004.  

[23] S. Wu, W. Tan and H. Xu, "Protein molecularly imprinted polyacrylamide membrane: For 
hemoglobin sensing," Analyst, vol 135, no 10, pp. 2523-2527, 2010.  

[24] K. Golker, B. C. G. Karlsson, J. G. Wiklander, A. M. Rosengren and I. A. Nicholls, "Hydrogen bond 
diversity in the pre-polymerization stage contributes to morphology and MIP-template recognition - 
MAA versus MMA. ," European polymer journal, vol 66, pp. 558-568, 2015.  

[25] H. S. Andersson, J. G. Karlsson, S. A. Piletsky, A. Koch-Schmidt, K. Mosbach and I. A. Nicholls, 
"Study of the nature of recognition in molecularly imprinted polymers, II [1] influence of monomer–

Page 19 of 22 AUTHOR SUBMITTED MANUSCRIPT - BPEX-102323.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



template ratio and sample load on retention and selectivity." Journal of chromatography A, vol 848, 
pp. 39-49, 1999.  

[26] I. A. Nicholls, H. S. Andersson, K. Golker, H. Henschel, B. C. G. Karlsson, G. D. Olsson, A. M. 
Rosengren, S. Shoravi, S. Suriyanarayanan, J. G. Wiklander and S. Wikman, "Rational design of 
biomimetic molecularly imprinted materials: Theoretical and computational strategies for guiding 
nanoscale structured polymer development. ," Analytical and bioanalytical chemistry, vol 400, pp. 
1771-1786, 2011.  

[27] T. Alizadeh, M. Zare, M. R. Ganjali, P. Norouzi and B. Tavana, " A new molecularly imprinted 
polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in waste 
waters and soil samples." Biosensors and bioelectronics, vol 25, pp. 1166-1172, 2010.  

[28] E. V. Piletska, A. Guerreiro, M. J. Whitcombe and S. A. Piletsky, "Influence of the polymerization 
conditions on the performance of molecularly imprinted polymers." Macromolecules, vol 42, pp. 
4921-4928, 2009.  

[29] S. A. Piletsky, E. V. Piletska, K. Karim, K. W. Freebairn, C. H. Legge and A. P. F. Turner, "Polymer 
cookery: Influence of polymerization conditions on the performance of molecularly imprinted 
polymers. ," Macr, vol 35, pp. Macromolecules 7499-7504, 2002.  

[30] M. V. Sullivan, S. R. Dennison, G. Archontis, J. M. Hayes and S. M. Reddy, "Towards rational 
design of selective molecularly imprinted polymers (MIPs) for proteins: Computational and 
experimental studies of acrylamide based polyers for myoglobin." The journal of physical chemistry 
B, vol 123, pp. 5432-5443, 2019.  

[31] F. Canfarotta, S. A. Piletsky and N. W. Turner, "Generation of high-affinity molecularly imprinted 
nanoparticles for protein recognition via a solid-phase synthesis protocol," Methods in molecular 
biology, vol 2073, pp. 183-194, 2020.  

[32] A. Poma, A. Guerreiro, M. J. Whitcombe, E. V. Piletska, A. P. F. Turner and S. A. Piletsky, "Solid-
phase synthesis of molecular imprinted polymer nanoarticles with a reusable template - "plastic 
antibodies"." Advance functional materials, vol 23, pp. 2817-2821, 2013.  

[33] M. V. Sullivan, O. Clay, M. P. Moazami, J. K. Watts and N. W. Turner, "Hybrid aptamer-
molecularly imprinted polymer (aptaMIP) nanoparticles from protein recognition-A trypsin model," 
Macromolecular bioscience, vol 21, no 5, pp. e2100002, 2021.  

[34] G. Erturk and B. Mattiasson, "Molecular imprinting techniques used for the preparation of 
biosensors." Sensors, vol 17, pp. 288, 2017.  

[35] V. L. V. Granado, Gomes, M. T. S. R. and A. Rudnitskaya, "Molecularly imprinted polymer thin-
film electrochemical sensors," Methods in molecular biology, vol 2027, pp. 151-161, 2019.  

[36] I. A. Nicholls and J. Rosengren, "Molecular imprinting of surfaces." Bioseparation, vol 10, pp. 
301-305, 2001.  

[37] J.G. Drobny, Applications of fluoropolymer films: Properties, processing, and products, First ed. 
Oxford, UK: William Andrew Publishing, 2020. 

[38] D. Refaat, M. G. Aggour, A. A. Farghali, R. Mahajan, J. G. Wiklander, I. A. Nicholls and S. A. 
Piletsky, "Strategies for molecular imprinting and the evolution of MIP nanoparticles as plastic 
Antibodies—Synthesis and applications," International journal of molecular sciences, vol 20, no 24, 
pp. 6304, 2019.  

Page 20 of 22AUTHOR SUBMITTED MANUSCRIPT - BPEX-102323.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



[39] S.M. Reddy, "Materials for Chemical Sensing," in Molecularly imprinted polymer, Longo, T. R., 
Paixao, C. and Reddy, S. M., Ed. Switzerland: Springer Nature, 2017, pp. 83- 83-86. 

[40] S. M. Reddy, D. M. Hawkins, Q. T. Phan, D. Stevenson and K. Warriner, "Protein detection using 
hydrogel-based molecularly imprinted polymers integrated with dual polarisation interferometry. ," 
Sensors and actuators B: Chemical, vol 176, pp. 190-197, 2013.  

[41] Y. Zhao, N. E. Schultz and D. Truhlar, "Design of density functionals by combining the method of 
constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and 
noncovalent interactions." Journal of chemical theory and computation, vol 2, pp. 364-382, 2006.  

[42] M. M. Franci, W. J. Pietro and W. J. Hehre, "Self-consistent molecular orbital methods. XXIII. A 
polarization-type basis set for second-row elements. ," The journal of chemical physics, vol 77, pp. 
3654-3665, 1982.  

[43] W. J. Hehre, R. Ditchfield and J. A. Pople, "Self-consistent molecular orbital methods. XII. further 
extensions of caussian-type basis sets for use in molecular orbital studies of organic molecules. ," 
The journal of chemical physics, vol 56, pp. 2257-2261, 1972.  

[44] Y. Zhao and D. Truhlar, "He M06 suite of density functionals for main group thermochemistry, 
thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new 
functionals and systematic testing of four M06-class functionals and 12 other functionals. ," 
Theoretical chemistry accounts, vol 120, pp. 215-241, 2008.  

[45] I. M. Alecu, J. Zheng, Y. Zhao and D. Truhlar, "Computational thermochemistry: Scale factor 
databases and scale factors for vibrational frequencies obtained from electronic model chemistries." 
Journal of chemical theory and computation, vol 6, pp. 2872-2887, 2010.  

[46] O. Kimhi and H. Bianco-Peled, "Study of the interactions between protein-imprinted hydrogels 
and their templates," Langmuir, vol 23, no 11, pp. 6329-6335, 2007.  

[47] E. Verheyen, J. P. Schillemans, M. Van Wijk, M. A. Demeniex, W. E. Hennink and C. F. Van 
Nostrum, "Challenges for the effective molecular imprinting of proteins," vol 32, no 11, pp. 3008-
3020, 2011.  

[48] M. Zayats, A. J. Brenner and P. C. Searson, "Protein imprinting in polyacrylamide-based gels," 
Biomaterials, vol 35, no 30, pp. 8659-8668, 2014.  

[49] G. Vasapollo, R. Del Sole, L. Mergola, M. R. Lazzoi, A. Scardino, S. Scorrano and G. Mele, 
"Molecularly imprinted polymers: Present and future prospective," International journal of 
molecular sciences, vol 12, no 9, pp. 5908-5945, 2011.  

[50] D. R. Kryscio, Y. Shi, P. Ren and N. A. Peppas, "Molecular docking simulations for 
macromolecularly imprinted polymers," Industrial & engineering chemistry research, vol 50, no 24, 
pp. 13877-13884, 2011.  

[51] T. Matsunaga, T. Hishiya and T. Takeuchi, "Surface plasmon resonance sensor for lysozyme 
based on molecularly imprinted thin films," Analytica chimica acta, vol 591, no 1, pp. 63-67, 2007.  

[52] C. Sammon, S. Mura, J. Yarwood, N. Everall, R. Swart and D. Hodge, "FTIR-ATR studies of the 
structure and dynamics of water molecules in polymeric matrixes. A comparison of PET and PVC." 
Journal of physical chemistry B, vol 102, pp. 3402-3441, 1998.  

Page 21 of 22 AUTHOR SUBMITTED MANUSCRIPT - BPEX-102323.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



[53] C. Sammon, J. Yarwood and N. Everall, "An FT-IR study of the hydrolytic degradation on the 
structure of thin PET films. ," Polymer degradation and stability, vol 67, pp. 149-158, 2000.  

[54] T. Yamashita and K. Takatsuka, "Hydrogen-bond assisted enormous broadening of infrared 
spectra of pheno-water cationic cluster: An ab initio mixed quantum-classicla study. ," The journal of 
chemical physics, vol 126, pp. 074304, 2007.  

[55] J. M. Chalmers, N. J. Everall and S. Ellison, "Specular reflectance: A convenient tool for polymer 
characterization by FTIR-microscopy." Micron, vol 27, pp. 315-328, 1996.  

[56] J. Kong and S. Yu, "Fourier transform infrared spectroscopic analysis of protein secondary 
structures." Acta biochimica et biophysica sinica, vol 39, pp. 549-559, 2007.  

[57] J. van der Valk, K. Bieback, C. Buta, B. Cochrane, W. G. Dirks, J. Fu, J. J. Hickman, C. Hohensee, R. 
Kolar, M. Liebsch, F. Pistollato, M. Schulz, D. Thieme, T. Weber, J. Wiest, S. Winkler and G. 
Gstraunthaler, "Fetal bovine serum (FBS): Past - present - future," Alternatives to animal 
experimentation, vol 35, no 1, pp. 99-118, 2018.  

  

 

 

 

Page 22 of 22AUTHOR SUBMITTED MANUSCRIPT - BPEX-102323.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t


