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Abstract  

Virtual Reality simulators have proven to be an excellent tool in the medical sector to 
help trainees mastering surgical abilities by providing them with unlimited training 
opportunities. Total Hip Replacement (THR) is a procedure that can benefit significantly 
from VR/AR training, given its non-reversible nature. From all the different steps required 
while performing a THR, doctors agree that a correct fitting of the acetabular component of 
the implant has the highest relevance to ensure successful outcomes. Acetabular reaming is 
the step during which the acetabulum is resurfaced and prepared to receive the acetabular 
implant. The success of this step is directly related to the success of fitting the acetabular 
component. Therefore, this thesis will focus on developing digital tools that can be used to 
assist the training of acetabular reaming.  

Devices such as navigation systems and robotic arms have proven to improve the final 
accuracy of the procedure. However, surgeons must learn to adapt their instrument 
movements to be recognised by infrared cameras. When surgeons are initially introduced to 
these systems, surgical times can be extended up to 20 minutes, maximising surgical risks. 
Training opportunities are sparse, given the high investment required to purchase these 
devices. As a cheaper alternative, we developed an Augmented Reality (AR) alternative for 
training on the calibration of imageless navigation systems (INS). At the time, there were no 
alternative simulators that using head-mounted displays to train users into the steps to 
calibrate such systems. Our simulator replicates the presence of an infrared camera and its 
interaction with the reflecting markers located on the surgical tools. A group of 6 hip 
surgeons were invited to test the simulator. All of them expressed their satisfaction with the 
ease of use and attractiveness of the simulator as well as the similarity of interaction with the 
real procedure. The study confirmed that our simulator represents a cheaper and faster 
option to train multiple surgeons simultaneously in the use of Imageless Navigation Systems 
(INS) than learning exclusively on the surgical theatre.  

Current reviews on simulators for orthopaedic surgical procedures lack objective 
metrics of assessment given a standard set of design requirements. Instead, most of them 
rely exclusively on the level of interaction and functionality provided. We propose a 
comparative assessment rubric based on three different evaluation criteria. Namely 
immersion, interaction fidelity, and applied learning theories. After our assessment, we found 
that none of the simulators available for THR provides an accurate interactive representation 
of resurfacing procedures such as acetabular reaming based on force inputs exerted by the 
user. This feature is indispensable for an orthopaedics simulator, given that hand-eye 
coordination skills are essential skills to be trained before performing non-reversible bone 
removal on real patients. 

Based on the findings of our comparative assessment, we decided to develop a model 
to simulate the physically-based deformation expected during traditional acetabular reaming, 
given the user’s interaction with a volumetric mesh. Current interactive deformation methods 
on high-resolution meshes are based on geometrical collision detection and do not consider 
the contribution of the materials’ physical properties. By ignoring the effect of the material 
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mechanics and the force exerted by the user, they become inadequate for training on hand-
eye coordination skills transferable to the surgical theatre. Volumetric meshes are preferred 
in surgical simulation to geometric ones, given that they are able to represent the internal 
evolution of deformable solids resulting from cutting and shearing operations. Existing 
numerical methods for representing linear and corotational FEM cuts can only maintain 
interactive framerates at a low resolution of the mesh. Therefore, we decided to train a 
machine-learning model to learn the continuum mechanic laws relevant to acetabular 
reaming and predict deformations at interactive framerates. To the best of our knowledge, 
no research has been done previously on training a machine learning model on non-elastic 
FEM data to achieve results at interactive framerates. 

As training data, we used the results from XFEM simulations precomputed over 5000 
frames for plastic deformations on tetrahedral meshes with 20406 elements each. We selected 
XFEM simulation as the physically-based deformation ground-truth given its accuracy and 
fast convergence to represent cuts, discontinuities and large strain rates. Our machine 
learning-based interactive model was trained following the Graph Neural Networks (GNN) 
blocks. GNNs were selected to learn on tetrahedral meshes as other supervised-learning 
architectures like the Multilayer perceptron (MLP), and Convolutional neural networks 
(CNN) are unable to learn the relationships between entities with an arbitrary number of 
neighbours. The learned simulator identifies the elements to be removed on each frame and 
describes the accumulated stress evolution in the whole machined piece. Using data 
generated from the results of XFEM allowed us to embed the effects of non-linearities in 
our interactive simulations without extra processing time. The trained model executed the 
prediction task using our tetrahedral mesh and unseen reamer orientations faster per frame 
than the time required to generate the training FEM dataset. Given an unseen orientation of 
the reamer, the trained GN model updates the value of accumulated stress on each of the 
20406 tetrahedral elements that constitute our mesh during the prediction task. Once this 
value is updated, the tetrahedrons to be removed from the mesh are identified using a 
threshold condition. After using each single-frame output as input for the following 
prediction repeatedly for up to 60 iterations, our model can maintain an accuracy of up to 
90.8% in identifying the status of each element given their value of accumulated stress. 
Finally, we demonstrate how the developed estimator can be easily connected to any game 
engine and included in developing a fully functional hip arthroplasty simulator.   
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1 Introduction 

This chapter describes the fundamentals of Total Hip Replacement, its relevance on 

improving human’s life quality and how this procedure is performed. We describe 

how current technologies can be helpful to assist the training of orthopaedic 

surgeons efficiently and explain the motivation behind developing tools that can be 

used to assist such training. Finally, we present the research questions that will be 

addressed through the proposed objective and describe the summary of the content 

of chapters included in this thesis. 

 

1.1 The hip joint. 

Chapter 1 

Figure 1 The hip joint. 

Pelvis 

Acetabulum 
(Socket) 

Femoral Head 

Femur (Thighbone) 
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The hip (Figure 1) is the joint where the thighbone (femur) meets the pelvis. The hip 

is known as a ball-type joint as it is formed by a semisphere (head) at the end of the femur 

that fits into a socket located on the pelvis (acetabulum). This assembly makes the hip very 

stable and provides a wide range of motion. The femoral head is coated with a layer of 

articular cartilage, which allows the femoral and pelvic bones to glide smoothly against each 

other. This cartilage absorbs shock forces on the joint. Therefore, it protects the surfaces of 

the femoral head and the acetabulum from excessive wear.  

When the hip is healthy, much force is needed to injure it. However, sometimes 

overuse or falls can lead to severe hip injuries. In cases where a severe hip fracture occurs 

and the upper part of the thigh bone breaks, the entire joint must be replaced with an implant 

system. The most prevalent cause for requiring a hip replacement is severe Osteoarthritis, 

which results from excessive wear and tear on the joint caused by obesity, advancing age and 

disorders that cause unusual bone growth such as bone dysplasia. Hip dysplasia causes the 

hip socket to be too shallow to support the head of the femur. Most people diagnosed with 

hip dysplasia need replacement surgery to build better support for the hip as the wrong shape 

of the joint will cause the articular cartilage to wear out faster than one that has a more 

normal shape. Regardless of the cause for osteoarthritis, the cartilage covering the femoral 

head can degenerate so severely that the patients experience tremendous pain resulting from 

bone rubbing on bone, stiffness in the joint and difficulty walking (Wolford et al., 2015). 

1.2 Total Hip Replacement (THR) surgery. 

1.2.1 Traditional surgery. 

Each year over 96,000 Total Hip Replacement (THR) procedures are performed in 

England, Wales, Northern Ireland and the Isle of Man by both NHS and independent 

hospitals (National_Joint_Registry, 2018). Similarly, in the United States, more than 310,000 

hip arthroplasties procedures are performed annually. Because of the ageing population, 

these numbers are expected to increase up to 205% annually (Wolford et al., 2015).  THR is 

considered to be one of the most successful and cost-effective surgeries in the orthopaedic 

field. However, up to 8% of the patients report discomfort related to several factors, 

including leg length discrepancies, dislocation1, a high wear rate on the implant’s surfaces 

 
1 Condition in which the head of the femur is forced out of its socket in the hip bone (pelvis). 
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that are gliding against each other, and other clinical complications (National_Joint_Register, 

2018). These scenarios can lead to a more complicated and expensive procedure called revision 

surgery. In addition to the associated extra clinical costs and associated risk for being an 

invasive procedure, revision surgery decreases the patient’s confidence in the procedure and 

increases their level of anxiety (Wolf et al., 2012). 

During surgery, surgeons restore the natural range of motion in the joint. Firstly, the 

surfaces on the acetabulum and femur must be prepared (resurfaced) to provide a perfect fit 

for the implant that will be inserted later (Figure 2). THR is a popular elective procedure as 

it relieves the pain caused by an arthritic condition (Bhaskar et al., 2017). Figure 3 shows the 

main components of a complete hip implant system. The acetabular cup provides a convex 

gliding surface that allows the rotation of an acetabular ball with minimal friction. This sphere 

is attached to an elongated rigid part called the femoral stem responsible for transmitting the 

pelvis's mechanical load to the femur. During the entire procedure, the surgeons move the 

leg of the patient on several occasions. For example, to dislocate the hip joint, ease the 

Figure 2 Total Hip Replacement. Reaming and acetabular implant insertion 

Figure 3 Hip Implant 

Femoral Stem 

Acetabular Cup 

Acetabular Ball 

Polyethylene Liner 
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acetabular component's fitting stage and finally prepare the femoral canal and insert the 

femoral stem. Several authors such as Zinar & Schmalzried (2015) and Rojas et al. (2018) 

argue that the location and orientation of the acetabular component are of the highest 

importance when it comes to preventing the risks of dislocation; high wear on the polyethene 

liner; and leg length discrepancies.  

THR possesses qualities that differentiate it from other orthopaedic procedures such as 

total knee or shoulder replacement. Firstly, there is no other orthopaedic surgery in which 

the surgeon must move the patient's limbs as many times as in a total hip replacement. 

Secondly, surgeons have some limitations to manoeuvre their tools determined by the 

physical constraints of their selected approach2. Finally, THR requires the surgeons to be 

“ambidextrous”, as applying the reaming and hammering force with either arm is equally 

relevant in the training path of a successful surgeon. 

To implant an acetabular implant, surgeons must first prepare an adequate shape on the 

acetabulum. A uniform bleeding surface is required to ensure post-operative 

osseointegration3. Osseointegration is especially important when using systems that do not 

rely on surgical cement to achieve a stable fit between the implant and the bone. To do this, 

surgeons increase the size of the acetabular cavity using a hemispherical tool commonly 

known as a reamer. This step also referred to as reaming, progressively removes bone tissue 

until an adequate acetabular diameter and implantation depth is achieved. To ensure stable 

implantation of cementless systems, surgeons must achieve an interference fit between the 

pelvis and the cup. Such a fit is obtained by implanting a cup 1 or 2 mm bigger in diameter 

than the size of the last reamer head used.  

Pre-operative surgical planning4 (Figure 4), helps surgeons to estimate the required 

implant size and type based on an X-ray image of the hip joint. Particularly the orientation 

of the cup edges relative to some anatomical landmarks on the pelvic bone provide a 

reference to the surgeons of the required reaming orientation.  

 
2  The technique chosen to enter the body to get to the site that needs to be operated on. For THR, the most 

common are the posterior approach, direct lateral approach, and direct anterior approach. 
3 “A direct structural and functional connection between ordered, living bone and the surface of a load-carrying implant which is 

critical for implant stability”. (Parithimarkalaignan & Padmanabhan 2013) 
4 Also known as templating. 
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While the surgeons are reaming, they need to use visual feedback to be aware of the 

progress of bone removal. The pelvic bone has three essential features the surgeon can 

observe. One is the disappearance of the acetabular labrum, which covers the acetabular true 

floor. The second one is the appearance of a bleeding bone on the whole surface of the cavity. 

Finally, the depth of the penetration from the last reamer diameter in use and how the reamer 

edges protrude the acetabulum bone compared with the initial template gives the surgeon an 

estimation on the future alignment of the implant the amount of bone removed.   

1.2.2 Robotic Assisted surgery and Imageless Navigation Systems. 

The accuracy of the reaming stage directly affects the stability of the implanted 

acetabular cup as it defines the geometry that will outline the fitting between the implant and 

the bone. Under-reaming causes difficulties during the cup insertion stage as well as 

undesired additional mechanical stresses in both the pelvic bone and the acetabular cup. On 

the other hand, over-reaming leads to increased micro-motion or traumatic disruption in the 

bone with loss of cement-less fixation. Unfortunately, it is hard to eliminate the error of the 

reamed surface due to different factors involved, such as the tool’s cutting geometry, 

surgeon’s technique and pelvic bone elasticity (Alexander, J. W., E. Kamaric, 1999). Devices 

such as navigation systems and robotic arms have proven to improve the final accuracy of 

the procedure (Schnurr et al., 2009; Redmond et al., 2016; Snijders et al., 2017). Imageless 

Navigation Systems guide the surgeon’s movements and give live feedback on the amount 

of removed bone tissue in real-time with an accuracy below 1mm (NDI Medical, 2017). 

Figure 4 X-ray pelvis with hip joints and proximal 1/3rd of femur anteroposterior view showing 

templating for an uncemented total hip arthroplasty. From Bhaskar (2017).  
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Robotic-assisted surgery removes human error and provides a more accurate and 

replicable cup orientation than manual implantation, thanks to its navigation system and 

powerful haptic units. After conducting a systematic review, Tilly (2016) defends that “the use 

of robotic-assisted surgery can result in a greater range of motion in the hip, reduced soft-tissue damage, 

decreased bone-to-bone impingement, and enhanced stability”. Even with the mentioned advantages, 

the learning curve involved in this new way of performing the surgery may delay its 

widespread use (Newman, 2014). The spatial calibration step on each surgery is essential to 

ensure the reliability of the navigation system. This step allows the robot to compute its 

relative positions to the patient and ensure that the implants' planned orientation and location 

are correct. Therefore, both trainees and already trained surgeons should learn to work 

without interfereing with the tracking performed by the infrared cameras on both the patient 

and the robot.  

Currently, surgeons start integrating the robot into their theatres supported by a team 

of technicians who guide them through the appropriate steps to perform during their firsts 

robotic-assisted surgeries. Consequently, the practical experience can only be obtained from 

direct interaction with the robot, which temporarily increases surgical times. An adequate 

training phase for this task is required since an incorrect spatial data acquisition would result 

in outcomes possibly less desirable than those typically obtained from traditional THR.  

It is worth noting that the cost of acquiring a robotic assisting arm can be so high that 

it makes them unaffordable for many healthcare centres around the world. 

 

Figure 5 Stryker’s MAKO robot. Assisting robotic arm for orthopaedic arthroplasty 
procedures on hip and knee joints. Photography provided by ORI BU 
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1.3 Surgical training. 

This research addresses the 14th item from the specialist training curriculum for trauma 

and orthopaedics training in the United Kingdom. This item states: “Demonstrates familiarity 

and understanding of an acetabular preparation including trimming medially and at rim” (Mitchell, 2017). 

Unfortunately, acetabulum reaming is not a reversible process as it involves material removal. 

Training on getting a stable result during the reaming stage and developing strong surgical 

skills requires repetition and rehearsal. 

For many years surgical training has been based on an apprenticeship model highly 

dependent on excellent trainer–trainee communication. However, gaining surgical 

experience became harder for starting trainees since the implementation of the European 

Working Time Directive (EWTD), which came into force in 2003 to ensure well-rested 

workers (European Parliament, 2003). The EWTD limits the number of working hours to 

48 per week, and it demands employers to provide 11 hours of rest to their employees on 

any 24 hours and a minimum 20-minute rest break where the working day is longer than 6 

(a) (b) (c) 

(d) 

Figure 6 Visual references of the progress during the reaming stage. a) Unreamed acetabulum.  b) 
Initial ream, the labrum is completely removed and the true floor is exposed. c) Appearance of 
bleeding bone on the reamed surface) Reamer inside the acetabulum.  Screenshots from TOTAL 
HIP REPLACEMENT - UNCEMENTED. [onlinevideo] (Orthopaedics, 2016) Orthopaedics, T., 
2016. Available at: https://www.youtube.com/watch?v=sMBx3C8hhJg&t=217s [Accessed 
September 11, 2018]. 
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hours. A complete Total Hip Replacement surgery, including patient preparation, can take 

around 2 hours. Since trainees take longer to complete a whole procedure than experienced 

consultants, the total number of operations that residents have the opportunity to perform 

by themselves have dropped significantly. As a result of this, reducing the number of hours 

that medical staff is allowed to work has encouraged simulation-based training to 

progressively position itself as a tool of high importance in surgical training (Kotsis and 

Chung, 2013). Simulated training avoids patients risk and allows the trainees to get more 

profound knowledge of in-theatre skills such as spatial understanding and how to react to 

anatomy variation. 

In their report " To err is human, " the institute of medicine of the United States of 

America has suggested using simulation whenever possible (Kohn et al., 2000). In fact, the impact 

of computer simulation in orthopaedic training and related literature has been growing 

exponentially over the last 12  years (Vaughan et al., 2016). Virtual reality simulators represent 

an excellent tool for grasping abilities through repetition compared to other training methods 

such as single-use cadaver and or plastic bone (Seymour et al., 2002; Aggarwal et al., 2007). 

Also, Virtual and Augmented Reality (AR & VR) can emulate the adverse consequences from 

common mistakes that trainees make during learning (Gardner et al., 2015). This allows the 

trainees to err in a controlled and safe digital environment that allows for better structuring 

of their knowledge. 

1.4 Virtual and Augmented Reality simulators. 

Virtual Reality aims to replace reality with an entirely computer-generated three-

dimensional environment that can interact in a seemingly natural way. On the other hand, 

Augmented Reality overlays the computer-generated content into the user’s visual field. This 

is, Augmented reality complements the natural user’s vision instead of trying to replace it. 

Together, Virtual and Augmented reality form the notion of extended reality (XR). The 

realism of XR experiences perceived by the users is commonly assessed by its level of 

immersion. A proposed assessment of immersion for VR and AR simulators for orthopaedic 

training is presented in section 2.2.1. It is worth noting that XR experiences are not limited 



  |  1—25	
to run only on stereoscopic5 devices. Under the right conditions, computer monitors and 

hand-held devices can also host these experiences and provide an adequate level of 

immersion.  

Flat computer monitors or hand-held devices do not provide the visual immersion 

required to simulate open surgery procedures. During the real THR surgery, surgeons move 

their head around the incision to utilize their visibility of the exposed tissue. The incision 

made (Figure 6) must be big enough to have good tissue exposure and provide the surgeons 

with an area of adequate size to manipulate their tools comfortably. However, incisions too 

big require longer post-operative recovery times. The continuous change from a visual 

perspective is an essential practice in surgery that can only be replicated in simulation by 

using head-mounted displays. These displays can update their rendered image based on the 

tracked 6 DOF6 of the user’s head and are available for both VR or AR experiences. For that 

reason, they improve the immersion during the simulation. In particular, AR headsets are 

recommended as a safer option as they allow for visualization of the real environment while 

procedures involving high impact and reaming forces are being trained. 

Additionally, a simulator can provide haptic immersion. This term refers to the ability 

of the system to provide tactile and force feedback based on the user’s interaction. A 

limitation of currently available open surgery simulators is implementing commercial haptic 

units to provide force feedback. The technical specifications of these type of devices usually 

report a range of motion smaller than the one required in THR surgery. The handles, usually 

in the shape of a haptic pen, are too small and must be attached to plastic models matching 

the tools’ shape to provide tactile realism. Also, the maximum force exerted as resistance to 

movement has a magnitude below 40N (3D Systems, 2017). These hardware limitations 

make the human-machine interaction unnatural when trying to mimic joint replacement 

procedures such as THR.  

Instead of using mechanical haptic units, physical objects can be used to deliver 

tactile feedback to the user. This approach is known as passive haptics. Passive haptics helps 

overcome the technical limitations of haptic units and provide truthful experience immersion 

 
5 Stereoscopic rendering creates a sense of 3D depth by rendering the scene from 2 different view points with 

slightly different angles, just like human eyes. Common examples are gaming head-mounted headsets which 

have 2 displays, one for each eye. 
6 6 Degrees of Freedom. Namely, 3D position coordinates and 3D orientation angles.  
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once aligned in space with the digital representations of each object (Fotouhi, 2018). In a 

simulator for THR, such as the one proposed by Fotouhi (2018), a passive haptic model7 can 

be mounted on a supporting structure capable of resisting the forces applied to replicate the 

reaming and impacting stages of the surgery safely. The spatial alignment ensures that the 

digital content rendered by the XR headset is perceived to have the same position, orientation 

and scale as the passive haptic model. A haptic arm does not constrain the user’s interaction. 

Instead, the movements and exerted force are monitored in real-time by adequate sensors 

such as a triaxial force sensor and a 3D position tracker.  

Simulating the calibration step for robotic-assisted surgery does not require 

simulating complex tissue deformations as its central aim is to guide the surgeon in acquiring 

the anatomical landmarks needed for spatial calibration. Therefore, such a simulator can be 

hosted entirely on VR/AR headset. However, the same approach is not valid if we want to 

provide training opportunities for traditional THR. As mentioned in previous sections, 

acetabular reaming is an essential step to determine the success of THR. Reaming is not a 

reversible process, and consequently, surgeons must be skilful enough to handle the tools 

inside the patient’s hip to avoid any possible complication. To be able to provide unlimited 

attempts inside the simulation, the “reamer” used during simulation should not induce any 

sign of wear on the surface of the passive haptics model. Therefore, the simulator must take 

advantage of the spatial alignment to display the progress of the reaming operation on the 

surface of the CGI model of the pelvis. To ensure the acquisition of relevant reaming skills, 

the estimated amount of bone removed during simulation must be similar to the one 

expected during real surgery.  

Standard techniques used to simulate resurfacing operations, such as reaming, can be 

performed either in the geometrical or the volumetric domain. These techniques usually 

model the resurfaced mesh by generating new faces, seeding vertices (Bruyns et al., 2002; Niu 

and Leu, 2007), voxelized boolean operations (Jang et al., 2000; Wu et al., 2009) or planar 

volumetric primitive subdivisions (Turini et al., 2006; Sifakis et al., 2007). Consequently, the 

evaluation of material removed is focused mainly on the collision detection of bounding 

volumes, which can be computationally expensive when requiring complex tool’s geometries. 

For both the volumetric and geometric domain, mesh resurfacing operations are commonly 

 
7 For example a 3D printed model or a synthetic bone commonly used for single-use training (Hetaimish, 2016). 
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dependant on the tool’s swept path and collision detection. Therefore, these methods neglect 

the effects on the resulting surface of any changes in the cutting force magnitude and 

direction. 

On the other hand, a physically-based8 simulation would compute the displacement 

of the cutting edges as a result of the fractured elements described by the primitive’s stresses 

evolution given an applied cutting force. Numerical computer-aided simulation of machining 

operations on brittle9 materials (e.g. turning, milling, drilling and reaming) has been used to 

help cutting tool designers understand the dynamic behaviour in the interface between the 

tools and the resurfaced material (Ng and Aspinwall, 2002; Schermann et al., 2006; Liu et al., 

2013). Depending on the model used, these simulations can be highly accurate. Numerical 

methods such as the finite element method (FEM) are adequate tools to calculate accurate 

plastic deformations. The FEM subdivides the deformable objects into smaller areas of 

interest called finite elements to approximate the solution of a system of differential equations 

over the volume domain. The finner the discretization of the domain, the more accurate and 

stable is the solution, but also the longer it takes for the solver to yield a solution of the 

system. Therefore, when a real-time analysis is desired, it is necessary to minimize the number 

of elements and constrain the model to a linear behaviour. Such simplifications usually 

compromise accuracy and make them non-adequate for medical applications (Gillies and 

Bourmpos, 2003). We propose to use machine learning on FEM data computed offline to 

train an accurate estimator of the amount of bone removed based on an interactive input 

faster than traditional numerical simulations. 

1.5 Research Questions 

This research aims to answer the following questions: 

Q1 Which learning theories must be considered during the design process of a 

simulator for training on THR skills? 

Q2 How to provide an alternative training opportunity outside of the surgical theatre 

to allows the user to acquire the relevant skills for the calibration step of robotic 

 
8 The numerical solution of a problem that includes the physics models. 
9 According materials science a brittle material is a material that breaks with small elastic deformation and 

almost no plastic deformation (Beer, 2011). The bone behaves as a brittle material. 
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assistants and imageless navigation systems? 

Q3 How to obtain a deformation module capable of estimating the amount of 

removed bone interactively by taking the force applied on the reamer and the status of 

the volumetric mesh as its inputs? 

1.6 Aims and objectives 

Training strategies from gamification theories are only helpful for VR simulation-based 

training when these strategies add value to the construction of knowledge and enable a 

smooth transition of acquired skills to real-life applications. Therefore, this research aims to 

find the relevant learning theories around simulation-based training in the literature and 

identify how these should be included in a surgical simulator. An understanding of the 

learning directives for experience-based learning will give us a clearer view of the technical 

requirements and features that must be included in our XR simulator for THR. 

To minimize human error in surgery, healthcare centres invest in Robotic Assistants 

and imageless navigation systems. Ideally, the learning curve for these devices should happen 

without assigning one of them exclusively for training. Consequently, we propose a prototype 

to train surgeons on the basic skills needed during the calibration stage of an imageless 

navigation system and assistive robotic arms. With this simulator, users will be able to learn 

to manipulate their tools without interfering with the continuous infrared tracking of both 

the patient and the robot. Furthermore, this prototype will also provide us with feedback 

from the orthopaedic surgeons about both comfort and functionality of the selected 

hardware and the interaction planned. 

For cases where a system that ensures the correct location of the acetabular component 

is not affordable, it is required to assist the training of reaming skills. Under-reaming can 

cause difficulties during the cup insertion stage as well as undesired additional mechanical 

stresses in both the pelvic bone and the acetabular cup. On the other hand, over-reaming 

can lead to increased micro-motion or traumatic disruption in the bone with loss of cement-

less fixation. Another goal of the proposed research is to create a simulation able to execute 

efficiently and estimate the reduction on the acetabulum volume during simulation of the 

unassisted reaming procedure. This research will present a set of techniques that together 

will build a learned simulator of the changes triggered on a volumetric mesh based on the 

orientation and position of the reamer, as well as its exerted force. In other words, the model 
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should be able to respond to forces applied in different orientations on the acetabulum and 

calculate the amount of material removed. Our learned simulator module will be able to 

estimate the outcomes of the reaming procedure on both the left and right hip. This will be 

easy to include in the development pipeline of any other VR/AR simulator. 

The objectives of this thesis are: 

• To identify the learning theories that outline the design process of a simulator for 

training on THR skills and, therefore, ensure the learning impact of a simulator. 

• To identify the current state of the art of surgical simulators for orthopaedic training 

and assess their available features against the requirements raised by the identified 

learning theories for simulation-based learning. 

• To provide an alternative training opportunity outside of the surgical theatre that 

allows the user to acquire the relevant skills for the calibration step of robotic 

assistants and imageless navigation systems 

• To replicate the acetabular reaming operation in a computer-generated environment. 

o To develop a FEM simulation of the reaming procedure under different 

reaming conditions. 	

o To train a Machine Learning (ML) model capable of estimating the removed 

material on a refined area of a volumetric mesh faster than traditional FEM 

methods. 

o To train a model able to output the centre of the reamer, orientation and 

position according to the current bone volume distribution and force applied 

on a specific frame. 

1.7 Scope and Limitations 

The following considerations will be taken throughout this research. 

• There are several paths a surgeon can choose to get a suitable view of the hip joint. 

In the surgical field, these are known as exposures. They differ from muscles chosen 

to incise to even the type of tools required. This project will consider only the 

posterior approach as it is the most popular one in the area where this research 

was conducted.  

• Our finite element model will be built based on mechanical properties and material 

models used in the literature to model bone cutting processes that have been 
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validated with experimental data. 

1.8 Thesis layout and remarks 

The next chapter (Chapter 2) investigates the learning theories and gamification 

strategies identified as relevant for the design process of simulation-based training 

experiences. We will also propose a list of ideal requirements for an XR simulator in 

orthopaedics that the industry should be motivated towards and use these requirements to 

evaluate currently available simulators. The comparative assessments presented in Chapter 2 

will help the reader to understand the context of this research based on the gap found in the 

available training opportunities for THR.  

Devices such as navigation systems and robotic arms have proven to improve the final 

accuracy of the procedure. However, surgeons must learn to adapt their instrument 

movements to be recognised by infrared cameras. Chapter 3 describes the development and 

users study case from our AR simulator to helps surgeons acquire infrared-based navigation 

skills before operating with them in reality (Aguilera-Canon et al., 2019). Additionally, the 

development of an alternative communication protocol between an AR headset and an 

external tracking device is presented. Such protocol is helpful for headset devices whose 

computing capacity must be reserved for graphical computations or to enable advanced 

accurate position tracking systems. 

Given that the cost of acquiring a robotic assisting arm can be so high that it makes it 

unaffordable for many healthcare centres around the world, we must also provide training 

opportunities to ensure the correct positioning of the acetabular component. Experimental 

data would be the ideal alternative of data to train a machine learning predictor on the 

resurfacing effects of the reaming procedure on the bone. However, this would require us to 

perform and measure the results of reaming experiments over many bone pieces. It is 

impossible to find several bone samples with identical mechanical behaviour when being 

reamed. This is because the bone density and its microstructure are different in every used 

instance. Therefore, this would introduce undesired variance to our training data. 

Consequently, we must consider numerical simulations as a source of data to represent 

the evolution of the machined bone. Chapter 4 describes the fundamentals to define a FEM 

simulation of reaming procedures on bone. We will introduce the concept of material 

constitutive equations, which describe the relationships that govern the material's strain-
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stress curve for all points in a continuum solid. We also provide an overview of current FEM 

models used for interactive VR surgical simulators. Finally, we present constitutive equations 

models found in the literature to describe the mechanical behaviour of bone.   

Chapter 5 explains the methodology, material models, boundary conditions, loading 

conditions and set interactions used to generate the training data from a finite element 

simulation. The rationale behind some problem simplifications required due to hardware 

constraints is also explained in this chapter.  

Chapter 6  presents a review of data-driven techniques that incorporate the accuracy 

of numerical simulations at faster computation times. It is usually not possible to represent 

FEM meshes in the Euclidean domain because of the variable size and orientation of its 

elements. Furthermore, in a volumetric FEM tetrahedral mesh, the number of neighbours 

connected to each element forming the volumetric mesh depends on the location of the 

element in the mesh. Therefore, a graph is the most appropriate data structure to keep the 

geometric topology and element-to-element relationships of a tetrahedral FEM mesh. This 

chapter explains the fundamentals of graph-structured data and learning in the graph domain. 

Chapter 7 discusses how the results from the FEM simulation described in Chapter 5 

were translated into the graph domain from their original tetrahedral mesh projection. We 

will discuss the rationale behind the features selection and incorporate the self-attention label 

that will allow us to neglect the presence of removed elements while keeping the graph size 

static. We will explain the learning strategy used to train the ML model to approximate the 

volumetric change of the reamed body through time. Finally, we demonstrate how the 

developed estimator can be easily connected to any game engine and included in developing 

a fully functional hip arthroplasty simulator. 

Finally, Chapter 8 concludes this document with an analysis of the contributions from 

this thesis and proposals of future research directions that can improve the generalization 

accuracy of our trained machine learning model. 
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2 Simulation-based training and learning 
theories  

This chapter contextualises our research objectives given the current trends for adult 

and experience-based learning. Current reviews on simulators for orthopaedic 

surgical procedures lack objective metrics of assessment given a standard set of 

design requirements. Instead, most of them rely exclusively on the level of 

interaction and the features and functionality provided. Therefore, we constructed 

a list of the design requirements relevant to orthopaedic training simulation. Finally, 

we present a comparative assessment tool to review the current VR simulators for 

training on orthopaedic surgical skills.  

 

2.1 Serious games and surgical education 

2.1.1 A review of the state of surgical education 

Since 1890, the training of resident surgeons has been ruled by the Halsteadian method 

commonly summarised with the saying “See One, Do One, Teach One”. Initially, the model 

was developed with the novel purpose of training both surgeons and high qualified mentors. 

However, several authors agreed that the uncertainty over whether trainees can perform a 

safe procedure at their first attempt represents a risk to the patient's wellbeing.  (Vozenilek 

et al., 2004; Rohrich, 2006) . Mason & Strike (2003) surveyed three different hospitals in the 

United Kingdom, asking doctors and nurses residents about their apprenticeship experience 

in eight practical procedures. They found out that “Some 42% per cent of doctors felt inadequately 

trained to perform a practical procedure safely when first performing it alone”. Even if this situation 

changed after 2005 after the inclusion of the reform Modernising Medical Careers (MMC) 

Chapter 2	
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in the UK, some other developing countries where such foundation training system does not 

exist are still implementing the Halsteadian model as their primary methodology. 

 The current UK training system is a more patient-protective one than the 

Halsteadian model. However, trainees continue to live a “pupil” role in it. After the 

culmination of the medical school, the apprentices could start observing or, in some cases, 

even assisting surgeries until their Foundation training stage. Then, after completing the Core 

Training (CT1-CT2) stage, they are expected to have been gradually introduced to the 

existing hip approaches and perform a full hemiarthroplasty. Finally, all candidates take part 

in a five-year orthopaedic surgical curriculum, during which they learn from an experienced 

consultant. This consultant has complete autonomy to decide how many procedures the 

trainee must observe before performing a whole surgical procedure or just a part of it (Syed 

et al., 2009). The progress of each trainee towards their qualification goals is limited not only 

by the consultant’s criteria but also by the training opportunities available. For the particular 

case of total hip replacement, the NHS demands 40 successful surgeries performed at the 

end of the ST8 stage (McAlinden and Dougherty, 2014). 

2.1.2 Adult learning theories and VR/AR simulation 

A trainer-centred education, such as the Halsteadian model, is not entirely aligned 

with the current adults learning theories because these theories are more learner-based than 

problem-centred. Following the continuous development of technologies in both the 

medical and academic field, authors like Alimisis & Zoulias (2013) suggest that a new learner-

centred approach that supports self-directed training is required. In these new learning 

scenarios, the goals should be clearly stated at the beginning of the simulation so that the 

evaluation can change from time-based to criterion-based. This section describes the learning 

theories found in the literature that justify the claims of Alimisis and Zoulias, and it will 

explain how they are relevant in the content planning of virtual simulation-based training 

experience. 

In 1984, Knowles originally introduced the discipline that studies how adults learn, 

known as andragogy (Knowles, 1984) .  His essay proposes that adults prefer to learn in a 

self-directed way as they are strongly guided by the motivation to acquire a new concept and 

its immediate application into their everyday problems. The previous knowledge available in 

the learner is also highly relevant in andragogy as adults need to create analogous thoughts 

around the new concepts and relate them to existing ones for the knowledge to stay on a 
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long-term basis (Clapper, 2010). These mental connections with previous concepts are 

relevant during the design of simulation-based training for orthopaedic skills since users 

should possess some basics concepts on orthopaedic surgery to build mental relationships 

between the theory and the practice. 

Simulation-based learning satisfies Knowles’ theories as it is learner-centred, 

facilitates the imitation of a realistic problem experience and allows the users to interact in a 

controlled virtual environment. Learning through past experiences can be achieved during 

serious games. In them, learning can be divided into levels that follow the order of steps that 

determine how the knowledge should be constructed. The construction of knowledge can 

also be enhanced by introducing the defined goals at the beginning of the interaction (Baby 

et al., 2016). Serious games are considered inside the scope of serious games as long as the 

entertainment provided in the virtual environment keeps the learners’ motivation towards 

practice.  

 Some authors believed that Knowles’s approach should be complemented with a 

subjective component as not all adults learn in the same way. A completely learner-centred 

approach must be aware of the individuals and how their cultural context and social 

environment can influence their way to assimilate and internalise any new knowledge 

(Clapper, 2010; Merriam et al., 2012). For example, time constraints can have an impact on 

an adult’s learning motivation. Therefore, when planning training programs that deliver 

simulation, it is relevant to make the training accessible. For example, health professionals 

prefer a meaningful and short introduction or pre-training sessions when interacting with 

VR/AR devices (Clapper, 2010). Hence it is essential to design interaction mechanisms as 

user-friendly and intuitive as possible to keep the simulation attractive for all types of users 

regardless of their previous technical or computer-gaming experience.  

 Once a trainee has achieved sufficient proficiency in a task, improving until reaching 

an expert-level performance can involve different conditions on the learners and the way the 

knowledge is delivered. In an essay on mastering an ability through practice, Ericsson (2012) 

suggests that learners must be motivated to improve beyond autonomous performance while 

practising. Therefore, the aim of the training must change from being able to solve basic 

everyday problems to reach a higher level in every attempt. Unlike common beliefs, Ericsson 

argues that age and amount of experience do not automatically translate into the exceptional 

domain of a task. To achieve expertise, the individuals must address the training with clear 

and defined improvement goals; they also need to be provided with thorough feedback and 
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unlimited repetition opportunities. In orthopaedic surgery, achieving expertise beyond the 

common fundamental problems can be challenging since unique cases are not continuously 

available for interaction. VR/AR simulation provides an opportunity for deliberate practice, 

as unusual clinical cases can be replicated and allow the surgeons to improve their expertise 

with unlimited goal-based simulations. Deliberate practice and rare clinical cases are outside 

of this project's scope as they require higher orthopaedical expertise by the researcher and 

patient data collection.  

2.1.3 Constructivism and experience-based learning. 

Constructivism is supported on the revised taxonomy of knowledge from Bloom 

(1965) (Krathwohl and Anderson, 2009) (Figure 7). The pyramid indicates that knowledge 

and comprehension are just the primary states of a complete learning path. The practice must 

be used to allow the users an opportunity to scale until the synthesis stage, rather than only 

deliver knowledge foundations to the pyramid (Lainema, 2008; Zigmont et al., 2011). In order 

to do so, the hands-on learning experiences should be tools for the construction of the 

knowledge around applied situations, provide high-level feedback and ensure that the 

content is coherent with the relevant theoretical background (Wang, 2011). 

Healthcare education and serious gaming are well aligned with constructivist theories 

as well since they are experience-centred. The knowledge is expected to be constructed 

progressively during a problem-solving practice and not only delivered as in lecture-based 

learning (Alimisis and Zoulias, 2013). AR/VR scenarios provide an excellent tool for 

constructivist learning as long as the content of the simulation is aligned with an approved 

training curriculum and the tasks are perceived as authentic (Huang et al., 2010).  

Another relevant author in experience-based learning is Kolb (1984). He proposed 

the required features for meaningful learning activities. The Kolb’s cycle of experimental 

learning (Figure 8) points out that the experience alone has not the entire influence on the 
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Figure 7 Taxonomy of knowledge (Krathwohl and Anderson, 2009) 
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learning process. During this step, the individual can only identify the substantial knowledge 

gap and the type of mental model required to complete the exercise. Afterwards, in the 

observation stage, meaningful feedback occurs, and debate is carried around the results 

obtained. Several authors agree that this reflective observation is the most valuable stage of 

Kolb’s learning cycle (Alimisis and Zoulias, 2013; Damewood, 2016). Later, during the stage 

of abstract conceptualisation, the learner can build mental connections to previous 

experiences and interiorise the new skillset. Finally, the step of active experimentation refers 

to a real-life opportunity to test the new concepts acquired. This situation is more meaningful 

when the occasion arises by itself as it obliges the learners to identify the problem and test 

their mental models. However, if the time until active experimentation is too long, the 

knowledge can get lost, and some of the stages of the cycle would have to be re-done. 

A motivating assessment is the central pillar of a successful reflective observation, 

and it is preferred over a failure/success evaluation (Clapper, 2010).   Adult learners prefer 

their feedback to be immediate, but it is also recommended to deliver a meaningful overall 

assessment at the end of the practice rather than specific step assessments during the 

interaction (Alimisis and Zoulias, 2013). Throughout the simulator development, results can 

be displayed to the user immediately after the interactive task has finished, allowing further 
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data analysis with the supervision of the experts. Moreover, artificially intelligent agents could 

be implemented to support the users during their analysis and enrich the value of the 

simulator without requiring additional human assets. 

Similar to adult learning theories, one frequent critique of constructivism is done by 

the objectivist tradition. Objectivists authors defend that the experience value and its further 

reflection is subjected to different factors around the learners themselves and their 

environment (Lainema, 2008).  Zigmont et al. (2011) integrated Knowles’s theories with a 

closer focus on the individual and joined them with Kolb’s learning cycle on experience-

based training (See Figure 8). For Zigmont et al. (2011), the individuals will learn successfully 

when their motivation comes from a known problem, and there is a clear understanding of 

the benefits and application of the new skill in their professional reality. Students must also 

involve themselves without bias in the experience and be supported towards change and 

growth by their environment (Wang, 2011).  

Several best practices regarding the multimedia gamification procedure were also 

found in the literature. Some authors agree that an immersive high fidelity experience, 

including replicating the expected sounds and visual surroundings, is important to allow 

learners to construct real-world analogies faster (Wang, 2011). On the contrary, others 

suggest that inducing several stimuli simultaneously (i.e. text instructions, audio, animations) 

can jeopardise the learners’ ability to focus  (Baby et al., 2016). From the interaction 

perspective, Alimisis and Zoulias (2013) present arguments to emphasise the need to include 

extended decision trees inside the simulation content to allow users to “own” the simulated 

problem and test their decision making. However, we know that providing unlimited 

decision choices is not always feasible from the programming perspective as it involves 

extensive memory and developing time resources. Lastly, Salas et al. (2009) suggest that a 

good practice to carry out a performance measurement is by calculating it automatically and 

free of human subjectivities. It is also recommended to compute the relevant assessment 

values based on the measurement from different sensors and observation angles. This 

broader data spectrum allows the simulator’s developers to provide multiple levels of analysis 

of the results of the interactions. Baby et al. (2016) complement this idea by mentioning that 

the feedback provided in serious games should be able to identify a user as expert or novice 

and track them as they progress in their practice.  
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2.2 Simulation in orthopaedic training 

Particularity in the field of orthopaedics, the most popular simulators are cadaveric 

training, polymer-based stiff foam bone model and virtual reality. Table 1 describes a 

classification presented by Stirling et al. (2014) about the types of simulators used in 

orthopaedic training and their main characteristics. 

Simulation 

model 

Advantages Disadvantages 

Cadaveric 
simulation 

• High Fidelity 
• Shown to develop transferable 

operative skills 
• Allows understanding of 

relevant clinical anatomy and 
surgical approaches 

• Expensive  
• Not easily accessible with specialist storage 

demands 
• Time-consuming preparation time  
• Relies on tissue donation 
• Risk of disease transmission  
• Lack of uniformity amongst specimens 

Synthetic bone 

simulation 
• Relatively inexpensive and 

portable  
• Widely available 
• Develop understanding and 

familiarity with orthopaedic 
instruments and equipment 

• Does not allow understanding of the influence 
of soft tissues 

• Lack of true haptic feedback 
• Single use 

Cognitive 

simulation 
• Potentially cost-free 
• Accessible on mobile devices 
• Point of care education 

• Limited evidence to support use in clinical 
training/improvement in technical procedural 
skills 

Virtual / 

Augmented 

reality 

• Able to record progress and 
assess motion analysis 

• Allows for development of 
hand-eye coordination and 
complex tool’s manipulation 

• A wide range of procedures 
may be possible 

• Allows for scenario simulation 

• High initial setup costs 
• Available haptic devices can be below the 

feedback requirements for some orthopaedic 
procedures and therefore limit realism 

Table 1 Adapted from Stirling et al. (2014) 

Even after the evident progress in computer graphics and motion tracking 

technologies during the past seven years, several authors agree on the absence of VR 

technology application in the hip surgical field (Vaughan et al., 2016). The first procedures 

with which the simulation industry dabbled in surgical training were those related to 

laparoscopy. Mabrey et al. (2010)  attempted to identify the market and contextualise their 

developed knee arthroscopy simulator. At that time, laparoscopic VR simulators started to 

incorporate themselves in the training curriculum, and orthopaedic procedures were “far less 

common” to find in literature. Some authors have performed systematic reviews of VR 

simulations for orthopaedic training. Vaughan et al. (2016) present arguments to emphasise 

that surgical skills training for total hip replacement procedures has not enough 
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representation in the spectrum of virtual reality-based simulators. In addition, Li et al. (2017) 

mention some trending products as examples of how training environments lead the market 

of hip procedure simulators for technical skills such as trauma operation, drilling of femoral 

bone with haptic feedback, and positioning the elements for fractured bone fixation.  

2.2.1 Comparative assessment of current relevant VR simulators for orthopaedic 

training 

The purpose of this section is to describe and compare several VR simulators that 

claim to be suitable for orthopaedics training found in both the market and the literature. 

Current reviews on simulators for orthopaedic surgical procedures lack objective metrics of 

assessment given a standard set of design requirements. Instead, most of them rely 

exclusively on the level of interaction, the functionality and the features provided. The 

simulators were grouped into three different categories based on their hardware and 

interaction characteristics, namely cognitive simulations, arthroscopy VR simulators, and 

open surgery simulation. 

The category of cognitive simulators includes all solutions that do not provide a natural 

human interaction with the digital content. This means that the users’ interaction is limited 

to mouse click events or pressing buttons available on gaming controllers. The main aim of 

this type of simulators is to illustrate the processes involved in different orthopaedic 

procedures rather than provide a real hands-on experience. One work included in this 

category was the computer-hosted simulator developed by Blyth et al. (2008). This software 

guides the trainees through the steps of hip trauma surgery and lets them choose from a set 

of defined tools by clicking a button on the computer screen.  

Another popular example is the application for smartphones Touch Surgery 

(TouchSurgery, 2017). This app illustrates through animations and slides the steps involved 

in a wide variety of procedures. For  Total Hip Replacement, the user interaction is limited 

to move forward or backwards in the sequence of animations. A more immerse but not 

interactive enough solution is OssoVR surgery simulation (OssoVR, 2016), available for 

some arthroplasty procedures and developed for VR headsets. Even though the environment 

provided by OssoVR is visually immersive, its interaction is limited to the movement of the 

gaming controllers which handles are unnatural compared with the grip of a surgical tool. 

The lack of haptic feedback breaks the illusion of immersion and reduces training skills that 

are actually transferred to the surgical theatre. 

As part of the second group, we decided to include two of the biggest market 
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representants of arthroscopy simulators due to their privileged position in the market—

namely, Virtamed ArtroS (VirtaMed AG, 2014) and Arthromentor (3Dsystems, 2017).  

Arthroscopy differs from arthroplasty in several ways. For example, the procedures are less 

invasive as small incisions are required to insert the small probe camera and the tools 

manipulated by the surgeon based on the projection of the camera view on a screen. As the 

surgeon is looking at a monitor, the field of view during both the real and simulated 

experience is exactly the same.  The layout of the surgery itself makes it easier to replicate in 

a simulated environment as the range of motion of the instruments is limited, and the 

movement of the tools is easy to track.  

The last category includes simulators developed to train skills for open surgery. Unlike 

arthroscopy, open surgeries require a more extensive incision on the patient’s tissue and an 

adjustment of the surgeon’s angle of view to get an unobstructed exposure of the relevant 

bones, nerves and muscles during the operation. In this comparative study, all of the training 

tools identified used a haptic unit consisted of 1 or 2 arms to handle the interaction. 

TraumaVision, developed by  Swemac (2017), is a simulator for hip fracture and trauma 

surgery that allows the surgeon to use an X-ray view of the patient while performing the 

fixation of a hip fracture. The simulator also allows the users to move the patient’s legs and 

complete basic interactions triggered by buttons on the screen. At the end of the simulation, 

users receive a numerical assessment of their performance based on the ideal positions of 

the fixation elements. SimOrtho (OsSimTech, 2018) includes a 3D display and an additional 

screen for the learner to get an X-ray and patient representation view at the same time. The 

3D display provides a depth effect to the experiences but has no feedback from the user’s 

perspective. OsSimTech stands out among its competitors as it uses a personalised haptic 

accessory attachable to different tools, improving the range of motion and making the 

human-machine grip more realistic. Lastly,  FundamentalVR (2018) released Fundamental 

Surgery, a visually immersive VR experience with a commercially average haptic unit that 

includes Total Hip Replacement training. An assessment stage is still under development, 

but feedback for the achieved angles of cup implantation is provided while performing the 

surgery. It is worth noting that both of the latter mentioned simulators are still under 

continuous development phase, with Fundamental Surgery being released in June 2018 and 

the last update with breaking hardware and software changes of SimOrtho released in 

October 2018. The scores assigned in this study are given according to the versions available 

to the date. 

  The criteria to perform the market state-of-art evaluation were divided into three 
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categories, as shown in Table 2. The immersion criteria refer to the similarity between the 

simulated task and the surgery in real-life regarding its visual representation and interactivity. 

This group of criteria is usually dependent on the hardware specifications as sometimes 

unique handles mimicking surgical instruments are required to accurately train specific hand-

eye coordination skills. On the other hand, the “response of the rendered content to the 

interaction” evaluates the similarity of the triggered deformations on the digital content with 

the ones expected in real surgery. These requirements usually depend on the software design 

or the deformation algorithms included. Nevertheless, accurate deformations can also 

require considerable computational resources. To obtain a high score in the second group 

of criteria, simulators should implement deformations algorithms such as physical inputs in 

the real surgery should produce similar visual or haptic outputs as the one rendered in XR. 

 The final set of criteria evaluate the inclusion of some relevant learning theories in the 

content design of the different simulators. The training of decision-making skills ensures a 

learner-centred process. An ideal simulator requires some modularity to allow trainees to 

practice with different sets of tools and diverse cases that would enable deliberate practice. 

Furthermore, as explained in section 2.1.3, a  valuable assessment report at the end of the 

training experience is essential to allow reflective observation during experience-based 

training. 

 The results of the assessment per simulator are listed in Table 3. In order to provide 

an objective quantitative evaluation for different types of simulators with different strengths, 

there were three requirements assigned to each criteria group expected to be met. The 

assignation of the value was performed as described below:  

• 0 - No requirement met. 

• 1 - One requirement partially addressed, 2 not included 

Immersion Digital content response to 

real-time interaction 

Applied learning theories  

a. Field of view similar to the 

reality 

d. Mesh deformation based on 

input forces and tool movements. 

g. Decision making allowed 

b. Realistic content rendering e. Interactive kinematic models to 

allow change of patient position 

h. Modular (different tools, and 

approaches to select from) 

c. The interaction feels natural 

(haptics and tools) 

f. Interaction with all rendered 

tissues 

i. Detailed and valuable 

assessment report 

Table 2 Assessment criteria with listed requirements for score assigning 
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• 2 – Two requirements partially addressed, 1 not included 

• 3 -  All requirements partially addressed 

• 4 – Two requirements completely met, and 1 just partially included 

• 5 -  3 requirements completely met in the content of the simulators 

Figure 9 shows the scores assigned to each simulator according to the previously 

defined assessing criteria. The results are grouped by criteria and type of simulator. In the 

diagram, cognitive simulators are shaded using different tones of blue, arthroscopic ones 

using magenta tones and open surgery simulators using greens. Simulators that include a 

module for total hip replacement are highlighted with a red border and a pattern shading. 

In the resulting assessment, cognitive simulators were awarded the lowest values 

from the gamification perspective, while open surgery simulators are closer to satisfy the 

minimum average value of 3 for all the assessed requirement. Cognitive simulators usually 

lack the application of learning theories or allowing the testing of the user’s decision-making 

skills. Arthroscopy simulators were assessed with the highest score in almost all categories.  

These simulators have received accreditation from schools of surgeons and are being used 

in training curricula already (Antonis et al., 2019). As mentioned before, the nature of the 

procedure makes it easy to replicate, and there has been a significant amount of development 

around their validation and improving their learning impact (Morgan et al., 2017).  

Open surgery simulators are close to satisfying the minimum average value of 3 for all 

the assessed requirements. However, improvements are still required in order to include a 

meaningful feedback report in open surgery simulators. Detailed feedback is essential for 

surgeons to construct knowledge models rather than just succeeding by completing a task. 

Simulator/requirements a b c d e f g h i 
OssoVR Osso ᴑ ᴑ ᴗ - ᴗ ᴗ ᴗ - ᴗ 
Blyth P. Virtual Reality simulator ᴗ ᴗ - - ᴗ - ᴗ - ᴗ 
Touch Surgery ᴗ ᴗ - - ᴗ - - - - 
Simbionix - ArthroMentor ᴑ ᴗ ᴗ ᴑ ᴑ ᴗ ᴗ ᴗ ᴗ 
Virtamed ArthroS ᴑ ᴑ ᴑ ᴑ ᴑ ᴑ ᴑ ᴑ ᴗ 
TraumaVision ᴑ ᴗ ᴑ ᴗ ᴗ ᴗ - - ᴗ 
OsSim Tech ᴑ ᴑ ᴗ - ᴗ ᴗ ᴗ ᴑ ᴑ 
Fundamental Surgery ᴑ ᴑ ᴗ ᴗ ᴗ ᴗ ᴗ - ᴗ 
Table 3 Assessment result per simulator. ᴑ: The requirement is met. ᴗ: The requirement is only 

met partially. -: The requirement was not met. 
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Open surgery simulators are close to meet the minimum score for all assessment categories, 

but there is still work to be done to allow decision-making and provide accurate haptic 

interaction.  

2.2.2 Analysis and comparison with independent validation studies. 

Several validation reports in the literature support the scores assigned in Figure 9. The 

validation of training simulators is defined as the measurement of their reliability, and 

depending on the features to be assessed, it can be referred to as face, construct or content 

validation (Schijven and Jakimowicz, 2005). A face, content and construct validation study 

of the hip module of the Virtamed ArthroS establish that both expert and novice surgeons 

consider the visual and haptic interaction of the simulator to be natural, and the majority 

believes the interaction is adequate to train the skills of hip arthroscopy (Antonis et al., 2019). 

The validated simulation consisted of capturing several anatomical landmarks with the 

camera probe while minimising the tool’s movement and the area of touched tissue. In that 

validation study, the acquired performance scores from novice and experts deferred when 

assessing the damage caused to the structures by manipulating the tools and the amount of 

distance travelled by the instruments. However, there was no significant difference between 

0
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Immersion realtime digital content
response to interaction

Appliead learning
theories

Osso/VR

Blyth, P., 2008. Virtual
Reality Simulation of Hip
Surgery.
Touch surgery

ArthroMentor – From 
Simbionix

Virtamed ArthroS

Traumavision

OsSim

fundamental surgery

Figure 9 Results of scores achieved by each simulator after the scoring stage. The value of 3 
was taken as the minimum requirement for the simulator to achieve impact in learning. 
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the scores acquired by both groups when comparing their ability to expose predetermined 

points within the hip joint to the camera field. The face and content validation scores 

assigned by Antonis et al. (2019) for the Virtamed ArthroS are similar to the scores assigned 

in this assessment.  

Another existing face and content validation study was carried out on a Total Knee 

Replacement simulation running on a version of the OsSimTech earlier than the one 

considered in this report (Newman et al., 2018). In general, experienced surgeons did not 

wholly agree with the realism of the simulation. This result would be equivalent to a partially 

met requirement in our comparative study. The visual content of the simulation was 

significantly improved in version 3.2 released in 2019.  However, the haptics of the tools and 

their range of motion were just partially addressed for the interaction to feel completely 

natural. The content validity in this report was assessed by the surgeons' opinion of the 

accuracy of the simulation. Moreover, all participants partially agreed that it was helpful for 

training on drilling, sawing and other skills (Newman et al., 2018). An important observation 

was that experienced surgeons provided lower scores than novice ones to the content validity 

of the simulator.  

Fundamental Surgery self-reported a pilot face validation study performed with 

surgeons on mixed training stages including medical students (Rainger, 2019). Participants 

found that the experience’s realism is sufficient from the visual and haptic perspective when 

performing a total hip arthroplasty. However, unlike other validation studies reported in the 

literature, no consultants were recruited during this study. The results of the face validation 

study were reported as a joint percentage of trainees that agree and strongly agree with the 

validation statements. As there is no reported data to establish the frequency difference 

between both the agreeing and strongly agreeing used as validation metrics, it is impossible to 

directly compare this face validation study to the scores assigned in Figure 9. 

Besides a realistic graphical interface, simulator interaction must feel natural and 

contain physically accurate reactions to the user inputs. Currently, a trade-off has to be made 

when enabling decision trees, physically accurate deformation and haptic feedback because 

of technological constraints. Also, the interaction with the tools must feel natural in terms 

of haptics and range of motion to help the user to see the relevance of the experience and 

keeps them motivated towards practice. Together with a good simulator design, simulated 

experiences must be aligned with the day-to-day life of healthcare professionals, keeping in 

mind their time constraints (Clapper, 2010; Wang, 2011). On younger generations, previous 
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gaming experience could give the trainees an undesired advantage during the simulation. 

Therefore, the design of the interaction interface must minimise the risk of technological 

bias by replicating the real-life range of motion, grip, and feedback of the surgical tools.  

2.3 Discussion. 

Different requirements in a simulator are needed at different stages of surgical 

training. In Table 2, the ones we propose as ideal for a simulator intended to be used after 

the trainee has a basic understanding of the procedure until achieving proficiency for 

independent performance. It is worth mentioning that for a fully visual immersive simulator, 

the more rendered tissues, the harder it is to provide interaction with all 3D content. This 

performance decrease should be considered when analysing the assessment reported in 

Figure 9. Although extensive interaction is vital for allowing decision making during training, 

the high amount of required collision detection would make the software complexity 

untractable from the hardware perspective. 

Although there has been significant progress in the simulation of elastic deformation 

for medical procedures, orthopaedics simulators require algorithms to predict accurate 

plastic deformations based on the user force and movement input. More research is needed 

in this area as irreversible procedures can benefit massively from an accurate simulation 

opportunity. FundamentalVR tracks the orientation of the surgical tool during the reaming 

step, but there is no progressive evolution in the appearance of the acetabular surface during 

reaming. Instead, a change in the surface texture is triggered after the reamer has been inside 

the acetabular cavity for a certain time. Physically accurate interaction with all rendered 

tissues and a dense range of decision possibilities would be ideal for achieving expertise and 

evaluating problem-solving skills. However, it is worth recognising that the available 

technology has memory and performance limitations to meet all suggested comparison 

criteria. Though, the required computational resources can make the experience challenging 

to deliver at interactive framerates, especially if an accurate model of the mechanical 

properties of the bone is desired. An equally important feature that requires tremendous 

computational resources is providing opportunities to train the trainees' decision-making 

process, allowing them to make mistakes and displaying the appropriate consequences during 

the interaction. More research in complex data structure manipulation is required for future 

simulators to be able to provide such training possibilities.  
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Finally, Table 3 is evident that a physically-based mesh deformation based on the 

tool’s forces and movements is a requirement that is still missing in many of the identified 

simulators. As a matter of fact, only arthroscopy simulators meet this requirement 

completely. However, elastic deformations, simulated for training on arthroscopy,  are not 

comparable to the plastic resurfacing ones present in procedures such as acetabular reaming.  
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3 An augmented reality-based simulator for 
training on surgical navigation skills. 

Imageless navigation systems (INS) and Robotic Assisting Arms have been used 

in orthopaedics to improve the outcomes of several orthopaedic procedures such 

as THR. This chapter presents a Mixed Reality (MR) simulator that helps surgeons 

acquire infrared-based navigation skills before performing a real surgical operation. 

At the time of its development, to the best of our knowledge, there were no 

existing solutions using head-mounted displays to train users into the steps to 

calibrate such systems. The simulator was developed using Unity3D and executed 

on the Microsoft HoloLens headset. The device capabilities were enhanced using 

the PTC Vuforia engine to support the movement recognition of the calibration 

tools. Finally, a group of 7 hip surgeons were invited to try the application, 

expressing their satisfaction with all of the features evaluated. The latter allows us 

to affirm that our simulator represents a cheaper and faster option to train 

surgeons in INS than the current training methods. 

 

3.1 Robotic-assisted surgery and Imageless Navigation Systems 
for THR . 

Robotic-assisted surgery removes human error and provides a more accurate and 

replicable cup orientation than manual implantation, thanks to its navigation system and 

powerful haptic units. After conducting a systematic review, Tilly (2016) defends that after 

Chapter 3 
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performing a robotic-assisted surgery, the range of motion of the hip is broader, and the 

soft-tissue damage is minimised. Even with the mentioned advantages, the learning curve 

involved in this new way of performing the surgery may delay its widespread use (Newman, 

2014). In real procedures, the infrared camera (IR) cast rays which are reflected at the surface 

of passive spheres attached in a specific position on the surface of a unique mount. To ensure 

that trackable objects are always visible to the camera, this mount has to be pointing in a 

similar direction as the camera view and remain inside its tracking volume. The spatial 

calibration step on each surgery is essential to ensure the reliability of the surgery. This step 

allows the robot to compute its relative positions to the patient and ensure that the implants' 

planned orientation and location are correct. Therefore, both trainees and expert surgeons 

should learn to work without interfering with the continuous tracking of both the patient 

and the robot. 

Like robotic-assisted surgery, imageless navigation systems (INS) provide an 

alternative to conventional methods in achieving a more accurate position of the cup implant 

intraoperatively than conventional methods (Schnurr et al., 2009; Chang et al., 2017; Snijders 

et al., 2017). Unlike other image-based navigation systems, INS minimises the amount of 

radiation the patient is exposed to by avoiding the need of extra CT scans or X-Rays as the 

relevant surgical planes and axes are constructed through precise registration of bony 

landmarks (Chang et al., 2017).  

In order to provide both INS and Robotic Assisting Arms with the correct spatial data 

input and avoid further orientation mistakes intraoperatively, surgeons and trainees must 

master the skills needed for a proper calibration stage using the infrared tracking camera. 

Longer surgeries mean a more prolonged state under anaesthesia and a higher risk of 

infections for the patient. Unfortunately, while surgeons learn to adapt their instrument 

movements to be recognised by the infrared cameras, surgical times can be extended up to 

20 minutes more (Schnurr et al., 2009; Silvennoinen et al., 2012). However, this amount of 

extra time needed for positioning the optical unit and point registration can be shortened up 

to 4.8 +/- 3.8 minutes after getting valuable experience with this kind of device (Thorey et 

al., 2009).  

Mixed and Augmented reality has been applied to the medical training field due to 

their standalone nature and spatial understanding capabilities. The latter allows the system to 

blend the pre-processed digital content into the physical world through spatial anchoring. 

Among some examples are CAE Healthcare (Healthcare, 2017) and Fundamental VR (VR, 



3-50  |      An augmented reality-based simulator for training on surgical 
navigation skills. 

 

2017), which have developed holographic interfaces to train medical staff in diagnostic 

ultrasound, anatomy and surgical approaches. However, to the date of development and to 

the best of our knowledge, there is no existing MR simulator to help surgeons train in the 

use INS without requiring high budget technologies such as the system itself. 

3.1.1 Development 

This section explains the decisions carried out in terms of the software and hardware 

selections of the assets used to develop the simulator.  

3.1.1.1 Hardware selection 

The spatial alignment ensures that the digital content rendered by the XR headset is 

perceived to have the same position, orientation and scale as a passive haptic model. 

Augmented reality (AR), was chosen over Virtual Reality (VR) as the users are still able to 

see their real environment through them. This feature makes AR applications easier to align 

with the required passive haptics and minimises the risk of user tripping over cables or other 

objects during the interaction.  

The development of AR technologies has grown fast over the last five years. 

Currently, there is a variety of AR headsets available in the market, such as the Microsoft 

HoloLens® (1st and 2nd edition) (Microsoft, 2017), the MagicLeap® AR glasses (Magic Leap 

Inc., 2018) and the Epson Moverio. Furthermore, both of the world's main smartphone 

manufacturers have released machine vision libraries to provide AR experiences while using 

the information from a single RGB camera. These APIs are the Google's ARCore®(Google, 

2018) and Apple ARKit®(Apple, 2018). The multiplatform nature available for AR 

experiences provides an opportunity for the development of collaborative experiences where 

trainees and instructors can immerse themselves in the same holographic environment and 

enable social interactions. Even though AR experiences running on tablets do not provide 

full interaction with the digital content, a joined immersion between instructors and trainees 

still represents a training advantage. In real surgical procedures, the number of spectators in 

a room is constrained to maintain air quality and decrease infection risks. Through a shared 

AR/VR experience, users can observe the steps followed by a trainer or a peer.  

Head-mounted displays provide the head tracking capabilities required to simulate 

scenarios with limited tissue exposure, such as those in a THR posterior approach. These 

devices are able to update the displayed digital content according to the position and 
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orientation of the users' head while letting them interact with the digital content. Opinions 

in the literature about the use of current AR headsets are controversial and constantly 

changing. Even though some authors discourage the use of Hololens because of their limited 

field of view (Silvennoinen, 2017), other authors encourage their use not only for medical 

training but also during surgery (Cui et al., 2017; McNutt, 2017), arguing that the field of view 

limitation loose relevance for open surgery simulation as surgeons usually focus their sight 

into the incision area.  

Our prototype was designed to train surgeons on the basic skills needed during the 

calibration stage of an imageless navigation system, namely the awareness of the infrared 

camera's tracking volume and how to manipulate surgical instruments while avoiding targets 

occlusion. The design phase ran on the HoloLens1, an MR headset with spatial 

understanding capabilities capable of rendering holograms in the user's field of view while 

tracking their movements in space. The Microsoft HoloLens has been used in the medical 

training field due to its mixed reality (MR) capabilities and standalone nature. Microsoft 

defines MR as the intersection between real-time computer processing, human interaction 

and spatial understanding (Hololens, 2017). The latter allows the system to blend the pre-

processed digital content into the physical world through spatial anchoring.  

3.1.1.2 Software development. 

The simulator was developed on the game engine Unity3D (Unity Technology, 2018). 

This platform was selected as Micorosft provides a development kit for the HoloLens that 

include helper methods, allowing us to use the information obtained from the tracking 

sensors RGB-D cameras to enhance the user’s interactivity. Unlike standard gaming VR 

headsets, the Microsoft Hololens 1 does not include gaming controllers to handle the user's 

interactions. Instead, the orientation of the user's head in space is used as an analogy for a 

3D cursor capable of interacting with the rendered holograms. Additionally, the hand 

movements are tracked, and by performing a hand gesture, the user can "click" over the 

content as desired. In order to make the best use of the device features during the developing 

stage, we used the following assets from the HoloLens' Software Development Kit (SDK) 

(Microsoft-OpenSource, 2018): 

• GazeManager: This asset reads the tracked position and orientation of the 

user's head based on the device's GPS and motion sensors. The user's gaze 

vector is defined as an imaginary line that points outwards from a point 

between the user's eyes, it is normal to the lenses of the headset and follows 
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the orientation of the head. 

• CursorManager: This asset takes as its inputs the orientation of the user's 

head and the spatial understanding10 capabilities of the headset. It finds the 

optimal location of the cursor in the 3D space by evaluating the collision 

between the user's gaze and the rendered holograms. 

• Gesture Manager: Once the cursor is located on top of a hologram, this 

machine vision asset recognises the "clicking" hand gesture performed by the 

user. 

• StandardFast shader: A custom shader optimized to run in standalone11 

devices responsible for speeding up the rendering pipeline of the holograms. 

In real procedures, the infrared camera (IR) cast rays which are reflected on passive 

spheres attached to the surface of the surgical instruments to determine their location with 

high accuracy. Therefore, it is important to be aware of the user's instrument manipulation 

during simulation to provide a valid training alternative. To do this, we have included in the 

simulation a computer vision application programming interface (API) that allowed us to 

measure the position of a particular object relative to the AR headset. The selected tool was 

the PTC Vuforia API (Vuforia, 2018), which estimates the position of objects by processing 

the visual information from the RGB camera of the device and looking for image targets. 

Vuforia can be easily be imported as an external asset in the Unity3D development 

environment. During the development phase, this allowed us to create image targets and 

include them as objects in the scene, which would obtain their position and orientation once 

these are estimated in space by Vuforia given the information received from the RGB 

camera. 

The chosen image target must be set during the design stage of the AR application. 

Vuforia first detects feature points in this target and then uses them to compare them with 

the receiving frame from the camera in real-time 12. A feature point is defined as a “sharp, 

 
10 A digital awareness of the environtment achieved by a continuous 3D scanning of the device’s soroundings. 
11 For example a 3D printed model or a synthetic bone commonly used for single-use training (Hetaimish, 

2016). 
12 A system provides results in real-time if it reacts to a steady flow of new information immediately and without 

interruption. 
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pointed, chiselled detail in the image” (Vuforia, 2018). Image targets can also be folded around a 

cylindrical or brick object. It is essential to mention that the tracking performance depends 

on the device's camera resolution, lighting conditions, and the percentage of the marker 

inside the RGB cameras field of view (Simonetti Ibañez and Paredes Figueras 2013).  

 Figure 10 shows the two raw images used as markers in our MR simulator. We 

ensured that both targets had a high density of feature points arranged in non-repetitive 

patterns over the picture. The image target in Figure 10(a) was chosen to help the users to 

locate the holograms representing the surgical room in the best suitable position for their 

space. This image file was designed to have a minimum of 20-30 feature points per 10% of 

the total area of the image to guarantee smooth tracking (Simonetti Ibañez and Paredes 

Figueras 2013). Vuforia provides developers with a Target Manager tool to assess the quality 

of their targets before including them in the AR applications. The density of point features 

in the picture was validated in the target manager, obtaining an assessment score of 4 out of 

5 stars. Figure 10(a) was printed on an A4 size to ensure accurate orientation recognition at 

distances greater than 1m from the frontal RGB camera of the HoloLens 1.  

The tracking of the tools' handles represents a more demanding challenge. This is 

because the dispersion and distribution of a high number of feature points can be 

indistinguishable on a small target image at a considerable distance from the RGB camera. 

Therefore, we design a target image with a density and disperse feature points around the 

image (Figure 10(b)). This maker ensures smooth and continuous detection and recognition, 

avoiding oversized targets. Given that a point feature is created in a point of high contrast, 

(a) (b) 
Figure 10 (a) Beach stones; marker used for stage location. This resource was used under the 
image licence notice: michael clarke 
https://commons.wikimedia.org/wiki/File:Renvyle_beach_stones_(3585122829).jpg). Renvyle 

beach stones (3585122829)“, https://creativecommons.org/licenses/by-sa/2.0/legalcode. (b) 
Tools tracking marker to be folded around a cylindrical surface 
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the grey-scale13 values of the image's pixels are constrained to a range of 5 values 

(0,50,100,177,255). This was done to facilitate real-time feature detection. A predominantly 

black background was chosen for the marker. Simonetti Ibañez and Paredes Figueras (2013) 

proved that Vuforia API requires a difference of 50 units in the grey-scale values of adjacent 

pixels to recognise the change as a feature on dark backgrounds. Alternatively, the API would 

require a minimum difference of 60 units between lighter tones. In addition, the distribution 

of the features and their density inside the image were generated to avoid supersaturation 

when their printed version was located more than 30 cm away from the RGB camera. Figure 

10(b) shows the final image target created for the tool's handle. This image file was assessed 

by the Vuforia Target Manager, obtaining a score of 5 out of 5 stars. 

The image chosen for the tool was folded around a cylindrical object. After trial and 

error, cylindrical volumes were found to be the most suitable shape for smooth tracking of 

hand handled instruments. A flat image would require the camera to be facing it directly at 

all times, which would make the instrument manipulation unnatural. Additionally, a cuboid 

object showed difficulties in tracking the target's position when the camera was facing its 

edges. Instead, the cylindrical shape provides the camera with a continuous size of the 

projected area when the instruments are rotated around their symmetry axis.  

3.1.2 Application description. 

The location and orientation of the digital surgical scene were attached to the image 

target shown in Figure 10(a). This allowed the users to locate the simulation scenario in their 

preferred position by placing the image on top of a flat surface. Within the digital scene, a 

digital representation of a patient was laying on its left side with its hip joint previously 

dislocated as concordant with real surgery. When using an INS in real surgery, a fixed frame 

of reference is attached to the patient pelvis (Figure 11(c)). This allows the INS to measure 

the position and orientation of the tracked tools relative to the patient's body, even if this 

must be moved during surgery. We included a digital representation of this reference frame 

to introduce the concept of relative tracking to trainees.  

 
13 The grey scale is a continuous measure of light intensity that covers a range from 0 to 255. In this scale black 

areas correspond to values closer to 0 and white areas to values closer to 255. 
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Another essential component in INS procedures is the awareness of the position of 

the infrared camera (IR). This camera cast rays, which are reflected at the surface of reflective 

spheres attached to the tracked tool. The volume covered by these rays forms a truncated 

pyramid, and it is known as the tracking volume. To make objects always trackable during 

surgery, all the spheres on the mounts of the trackable instruments have to be reachable by 

the infrared rays and be inside the camera's tracking volume at all times. Figure 11 shows a 

simplified representation of the tracking system. Each mount is assigned a vector normal to 

its surface (Ñtool and Ñframe). 

Similarly, the direction of the camera view is represented by the vector Ñcamera_view. The 

angles between these vectors will determine whether an object is recognisable by the INS. 

In Figure 11(b), the vector aligned with the symmetry axis of the tracked tool Dtool is required 

after the calibration stage in order to determine the relevant angles during the surgery. As a 

standalone device, the hardware specifications of the HoloLens limit the rendering quality 

and mesh size that is able to be used in the simulation. This means that when big meshes 

have to be rendered simultaneously, the framerate of the simulation drops. An unstable 

framerate causes the hologram to be unstable, producing jitter as high-frequency shaking of 

the holograms. Consequently, the number of polygons used in the 3D models was minimised 

to a total value of around 84000.  

3.1.3 Setting up of surgical scene and the navigation system.  

Ñcamera view 

Ñtool 

Dtool 

Ñframe 

(a) (b) (c) 

Figure 11 Direction of interactable vectors. (a) Digital model of the infrared camera, Ñcamera_view 

represents the unit vector normal to the frontal face of the camera. (b) 3D model attached to the 
cylindrical tracked object, Ñtool represents the normal of the mount surface and Dtool a normalized 
vector in direction of the cylinder’s axis. (c) Frame of reference fixed on the pelvis. Ñframe 
represents the unit vector normal to the surface on which the 3D models of the reflective spheres 
are supported. 



3-56  |      An augmented reality-based simulator for training on surgical 
navigation skills. 

 

 First, a printed version of the image target was attached to the surface of a standard 

surgical bed. During the first stage of the simulation, surgeons were required to adjust the 

bed to their preferred height, just as they would do in the surgical theatre. When they were 

satisfied with the height of the table, they sent the system a command to fix the scene in the 

chosen position using a spatial anchor. Figure 12(a) shows a surgical scene after being 

anchored to real-world coordinates.  

During real surgery, the orientation of the IR camera controls the tracking volume 

covered by the INS system's field of view. Users must ensure that their workspace and all 

instruments and targets are inside the modelled IR camera's field of view. In this simulator, 

surgeons are able to use the HoloLens gesture recognition to modify the orientation of the 

camera. The tracking volume could also be displayed or hidden at the user's preference 

during the camera set up phase.  

After setting up the IR camera, the acquisition of the points or anatomical landmarks on 

the pelvis and femur bone surface are the most critical steps during the calibration of INS. 

These steps allow the system to define the anatomical planes in which the angles of 

resurfacing and acetabular cup implant insertion will be projected as holograms.  

During the point registration stage, an important skill to train is learning to hold the 

surgical instruments inside the infrared camera tracking volume and not occlude its field of 

view. Not understanding the cause of instrument tracking loss is the main reason for 

increased surgical times when using INS. Given that only proper orientated instruments 

would be able to acquire anatomical landmarks in reality, the relative orientation between the 

normal of the tracking mounts Ñtool and the camera view vector Ñcamera_view is evaluated during 

(a) (b) 

Figure 12 (a) Mixed reality capture, surgical scene after setting up and anchoring the holographic 
content in space. The transparent- yellow parallelepiped gives the user a visual feedback about the 
location and orientation of the system tracking volume. (b) Mixed reality capture of the simulator. 
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the simulation at each frame. Therefore, after the user places the probe on an anatomical 

landmark, this will be acquired during the simulation when the angle of incidence 𝜃!"#!$%"#% 

between the tools normal Ñtool and the IR camera normal Ñcamera_view is lower or equal to 45°. 

(Figure 13(b)).  After a successful point acquisition, the simulation displays a loading screen 

and plays audio feedback to let users know that they are pointing to the right position.   

3.1.4 Tool’s orientation. 

The tools orientation is measured in two anatomic planes, namely the coronal14 and 

sagittal15 plane (Figure 13(a)). The desired orientation for cup and bone preparation is 

planned preoperatively and can vary according to the gender, body mass index and other 

anatomical variations of the patient.  

During the insertion of the acetabular component, the two angles that define the proper 

orientation of the implant, according to anatomical landmarks, are the inclination and 

antroversion angles. The inclination is defined as the angle between the instrument axis (Dtool) 

and the longitudinal axis when projected on the coronal plane; antroversion is the angle 

between Dtool and the coronal plane projected on the sagittal plane (Bhaskar et al., 2017). 

𝑁#&'&"() was defined as the vector normal to a plane that contains the first three acquired 

points on the pelvic bone; namely at the pelvic right and left ASIS16 and the pubic tubercle.  

The angles of antroversion and inclination 𝜃("*'&+%',!&"	 and 𝜃!"#)!"(*!&"  are defined 

by the equations (1) and (2). Here 𝐷*&&) '! &-%#*%$ represents the projection of the vector Dtool 

on the coronal plane, while the longitudinal axis of the patient’s Laxis is a vector laying in the 

coronal plane and running straight through the top of the head from down between the feet. 

𝜃"#$%&'(%)*&# = 90 −	((cos+,(𝑁-&%&#".5555555555555555⃗ 	 ∙ 	𝐷$&&.555555555⃗ ))	
360
2𝜋 	). 

 

 
(1) 

𝜃*#-.*#"$*&# =	 ((cos+,(𝐿"/0)555555555⃗ 	 ∙ 	𝐷$&&. %! &1(-$(2
5555555555555555555555555555⃗ ))	

360
2𝜋 	). 

 
(2) 
 

 
14 Plane that divides the body into front and back sections. 
15 Plane that divides the body into left and right sections. 
16 Anterior superior iliac spine 
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Both previously calculated angles are displayed at the navigation system screen and at 

the same time attached to the headset display so that the users can see them and use them 

to guide their movements during the reaming operation (Figure 13b). Additionally, a line is 

rendered from the tip of the reaming tool in the direction Dtool . The colour of this ray changes 

according to how close the trainee surgeon is to the "safe reaming zone";  defined by the 

literature as an inclination angle of 40° (± 10°) and an anteversion angle of 15°( ±10°) (Chang 

et al., 2017; Rojas et al., 2018).   

3.2 Visual interface, second version 

To maintain the learner's motivation, an anatomically accurate and realistic 3D 

representation of the relevant tissues is required to provide realism and immersion involved 

in a THR procedure simulation is paramount.  

The development of the required 3D models, textures and detail maps was done in 

collaboration with an undergraduate student research assistant. The student was instructed 

on the relevant anatomy terminology and guided into modelling the details on the muscles, 

bones and cartilages exposed during the posterior approach and relevant for the procedure. 

Other body structures were simplified in order to cover the volume spaces visible through 

the incision. 

(a) (b) 

Figure 13 (a) Planes of the body. This resource was used under the image licence notice: 
Connexions CC BY 4.0 (http://creativecommons.org/licenses/by/4.0)], via Wikimedia 
Commons. (b) Mixed reality capture, reamer orientation feedback. A ray is casted from the 
reamers tip in the direction of the tool, this ray changes its colour according to how close the user 
is to perform the procedure in an orientation close to the safe zone defined in the literature. 
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 All digital 3D geometrical models were generated with a low polygonal count without 

compromising appearance; this was necessary because the high polygonal count can decrease 

the headset rendering framerate and generate discomfort for the user. Additionally, details 

were included during the texture generation of the acetabular surfaces to generate two 

versions of them. One texture corresponds to the acetabulum in a preoperative state with 

clear signs of osteoarthritis, and a second one to the bleeding bone after reaming is 

completed. This is similar to the rendering approach used by FudamentalVR in their THR 

simulator (2018). 

Additionally, rigging controls and animations were created for all the exposed muscles 

(a) (b) 

(c) (d) 

Figure 14 3D model and time captures of the animation of a posterior approach 

Figure 15 Screenshots of the app running on the device 
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and cartilages. These animations included the steps to follow to perform a posterior 

approach to the hip joint, such as muscle incision, traction, hip dislocation, and femoral head 

removal. So far, this rig is not interactive, and the animation was imported as controlled 

blend-shapes into the Unity3D game engine to provide an introductive scenario to the 

simulation of the reaming stage. Figure 14 illustrates some screen captures of the model 

inside the game engine. Figure 14(a) shows the initial state of the simulation where all models 

remain in a neutral position until the user decides to trigger the animation. The sequence 

shows the incision being opened, the skin and the gluteal muscles are retracted to maximise 

the exposure area, the femoral head is removed, hip rotators and capsule are divided and 

folded the incision outwards,  and the acetabulum is exposed (Figure 14c-d). The orthopaedic 

surgeons visiting ORI mentored the modelling and the animation stages. 

3.3 A communication protocol between Android devices and 
HoloLens 

A common issue observed while performing the validation stage of the previous early 

prototype was the learning curve involved in getting used to the optical tracking system and 

keeping the marker always inside the RGB camera field of view. Furthermore, by relying on 

the AR headset to track the tool's manipulation, we are decreasing the computational 

capabilities available for holographic rendering.  

Figure 16 Scheme of synchronization stage for HoloLens and Android Tablet. 
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A tracking alternative was developed to release the computational load on the headset 

by moving the tool's tracking responsibility from the HoloLens to an external device. This 

external camera is located in a strategic position to be aware of the tool's movement at all 

time and share its coordinates through a wireless Transmission Control Protocol (TCP) to 

the HoloLens (which are then able to transform them to their coordinate frame). This 

interface allows the development team to control the space area to be tracked by locating the 

tablet in a convenient fixed position. If a tablet is used as an external camera, the TCP 

protocol does not require additional hardware to set up the wireless network. The tablet can 

be both server and client at the same time. A holographic UI interface was created to enter 

the server address and port from the HoloLens (See Figure 17a). 

The device selected was an Android tablet that ran an application based on the Vuforia 

API. The database containing the image targets was shared between both devices. At the 

beginning of the experience, both HoloLens and the tablet track the position of the same 

image target. The measured coordinates from each device's frame of reference determine the 

transformation matrix between them. The tablet/external camera must be placed on a fixed 

position at all times. This is because tracked image targets are always relative to the location 

of the camera in hand-held devices. On the other hand, the global frame of reference in the 

HoloLens is initialised at the position of the headset when the application is launched. After 

(a) (b) 

(c) 
Figure 17 Screenshots taken from the HoloLens first person view. (a) User interface to connect 
HoloLens to the mobile server. (b) Calibration stage using calibration marker. (c) Hologram 
projected based on received and corrected coordinates in the HoloLens. 
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initialisation, this frame of reference remains anchored even after the user movements. After 

the two devices obtain the position and average orientation of the calibration target, the 

HoloLens receives the spatial information via Wireless and processes it to calculate the 

transformation matrix as the difference between both measurements (Figure 16).  Once the 

relative transformation matrix between the two devices is found, the external camera tablet 

is able to track and send the positions and orientations in real-time to the HoloLens. 

3.4 User study.  

We conducted a face validation study for the AR simulator for training on INS 

calibration. Face validation consists of acquiring a subjective opinion about the perceived 

similarity of the concepts acquired in simulation-based training with those acquired by 

experience in the real world. For this type of assessment to be valid, both experts and 

surgeons in training must be included in the group of participants (Schijven and Jakimowicz, 

2005). 

A group of 2 hip surgeons with previous knowledge of INS and 5 orthopaedic surgeon 

trainees were invited to try the simulator. Before interacting with the simulator, the 

participants were asked to watch an introductive video that would guide them through the 

expected steps of the simulation and familiarise them with the headset. To start, users were 

asked to place a paper sheet with the printed image target on top of a surgical bed fitted to 

their preferred working height. Once the image target was recognized, it is used as a reference 

anchor to place the remaining group of holograms forming the surgical scene (Figure 12(a)). 

The users were able to move this first image target in space until they were comfortable with 

the position of the surgical scene and fixed its location. Next, the users were required to 

adjust the orientation of the infrared camera to ensure that its field of view covered the 

acetabular cavity of the patient. To facilitate this step, the camera’s field of view was displayed 

as a yellow volume (Figure 12(a)). After they were happy with the surgical setup, users had 

to acquire a total of 27 points displayed one after another and distributed between pelvic 

anatomical landmarks(Figure 12(b)). This amount of points enabled learning through 

repetition since the simulator would only allow the user to progress in the experience as a 

new point was acquired, visual and audio feedback were provided as well. Through this 

success signal, users associate the absence of registration feedback to a wrong manipulation 

of the tracked instrument and modify their handling. 
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3.4.1 Results and discussion 

All participants were able to complete all the simulation stages successfully without 

requiring additional help to the guidance provided inside the app. All participants expressed 

their approval to the selected headset, and the results from the survey are illustrated in Figure 

18. These results validate the medical community's acceptance of mixed reality headsets and 

their usability as training alternatives for open orthopaedic surgical procedures. While 

observing the participants interacting, some difficulties with the usability of the headset were 

present. The Hololens1 does not count with eye-tracking and relies only on the orientation 

of the users’ head to estimate their gaze. This interaction’s input is perceived as unnatural 

for the users. Furthermore, it was a common mistake for the user to place their hands outside 

the scope of the depth sensors, which prevents the headset from recognizing the hand 

gestures.  

The ease of use for our prototype is related to the estimated future acceptance of 

similar AR simulations for open surgery simulation. The lack of controllers paired with the 

headsets and the time required to get used to specific hand gesture can slow down the 

simulator’s learning curve with unrequired cognitive load. These later limitations can be 

solved by running our simulator on the newest version of the Hololens 2. This new MR 

display counts with a broader and more natural spectrum of recognized hand gestures, and 

it is able to track the iris of the user to know the exact point at which the users are looking.  

In addition, all of the participants agreed that the simulator allows an understanding 

of the hand-eye coordination skills needed while calibrating an INS. This shows that the 

Figure 18 User’s test results. 
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platform was deemed valuable by the participants, especially experienced surgeons and that 

the steps simulated correspond to the ones expected to be performed during real INS 

calibration.  When it comes to the visual content, it is evident that surgeons in training value 

MR experiences that allow them to appreciate the human anatomy without any involved risk 

to the patient. All participants considered that the visual content was attractive, with 4 of 

them strongly agreeing with this affirmation. In this question, the simulator's attractiveness 

referred to its visual appearance and its anatomical accuracy. 

Finally, we evaluated the usability of using cylindrical markers with API Vuforia to 

simulate small hand-held instruments. In 5 out of the 7 cases, the cylindrical marker was 

tracked with no loss. This result validates the use of Vuforia as long as the size of the marker 

is adequate for the instrument size and it is visible at all times by the headset’s camera. 

Overall, these results show that the simulator represents a valuable practice 

alternative for both surgeons with previous knowledge about intraoperative navigation 

systems. We have used gaming strategies to create a novel proposal of a functional MR based 

simulator to help trainee surgeons to understand the principles of imageless navigation 

systems without high-budget investments. In our AR simulator, the app ends at the 

beginning of the reaming stage, and no feedback was displayed about the progression of 

removed bone on this prototype. A strategy to model the amount of bone removed will be 

discussed in future chapters. 

3.5 Summary. 

In real procedures, the infrared camera (IR) cast rays which are reflected at the surface 

of some passive spheres attached in a specific position on the surface of a unique mount. To 

make objects always visible to the camera, this mount must face to a similar direction as the 

camera view and remain inside the IR camera’s tracking volume. This chapter presented an 

AR simulator that helps surgeons acquire the skills to calibrate an infrared-based navigation 

system before using them in a THR surgery.  The simulator is hosted on a Microsoft 

Hololens headset and uses the PTC Vuforia computer vision API to support the tracking of 

the surgical instruments. This first version of the experience helped us get feedback from 

orthopaedic surgeons' opinion about both comfort and functionality of the selected 

hardware and the interaction available in AR devices. A demonstration video from a 1st view 

camera can be found under the following address: 

http://v.youku.com/v_show/id_XMzQwMzMyNDI4MA==.html 
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Additionally, we developed an alternative communication protocol between an AR 

headset and an external tracking device. Such protocol is useful for headset devices whose 

computing capacity must be reserve for graphical computations or enable usage of more 

advanced and accurate position tracking systems.  

 Unfortunately, the cost of acquiring a robotic assisting arm can be so high that it 

makes them unaffordable for many healthcare centres around the world. Therefore we must 

also provide training opportunities to ensure the correct positioning of the acetabular 

component. In the following chapters, we will describe the methodology followed to 

generate a numerical simulation of the reaming procedure in traditional THR surgeries and 

train a machine learning simulator to predict these results at faster framerates. 
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4 The Finite Element Method (FEM) for 
physically-based simulation. 

This chapter examines the fundamentals of finite element simulation and its 

application to analyse resurfacing operations on bone tissue.  Additionally, it includes 

a review of FEM methods used in computer graphics for interactive simulation for 

surgical procedures and explains its current drawbacks. Finally, we present a 

literature review of the constitutive material methods used to model cutting and 

resurfacing operations on bone.  

 

Surgical operations that usually benefit from being represented in a virtual simulation 

are usually non-reversible ones such as stretching, shearing, tearing, cutting. As part of the 

computer-simulated experience, 3D meshes can be deformed using geometrical and 

physically-based methods. Geometrical approaches are computationally efficient as they are 

applied to surface meshes that can usually be simplified in the form of a sparse adjacency 

matrix representation. As geometrical deformations only consider spatial relationships 

between the nodes and faces of the meshes involved, they are less accurate than physically-

based. Volumetric meshes are preferred in surgical simulation to shallow ones since they can 

represent the internal evolution of deformable solids resulting from cutting and shearing 

operations.  

Volumetric meshes are also better at modelling mechanical properties of a deformable 

object in the continuum domain as well as the effect of the forces exerted on it by the users 

during the interaction. By including continuum mechanics behaviours, we ensure the 

Chapter 4 
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interactive realism of the simulation. This feature is, therefore, vital for designing a successful 

orthopaedic simulator focused on hand-eye coordination skills.  The finite element method 

is one of the most popular numerical methods to resolve physically-based deformations on 

complex geometries with non-linear behaviour on volumetric meshes both offline and at 

interactive framerates.  

4.1 The Finite Element Method (FEM). 

The Finite Element method is a general discretization of problems from the continuum 

mechanics domain to analogous mathematical statements (Zienkiewicz and Taylor, 2005). In 

continuum mechanics, the analysis over a volume is made through integration over a 

collection of infinitesimal elements conforming the solid. Modelling the mechanical 

behaviour of complex solid geometries in the infinitesimal domain is computationally 

intractable even for modern hardware architectures. A FEM analysis overcomes this 

limitation by subdividing the domain Ω into a finite number of parts (elements) that model 

the solid's behaviour in a local domain. Consequently, the mechanical behaviour of the solid 

is governed by each element's shape function and the constitutive equations1 of the material 

(section 4.1.2.2). 

4.1.1 The finite element volumetric mesh. 

The solid object is discretised to a volumetric mesh built with one or more type of 

finite elements. The generated mesh must ensure compatibility in all the volumetric domain 

Ω. This means that all internal nodes must be connected without discontinuities to ensure 

that nodal properties are continuous between adjacent elements. The properties estimated 

on the nodes of the mesh are subsequently interpolated into the element’s integration points. 

Figure 19 Popular choices of 3D elements for volumetric discretization. 

First order elements 

Second order elements 
4-node tet ` 6-node 
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The number of integration points of the elements is usually higher than the number of 

vertices forming the element, except for the 4-node tetrahedral element, which only has one 

integration point at its centroid.  The location of these integration points can be obtained 

from the reference documentation of the FEM solver used. 

Some of the most common elements available in commercial FEM solvers for 3D 

solid discretization are illustrated in Figure 19. Elements with triangular faces are usually the 

most popular choice when discretizing a complex solid. This is because of their easy 

adaptability to the topology of curvy surfaces. Elements of first-order possess a linear 

displacement behaviour on their nodes and a strain rate that can be assumed to be constant. 

Therefore, a fine mesh is needed to obtain an accurate solution in areas where a large 

deformation is expected. 

On the other hand, second-order elements model the displacement in their nodes 

through a quadratic model. By having a higher number of nodes per element, meshes built 

with second-order elements require more memory for a given mesh size than first-order 

memory. However, the accuracy obtained using a mesh with second-order elements is higher 

than one evaluated on a first-order mesh with the same number of elements. In general, 

second-order elements are computationally expensive to use and are ideal for pure 

mechanical bending analysis, while first-order elements perform better when used for 

contact analysis.  

4.1.2 Primary and secondary unknowns in a FEM analysis for a dynamic system under 

mechanical loads applied. 

4.1.2.1 Nodal Displacements and strains. 

The primary unknown to be solved under any mechanical FEM analysis is the vector 

of nodal displacements 𝒖. The values of strain and stresses field are obtained through 

relationships given by the material properties and these displacements. Both of these fields 

measure the response of the object to the applied load. Analytically, the displacement 𝑢 of 

each node is found by measuring the difference between the post-deformation position of 

the vertex 𝒙! and the initial position of the same vertex 𝒙. (3). The methodology used by 

the FEM solver to obtain the vector of nodal displacements given an applied force will be 

defined in detail in Section 4.1.3. 
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𝒖 = 𝒙! − 𝒙. (3) 

The strain field is a concrete measurement of the deformation on each finite element. 

It is computed by comparing the length of the linking segments of the mesh with their 

original length. The differential representations of the strains measured on each coordinate 

axis are defined by equation (4). Added to the changes in their length, the effect of internal 

forces can distort the faces of the finite elements. These distortions are measured in terms 

of the angular deformations and are described by the equations in (5) (Spencer, 2004). 

𝜀// 	= 	
𝜕𝑢
𝜕𝑥 𝜀00 	= 	

𝜕𝑣
𝜕𝑦 𝜀11 	= 	

𝜕𝑤
𝜕𝑧  

(4) 

𝛾/0 =
𝜕𝑢
𝜕𝑦 +

𝜕𝑣
𝜕𝑥 𝛾/1 =

𝜕𝑢
𝜕𝑧 +

𝜕𝑤
𝜕𝑥  𝛾01 =

𝜕𝑣
𝜕𝑧 +

𝜕𝑤
𝜕𝑦  

(5) 

The success of the numerical simulation of a mechanical problem depends on finding 

the unique strain field corresponding to a given deformation vector. Therefore, we must 

incorporate compatibility equations to constrain the solution to a unique strains field given 

a specific displacement. The system of compatibility equations is built with 6 differential 

conditions; the first three are obtained by derivating over the strains defined in equations (4) 

and (5); and the remaining equations (9) – (11) are found by derivating twice the normal 

stresses against their orthogonal axes (Zienkiewicz and Taylor, 2005).  

𝜕2𝛾/0
𝜕𝑥𝜕𝑦 =

𝜕2𝜀/
𝜕𝑦2 	+ 	

𝜕2𝜀0
𝜕𝑥2  

(6) 

𝜕2𝛾/1
𝜕𝑥𝜕𝑧 =

𝜕2𝜀/
𝜕𝑧2 	+ 	

𝜕2𝜀1
𝜕𝑥2  

(7) 

 
𝜕2𝛾10
𝜕𝑧𝜕𝑦 =

𝜕2𝜀0
𝜕𝑧2 	+ 	

𝜕2𝜀1
𝜕𝑦2  

(8) 
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𝜕
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𝜕𝛾/0
𝜕𝑧 5 

(9) 

 
𝜕2𝜀00
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𝜕
𝜕𝑦 4

𝜕𝛾01
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𝜕𝜀//
𝜕𝑦 	+	

𝜕𝛾/0
𝜕𝑧 5 

(10) 

 
𝜕2𝜀11
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𝜕
𝜕𝑧 4

𝜕𝛾01
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𝜕𝜀//
𝜕𝑦 	−	

𝜕𝛾/0
𝜕𝑧 5 

(11) 
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4.1.2.2 Stresses 

Once the value of the strain on each segment or edge of the mesh is found, the FEM 

analysis must find their corresponding stresses. To understand the nomenclature of the 

vector of stresses, it is better to represent them on an infinitesimal cube with its faces aligned 

to the orthogonal coordinate axes (Figure 20). Similar to the nomenclature of the strains, the 

naming convention for each stress obeys the following rules. The first subindex corresponds 

to the axis perpendicular to the plane or face where the stress is acting. The second subindex 

determines the direction of the stress in the euclidean coordinate system. The equilibrium 

conditions hold in the infinitesimal cube when the domain Ω is constrained, and there is no 

absolute movement of the solid. Therefore, 𝜎01 	= 	𝜎10 ; 𝜎/1 	= 	𝜎1/	and 𝜎/0 	= 	𝜎0/.  

Even though we have used an infinitesimal cube in this section to represent the 

orientation of the stresses inside a solid, this does not mean that the stresses' naming 

convention is only valid for finite elements of the brick type. The cube in Figure 20 is 

infinitesimally small, and all the stresses can be evaluated on any node of a finite element 

chosen. The science of solid mechanics distinguishes the stresses present in a material into 

two types. On the one hand, the normal stresses 𝜎@@, which are responsible of any volumetric 

changes by producing strains 𝜀@@; on the other hand, the shear stresses 𝜎!,- 	; 	𝑖 ≠ 𝑗, which 

are responsible for distortion, shear strain and mechanical failure through element separation 

(Spencer, 2004).  

Before we explain how to obtain the stresses in a domain Ω given a field of strains, we 

must introduce the concept of the mechanical deformation zone. Depending on the amount of 

stress applied and the material behaviour, a solid can be inside its elastic or plastic 

Figure 20 Stresses tensor in an infinitesimal element of a deformable body. 
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deformation zone. This is, the strains of ductile materials with predominantly elastic 

behaviour only move inside an elastic zone before reaching the fracture point (point C in 

Figure 21(a).  On the opposite, plastic materials can have a very short elastic zone followed 

by a main long plastic deformation zone.   Figure 21(a) shows the stress-strain curve for an 

elastic-plastic material. When the solid is initially stressed, its strains and stresses behave 

following a linear model. All strains return to the initial value of 0 if all external loads are 

removed in the elastic region. The boundary of the elastic region (point A in Figure 21(a)) is 

defined as the value of the material’s yield stress (𝜎.). After this point, even if the external 

loads are discharged before fracture (point B in Figure 21(a)), a residual strain 𝜀' will remain 

permanently in the material (Spencer, 2004). 

The material constitutive equations describe the behaviour of the material's strain-

stress curve for all points in a continuum solid. The Hooke's Law (Hooke, 1978) is used as 

the constitutive equation for the elastic zone of any material by using a material-specific 

property called the Young modulus 𝐸 = 4
5
 as the elasticity coefficient. Additionally, the 

relationship between the normal and shear stresses is set by the modulus of shear elasticity 

G defined in (12) (Polyanin and Chernoutsan, 2010). In this equation, 𝑣 is another scalar 

elastic property of the material called the Poisson's module.  The Poissons module is 

computed as the relationship between the longitudinal and the lateral strain after an external 

load is exerted on a deformable body (Figure 21(b)). 

Figure 21 Mechanical material properties. (a) Stress-Strain curve of elasto-plastic material. (b) 

Lateral vs longitudinal deformations.  

Elastic 
Zone Plastic Zone 

Strain 

St
re

ss
 

B C 
A DH 

DD 

F 

(a)  (b)   
𝜀' 



4-72  |      The Finite Element Method (FEM) for physically-based simulation. 

 

𝐺	 = 	
𝐸

2(1 + 𝑣) 
(12) 

𝑣 = −
𝜀)(*%'()
𝜀(/!()

 (13) 

 

By combining the equation (12), (4) and (5) with Hooke’s law, we can assemble a 

system of equations to describe the stresses in terms of the strains inside a linear elastic zone 

(15). In this system, the diagonal and symmetric matrix multiplies the vector of strains is 

known as the constitutive stiffness matrix D (Zienkiewicz and Taylor, 2005). 

𝐾 =
𝐸

(1 + 𝑣)(1 − 2𝑣) 
(14) 
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⎢
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⎥
⎥
⎥
⎥
⎤

	 

(15) 

Modelling the plastic region is more complicated as the plastic behaviour of every 

material is different. The relationships between strain and stress in the plastic region are 

found after obtaining the strain-stress curve of the material experimentally. In Section 4.3.2 

we will describe the plastic behaviour of the bone, which is the deformed material of interest 

in this thesis. 

To solve the system of differential equations previously introduced, the FEM follows 

the principle of "virtual work". This model establishes that a body is in equilibrium if and 

only if the internal and external virtual works are equal (18). This constraint creates a direct 

relationship between the effect of the internal stresses inside the mesh with the effect of the 

external loading conditions at the external elements of the domain Ω. On the one hand, the 

external virtual work (16) is defined as the deformation energy made by all the external 

loading conditions such as weight 𝒃	and concentrated nodal forces 𝑓. On the other hand, 

the internal virtual work corresponds to the energy produced by the internal forces and their 

triggered nodal displacement 𝛿𝒖 (17) (Katsikadelis, 2016).  

𝛿𝑊%/* 	= 	E 𝛿𝒖6𝒃𝑑Ω
7

	+ 	G𝛿𝒖(𝑥")6𝑓(𝑥")
'

"89

 
(16) 
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𝛿𝑊!"* 	= 	E (∇I𝛿𝒖)6𝜎𝑑Ω
7

 
(17) 

𝛿𝑊%/* 	= 	𝛿𝑊!"* (18) 

During the solution of the system, the solver uses the boundary conditions of known 

displacements. In a static analysis, these boundary conditions correspond to encastre 

conditions1 applied to some nodes of the mesh.  

4.1.3 FEM dynamic analysis. 

A dynamic analysis of a physical problem can be performed in FEM using a Standard 

or an Explicit solver. Both of these methods require establishing the mass matrix of the solid 

domain to estimate its inertia. However, these two methods differ in their approach to 

discretising the time dimension and solving differential equations previously introduced. The 

standard method holds a dynamic equilibrium condition (19) based on the instant 

acceleration and velocities of the node's displacements  (Zienkiewicz, OC and Parekh, 1970). 

In (19), the variables 𝜌 and 𝜇 correspond to the density of the material and damping 

coefficient at the contact poits, respectively. 

𝑴�̈� + 𝑪�̇� 	+ 	𝑲𝒙	 + 	𝒇	 = 	0 (19) 

𝑀!-
(%) = E 𝑁! 	𝜌	𝑁-	𝑑𝛺

=
 𝐶!-

(%) = E 𝑁! 	𝜇	𝑁-	𝑑Ω
=

 
(20) 

 

Alternatively, explicit methods have proven to be more computationally efficient in 

solving dynamic analysis where a fracture in the material is expected (Guo and Lv, 2010). 

The explicit FEM (E-FEM) uses the explicit central time integration rule to satisfy the 

dynamic equilibrium condition on each time increment t (Smith, 2016). At the beginning of 

each time increment, the value of the nodal acceleration must be obtained first. To do so, a 

dynamic equilibrium expression is manipulated into the form presented in equation (21). In 

(21) M corresponds to the Mass Matrix, P to the nodal forces applied on the external nodes 

of the mesh and I the internal forces deforming the internal topology of the mesh. Since the 

matrix M is almost always diagonal or sparse, obtaining the value of nodal accelerations �̈�* 

is computationally inexpensive. Once the acceleration of each vertex of the volumetric FEM 

mesh is found, the velocities (22) and displacements (23) can be computed by advancing 
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them “explicitly” through time. In other words, the displacements at the end of the time 

increment are obtained exclusively from position, acceleration and velocities and the 

beginning of it (Smith, 2016). 

�̈�* = 𝑴>9(𝑷*	–	𝑰*) (21) 

�̇�
*?∆*2

	= 	 �̇�
*>∆*2

+
(∆𝒕*?∆* + ∆𝒕*)

2 	�̈�* 
(22) 

𝒖*?∆* 	= 	𝒖* + ∆𝑡*?∆*�̇�*?∆*2
 (23) 

Once the displacements on the mesh's nodes are computed, the solver proceeds to 

calculate the strain increments and their corresponding stresses.  Finally, the solver assembles 

the matrix of internal forces I based on the stresses field in the internal elements of the mesh.   

The estimated time increment used by the ABAQUS CAE solver is described in 

equation (24) (Smith, 2016). Where 𝐿A!" is the size of the smallest element from the mesh, 

and 𝑐$ is a function of the material’s Young modulus and Poisson’s ratio. The smaller the 

size of the elements in the mesh, the more computationally expensive the system is, and the 

bigger is the amount of memory required to store their corresponding stresses,  strain and 

damage status on each time increment of the dynamic analysis.   

∆𝑡 =
𝐿A!"

𝑐$ 	(𝐸, 𝑣)
 

(24) 

 

4.2 Realtime FEM simulation. 

As previously mentioned, the simulation of non-reversible deformations can benefit 

greatly from computer generated training alternatives. This usage of VR/AR is ideal for 

applications such as surgical operations where the topology of the tissue is usually expected 

to change. Some offline approaches rely on element deletion, element duplication17 or 

adaptative remeshing to represent these discontinuities. Nevertheless, these methods can 

deteriorate the quality of the mesh and increase the probability of achieving bad quality 

 
17 Followed by separate mesh refining. 
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elements18 on each remeshing iteration. Furthermore, adaptative remeshing around the 

discontinuities increases the size of the tetrahedral mesh exponentially, making it potentially 

untractable for further processing. In this section, we explore some techniques found in the 

literature to improve the performance of finite element simulations to make them suitable 

for virtual reality applications.  

4.2.1 Precomputed FEM  

These methods involve precomputations of complete or partial results from FEM 

simulations to ease the calculation required at runtime. These type of algorithms exchange 

the fine mesh material properties with a new equivalent database of materials that would 

produce the same variation on the elastic energy on a coarse mesh as the high-resolution 

one. Chen et al.(2015a) built two data sets for modelling the constitutive equations of 

hyperplastic materials. One represents the non-linear mechanical properties of a refined 

mesh, and another set containing the properties of a material that would generate similar 

results on a coarser mesh. These allowed them to compute the deformations on a mesh with 

simpler embedded material and find the fine displacements based on the mapping between 

the 2 sets. The drawback of this approach is that the simplified material model can not be 

re-used for different geometries and must be regenerated on different simulation instances. 

A different approach was developed by Banihani et al.(2013), who employed orthogonal 

decomposition to reduce the number of variables composing the model significantly. By 

doing so, the complexity of the model was reduced, and its robustness increased. This 

technique acted as a regularization function, making the differential equations more 

computationally stable, which adds a big benefit for solving energy-based models. However, 

the orthogonal decomposition can only be computed and be loaded into runtime memory 

for a finite number of cases. Therefore, the simulation error increases rapidly as the user 

deviates from precomputed deformations (Malukhin and Ehmann, 2018).   

4.2.2 Mass-Spring approaches 

These models are popular for simulating stretching deformation on thin elastic tissue 

and small cuts (Wu et al., 2015). Their simplicity reduces the computational resources 

required and ensures a stable and fast framerate during the interaction. The main idea of this 

model is that elements on the volumetric mesh are represented as a system of masses that 

 
18 Bad quality elements are elements with one of its edges significantly shorter than the rest of them forming a 

very sharp internal angle 
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are connected to each other with a set of springs. Nevertheless, the accuracy of mass-string 

models is much lower than a finite element simulation when applied to thicker geometries. 

This is because the mass-spring model is unable to consider the effect of mechanical non-

linearities such as stiffness, uneven mass distribution and damping coefficients. Also, the 

nature of the model allows the springs to stretch or contract almost in ways that the total 

model is not preserved, which decreases realism (Wu et al., 2015). Some authors have 

attempted to use the fast convergence of mass-spring models with targeted modifications to 

improve their accuracy. A more complex model was later developed by Pan et al. (2015) to 

simulate soft tissue dissection using a multi-layered mass-spring system for training on 

preparation for resection of rectal cancer. This approach is only appropriate for modelling 

deformation on thin surfaces. The authors included haptic interaction with fat and bowl 

membrane tissues. The content was arranged into a system of 4 layers connected according 

to their adjacency. Each layer was modelled with different mechanical properties allowing 

the model to consider non-linearities and propagate their effect to all tissue types. However, 

this model is only valid for thin elastic tissue deformation that can be discretized in a finite 

number of layers. Therefore, it is not possible to implement a similar approach to simulate 

resurfacing on volumes of bone. 

4.2.3 Linear FEM 

As the name suggests, linear FEM simulations implement a linear stiffness matrix to 

find the values of nodal deformations according to the method explained in Section 4.1.3. 

This ensures their computational efficiency and stability on moderate-size meshes. In an 

Augmented Reality simulator developed for training on suturing (Berkley et al., 2004), linear 

FEM simulations were used to represent the binding effect of the suture in a hand-cut 

(Figure 22). The FEM simulation was aligned in AR using ArUco markers. In an attempt to 

include non-linearities while still keeping the fast performance, Cakir et al.(2009) used the 

Stiffness-Wrapping method to increase the realism of their simulator for cutting on soft-
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tissue. Throughout this method, the deformed positions of each node are rotated back to an 

undeformed frame of reference. This allows the system to calculate a hyper-elastic force 

using an undeformed stiffness matrix and rotating the result back to the deformed frame of 

reference. Although, a clear drawback from this method is that extra memory must be 

reserved for storing the definition of the rotational frames of reference, which are created 

and updated on each rendered frame. Xie et al. (2020) included a Kalman filtering 

identification process to decrease the size of the deformation system given local 

measurements of displacement. Their method was applied for soft tissue deformation and 

was able to achieve realtime performance while maintaining values of nodel deformation 

similar to traditional FEM. Similar to spring-mass models, the main drawback from linear 

FEM is that their accuracy is only maintained on small deformation magnitudes (up to 10% 

strain). This means that objects can increase in volume unnaturally under conditions that 

trigger large rotational deformations (Malukhin and Ehmann, 2018). 

4.2.4 Corotational FEM 

Corotational FEM has been popular for simulation of liver tissue manipulation, given 

its hyper-elastic nature (Schoch et al., 2013; Bui et al., 2019). This method improves the 

accuracy of a linear model when the strain values are expected to be higher than 10% while 

maintaining low complexity in the differential equations that describe it. First, a global 

stiffness matrix is assigned to the system and used to compute a global estimate of the body’s 

displacement and rotation. Additionally, a local frame of reference is assigned to each node 

to find their internal vectors of “pure-strain”. Therefore, the rotational factor of the 

Figure 22 (a) Shows the overlying mesh of a hand model with 863 nodes of which 624 nodes lie 
on the surface. Displacements are determined for the visible nodes and an additional 100 
nonvisible nodes that correspond to surface elements in order to allow real time stress/strain 
visualization. Adapted from   (Berkley et al., 2004) 
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deformation is isolated before the internal forces have to be computed (Bui et al., 2019). Both 

frames of reference are mapped through linear relationships, which ensures that the 

interactive framerates can be maintained while the accuracy is increased compared with a 

single linear system. Most recently, corotational FEM has been used for real-time simulation 

of needle insertion into brain and liver tissue (Bui et al., 2019). In this simulator, the elements 

of the mesh were labelled into 3 categories. Namely, internal, splitted and external. Different 

local matrices with different mechanical properties were assigned to each one of these 

categories. Although the deformations computed by the model had acceptable accuracy for 

their application, the existence of a global stiffness matrix added to a progressively growing 

number of local ones required a significant amount of memory. Therefore, it is strongly 

recommended to mind the meshes’ sizes when using corotational FEM (Bui et al., 2019). 

Another major drawback of corotational FEM is the high computational cost of inverting 

the global stiffness matrix while handling the high number of degrees of freedom coming 

from the local system. This is because the global and local stiffness matrices are not additive. 

4.2.5 XFEM 

The Extended Finite Element Method is an alternative approach for modelling 

discontinuities in a volumetric without changing its topology (Figure 23). Instead of having 

to remesh the solid geometry once an element is separated, the stiffness matrix of the 

elements is enriched with additional DOFs that can represent the fracture or separation. 

Since the object remains as a continuum domain, the XFEM model remains numerically 

stable for large deformation values. However, there is a computational cost added by the 

presence of the enrichment functions and the additional degrees of freedom. Quesada et al. 

(2016) used the XFEM method to obtain the internal forces on the cornea and liver tissue 

Figure 23 (a) XFEM representation of discontinuities without retopologizing the main mesh. (b) 
Post-processed visualization of the mesh. Adapted from (Schoch et al., 2013) 

(b) (a) 
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given the interaction with a scalpel at framerates compatible with haptic devices19. The 

authors enhanced the mechanical properties of each tetrahedral elements using the cracking 

node method (Song and Belytschko, 2009). This method parametrizes a cut by using nodally-

centred cracks approximations that extend up to the boundary of each tetrahedral element. 

Therefore, the true geometry of a curved crack is approximated by a collection of straight 

crack segments passing through the nodes. This reduces the accuracy of the crack 

propagation but improves the real-time response.  

Koschier et al. (2017) combined XFEM methods with an implicit dynamic integration 

to simulate fracture of deformable objects using complex cutting surfaces. One of the 

highlights of their approach is the ability to simulate finely structured cuts, even when the 

mesh is made from a coarse tetrahedral discretization. The cutting surfaces are modelled as 

explicit triangular meshes, and only the nodes of fully intersected elements are enriched 

(Figure 24). Furthermore, different cutting surfaces must be independent and not intersect, 

as overlapping cuts are not supported. It is worth noting that the method developed by 

Koschier et al. (2017) was used to generate off-line animations instead of interactive 

simulations. This means that the main limitation of their method is that it is unable to 

simulate progressive cuts advancing within a single tetrahedron.  

The corotational model can also be enriched with XFEM functions. In order to 

simulate the surgical cutting of soft tissue, Schoch et al  (2013) combined corotational 

 
19 500-1000 Hz 

Figure 24 Enrichments on the central node. (Left) The node is only enriched by the first 2 
functions. (right) All the elements that share a node are intersected by a single cut surfaces. 

However, the node is enriched 3 times as the cut creates 3 discontinus regions in the elements 
connected by the node. Adapted from (Koschier et al., 2017) 
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methods with implicit time integration techniques and XFEM enrichment to achieve a stable 

and simplified representation of arbitrary cuts. Furthermore, the corotational fraction of the 

model computed the complex portion of the deformation before the time integration step 

and achieved an accurate representation of large deformations in soft tissue. The results 

presented in  Schoch et al  (2013) were obtained by manipulating meshes with less than 1000 

tetrahedral elements. As mentioned in previous sections, the computational requirements 

from both corotational and XFEM models increase primarily as the number of elements 

increase. Therefore, the performance of this combined method is expected to be sensitive 

to the level of refinement of the mesh, and it is likely to slow down when a higher level of 

refinement is desired. 

Chitalu et al. (2020) combined XFEM with quasi-static linear elastic fracture mechanics 

and a high-resolution crack propagation scheme mesh fracture to simulate crack propagation 

on brittle materials. Their approach requires a predefined cutting surface to initiate the crack 

as one of its inputs. Realtime performance is achieved by reducing the number of mesh 

edges, and boundary faces required to describe the fracture by 20% compared with the state 

of the art methods (Chitalu et al., 2020). However, the approximations performed by the 

crack propagation scheme reduced the accuracy of the simulation by underestimating the 

stress intensity factors. Therefore, the authors recommend using their simulation method 

only on applications that do not require numerical fidelity.  

4.3 Bone reaming – tissue deformation 

This section will describe the current approaches to FEM simulation around the 

phenomena of bone cutting. Firstly, the perspective of the manufacturing engineering 

science of the fracture and plastic yielding involved in material removal will be described.  

Afterwards, the chapter presents an introduction to the current mathematical models used 

to describe the behaviour of bone tissue as a material for FEM simulation. 

4.3.1  Finite element method and chip formation in machining operations of bone. 

According to solid mechanics science, after a deformable body is under a specific 

loading condition, each element of a volumetric grid suffers a change in its stresses/strain 

tensor. The FEM solves a system of partial differential equations according to the applied 

loads and the material behaviour encoded in its stiffness matrix. By solving the differential 

system, the strains and stresses tensors are updated while holding the condition of forces on 
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equilibrium for each element (Zienkiewicz and Taylor, 2005).    

In order to create a physically-based model of removed material during the reaming 

stage, we must take a look at the effect of each tool’s tooth on the surface of an object. Once 

each cutting edge has penetrated the material at a defined cutting depth, a chip is formed 

under plasticity in front of the tool’s tip and forced until fracture. The deformation occurs 

as the cutting edges move relative to the base material and compress the material in front of 

it. Figure 25 illustrates the parameters involved in orthogonal cutting, which is one of the 

most commonly researched material removal processes. In Figure 25, the rake and flank 

angle are geometrical design parameters of the tool, usually optimised to maximise the 

removal rate while minimising the reacting friction. Oblique cutting, such as acetabular 

reaming, differs from orthogonal cutting (Figure 25) as the relative movement of the base 

material block is oblique to the tool’s cutting edges. Guo and Lv (2010)  and Llanos et al. 

(2009) presented examples for successful FEM models for oblique cutting common 

engineering materials. They established failure criteria that included both maximum values 

for shear and normal stresses, and the effect of the friction given the normal stress values 

between the tool’s forces and the forming chip. 

 

 

4.3.2 FEM models for bone cutting operations 

Modelling the amount of bone removed depends on several factors such as the force 

with which the surgeon supports the reamer on the acetabulum, the motor's torque, the 

tool’s rotational speed, its orientation/position relative to acetabulum shape, and the area of 

surfaces in contact. These previous variables are not static in practice and can vary 

Figure 25 Nomenclature of chip formation model. Adapted from Piispanen (1948)  
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significantly even while performing the same surgery. The bone tissue also has unique 

properties that differentiate its fracture and chip formation from other popular researched 

materials (e.g. steel). At a macroscopic level, bones are divided into two main tissue layers 

(See Figure 26)  that differ from each other in terms of density, strength and hardness. These 

are the cortical bone, made of hard and compact tissue that takes a high percentage of the 

biomechanical loads (Marco et al., 2015), and the cancellous bone, which is made of thin 

lighter tissue creating a net-like matrix (Liao and Axinte, 2016), and reducing the bone’s 

weight. Its structure is not isotropic at a microscopic level, meaning that its stiffness and 

values of plastic yielding stresses are not homogeneous over all the material orientation. 

Regarding the chip formation, Mitsuishi et al. (2004) described how during machining 

operations on the cortical bone, the initial crack formation starts at the tool’s cutting edge 

and follows its direction in continuous chip formation until separation. On the contrary, 

during cancellous bone cutting, the crack begins below the cutting edge, and it fractures in 

blocks underneath its moving path, leaving a wake of cutting which for some applications 

can make the depth of cutting of cancellous bone hard to control. In a review published by 

Marco et al. (2015), the authors report that most of the research done on bone modelling 

focus on operations in orthogonal cortical bone and therefore, more research is required 

around the cutting operations on the cancellous tissue. 

Tu et al. (2013) proposed a simple elastic-plastic model for drilling on both cortical 

and cancellous bone. The model was validated with data acquired from experiments 

performed on Sawbones®20, and therefore the mechanical properties for the numerical model 

 
20 Rigid foam blocks used as an alternative to human cadaver bone for testing and demonstrating orthopaedic 

implants and tools. Figure 26 Bone tissue layer in the hip joint. 
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were provided by the Sawbones manufacturer. The constitutive equations of the material 

followed the characteristic of an elastic-plastic model. The computed fracture properties of 

the bone were determined using the shear damage model predefined in the FEM solver 

ABAQUS CAE®. Later, Wang et al. (2016) implemented the same simplifications on an 

orthogonal cutting 2D FEM simulation with ultrasonic vibrations applied to the workpiece 

in cancellous bone only. These two articles were the only relevant identified mathematical 

model for cancellous bone FEM simulation. A validation study using experimental data in 

Wang et al. (2016) confirmed that the strain predicted matches the measured data for 

orthogonal cutting cases. Therefore, it was concluded that the elastic-plastic isotropic model 

with shear damage fracture properties is a good representation of the mechanical behaviour 

of cancellous bone.  

In orthopaedics, machining of cortical bone is usually more challenging than 

trabecular/cancellous bone, as higher cutting forces are required, and there is a higher risk 

of heat generation leading to thermal-induced necrosis. Most of the different models 

available in the literature that describe the chip formation of cortical bone focus on 

predicting cutting forces to evaluate the tool’s design and tool’s efficiency and estimate the 

heat generation produced by the friction during the bone machining operations. This review 

focuses on mathematical models developed for drilling and orthogonal cutting operations, 

as these are the closest ones to acetabular reaming in terms of material’s induced failure and 

chip formation. 

The most popular model found in the literature to describe the behaviour of bone-cutting 

was the Johnson-Cook (JC) model (Hage and Hamade, 2013; Baro and Deoghare, 2018). 

This model describes the plastic behaviour of the material after it has passed its elastic zome. 

It is usually selected due to its simplicity, fast convergence and its easy implementation inside 

several engineering FEM software. The JC model, described by (26), considers the effect of 

strain/work hardening and thermal softening Θ(T) in the flow of equivalent plastic stress 

given the values of the average plastic equivalent strain (PEEQ) εcC (25) on each finite 

element. To compute the value of average stress σe given a plastic strain εcC, the model in 

Equation (26) takes the average plastic strain εcD and the plastic deformation rate ε̇D as inputs. 

Following the numerical update in the values of of the stresses, a new condition for fracture 

is established by finding the strain to fracture 𝜀E̅
D . This fracture condition is a function of 

the mean of the three principal stresses 𝜎c and the Von Mises (VM) stress 𝜎F . Failure occurs 
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on an element when ∑ ∆Q
QR!
"# = 1  (28), where ∆𝜀 is the increment on the equivalent plastic 

strain for each integration step and εcE
D  is the ultimate strain that triggers fracture.  
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An evident limitation of the JC hardening law is that this model was proposed 

originally for ductile chip formation, while bones have a brittle nature.  The values of the 

constants A, B, C and n where found through experimentation to fit the model to the 

mechanical behaviour of bone under machining operations with result validated with 

experimental data (Table 4). By using these values, equation (26) describes a strain hardening 

model of the chip formation and fragmentation for a heterogeneous material equivalent to 

the bone. The values of the obtained cutting force were validated with an experiment carried 

on a fresh bovine femur. This bone was selected for experimental validation because of its 

similarities with the human’s bone during fracture (Vashishth et al., 2000). Alam et al. (2009) 

also proposed to omit the thermal softening term Θ(T), which describes a relationship 

between the working and the melting temperature of the material. The reason being that the 

temperatures reached in theatre for bone machining operations usually stay below 45˚C in 

order to avoid thermal-induced necrosis21.  

 

 

 
21 The death of the cells conforming a tissue due to high temperatures. 
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A [Pa] B[Pa] n m C ɛ0 

50e6 101e6 0.08 0.02 0.03 0.001 

Table 4 Johnson-Cook Plastic Hardening properties for cortical bone. 
Table adapted from (Baro and Deoghare, 2018). 

Given that in an anisotropic material, the strengths in the orthogonal and longitudinal 

direction of the osteons can reach a relationship of 3:2 in value. An anisotropic approach 

would be more aligned with the exact composition of the cortical bone, as mentioned in 

Section 4.3.1. A successful thermomechanical model of the anisotropic behaviour of cortical 

bone was proposed by Santiuste et al. (2014). The authors assumed an analogy between bone 

and a fibre reinforced material, given the bone’s microstructure. Figure 27 illustrates how the 

cortical bone is composed of a collagen matrix filled with cylindric shaped osteons. 

To evaluate failure Santiuste et al. (2014) considered the Hues damage model for 

composite materials (Hou et al., 2000). This damage model proposes that different types of 

failure can occur under different kinds of stresses conditions (Figure 27).  

Assuming an elongated deformable-body, in Equations (29)-(32), the 1st stresses axis 

is orientated in the directions of the fibres, the 2nd direction in a transversal from the 

composite matrix and the 3rd is the through-thickness direction. The material-specific 

parameters 𝑇! and 𝐶! are the tensile and compressive strength values in the direction i. 𝑆!- 

are the shear strength of the material in the plane i,j. Moreover 𝑆E!,! are the corresponding 

materials shear strength.  

Figure 27 Scheme of the cortical bone structure. Figure adapted from Santiuste et al. (2014) 

and Hou et al. (2000) 
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Hou’s failure criteria are evaluated in parallel; an element is considered to fail when 

any of them reaches a value of 1. The mechanical behaviour of this anisotropic model was 

validated with the reported results from experiments on bovine femur. 

4.4 Summary 

This chapter explained how FEM is used as an accurate alternative to models of the 

mechanical behaviour of complex solid geometries in the infinitesimal domain, which are 

commonly computationally expensive. We also introduced how the type of element chosen 

to discretize the solid domain can influence the simulation's results and how their shape 

function can provide alternatives for interpolation of the nodal properties into the entire 

element. Finally, we presented constitutive equations models found in the literature that 

describe isotropic or anisotropic relationships between strains and stresses on the cortical 

bone. Solving a  dynamic FEM analysis that includes all of the non-linearities of the plastic 

region of the bone when the debris is being separated from the main body requires long 

computational times per time increment.  
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5  XFEM-based 
reaming simulation. 

This chapter describes the methodology followed to define and solve the FEM 

simulation of acetabular reaming. Reaming on bone tissue is a procedure of 

destructive and non-reversible nature. Consequently, it is impossible to use 

experimental data as target and training examples to train an ML estimator. XFEM 

simulations were selected to construct a training dataset for machine learning as they 

are capable of providing the strain/stress solution for identical instances of a solid 

under different loading conditions. Such invariance in the mechanical properties of 

the deformed material would be impossible to obtain in an experimental setup. This 

includes the generation of the 3D geometries, the definition of the material's 

constitutive equations, and the initial boundary constraints for the required dynamic 

explicit FEM simulation. 

We selected XFEM simulation as the source model to compute the expected 

physically-based deformation given its accuracy and fast convergence to represent cuts, 

discontinuities and large strain rates.  Linear FEM methods are a popular selection for 

interactive AR/VR simulation. However, they require adaptative remeshing to represent the 

formation of new discontinuities in the solid. Depending on the size of the mesh, this can 

exponentially increase the computational load of the system. Furthermore, linear FEM can 

often present low accuracy when high strain rates are expected. XFEM has proven to be 

more efficient and accurate than Standard dynamic time discretisation methods to model the 

material removal process. 

 The stages followed to complete a FEM analysis are commonly known as pre-

Chapter 5 
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processing, simulation and post-processing. Pre-processing is usually the most arduous step. 

Here, the models of the physical problem, the material constitutive equations, and the 

mechanical boundary conditions must be defined. Afterwards, the simulation step is started 

in the background and is performed entirely by the FEM solver. During the simulation step, 

the system of differential equations introduced in section 4.1 is assembled to find the 

displacements in the vertices conforming to the mesh. Finally, the post-processing step 

consists of the visualisation and analysis of the results according to requirements specific to 

the problem. 

To train a machine learning model on the physical relationships happening during 

bone resurfacing, it is necessary to create a big dataset of training examples. In order to 

generate these different training scenarios, the orientation of the reamer head was rotated 

around the θ and γ angles (Figure 30(c)), which are analogous to the angles of antroversion 

and inclination 𝜃("*'&+%',!&"	 and 𝜃!"#)!"(*!&"  defined in section 3.1.4.  

Our FEM simulation was defined and solved using the software Simulia ABAQUSÒ 

CAE. This software is a popular choice by several authors when modelling resurfacing 

operations on both engineering materials (Liu et al., 2013), and bone (Lughmani et al., 2013; 

Tai et al., 2013; Tu et al., 2013; Santiuste et al., 2014).  

5.1 Mesh generation 

Our FEM analysis studies the effect of the interaction between 2 objects, which has 

been discretised in finite elements.  These are the head of an acetabular reamer and a block 

of cortical bone. Both volumetric geometries were generated in Autodesk Inventor®, a 

Computer-Aided Design (CAD) software. Later, the object's discretisation and tetrahedrons 

Figure 28 Volume extracted from the geometrical mesh to create the tetrahedral refined mesh. 
In the picture the offset is intentional to show the fit between the surfaces. 
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generation was carried out inside the meshing module inside ABAQUS. Since the discretised 

domain representing the bone will only consider the constitutive equations of cortical bone, 

we assume that the layer of acetabular cartilage has no significant influence on the mechanical 

behaviour of the bone during reaming. We also assume that the osteophytes22, if any, have 

already been manually removed by the surgeon.  

5.1.1 Acetabulum  

The computational resources required to generate a FEM volumetric mesh with a high 

number of elements (refined) for the complete pelvic bone would require long computation 

times and enormous memory resources. Similarly to Kim et al. (2017), we extracted a volume 

from a bigger object, acetabular cavity from the pelvic bone, and used it to generate the 

refined FEM tetrahedral mesh similar to minimise memory consumption (Figure 28). This 

provides a fine level of refinement in the volume of interest while maintaining computation 

times for each FEM tractable. 

The technique used to generate the volumetric mesh of the bone was the free meshing 

algorithm for tetrahedral elements, which is flexible enough for complex hemispherical 

surfaces. As an element type, we selected a linear tetrahedron with 4 nodes and one 

integration point. Because of its linear nature, this type of element performs faster and better 

when used for contact analysis than second-order elements. This meshing approach was 

sufficient for the simulation of machining bone as the material behaviour will be assumed as 

isotropic, and there are no requirements in the orientation of the elements during mesh 

generation. The level of refinement for the 3D model of the bone is another critical 

parameter to optimize while generating the tetrahedral mesh. On the one hand, a coarse 

mesh will produce inaccurate results, requiring unrealistically high cutting forcers to trigger 

fracture. On the other hand, a mesh too fine will yield smaller stable time increments (See 

section 4.1.3) during processing, requiring higher computational times. The relevant 

parameters for the generation of the tetrahedral mesh, such as minimum element global size, 

are listed in Table 5. 

In contrast with orthogonal cutting procedures, the high kinetic energy produced by 

the reamer's rotation is likely to distort the elements of the mesh during a dynamic 

simulation. Therefore, an additional distortion control parameter was enabled on all elements 

 
22 Bony lumps (bone spurs) that grow on the bones around the joints after the cartilague wears off. 
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of the mesh to ensure convergence during the simulation’s solution. ABAQUS provides an 

analysis tool for the topology of a generated mesh to allow the user to identify distorted 

elements or elements with a big ratio between their shorter and their longer edges. The 

generated mesh had 20406 elements with 0% reported errors or warnings triggered by a poor 

element geometry.  

Meshing parameter Value 

Approximate global size 0.45 [mm] 

Maximum deviation from  the 
original geometry 

10% 

Minimum size control 0.045 [mm] 

Table 5 Bone model meshing parameters 

5.1.2 Reamer  

Meshing parameter Value 

Approximate global size 9 [mm] 

Maximum deviation from geometry 10% 

Minimum size control 0.9 [mm] 

Refined tooth edges 0.5[mm] 

Table 6 Meshing properties for reamer 3D model. 

Surgical reamers used for THR (Figure 29) have a hemispherical shape and cutting 

edges distributed along its external face. The back of the reamer is hollow to provide a space 

to collect the pieces of removed bone during surgery. The dynamics of the removed particles 

mixed with blood is a problem of fluid dynamics where the internal faces of the reamer act 

as boundary surfaces. This debris behaviour is highly complex and irrelevant for our system 

since we are interested only in the changes occurring on the surface of the pelvic bone. 

Figure 29 Reamer sizes, frontal and back view of the cutting edges. Pictures provided by the 
Bournemouth University Orthopaedic Research Institute. 
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During THR, surgeons start with a small size of the reamer and gradually increase the 

acetabulum diameter until a patient-specific size. The surgical tool was represented by a 

simplified solid model of a surgical reamer (Figure 30(b)) with cutting edges to produce 

element removal when interacting with a volumetric mesh.  Depending on their size, the 

surgical reamer can have between 30 to 60 teeth and a rake angle23 close to 45º. In real tools, 

higher rake angles increase the material removal rate but also intensifies the generated heat 

due to the friction between the debris and the cutting faces. The reamer model used in the 

FEM simulation has a total of 56 teeth. Additionally, since the thermal effects will be 

neglected in this numerical analysis, the rake angle was optimised to a value of 85% to 

maximise the material removal rate. The teeth were modelled with their corresponding rake 

 
23 The angle between the faces connected by cutting edge. 

(a) (b) 

Figure 30 Acetabular Reamer. 3D model (a) and generated tetrahedral mesh (b). Orientation of 
the reamer in assembly during simulation (c). 

(c) 

Figure 31 Reamer design dimensions. Dimension in millimetres. 
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faces and cutting edges, as shown in the detail view C in Figure 31. Since we require results 

for simulations under different orientation conditions, only one reamer size of 45 mm 

diameter will be included in the training data. The finite element chosen for the reamer was 

also a linear tetrahedron. The meshing properties applied to the reamer are listed in Table 6. 

Unlike the mesh of the acetabulum, not all the elements discretising the reamer have the 

same size. We performed a refinement in the cutting edges to maintain their spherical shape 

and ensure accuracy during contact analysis and the collision detected between both meshes.  

The reamer's strain and stresses were ignored as we are only interested in its 

kinematics24. After mesh generation, 4936 elements were generated for the reamer mesh, and 

0 errors were triggered during the mesh verification step.  

5.2 Material model 

5.2.1 Acetabulum 

 

 

 

 

 

During total hip replacement, surgeons ream the acetabulum surface while remaining inside 

the boundaries of the cortical layer, avoiding and exposure to cancellous bone (Beverland et 

al., 2016) (Figure 26). Therefore, the bone’s material constitutive equation used as part of 

this FEM problem will only consider the behaviour of cortical bone. As described in Section 

4.3.2, the nature of the bone tissue is anisotropic. However, it is difficult to determine a 

predominant osteon orientation (Figure 27) during hip resurfacing simulation because of the 

biomechanical adaptation that makes the bone increase its osteons density in the direction 

of the mechanical load (Main et al., 2014). Inside the acetabulum, the osteon orientation is 

expected to follow a radial direction according to the hemispherical shape of this cavity. Baro 

and Deoghare (2018) proved that when the expected coefficient of friction is lower than 0.5, 

 
24 Kinematic objects are also known as rigid bodies. 

Property Value 

Density [kg/m3] 1700 

Young’s modulus [Pa] 17e9 

Poisson’s Ratio 0.35 

Table 7 Mechanical properties of the bone used to model its 

elastic behaviour. 
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the isotropic Johnson Cook model yields similar cutting force values to the ones obtained 

by anisotropic models. Therefore, we will use the JC model as its fast convergence times 

would allow us to generate a bigger training dataset. 

 Given the high amount of training examples required, we selected the Johnson-Cook 

model to yield accurate enough deformation results with relative fast convergence times. The 

Johnson-Cook constitutive equation, described by equation (26), considers the effect of 

strain/work hardening and thermal softening Θ(T) in the flow of tensile stress given a certain 

PEEQ deformation (See section 4.3.2). The deformation and failure laws applied to the 

volumetric domain representing the bone are the adaptation of the JC model to machining 

operations on cortical bone by Childs and Arola (2011) and Baro and Deoghare (2018). The 

constants used by the authors are listed in Table 4, Table 7 and Table 8. It is essential to 

mention that all factors related to thermal softening were set to a value of 0 as heat generation 

will be neglected for our simulation. This assumption can be made as during real surgery, the 

natural lubrication of the bleeding tissue and the intermittent rinsing with cold water 

performed by the surgeon avoids a significant rise of the bone temperature and prevents 

thermal-induced necrosis25. The mechanical properties listed in Table 7 describe the 

behaviour of the material on the elastic region of its strain-stress curve. Given that the elastic 

zone of any material is present before the plastic one (see Section 4.1.2.2), the elastic 

behaviour must be set first and then complemented with the JC damage evolution model 

(Table 4).  

During real surgery, the bone mixed with the natural bleeding is determined by a fluid 

and particles behaviour. Modelling the behaviour of the debris once it is separated on a 

numerical simulation increases the complexity and time required to perform the FEM 

analysis. This is to say, once removed from the main object; the debris does not affect the 

deformation of the bone. Therefore, tetrahedral elements removed by the cutting edges were 

immediately excluded from calculations. This was necessary to avoid an exponential growth 

in the computation times or even failure in the solver due to the excessive deformations 

product of floating debris.  

d1 d2 d3 d4 d5 ɛf [m] 

-0.09 0.08 0.006 0 0.01 5e-4 

Table 8 Johnson-Cook Damage values 
 

25 The death of the cells conforming a tissue due to high temperatures. 
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During the damage evolution of a fractured element (Figure 32), the constitutive 

equation that governs the stress-strain relation of the material follows the Johnson-Cook 

elastic-plastic hardening law (See section 4.3.2). The initial deformation follows a linear 

elastic behaviour until the yielding stress 𝜎.. Later, once the element Von Mises stress 

reaches the plastic yielding stress 𝜎0., the damage D starts being described by (28) with a 

value equals to 0. The equivalent plastic strains 𝜀 increases as the element detach itself from 

the main material block, and therefore, the stress in the element decreases and final fracture 

occurs when D=1 at the strain to fracture 𝜀E
D) . In Figure 32, the dashed line represents the 

element’s plastic behaviour in the absence of yielding plastic stress and when no damage is 

initiated. The values listed in Table 8 are the constants used to describe the evolution of 

damage on each element after fracture is initiated (Figure 32). These values were selected to 

yield a small value of deformation during fracture as it is typical for brittle materials. For our 

simulation, the final strain at complete fracture was constrained to 0.1mm to avoid excessive 

ductile deformation in the elements before being removed from the main tetrahedral mesh. 

5.2.2 Reamer 

Property Value 

Density [kg/m3]          7800 

Figure 32  Stress-strain curve with progressive damage degradation. Adapted from [online] 
https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-
damageevolductile.htm 
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Young Modulus [Pa], E       200e9 

Poisons ratio, υ   0.3 

Table 9 Mechanical properties for AISI 420 

In the industry of medical technologies, the material used to manufacture the surgical 

reamer is chemically optimised to ensure hardness on the cutting teeth without 

compromising elasticity and cutting performance. Different surgical manufacturers differ in 

their chosen reamer geometry and used material. Surgical tool's makers develop specific 

metal alloys for their products to ensure their competence in the market. Hence, the 

mechanical characterisation of these materials is challenging to find in the public domain. 

For our FEM analysis, the material assigned was a Stainless Steel AISI 420 (high-carbon 

stainless steel with a minimum chromium content of 12%), a generic choice for surgical tools 

due to its hardness and ease to be sterilised. The values used to describe the material's linear 

elastic behaviour are listed in Table 9 and were taken from the standards of the American 

Society for Testing and Materials (ASTM) (ASTM International, 2004). 

5.3 Boundary conditions 

External loading conditions such as applied forces on the mesh's vertices and 

kinematic constraints that limit the displacement of some external areas of the mesh must 

be set during the pre-processing step of the FEM analysis to ensure the validity of the 

simulation. This section will describe the definition of each one of these conditions for our 

FEM simulation. 

5.3.1 Contact interaction 

By default, the ABAQUS FEM solver evaluates collision and contact only between 

Figure 33 Loading and boundary conditions applied to the assembly 
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exterior elements of the FEM meshes. It was necessary to create a set of interactable elements 

that include both interior and exterior elements to ensure that the reamer will affect all 

elements conforming to the mesh. In a similar way to Childs and Arola (2011) and Tu et al. 

(2013), the energy loss during reaming due to the friction between the bone and the cutting 

tool was modelled through the Columbus friction law using a coefficient of 0.3. Furthermore, 

the bouncing effect between the reamer's edges and bone was minimised by enabling the 

effect of gravity and including a damping coefficient between both solids of value 0.2. The 

effect of gravity (represented as yellow arrows in Figure 33) was included to avoid undesired 

bouncing of the tool due to the normal force reactions in the reamer teeth while reaming. 

This resistance to bouncing is usually achieved in theatre via a manual control of the reamer 

by the surgeon.  

5.3.2 Loads. 

The magnitude of the force used to push the reamer head into the acetabular cavity 

during our FEM simulation was obtained from measurements performed on a PrimusRS 

rehabilitation system from BTE technologies (See Figure 34). The PrimusRS is a device 

designed for multijoint, musculoskeletal biomechanical measurement. It provides an 

objective evaluation of the interactive rehabilitation experience by allowing force application 

in multiple directions. Three fellow surgeons from the Orthopaedic Research institute were 

asked to replicate the average pressure they would typically exert while performing acetabular 

reaming. A handle similar to the one used in reaming devices was provided to make sure that 

the experience was perceived as realistic and align the measurement protocol with the clinical 

practice. After this experiment, the average value obtained was 230 N.  

Figure 34 Protocol used to measure exerted axial force during reaming. 
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The applied force in the FEM simulation can be appreciated in the ABAQUS pre-

processing view (Figure 33) as a magenta arrow that is aligned with the reamer's rotation axis. 

Similarly to Tunotti et al. (2017a), the main force was applied a concentrated nodal force to 

the 3D object representing the tool. To do so, an additional reference coordinate system was 

attached to the reamer located over its axis of rotation (Figure 33). In other words, the axial 

force was applied on a node located at the centre of this new reference system and aligned 

with its axis of rotation during all the simulated orientations of the reamer. In real practice, 

the force magnitude and direction is a variable that surgeons would adapt, given the visual 

feedback of bone reaming progress. In our FEM database, the direction of the force varied 

between the values of 0 and 45 on both the inclination and antroversion angles (See Section 

3.1.4).  

5.3.3 Displacement boundary conditions 

An encastre26 was applied to all the mesh vertices located on the lower face of the bone 

to simulate a supporting surface capable of providing a reaction force to the reaming axial 

load. The displacement on the other vertices composing the bone mesh was allowed to 

ensure convergence of the Johnson-Cook fracture model. 

On the reamer, all boundary conditions were applied on its attached reference 

coordinate system to ensure that they will remain independent of the changes in the reamer's 

orientation. The displacement of the reamer was enabled only along its axis of rotation. This 

allowed us to simulate the penetration of the reamer into the bone as the reaming process 

 
26 Boundary condition where no displacement or rotation is allowed. 

Figure 35 Samples of simulated scenarios with different inclination and antroversion angles. 
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progresses. The rotational speed was set to 136 rad/s along its axis of symmetry which is 

about four times faster than rotational speeds obtained by traditional surgical power systems. 

Its value was increased to maximise the amount of removed material per frame. 

5.3.4 Simulated training examples. 

In real practice, the angles of antroversion and inclination (θ and γ ) have different 

range values given the anatomical spatial constraints. The antroversion angle θ could vary 

from 0° to 180°; the inclination angle γ can only reach values up to 45° degrees. Therefore, 

the simulated training cases were built around four different values of inclination, namely 

[0,15,30,45], while the antroversion angle varied between 0° and 180° every 15° degrees for 

each inclination value. Figure 35 illustrates the orientation of the reamer, given different 

combinations of θ and γ. In the right column of Figure 35, the reamer at inclinations angles 

of 15°, 30° and 45° while the other three most left columns show a variation of the 

antroversion angle while maintaining the inclination angle static. 

5.4 Results 

Figure 36 Examples of some simulation under difference force directions, From left to right: 
Assembly view, results in bone tetrahedral mesh on frame 24 and 94. 
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Figure 36 shows the post-processing view of results from the combinations of 

different orientations of the tool under the same loading conditions. The tool was hidden 

during post-processing to visualise the resurfaced area. However, its position can be inferred 

from the effect of the reaming operation on the volumetric mesh. The elements conforming 

to the mesh are shaded according to their values of stresses. The colour heatmap used in 

Figure 37 and Figure 39 assign the colour red to higher values of stress/strain close to the 

material's failure threshold, while the lowest values are rendered in blue.  

Figure 37 Possible failure criteria. 

Figure 38 Examples of results for reamer displacement 
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For each unique combination of θ and γ  angles describing the orientation of the tool, 

we obtained 60 reports/frames per simulated second. All tetrahedrons were assigned a binary 

value at each frame corresponding to their STATUS as active or removed. Elements 

identified as removed are not rendered in the Abaqus CAE post-processing tool. A total of 

120 frames per inclination permutation were generated after an average of 3.5 hours per 

analysis. The FEM simulation ran on a machine with an Intel processor model Xeon E5-

1650, 16GB of Memory RAM, and CPU parallelisation. 

The dynamic behaviour of this rigid body has an important meaning in our analysis. 

The exerted force on the reamer, the reaction forces acting on each one of the edges, and 

the rate of removed bone produce an effect on the displacement of the reamer while 

penetrating the deformable mesh.  During post-processing, it is possible to evaluate the tool's 

displacement path product of the penetration of the tool in the machined surface. Figure 38 

shows the magnitude of the displacement in each one of the coordinate axis and the absolute 

magnitude of the displacement vector during the simulated time range.  

5.4.1 Discussion 

The binary label STATUS calculated per element on each frame is not enough for an 

ML model to learn the diffusion of accumulated energy transmitted from the tool to the 

bone responsible for the element's fracture. As shown in Figure 37, different field value 

stress/strain distributions were explored to identify the best parameter for the training 

features. The theory of continuum mechanics uses the Von-Mises (σe) and Tresca equivalent 

stresses as common criteria to evaluate failure/fracture on deformable bodies (Beer, 2011). 

However, as it can be appreciated in Figure 37, the magnitudes of these two failure criteria 

are not distributed uniformly over the tetrahedrons that are in close contact with the reamer's 

edges and are expected to be removed in the subsequent frames. The Logarithmic and Plastic 

Strain fields, shown in Figure 37(b) and Figure 37(c), succeed in segmenting the tetrahedral 

mesh elements in contact with the tool and therefore accumulating deformation energy. 

However, the variation range of the values for these fields is too narrow and hinders their 

use as a parameter to describe the energy diffusion on each element prior to failure. The 

Plastic equivalent Strain  (PEEQ) segments the mesh most appropriately so that elements 

accumulating stresses are easy to detect with suitable variation range of its values over the 

whole mesh.  

Ideally, we would include several of the failure criteria available as outputs from the 
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FEM solution (Figure 37) as features to train our ML learned simulator and describe the 

energy accumulation inside the mesh. As described in section 6.1.2, a machine learning 

predictor will require to predict all of these properties on each rollout and taken as input for 

the following iteration. Thus, increasing the estimated array per element would increase the 

complexity of the problem and optimise the learning for more than one target variable might 

accelerate the drift error over high-step rollouts. Consequently, the PEEQ value and the Von 

Mises criteria are selected as the best feature candidates that best describes the diffusion of 

deformation energy inside the volumetric mesh through time. 

Figure 39 shows a post-processing view where the values of the  PEEQ  view of the 

first three simulated frames during the case where the reamer orientation was determined by 

the angles 𝜃 = 0 and 𝛾 = 0. As in previous figures, the reamer was hidden to facilitate the 

visualisation of the PEEQ values in the mesh surface. Similar to previous figures, the colour 

heatmap assigns the colour red to higher values of stress/strain close to the material's failure 

threshold, while the lowest values are rendered in blue.  In this figure, it can be appreciated 

the evolution and diffusion of energy in the time dimension. Figure 39 also shows a  

highlighted "selection" of the elements across the mesh in contact with the reamer's cutting 

edges and are candidates to be removed in the following frames. 

Frame 0 Frame 1 

Frame 2 Frame 3 

Figure 39 PEEQ diffusion along the finite elements (tetrahedrons) during the 3 first frames 
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5.5 Summary 

This chapter presented the materials’ constitutive equation, geometries, and boundary 

conditions to define our  FEM simulation on the reaming procedure of a piece of cortical 

bone. For this, we have created digital representations of both the head of a standard surgical 

reamer and a piece of the acetabulum. Next, we have discretised these volumetric domains 

using linear tetrahedral elements with an average edge size of 0.45mm. We included in our 

FEM analysis the effect of nonlinearities such as friction and damping between the surgical 

reamer and the bone. Finally, we have shown how the PEEQ and Von Mises equivalent 

stress provide a reliable segmentation of the elements in the volumetric mesh with high 

accumulated contact energy and high probabilities of being removed. 

Even after using an isotropic material's constitutive equation on the bone, the nodal 

deformations on each frame required an average of 1.75 minutes to be resolved. Considering 

that each frame corresponds to a time increment of 0.01s, these solver durations are not 

suitable to be used for interactive training of the reaming procedure. In the next chapter, we 

will use the data from our FEM results to train a simulator capable of predicting the amount 

of removed material and identifying the pieces of removed bone at faster rates. 
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6 Machine learning and volumetric 
deformation. 

This chapter describes the state of art ML techniques to speed up calculations of 

physically-based mesh deformations and provide real-time interaction. Normally, it is 

impossible to represent FEM meshes in the Euclidean domain because of its elements' 

variable size and orientation. This is, the number of neighbours connected to each element 

forming the volumetric mesh depends on the element’s location in the mesh. Consequently, 

a graph is the most appropriate data structure to keep the geometric topology and element-

to-element relationships of a tetrahedral FEM mesh. Therefore,  the graph-structured data 

and learning concepts in the graph domain are introduced as a tool to imitate the plastic 

deformation behaviour in continuum mechanics.  

 

6.1 Data-driven / Machine learning (ML) methods for mesh 
deformation  

Modelling complex physically-based deformations, such as the ones required to 

represent bone resurfacing, can be computationally expensive. Therefore, they are 

challenging to perform at the interactive framerates required in simulation-based training. 

However, the current development of machine learning algorithms has allowed some authors 

to estimate deformations results based on examples calculated offline.  

6.1.1 Algorithms to speed up FEM calculations 

Several authors have attempted to use ML to reduce the computational complexity of 

FEM simulations. One approach found in the literature models a linear FEM stiffness matrix 

via machine learning to fit empirical deformation data (Bickel et al., 2009; Mosbech et al., 

Chapter 6 
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2009). Theoretical mechanical characterisation of the material is avoided, and the FEM 

model is downgraded in complexity to the linear domain. It is important to note that the 

implementation of this method was applied exclusively to elastic deformations, and the built 

estimators were object-specific. One shared limitation on Bickel et al. (2009) and Mosbech 

(Mosbech et al., 2009)  is that the ML model had to be fitted again every time the shape or 

material of the target object changes. Mosbech et al. (2009) modelled the vertex displacement 

deformations resulting from a nodal force using compactly supported radial basis functions. 

The authors achieved an error of 1.41 ± 0.87 mm on their predictions for their mechanical 

model. In a similar work published by Bickel et al. (2009), the authors obtained deformation 

estimations with a minimum mean error reported of 0.8mm when using a biharmonic RBF 

kernel. They did so by including a force sensor and a high-resolution stereo vision system 

during the deformation acquisition stage. In the work of Bickel et al. (2009), the properties 

fitting process was aimed to parametrise the object’s Young module based on its local 

coordinates and the applied stress conditions.  At runtime, the model was treated as elastic 

static FEM simulation with a material’s Young modulus (See section 4.1.2.2) that variated 

along its surface according to the applied force input.  

Kim et al. (2017) implemented a dynamic data-driven volumetric human body model 

to approximate the variable value of several mechanical properties used in FEM (i.e Elastic 

module, Poisson’s module and damping coefficient. See section 4.1.2.2). The volumetric 

model was trained using 4D captured data of a human subject performing different types of 

movements. This dataset contained the tracked displacements of the fat and skin tissues by 

the action of gravity and the dynamics associated with each activity (running, walking, 

jumping). Kim et al. (2017) simplified their analysis by assuming fat and skin as the same 

material with the same mechanical properties. Furthermore, in order to reduce the number 

of mesh elements and allow the simulation to run at interactive framerates, the FEM 

calculations were only carried out in the external volumetric layer of the 3D model.  

Simplifications in the mesh refinement increase the online FEM speed but could 

reduce the accuracy of the results. Seiler et al. (2012), Si et al. (2017), and Chen et al. (2015a) 

created databases with two versions of physically-based deformations; a high and low 

resolution one. These databases were mapped using linear relationships between them. The 

numerical simulations on a coarse mesh (low resolution) ran in real-time. Next, its results 

were enriched thanks to interpolation with the precomputed results of the high-resolution 
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database,  maintaining accuracy. The authors validated this approach under interactions not 

considered in the training database. The interpolation to unexpected input conditions was 

possible by assigning weights or relevance relationships for each available training set relative 

to the coarse displacement calculated in real-time. Thus, allowing the model to find the most 

suitable candidate to enrich the simulation at each request.  

Seiler et al. (2012) added skin meshes to both the fine and coarse versions of the 3D 

FEM volumetric object but used them exclusively for rendering proposes. These geometrical 

meshes were linked to their corresponding models (coarse and fine) by linear interpolation 

so that deformations could be extrapolated quickly.  After calculating the deformation on 

the low-resolution geometrical model, the corresponding high-resolution values were 

rendered. This high-resolution skin mesh update was performed by blending detail around 

the contact point where the nodal force was applied in like a stamp. Since the contact point 

is considered as the origin for this stamp-like detail enrichment, this method is constrained 

to just one collision point, and the detail enrichment is limited to only affect the surface of 

the geometrical mesh. Alternatively, Si et al. (2017) were able to predict deformation on all 

the vertices of a volumetric mesh with the behaviour of a composite material. Their model 

included coupling forces between different adjacent objects by including the effect of inner 

forces in a runtime simulation. The mapping relationships between both materials were linear 

regression optimised by the moving least squares method (MLS). This parametrisation 

allowed the algorithm to insert new vertices in the coarse mesh and interpolate the 

corresponding deformation values.  

 Chen et al. (2015a) proposed another alternative for reducing the number of elements 

involved in a FEM mesh while maintaining accuracy. Their framework works independently 

of the object geometry and material composition. Unlike previously mentioned authors, 

Chen et al. (2015a) mapped the relationship between the mechanical properties of two 

different sets of materials on a coarse and fine mesh instead of the deformations on their 

geometries. This algorithm exchanges the fine mesh material properties with a new 

equivalent database of materials that would produce the same change in the potential energy 

in the coarse mesh as the high-resolution one. Chen et al.(2015a) built the databases with 

hyperplastic materials as they are more suitable for fitting the mechanical properties in the 

strain-energy space. Chen et al.(2015a) were the only authors found to include anisotropic 

materials (See section 4.3.2) in the coarse metamaterial database. The authors also reported 

a performance increase from to 51 to 489 times, maintaining relative errors under 0.003% 
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compared with the high-resolution FEM simulation.   

6.1.2 Methods to approximate deformations without running FEM simulations in real-

time. 

This section includes identified research methods that predicted deformation values 

based on an initial geometry and force input without performing physic calculations at 

runtime. Instead, they are able to estimate their results based on Neural Networks (MLP) 

trained with FEM or empirical data. All of the identified methods trained a separate MLP 

for each component (x,y,z) of the deformation or stress to be approximated. The first 

reported attempt to learn FEM simulation results using artificial Neural Networks was made 

by Bhise and Pratihar (2006). This work addressed the problem in a 2D domain for cylindrical 

deformation analysis. Only recently, Tawbe and Cretu (2017) and Tonutti et al. (2017b) have 

made attempts in the 3D domain to estimate elastic physically-based deformation.  

Bhise and Pratihar (2006) proposed an algorithm able to estimate the behaviour of a 

simple 2D finite element simulation while using different mesh element types. In their 

experiments, an elastic cylinder was compressed between two plates. Once a significant 

number of FEM cases were simulated offline, the data was used to train through 

backpropagation a Genetic Neural Network and an MLP. The article reported a difference 

between the behaviour of the learned models for tensive and compressive loading conditions. 

The genetic algorithm yielded lower Mean Squared Errors (MSE) when predicting tensile 

stresses (36.03% vs 79.08%) and deformation (3.94% vs 3.71%) than under compression.  

The MLP model yielded lower MSE when estimating the effects of compressive deformation 

(1.0% vs 1.06%) and stresses (15.35% vs 19.69%). This method has a reduced application in 

interactive animation development as in computer graphics, the type of the mesh element is 

maintained during the whole simulation 

Recently, Tawbe and Cretu (2017) and Tonutti et al.(2017b) used the initial object 

geometry and the parameters describing the applied force to compute changes on the surface 

of a volumetric object interactively to train Neural Networks and Support Vector Machines 

(SVM). The main difference between these two contributions is the type of data used as 

ground truth during training.  

Tawbe and Cretu (2017) used a robotic arm to measure the input force magnitude 

and orientation applied to an elastic object while a Kinect RGB-D sensor was tracking the 

changes on the surface of this object. A synchronisation stage was carried out between the 
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refresh rates of the Kinect and the pressure sensor to ensure the correspondence of data.  

The motivation behind the approach of Tawbe and Cretu (2017) was to accurately 

approximate the deformation based on an empirical characterisation of the object’s 

mechanical properties bypassing any numerical model. This method has the advantage of 

being equally valid for linear, anisotropic, hyperplastic or composed materials. The authors 

reported maximum errors of 23.6% on their approximations when the model was validated 

around the entire surface and 9.2% when only the deformed area was analysed. Nevertheless, 

its accuracy in terms of the deformation magnitude is constrained by the RGB-D sensor 

resolution, and the quality of the geometrical mesh reconstructed from a Kinect point cloud. 

 Tonutti et al. (2017b) used offline FEM simulations of a heterogeneous material as 

training data. In their FEM model, the forces were applied on external mesh nodes while the 

deformation analysis was carried on internal ones. After building their database with FEM 

results, the authors performed a data exploration analysis of the stress-strain results versus 

the dynamic parameters used in the simulation. This explorative data analysis aimed to 

identify the variables best suitable to be used as features to train their neural network. 

Therefore, they identified the parameters that had a strong influence on the final deformation 

of the nodes of the inner mesh. As selected features, the authors considered the distance 

between the applied nodal force and each vertex of the mesh, the Fx, Fy and Fz components 

of the applied force and the angle between the applied force and a vector describing its 

relative position to each vertex. Tonutti et al. (2017b) trained artificial neuro-networks 

(ANN) and support vector regression (SVR) models and compared their performance. The 

SVM regressor yielded lower mean displacement errors of 0.191 +/- 0.201 mm compared to 

0.456 +/- 0.384 mm for the ANN with one hidden layer.  With errors below 0.5 mm and 

computational times below 10ms, this is so far the most accurate and fastest estimator of 

physically-based deformation found in this literature review. Compared to Tawbe and Cretu 

(2017), using the FEM data to train the ML estimator achieved more accurate results as the 

object topology remained unchanged for examples and predicted cases. 

Recently, the “Graph Network-based Simulator” (Sanchez-Gonzalez et al., 2020) was 

proposed. An interactive simulator of particle physics that discretises the mechanical state of 

deformable objects and fluids as a particles-based mesh-free simulation. By doing so, the 

material’s deformation is computed through kinetic energy broadcasting between all particles 

of the system.  
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6.2 Machine learning on graph-structured data. 

In the previous section, we discussed how standard multilayer perceptrons (MLP) had 

been trained with finite element simulation data to speed up calculations of elastic 

deformations over the vertices of a volumetric mesh. These techniques treat each vertex of 

the mesh as an independent training example ignoring its relationships with its neighbours. 

In numerical simulations, the dynamic calculation of stress accumulation depends on the 

communication of stresses between mesh elements. This phenomenon is an important 

feature that would be ignored by flattening the input elementwise, as previously explored by 

Tonutti et al. (2017b). Popular networks to keep relational learning between data structures 

are Convolutional Neural Networks (CNN) for grid-shaped data and Recursive Neuro 

Networks (RNN) for sequential data. However, unlike FEM meshes, relationships between 

entities in regular grids or 1D sequences are constant over all the instances. In a volumetric 

FEM tetrahedral mesh, the number of neighbours connected to each element forming the 

volumetric mesh depends on the location of the element in the mesh. In cases where the 

mechanical behaviour of composite materials is modelled, the data can require different types 

of representations of the relationships between the elements. We believe that learning on 

graph-structured data provides a suitable alternative to keep the geometric topology and 

element-to-element relationships of a tetrahedral FEM mesh. This chapter explains the 

evolution of learning in the graph domain, emphasising its uses as estimators in physics 

engines. In some cases, the notation used by different authors has been adapted from their 

original publication to keep consistency and facilitate the comparisons between relevant 

contributions found in the literature.  

6.2.1 Graph nomenclature  

A graph G is a data structure that possesses a total of 𝑁 nodes 𝑛! ,	each one with 

attributes stored in the features vector 𝐧! . The nodes are usually connected through edges 

e!- (except sets of nodes with no connection between them, like point clouds). This 

relationship between nodes can also contain weights or information stored in the vector 𝐞!- . 

In some cases, external effects that influence all nodes and/or edges can also be included as 

part of the graph, and its attributes are stored as global/universal features (𝐮). Following 

Battaglia (2018) notation, we will refer to the nodes, edges and global objects as entities of the 

graph. 



  |  109	

Graph data structures can also be classified according to their internal organisation 

(Figure 40). When the relationships between two nodes (𝐧! ,	𝐧-) remain immutable if it is 

evaluated in the inverse order (𝐧- ,	𝐧!) the graph is referred to as undirected. However, in some 

applications, the order of how the message is passed between nodes requires making a 

distinction between the edge’s sender and receiver. These types of graphs are known as 

directed. Similarly, if a directed graph contains a closed circuit, we say that the graph is cyclic. 

An example of a non-cyclic graph is an RNN whose hidden states are comparable to directed 

acyclic graphs. Finally, if a unique logical index for each node is required to determine the 

relative position between nodes, the graph is considered positional. 

The graph’s connectivity can be described by its adjacency matrix A and degree matrix 

D. The adjacency matrix of size 𝑁𝑥𝑁 is a sparse matrix where 𝐴!- 	≠ 0, only if 𝐞!- exists. 

When A is not a binary matrix, it includes weights for the connection between nodes (edges). 

The degree matrix D is a diagonal matrix with values 𝐷!! = ∑ 𝐴!-O
-89  

6.2.2 Machine learning on graphs for dynamics and physically-based interactions. 

The Graph Neural Network (GNN) is a model proposed for supervised learning on 

any type of graph-structured data. Gori et al. (2005) and Scarselli et al. (2009b) suggested that 

a learnable function 𝜏 would be able to map the graph G, and its nodes 𝑛! 	into an output 

feature vector  𝒐	 ∈ 	ℝA. Instead of flattening the data and using each node in the graph as 

a separate input for an MLP; this type of learning is valid for all the types of graphs described 

in Figure 40.  

The graph neural network (GNN)(33)-(35) assigns and encoded status 𝐱! (33) to each 

Figure 40 Types of graph structure data 
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node depending on its own feature values 𝐧!, the features assigned to their connected edges 

𝐞!- and the encoded and feature status of its neighbours 𝐱"%[!] and 𝐧"%[!]. The values 𝐱! per 

node are updated recursively (34) until converging to a stable solution. Scarselli et al. (2009b) 

compared this recursive process to an encoder network. A fast convergence to a unique 

solution of 𝐗(𝑡) is ensured given the Banach’s fixed point theorem (Khamsi and Kirk, 2001), 

for any initialisation of 𝐗(0). For an in-depth demonstration of how the learnable update 

functions 𝜙" and 𝜙& are ensured to be unique contraction maps, we refer the reader to 

Scarselli et al. (2009b). After a stable status for 𝐱! 	has been reached, the status variable and 

the original node features are taken as inputs to compute the decoded output (35).  

𝐱! =	𝜙"j𝐧! , 𝐞! , 𝐱"%[!], 𝐧"%[!]k			; 			1 ≤ 𝑖 ≤ 𝑁 (33)   

𝐗(𝑡 + 1) = 	𝜙"(𝐗(t), 𝐍)			; 								𝐱	 ∈ 	𝐗 (34)   

𝒐! =	𝜙&(𝐱! , 𝐧!)				; 									𝒐	 ∈ 	ℝA	 (35) 

Li et al. (2015) proposed the Gated-Graph neural network (GGNN), a framework for 

directed graph classification tasks. Instead of having to ensure 𝜙" to be a contraction map 

so that any initialisation for the encoded node’s states can be used, Li et al. (2015)  suggested 

initialising 𝑥!(0) with one-hot27 encoded annotations 𝐬! .	This is, 𝑥!(0) = 	 [𝑠! , 0]	; 	1 ≤ 𝑖 ≤ 𝑁. 

Instead of learning a single function 𝜙", this model expands the update of the encoded node 

 

27 Binary representation of categorical variables where only 1 bits are “hot” or TRUE.  

Figure 41 Nomenclature for the graph neural network. A node 𝐧$ , is connected through edges 
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representations into several steps in (36)-(39). The convergence of the encoding network is 

reached by iterating 𝑿(𝑡) through gated recurrent units (Cho et al., 2014). The nodes to edges 

information broadcast is performed more efficiently by learning a matrix 𝐶 = 𝜙%(𝑒), where 

𝜙% is a learnable function applied to the edges and shares some shape similarities with the 

graph’s adjacency matrix A and holds different values for incoming and outcoming messages.  

𝒂!(𝑡) = 𝑪[𝐗(𝑡 − 1)]6 + 𝑏 (36)   

𝒛!(𝑡) = 𝑎𝑐𝑡(𝑊1𝒂!(𝑡) +	𝑈1𝒙!(𝑡 − 1) (37) 

𝑟!(𝑡) = 		𝑎𝑐𝑡(𝑊'𝒂!(𝑡) + 𝑈'𝒙!(𝑡 − 1)	 (38)  

𝒙$(𝑡) = (1 − 𝒛$(𝑡),⨀𝒙$(𝑡 − 1) + 𝒛$(𝑡)⨀ /tan h 4𝑊𝒂$(𝑡) + 𝑈(𝑟$(𝑡),⨀𝒙$(𝑡 − 1)9: (39) 

When a graph-level output is desired, instead of connecting a “supernode” to all the 

nodes in the graph (Scarselli et al., 2009b); the GGNNs computes an output based on 

aggregation over all nodes in the graph and their encoded sR values (40). 

τ(G, n) = tan h§GactjNN9(𝐱i(t), sR)k	⨀tanh	(NN2(𝐱i(t), sR

S

R89

ª 
(40) 

Battaglia et al. (2016) proposed the Interaction Network (IN), another alternative to 

replace computing the encoded status 𝐱! per node n applied to estimate dynamic interaction 

between rigid bodies28. This model initialises the attributes of edges and nodes based on the 

dynamic conditions of each object (position, speed, acceleration) and triggers the first update 

of the edges’ attributes in terms of the object-to-object exerted forces. This step is followed by 

an aggregation of the newly updated edges into all connected node status, in their case 

positions and velocities. Compared with the GNN, the GN’s 	𝜙" is broken down into an 

update of the edges attibutes performed by the learnable function 𝜙% (41) and an output 

function 𝜙& (42) that takes as its inputs the aggregated updated edges and the attributes of 

each node. The Interaction Networks allow the inclusion of external effects to be 

concatenated with the edges and node features instead of treating them as a special node in 

the graph as proposed by Scarselli et al. (2009b). In the IN, the relationships are aggregated 

only at the receiver nodes;  𝜌∀!
%6,8→"8(𝐞𝒊,𝒋), where 𝑛- receives the effect of all the relationships 

 
28 Objects with neglectable deformation.  
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from all nodes 𝑛! 	. One of the main benefits of using IN is the ability to compute the dynamic 

status of objects, even thousands of steps in the future after being trained on a frame-in-

frame-out basis. Chang et al. (2016) explain how this rollout over long time sequences can 

be possible given the Markovian nature of physics laws. 

Instead of explicitly setting up the relationships between the nodes of a graph, Chang 

et al. (2016) trained their model to recognise interactions from all possible permutation of 

nodes j𝐧! , 𝐧-k through self-attention labels. Santoro et al.(2017) combined a similar 

approach with CNN to detect the presence of objects on a video sequence and learn the 

relationships between them (43). 

𝒆!-X = 𝜙%j𝐧! , 𝐧- , 𝒆!-k (41) 

𝒐- =	𝜙&j𝐧𝒋, 𝜌∀!
%6,8→"8(𝐞𝒊,𝒋), 𝐮k		 (42) 

On a survey by Gilmer et al. (2017), models that update the graph’s relationships values 

before updating the nodes are defined as Message Passing Networks (43). Gilmer et al. (2017) 

also implemented GGNN and IN for comparing the estimated properties on molecular 

compounds where each chemical element corresponded to a node on the graphs. They found 

that GGNN yields better estimations when multiplying the matrix C (36), with the original 

node features of the receiver node. Here, undirected graphs were adapted to fit the directed 

nature of (43) by duplicating and inverting all original edges. A global entity was also 

considered, but in this case, the authors modified Scarselli’s (2009a) concept of a supernode 

by assigning special features to its edges. 

𝒆!-X = 𝑚𝑎𝑡𝑚𝑢𝑙(𝜙%j𝒆!-k, 𝐧-)	 (43) 
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Figure 42 Graph network block. Encode-Process decode in  Sanchez-Gonzalez et al. 

(2018).Figure adapted from Battaglia et al. (2018)  

 

 

In an attempt to integrate different learning on graph techniques, Battaglia et al. (2018) 

created the Graph Network (GN29) framework (44)-(46). An open-source framework built 

based on the Google Tensorflow and DeepMind Sonnet30 libraries. The API is compatible 

with positional graphs as it stores an identifier of each one of the nodes and edges. As in 

Gilmer et al. (2017), the analysed graphs are directed, but undirected cases can be included 

by duplicating and mirroring the directed edges of the graph. A key feature that differentiates 

Graph Networks (GN) from other techniques that learn in the graph domain is that its 

outputs update the attributes in all of the graph’s entities31 while maintaining the connectivity 

of the input graph. This graph-to-graph nature allows GN blocks to be used to generate 

complex learning architectures. However, GN also requires maintaining shape invariance 

between its inputs and outputs as they are expected to have the same number of nodes. 

Shape invariance applies only to single-pass outputs, and it does not mean that all graphs 

used during training or validation should have the same structure. GN allows for the update 

functions 𝜙 to be any function, not restricted to neural networks. In case that NN are 

implemented, the trainable parameters are shared across all of the same entities. This allows 

the generalisation for graphs of different sizes during generalisation and takes advantage of 

parallelisation in training. 

 
29 Not to be confused with Scarselli’s GNN. 
30 https://github.com/deepmind/graph_nets. 
31 Entities of the graph are nodes, edges or globals. 
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𝑒!-X = ϕ% ®ρ"→% ®∀𝑛! ∈ 𝑈%68± , 𝑒!- , 𝑢± (44) 

𝑛!X =  ϕ"jρ%→"j∀𝑒!- ∈ 𝑈"6k, 𝑛! , 𝑢k (45) 

𝑢X  =  ϕM(ρ"→M(∀𝒏 ∈ 𝑮), ρ%→M(∀𝑒 ∈ 𝑮), 𝑢)   (46) 

The graph network model, represented as Graph Network Block in Figure 42, updates 

the attributes stored in the entities 𝑒!- , 𝑛! and 𝑢 following the Equations (44)-(46). Before 

the network ϕ% performs the first update call, the features of each edge are concatenated 

with the attributes stored on its connected nodes and in the global entity. The aggregation 

step performed by the function ρ"→%  broadcasts the value of the accumulated feature values 

from the nodes connected by the edge 𝑒! to the updated attributes of the edge 𝑒!-X. Similarly, 

the network responsible for the update of the nodes' attributes ϕ"  takes as its input the 

feature vectors of the nodes after being concatenated with the updated attributes of their 

adjacent edges and the attributes of the global entity. Finally, the global features are updated 

by ϕM, also taking the aggregation of the updated features 𝑛!X and 𝑒!-X as an input. In the 

aggregation functions ρ)→A in Equations (44)-(46)), 𝑙 and 𝑚 can be any entity of the graph 

(𝒆𝒊𝒋, 𝒏𝒊 and 𝒖). The aggregated values are the features in all the instances of the entity 𝑙 

contained in the neighbourhood 𝑈 of 𝑚! .  Sanchez-Gonzalez (2018) suggested linking the 

GN to a decoder and an encoder neural network responsible of finding the best 

representations for the values of each entity independently. The authors also suggest carrying 

out k recursions over the block to allow the network to pass messages over a specific range 

of neighbours in a similar way to the original GNN. By doing so, each nodes’ “level of 

influence” increases by one connection on each recursion and allows nodes to communicate 

their attributes to others up to k edges away. For many applications, the number of recursions 

k is not higher than 3, as the effects of a node on another node decrease with the number of 

connections between them. 

A similar structure to the GN has also been applied for graph generation (Li et al., 

2018).  This model overcomes the limitations of a static number of nodes per graphs by 

recurrently evaluating the graph structure and adding edges or nodes as required. It updates 

edges and nodes features to determine whether to include a new node and define its 

connectivity. The apparent limitation of this Generative Network is that once the size of the 

graph reaches a specific limit, updating the attributes inside the node and edges is expensive 

to compute as the probability of creating a new edge must be evaluated against all existing 
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nodes.  

GN can also be applied to reinforcement learning (Zambaldi et al., 2018), where the 

graph structure is built on runtime by a self-attention mechanism in charge of inferring 

relationships between the player and interactable agent in the environment. The status of the 

environment is passed to the model as an image translated to a GN Block via a CNN. 

Another implementation of GN was proposed for physics and gravitational law (Cranmer et 

al., 2019) and particle mechanics (Sanchez-Gonzalez et al., 2019). In the latter one, the rollout 

performance over thousands of steps in the future was increased by adding a Runge-Kutta 

integrator and describing the behaviour of the particles through Hamiltonian equations 

(Hamrick et al., 2018).  

Recently, an application of GN was developed for computing deformations in 

discretised objects (Sanchez-Gonzalez et al., 2020). In our understanding, this is the closest 

work to the model we propose in Chapter 7.3. The “Graph Network-based Simulator” also 

implements an encoder-process-decoder model (Sanchez-Gonzalez et al., 2018). 

Deformations are handled by discretising objects and fluids as a mesh-free/particle-based 

simulation. The graph update focuses on estimating each particle's linear and angular 

acceleration to resolve the next system state by an Euler integrator. However, the prospective 

interactions 𝒆!- between all particles in the system are required to be evaluated after each 

rollout step of the GNS. This continuous search for potential relationships between the 

particles of the system can cause the interactive speed of the system to drop as the number 

of particles increase significantly.  

6.3 Summary. 

In this chapter, we presented a review of data-driven techniques that merge the 

accuracy of numerical simulations with the efficiency of data-driven and machine learning 

techniques to estimate deformations based on physical inputs at faster computation times. 

The main approaches identified include models that linearize the FEM stiffness matrix and 

constitutive equations of the materials using machine learning techniques. However, some 

physical deformations can have a mechanical behaviour so complex that it is impossible to 

be accelerated using such linearization approaches. In those cases, other authors have 

proposed methods to approximate deformations based on offline precomputed FEM 

simulations.  
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Typically, it is not possible to represent the relationship between the elements on a 

FEM meshes in the Euclidean domain because of their variable size and orientation. 

Therefore, a graph is the most appropriate data structure to keep the geometric topology and 

element-to-element relationships of a tetrahedral FEM mesh. This chapter explains the 

fundamentals of graph-structured data and learning in the graph domain. We have 

introduced the concept of machine learning on graphs as they provide a suitable architecture 

for learning through message passing mechanisms 

Except in Chen et al.(2015a), the literature showed that the data-driven methods 

proposed so far are highly constrained to the geometry and material used during training. 

Additionally, the cumulative effect of plastic deformation was not found to be considered in 

any of the reported models. This shows that more research is needed in this area to allow 

simulations that include a change of the mesh topology. One possible solution to include 

discontinuities is to implement the embedded finite element method or increase the training 

data's size to include the analysis of several stages of the defined mesh. 

It is also clear from the literature review that approximation errors of mesh 

deformations below 1mm require a large dataset on which an exploratory data analysis must 

be performed to identify the relevant training features to be used. Approaches where the 

training data comes from machine vision-based capture systems are highly realistic because 

they bypass any simplification performed while building the FEM model. However, they do 

not apply to this research since acquiring a significant amount of visual data intraoperatively 

would compromise the safety of the patient undergoing surgery. Also, since reaming is a 

plastic non-reversible procedure, it would be necessary to find a significant number of 

samples with comparable mechanical properties, which is extremely hard in practice. 

Therefore, the best approach to train our ML learned simulator would be through offline 

simulated data obtained by theoretical biomechanical models, as reported in Tonutti et al. 

(2017b). 

 Finally, more research is required to include the effects of more than one input force 

for neural-network models. As most of the algorithms can be parallelised and multiple force 

input points and their cumulative effect can be further researched. 

The word node in this document will refer exclusively to the entities in graph-structured data 

to avoid confusion. In contrast, the corners of a volumetric or geometrical mesh will be 

referred to as vertices.  
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7  Machine Learning for reaming simulation. 

This chapter describes the structure of the training data and learning strategies used 

to build a learned simulator capable of predicting the amount of removed bone 

during reaming operations. Each graph was formed by 20406 nodes corresponding 

to the number of tetrahedrons in a volumetric mesh processed via XFEM. In total, 

4000 graphs were used for training and 1000 for validation. Finally, we describe the 

visualization pipeline responsible for applying the linear threshold to the output of 

the GN model and provide a 3D visualization of the resurfacing results. This final 

step provides the connection between machine learning into the computer graphics 

domain to ensure that the developed machine learning-based 3D deformation 

renderer is compatible with the design process of common VR/AR simulators. 

 

None of the simulators available for THR identified in Section 2.2.1 provides an 

accurate representation of resurfacing procedures such as acetabular reaming based on the 

interactive force inputs exerted by the user. Furthermore, state of the art FEM and XFEM 

solvers are unable to deliver results at interactive framerates for meshes with over 5k 

elements (Section 4.2). Therefore, a novel approach is required to speed up the estimation 

of material removed during acetabular reaming and allow for interactive VR/AR simulation. 

As mentioned in Section 6.1.2, current machine learning models have only been used to 

estimate elastic deformations based on FEM data. In the literature review described in 6.2.2, 

we identified the GN (Battaglia et al., 2018) as a suitable ML architecture to capture the 

physical relationships between elements of a graph and sustain accuracy over up to a 

thousand rollouts. Therefore, by using these models to estimate plastic deformations on 

Chapter 7 
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bone, we will introduce the current state of the art of data-driven and Machine Learning 

techniques that can be used to speed up these calculations and take advantage of their 

accuracy at interactive framerates.  

7.1 Learned 3D physically-based simulator. 

The second objective proposed for this research in Chapter 1 train a Machine Learning 

(ML) model capable of estimating the removed material on a refined area of a volumetric mesh faster than 

traditional FEM methods”. To be compatible with the current technological trends in surgical 

simulation, the ML model should take as inputs the readings from a triaxial force sensor and 

a 3D position tracker. Figure 43 lists the stages proposed for a deformation model to estimate 

the change on the volumetric mesh during reaming operations. During the interaction, the 

value of the accumulated deformation energy per volumetric element is dynamically updated 

in a similar way as the results obtained from the FEM simulation (Figure 39). This update is 

performed by a trained encoder-core-decoder GN model that reads the tracked position of 

the tool and the magnitude/direction of the applied force as its inputs. After the strains and 

accumulated energy in the volumetric mesh have been updated, the removed elements are 

easy to identify by applying a linear threshold to their accumulated energy value. Then, the 

volumetric change in the mesh is sent as an input to a separate model that estimates the 

relative displacement of the reamer based on the amount of material removed. Once both 

the mesh and tool's relative position have been computed, they are transformed into inputs 

Figure 43 Flowchart of our 3D physically-based learned deformation orenderer. 
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for estimating the status of the mesh in the next frame; and the process repeats. 

7.2 Feature engineering and data cleaning 

7.2.1 Feature selection 

At first, identifying the elements removed per frame seems like a classification 

problem. However, a single-frame classification is not sufficient to ensure interactive energy 

accumulation during the learned simulation and ensure accuracy over several cumulative 

rollouts. Therefore, it is essential to build a machine learning model based on a regression 

step that handles the diffusion of energy inside the material during cumulative deformation. 

This section describes how results from finite element simulation are transformed into 

features for a Graph Network model.  

Given that the FEM simulation of the acetabular reaming was executed on a dynamic 

solver, the results were stored in frames describing the dynamic evolution of the system per 

time. As discussed in Section 5.4, useful parameters to define the element status of each 

element will be the binary STATUS label, the Von Mises (σeF) equivalent stress and the 

PEEQ value. To better understand how each of these parameters can help a model identify 

removed elements from the mesh, Figure 44 illustrates the histograms with the frequency 

distribution of these metrics at a random frame. The top graph reinforces that even though 

(σeF) is a popular parameter used in failure analysis, it is not a perfect feature to separate 

Figure 44 Frequency distribution of stresses values. 

1- 
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both classes as elements stresses are zero after failure. The middle histogram shows the 

frequency distribution of the PEEQ value. The histogram was inverted and shifted by 

computing  1 − 𝑃𝐸𝐸𝑄! to produce a feature distribution that would yield lower values for 

elements that have been remove from the mesh and therefore should not contribute to the 

energy diffusion process. However, the values of 1 − 𝑃𝐸𝐸𝑄! , are still not sufficient to 

produce and adequate separation boundary between the two classes.  

We propose a novel equation that combines the PEEQ and σeF into the parameter α 

(47). This parameter makes it possible to acquire a more clean separation between both 

classes via a threshold value to assist the classification of removed elements. The labelling 

parameter α  acts as a mapped probability distribution of the element to be still part of the 

base mesh or to have been removed due to strain accumulation. In other words, removed 

nodes yield values of α close to zero and elements under no stress condition will have a label 

of 1 and contribute to the aggregated passed message in the graph.  In (47), µ and τ are scalar 

parameters that depend on the material constitutive equations and damage model chosen 

during FEM simulation (See section 5.2.1). For the material models used in Chapter 5, their 

values are 0.38 and 0.42, respectively. After transforming the PEEQ and VM values to α  

given the equation (47), the resulting frequency distributions of the elements removed and/or 

remaining (Figure 44)  are easier to separate linearly given a threshold value determined during 

data exploration.   

Other geometrical features included during the training stage were the static position 

of each tetrahedron's centroid and the position of the tool measured at the centre of the 

reference system attached to the centre of the reamer’s head as mentioned in section 5.3. The 

role of each one of these features in the graphs will be explained in the next section. 

7.3 Graph network model 

7.3.1 Graph structure 

To fit into a graph architecture, each element from the FEM mesh was translated into 

a node of a graph. Undirected edges were created between tetrahedral mesh elements with 

adjacent triangular faces. Finally, the loading conditions are added as the global entity (Figure 

α! =  1 − (𝑃𝐸𝐸𝑄! + (𝜏 ∗ 	𝑚𝑎𝑥(0,1 − (
𝜇𝜎F
10Z )) 

 

(47) 
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45).  

• 𝐧𝐢: The features stored in the nodes hold the relative position of each tetrahedral 

element to the tool’s reference point and a parameter 𝛼 per node. The labelling 

parameter 𝛼 is computed to map the PEEQ and σeFvalues to a probability 

distribution of the likelihood of each element to remain in the base mesh due to 

strain accumulation. In other words, the energy diffusion on the mesh weakens 𝛼 at 

each element and therefore weakens its contribution to the graph's structure and 

probability to remain active. Therefore, removed nodes yield values of 𝛼 close to 

zero and elements under no stress condition will have a label of 1. Adding this extra 

label to the attributes of the nodes creates internal attention labels that will encourage 

the model to aggregate features of active nodes over removed ones. The training data 

generated in the previous chapter has a single material model that is constant over 

the entire mesh domain. Hence, the properties of the material are not included as 

attributes of the graphs. However, the model is easy to adapt to compound models 

by adding the material properties corresponding to each group of elements in the 

mesh. 

• 𝐞𝐢𝐣: The edges’ features vectors include a binary one-hot encoded representation 

𝑓&"%]&* of the status of both connected nodes j𝑛! , 𝑛-k . This is, if for at least one of 

its nodes  	𝛼	 < 	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then the edge will be labelled as “broken” in a one-hot 

encoded way. This status feature represents “present or broken” connections due to the 

progression of the machining operation. 

• u:	This entity holds the three principal components x,y,z of the tool’s force measured 

at its centre of reference. 

7.3.2 Graph network (GN) application 

Figure 45 Feature vectors for each entity of our graph-shaped data. 
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The GN framework is based on early work referred to in the literature as the graph 

neural network model (GNN) (Gori et al., 2005; Scarselli et al., 2009b); a model for supervised 

learning on any graph-structured data. GNN proposed that a function τ that would be able 

to map the graph G, and its nodes 𝑛!  into an output feature vector 𝑜 ∈ 𝑅A. Instead of 

flattening the data and setting it as input for an MLP, this type of learning conserve relational 

inductive biases for different types of graphs (Scarselli et al., 2009a). An essential step of the 

GNN is the embedded aggregation of the features of the nodes to their connected 

neighbours. This node-to-node message passing step is performed recursively. By doing so, 

each nodes’ “level of influence” increases by one connection on each iteration. Several authors 

have proposed mechanisms to enhance the message-passing between nodes (Zhou et al., 

2018). The GN framework was selected as the deformation estimator as it has effectively 

proven to be successful in learning simulations in mechanics over extensive rollouts while 

being trained on a single-step basis (Sanchez-Gonzalez et al., 2018, 2019, 2020). Furthermore, 

its graph-in graph-out data flow facilitates the sequential predictions desirable for an 

interactive estimation of the surface changes during a reaming procedure.  

The network structure used follows the encoder-core-decoder model shown in Figure 

46. After the results from the FEM simulation are reshaped into the desired graph format 

(Figure 45), the encoding and decoding neural networks are trained to find the best 

representations for the GN block (Sanchez-Gonzalez et al., 2018, 2019, 2020). The recursion 

in the GN block is performed k times to allow nodes to influence others up to k edges away. 

At the end of the network, a final linear transformation W is applied to the updated decoded 

nodes attributes 𝒏𝒊X  to reshape the network output to the 𝑅𝟙 domain.  

For our model shown in Figure 46, the update functions are formed by Multi Layer 

Figure 46 GN encoder-core-decoder model used.  
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Perceptrons and GN aggregators listed below:  

• ϕ%"#&$%'/$%#&$%'O  : One hidden layer with 40 neurons. 

• ϕ": 2 hidden layers with 300 neurons each. 

• ϕ%"#&$%'/$%#&$%'Y : 2 hidden layers, 20 neurons each. 

• ϕ% : One hidden layer with 30 neurons. 

• ϕ%"#&$%'/$%#&$%'M : 2 hidden layers, 11neurons each. 

• ϕM : One hidden layer with 20 neurons. 

• ρ)→A: ∑ 𝑙  ;   ∀𝑙  ∈ 𝑈A 

As shown in Figure 46, after the encoder-core-decoder model has generated an output 

𝒏𝒊X, this tensor is mapped to a probability distribution 𝛼!X  at t+1 computed as described in 

(48). The optimization of the 𝛼!X as target variable is performed by minimizing the value of 

the sigmoid-cross entropy cost function 𝑠𝑖𝑔(𝑁X) as described in (49). Throughout the 

development of the volumetric learned simulator, the Mean Squared Error was explored as 

an option of the target cost function to minimize. However, Figure 47 exemplifies that 

optimizing the sigmoid cross-entropy cost produces a smoother output surface that is less 

influenced to the drift product of the accumulated error.  

α!X =  
1

1 + 𝑒>` 𝒏𝒊>
 

(48) 

7.3.3 Learning 

𝑒𝑟𝑟! = −%&𝑚"#
$ ⨀	𝛼"$%&+	⨀	𝑙𝑛(𝑚"#

$ 	⨀	𝛼"')
(

")*

 
(49)  

Given that the GN was proven effective in maintaining accuracy on rollout given a 

single-step training by its authors (Sanchez-Gonzalez et al., 2018, 2019, 2020), the training of 

the Graph Network was performed on a single-frame basis. During training, graphs were 

built on a frame t will be considered as inputs, and the updated stress-strain state will be 

referred to as t+1. In (49), since only nodes where α!* > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are considered to be 

active in the input graph, the cost function 𝑒𝑟𝑟c is only evaluated on these nodes. To do so, 

the binary filter 𝑚!" is applied to both the predicted 𝛼!X and target 𝛼!*?9 values based on the 

status of each node at the input t. Therefore, the model neglects the updates on the energy 

of nodes that are considered inactive or removed in the input graph.  
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Once the accumulated energy per element α! has been updated, elements that were 

considered removed from the base material at the input frame t, will keep their previous α! 

value instead of continuing to update their attention label. The tool’s displacement is updated 

given the removed tetrahedrons (See next section 7.3.4), and it is used to update the relative 

position between each node and the reamer. Finally, the edges and global features are re-

constructed as described in section 7.3.1. Once the new graph is created, the updated α! per 

element works as a long-term memory value inversely proportional to the element’s 

accumulated stress values. 

7.3.4  Regression for reamer displacement. 

After a new group of nodes are removed32 from the graph on each frame, we must 

estimate the displacement of the tool to determine the penetration of its teeth into the 

machined material. However, in a system such as the one proposed in Figure 55, the tracked 

tool will not change its real position due to the physical constraints added by the passive 

haptic model. Therefore, after the first frame of interaction, only the tracked orientation is 

valuable, and the tool's displacement must be overlaid digitally in the rendered VR/AR 

environment. Estimating the displacement of the reamer is essential for valuable simulation-

based learning experiences as it would not be possible to compute the relative position 

required in the graph architecture described in section 7.3.1 without an estimation of the 

updated tool's position.  

 
32 The nodes of the graph are never removed from the graph but their presence is ignored as thir a attribute 

yield 0. This behaviour corresponds to a removed tetrahedron in the FEM mesh. 

Figure 47 Comparison of optimization alternatives 
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Ideally, the Graph Neural Network is able to compute the displacement of the tool as 

an update of the global attributes in the graph. Nevertheless, optimizing the learning for two 

independent cost functions increases the complexity of the problem. Thus, the GN was 

trained to focus on the volume change of the mesh so that no trade out is necessary when 

optimizing for the alpha values and the tool’s displacement. An independent Machine 

Learning model Φ was trained to estimate the displacement on the material removal tool 

during the interaction.  

During the design stage of the 3D deformation renderer, several machine learning 

models Φ were trained with the same input and compared in their performances. The 

selected models included Random Forest, Support Vector Machine regressors, Ridge and 

Linear regression. A Grid Search was applied, variating the hyper-parameter for each model 

available in scikit-learn. The k-neighbours algorithm was not included in the comparison 

since such regressor would not be able to extrapolate over cumulative deformations not 

similar to the included in the training data. This project proposes a Random Forest regressor 

that takes as inputs position of the reamer in 3D space, the inclination and antroversion 

angles (𝜃 and 𝛾) and the number of new tetrahedrons classified as removed elements since the 

previous frame. The output of this regressor is an estimation of the displacement in the 

direction given by the angles 𝜃 and 𝛾. This value is used later as input for an integrator to 

update the tool's position.  

Figure 48 Data exploration reamer displacement in some training examples vs number of 
removed tetrahedrons, the different series in the legend correspond to FEM results under 

different reamer orientations. 
.. 
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During FEM simulation, the direction of the force determines the unique direction 

along which the reamer is expected to move. Therefore, only the magnitude of such tool’s 

penetration in the bone per frame is required. Figure 48 shows the correlation between the 

displacement magnitude at the frame t+1 against the amount of removed bone since frame 

t. In Figure 48, different colours correspond to FEM results under different reamer 

orientations. 

∆𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = Φ(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, Δ𝑚𝑒𝑠ℎ, 𝜃, 𝛾) (50)  

7.3.5 Results 

The trained encode-core-decode learned simulator requires 579.11ms to build the 

input graph per each frame and to render the selected tetrahedral elements  (Algorithm 1, 3-

7 and 14). Once the data is shaped as an adequate graph, an average of 127ms are required 

to compute an output  α!X values (Algorithm 1, 8-12). This is 1639 times faster than the time 

required to generate the results per frame after the FEM simulation.  

During the interactive simulation, the volumetric renderer reads the α!X  values of each 

node, corresponding to the accumulated reaming energy on each element. Then, it renders 

only the tetrahedrons with α!X  values above the threshold established to build the mask 𝑚!" 

during training. The computed output on frame t+1 is used as the input to compute the next 

frame t+2. In Figure 51, the GN's prediction is computed interactively while the Ground 

Truth is read from a database containing the results of a FEM simulation. Figure 51(b) 

illustrates the resurfacing results by using the mesh in Figure 51(a) as input, and the tool’s 

orientation of θ:15º, γ:45º. Figure 51(d) shows the resulting surface after 60-step rollouts. 
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The tool's geometry was hidden to illustrate the changes on the material's surface. In 

Figure 51 (b,c,d) the tool is displaced and rotated thanks to its axial load, but it was hidden 

to display the change of status on elements of the mesh.  The remaining unconnected 

tetrahedrons at the bottom of the ground truth mesh are a result of the encastre boundary 

condition set at the bottom vertices of the deformable mesh during the FEM pre-processing 

stage. 

Given the size of the mesh, there is clearly a class imbalance between the elements 

classified as removed and remaining/active. Therefore, accuracy is not a sufficient metric for 

determining the performance of the trained GN model. Precision (51) and Recall (52) are 

more adequate performance metrics for such imbalance. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

 

(51) 

𝑅𝑒𝑐𝑎𝑙𝑙	 = 	
𝑡𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
(52) 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 ∗ 	𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 + 	𝑟𝑒𝑐𝑎𝑙𝑙 

(53) 

 

Algorithm 1 GN for machined surface prediction. 
1: While Machining do 
2: Input Graph connectivity, tool’s position, tetrahedral centroid position, 

𝛼.$
	012,tool's axial force. 

3: Build Gin: 
4: 𝑟𝑒𝑙$ ← (𝑡𝑒𝑡𝑟𝑎ℎ𝑒𝑑𝑟𝑜𝑛345 − 𝑡𝑜𝑜𝑙345)  
5: 𝒏𝒊 ← (𝑟𝑒𝑙$ , α$)  
6: 𝒆𝒊𝒋 ← 4𝑓4('840(𝑛$ , 𝑛9,9  
7: 𝒖 ← (𝒇𝒐𝒓𝒄𝒆:;$:<)  
8: 𝑮𝒆𝒏𝒄 ← ϕ'()4-'@(𝑮𝒊𝒏)   
9: 𝑮. ← 𝑮'()   
10: for k steps do 
11: 𝑮. ← 𝐺𝑁(𝑮'() , 𝑮.)  
12: α$. ← 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊ϕ-')4-'@(𝑮.),  
13: if  α$´ > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then 
14 Render tetrahedroni 
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Given an unseen orientation of the reamer, the trained GN model updates the value 

of accumulated stress on each of the 20406 tetrahedral elements that constitute our mesh 

during the prediction task. Once this value is updated, the tetrahedrons to be removed from 

the mesh are identified using a threshold condition. After using each single-frame output as 

input for the following prediction repeatedly for up to 60 iterations, our model can maintain 

an accuracy of up to 90.8% in identifying the status of each element given their value of 

accumulated stress. The results for the mean accuracy and precision metrics on unseen data 

are listed in Table 10. These values are computed as an average for the listed angles γ over 

values of θ distributed between 0° and 360. These performance measurements are computed 

relative to the tetrahedrons classified as removed from an initial mesh state t at the end of 

the rendering pipeline. It is worth noting that the definition of precision and recall makes 

them unstable when only a small number of elements (true positives) is removed. In other 

words, in cases where both the ground truth and the learned simulator removed 0 elements, 

these metrics yield values of 0 even though a good performance was observed.  . 

The Graph Network shares information between the nodes of the graph (tetrahedral 

finite elements) during the learning stage according to the relationships described by the 

graph's edges. To illustrate the advantage of including the geometrical relationships between 

entities, we compared the predicted α!X from a trained GN block and a Multi-Layer 

Perceptron (MLP) in Figure 49. The Multilayer perceptron (MLP) model used had the same 

architecture as the network ϕ" described in section 7.3.1 as the one responsible exclusively 

from the update of the node’s attributes. Both GN and MLP models were trained for a total 

Figure 49 Scatter plot for Predicted and Real updated α$. values. Multilayerpercepton (MLP) vs 
the encoder-core-decoder GN model trained with our FEM data.  
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of 350 epochs. The GN encode-process-decode model holds a better correlation between 

the ground truth and the predicted αs. It is also highlighted that for the training data used 

and labelling the elements as removed when their α!X is lower than 0.3, we obtained the 

lowest quantity of false negatives and/or false positives when using GN based model.  

Figure 50 shows the correlation scatter plot for the ground truth and predicted values 

of reamers displacement magnitude on different estimators evaluated on unseen data. As 

𝜸 t+1 t+30 t+60 

Acc  Rcll F1 Acc  Rcll F1 Acc  Rcll F1 

0 75.3 79.4 77.3 76.2 98.8 86.1 90.8 95.3 92.9 

15 69.3 59.4 63.97 92.1 93.5 92.8 92.2 93.5 92.8 

30 69.3 58.1 60.6 85.2 85.1 85.1 85.5 84.7 85.1 

45 76.7 71.1 73.8 86.1 83.3 84.7 85.2 87.1 86.1 

Table 10 Accuracy (Acc) and Recall (Rcll) scores for selected removed elements in mesh after 1,30 
and 60-step rollouts on the test dataset. Values in percentages. 

Figure 50 Comparison of regression algorithms for prediction of reamer displacement. The 
estimations were evaluated from the test data. 
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mentioned in Section 7.3.4, a Random Forest model with 100 trees was selected as a regressor 

to estimate the displacement of the tool due to the removal of material as its MSE was the 

Figure 51 Results of resurfacing on curved surface. (a) Heatmap of ground Truth values on each 
tetrahedron (b) Heatmap representation of predicted values of accumulated stress on each 
tetrahedron on frame t. 

Ground Truth 

(a) (b) 

t=4 
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t=20 

t=60 
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smallest one from all considered regression models.  

7.4 Modern GL – openGL for python 

During the simulation, the nodes' values of the graphs representing the volumetric 

mesh are dynamically updated on each output frame. As described in Chapter 1, VR/AR 

systems are able to tracks the tool’s position and connected force exerted by the user to 

estimate an interactive resurfacing update on the machined surface. At the initial input frame 

t, the values of the node’s labels  α! are updated. It is worth noting that elements considered 

to have been removed from the base material already will keep their previous α! value. The 

tool’s path is also updated given the removed tetrahedrons, and it is used to compute each 

node relative distance feature.  

Finally, the edges and global features are further constructed, as described in section 

7.3.1. Once the new graph is created, the updated α!  work as a long-term memory value of 

the accumulation effect of the reaming energy. Since the total number of nodes and edges in 

the graph remains immutable during the entire simulation, the selection of tetrahedral 

elements is made inside the simulator’s visualization pipeline. Since the total number of nodes 

and edges inside the graph remain immutable during the entire interaction, the selection of 

tetrahedral elements is done inside the simulator’s visualization pipeline. The rendering 

pipeline is based on the one provided for volumetric meshes inside the modernGL library 

(Forselv 2020) as it was easy to connect to the results of the GN API. During the interaction, 

the geometry shader reads the updated α!X values per element and construct the tetrahedrons 

Figure 52 Render Pipeline 
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where the threshold condition is satisfied. The updated α!X values feed the construction of 

the new edges and nodes features for the graph used as input for the next frame. 

Once the updated α!Xs are estimated for each frame, they are written into a 2D 

greyscale texture of height H, and width W: where H x W is equal to the total amount of 

nodes in the output graph and/or the total amount of tetrahedral elements in the volumetric 

mesh Figure 52. The primitive identifier available in OpenGL allows the geometry shader to 

match each pixel of the 2D texture with its corresponding tetrahedron. Therefore, each pixel 

of the texture corresponds to the α!X value of each tetrahedron. The vertex coordinates are 

passed from the vertex shader along with the texture to the geometry shader, which reads 

the grayscale value in the texture and only renders the triangular primitives for tetrahedrons 

with α!X above the defined threshold. Once the triangular faces and face's normals are built,  

these values are passed to the fragment shader responsible for the final image rasterization 

on the display device. 

As mentioned in Section 5.1.1, given the high GPU memory requirements for 

training GN-based models with fine volumetric meshes, it would be inefficient to simulate 

areas of the pelvic bone that the user will not be interacting with during simulation-based 

training. Furthermore, the FEM output for a bigger mesh would be exponentially larger as 

the total size of the meshed object would increase. Alternatively, we propose to re-align the 

volumetric mesh extracted from its geometrical parent mesh, as demonstrated in Figure 53. 

After achieving a visually pleasing integration of the volumetric model with a geometrical 

mesh, the rendering pipeline can be linked with other 3D geometrical meshes and fed into a 

game engine platform to help achieve visual immersion and provide the interaction desired 

for the training environment (Figure 54). 

Figure 53 Geometrical mesh construction fitted to volumetric mesh. The assembly offset is 

intentional to show that perfect fit between the surfaces is possible 
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7.5 Summary 

This chapter explains the training methodology for a GN-based model capable of 

estimating the physical results obtained from our FEM simulation. The proposed model 

computes an accurate forecast of cumulative plastic deformations based on the force applied 

on the reamer and a given volumetric mesh. 

Our GN-based model not only identifies the elements to be removed on each frame 

but also estimates the accumulated stress evolution in all the elements conforming a 

volumetric mesh. Using data generated from the finite element method (FEM) results, the 

GN can learn to estimate the effects of nonlinearities such as friction or damping without 

extra processing time. Given that the GN requires its input and output graph to have the 

same number of nodes, we included self-attention labels to allow the model to distinguish 

between removed and remaining active elements.  

Our GN model can also be connected to a visualization pipeline similar to the one 

included in several game engines used to develop VR/AR simulators. 

Figure 54 Acetabular cavity exposed in hip model AR headsets. For Augmented reality 
applications the background is set to black corresponding to the absence of projected light on top 
of the environment. 
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8 Conclusions and future work 

One of the common limitations of open surgery simulators is the use of commercial 

haptic units to provide feedback. These devices shared a restriction to be implemented to 

replicate orthopaedic surgeries. This is, during joint replacement, the forces involved can 

reach values up to 2kN during implant fitting through impact and 300N during bone 

resurfacing stages (Mathieu et al., 2013). PHANTOM devices, developed by 3D systems, are 

the most popular implemented models. However, the technical specifications of their most 

capable devices report a limited tool’s range of motion relative small to provide the 

movements often required during surgery, a small handler’s size and maximum exerted force 

below 40N (3D Systems, 2017). These technological constraints make the human-machine 

interaction unnatural and reduce the value of the transferred skills. 

As a consequence of this technological gap, current VR simulators lack training 

arthroplasty skills with accurate haptic representation so that the skills can be translated into 

the theatre. Enhanced algorithms and hardware designs are required to build simulators easy 

to be accredited and incorporate in the training curriculum with certainty on their impact on 

skills acquisition. For that reason, this project proposed a solution with an alternative way of 

interaction, using passive haptics that would provide a more accurate force input into the 

deformable models.  

In this thesis, we have used gaming strategies to create a novel proposal for an AR 

simulator to help trainee surgeons understand imageless navigation systems' principles with 

lower financial investments than assigning one of these devices for training purposes. This 

simulator helped surgeons to understand how to set up an INS inside their surgical theatre 

Chapter 8	
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and manipulate their tools without interfering with the tracking performed by the infrared 

cameras on both the patient and the robot. All participants who try the simulator successfuly 

finished all the training steps required and expressed their comfort using the HoloLens as a 

headset. In addition, all of them agreed that the simulator allows an understanding of the 

skills needed in INS. Most participants believed that the system was easy to use and it had 

attractive visual content.  Additionally, we developed an alternative communication protocol 

between an AR headset and an external tracking device. Such protocol is useful for headset 

devices with limited computing capacity that must be reserved for graphical computations 

or to enable the usage of advanced accurate position tracking systems. 

The Johnson-Cook (JC) model integrated into the ABAQUS FEM solver was chosen 

as a numerical representation of the effect of the reamer procedure over bone tissue. This 

model has been validated in the literature as an accurate representation of the constitutive 

equation of the bone during cutting operations. JC is easy to implement in commercially 

available FEM simulators, and its required computational times allowed to create a dense 

database of simulated cases with relatively low pre-processing requirements. The fracture 

criteria are dependant on the evolution of the PEEQ stress. Therefore, this parameter 

provides a valuable metric to build features vectors for a machine learning model to describe 

the evolution of energy diffusion due to the interaction with the cutting force applied by the 

tool’s cutting edges. 

This thesis presents an ML model capable of learning to simulate the removed material 

on a refined area of a volumetric mesh faster than traditional FEM methods. This efficient 

interactive model can estimate the evolution of surfaces undergoing machining operations 

with results comparable to accurate numerical simulations. The trained ML model does not 

involve any bounding box simplification for collision detection or complex models for 

geometry contact evaluation to compute its output. Furthermore, by using outputs from a 

FEM analysis as training examples, it was possible to include in the estimations the effect of 

non-linearities usually neglected in an interactive simulation, such as friction between the tool 

and machined piece.  

The proposed parameter α, which describes the accumulation of reaming energy, and 

the relative position of each tetrahedral element to the reamer, are adequate features to 

include on the features stored as attributes of the nodes of a graph. Likewise, the binary 

encoded status of the edges works as an attention mechanism to identify broken connections 

between the removed element and therefore adds a barrier to the energy propagation through 
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such edges. The trained GN-based reaming model returned the updated α!X requiring in 

average 706.11ms to compute the output at each frame. Compared with the results produced 

by finite element simulation, this is more than 1639 times faster. Since only 127ms are taken 

from the GN model, parallelization techniques using multiple GPUs can speed up 

constructing the input graphs and improve framerates. This time efficiency on estimating 

FEM results is much faster than the one reported by  Chen et al. (2015b) where results were 

obtained 489 times faster than the numerical FEM simulation. 

The GN encode-core-decoder learned simulator trained in this thesis differs from 

the GNS physics engine proposed by Sanchez-Gonzalez (2020), as in our analysis, the 

relative movement between particles is not enough to describe machining operations. Our 

graph architecture is similar to the one used in the GNS. However, instead of computing the 

relative movement between particles, the 3D reaming deformation renderer focuses on the 

stress propagation that triggers the fracture of the tetrahedral primitives from a volumetric 

mesh. Moreover, instead of allowing the graph to interact only with physical boundaries in 

the simulation, we also included the influence of an external tool as a global entity affecting 

all elements of the graph to allow user's interaction. Similarly, our learned simulator computes 

the deformation energy per volumetric element of a mesh at each time step instead of 

requiring an additional integration step. Finally, unlike a particle-based system, the 

connections between the nodes of our graph never change since there is no relative 

movement between the tetrahedrons conforming the mesh.  Therefore, we maintain the 

graph structure static and add dynamic attention labels to determine whether a graph node 

still has influence over its neighbours or if it has been removed from the graph.  

The learned simulator developed throughout this research also predicts the global 

position of the centre of the reamer and its orientation according to the current bone volume 

distribution and force applied on a specific frame. Compared to MLP, the GN-based model 

was able to have a higher correlation between the predicted values and the ground truth. 

However, it is worth noting that learning on the graph domain requires significantly more 

memory than treating the stress-load status on each element individually. This is because of 

the parameters that determine the graph topology and the extra information stored in the 

edges. 

An interesting behaviour is illustrated in Figure 51 where some elements at the bottom 

of the ground truth mesh are clearly unconnected and they appeared to be not yet removed 
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from the volumetric mesh. This occurred due to the boundary condition applied to the 

elements at the bottom face of the mesh, which hinders their displacement in all directions. 

Since the trained GN simulator is agnostic of those boundary conditions, it learned to 

remove loose elements from the mesh without remaining debris at the bottom. Additionally, 

even though the encode-core-decode model is completely agnostic to the tool's geometry, 

the results reflect the spherical footprint of the reamer. Moreover, on a visual comparison 

between the surface resulting from both the FEM simulation and the GN estimator, the 

GN's generalisation produces a smoother output surface than the FEM ground truth. 

8.1 Future work 

• In the simulator presented in Chapter 3, the limited number of available 

orthopaedic surgeons in the Bournemouth area constrained the assessment of 

our INS AR simulator to a face validation33 test.  Furtheremore, conducting 

further test required human participants (surgeons) who were classified as 

front-line NHS workers during the COVID-19 global pandemic. However, to 

increase the confidence in the simulator to be used in formal medical training, 

it is important to assess its characteristics and technical specification given 

according to the validation strategies from Schijven & Jakimowicz (2005). 

Construct validity is an evaluation of whether the simulator can identify a 

novice from an expert user showing a contrast between the levels of expertise 

(Schijven and Jakimowicz, 2005). To this aim, it is crucial to count on a larger 

number of experts than the ones available in our area. We also suggest 

performing a content validity study. Content validity refers to the relevance 

and correctness of the abilities to be trained and their value in the real-life 

situations. Content validity studies usually identify undesired skills transferred 

from simulation to the real surgery. To perform a content evaluation, it is 

necessary to assess trainees' performance using INSs after training with the AR 

simulator against a control group. For THR procedures, a surgeon’s 

performance is assessed given the stability of the implant system after a 5-year 

follow-up as complications can take a long time to develop (Schnurr et al., 

2009). Unfortunately, this challenge was impossible to overcome, given that 

 
33 An evaluation of the similarity between the skills that can be acquired using the simulator with the ones in 

the real world. 
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our research was constrained to 3 years.   

• Our trained model for implementation in a simulator can also be enhanced in 

different facets to achieve better generalization. Many different adaptations, 

training data, and experiments have been left for the future due to lack of time. 

Firstly, the FEM results used as training data were generated covering a portion 

of the acetabular cavity with a mesh of only 20406 elements big. By refining 

the mesh, the network could be trained on more refined behaviour producing 

smoother results. Additionally, the dimensions of the volume extracted from 

the acetabulum can also be enlarged to include a more comprehensive portion 

of the bone into the interactive volume of our physically-based deformer. 

Furthermore, the training data was generated by solving the dynamic system 

for the first 2 seconds after contact is started. This duration was enough for a 

thin mesh to be perforated entirely by the reamer. However, if the volume of 

volumetric mesh is increased, a bigger tetrahedral mesh can be simulated 

during longer time ranges, increasing the model's generalisation for longer 

interaction times.  

• We believe that enhancing the accuracy of the material’s constitutive equations 

used to define the FEM is very likely to increase the accuracy of the FEM 

results. However, a more complex model is also likely to increase exponentially 

the processing times that the FEM solver requires to find the system of 

dynamic equations described in Section 4.1.3. To make the constitutive 

equations more realistic, we suggest including the anisotropy of the bone. As 

mentioned in Section 4.3.2, the direction of anisotropy for the acetabulum, i.e 

the orientations of the osteons and the strength of the bone of the principal 

directions, which have to be characterized experimentally to define an 

anisotropic model successfully. These topological and mechanic 

characterization of the pelvic bone can be considered a whole research project 

on its own, and due to our time constraints, they were not included in our 

project. The osteons orientation is typically found through microscopic 

examination of a sample from the acetabulum. The bone sample should be 

pre-treated with a pigment to enhance the fibre-like orientation of the osteons 

forming the bone. Once the direction of anisotropy has been determined, the 

mechanical failure test must be conducted to identify the strength of the 
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material in the primary direction of anisotropy and on the 2 directions 

perpendicular to it. It is worth noting that it would be necessary to acquire 

several hip tissue samples available to ensure the reliability of the material 

model.  

• Finally, we strongly encourage integrating the developed 3D physically-based 

deformation renderer with the required hardware to produce a full working 

simulator.  The technical nature of this work required practical lab access and 

workshop access which was unfortunately disrupted by the COVID 

lockdowns in 2020. In a system such as the one illustrated in Figure 55 a 3D 

physically-based deformation model computes the volumetric change of the 

bone based on the information provided by a pressure sensor and the 6DOF 

tracked position of the reamer. To ensure the acquisition of relevant reaming 

skills, the change of the volume in the bone must be similar to the one expected 

during real surgery.  In Figure 55 the passive haptic model is mounted on a 

supporting structure capable of resisting the forces applied to safely replicate 

the reaming and impacting stages of the surgery. The spatial alignment ensures 

that the digital content rendered by the XR34 headset is perceived to have the 

same position, orientation and scale as the passive haptic model. This prevents 

 
34 AR or VR 

Figure 55 A proposed layout of an ideal simulator for traditional THR. 
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the user's movements to be constrained by a haptic arm. Instead, the 

movements of the reamer and its exerted force are monitored in real-time by 

adequate sensors such as a triaxial force sensor and a 3D position tracker. To 

provide unlimited attempts inside the simulation, the physical reamer dummy 

should not induce any sign of wear on the surface of the passive haptics 

models. Therefore, the simulator must take advantage of the spatial alignment 

to display the progress of the reaming operation on the surface of the digital 

pelvis.  
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